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ABSTRACT

Deep learning has become the most
widely used approach for cardiac image
segmentation in recent years. In this paper, we
provide a review of over 100 cardiac image
segmentation papers using deep learning,
which covers common imaging modalities
including magnetic resonance imaging (MRI),
computed tomography (CT), and ultrasound
(US) and major anatomical structures of
interest (ventricles, atria and vessels). In
addition, a summary of publicly available
cardiac image datasets and code repositories
are included to provide a base for encouraging
reproducible research. Finally, we discuss
the challenges and limitations with current
deep learning-based approaches (scarcity of
labels, model generalizability across different
domains, interpretability) and suggest potential
directions for future research.

Keywords: Artificial intelligence, deep learning, neural networks,

cardiac image segmentation, cardiac image analysis, MRI, CT,

US
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1 INTRODUCTION

Cardiovascular diseasess (CVDs) are the leading
cause of death globally according to World Health
Organization (WHO). About 17.9 million people
died from CVDs in 2016, from CVD, mainly
from heart disease and stroke1. The number is
still increasing annually. In recent decades, major
advances have been made in cardiovascular research
and practice aiming to improve diagnosis and
treatment of cardiac diseases as well as reducing
the mortality of CVD. Modern medical imaging
techniques such as magnetic resonance imaging
(MRI), computed tomography (CT) and ultrasound
(US) are now widely used, which enable non-
invasive qualitative and quantitative assessment of
cardiac anatomical structures and functions and
provide support for diagnosis, disease monitoring,
treatment planning and prognosis.

Of particular interest, cardiac image segmentation
is an important first step in numerous applications. It
partitions the image into a number of semantically
(i.e. anatomically) meaningful regions, based on
which quantitative measures can be extracted,
such as the myocardial mass, wall thickness, left

1 https://www.who.int/cardiovascular_diseases/
about_cvd/en/
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Figure 1. Overview of cardiac image segmentation tasks for different imaging modalities. For better
understanding, we provide the anatomy of the heart on the left (image source: clipart-library.com). Of
note, for simplicity, we list the tasks for which deep learning techniques have been applied, which will be
discussed in Section 3.

ventricle (LV) and right ventricle (RV) volume
as well as ejection fraction (EF) etc. Typically,
the anatomical structures of interest for cardiac
image segmentation include the LV, RV, left atrium
(LA), right atrium (RA), and coronary arteries.
An overview of typical tasks related to cardiac
image segmentation is presented in Fig. 1, where
applications for the three most commonly used
modalities, i.e., MRI, CT and US, are shown.

Before the rise of deep learning, traditional
machine learning techniques such as model-based
methods (e.g. active shape and appearance models)
and atlas-based methods had been shown to achieve
good performance in cardiac image segmentation
(Petitjean et al., 2015; Peng et al., 2016; Tavakoli
and Amini, 2013; Lesage et al., 2009). However,
they often require significant feature engineering or
prior knowledge to achieve satisfactory accuracy. In
contrast, deep learning (DL)-based algorithms are
good at automatically discovering intricate features
from data for object detection and segmentation.
These features are directly learned from data using

a general-purpose learning procedure and in end-
to-end fashion. This makes DL-based algorithms
easy to apply to other image analysis applications.
Benefiting from advanced computer hardware (e.g.
graphical processing units (GPUs) and tensor
processing units (TPUs)) as well as increased
available data for training, DL-based segmentation
algorithms have gradually outperformed previous
state-of-the-art traditional methods, gaining more
popularity in research. This trend can be observed
in Fig. 2A, which shows how the number of
DL-based papers for cardiac image segmentation
has increased strongly in the last years. In
particular, the number of the publications for MR
image segmentation is significantly higher than
the numbers of the other two domains, especially
in 2017. One reason, which can be observed in
Fig. 2B, is that the publicly available data for MR
segmentation has increased remarkably since 2016.

In this paper, we provide an overview of
state-of-the-art deep learning techniques for
cardiac image segmentation in the three most
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Figure 2. (A) Overview of numbers of papers published from 1st January 2016 to 1st August 2019
regarding deep learning-based methods for cardiac image segmentation reviewed in this work. (B) The
increase of public data for cardiac image segmentation in the past ten years. CT: computed tomography,
MR: magnetic resonance, US: ultrasound.

commonly used modalities (i.e. MRI, CT, US) in
clinical practice and discuss the advantages and
remaining limitations of current deep learning-
based segmentation methods that hinder widespread
clinical deployment. To our knowledge, there
have been several review papers that presented
overviews about applications of DL-based methods
for general medical image analysis (Greenspan
et al., 2016; Shen et al., 2017; Litjens et al., 2017),
as well as some surveys dedicated to applications
designed for cardiovascular image analysis (Gandhi
et al., 2018; Mazurowski et al., 2019). However,
none of them has provided a systematic overview
focused on cardiac segmentation applications. This
review paper aims at providing a comprehensive
overview from the debut to the state-of-the-art of
deep learning algorithms, focusing on a variety
of cardiac image segmentation tasks (e.g. the LV,
RV, and vessel segmentation) (Sec. 3). Particularly,
we aim to cover most influential DL-related works
in this field published until 1st August 2019 and
categorized these publications in terms of specific
methodology. Besides, in addition to the basics of
deep learning introduced in Sec.2, we also provide
a summary of public datasets (see Table 6) as well
as public code (see Table 7), aiming to present a
good reading basis for newcomers to the topic and

encourage future contributions. More importantly,
we provide insightful discussions about the current
research situations (Sec.3.4) as well as challenges
and potential directions for future work (Sec. 4).

Search criterion To identify related contributions,
search engines like Scopus and PubMed were
queried for papers containing (“convolutional”
OR “deep learning”) and (“cardiac”) and (”image
segmentation”) in title or abstract. Additionally,
conference proceedings for MICCAI, ISBI and
EMBC were searched based on the titles of
papers. Papers which do not primarily focus on
segmentation problems were excluded. The last
update to the included papers was on Aug 1, 2019.

2 FUNDAMENTALS OF DEEP
LEARNING

Deep learning models are deep artificial neural
networks. Each neural network consists of an
input layer, an output layer, and multiple hidden
layers. In the following section, we will review
several deep learning networks and key techniques
that have been commonly used in state-of-the-
art segmentation algorithms. For a more detailed
and thorough illustration of the mathematical

Under review 3
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Figure 3. (A) Generic architecture of convolutional neural networks (CNN). A CNN takes a cardiac
MR image as input, learning hierarchical features through a stack of convolutions and pooling operations.
These spatial feature maps are then flattened and reduced into a vector through fully connected layers. This
vector can be in many forms, depending on the specific task. It can be probabilities for a set of classes
(image classification) or coordinates of a bounding box (object localization) or a predicted label for the
center pixel of the input (patch-based segmentation) or a real value for regression tasks (e.g. left ventricular
volume estimation). (B) Patch-based segmentation method based on a CNN classifier. The CNN takes
a patch as input and outputs the probabilities for four classes where the class with the highest score is
the prediction for the center pixel (see the yellow cross) in this patch. By repeatedly forwarding patches
located at different locations into the CNN for classification, one can finally get a pixel-wise segmentation
map for the whole image. LV:left ventricle; RV: right ventricle; BG: Background; Myo: left ventricular
myocardium.

background and fundamentals of deep learning we
refer the interested reader to Goodfellow (2016).

2.1 Neural Networks

In this section, we first introduce basic neural
network architectures and then briefly introduce
building blocks which are commonly used to boost
the ability of the networks to learn features that are
useful for image segmentation.

2.1.1 Convolutional Neural Networks (CNNs)

In this part, we will introduce convolutional neural
network (CNN), which is the most common type
of deep neural networks for image analysis. CNN
have been successfully applied to advance the state-
of-the-art on many image classification, object
detection and segmentation tasks.

As shown in Fig. 3A, a standard CNN consists
of an input layer, an output layer and a stack of
functional layers in between that transform an input

Under review 4
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into an output in a specific form (e.g. vectors).
These functional layers often contains convolutional
layers, pooling layers and/or fully-connected layers.
In general, each convolution uses a n × n kernel
(for 2D input) or n × n × n kernel (for 3D input)
followed by batch normalization (Ioffe and Szegedy,
2015) after which the output is passed through a
nonlinear activation function (e.g. rectified linear
unit (ReLU)), which is used to extract feature
maps from an image. These feature maps are then
downsampled by pooling layers, typically by a
factor of 2, which removes redundant features
to improve the statistical efficiency and model
generalization. After that, fully connected layers
are applied to reduce the dimension of features and
find the most task-relevant features for inference.
The output of the network is a fix-sized vector
where each element can be a probabilistic score
for each category (for image classification), a real
value for a regression task (e.g. the left ventricular
volume estimation) or a set of values (e.g. the
coordinates of a bounding box for object detection
and localization).

In general, the size of convolution kernel n
is chosen to be small in general, e.g. n = 3,
in order to reduce computational costs. While
the kernels are small, one can increase the
receptive field (the area of the input image that
potentially impacts the activation of a particular
convolutional kernel/neuron) by increasing the
number of convolutional layers. For example, a
convolutonal layer with large 7× 7 kernels can be
replaced by three layers with small 3 × 3 kernels.
The number of parameters is reduced by a factor of
72/(3× (32)) ≈ 2 while the receptive field remains
the same (7 × 7). An online resource 2 is referred
here, which illustrates and visualizes the change
of receptive field by varying the number of hidden
layers and the size of kernels. In general, increasing
the depth of convolution neural networks (the
number of hidden layers) to enlarge the receptive
field can lead to improved model performance, e.g.

2 https://fomoro.com/research/article/receptive-field-calculator

classification accuracy (Simonyan and Zisserman,
2015).

CNNs for image classification can also be
employed for image segmentation applications
without major adaptations to the network architecture
(Ciresan and Giusti, 2012), as shown in Fig. 3B.
However, this requires to divide each image into
patches and then train a CNN to predict the class
label of the center pixel for every patch. One major
disadvantage of this patch-based approach is that, at
inference time, the network has to be deployed for
every patch individually despite the fact that there
is a lot of redundancy due to multiple overlapping
patches in the image. As a result of this inefficiency,
the main application of CNNs with fully connected
layers is object localization, which aims to estimate
the bounding box of the object of interest in an
image. This bounding box is then used to crop
the image, forming an image pre-processing step
to reduce the computational cost for segmentation
(Avendi et al., 2016). For efficient, end-to-end
pixel-wise segmentation, a variant of CNNs called
fully convolutional neural network (FCN) is more
commonly used, which will be discussed in the next
section.

2.1.2 Fully Convolutional Neural Networks
(FCNs)

The idea of FCN was first introduced by Long
et al. (2015) for image segmentation. FCNs are
a special type of CNNs that do not have any
fully connected layers. In general, as shown in
Fig. 4A, FCNs are designed to have an encoder-
decoder structure such that they can take input
of arbitrary size and produce the output with the
same size. Given an input image, the encoder
first transforms the input into high-level feature
representation whereas the decoder interprets the
feature maps and recovers spatial details back to
the image space for pixel-wise prediction through
a series of transposed convolution and convolution
operations. Here, transposed convolutions are used
for up-scaling the feature maps, typically by a factor
of 2. These transposed convolutions can also be
replaced by unpooling layers and upsampling layers.

Under review 5
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Figure 4. (A) Generic architecture of fully convolutional neural networks (FCN) for segmentation.
The FCN first takes the whole image as input, learns deep image features though the encoder, gradually
recovers the spatial dimension by a series of transposed convolution layers in the decoder and finally
predicts a pixel-wise image segmentation for the left ventricle cavity (the blue region), the left ventricular
myocardium (the green region) and the right ventricle (the red region). One use case of this FCN-based
cardiac segmentation can be found in Tran (2016). (B) A schematic drawing of U-net. On the basis of
the basic structure of FCN, U-net employs ‘skip connections’ ( the gray arrows) to aggregate feature maps
from coarse to fine. Of note, for simplicity, we reduce the number of downsampling and upsampling blocks.
For detailed information, we recommend readers to the original paper (Ronneberger and Brox, 2015).

