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Abstract. Improving the efficiency of the screw machine is highly significant for industry.   

Numerical simulation is an important tool in developing these machines. The 3D computational 

fluid dynamic simulation can give a valuable insight into the flow parameters of screw machines. 

However, it is currently difficult to generate high quality computational grids required for screw 

rotors with large helix angle. This is mainly due to the excessively high cell skewness of the 

rotors with large helix angel, which would introduce errors in numerical simulation. This paper 

presents a novel grid generation algorithm used for the screw rotors with large helix angel. This 

method is based on the principles developed for the grid generation in transverse cross-section. 

Such mesh is generated by SCORGTM using normal rack grid generation method which means 

numerical meshes are generated in a plane normal to the pitch helix line. The mesh lines are then 

parallel to the helix line and thus an orthogonal mesh will be produced. The main flow and 

leakage flow directions are orthogonal to the mesh, potentially reducing numerical diffusion. 

This developed algorithm could also be employed for single screw machines. 

1.  Introduction 

Rotary screw machines are positive displacement machines. The operating principle of screw machines 

has been known for over 100 years. The main rotor meshes with the gate rotor in a fix casing together 

forming different working chambers which volume depends on the rotation angle, as shown in Figure 

1. The working process can be divided into suction, compression and discharge. 

 

 

Figure 1 Operating stages in a twin-screw compressor[1]. 

 

Screw machines have been studied for decades from rotor profiles design to numerical analysis using 

lumped parameter models and 3-D CFD simulation to experimental investigates. However, the 3-D 

numerical simulation of screw machines is highly difficult because of the complex rotor geometry and 

1-Suction 2-compression 3-Discharge
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the volume-changing chambers with very small clearances between the rotors and casing. The finite 

volume method (FVM) commonly employed in CFD codes which allows fast and accurate solution of 

the governing equations for fluid flow within complex geometries. The calculated results of algebraic 

equations are more conservative than other discretization methods like FDM or FEM [2]. To use this 

method, the working chamber between the rotors and casing must be represented by discretized volumes 

constructed with mesh points. Kovacevic [3] has developed a computer program SCORG (Screw 

Compressor Rotor Grid Generator), which uses an algebraic grid generation method together with 

boundary adaptation, transfinite interpolation, grid orthogonalisation and smooth to generate hexahedral 

numerical mesh for twin screw machines. The analytical rack was firstly used for decomposition of the 

rotor in the transverse cross section to split the rotor domain to two O blocks as shown in Figure 2. The 

two O blocks together form a composite grid. Kovacevic [4] has successfully predicted the flow state, 

heat transfer and fluid-structure interaction using the mesh generated by SCORG. Voorde et al [5] 

constructed a block structured mesh using the gradient lines and the potential lines to split the fluid 

domain in the transverse planes. Rane [6] proposed the algebraic grid generation method which 

combined the advantages of algebraic and differential method together. In this method, the boundary 

nodes are firstly distributed on the transverse rack and casing circle and these nodes remain steady with 

respect to the rotor. Recently, Rane [7-9] proposed new developments of SCORG on the grid generation 

for variable geometry rotors, accurate representation of clearances and multiphase screw machines.  

 

 

Figure 2 Analytical rack as the splitting line. 

 

Vierendeels [1] compared two different velocity flow through a square discretised with structured grid. 

As shown in Figure 3, when the flow direction is not aligned to the grid direction, the interface between 

two flows is not distinctive. When the flow direction is changed to orthogonal to the grid direction, then 

less numerical diffusion produced by mesh alignment.  

 

 

 
(a) Not aligned mesh 

 
(b) Aligned mesh 

Figure 3 Comparison of the flow direction 
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So far the meshes of the fluid domain are generated in the transverse planes which cut both the rotors 

perpendicular to the rotor axes. The main flow and leakage flow directions are most likely along the 

helix line. The flow direction cannot generally be aligned with a grid generated in the transverse plane. 

Comparing to transverse mesh generation, a different method using the normal rack to split the fluid 

domain is proposed in this paper. It is more convenient if the main rotor and gate domains are cut by 

their normal plane respectively, so the grids can be generated in the normal plane. For vacuum pumps 

and oil-free compressors the leakage loss is significant, and the helix angle is relatively large to increase 

the sealing points. The 3-D cell skewness can therefore become large for this kind of machines, which 

will introduces errors in numerical simulation. 

