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A B S T R A C T

Techniques of multivariate pattern analysis (MVPA) can be used to decode the discrete experimental condition or
a continuous modulator variable from measured brain activity during a particular trial. In functional magnetic
resonance imaging (fMRI), trial-wise response amplitudes are sometimes estimated from the measured signal
using a general linear model (GLM) with one onset regressor for each trial. When using rapid event-related de-
signs with trials closely spaced in time, those estimates are highly variable and serially correlated due to the
temporally extended shape of the hemodynamic response function (HRF). Here, we describe inverse transformed
encoding modelling (ITEM), a principled approach of accounting for those serial correlations and decoding from
the resulting estimates, at low computational cost and with no loss in statistical power. We use simulated data to
show that ITEM outperforms the current standard approach in terms of decoding accuracy and analyze empirical
data to demonstrate that ITEM is capable of visual reconstruction from fMRI signals.
1. Introduction

In functional magnetic resonance imaging (fMRI), data have been
traditionally analyzed with univariate encoding models (Brodersen et al.,
2011b) such as general linear models (GLMs) that construct a relation-
ship between experimental variables and the measured signal in one
voxel which allows to statistically test activation differences between
experimental conditions (Smith, 2004; Monti, 2011). For some time now,
however, data have also been analyzed with multivariate decoding algo-
rithms (Brodersen et al., 2011a) such as support vector machines (SVMs)
that extract experimental variables from the measured signals in many
voxels which allows to reliably decode experimental conditions from
brain activation (Haynes and Rees, 2006; Haynes, 2015). These latter
techniques are collectively referred to as multivariate pattern analysis
(MVPA).

Besides directly decoding from samples extracted from pre-processed
fMRI time series, a common approach of MVPA for fMRI consists of
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calculating session-wise parameter estimates and using linear support vec-
tor machines (Cox and Savoy, 2003; LaConte et al., 2005) to decode
experimental manipulations from multivariate signals in a searchlight
moving through the brain (Kriegeskorte et al., 2006; Haynes et al., 2007).
However, the same machinery can also be applied to trial-wise parameter
estimates which can be obtained from post-stimulus time-window aver-
aging (Ress and Heeger, 2003), using a finite impulse response approach
(Ress et al., 2000) or via trial-wise response regression (Rissman et al.,
2004; Molloy et al., 2018). While the higher number of samples in
trial-wise estimates and the lower variance of session-wise estimates both
act to increase decoding accuracy and may lead to the same benefit with
respect to classification performance, employing trial-wise signals comes
closer to the original idea of “decoding” as it allows, for each individual
trial, to make a prediction which condition it belongs to.

Trial-wise response amplitudes are most often estimated from the
fMRI signal using a GLMwith one onset regressor per trial (Rissman et al.,
2004) generated by convolution with a hemodynamic response function
rmany.
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Table 1
Mathematical notation. Abbreviations: GLM ¼ general linear model; TEM ¼
transformed encoding model. Categories: data ¼ variable quantities measured
during the experiment; model ¼ fixed quantities specified by the researcher;
parameter ¼ model parameters that have unknown true values; estimate ¼
estimated values of those model parameters; noise ¼ parts of the data that are
assumed to be random. Note that when r > 0, dimensions t and p become ðtþrÞ
and ðp þ rÞ, respectively.
Symbol Dimension Category Description

dimensions of data, experiment and model
n scalar – number of fMRI scans
t scalar – number of trials in the experiment
p scalar – number of experimental conditions
r scalar – number of nuisance regressors
v scalar – number of voxels (e.g. in ROI)
standard GLM: y ¼ Xβ þ ε; ε � Nð0; σ2VÞ [Section 2.2]
y n � 1 data a single voxel’s fMRI signal
X n � p model design matrix of the standard GLM
β p � 1 parameter condition-wise response amplitudesbβ p � 1 estimate condition-wise parameter estimates