Compared to a patch-based CNN for segmentation,
FCN is trained and applied to the entire images,
removing the need for patch selection (Shelhamer
et al., 2017).

FCN with the simple encoder-decoder structure in
Fig. 4A may be limited to capture detailed context
information in an image for precise segmentation as
some features may be eliminated by the pooling
layers in the encoder. Several variants of FCNs
have been proposed to propagate features from

the encoder to the decoder, in order to boost the
segmentation accuracy. The most well-known and
most popular variant of FCNs for biomedical image
segmentation is the U-net (Ronneberger and Brox,
2015). On the basis of the vanilla FCN (Long et al.,
2015), the U-net employs skip connections between
the encoder and decoder to recover spatial context
loss in the down-sampling path, yielding more
precise segmentation (see Fig. 4B). Several state-of-
the-art cardiac image segmentation methods have

Under review 6
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Figure 5. An example of RNN for cardiac image
segmentation. The yellow block with a curved
arrow represents a RNN module, which can
memorize the past and use the knowledge learned
from the past to make its present decision. This
type of network is ideal for sequential data such
as cine MR images and ultrasound movies, as well
as volumetric data. In this example, the network is
used to segment cardiac ventricles from a stack of
2D cardiac MR slice, which allows to propagate
contextual information from adjacent slices in the
z-direction for better inter-slice coherence (Poudel
et al., 2016).

adopted the U-net or its 3D variants, the 3D U-
net (Çiçek et al., 2016) and the 3D V-net (Milletari
et al., 2016), as their backbone networks, achieving
promising segmentation accuracy for a number of
cardiac segmentation tasks (Tao et al., 2019; Isensee
et al., 2017; Xia et al., 2018).

2.1.3 Recurrent Neural Networks (RNNs)

Recurrent neural networks (RNNs) are another
type of artificial neural networks which are used for
sequential data, such as cine MRI and ultrasound
image sequences. An RNN can ‘remember’ the past
and use the knowledge learned from the past to
make its present decision, see Fig 5. For example,
given a sequence of images, an RNN takes the first
image as input, captures the information to make
a prediction and then memorize this information
which is then utilized to make a prediction for the
next image. The two most widely used architectures
in the family of RNNs are LSTM (Hochreiter
and Schmidhuber, 1997) and gated recurrent unit
(GRU) (Cho et al., 2014), which are capable of
modeling long-term memory. A use case for cardiac
segmentation is to combine an RNN with a 2D
FCN so that the combined network is capable
of capturing information from adjacent slices to

Figure 6. A generic architecture of an
autoencoder. An autoencocer employs an
encoder-decoder structure, where the encoder
maps the input data to a low-dimensional latent
representation and the decoder interprets the code
and reconstructs the input.

.

improve the inter-slice coherence of segmentation
results (Poudel et al., 2016).

2.1.4 Autoencoders (AE)

Autoencoders (AEs) are a type of neural
networks that are designed to learn compact latent
representations from data without supervision. A
typical architecture of an autoencoder consists of
two networks: an encoder network and a decoder
network for the reconstruction of the input, see
Fig. 6. Since the learned representations contain
generally useful information in the original data,
many researchers have employed autoencoders
to extract general semantic features or shape
information from input images or labels and then
use those features to guide the cardiac image
segmentation (Oktay et al., 2016; Schlemper et al.,
2018; Yue et al., 2019).

2.1.5 Generative Adversarial Networks
(GAN)

The concept of Generative adversarial network
(GAN) was proposed by Goodfellow et al. (2014)
for image synthesis from noise. GANs are a type
of generative models that learn to model the data
distribution of real data and thus are able to create
new image examples. As shown in Fig. 7A, a GAN
consists of two networks: a generator network and
a discriminator network. During training, the two
networks are trained to compete against each other:
the generator produces fake images aimed at fooling
the discriminator, whereas the discriminator tries to

Under review 7
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Figure 7. (A) Overview of GAN for image
synthesis; (B) Overview of adversarial training for
image segmentation.

identify real images from fake ones. This type of
training is referred to as ‘adversarial training’, since
the two models are both set to win the competition.
This training scheme can also be used for training
a segmentation network. As shown in Fig. 7B, the
generator is replaced by a segmentation network
and the discriminator is required to distinguish
the generated segmentation maps from the ground
truth ones (the target segmentation maps). In this
way, the segmentation network is encouraged to
produce more anatomically plausible segmentation
maps (Luc et al., 2016; Savioli et al., 2018).

2.1.6 Advanced building blocks for improved
segmentation

Medical image segmentation, as an important
step for quantitative analysis and clinical research,
requires a pixel-wise accuracy. Over the past years,
many researchers have developed advanced building
blocks to learn robust, representative features for
precise segmentation. These techniques have been
widely applied to state-of-the-art neural networks
(e.g. U-net) to improve cardiac image segmentation
performance. Therefore, we identified several
important techniques reported in the literature to
this end and present them with corresponding

Figure 8. (A) Naive version of the inception
module (Szegedy et al., 2015). In this module,
convolutional kernels with varying sizes are
applied to the same input for multi-scale feature
fusion. (B) Schematic diagram of the attention
module (Vaswani et al., 2017; Oktay et al.,
2018b). The attention module teaches the network
to pay attention to important features (e.g. features
relevant to anatomy) and ignore redundant features.
(C) Schematic diagram of a residual unit (He
et al., 2016). The yellow arrow represents a
residual connection which is applied to reusing
the features from the previous layer. The numbers
in the green and orange blocks denote the sizes
of corresponding convolutional or pooling kernels.
Here, for simplicity, all diagrams have been
reproduced based on the illustration in the original
papers.

references for further reading. These techniques
are:

1. Advanced convolutional modules for multi-
scale feature aggregation in the hidden layers:
• Inception modules (Szegedy et al., 2015),

see Fig. 8A;
• Dilated convolutional kernels (Yu and

Koltun, 2016);
• Deep supervision (Lee et al., 2015);
• Atrous spatial pyramid pooling (Chen et al.,

2017);
2. Adaptive convolutional kernels designed to pay

attention to important features:
• Attention units (Vaswani et al., 2017), see

Fig. 8B;

Under review 8
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• Squeeze-and-excitation blocks (Hu et al.,
2018);

3. Interlayer connections designed to reuse
features from previous layers:
• Residual connections (He et al., 2016), see

Fig. 8C;
• Dense connections (Huang et al., 2017).

2.2 Training Neural Networks

Before being able to perform inference, neural
networks must be trained. This training process
requires a dataset that contains paired images and
labels {x,y} for training and testing, an optimizer
(e.g. stochastic gradient descent, Adam) and a
loss function to update the model parameters.
This function accounts for the error of the
network prediction in each iteration during training,
providing signals for the optimizer to update the
network parameters through backpropagation. The
goal of training is to find proper values of the
network parameters to minimize the loss function.

2.2.1 Common Loss Functions

For regression tasks (e.g. heart localization,
calcium scoring, landmark detection, image
reconstruction), the simplest loss function is the
mean squared error (MSE):

LMSE =
1

n

n∑
i=1

(yi − ŷi)
2, (1)

where yi is the vector of target values and ŷi is the
vector of the predicted values; n is the number of
data samples.

Cross-entropy is the most common loss for both
image classification and segmentation tasks. In
particular, the cross-entropy loss for segmentation
summarizes the pixel-wise probability errors
between the predicted probabilistic output p and
its corresponding target segmentation map y for
each class c:

LCE = − 1

n

n∑
i=1

C∑
c=1

yc
i log(pc

i), (2)

where C is the number of all classes. Another
loss function which is specifically designed
for object segmentation is called soft-Dice loss
function (Milletari et al., 2016), which penalizes
the mismatch between a predicted segmentation
map and its target map at pixel-level:

LDice = 1− 2
∑n

i=1

∑C
c=1 y

c
ip

c
i∑n

i=1

∑C
c=1(y

c
i + pc

i)
. (3)

In addition, there are several variants of the cross-
entropy or soft-Dice loss such as the weighted
cross-entropy loss (Jang et al., 2017; Baumgartner
et al., 2017) and weighted soft-Dice loss (Yang et al.,
2017c; Khened et al., 2019) that are used to address
potential class imbalance problem in medical image
segmentation tasks where the loss term is weighted
to account for rare classes or small objects.

2.2.2 Reduce over-fitting

The biggest challenge of training deep networks
for medical image analysis is over-fitting, due to
the fact that there is often a limited number of
training images in comparison with the number of
learnable parameters in a deep network. A number
of techniques have been developed to alleviate this
problem. Some of the techniques are the following
ones:

• Weight initialization (He et al., 2015) and
weight regularization (i.e. L1/L2 regularization)

• Dropout (Srivastava et al., 2014)
• Ensemble learning (Kamnitsas et al., 2017a)
• Data augmentation by artificially generating

training samples via affine transformations
• Transfer learning with a model pre-trained on

existing large datasets.

2.3 Evaluation Metrics

To quantitatively evaluate the performance of
automated segmentation algorithms, three types
of metrics are commonly used: a) volume-based
metrics (e.g. Dice metric, Jaccard similarity index);
b) surface distance-based metrics (e.g. mean
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contour distance, Hausdorff distance); c) clinical
performance metrics (e.g. ventricular volume and
mass). For a detailed illustration of common used
clinical indices in cardiac image analysis, we
recommend the review paper by Peng et al. (2016).
In our paper, we mainly report the accuracy of
methods in terms of the Dice metric for ease of
comparison. The Dice score measures the ratio
of overlap between two results (e.g. automatic
segmentation vs manual segmentation), ranging
from 0 (mismatch) to 1 (perfect match).

3 DEEP LEARNING FOR CARDIAC
IMAGE SEGMENTATION

In this section, we provide a summary of deep
learning-based applications for the three main
imaging modalities: MRI, CT, and US regarding
specific applications for targeted structures. In
general, these deep learning-based methods provide
an efficient and effective way to segmenting
particular organs or tissues (e.g. the LV, coronary
vessels, scars) in different modalities, facilitating
follow-up quantitative analysis of cardiovascular
structure and function. Among these works, a
large portion of these methods are designed for
ventricle segmentation, especially in MR and US
domains. The objective of ventricle segmentation
is to delineate the endocardium and epicardium
of the LV and/or RV. These segmentation maps
are important for deriving clinical indices, such
as left ventricular end-diastolic volume (LVEDV),
left ventricular end-systolic volume (LVESV), right
ventricular end-diastolic volume (RVEDV), right
ventricular end-systolic volume (RVESV), and EF.
In addition, these segmentation maps are essential
for 3D shape analysis (Xue et al., 2018; Biffi et al.,
2018), 3D+time motion analysis (Zheng et al.,
2019) and survival prediction (Bello et al., 2019).

3.1 Cardiac MR Image Segmentation

Cardiac MRI is a non-invasive imaging technique
that can visualize the structures within and around
the heart. Compared to CT, it does not require
ionising radiation. Instead, it relies on the magnetic

field in conjunction with radio-frequency waves
to excite hydrogen nuclei in the heart, and then
generates an image by measuring their response.
By utilizing different imaging sequences, cardiac
MRI allows accurate quantification of both cardiac
anatomy and function (e.g. cine imaging) and
pathological tissues such as scars (late gadolinium
enhancement (LGE) imaging). Accordingly, cardiac
MRI is currently regarded as the gold standard for
quantitative cardiac analysis (Van Der Geest and
Reiber, 1999).

A group of representative deep learning based
cardiac MR segmentation methods are shown in
Table 1. From the table, one can see that a majority
of works have focused on segmenting cardiac
chambers (e.g. LV, RV, LA). In contrast, there
are relatively fewer works on segmenting abnormal
cardiac tissue regions such as myocardial scars
and atrial fibrosis. This is likely due to the limited
relevant public datasets as well as the difficulty of
the task. In addition, to the best of our knowledge,
there are very few works that apply deep learning
techniques to atrial wall segmentation, as also
suggested by a recent survey paper (Karim et al.,
2018). In the following sections, we will describe
and discuss these methods regarding different
applications in detail.

