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Introduction 

The advancement and adoption of Machine Learning (ML) algorithms are a crucial innovative disruption. 
However, to benefit from these innovations within security and safety-critical domains we need to be able to 
evaluate the risk and benefits of the technologies used: in particular we need to assure ML-based and 
autonomous systems.  

The assurance of complex software-based systems often relies on a standards-based justification, but in 
the case of autonomous systems, it is difficult to rely solely on this approach given the lack of validated 
standards, policies, and guidance for such novel technologies. Also, other strategies such as  “drive to 
safety”  - using evidence developed from trials and experience to support claims of safety in deployment - is 
unlikely to be successful by itself, as noted by [6] [7] especially if the impact of security threats are taken 
into account. This reinforces the need for innovation in assurance and the development of an assurance 
methodology for autonomous systems.  

 Although forthcoming standards and guidelines will eventually have an important, yet indirect role in 
helping us justify behaviours, we need further development of assurance frameworks to enable us to exploit 
disruptive technologies. We focus on directly investigating the desired behaviour (e.g., safety property or 
reliability) of a system through an argument or outcome-based approach that integrates disparate sources 
of evidence whether from compliance, experience or product analysis. We argue that building trust and 
trustworthiness through argument-based mechanisms, specifically, the Claims, Arguments, and Evidence 
(CAE) framework (see Table 1), allows for the accelerated exploration of novel mechanisms that would lead 
to the quality advancement and assurance of disruptive technologies. 

 

The CAE framework supports the creates structured argumentation for complex engineering systems. It is 
based on an explicit claim-based approach to justification, and relates back to earlier philosophical work 
Toulmin and Wigmore as well as drawing on theory and empirical research in recent years in the safety and 
assurance cases areas (see John Rushby’s analysis [4] for a rigorous review of the field 

At the heart of the CAE framework are three key elements. Claims are assertions put forward for general 
acceptance. They’re typically statements about a property of the system or some subsystem. Claims asserted 
as true without justification are assumptions, and claims supporting an argument are sub claims Arguments 
link evidence to a claim, which can be deterministic, probabilistic or qualitative. They consist of “statements 
indicating the general ways of arguing being applied in a particular case and implicitly relied on and whose 
trustworthiness is well established”, together with validation of any scientific laws used. In an engineering 
context, arguments should be explicit. Evidence serves as the basis for justification of a claim. Sources of 
evidence can include the design, the development process, prior experience, testing (including statistical 
testing), or formal analysis. 

In addition to the basic CAE concepts the framework consists of CAE Blocks that provide a restrictive set of 
common argument fragments and a mechanism for separating inductive and deductive aspects of the 
argumentation. These were identified by empirical analysis of actual safety cases, [5]. The Blocks are: 
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• Decomposition: Partition some aspect of the claim, or divide and conquer. 
• Substitution: Refine a claim about an object into claim about an equivalent object. 
• Evidence incorporation: Evidence supports the claim, with emphasis on direct support. 
• Concretion: Some aspect of the claim is given a more precise definition.  
• Calculation or proof: Some value of the claim can be computed or proved. 

The framework also defines connection rules to restrict the topology of CAE graphical structures. The use of 
Blocks and associated narrative can capture challenge, doubts and rebuttal and to illustrate how confidence 
can be considered as an integral part of the justification. 

The basic concepts of CAE are support by an international standard [1], IAEAE Guidance [3] and industry 
guidance [2].  To support CAE, a graphical notation can be used to describe the interrelationship of claims, 
arguments, and evidence (see [3] and [5]). In practice, top desirable claims such as “the system is adequately 
secure” are too vague or aren’t directly supported or refuted by evidence. Therefore, it’s necessary to create 
sub claim nodes until the final nodes of the assessment can be directly supported or refuted by evidence. 

 

Figure 1: The CAE notation 

 

 

Figure 2: An example of CAE block use 

Table 1: The assurance framework (ed: a callout box?) 

Argument

Claim

Sub Claim 2Sub Claim 1

Evidence 1 Evidence 2

19

in Section 2.7 and the features and properties identified in Section 2.8. Additional top level claims could also 
address the pillars of the strategy triangle (see Fig. 5) that are not already covered by addressing the dependability 
attributes (e.g. compliance to standards or rules).