ε n � 1 noise errors/noise of the standard GLM
σ2 scalar parameter noise variance of the standard GLM
V n � n model scan-by-scan covariance matrix
trial-wise GLM: y ¼ Xt γ þ εt ; εt � Nð0; σ2t VÞ [Section 2.3]
Xt n � t model design matrix of the trial-wise GLM
γ t � 1 parameter trial-wise response amplitudesbγ t � 1 estimate trial-wise parameter estimates
εt n � 1 noise errors/noise of the trial-wise GLM
σ2t scalar parameter noise variance of the trial-wise GLM

univariate TEM: bγ ¼ Tβ þ η; η � Nð0; σ2UÞ [Section 2.6]bγ t � 1 estimate estimated trial-wise response amplitudes
T t � p model design matrix of the univariate TEM
η t � 1 noise noise vector of the univariate TEM
U t � t model trial-by-trial covariance matrix

multivariate TEM: bΓ ¼ TBþ H; H � MN
�
0; U;Σy

�
[Section 2.7]bΓ t � v estimate trial- and voxel-wise parameter estimates

B p � v parameter activation pattern of the multivariate TEM
H t � v noise noise matrix of the multivariate TEM
Σy v � v parameter voxel-by-voxel covariance matrix

inverse TEM: T ¼ bΓW þ N; N � MNð0; U;ΣxÞ [Section 2.8]
W v � p parameter extraction filter of the inverse TEMcW v � p estimate estimated extraction filter ¼ weight matrixcW :j v � p estimate weight matrix, estimated from training setbT j t � p estimate design variables, decoded in test set

N t � p noise noise matrix of the inverse TEM
Σx p � p parameter condition-by-condition covariance matrix
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(HRF; Friston et al., 1998; Henson et al., 2001). When using rapid
event-related designs with trials closely spaced in time, those estimates
are highly variable and serially correlated due to the temporally extended
shape of the canonical HRF (Mumford et al., 2012; Turner et al., 2012)
which leads to inaccurate parameter estimates and invalid statistical tests
(Mumford et al., 2014).

Mumford and colleagues systematically assessed different methods of
obtaining trial-wise parameter estimates and found that the so-called
“least squares, separate” method (LS-S) performed best in terms of the
MVPA decoding accuracy among all methods considered (Mumford et al.,
2012). The LS-S method obtains each trial’s response via a GLM including
a regressor for that trial and another regressor for all other trials
(Mumford et al., 2012). Consequently, each trial requires fitting a sepa-
rate GLM and e.g. calculating activation patterns for 100 trials needs 100
GLMs.

In this work, we introduce a new solution to the problem of correlated
trial-by-trial parameter estimates, termed inverse transformed encoding
modelling (ITEM). Instead of modifying the way how trial-wise response
amplitudes are estimated, this solution considers the actual distribution
of the trial-wise parameter estimates, as implied by the trial-wise design
matrix that is used to generate them. In this way, correlations are not
artificially reduced, but naturally accounted for in the subsequent
decoding analysis. Importantly, ITEM does not require fitting a separate
GLM for each trial, thus extremely lowering the computational cost1 of
trial-wise MVPA for fMRI.

The structure of this paper is as follows. First, we will outline the
theoretical framework underlying ITEM-based analyses (see Section 2).
Practitioners not interested in the mathematical details can read a brief
summary of the methodology (see Section 2.1). Second, we will perform
a simulation study on classification from fMRI data and demonstrate that
ITEMs are as powerful as LS-S or, in certain critical situations, even more
powerful (see Section 3). Third, we will describe an empirical application
in which ITEMs are used for reconstruction of massively parallel visual
information in an extremely rapid event-related design (see Section 4).
Finally, we will discuss our results (see Section 5).

2. Theory

In this section, we introduce the mathematical details of inverse
transformed encoding models (ITEMs). Non-technical readers are rec-
ommended to read a brief summary of the methodology (see Section 2.1)
and then directly proceed to the simulation study (see Section 3) or the
empirical validation (see Section 4).
2.1. Brief summary of the methodology