3.1.1 Ventricle Segmentation

Vanilla FCN-based Segmentation: Tran (2016)
was among the first ones to apply a FCN (Shelhamer
et al., 2017) to segment the left ventricle,
myocardium and right ventricle directly on
short-axis cardiac magnetic resonance (MR)
images. Their end-to-end approach based on FCN
achieved competitive segmentation performance,
significantly outperforming traditional methods
in terms of both speed and accuracy. In the
following years, a number of works based on
FCNs have been proposed, aiming at achieving
further improvements in segmentation performance.
In this regard, one stream of work focuses on
optimizing the network structure to enhance the
feature learning capacity for segmentation (Khened
et al., 2019; Li et al., 2019b; Zhou and Yang,
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Table 1. A summary of representative deep learning methods on cardiac MRI segmentation. SAX:
short-axis view; 2CH: 2-chamber view; 4CH: 4-chamber view; ED: end-diastolic; ES: end-systolic.

Application Selected works Description Type of Images Structure(s)

Ventricle
Segmentation

FCN-based
Tran (2016) 2D FCN SAX Bi-ventricle
Lieman-Sifry et al. (2017) A lightweight FCN (E-Net) SAX Bi-ventricle
Isensee et al. (2017) 2D U-net +3D U-net (ensemble) SAX Bi-ventricle
Jang et al. (2017) 2D M-Net with weighted cross entropy loss SAX Bi-ventricle
Baumgartner et al. (2017) 2D U-net with cross entropy SAX Bi-ventricle
Bai et al. (2018a) 2D FCN trained and verified on a large dataset (∼ 5000 subjects); SAX, 2CH, 4CH Four chambers
Tao et al. (2019) 2D U-net trained and verified on a multi-vendor, multi-scanner dataset SAX LV
Khened et al. (2019) 2D Dense U-net with inception module SAX Bi-ventricle
Fahmy et al. (2019) 2D FCN SAX LV
Introducing spatial or temporal context
Poudel et al. (2016) 2D FCN with RNN to model inter-slice coherency SAX Bi-ventricle
Patravali et al. (2017) 2D multi-channel FCN to aggregate inter-slice information SAX Bi-ventricle
Wolterink et al. (2017c) Dilated U-net to segment ED and ES simultaneously SAX Bi-ventricle
Applying anatomical constraints
Oktay et al. (2018a) FCN trained with additional anatomical shape-based regularization SAX;US LV
Multi-stage networks
Tan et al. (2017) Semi-automated method; CNN (localization)

followed by another CNN to derive contour parameters SAX LV

Zheng et al. (2018) FCN (localization) + FCN (segmentation);
Propagate labels from adjacent slices SAX Bi-ventricle

Vigneault et al. (2018) U-net (initial segmentation) + CNN (localization and transformation)
+ Cascaded U-net (segmentation) SAX, 2CH, 4CH Four chambers

Hybrid segmentation methods

Avendi et al. (2016, 2017)
CNN (localization)

+AE (shape initialization)
+ Deformable model

SAX LV; RV

Yang et al. (2016) CNN combined with Multi-atlas SAX LV
Ngo et al. (2017) Level-set based segmentation with Deep belief networks SAX LV

Atrial Segmentation
Mortazi et al. (2017b) Multi-view CNN with adaptive fusion strategy 3D scans LA
Xiong et al. (2019) Patch-based dual-stream 2D FCN LGE MRI LA
Xia et al. (2018) Two-stage pipeline; 3D U-net (localization) +3D U-net (segmentation) LGE MRI LA

Scar Segmentation
Yang et al. (2018b)

Fully automated;
Multi-atlas method for LA segmentation
followed by an AE to find the atrial scars

LGE MRI LA; atrial scars

Chen et al. (2018b) Fully automated;
Multi-view Two-Task Recursive Attention Model LGE MRI LA; atrial scars

Zabihollahy et al. (2018) Semi-automated;
2D CNN for scar tissue classification LGE MRI Myocardial scars

Moccia et al. (2019) Semi-automated;
2D FCN for scar segmentation LGE MRI Myocardial scars

Xu et al. (2018a) Fully automated;
RNN for joint motion feature learning and scar segmentaion cine MRI Myocardial scars

Aorta Segmentation Bai et al. (2018b)
RNN to learn temporal coherence;

Propagate labels from labeled frames to unlabeled adjacent frames
for semi-supervised learning;

cine MRI Aorta

Whole Heart Segmentation
Yu et al. (2017a) 3D U-net with deep supervision 3D scans Blood pool+Myocardium of the heart
Li et al. (2017) 3D FCN with deep supervision 3D scans Blood pool+Myocardium of the heart
Wolterink et al. (2017a) dilated CNN with deep supervision 3D scans Blood pool+Myocardium of the heart

2019; Zhang et al., 2019a; Cong and Zhang,
2018; Jang et al., 2017; Fahmy et al., 2019). For
example, Khened et al. (2019) developed a dense
U-net with inception modules to combine multi-
scale features for robust segmentation across images
with large anatomical variability. Jang et al. (2017);
Yang et al. (2017c); Sander et al. (2019); Chen
et al. (2019e) investigated different loss functions
such as weighted cross-entropy, weighted Dice loss,
deep supervision loss and focal loss to improve
the segmentation performance. Among these FCN-
based methods, the majority of approaches use 2D
networks rather than 3D networks for segmentation.
This is mainly due to the typical low through-plane
resolution and motion artifacts of most cardiac
MR scans, which limits the applicability of 3D
networks (Baumgartner et al., 2017).

Introducing spatial or temporal context: One
drawback of using 2D networks for cardiac
segmentation is that these networks work slice by
slice, and thus they do not leverage any inter-slice
dependencies. As a result, 2D networks can fail to
locate and segment the heart on challenging slices
such as apical and basal slices where the contours
of the ventricles are not well defined. To address
this problem, a number of works have attempted
to introduce additional contextual information to
guide 2D FCN. This contextual information can
include shape priors learned from labels or multi-
view images (Zotti et al., 2017, 2019; Chen et al.,
2019b). Others extract spatial information from
adjacent slices to assist the segmentation, using
recurrent units (RNNs) or multi-slice networks
(2.5D networks) (Poudel et al., 2016; Patravali
et al., 2017; Du et al., 2019; Zheng et al., 2018).
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These networks can also be applied to leveraging
information across different temporal frames in
the cardiac cycle to improve spatial and temporal
consistency of segmentation results (Yan et al.,
2018; Savioli et al., 2018; Du et al., 2019; Qin et al.,
2018a; Wolterink et al., 2017c).

Applying anatomical constraints: Another
problem that may limit the segmentation performance
of both 2D and 3D FCNs is that they are typically
trained with pixel-wise loss functions only (e.g.
cross-entropy or soft-Dice losses). These pixel-
wise loss functions may not be sufficient to learn
features that represent the underlying anatomical
structures. Several approaches therefore focus on
designing and applying anatomical constraints
to train the network to improve its prediction
accuracy and robustness. These constraints are
represented as regularization terms which take into
account the topology (Clough et al., 2019), contour
and region information (Chen et al., 2019g) or
shape information (Oktay et al., 2018a; Yue et al.,
2019), encouraging the network to generate more
anatomically plausible segmentations. In addition to
regularizing networks at training time, Painchaud
et al. (2019) proposed a variational AE to correct
inaccurate segmentations, in the post-processing
stage.

Multi-task learning: Multi-task learning has
also been explored to regularize FCN-based
cardiac ventricle segmentation during training
by performing auxiliary tasks that are relevant
to the main segmentation task, such as motion
estimation (Qin et al., 2018b), estimation of cardiac
function (Dangi et al., 2018b), ventricle size
classification (Zhang et al., 2018b) and image
reconstruction (Chartsias et al., 2018; Huang
et al., 2019). Training a network for multiple
tasks simultaneously encourages the network to
extract features which are useful across these
tasks, resulting in improved learning efficiency and
prediction accuracy.

Multi-stage networks: Recently, there is a
growing interest in applying neural networks in
a multi-stage pipeline which breaks down the

segmentation problem into subtasks (Vigneault
et al., 2018; Zheng et al., 2018; Li et al., 2019a; Tan
et al., 2017; Liao et al., 2019). For example, Zheng
et al. (2018); Li et al. (2019a) proposed a region-
of-interest (ROI) localization network followed by
a segmentation network. Likewise, Vigneault et al.
(2018) proposed a network called Omega-Net which
consists of a U-net for cardiac chamber localization,
a learnable transformation module to normalize
image orientation and a series of U-nets for fine-
grained segmentation. By explicitly localizing the
ROI and by rotating the input image into a canonical
orientation, the proposed method better generalizes
to images with varying sizes and orientations.

Hybrid segmentation methods: Another stream
of work aims at combining neural networks with
classical segmentation approaches, e.g. level-
sets (Ngo et al., 2017; Duan et al., 2018a),
deformable models (Avendi et al., 2016, 2017;
Medley et al., 2019), atlas-based methods (Yang
et al., 2016; Rohé et al., 2017) and graph-cut
based methods (Lu et al., 2019). Here, neural
networks are applied in the feature extraction
and model initialization stages, reducing the
dependency on manual interactions and improving
the segmentation accuracy of the conventional
segmentation methods deployed afterwards. For
example, Avendi et al. (2016) proposed one of
the first DL-based methods for LV segmentation
in cardiac short-axis MR images. The authors first
applied a CNN to automatically detect the LV and
then used an AE to estimate the shape of the LV. The
estimated shape was then used to initialize follow-
up deformable models for shape refinement. As a
result, the proposed integrated deformable model
converges faster than conventional deformable
models and the segmentation achieves higher
accuracy. In their later work, the authors extended
this approach to segment RV (Avendi et al.,
2017). While these hybrid methods demonstrated
better segmentation accuracy than previous non-
deep learning methods, most of them still require
an iterative optimization for shape refinement.
Furthermore, these methods are often designed for
one particular anatomical structure. As noted in
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the recent benchmark study (Bernard et al., 2018),
most state-of-the-art segmentation algorithms for
bi-ventricle segmentation are based on end-to-end
FCNs, which allows the simultaneous segmentation
of the LV and RV.

To better illustrate these developments for cardiac
ventricle segmentation from cardiac MR images, we
collate a list of bi-ventricle segmentation methods
that have been trained and tested on the Automated
Cardiac Diagnosis Challenge (ACDC) dataset,
reported in Table 2. For ease of comparison, we
only consider those methods which have been
evaluated on the same online test set (50 subjects).
As the ACDC challenge organizers keep the
online evaluation platform open to the public, our
comparison not only includes the methods from
the original challenge participants (summarized in
the benchmark study paper from Bernard et al.
(2018)) but also three segmentation algorithms
that have been proposed after the challenge (i.e.
Zotti et al. (2019); Li et al. (2019a); Painchaud
et al. (2019)). From this comparison, one can
see that top algorithms are the ensemble method
proposed by Isensee et al. (2017) and the two-
stage method proposed by Li et al. (2019a), both of
which are based on FCNs. In particular, compared
to the traditional level-set method (Tziritas and
Grinias, 2017), both methods achieved considerably
higher accuracy even for the more challenging
segmentation of the left ventricular myocardium
(Myo), indicating the power of deep learning based
approaches.

3.1.2 Atrial Segmentation

Atrial fibrillation (AF) is one of the most common
cardiac electrical disorders, affecting around 1
million people in the UK 3. Accordingly, atrial
segmentation is of prime importance in the clinic,
improving the assessment of the atrial anatomy in
both pre-operative atrial fibrillation (AF) ablation
planning and post-operative follow-up evaluations.
In addition, the segmentation of atrium can
be used as a basis for scar segmentation and

3 https://www.nhs.uk/conditions/
atrial-fibrillation/

atrial fibrosis quantification from LGE images.
Traditional methods such as region growing (Karim
et al., 2008) and methods that employ strong priors
(i.e. atlas-based label fusion (Tao et al., 2016)
and non-rigid registration (Zhuang et al., 2010))
have been applied in the past for automated left
atrium segmentation. However, the accuracy of
these methods highly relies on good initialization
and ad-hoc pre-processing methods, which limits
the widespread adoption in the clinic.