2.  Coordinate system  

To start the grid generation procedure in the normal plane, the right-handed Cartesian coordinate 

systems are specified firstly for the positions and orientations of the physical domain of two meshing 

rotors. The global coordinate system is 𝑆(𝑋, 𝑌, 𝑍). All the other coordinate systems are defined in the 

global coordinate system. Two rotor coordinate systems 𝑆1(𝑋1, 𝑌1, 𝑍1) and 𝑆2(𝑋2, 𝑌2, 𝑍2) are defined to 

generate fix main and gate rotor profiles separately. The rotor transform local coordinate systems 

𝑆01(𝑋01, 𝑌01, 𝑍01) and 𝑆02(𝑋02, 𝑌02, 𝑍02) are defined to generate main and gate rotor profiles in different 

transverse cross sections along the 𝑍 -axis separately. The rotor normal local coordinate systems 

𝑆11(𝑋11, 𝑌11, 𝑍11) and 𝑆12(𝑋12, 𝑌12, 𝑍12) are defined to generate main and gate rotor profiles and rack in 

different normal cross sections to the pitch helix line. One normal rack coordinate system 

𝑆13(𝑋13, 𝑌13, 𝑍13) is defined to transform the rack to the rotor normal local coordinate system. 

 

 

Figure 4 Global coordinate system. 

2.1.  Global coordinate system 

Consider the global coordinate system as 𝑆(𝑋, 𝑌, 𝑍) which origin sits in the centre of the main rotor and 

the Z-axis is along to the rotor axis as shown in Figure 4. The distance between this two coordinate 

systems is 𝐴𝑐. The main rotor rotate anticlockwise while the gate rotor rotate clockwise. The rotation 

angles for main and gate rotor are 𝜃1 and 𝜃2 separately. The origin and unit vector are defined as shown 

in the Table 1. 

Table 1 Global coordinate system 

 Origin Unit vector 

Global coordinate system [
𝑋
𝑌
𝑍
] = [

0
0
0
] [

𝒊
𝒋
𝒌
] = [

1 0 0
0 1 0
0 0 1

] 

 

 

𝑌2

𝜃1

 ,  1,  01

𝑌01

𝐴𝑐
𝜃2

𝑍, 𝑍1 , 𝑍01

𝑌02

𝑋02

𝑋01

𝑌, 𝑌1

𝑋, 𝑋1 , 𝑋2

𝑍2, 𝑍02

 2,  02
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2.2.  Rotor coordinate system 

In the global coordinate system, the main rotor coordinate is 𝑆1(𝑋1, 𝑌1, 𝑍1) which origin fixes on the 

centre of the main rotor and 𝑍1 -axis is along the main rotor axis. The gate rotor coordinate is 

𝑆2(𝑋2, 𝑌2, 𝑍2) which origin fixes on the centre of the gate rotor and 𝑍2-axis is along the gate rotor axis. 

The origins and unit vectors of the rotor coordinate system are defined as shown in the Table 2. 

 

Table 2 Rotor coordinate system 

 Origin Unit vector 

Main rotor  [

𝑋1

𝑌1
𝑍1

] = [
0
0
0
] [

𝒊𝟏
𝒋𝟏
𝒌𝟏

] = [
𝒊
𝒋
𝒌
] 

Gate rotor  [
𝑋2

𝑌2
𝑍2

] = [
𝐴𝑐

0
0
] [

𝒊𝟐
𝒋𝟐
𝒌𝟐

] = [
𝒊
𝒋
𝒌
] 

 

2.3.  Rotor transverse local coordinate system 

In the main rotor coordinate system 𝑆1(𝑋1, 𝑌1, 𝑍1) , the main rotor transverse coordinate system 

𝑆01(𝑋01, 𝑌01, 𝑍01)  rotates and transform along the 𝑍1 -axis. In the gate rotor coordinate system 

𝑆2(𝑋2, 𝑌2, 𝑍2), the gate rotor transverse coordinate system 𝑆02(𝑋02, 𝑌02, 𝑍02) rotates and transform alone 

the 𝑍2-axis. The origins and unit vectors of the rotor transverse local coordinate system are defined as 

shown in the Table 3. 𝐿 is the rotor length. 𝑁 is the number of cross sections. Ω is the wrap angle.  