In univariate fMRI data analysis, general linear models (GLMs) are
commonly used to estimate activation patterns associated with experi-
mental conditions (see Section 2.2). In multivariate fMRI data analysis, a
trial-wise GLM is sometimes used to obtain trial-wise response ampli-
tudes on which decoding analyses are then performed (see Section 2.3).
We use a mapping between the trial-wise and the standard GLM (see
Section 2.4) and derive the full trial-by-trial correlation structure (see
Section 2.5) which gives rise to a new model operating on the trial-wise
parameter estimates themselves (see Section 2.6). Extending this model
to multivariate signals (see Section 2.7) and inverting its explanatory
direction (see Section 2.8) allows to classify discrete experimental con-
ditions or reconstruct continuous parametric modulators (see Section
1 For example, computation time for whole-brain trial-wise parameter esti-
mates in a first-level GLM for 1 subject with 8 sessions and 100 trials per session
(from our empirical example, see Section 4) was 01:08 min (ITEM) vs. 16:11
min (LS-S). All computations were performed using SPM12 in MATLAB R2013b
running on a 64-bit Windows 7 PC with 16 GB RAM and four hyperthreaded
Intel i7 CPU kernels working at 3.40 GHz.

2

2.9) while at the same time accounting for trial-to-trial correlations due
to the slow hemodynamic response.
2.2. The standard general linear model

In functional magnetic resonance imaging (fMRI) data analysis, it is
common to use general linear models (GLMs) for statistical inference
(Friston et al., 1994; Friston, 1995; Monti, 2011; Carp, 2012). In a GLM, a
single voxel’s fMRI data (y) are modelled as a linear combination (β) of
experimental factors and potential confounds (X), where errors (ε) are
assumed to be normally distributed around zero and to have a known
covariance structure (V), but unknown variance factor (σ2):

y¼Xβþ ε; ε � N
�
0; σ2V

�
: (1)

in this equation, y is the n� 1 measured signal, X is the n� p design
matrix, β is a p� 1 vector of regression coefficients, ε is an n� 1 vector of
errors or noise, σ2 is the variance of these errors and V is an n� n tem-
poral correlation matrix where n is the number of data points and p is the
number of regressors (see Table 1).

The design matrix X usually consists of stimulus functions repre-
senting experimental conditions which are convolved with a hemody-
namic response function (HRF; Friston et al., 1998; Henson et al., 2001)



Fig. 1. The transformation matrix. This figure illustrates how the T matrix maps
from the trial-wise design matrix Xt to the standard design matrix X. Generally,
T has as many rows as Xt has columns (the number of trials) and as many col-
umns as X (the number of conditions). (A) In a very simple case (from our
simulation example, see Section 3), T is just a binary indicator matrix that
collects individual trials from Xt into experimental conditions in X. (B) In a more
complicated case (from our empirical validation, see Section 4), T also has
columns with continuous values to emulate parametric modulators in X and an
identity matrix at the bottom right to append nuisance regressors to X. For a
detailed description of the regressors in X, see Section 4.2. Note that pixel sizes
are not identical across matrices, but optimized for visibility purposes.
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and a set of nuisance regressors not based on HRF convolution such as
movement parameters. The covariance structure V is, at least in Statis-
tical Parametric Mapping (SPM; Friston et al., 2007), obtained from
fitting an AR (1) model to fMRI signals from all active voxels in the brain
(Friston et al., 2002a, 2002b), such that it is considered as known for
each individual voxel. Given known X and V as well as measured y,
maximum likelihood estimates for the regression coefficients can be
obtained via weighted least squares (WLS) as

bβ ¼ �
XTV�1X

��1
XTV�1y : (2)

Based on estimated model parameters bβ, classical statistical inference
can be performed by defining t- or F-contrasts, calculating the respective
t- and F-statistics and comparing them to the t- or F-distribution under the
respective null hypothesis (Ashburner et al., 2003, ch. 8; Friston et al.,
2007, ch. 9).
2.3. The trial-wise general linear model

The standard GLM for fMRI makes the assumption that all trials
within one condition, i.e. all events in one column of the design matrix X,
elicit the same response in the measured signal y. If we wish to relax this
assumption or if we want to analyze trial-wise responses separately, we
can specify a trial-wise general linear model:

y¼Xtγþ εt; εt � N
�
0; σ2

t V
�
: (3)
3

in this equation, Xt is an n� t trial-wise design matrix, γ is a t � 1 vector
of trial-wise response amplitudes, εt is an n� 1 vector of errors and σ2t is
the variance of these errors where t is the number of trials in the
experiment (see Table 1).