Recently, Bai et al. (2018a) and Vigneault et al.
(2018) applied 2D FCNs to directly segment the LA
and RA from standard 2D long-axis images, i.e. 2-
chamber (2CH), 4-chamber (4CH) views. Notably,
their networks can also be trained to segment
ventricles from 2D short-axis stacks without any
modifications to the network architecture. Likewise,
Xiong et al. (2019); Preetha et al. (2018); Bian
et al. (2018); Chen et al. (2018a) applied 2D FCNs
to segment the atrium from 3D LGE images in a
slice-by-slice fashion, where they optimized the
network structure for enhanced feature learning.
3D networks (Xia et al., 2018; Savioli et al., 2018;
Jia et al., 2018; Vesal et al., 2018; Li et al., 2018)
and multi-view FCN (Mortazi et al., 2017b; Yang
et al., 2018a) have also been explored to capture
3D global information from 3D LGE images for
accurate atrium segmentation.

In particular, Xia et al. (2018) proposed a
fully automatic two-stage segmentation framework
which contains a first 3D U-net to roughly locate the
atrial center from down-sampled images followed
by a second 3D U-net to accurately segment the
atrium in the cropped portions of the original images
at full resolution. Their multi-stage approach is both
memory-efficient and accurate, ranking first in the
left atrium segmentation challenge 2018 (LASC’18)
with a mean Dice score of 0.93 evaluated on a test
set of 54 cases.

3.1.3 Scar Segmentation

Scar characterization is usually performed using
LGE MR imaging, a contrast-enhanced MR
imaging technique. LGE MR imaging enables the
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Table 2. Segmentation accuracy of state-of-the-art segmentation methods verified on the cardiac bi-ventricular segmentation
challenge (ACDC) dataset (Bernard et al., 2018) All the methods were evaluated on the same test set (50 subjects). Bold numbers are
the highest overall Dice values for the corresponding structure. LV: left ventricle, RV: right ventricle, Myo: left ventricular myocardium;
ED: end-diastolic; ES: end-systolic. Last update: 2019.8.1.
Methods Description LV Myo RV
Isensee et al. (2017) 2D U-net +3D U-net (ensemble) 0.950 0.911 0.923
Li et al. (2019a) Two 2D FCNs for ROI detection and segmentation respectively; 0.944 0.911 0.926
Zotti et al. (2019) 2D GridNet-MD with registered shape prior 0.938 0.894 0.910
Khened et al. (2019) 2D Dense U-net with inception module 0.941 0.894 0.907
Baumgartner et al. (2017) 2D U-net with cross entropy loss 0.937 0.897 0.908
Zotti et al. (2017) 2D GridNet with registered shape prior 0.931 0.890 0.912
Jang et al. (2017) 2D M-Net with weighted cross entropy loss 0.940 0.885 0.907
Painchaud et al. (2019) FCN followed by an AE for shape correction 0.936 0.889 0.909
Wolterink et al. (2017c) Multi-input 2D dilated FCN, segmenting paired ED and ES frames simultaneously 0.940 0.885 0.900
Patravali et al. (2017) 2D U-net with a Dice loss 0.920 0.890 0.865
Rohé et al. (2017) Multi-atlas based method combined with 3D CNN for registration 0.929 0.868 0.881
Tziritas and Grinias (2017) Level-set +markov random field (MRF); Non-deep learning method 0.907 0.798 0.803
Yang et al. (2017c) 3D FCN with deep supervision 0.820 N/A 0.780

Note that for simplicity, we report the average Dice scores for each structure over ED and ES phases. More detailed comparison for different phases
can be found on the public leaderboard in the post testing part (https://acdc.creatis.insa-lyon.fr) as well as corresponding published
works in this table.

identification of myocardial scars and atrial fibrosis,
allowing improved management of myocardial
infarction and atrial fibrillation (Kim et al.,
1999). Prior to the advent of deep learning, scar
segmentation was often performed using intensity
thresholding-based or clustering methods which are
sensitive to the local intensity changes (Zabihollahy
et al., 2018). The main limitation of these methods
is that they usually require the manual segmentation
of the region of interest to reduce the search
space and the computational costs (Carminati et al.,
2016). As a result, these semi-automated methods
are not suitable for large-scale studies or clinical
deployment.

Deep learning approaches have been combined
with traditional segmentation methods for the
purpose of scar segmentation: Yang et al. (2017a,
2018b) applied an atlas-based method to identify the
left atrium and then applied deep neural networks to
detect fibrotic tissue in that region. Relatively to end-
to-end approaches, Chen et al. (2018b) applied deep
neural networks to segment both the left atrium and
the atrial scars. In particular, the authors employed
a multi-view CNN with a recursive attention
module to fuse features from complementary views
for better segmentation accuracy. Their approach
achieved a mean Dice score of 0.90 for the LA
region and a mean Dice score of 0.78 for atrial
scars.

In the work of Fahmy et al. (2018), the authors
applied a U-net based network to segment the
myocardium and the scars at the same time
from LGE images acquired from patients with
hypertrophic cardiomyopathy (HCM), achieving
a fast segmentation speed. However, the reported
segmentation accuracy for the scar regions was
relatively low (mean Dice: 0.58). Zabihollahy et al.
(2018); Moccia et al. (2019) instead adopted a
semi-automated method which requires a manual
segmentation of the myocardium followed by the
application of a 2D network to differentiate scars
from normal myocardium. They reported higher
segmentation accuracy on their test sets (mean
Dice >0.68). At the moment, fully-automated scar
segmentation is still a challenging task since the
infarcted regions in patients can lead to kinematic
variabilities and abnormalities in those contrast-
enhanced images. Interestingly, Xu et al. (2018a)
developed an RNN which leverages motion patterns
to automatically delineate myocardial infarction
area from cine MR image sequences without
contrast agents. Their method achieved a high
overall Dice score of 0.90 when compared to the
manual annotations on LGE MR images, providing
a novel approach for infarction assessment.

3.1.4 Aorta Segmentation

The segmentation of the aortic lumen from cine
MR images is essential for accurate mechanical
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and hemodynamic characterization of the aorta.
One common challenge for this task is the typical
sparsity of the annotations in aortic cine image
sequences, where only a few frames have been
annotated. To address the problem, Bai et al.
(2018b) applied a non-rigid image registration
method (Rueckert et al., 1999) to propagate the
labels from the annotated frames to the unlabeled
neighboring ones in the cardiac cycle, effectively
generating pseudo annotated frames that could be
utilized for further training. This semi-supervised
method achieved an average Dice metric of
0.96 for the ascending aorta and 0.95 for the
descending aorta over a test set of 100 subjects. In
addition, compared to a previous approach based on
deformable models (Herment et al., 2010), their
approach based on FCN and RNN can directly
perform the segmentation task on a whole image
sequence without requiring the explicit estimation
of the ROI.

3.1.5 Whole Heart Segmentation

Apart from the above mentioned segmentation
applications which target one particular structure,
deep learning can also be used to segment the main
substructures of the heart in 3D MR images (Yu
et al., 2017a; Wolterink et al., 2017a; Li et al.,
2017; Shi et al., 2018). An early work from Yu
et al. (2017a) adopted a 3D dense FCN to segment
the myocardium and blood pool in the heart from
3D MR scans. Recently, more and more methods
began to apply deep learning pipelines to segment
more specific substructures (incl. four chambers,
myocardium (MYO), aorta, pulmonary vein (PV))
in both 3D CT and MR images. This has been
facilitated by the availability of public datasets for
whole heart segmentation (Multi-Modality Whole
Heart Segmentation (MM-WHS)). In general, the
segmentation task on MR images is harder than
the one of CT images mainly because of the large
variations in terms of image intensity distribution
among different scanners. As mentioned in a recent
benchmark study paper by Zhuang et al. (2019),
deep learning methods in general achieve better
segmentation accuracy on CT images compared

to that of MR images. We will discuss these
segmentation methods in the next CT section in
further detail (see section 3.2.1).

3.2 Cardiac CT Image Segmentation

CT is a non-invasive imaging technique that
is performed routinely for disease diagnosis and
treatment planning. In particular, cardiac CT scans
are used for assessment of cardiac anatomy and
specifically the coronary arteries. There are two
main imaging modalities: non-contrast CT imaging
and contrast-enhanced coronary CT angiography
(CTA). Typically, non-contrast CT imaging exploits
density of tissues to generate an image, such that
different densities using various attenuation values
such as soft tissues, calcium, fat, and air can be
easily distinguished, and thus allows to estimate
the amount of calcium present in the coronary
arteries (Kang et al., 2012). In comparison, contrast-
enhanced coronary CTA, which is acquired after the
injection of a contrast agent, can provide excellent
visualization of cardiac chambers, vessels and
coronaries, and has been shown to be effective in
detecting non-calcified coronary plaques. In the
following sections, we will review some of the
most commonly used deep learning-based cardiac
CT segmentation methods. A summary of these
approaches is presented in Table 3.

3.2.1 Cardiac Substructure Segmentation

Accurate delineation of cardiac substructures
plays a crucial role in cardiac function analysis,
providing important clinical variables such as EF,
myocardial mass, wall thickness etc. Typically, the
cardiac substructures that are segmented include the
LV, RV, LA, RA, MYO, aorta (AO) and pulmonary
artery (PA).
Two-step segmentation: One group of deep
learning methods relies on a two-step segmentation
procedure, where a ROI is first extracted and
then fed into a CNN for subsequent classification
(Zreik et al., 2016; Dormer et al., 2018). For
instance, Zreik et al. (2016) proposed a two-step
LV segmentation process where a bounding box for
the LV is first detected using the method described
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Table 3. A summary of selected deep learning methods on cardiac CT segmentation.
Application Selected works Description Imaging Modality Structure(s)

Cardiac Substructure
Segmentation

Two-step segmentation
Zreik et al. (2016) patch based CNN CTA LV
Payer et al. (2018) a pipeline of two FCNs MR/CT WHS
Tong et al. (2017) deeply supervised 3D U-net MR/CT WHS
Wang et al. (2018) two-stage 3D U-net with dynamic ROI extraction MR/CT WHS
Xu et al. (2018b) faster RCNN and U-net CT WHS
Multi-view CNNs
Wang and Smedby (2017) orthogonal 2D U-nets with shape context MR/CT WHS
Mortazi et al. (2017a) multi-planar FCNs with an adaptive fusion strategy MR/CT WHS
Hybrid loss
Yang et al. (2017d) 3D U-net with deep supervision MR/CT WHS
Ye et al. (2019) 3D deeply-supervised U-net with multi-depth fusion CT WHS
Others
Zreik et al. (2018a) multi-scale FCN CTA Myo
Joyce et al. (2018) unsupervised segmentation with GANs MR/CT LV/RV/Myo

Coronary Artery
Segmentation

End-to-end CNNs
Moeskops et al. (2016) multi-task CNN CTA Vessel
Merkow et al. (2016) 3D U-net with deep multi-scale supervision CTA Vessel
Lee et al. (2019) template transformer network CTA Vessel
CNN as pre-/post-processing
Gülsün et al. (2016) CNN as path pruning CTA coronary artery centerline
Guo et al. (2019) multi-task FCN with a minimal patch extractor CTA coronary artery centerline
Shen et al. (2019) 3D FCN with level set CTA Vessel
Others
Wolterink et al. (2019b) CNN to estimate direction classification and radius regression CTA coronary artery centerline
Wolterink et al. (2019a) graph convolutional network CTA Vessel

Coronary Artery
Calcium and Plaque

Segmentation

Two-step segmentation
Wolterink et al. (2016) CNN pairs CTA CAC
Lessmann et al. (2016) multi-view CNNs CT CAC
Lessmann et al. (2017) two consecutive CNNs CT CAC
Liu et al. (2018) 3D vessel-focused ConvNets CTA CAC/NCP/MCP
Direct segmentation
Santini et al. (2017) patch based CNN CT CAC
Shadmi et al. (2018) U-net and FC DenseNet CT CAC
Zhang et al. (2019c) U-DenseNet CT CAC
Ma and Zhang (2019) DenseRAU-net CT CAC

in (de Vos et al., 2017), followed by a voxel
classification within the defined bounding box using
a patch-based CNN. More recently, FCN, especially
U-net (Ronneberger and Brox, 2015), has become
the method of choice for cardiac CT segmentation.
Zhuang et al. (2019) provides a comparison of
a group of methods (Payer et al., 2018; Wang
and Smedby, 2017; Yang et al., 2017b,d; Tong
et al., 2017; Mortazi et al., 2017a) for whole
heart segmentation (WHS) that have been evaluated
on the MM-WHS challenge. Several of these
methods (Payer et al., 2018; Tong et al., 2017;
Xu et al., 2018b; Wang et al., 2018) combine
a localization network, which produces a coarse
detection of the heart, with 3D FCNs applied to
the detected ROI for segmentation. This allows the
segmentation network to focus on the anatomically
relevant regions, and has shown to be effective
for whole heart segmentation. In the MM-WHS
challenge the method of Payer et al. (2018) ranked
1st. A summary of the comparison between the
segmentation accuracy of the methods evaluated on

MM-WHS dataset is presented in Table 4. For more
details, please refer to Zhuang et al. (2019).