 

Table 3 Rotor local transverse coordinate system 

 Origin Unit vector 

Main rotor  [

𝑋01

𝑌01
𝑍01

] = [

0
0

𝑛𝑖

𝑁
∙ 𝐿

] [

𝒊𝟎𝟏
𝒋𝟎𝟏
𝒌𝟎𝟏

] =

[
 
 
 
 cos (

𝑛𝑖

𝑁
∙ Ω1)  − sin (

𝑛𝑖

𝑁
∙ Ω1) 0

sin (
𝑛𝑖

𝑁
∙ Ω1)      cos (

𝑛𝑖

𝑁
∙ Ω1) 0

0 0 1]
 
 
 
 

[

𝒊𝟏
𝒋𝟏
𝒌𝟏

] 

Gate rotor  [

𝑋02

𝑌02
𝑍02

] = [

𝐴𝑐

0
𝑛𝑖

𝑁
∙ 𝐿

] [

𝒊𝟎𝟐
𝒋𝟎𝟐
𝒌𝟎𝟐

] =

[
 
 
 
    cos (

𝑛𝑖

𝑁
∙ Ω2)  sin (

𝑛𝑖

𝑁
∙ Ω2) 0

−sin (
𝑛𝑖

𝑁
∙ Ω2) cos (

𝑛𝑖

𝑁
∙ Ω2) 0

0 0 1]
 
 
 
 

[

𝒊𝟐
𝒋𝟐
𝒌𝟐

] 

 

2.4.  Rotor normal local coordinate system 

In addition, the rotor normal coordinate systems are constructed in the rotor coordinate systems. Main 

rotor normal coordinate system is 𝑆11(𝑋11, 𝑌11, 𝑍11) as shown in Figure 5(a). The origin  11 is along 

the main rotor pitch helix line and the 𝑍11  axis is tangent to the helix line. The 𝑋11𝑌11  plane is 

perpendicular to 𝑍11 axis. The main rotor normal profile is defined in the 𝑋11𝑌11 plane. Figure 5(b) 

shows the gate rotor normal local coordinate system. 
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(a) Main rotor  

 
(b) Gate rotor 

Figure 5 Rotor local coordinate system. 

 

The origins and unit vectors of main and gate rotor normal coordinate systems are defined as shown in 

the Table 4. The origins are along the main rotor pitch helix line. The unit vectors are defined by rotating 

the unit vector clockwise along the 𝑋01 axis for helix angle 𝛽. The origins and unit vectors have the 

same definition for the gate rotor normal coordinate system. 𝑟𝑝1 and 𝑟𝑝2 are the pitch radius. 

 

Table 4 Rotor local normal coordinate system 

 Origin Unit vector 

Main rotor  [
𝑋11

𝑌11
𝑍11

] = [

𝑟𝑝1
0
0
] [

𝒊𝟏𝟏
𝒋𝟏𝟏
𝒌𝟏𝟏

] = [

1 0 0
0 𝑐𝑜𝑠(𝛽) −𝑠𝑖𝑛(𝛽)
0 𝑠𝑖𝑛(𝛽) 𝑐𝑜𝑠(𝛽)

] [

𝒊𝟎𝟏
𝒋𝟎𝟏
𝒌𝟎𝟏

] 

Gate rotor  [

𝑋12

𝑌12
𝑍12

] = [

𝑟𝑝2
0
0
] [

𝒊𝟏𝟐
𝒋𝟏𝟐
𝒌𝟏𝟐

] = [

1 0 0
0 𝑐𝑜𝑠(𝛽) 𝑠𝑖𝑛(𝛽)
0 −𝑠𝑖𝑛(𝛽) 𝑐𝑜𝑠(𝛽)

] [

𝒊𝟎𝟐
𝒋𝟎𝟐
𝒌𝟎𝟐

] 

 

2.5.  Rack normal coordinate system 

The rack is the curve representing a rotor with infinite radius, which meshes with the main rotor profile 

and gate rotor profile simultaneously. The rack surface is generated by extruding rack curve along helix 

angle 𝛽. Figure 6 shows the normal rack local coordinate system 𝑆13(𝑋13, 𝑌13, 𝑍13). The 𝑍13 axis is 

along the extruding line and the 𝑋13𝑌13 plane is perpendicular to 𝑍13-axis. The right picture shows the 

rack profile in the main rotor coordinate system. 