More precisely, Xt is a matrix with one column for each trial and each
column consists of one single event, convolved with a hemodynamic
response function (see Fig. 1A). This allows to obtain trial-wise param-
eter estimates:

bγ ¼ �
XT

t V
�1Xt

��1
XT

t V
�1y : (4)

Those values form the basis for the commonly known “least squares,
all” (LS-A) method (Mumford et al., 2012) which operates on these raw
parameter estimates. They are also used in the ITEM approach, but with
the crucial difference that their trial-by-trial covariance is being
accounted for in ITEM (see next sections).

2.4. The transformation matrix T

The standard GLM and the trial-wise GLM are two different encoding
models for univariate, i.e. single-voxel fMRI data. The standard GLM
allows to estimate condition-specific effects and contrast them for sta-
tistical inference (Friston et al., 1994) whereas the trial-wise GLM allows
to estimate trial-wise response amplitudes from the BOLD signal (Riss-
man et al., 2004).

Typically, the n� p design matrix X has a scan-by-regressor structure
where each row corresponds to one fMRI scan and each column corre-
sponds to one experimental condition (see Fig. 1A), i.e. stimulus onsets
and durations, convolved with the canonical HRF. In contrast, the n� t
design matrix Xt has a scan-by-trial structure so that each column cor-
responds to one event (see Fig. 1A) and basically is an onset regressor
with a single HRF at the time of the corresponding trial. The core idea of
this contribution is to connect these matrices via the relation

X¼Xt T (5)

where the t � p transformation matrix T is defined such that it converts
trial-wise HRFs into condition regressors (see Fig. 1). In the case of a
purely categorical design, T will simply be a binary indicator matrix
where tij ¼ 1 indicates that the i-th trial belongs to the j-th condition (see
Fig. 1A). If there is a parametric modulator in the design matrix, T will
have a corresponding column with the modulator values belonging to
this regressor (see Fig. 1B).

Usually, the design matrix also includes nuisance regressors Xr , e.g.
events of no interest, movement parameters, filter regressors or the im-
plicit baseline (see Fig. 1B). These nuisance regressors prohibit a trial-to-
scan mapping since they are not based on trial-wise modulation. In this
case, to preserve equation (5), these regressors are simply appended to Xt

and T takes on a block-diagonal structure as

X�
t ¼ ½Xt Xr �

T� ¼
�
T 0

0 Ir

�
(6)

where X�
t is the n� ðtþrÞ ”augmented” trial-wise design matrix, T� is the

ðtþrÞ � ðpþrÞ ”augmented” transformation matrix (see Fig. 1B) and r is
the number of nuisance regressors. In what follows, when we use the
symbols Xt and T as well as t and p, we almost always refer to the
augmented quantities X�

t and T� as well as ðtþrÞ and ðp þ rÞ.

2.5. The uncorrelation matrix U

Given that trial-wise parameter estimates bγ – representing BOLD
signal response amplitudes during individual trials – have been estimated
from the data via (4), there will be a certain covariance between them
due to the fact that trial-wise HRF regressors overlap and are thus



Fig. 2. The uncorrelation matrix. This figure illustrates how the U matrix derives from the trial-wise design matrix Xt and scan-to-scan covariance matrix V. Generally,
the inverse of U is a product of Xt with itself, weighted by the inverse of V. (A) In a very simple case (from our simulation example, see Section 3), U only encodes
correlations between adjacent trials. The closer two trials are to each other in time, the stronger are their HRFs correlated, illustrated by red entries in U�1 for short
inter-stimulus-intervals in Xt . (B) In a more complicated case (from our empirical validation, see Section 4), the augmented X�

t also includes nuisance regressors, such
that U not only encodes trial-by-trial correlations (upper left portion), but also the shared variation between trial-wise HRFs and regressors of no interest (rightmost
columns and lowermost rows). The upper-left insets in the plots of V�1 correspond to the (inverse) covariance pattern between ten consecutive scans.
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temporally correlated with each other. It can be shown that this covari-
ance is a function of the trial-wise design matrix Xt (see Appendix A,
Theorem 1):

U¼ �
XT

t V
�1Xt

��1
: (7)

We refer to this matrix as the uncorrelation matrix, because it allows to
decorrelate trial-wise response amplitudes2 when their HRFs are over-
lapping in time. Using this covariance matrix that directly derives from
the trial-wise design matrix, the correlation between adjacent trials
imposed by temporally close HRFs can be easily accounted for in a second
model on the trial-wise parameter estimates (see next section).