Multi-view CNNs: Another line of research
utilizes the volumetric information of the heart by
training multi-planar CNNs (axial, sagittal, and
coronal views) in a 2D fashion. Examples include
Wang and Smedby (2017) and Mortazi et al. (2017a)
where three independent orthogonal CNNs were
trained to segment different views. Specifically,
Wang and Smedby (2017) additionally incorporated
shape context in the framework for the segmentation
refinement, while Mortazi et al. (2017a) adopted an
adaptive fusion strategy to combine multiple outputs
utilising complementary information from different
planes.

Hybrid loss: Several methods employ a hybrid
loss, where different loss functions (such as
focal loss, Dice loss, and weighted categorical
cross-entropy) are combined to address the class
imbalance issue, e.g. the volume size imbalance
among different ventricular structures, and to
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Table 4. Segmentation accuracy of methods validated on MM-WHS dataset. The training set contains
20 CT and 20 MRI whereas the test set contains 40 CT and 40 MRI. Reported numbers are Dice scores
(CT/MRI) for different substructures on both CT and MRI scans. For more detailed comparisons, please
refer to Zhuang et al. (2019).

Methods LV RV LA RA MYO AO PA WHS
Payer et al. (2018) 91.8/91.6 90.9/86.8 92.9/85.5 88.8/88.1 88.1/77.8 93.3/88.8 84.0/73.1 90.8/86.3
Yang et al. (2017b) 92.3/75.0 85.7/75.0 93.0/82.6 87.1/85.9 85.6/65.8 89.4/80.9 83.5/72.6 89.0/78.3

Mortazi et al. (2017a) 90.4/87.1 88.3/83.0 91.6/81.1 83.6/75.9 85.1/74.7 90.7/83.9 78.4/71.5 87.9/81.8
Tong et al. (2017) 89.3/70.2 81.0/68.0 88.9/67.6 81.2/65.4 83.7/62.3 86.8/59.9 69.8/47.0 84.9/67.4
Wang et al. (2018) 80.0/86.3 78.6/84.9 90.4/85.2 79.4/84.0 72.9/74.4 87.4/82.4 64.8/78.8 80.6/83.2

Ye et al. (2019) 94.4/ - 89.5/ - 91.6/ - 87.8/ - 88.9/ - 96.7/ - 86.2/ - 90.7/ -
Xu et al. (2018b) 87.9/ - 90.2/ - 83.2/ - 84.4/ - 82.2/ - 91.3/ - 82.1/ - 85.9/ -

improve the segmentation performance (Yang et al.,
2017d; Ye et al., 2019).

In addition, the work of Zreik et al. (2018a) has
proposed a method for the automatic identification
of patients with significant coronary artery stenoses
through the segmentation and analysis of the LV
myocardium. In this work, a multi-scale FCN is first
employed for myocardium segmentation, and then
a convolutional autoencoder is used to characterize
the LV myocardium, followed by a support vector
machine (SVM) to classify patients based on the
extracted features.

3.2.2 Coronary Artery Segmentation

Quantitative analysis of coronary arteries is an
important step for the diagnosis of cardiovascular
diseases, stenosis grading, blood flow simulation
and surgical planning (Zhang, 2010). Though
this topic has been studied for years (Lesage
et al., 2009), only a small number of works
investigate the use of deep learning in this
context. Methods relating to coronary artery
segmentation can be mainly divided into two
categories: centerline extraction and lumen (i.e.
vessel wall) segmentation.

CNNs as a post-/pre-processing step: Coronary
centerline extraction is a challenging task due to the
presence of nearby cardiac structures and coronary
veins as well as motion artifacts in cardiac CT.
Several deep learning approaches employ CNNs
as either a post-processing or pre-processing step
for traditional methods. For instance, Gülsün
et al. (2016) formulated centerline extraction as

finding the maximum flow paths in a steady state
porous media flow, with a learning-based classifier
estimating anisotropic vessel orientation tensors
for flow computation. A CNN classifier was then
employed to distinguish true coronary centerlines
from leaks into non-coronary structures. Guo
et al. (2019) proposed a multi-task FCN centerline
extraction method that can generate a single-pixel-
wide centerline, where the FCN simultaneously
predicted centerline distance maps and endpoint
confidence maps from coronary arteries and
ascending aorta segmentation masks, which were
then used as input to the subsequent minimal path
extractor to obtain the final centerline extraction
results. In contrast, unlike the aforementioned
methods that used CNNs either as a pre-processing
or post-processing step, Wolterink et al. (2019b)
proposed to address centerline extraction via a
3D dilated CNN, where the CNN was trained on
patches to directly determine a posterior probability
distribution over a discrete set of possible directions
as well as to estimate the radius of an artery at the
given point.

End-to-end CNNs: With respect to the lumen or
vessel wall segmentation, most deep learning based
approaches use an end-to-end CNN segmentation
scheme to predict dense segmentation probability
maps (Moeskops et al., 2016; Merkow et al.,
2016; Huang et al., 2018; Shen et al., 2019). In
particular, Moeskops et al. (2016) proposed a
multi-task segmentation framework where a single
CNN can be trained to perform three different
tasks including coronary artery segmentation in
cardiac CTA and tissue segmentation in brain
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MR images. They showed that such a multi-task
segmentation network in multiple modalities can
achieve equivalent performance as a single task
network. Merkow et al. (2016) introduced deep
multi-scale supervision into a 3D U-net architecture,
enabling efficient multi-scale feature learning and
precise voxel-level predictions. Besides, shape
priors can also be incorporated into the network
(Lee et al., 2019; Chen et al., 2019h; Duan
et al., 2018b). For instance, Lee et al. (2019)
explicitly enforced a roughly tubular shape prior
for the vessel segments by introducing a template
transformer network, through which a shape
template can be deformed via network-based
registration to produce an accurate segmentation of
the input image, as well as to guarantee topological
constraints. More recently, graph convolutional
networks have also been investigated by Wolterink
et al. (2019a) for coronary artery segmentation
in CTA, where vertices on the coronary lumen
surface mesh were considered as graph nodes
and the locations of these tubular surface mesh
vertices were directly optimized. They showed that
such method significantly outperformed a baseline
network that used only fully-connected layers on
healthy subjects (mean Dice score: 0.75 vs 0.67
). Besides, the graph convolutional network used
in their work is able to directly generate smooth
surface meshes without post-processing steps.

3.2.3 Coronary Artery Calcium and Plaque
Segmentation

Coronary artery calcium (CAC) is a direct risk
factor for cardiovascular disease. Clinically, CAC
is quantified using the Agatston score (Agatston
et al., 1990) which considers the lesion area and the
weighted maximum density of the lesion (de Vos
et al., 2019). Precise detection and segmentation of
CAC are thus important for the accurate prediction
of the Agatston score and disease diagnosis.

Two-step segmentation: One group of deep
learning approaches to segmentation and automatic
calcium scoring proposed to use a two-step
segmentation scheme. For example, Wolterink et al.
(2016) attempted to classify CAC in cardiac CTA

using a pair of CNNs, where the first CNN coarsely
identified voxels likely to be CAC within a ROI
detected using (de Vos et al., 2017) and then the
second CNN further distinguished between CAC
and CAC-like negatives more accurately. Similar
to such a two-stage scheme, Lessmann et al. (2016,
2017) proposed to identify CAC in low-dose chest
CT, in which a ROI of the heart or potential
calcifications were first localized followed by a
CAC classification process.

Direct segmentation: More recently, several
approaches (Shadmi et al., 2018; Santini et al.,
2017; Ma and Zhang, 2019; Zhang et al., 2019c)
have been proposed for the direct segmentation of
CAC from non-contrast cardiac CT or chest CT:
the majority of them employed combinations of U-
net (Ronneberger and Brox, 2015) and DenseNet
(Huang et al., 2017) for precise quantification
of CAC which showed that a sensitivity over
90% can be achieved Santini et al. (2017). These
aforementioned approaches all follow the same
workflow where the CAC is first identified and then
quantified. An alternative approach is to circumvent
the intermediate segmentation and to perform direct
quantification, such as in (Cano-Espinosa et al.,
2018; de Vos et al., 2019), which have proven that
this approach is effective and promising.

Finally, for non-calcified plaque (NCP) and
mixed-calcified plaque (MCP) in coronary arteries,
only a limited number of works have been
reported that investigate deep learning methods for
segmentation and quantification (Zreik et al., 2018b;
Liu et al., 2018). Yet, this is a very important
task from a clinical point of view, since these
plaques can potentially rupture and obstruct an
artery, causing ischemic events and severe cardiac
damage. In contrast to CAC segmentation, NCP
and MCP segmentation are more challenging due
to their similar appearances and intensities as
adjacent tissues. Therefore, robust and and accurate
analysis often requires the generation of multi-
planar reformatted (MPR) images that have been
straightened along the centreline of the vesssel.
Recently, Liu et al. (2018) proposed a vessel-
focused 3D convolutional network with attention
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layers to segment three types of plaques on the
extracted and reformatted coronary MPR volumes.
Zreik et al. (2018b) presented an automatic method
for detection and characterization of coronary
artery plaques as well as determination of coronary
artery stenosis significance, in which a multi-task
convolutional RNN was used to perform both
plaque and stenosis classification by analyzing the
features extracted along the coronary artery in an
MPR image.

3.3 Cardiac Ultrasound Image
Segmentation

Cardiac ultrasound (US) imaging, also known
as echocardiography, is an indispensable clinical
tool for the assessment of cardiovascular function.
It is often used clinically as the first imaging
examination owing to its portability, low cost
and real-time capability. While a number of
traditional methods such as active contours, level-
sets and active shape models have been employed to
automate the segmentation of anatomical structures
in ultrasound images (Noble and Boukerroui,
2006), the achieved accuracy is limited by various
problems of ultrasound imaging such as low signal-
to-noise ratio, varying speckle noise, low image
contrast (especially between the myocardium and
the blood pool), edge dropout and shadows cast by
structures such as dense muscle and ribs.

As in cardiac MR and CT, several DL-based
methods have been recently proposed to improve
the performance of cardiac ultrasound image
segmentation in terms of both accuracy and speed.
The majority of these DL-based approaches focus
on LV segmentation, with only few addressing the
problem of aortic valve and LA segmentation. A
summary of the reviewed works can be found in
Table 5.

3.3.1 2D LV segmentation

Deep learning combined with deformable
models: The imaging quality of echocardiography
makes voxel-wise tissue classification highly
challenging. To address this challenge, deep
learning has been combined with deformable model

for LV segmentation in 2D images (Carneiro et al.,
2010, 2012; Carneiro and Nascimento, 2010, 2013;
Nascimento and Carneiro, 2014, 2019; Veni et al.,
2018). Features extracted by trained deep neural
networks were used instead of handcrafted features
to improve accuracy and robustness.