A subset of top level claims could include the following conditions:

 — Reliability functional suitability. The requirements specification for the object of the assessment is adequate.
 — Reliability functionality. The object of the assessment implements its functional requirements (including 
timing and accuracy requirements).

 — Reliability functionality. The probability of failure on demand (PFD) of the object of the assessment is less 
than X (similar claims could be made regarding spurious actuations and probabilities of software CCFs).

Claim (X)

Decomposition,
substitution or

calculation

Top level claim
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Results R

Evidence
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Results R
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Claim (A)
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The claim cannot be
directly shown by
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enough to be directly
supported/rebutted by

evidence Side claims validate
the argument

FIG. 7.  Example of a typical CAE structure based on CAE blocks.
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The key advantage of a claim-based approach is that there is considerable flexibility in how the claims are 
demonstrated, since different types of arguments and evidence can be used as appropriate. Such a flexible 
approach is necessary when identifying gaps and challenges in uncharted territory, such as the assurance 
of ML-based systems. Indeed, CAE is commonly used in the safety-critical industry (e.g., defence, nuclear, 
medical, etc.) to assure a wide-range of systems and devices, and to support innovation in assurance.   

We are developing a particular set of CAE structures that are generically applicable, and help identify how 
to develop trustworthy systems by explicitly considering evidence of sources of doubt, vulnerabilities, and 
mitigations addressing the behaviour of the system. In doing this we not only assure and determine 
challenges and gaps in behavioural properties but also self-identify gaps within the assurance framework 
itself. In the remainder of the article, we describe our systematic approach to identifying a range of gaps 
and challenges regarding ML-based systems and their assurance. 

Identifying assurance challenges 

The decision to trust an engineering system resides in engineering argumentation that addresses the 
evaluation and risk assessment of the system and the role of the different subsystems and components in 
achieving trustworthiness. Although previous abstractions, models, and relationships have been 
constructed in CAE for the assurance of traditional software systems, it is not clear if the said existing 
“blocks” are sufficient to provide compositional argumentation enabling trustworthiness in ML-based 
systems. For example, domain-specific abstractions and arguments may need to be developed in CAE to 
specifically target ML sub-components. 

To develop a detailed understanding of such assurance challenges, we use CAE to develop an outline of an 
overall assurance case, proceeding from top-level claims, concerning an experimental autonomous vehicle 
and its social context, down to claims regarding the evaluation of subsystems, such as the ML model. The 
case study autonomous vehicle, as is typical with similar state-of-the-art vehicles, contains a 
heterogeneous mixture of commercial-off-the-shelf (COTS) components including image-recognition, 
LIDAR, etc. Apportioning the trustworthiness, dependability, and requirements of each of these components 
in order to consider the real-time and safety related nature of the system is challenging. In traditional 
safety critical engineering there would be diversity and defence in depth to reduce the trust needed in 
specific ML components yet we do not know whether this is practicable for ML based systems. 
Argumentation blocks may need to be further developed within CAE to determine how experimental data 
can allow for the comparison and assessment of diverse subsystems’ contribution to defence in depth. This 
in turn can also inform future architectures of autonomous systems. 
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Figure 3: A high-level example of an assurance sub-case in CAE 

Beyond the study of the applicability of CAE to assure ML-based systems, the lens of the assurance case is 
used to identify gaps and challenges regarding techniques and evidence aimed at justifying desired system 
behaviours. This is further informed by a review of literature, a case-study based assessment of the 
experimental vehicle, and an investigation of our industry partners’ development processes in order to 
assess the current state of the vehicle and the short-to-medium term future vision of its use case (~2 
years). To see how and whether security is addressed in the product lifecycle, we used the new UK Code of 
Practice PAS 11281 ”Connected automotive ecosystems – Impact of security on safety” [9]. 