Notably, the U matrix does not only capture correlations between
trial-wise parameter estimates alone (see Fig. 2A), but also accounts for
possible correlations between trial-wise HRFs and nuisance variables
such as filter regressors (see Fig. 2B). This suggests not to regress
nuisance variables beforehand, but instead to include all processes of
interest and of no interest into the model at once (see Fig. 1B).

Note that the present derivation is based on assuming constant trial-
wise response amplitudes within experimental conditions.3 If this
assumption is to be relaxed, the covariance of the trial-wise parameter
estimates becomes more complicated (see Appendix B) and restricted
maximum likelihood (ReML) estimation is required. We have used this
2 This can be seen in equation (9) and (14) by splitting up U�1 into U�1=2T �
U�1=2, such that the whitening matrix U�1=2 modifies T and bγ/bΓ to account or
the correlations implied by U.
3 This means that trial-wise response amplitudes are only a function of

condition-wise response amplitudes, without any further trial-by-trial noise
within experimental conditions, i.e. γ ¼ Tβ.

4

ReML extension in the simulation study of this paper (see Section 3), but
have found no evidence of improvement in empirical analyses (see Sec-
tion 4), and therefore only present it as a possible extension of our
framework (see Appendix B).
2.6. The transformed encoding model

We now assume that bγ , T and U are given from equations (4) and (5)
and (7), respectively. Together, the transformation matrix T and the
uncorrelation matrix U can be used to define a new linear model on the
trial-wise parameter estimates bγ , by specifying their distribution result-
ing from the estimation (see Appendix A, Theorem 1):

bγ ¼ Tβþ η; η � N
�
0; σ2U

�
: (8)

We refer to this trial-level GLM as a transformed encoding model (TEM),
because it operates on a transformed version of the data, namely the trial-
wise response amplitudes bγ , and uses the transformation matrix T as its
design matrix.

Other than in X or Xt , where information about trials is only indirectly
contained (because convolved), it is directly accessible via the rows of T
which makes the model suitable for trial-wise decoding analyses. When

adopting this model, condition-wise parameter estimates bβ can be
derived from the trial-wise parameter estimates bγ via

bβ ¼ �
TTU�1T

��1
TTU�1bγ (9)

and it can be shown (see Appendix A, Theorem 2) that they are identical
to the condition-wise parameter estimates of the standard GLM given by
(2).
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2.7. The multivariate transformed encoding model

Given that trial-wise response amplitudes bγ have been estimated in a
number of voxels, e.g. a searchlight (SL) or a (functional or anatomical)
region of interest (ROI), we can turn the univariate GLM (8) into a
multivariate GLM (Allefeld and Haynes, 2014), the multivariate trans-
formed encoding model (MTEM):

bΓ¼TBþH; H � MN
�
0;U;Σy

�
: (10)

in this equation, bΓ ¼ ½bγ1;…;bγv� is a t � v matrix of horizontally concat-
enated trial responses over voxels, B and H are the corresponding ex-
tensions of β and η, MN indicates a matrix-normal distribution and Σy is
the v� v unknown spatial covariance matrix where v is the number of
voxels currently analyzed.

With the transition from the univariate to the multivariate TEM, we
are now able to describe multi-voxel activation patterns rather than
single-voxel response amplitudes. Importantly, while the voxel-to-voxel
covariance Σy changes depending on the set of voxels considered and
actually allows for the multivariate encoding exploited in decoding an-
alyses, the trial-to-trial covariance remains the same, namely U, because
it only depends on the trial-wise design matrix Xt and the scan-to-scan
covariance matrix V used to generate them, as indicated by equations
(4) and (7). Because V is usually estimated from whole-brain data (see
Section 2.2) and considered identical across voxels, U will also be the
same for each set of voxels considered.