 

  

Figure 6 Local coordinate system of main rotor. 

 

𝑌1

𝑌11

𝑋11

𝑍11

𝑍1, 𝑍01

 11

 1  01

𝑋01

𝑌01

𝑌1

𝑌11

𝑋11

𝑍11

𝑍1

 11

 1  01

𝑋01

𝑌01
𝑍01

 13

 13

 13

 2

 2 2
 2 2

 2

Rack Surface
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The origins and unit vector of the rack normal coordinate system are defined as shown in the Table 5. 

The origins of rack normal coordinate system are along the rack extruding line. The unit vectors are 

defined by rotating the main rotor coordinate system unit vector anticlockwise along with the 𝑋01-axis. 

Table 5 Rack normal coordinate system 

 Origin Unit vector 

Rack Normal 

coordinate system 
[

𝑋13

𝑌13
𝑍13

] =

[
 
 
 
 

𝑟𝑝1

𝑟𝑝1 ∙
𝑛𝑖

𝑁
∙ Ω1

𝑛𝑖

𝑁
∙ 𝐿 ]

 
 
 
 

 [

𝒊𝟏𝟑
𝒋𝟏𝟑
𝒌𝟏𝟑

] = [

1 0 0
0 𝑐𝑜𝑠(𝛽) 𝑠𝑖𝑛(𝛽)
0 −𝑠𝑖𝑛(𝛽) 𝑐𝑜𝑠(𝛽)

] [

𝒊𝟎𝟏
𝒋𝟎𝟏
𝒌𝟎𝟏

] 

 

3.  Decomposition of the fluid domain 

The process of replacing a spatial domain by a finite number of discrete volumes constructed with grid 

points is called gird generation. The spatial domain should be spited to two parts for grid generation. In 

this case, a 3/5 lobe combination rotors are used.  

3.1.  Definition of the fluid domain 

The fluid domain of a screw rotor is helical type volume generated by the simultaneous revolving of the 

interlobe space around the rotor axis and translation along the axis. And the fluid domain can be 

separated to two sub-domain by the rack surface as shown in Figure 7. 

 

 

Figure 7 Two sub-domain between the rotors. 

3.1.1.  The inner boundaries. Firstly the main and gate rotor profiles are input in their own rotor 

coordinate systems. The profile of the main rotor is one lobe and gate rotor is one interlobe. Because the 

grid is generated in the interlobe so the lobe of main rotor need to be transformed to the interlobe.  

 

 

Figure 8 Input Profile. 

𝑌2

 ,  1

𝑍, 𝑍1

𝑌, 𝑌1

𝑋, 𝑋1 , 𝑋2

𝑍2

 2
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3.1.2.  The outer boundary. The outer boundary is combined the rack and casing. The transverse rack 

generation method can reference the book writer by Stosic [10] and the normal rack generation method 

can refer to Wu [11]. The numerical racks are generated for the main and gate rotor separately in the 

rotor coordinate system as shown in the Figure 9.  

  

Figure 9. Rotor profile and rack. 

3.2.  The normal rotor profile and rack.  

After getting the rotor profile and rack in the rotor coordinate systems. This inner and outer boundaries 

can be transformed to different transverse local coordinate systems according to the coordinate system 

relationship. Then the outer and inner boundaries can be obtained in the normal local coordinate systems. 

To demonstrate the changing process of the inner and outer boundaries, Figure 10 shows the sub-

domain of the main rotor and gate rotor cut by 21 consecutive normal planes using the method mentioned 

above. The outer boundary is the composition of the rack and the casing circle and the inner boundary 

is the rotor profile in the normal plane. With the rotation of the rotors, the normal rack replace part of 

the casing as the outer boundary gradually cutting in and then out. The grid generation process is 

implemented in this mathematical boundaries.  

 

 

(a) Main rotor (rotor profile is blue line, rack and casing are red line) 

𝑌1

  𝑋1   1

𝑌2

  𝑋2   2
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(b) Gate rotor (rotor profile is blue line, rack and casing are red line) 

Figure 10 The changing process of the sub-domain 

4.  Grid generation in normal plane 

The customized grid generation tool SCORG is used here as the platform to process the grid generation 

in the normal cross section. An algebraic grid generation method employing adaptation, transfinite 

interpolation, grid orthogonalisation and smoothing is used to construct the hexahedral grid in the rotor 

domain. A subroutine is programmed to generate numerical mesh in the normal plane.  