In the sections below, we discuss some of the gaps identified with regard to technical capabilities that may 
enable trust of system behaviours. We highlight three areas: requirements, security, V&V.  There are also 
issues of ethics, advanced safety analysis techniques, defence in depth and diversity modelling that we do 
not address. 
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Gaps and challenges 

Innovation and defining requirements and trust needed of the system: 

There is a need to address the realities of the innovation lifecycle and to progressively develop requirements 
including those for trustworthiness and assurance. In this innovation approach, the vehicle is progressively 
developed from a platform to trial technologies to the final product. There is an assurance gap in that, when 
analysing how much the technologies need to be trusted, there needs to be an articulated vision of what 
they will be used for. If the vision of how something will be used is not articulated we cannot asses how 
much we need to trust it or what the risks are. This is particularly important for security and systemic risks, 
where the scale and nature of the deployment (e.g., as a key part of an urban transport system) will lead to 
more onerous requirements that need to be reflected in the earlier technology trials and evaluations. 
Alternatives more agile approaches would be to progressively identify these trust requirements as the 
innovation proceeds but this might lead to solutions that do not scale and in extreme could not be deployed.  

We believe that the innovation lifecycle below is typical for many players in the industry and will be 
increasingly adopted as the ML components become more productised. 

 

Figure 4: Typical stages of development from innovation to products 

Security: 

Security is a fundamental and integral attribute to the technical themes of the project: in the requirements, 
V&V, and assurance research. While the requirements of the new PAS 11281 Code of Practice may be met 
in a mature implementation of the vehicle being studied, on the whole, the security will be challenging for 
industry and there is a need to provide advice on partial and project specific implementation of the PAS that 
allow for maturity growth. 

The security aspects need to be integrated into the entire lifecycle, as systems are not safe if they are not 
secure. This applies to the vehicle as a whole as well as to the ML subsystems: most ML systems have not 
been designed with a systematic attention to security [15]. The PAS clauses address 

1. Security policy, organization and culture 
2. Security-aware development process 
3. Maintaining effective defences 
4. Incident management 
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5. Secure and safe design 
6. Contributing to a safe and secure world 

And are equally applicable to the vehicle and its components. 

As noted above, the deployment of autonomous technologies may follow an innovation lifecycle that first 
focuses on functionality and seeks to progressively add additional assurance and security. This will make 
the development of the assurance and safety cases and associated security and safety risk assessments 
particularly challenging. From our experience we recommend to: 

1. Explicitly define the innovation cycle and assess the impact and feasibility of adding assurance and 
security. 

2. Address the approach to security-informed safety at all stages of the innovation cycle. If safety, security 
and resilience requirements are largely undefined at the start of the innovation cycle, the feasibility of 
progressively identifying them during the innovation cycle should be assessed, together with the issues 
involved in evolving the architecture and increasing the assurance evidence. 

3. Apply PAS 11281 to systematically identify the issues. Use a CAE assurance case framework and map 
PAS clauses to this to provide a systematic approach to applying the PAS. 

4. Consider a partial and project specific implementation of the PAS to meet the innovation cycle. 
5. Collect experience in developing a security-informed safety case and in integrating security issues into 

the safety analyses needed to implement the PAS. 

Verification & Validation (V&V): 

We use the assurance case in CAE top-down to identify the claims we wish to support and bottom up to 
evaluate the evidence that could be provided by them and hence systematically assess gaps, challenges 
and solutions: this is shown schematically in Figure 5.  As part of this analysis we assessed state-of-the-art 
formal methods techniques for autonomous systems, and have observed that their maturity and 
applicability is lacking to sufficiently justify behavioural and vulnerability claims. Consider the issue of 
adversarial attacks and perturbations [10] [11], that has been particularly challenging with regard to the 
robustness of ML algorithms. Verification researchers have focused on the property of pointwise robustness, 
in which a classifier function f’ is not robust at point x if there exists a point y within η such that the 
classification of y is not the same as the classification of x. That is, for some point x from the input, the 
classification label remains constant within the “neighbourhood” η of x, even when small value deltas (i.e., 
perturbations) are applied to x. A point x would not be robust if it is at a decision boundary and adding a 
perturbation would cause it to be classified it in the next class. Generally speaking, the idea is that a 
“neighbourhood” η should be reasonably classified as the given class.  