Several works applied deep learning in a two-
stage pipeline which first localizes the target
ROI via rigid transformation of a bounding
box, then segments the target structure within
the ROI. This two-stage pipeline reduces the
search region of the segmentation and increases
robustness of the overall segmentation framework.
Carneiro et al. (2010, 2012) first adopted this
DL framework to segment the LV in apical long-
axis echocardiograms. The method uses DBN
(Hinton and Salakhutdinov, 2006) to predict the
rigid transformation parameters for localization and
the deformable model parameters for segmentation.
The results demonstrated the robustness of DBN-
based feature extraction to image appearance
variations. Nascimento and Carneiro (2017) further
reduced the training and inference complexity of the
DBN-based framework by using sparse manifold
learning in the rigid detection step.

To further reduce the computational complexity,
some works perform segmentation in one step
without resorting to the two-stage approach.
Nascimento and Carneiro (2014, 2019) applied
sparse manifold learning in segmentation, showing
a reduced training and search complexity compared
to their previous version of the method, while
maintaining the same level of segmentation
accuracy. Veni et al. (2018) applied a FCN to
produce coarse segmentation masks, which is then
further refined by a level-set based method.

Utilizing temporal coherence: Cardiac ultrasound
data is often recorded as a temporal sequence
of images. Several approaches aim to leverage
the coherence between temporally close frames
to improve the accuracy and robustness of the
LV segmentation. Carneiro and Nascimento (2010,
2013) proposed a dynamic modeling method based
on a sequential monte carlo (SMC) (or particle
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Table 5. A summary of reviewed deep learning methods for US image segmentation. A[X]C is short
for Apical [X]-chamber view. PLAX/PSAX: parasternal long-axis/short-axis. CETUS: using the dataset
from Challenge on Endocardial Three-dimensional Ultrasound Segmentation.
Application Selected works Method Structure Imaging modality

2D LV

Combined with deformable models
Carneiro et al. (2010, 2012) DBN with two-step approach: localization and fine segmentation LV 2D A2C, A4C
Nascimento and Carneiro (2017) deep belief networks (DBN) and sparse manifold learning for the localization step LV 2D A2C, A4C
Nascimento and Carneiro (2014, 2019) DBN and sparse manifold learning for one-step segmentation LV 2D A2C, A4C
Veni et al. (2018) FCN (U-net) followed by level-set based deformable model LV 2D A4C
Utilizing temporal coherence
Carneiro and Nascimento (2010, 2013) DBN and particle filtering for dynamic modeling LV 2D A2C, A4C
Jafari et al. (2018) U-net and LSTM with additional optical flow input LV 2D A4C
Utilizing unlabeled data
Carneiro and Nascimento (2011, 2012) DBN on-line retrain using external classifier as additional supervision LV 2D A2C, A4C
Smistad et al. (2017) U-Net trained using labels generated by a Kalman filter based method LV and LA 2D A2C, A4C
Yu et al. (2017b) Dynamic CNN fine-tuning with mitral valve tracking to separate LV from LA Fetal LV 2D
Jafari et al. (2019) U-net with TL-net (Girdhar et al., 2016) based shape constraint on unannotated frames LV 2D A4C
Utilizing data from multiple domains
Chen et al. (2016) FCN trained using annotated data of multiple anatomical structures Fetal head and LV 2D head, A2-5C
Trained directly on large datasets
Smistad et al. (2018) Real time CNN view-classification and segmentation LV 2D A2C, A4C
Leclerc et al. (2018) U-net trained on a large heterogeneous dataset LV 2D A4C

3D LV
Dong et al. (2018a) CNN for 2D coarse segmentation refined by 3D snake model LV 3D (CETUS)
Oktay et al. (2018a) U-net with TL-net based shape constraint LV 3D (CETUS)
Dong et al. (2018b) Atlas-based segmentation using DL registration and adversarial training LV 3D

Others Ghesu et al. (2016) Marginal space learning and adaptive sparse neural network Aortic valves 3D
Degel et al. (2018) V-net with TL-net based shape constraint and GAN-based domain adaptation LA 3D
Zhang et al. (2018a) CNN for view-classification, segmentation and disease detection Multi-chamber 2D PLAX, PSAX, A2-4C

filtering) framework with a transition model, in
which the segmentation of the current cardiac phase
depends on previous phases. The results show that
this approach performs better than the previous
method (Carneiro et al., 2010) which does not take
temporal information into account. In a more recent
work, Jafari et al. (2018) combined U-net, long-
short term memory (LSTM) and inter-frame optical
flow to utilize multiple frames for segmenting one
target frame, demonstrating improvement in overall
segmentation accuracy. The method was also shown
to be more robust to image quality variations in a
sequence than single-frame U-net.

Utilizing unlabeled data: Several works proposed
to use non-DL based segmentation algorithms
to help generating labels on unlabeled images,
effectively increasing the amount of training
data. To achieve this, Carneiro and Nascimento
(2011, 2012) proposed on-line retraining strategies
where segmentation network (DBN) is firstly
initialized using a small set of labeled data
and then applied to non-labeled data to propose
annotations. The proposed annotations are then
checked by external classifiers before being used
to re-train the network. Smistad et al. (2017)
trained a U-net using images annotated by a
Kalman filtering based method (Smistad and
Lindseth, 2014) and illustrated the potential of

using this strategy for pre-training. Alternatively,
some works proposed to exploit unlabeled data
without using additional segmentation algorithm.
Yu et al. (2017b) proposed to train a CNN on
a partially labeled dataset of multiple sequences,
then fine-tuned the network for each individual
sequence using manual segmentation of the first
frame as well as CNN-produced label of other
frames. Jafari et al. (2019) proposed a semi-
supervised framework which enables training on
both the labeled and unlabeled images. The
framework uses an additional generative network,
which is trained to generate ultrasound images
from segmentation masks, as additional supervision
for the unlabeled frames in the sequences. The
generative network forces the segmentation network
to predict segmentation that can be used to
successfully generate the input ultrasound image.

Utilizing data from multiple domains: Apart
from exploiting unlabeled data in the same domain,
leveraging manually annotated data from multiple
domains (e.g. different 2D ultrasound views
with various anatomical structures) can also help
to improve the segmentation in one particular
domain. Chen et al. (2016) proposed a novel FCN-
based network to utilize multi-domain data to
learn generic feature representations. Combined
with an iterative refinement scheme, the method
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has shown superior performance in detection
and segmentation over traditional database-guided
method (Georgescu et al., 2005), FCN trained
on single-domain and other multi-domain training
strategies.

DL networks trained directly on large datasets:
The potential of CNN in segmentation has
motivated the collection and labeling of large-
scale datasets. Several methods have since
shown that deep learning methods, most notably
CNN-based methods, are capable of performing
accurate segmentation directly without complex
post-processing. Leclerc et al. (2018) performed
a study to investigate the effect of the size
of annotated data for the segmentation of the
LV in 2D ultrasound images using a simple U-
net. The authors demonstrated that the U-net
approach significantly benefits from larger amounts
of training data. Furthermore, Smistad et al.
(2018) demonstrated the efficiency of CNN-based
methods by successfully performing real-time view-
classification and segmentation.

3.3.2 3D LV segmentation

Segmenting cardiac structures in 3D ultrasound is
even more challenging than 2D. While having the
potential to derive more accurate volume-related
clinical indices, 3D echocardiograms suffer from
lower temporal resolution and lower image quality
compared to 2D echocardiograms. Moreover,
3D images dramatically increase the dimension
of parameter space of neural networks, which
poses computational challenges for deep learning
methods.

One way to reduce the computational cost is to
avoid direct processing of 3D data in deep learning
networks. Dong et al. (2018a) proposed a two-stage
method by first applying a 2D CNN to produce
coarse segmentation maps on 2D slices from a 3D
volume. The coarse 2D segmentation maps are used
to initialize a 3D shape model which is then refined
by 3D deformable model method (Kass et al.,
1988). In addition, the authors used transfer learning
to side-step the limited training data problem by

pre-training network on a large natural image
segmentation dataset and then fine-tuning to the
LV segmentation task.

Anatomical shape priors have been utilized
to increase the robustness of deep learning-
based segmentation methods to challenging 3D
ultrasound images. Oktay et al. (2018a) proposed
an anatomically constrained network where a shape
constraint-based loss is introduced to train a 3D
segmentation network. The shape constraint is
based on the shape prior learned from segmentation
maps using auto-encoders (Girdhar et al., 2016).
Dong et al. (2018b) utilized shape prior more
explicitly by combining a neural network with a
conventional atlas-based segmentation framework.
Adversarial training was also applied to encourage
the method to produce more anatomically plausible
segmentation maps, which contributes to its
superior segmentation performance comparing to a
standard voxel-wise classification 3D segmentation
network (Milletari et al., 2016).

3.3.3 Left-atrium segmentation

Degel et al. (2018) adopted the aforementioned
anatomical constrain in 3D LA segmentation to
tackle the domain shift problem caused by variation
of imaging device, protocol and patient condition.
In addition to the anatomically constraining
network, the authors applied an adversarial training
scheme (Kamnitsas et al., 2017b) to improve the
generalizability of the model to unseen domain.

3.3.4 Multi-chamber segmentation

Apart from LV segmentation, a few works
(Zhang et al., 2018a; Smistad et al., 2017;
Leclerc et al., 2019) applied deep learning
methods to perform multi-chamber (including
LV and LA) segmentation. In particular, Zhang
et al. (2018a) demonstrated the applicability
of CNNs on three tasks: view classification,
multi-chamber segmentation and detection of
cardiovascular diseases. Comprehensive validation
on a large (non-public) clinical dataset showed
that clinical metrics derived from automatic
segmentation are comparable or superior than
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manual segmentation. To resemble real clinical
situations and thus encourages the development
and evaluation of robust and clinically effective
segmentation methods, a large-scale dataset for
2D cardiac ultrasound has been recently made
public(Leclerc et al., 2019). The dataset and
evaluation platform were released following the
preliminary data requirement investigation of deep
learning methods (Leclerc et al., 2018). The dataset
is composed of apical 4-chamber view images
annotated for LV and LA segmentation, with uneven
imaging quality from 500 patients with varying
conditions. Notably, the initial benchmarking
(Leclerc et al., 2019) on this dataset has shown
that modern encoder-decoder CNNs resulted in
lower error than inter-observer error between human
cardiologists.

3.3.5 Aortic valve segmentation

Ghesu et al. (2016) proposed a framework based
on marginal space learning (MSL), deep neural
networks (DNNs) and active shape model (ASM) to
segment the aortic valve in 3D cardiac ultrasound
volumes. An adaptive sparsely-connected neural
network with reduced number of parameters is
used to predict a bounding box to locate the target
structure, where the learning of the bounding
box parameters is marginalized into sub-spaces to
reduce computational complexity. This framework
showed significant improvement over the previous
non-DL MSL (Zheng et al., 2008) method while
achieving competitive run-time.

3.4 Discussion

So far, we have presented and discussed recent
progress of deep learning-based segmentation
methods in the three modalities (i.e. MR, CT,
US) that are commonly used in the assessment
of cardiovascular disease. To summarize, current
state-of-the-art segmentation methods are mainly
based on CNNs that employ the FCN or U-
net architecture. In addition, there are several
commonalities in the FCN-based methods for
cardiac segmentation which can be categorized
into four groups: 1) enhancing network feature

learning by employing advanced building blocks
in networks (e.g. inception module, dilated
convolutions), most of which have been mentioned
earlier (Sec. 2.1.5); 2) alleviating the problem
of class imbalance with advanced loss functions
(e.g. weighted loss functions); 3) improving the
networks’ generalization ability and robustness
through a multi-stage pipeline, multi-task learning,
or multi-view feature fusion; 4) forcing the
network to generate more anatomically-plausible
segmentation results by incorporating shape priors,
applying adversarial loss or anatomical constraints
to regularize the network during training. It is
also worthwhile to highlight that for cardiac image
sequence segmentation (e.g. cine MR images, 2D
US sequences), leveraging spatial and temporal
coherence from these sequences with advanced
neural networks (e.g. RNN (Bai et al., 2018b; Jafari
et al., 2018), multi-slice FCN (Zheng et al., 2018))
has been explored and shown to be beneficial for
improving the segmentation accuracy and temporal
consistency of the segmentation maps.