In this case, the rotor configure combination is 3/5. Number of divisions along helix line is 60 and 

number of divisions along the main rotor sub-domain interlobe ellipse is 60 while along the gate rotor 

sub-domain interlobe ellipse is 36. Figure 11(1) represents the flow chart of the grid generation 

subroutine. Figure 11(a), (b) and (c) show the manipulation of the mesh to get hexahedral mesh in the 

main rotor normal local coordinate system. 

4.1.  Mapping the outer boundary. 

To conduct the structure mesh between the inner and outer boundaries, the number of nodes distributed 

on the outer boundary should be same as number of nodes on the inner boundary. After the step of rotor 

profile distribution, the nodes on rotor profile are fixed. They essentially rotate as the rotor turns. But 

nodes on the casing circles and the rack curve are not fixed. They essentially slide on these curves taking 

a new position with every rotor turn such that the distribution is always regular. This method is called 

rotor to casing.  

After the inner and outer boundaries of a physical sub-domain have been calculated in the normal 

plane and the same points distribute on the boundaries by a scanning function which is introduced to 

interpolate same number of points on the boundaries as shown in Figure 11(a). Then the boundaries 

have to be mapped to a computational domain. The coordinates of the physical domain are given in 

𝑋11𝑌11 coordinate system while the computational coordinate are 𝜉_𝜂. The main rotor sub-domain from 

tip to tip form an interlobe space which can be mapped from physical region 𝑋𝑛 onto a computational 

domain Ξ𝑛. Inner boundary of the sub-domain is the rotor profile and the outer boundary is formed by 

combining the casing circle with the rack curve.  

As shown in Figure 11(b), the outer boundary nodes are redistributed according to an arc-length 

based projection to determine the nodes to be placed on the casing. The redistribution can be controlled 

by the factor coefficient. The detailed of this redistribution process can be referenced in the book [4].   



International Conference on Compressors and their Systems 2019

IOP Conf. Series: Materials Science and Engineering 604 (2019) 012011

IOP Publishing

doi:10.1088/1757-899X/604/1/012011

9

 

 

 

 

 

 

 

 
(1) Flow chart of grid generation 

 

(a) The sub-domain in the normal coordinate system 

 

(b) Computational coordinate systems 

 

(c) Numerical mesh generated by TFI 

Figure 11 Grid generation in the sub-domain 

4.2.  Transfinite interpolation 

Next procedure is to make the inverse transformation from the computational domain to the physical 

domain according to the new arc-length. The new distribution on the rack is based on previous 

distribution on the casing by calculation the intersections of the rotor and casing connecting line with 

the rack.  

Once the outer and inner boundaries are distributed same number of nodes, the interior nodes can be 

distributed in the sub-domain using algebraic transfinite interpolation. The standard transfinite 

interpolation and a more accurate ortho-transfinite interpolation [12] can be employed here. Figure 11(c) 

shows the distribution of the interior nodes in the normal plane. The spacing and boundary orthogonality 

can be controlled. 3-D numerical mesh can be formed by connecting corresponding points in consecutive 

cross sections. The grid lines will go parallel to the helix line and thus orthogonal mesh will be produced. 
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Then the Cartesian cut cell method will be implemented for cutting of the flow domain in the end of the 

rotor. Finally, all the vertexes are exported  

5.  Conclusions 

Algebraic grid generation is widely used for discretization of the working domain for screw machines. 

In order to align the numerical mesh to the main flow direction and the leakage flow direction, this paper 

presents the new development of an algebraic grid generation algorithm which uses the normal rack to 

decompose the fluid domain into two sub-domains. A series of 2D numerical meshes are generated in 

the planes normal to the rotor pitch helix line. The 2D cross sections are then combined together to 

construct the full 3D fluid domain representing the main and gate fluid domain. This process makes the 

grids aligning with the main and leakage flow direction so as to reduce the numerical diffusion and the 

skewness of the grids in order to increase the stability of the CFD calculation. This method also opens 

possibility for generating a numerical mesh for single screw machines. 
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