However, proposed pointwise robustness verification methods [13][14][15] suffer from the same set of 
limitations: 

• how to define meaningful regions η and manipulations 

o the neighbourhoods surrounding a point x that are currently used are arbitrary and conservative 

• we cannot enumerate all x points near which the classifier should be approximately constant, that is, we 
cannot predict all future inputs 

Furthermore, researchers have been unable to find compelling threat models that required perturbation 
indistinguishability [17], and it has been demonstrated that lp, which defines the neighbourhood region η, is 
a poor proximity for measuring what humans actually see [18]. Finally, adversarial perturbations can be 
achieved by much simpler attacks that do not require ML algorithms (e.g., cover a stop sign). Thus, the 
extent to which these techniques can provide us with any level of confidence is not very high.  
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Other verification techniques [12][14] aim to verify more general behaviours regarding ML algorithms, 
instead of just pointwise robustness. Such techniques require functional specifications, written as 
constraints, to be fed into a specialized linear-programming solver to be verified against a piecewise linear 
constraint model of the ML algorithm. However, the generalization of these algorithms is challenging given 
the requirement of well-defined and bounded traditional system specifications, devoid of specifications 
regarding the behaviour of the ML algorithm itself. These techniques are thus applicable to well-specified 
deterministic ML algorithms, and cannot be applied to perception algorithms, which are notoriously difficult 
to specify, let alone, verify.  

 

Figure 5: Using CAE to assess V&V gaps 

Apart from the ML algorithm, the assurance of the non-ML supporting components of an autonomous 
system is challenging given that the use of COTS or open-source components leads to uncertain 
provenance. Errors within non-ML components can propagate and affect the functionality of the ML model 
[19]. It is therefore important to explore how traditional V&V methods, in particular, static analysis of C 
code, can provide assurance for the larger ML system, providing confidence beyond the component level. 
Below, we provide a preliminary list of results on analysing YOLO, a commonly used open source ML vision 
software, and a number of different run-time errors that were identified: 

• A number of memory leaks, such as files opened and not closed, and temporarily allocated data not 
freed, leading to unpredictable behaviour, crashes, and corrupted data. 

• A large number of calls to free where the validity of the returned data is not checked. This could lead 
to incorrect (but potentially plausible) weights being loaded to the network. 
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• Potential “divide by zeros” in the training code. This could lead to crashes during online training, if the 
system were to be used in such a way. 

• Potential floating-point “divide by zeros”, some of which were located in the network cost calculation 
function. As noted above, this could be an issue during online training.  

Note that the above errors would only be applicable to languages such as C and C++. Not all these errors 
would be applicable to a language such Python, a popular language utilized in the implementation of 
numerous ML libraries and frameworks, as the semantics and implementation of the language itself does 
not enable overflow/underflow errors defined in [19]. However, Python is a dynamically typed language, 
bringing about a different set of program errors not exhibited by statically typed languages (e.g., type 
errors). Unfortunately, no static analysis techniques or tools exist to allow for the analysis of Python code. 
Furthermore, it is unclear how potential faults arising from dynamic languages could affect the 
functionality of an ML model itself. Indeed, this is a large gap within the formal methods field that needs to 
be addressed immediately, given the deployment of autonomous vehicles utilizing Python. 

Discussion and conclusion 

We believe there is need for disruptive innovation in the assurance of autonomous and machine learning 
based systems. We have provided a summary of the outcome focussed, claims arguments evidence based 
framework we are evolving to address these systems and have used it to identify specific gaps and 
challenges as well as discussing some solutions. We have demonstrated the feasibility of deploying the 
best of existing work (e.g. advanced static analysis techniques) and identified the need for new approaches.  

Overall there is a need for a stronger evidence base of the dependability of machine learning components 
and of the autonomous systems as a whole. There is common good in sharing data on algorithms, training 
data, benchmarks, reliability growth, and incidents in sufficient detail for independent analysis and 
research. We hope to play our part in this by sharing curated data and generic assurance cases and by 
providing in the public domain the more detailed report this article is based on. 

And lastly, if we can achieve our goal of disruptive assurance this can have a positive impact on innovation 
in other industries and technologies, not just ML based ones 
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