While the results reported in the literature
show that neural networks have become more
sophisticated and powerful, it is also clear that
performance has improved with the increase of
publicly available training subjects. A number of
DL-based methods (especially in MRI) have been
trained and tested on public challenge datasets,
which not only provide large amounts of data
to exploit the capabilities of deep learning in
this domain, but also a platform for transparent
evaluation and comparison. In addition, many of
the participants in these challenges have shared
their code with other researchers via open-source
community websites (e.g. Github). Transparent and
fair benchmarking and sharing of code are both
essential for continued progress in this domain. We
summarize the existing public datasets in Table 6
and public code repositories in Table 7 for reference.

2D Networks vs 3D Networks: An interesting
conclusion supported by Table 7 is that the target
image type can affect the choice of network
structures (i.e. 2D networks, 3D networks). For
3D imaging acquisitions such as LGE-MRI and
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Table 6. Summary of public datasets on cardiac segmentation for the three modalities. Mostly are
from the International Conference on Medical Image Computing and Computer-assisted Intervention
(MICCAI) society.

Dataset Name/Reference Year Main modalities # Target(s) Main Pathology
York (Andreopoulos and Tsotsos, 2008) 2008 cine MRI 33 LV cardiomyopathy, aortic regurgitation, enlarged ventricles and ischemia
Sunnybrook (Radau and Others, 2009) 2009 cine MRI 45 LV hypertrophy, heart failure w./w.o infarction

LVSC (Suinesiaputra et al., 2014) 2011 cine MRI 200 LV coronary artery disease, myocardial infarction.

RVSC (Petitjean et al., 2015) 2012 cine MRI 48 RV
myocarditis, ischaemic cardiomyopathy,

suspicion of arrhythmogenic, right ventricular dysplasia,
dilated cardiomyopathy, hypertrophic cardiomyopathy, aortic stenosis

cDEMRIS (Karim et al., 2013) 2012 LGE MRI 60 LA fibrosis and scar atrial fibrillation
LVIC (Karim et al., 2016) 2012 LGE MRI 30 Myocardial scars ischaemic cardiomyopathy

LASC’13 (Tobon-Gomez et al., 2015) 2013 3D MRI 30 LA N/A
HVSMR (Pace et al., 2015) 2016 3D MRI 4 Blood pool, MYO congenital heart defects

ACDC (Bernard et al., 2018) 2017 MRI 150 LV; RV mycardial infarction, dilated/ hypertrophic cardiomyopathy, abnormal RV
LASC’18 (Zhao, 2018) 2018 LGE MRI 150 LA atrial fibrillation

MM-WHS (Zhuang et al., 2019) 2017 CT/MRI 60/60 WHS

myocardium infarction, atrial fibrillation, tricuspid regurgitation,
aortic valve stenosis, Alagille syndrome,

Williams syndrome, dilated cardiomyopathy, aortic coarctation,
Tetralogy of Fallot

CAT08 (Schaap et al., 2009) 2008 CTA 32 Coronary artery centerline Patients with presence of calcium scored as absent, modest or severe.
CLS12 (Kirişli et al., 2013) 2012 CTA 48 Coronary lumen and stenosis Patients with different levels of coronary artery stenoses.

CETUS (Bernard et al., 2016) 2014 3D US 45 LV myocardial infarction, dilated cardiomyopathy
CAMUS (Leclerc et al., 2019) 2019 2D US 500 LV, LA Patients with EF< 45%

Table 7. Public code for DL-based cardiac image segmentation. SAX: short-axis view; WHS: whole
heart segmentation.

Modality Application(s) Authors Basic Network Code Repo (If not specified, the repository is located under github.com)
MR (SAX) Bi-ventricular Segmentation Tran (2016) 2D FCN vuptran/cardiac-segmentation
MR (SAX) Bi-ventricular Segmentation Baumgartner et al. (2017) 2D/3D U-net baumgach/acdc_segmenter
MR (SAX) Bi-ventricular Segmentation; 1st rank in ACDC challenge Isensee et al. (2017) 2D+3D U-net (ensemble) MIC-DKFZ/ACDC2017
MR (SAX) Bi-ventricular Segmentation Zheng et al. (2018) cascaded 2D U-net julien-zheng/CardiacSegmentationPropagation
MR (SAX) Bi-ventricular segmentation and Motion Estimation Qin et al. (2018a) 2D FCN, RNN cq615
MR (SAX) Biventricular Segmentation Khened et al. (2019) 2D U-net mahendrakhened

MR (3D scans) Blood pool+MYO Segmentation Yu et al. (2017a) 3D CNN yulequan/HeartSeg
MR (Multi-view) Four-chamber Segmentation and Aorta Segmentation Bai et al. (2018a,b) 2D FCN, RNN baiwenjia/ukbb_cardiac

MR Cardiac Segmentation and Motion Tracking Duan et al. (2019) 2.5D FCN +Atlas-based j-duan/4Dsegment

LGE MRI Left Atrial Segmentation Chen et al. (2018a) 2D U-net cherise215/atria_segmentation_2018
LGE MRI Left Atrial Segmentation Yu et al. (2019) 3D V-net yulequan/UA-MT

CT WHS Yang et al. (2017d) 3D U-net xy0806/miccai17-mmwhs-hybrid
CT WHS Xu et al. (2018b) Faster RCNN, 3D U-net Wuziyi616/CFUN

CT, MRI Coronary arteries Merkow et al. (2016) 3D U-net jmerkow/I2I
CT, MRI WHS Dou et al. (2018, 2019) 2D CNN carrenD/Medical-Cross-Modality-Domain-Adaptation
CT, MRI WHS Chen et al. (2019c) 2D CNN cchen-cc/SIFA

US View Classification and Four-chamber Segmentation Zhang et al. (2018a) 2D U-net bitbucket.org/rahuldeo/echocv

CT images, 3D networks are preferred whereas
2D networks are more popular approaches for
segmenting cardiac cine short-axis or long-axis
image stacks. One reason for using 2D networks for
the segmentation of short-axis or long-axis images
is their typically large slice thickness (usually
around 7–8 mm) which can further exacerbated by
inter-slice gaps. In addition, breath-hold related
motion artifacts between different slices may
negatively affect 3D networks. A study conducted
by Baumgartner et al. (2017) has shown that a 3D U-
net performs worse than a 2D U-net when evaluated
on the ACDC challenge dataset. By contrast, in the
LASC’18 challenge mentioned in Table 6, which
uses high-resolution 3D images, most participants
applied 3D networks and the best performance was
achieved by a cascaded network based on the 3D
U-net (Xia et al., 2018).

It is well known that training 3D networks is
more difficult than training 2D networks. In general,
3D networks have significantly more parameters
than 2D networks. Therefore, 3D networks are
more difficult and computationally expensive to
optimize as well as prone to over-fitting, especially
if the training data is limited. As a result, several
researchers have tried to carefully design the
structure of network to reduce the number of
parameters for a particular application and have also
applied advanced techniques (e.g. deep supervision)
to alleviate the over-fitting problem (Yu et al.,
2017a; Xia et al., 2018). For this reason, 2D-based
networks (e.g. 2D U-net) are still the most popular
segmentation approaches for all three modalities.

In addition to 2D and 3D networks, several
authors have proposed ‘2D+’ networks that
have been shown to be effective in segmenting
structures from cardiac volumetric data. These

Under review 23

github.com
vuptran/cardiac-segmentation
baumgach/acdc_segmenter
MIC-DKFZ/ACDC2017
julien-zheng/CardiacSegmentationPropagation
cq615
mahendrakhened
yulequan/HeartSeg
baiwenjia/ukbb_cardiac
j-duan/4Dsegment
cherise215/atria_segmentation_2018
yulequan/UA-MT
xy0806/miccai17-mmwhs-hybrid
Wuziyi616/CFUN
jmerkow/I2I
carrenD/Medical-Cross-Modality-Domain-Adaptation
cchen-cc/SIFA
bitbucket.org/rahuldeo/echocv


Chen Chen et al. Deep learning for cardiac image segmentation: A review

‘2D+’ networks are mainly based on 2D networks,
but are adapted with increased capacity to utilize
3D context. These networks include multi-view
networks which leverage multi-planar information
(i.e. coronal, sagittal, axial views) (Mortazi et al.,
2017b; Wang and Smedby, 2017), multi-slice
networks, and 2D FCNs combined with RNNs
which incorporate context across multiple slices
(Duan et al., 2019; Patravali et al., 2017; Poudel
et al., 2016; Du et al., 2019). These ‘2D+’networks
inherit the advantages of 2D networks while still
being capable of leveraging through-plane spatial
context for more robust segmentation with strong
3D consistency.

4 CHALLENGES AND FUTURE WORK

It is evident from the literature that deep learning
methods have matched or surpassed the previous
state of the art in a various cardiac segmentation
applications, mainly benefiting from the increased
size of public datasets and the emergence of
advanced network architectures as well as powerful
hardware for computing. Given this rapid process,
one may wonder if deep learning methods can
be directly deployed to real-world applications to
reduce the workload of clinicians. The current
literature suggests that there is still a long
way to go. In the following paragraphs, we
summarize several major challenges in the field of
cardiac segmentation and some recently proposed
approaches that attempt to address them. These
challenges and related works also provide potential
research directions for future work in this field.

4.1 Scarcity of Labels

One of the biggest challenges for deep learning
approaches is the scarcity of annotated data.
In this review, we found that the majority
of studies uses a fully supervised approach to
train their networks, which requires a large
number of annotated images. In fact, annotating
cardiac images is time consuming and often
requires significant amounts of expertise. While
data augmentation techniques such as cropping,

padding, and geometric transformations (e.g. affine
transformations) can be used to increase the size
of training samples, their diversity may still be
limited, failing to reflect the spectrum of real-
world data distributions. Several methods have
been proposed to overcome this challenge. These
methods can be categorized into four classes:
transfer learning with fine-tuning, weakly and semi-
supervised learning, self-supervised learning, and
unsupervised learning.

• Transfer learning with fine-tuning. Transfer
learning aims at reusing a model pre-trained
on one task as a starting point to train for
a second task. The key of transfer learning
is to learn features in the first task that
are related to the second task such that the
network can quickly converge even with limited
data. Several researchers have successfully
demonstrated the use of transfer learning to
improve the model generalization ability for
cardiac ventricle segmentation across different
scanners, where they first trained a model on a
large dataset and then fine-tuned it on a small
dataset (Bai et al., 2018a; Khened et al., 2019;
Cong and Zhang, 2018; Fahmy et al., 2019;
Chen et al., 2019f).

• Weakly and semi-supervised learning. Weakly
and semi-supervised learning methods aim at
improving the learning accuracy by making
use of both labeled and unlabeled or weakly-
labeled data (e.g annotations in forms of
scribbles or bounding boxes). In this context,
several works have been proposed for cardiac
ventricle segmentation in MR images. One
approach is to estimate full labels on
unlabeled or weakly labeled images for further
training. For example, Bai et al. (2018b);
Qin et al. (2018a) utilized motion information
to propagate labels from labeled frames to
unlabeled frames in a cardiac cycle whereas
Bai et al. (2017); Can et al. (2018) applied
the expectation maximization (EM) algorithm
to predict and refine the estimated labels
recursively. Others have explored different
approaches to regularize the network when
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training on unlabeled images, applying multi-
task learning (Chartsias et al., 2018), or global
constraints (Kervadec et al., 2019).

• Self-supervised learning. Another approach is
self-supervised learning which aims at utilizing
labels that are generated automatically without
human intervention. These labels, designed
to encode some properties or semantics of
the object, can provide strong supervisory
signals to pre-train a network before fine-tuning
for a given task. A very recent work from
Bai et al. (2019) has shown the effectiveness
of self-supervised learning for cardiac MR
image segmentation where the authors used
auto-generated anatomical position labels to
pre-train a segmentation network. Compared to
a network trained from scratch, networks pre-
trained on the self-supervised task performed
better, especially when the training data was
extremely limited.

• Unsupervised learning. Unsupervised learning
aims at learning without paired labeled data.
Compared to the former three classes, there is
limited literature about unsupervised learning
methods for cardiac image segmentation,
perhaps because of the difficulty of the
task. An early attempt has been made which
applied adversarial training to train a network
segmenting LV and RV from CT and MR
images without requiring a training set of paired
images and labels (Joyce et al., 2018).

Apart from utilizing unlabeled images for training
neural networks, another interesting direction is
active learning (Mahapatra et al., 2018), which
tries to select the most representative images from
a large-scale dataset, reducing redundant labeling
workload and training cost. This technique is also
related to incremental learning, which aims to
improve the model performance with new classes
added incrementally while avoiding a dramatic
decrease in overall performance (Castro et al.,
2018). Given the increasing size of the available
medical datasets, and the practical challenges
of labeling and storing large amounts of images

from various sources, it is of great interest to
develop algorithms capable of distilling a large-
scale cardiac dataset into a small one containing the
most representative cases for labeling and training.

4.2 Model Generalization Across Various
Imaging Modalities, Scanners and
Pathologies.

Another common limitation in DL-based methods
is that they still lack generalization capabilities
when presented with previously unseen samples
(e.g. data from a new scanner, abnormal and
pathological cases that have not been included in
the training set). In other words, deep learning
models tend to be biased by their respective training
datasets. This limitation prevents models to be
deployed in the real world and therefore diminishes
their impact for improving clinical workflows.
To improve the model performance across MR
images acquired from multiple vendors and multiple
scanners, Tao et al. (2019) collected a large multi-
vendor, multi-center, heterogeneous labeled training
set from patients with cardiovascular diseases.
However, this approach may not scale to the real
world, as it implies the collection of a vastly large
dataset covering all possible cases. Moreover, it still
faces the aforementioned collecting and labeling
challenge.

Unsupervised domain adaptation. Several
researchers have recently started to investigate the
use of unsupervised domain adaptation techniques
that aim at optimizing the model performance on
unseen datasets without additional labeling costs.
Several works have successfully applied adversarial
training for cross-modality segmentation tasks,
adapting a cardiac segmentation model learned from
MR images to CT images and vice versa (Dou
et al., 2018, 2019; Ouyang et al., 2019; Chen et al.,
2019c). These type of approaches can also be
adopted for semi-supervised learning, where the
target domain is a new set of unlabeled data of the
same modality (Chen et al., 2019d).

Data augmentation. An alternative yet simple
and effective approach is data augmentation. The
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main idea is to increase the variety of training
images so that the training set distribution is
more close to the one of a test set in the real
world. In general, this type of augmentation is
achieved by applying a stack of geometric or
photometric transformations to existing image-label
pairs. Recently, Chen et al. (2019a) have proposed
a data normalization and augmentation pipeline
which enables a neural network for cardiac MR
image segmentation trained from a single-scanner
dataset to generalize well across multi-scanner and
multi-site datasets. Zhang et al. (2019b) applied
a similar data augmentation approach to improve
the model generalization ability on unseen datasets.
Their method has been verified on three tasks
including left atrial segmentation from 3D MRI
and left ventricle segmentation from 3D ultrasound
images. However, effectively designing such a
pipeline requires expertise, which may not be easy
to be extended to other applications. Most recently,
several researchers have began to investigate the
use of generative models (e.g. GANs, variational
AE (Kingma and Welling, 2013)), reinforcement
learning (Cubuk et al., 2019) and adversarial
example generation (Volpi et al., 2018) that aim
at directly learning data augmentation strategies
from existing data. In particular, the generative
model-based approach has been proven to be
effective for one-shot brain segmentation (Zhao
et al., 2019) and few-shot cardiac MR image
segmentation (Chaitanya et al., 2019) and is thus
worth to be explored for more applications in the
future.

4.3 Lack of Model Interpretability

Unlike symbolic artificial intelligence systems,
deep learning systems are difficult to interpret and
not transparent. Once a network has been trained,
it behaves like a ‘black box’, providing predictions
which are not directly interpretable. This issue
makes the model unpredictable, intractable for
model verification, and ultimately untrustworthy.
Recent studies have shown that deep learning-
based vision recognition systems can be attacked
by images modified with nearly imperceptible

perturbations (Szegedy et al., 2014; Kurakin et al.,
2017; Goodfellow et al., 2015). These attacks can
also happen in medical scenarios, e.g. a DL-based
system may make a wrong diagnosis given an image
with adversarial noise or even just small rotation,
as demonstrated in a very recent paper (Finlayson
et al., 2019). Although there is no denying that
deep learning has become a very powerful tool
for image analysis, building resilient algorithms
robust to potential attacks remains an unsolved
problem. One potential solution, instead of building
the resilience into the model, is raising failure
awareness of the deployed networks. This can be
achieved by providing users with segmentation
quality scores (Robinson et al., 2019) or confidence
maps such as uncertainty maps (Sander et al., 2019)
and attention maps (Heo et al., 2018). These scores
or maps can be used as evidence to alert users when
failure happens. For example, Sander et al. (2019)
built a network that is able to simultaneously predict
the segmentation mask over cardiac structures and
its associated spatial uncertainty map, where the
latter one could be used to highlight potential
incorrect regions. Such uncertainty information
could alert human experts for further justification
and refinement in a human-in-the-loop setting.

4.4 Future work

Smart imaging. We have shown that deep
learning-based methods are able to segment images
in real-time with good accuracy. However, these
algorithms can still fail on those image acquisitions
with low image quality or significant artifacts.
Although there have been several algorithms
developed to avoid this problem by either checking
the image quality before follow-up studies (Ruijsink
et al., 2019; Tarroni et al., 2019), or predicting the
segmentation quality to detect failures (Peng and
Zhang, 2012; Robinson et al., 2019; Zhou et al.,
2019), the development of algorithms that can give
instant feedback to correct and optimize the image
acquisition process is also important despite less
explored. Improving the imaging quality can greatly
improve the effectiveness of medical imaging as
well as the accuracy of imaging-based diagnosis.
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For radiologists, however, finding the optimal
imaging and reconstruction parameters to scan each
patient can take a great amount of time. Therefore, a
DL-based system that has the potential of efficiently
and effectively improving the image quality with
less noise is of great need. Some researchers have
utilized learning-based methods (mostly are deep
learning-based) for better image resolution (Oktay
et al., 2016), view planning (Alansary et al., 2018),
motion correction (Dangi et al., 2018a; Tarroni
et al., 2018), artifacts reduction (Oksuz et al., 2019),
shadow detection (Meng et al., 2019) and noise
reduction (Wolterink et al., 2017b) after image
acquisition. However, combining these algorithms
with segmentation algorithms and seamlessly
integrating them into an efficient, patient-specific
imaging system for high-quality image analysis and
diagnosis is still an open challenge. An alternative
approach is to directly predict cardiac segmentation
maps from undersampled k-space data to accelerate
the whole procedure, which bypasses the image
reconstruction stage (Schlemper et al., 2018).

Data harmonization. A number of works have
reported the existence of missing labels and
inconsistent labeling protocols among different
cardiac image datasets (Zheng et al., 2018;
Chen et al., 2019a). Variations have been
found in defining the end of basal slices as
well as the endocardial wall of myocardium
(some include papillary muscles as part of the
endocardial contours whereas others do not).
These inconsistencies can be a major obstacle
for transferring, evaluating and deploying deep
learning models trained from one domain (e.g.
hospital) to another. Therefore, building a standard
benchmark dataset like CheXpert (Irvin et al.,
2019) that 1) is large enough to have substantial
data diversity that reflects the spectrum of real-
world diversity; 2) has a standard labeling protocol
approved by experts, is indeed a need. However,
directly building such a dataset from scratch is time-
consuming and expensive. A more promising way
might be developing an automated tool to combine
existing datasets from multiple sources and then to
harmonize them to a unified, high-quality dataset.

This tool can not only open the door for crowd-
sourcing but also enable the rapid deployment of
those DL-based segmentation models.

Data privacy. As deep learning is a data-driven
approach, an unavoidable and rife concern is
about the data privacy. Regulations such as The
General Data Protection Regulation (GDPR) now
play an important role to protect users’ privacy and
have forced organizations to treat data ownership
seriously. On the other hand, from a technical point
of view, how to store, query, and process data
such that there is no privacy concerns for building
deep learning systems has now become an even
more difficult but interesting challenge. Building a
privacy-preserving algorithm requires to combine
cryptography and deep learning together and to
mix techniques from a wide range of subjects such
as data analysis, distributed computing, federated
learning, differential privacy, in order to achieve
models with strong security, fast run time, and great
generalizability (Dwork and Roth, 2014; Abadi
et al., 2016; Bonawitz et al., 2017; Ryffel et al.,
2018). In this respect, Papernot (2018) published a
report for guidance, which summarized a set of best
practices for improving the privacy and security of
machine learning systems. Yet, this field is still in
its infancy.

5 CONCLUSION

In this review paper, we provided a comprehensive
overview of these deep learning techniques used
in three common imaging modalities (MRI, CT,
US), covering a wide range of existing deep
learning approaches (mostly are CNN-based) that
are designed for segmenting different cardiac
anatomical structures (e.g. cardiac ventricle,
atria, vessel). In particular, we presented and
discussed recent progress of deep learning-based
segmentation methods in the three modalities,
outlined future potential and the remaining
limitations of these deep learning-based cardiac
segmentation methods that may hinder widespread
clinical deployment. We hope that this review
can provide an intuitive understanding of those
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deep learning-based techniques that have made
a significant contribution to cardiac image
segmentation and also increase the awareness of
common challenges in this field that call for future
contribution.

ABBREVIATIONS

Imaging-related terminology: CT: computed
tomography; CTA: computed tomography angiography;
LAX: long-axis; MPR: multi-planar reformatted;
MR: magnetic resonance; MRI: magnetic resonance
imaging; LGE: late gadolinium enhancement;
RFCA: radio-frequency catheter ablation; SAX:
short-axis; US: ultrasound; 2CH: 2-chamber; 3CH:
3-chamber; 4CH: 4-chamber.
Cardiac structures and indexes: AF: atrial
fibrillation; AS: aortic stenosis; AO: aorta; CVD:
cardiovascular diseases; CAC: coronary artery
calcium; DCM: dilated cardiomyopathy; ED: end-
diastole; ES: end-systole; EF: ejection fraction;
HCM: hypertrophic cardiomyopathy; LA: left
atrium; LV: left ventricle; LVEDV: left ventricular
end-diastolic volume; LVESV: left ventricular end-
systolic volume; MCP: mixed-calcified plaque;
MI: myocardial infarction; MYO: myocardium;
NCP: non-calcified plaque; PA: pulmonary artery;
PV: pulmonary vein; RA: right atrium; RV: right
ventricle; RVEDV: right ventricular end-diastolic
volume; RVESV: right ventricular end-systolic
volume; RVEF: right ventricular ejection fraction;
WHS: whole heart segmentation.
Machine learning terminology: AE: autoencoder;
ASM: active shape model; BN: batch normalization;
CNN: convolutional neural network; CRF: conditional
random field; DBN: deep belief network; DL:
deep learning; DNN: deep neural network;
EM: expectation maximization; FCN: fully
convolutional neural network; GAN: generative
adversarial network; GRU: gated recurrent units;
MSE: mean squared error; MSL: marginal space
learning; MRF: markov random field; LSTM:
Long-short term memory; ReLU: rectified linear
unit; RNN: recurrent neural network; ROI: region-
of-interest; SMC: sequential monte carlo; SRF:
structured random forest; SVM: support vector

machine.
Cardiac image segmentation datasets: ACDC:
Automated Cardiac Diagnosis Challenge; CETUS:
Challenge on Endocardial Three-dimensional
Ultrasound Segmentation; MM-WHS: Multi-
Modality Whole Heart Segmentation; LASC: Left
Atrium Segmentation Challenge; LVSC: Left
Ventricle Segmentation Challenge; RVSC: Right
Ventricle Segmentation Challenge.
Others: EMBC: The International Engineering
in Medicine and Biology Conference; GDPR:
The General Data Protection Regulation; GPU:
graphic processing unit; FDA: United States
Food and Drug Administration; ISBI: The
IEEE International Symposium on Biomedical
Imaging; MICCAI: International Conference on
Medical Image Computing and Computer-assisted
Intervention; TPU: tensor processing unit; WHO:
World Health Organization.
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