2.8. The inverse transformed encoding model

In principle, our investigation could stop here and data analysis could
proceed by statistically inferring single-voxel activation differences using
the univariate TEM (see Section 2.6) or multi-voxel pattern differences
using the multivariate TEM (see Section 2.7). This would only require to
transform measured data Y into trial-wise parameter estimates bΓ via (4),
to incorporate the trial-to-trial covariance U calculated from (7) and
could operate in the standard frameworks for the univariate GLM (Friston
et al., 1994) and the multivariate GLM (Allefeld and Haynes, 2014).

However, our goal here is not statistical inference, i.e. describing the
trial-wise response amplitudes bΓ in terms of the experimental design T,
but decoding analysis, i.e. recovering the experimental design from trial-
wise response amplitudes. Therefore, we define an extraction filter W as
the inverse of the activation pattern B. Then, it can be shown (see Ap-
pendix C, Theorem 4) that the forward GLM (10) implies the following
backward GLM, the inverse transformed encoding model (ITEM):

T ¼ bΓW þN; N � MNð0;U;ΣxÞ : (11)

in this equation, the known transformation matrix T occurs as the “data”
matrix, the estimated response amplitudes bΓ become the “design” ma-
trix,4W appears as the unknown v� p ”weight”matrix,N is a t� p ”noise”
matrix and Σx is the unknown p� p covariance matrix across experi-
mental design variables.

Based on this model, an estimate of the extraction filter, also called a
“weight matrix”, can be obtained using weighted least squares which is
the best linear unbiased estimator (BLUE) in this situation (see Appendix
C, Theorem 5):
4 More precisely, the inverse transformed encoding model reads

T ¼ ½bΓ; 1t �W þN; N � MNð0;U;ΣxÞ (12)

where a t � 1 vector of ones is added to the ”design matrix” bΓ as a constant re-
gressor, such that the model is able to reconstruct discrete differences with
arbitrary offsets in the ”data matrix” T.
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bW ¼ �bΓT
U�1bΓ��1 bΓT

U�1T : (13)
In the present work, to assess decoding accuracy, ITEMs will be
estimated by cross-validation (CV) across fMRI recording sessions. More
precisely, we will perform leave-one-session-out cross-validation across S

sessions. In each CV fold j ¼ 1;…; S, a weight matrix cW :j is calculated
from all except the j-th session5:

bW :j ¼
�bΓT

:j U
�1
:j bΓ:j

��1 bΓT

:j U
�1
:j T:j : (14)

Then, this weight matrix is used to obtain decoded design variables bT j

via simple out-of-sample prediction in the left-out session j:

bT j ¼ bΓj bW :j : (15)

2.9. Decoding by classification or reconstruction

In the ITEM framework, decoding is generally understood as recov-
ering an independent variable and two types of decoding analysis are
possible: (i) classification, i.e. decoding discrete categories, e.g. experi-
mental conditions; and (ii) reconstruction, i.e. decoding continuous vari-
ables, e.g. parametric modulators.

In cases of classification, we measure decoding accuracy based on
proportion correct. First, a p� q contrast matrix C is defined where q is the
number of classes to discriminate and cij ¼ 1 indicates that the i-th re-
gressor in T belongs to the j-th class.6 The design variables to be decoded
are then given by

~T ¼TC : (16)

This modified trial matrix is then taken as the new output of the
model in (11) and subjected to the estimation routine in (13) which gives

rise to a v� q weight matrix c~W and to the t � q decoded variables b~T .
When predicted variables have been calculated from (15), decoding

accuracy is determined as the proportion of trials in which the class with
the largest decoded value is identical with the class that was actually
present, i.e.7

Pcorr ¼ 1
t

Xt

i¼1

Xq

j¼1

�b~t ij ¼max
�	b~t i1;…;b~t iq
�� �~tij : (17)

In cases of reconstruction, we measure decoding accuracy via correla-
tion coefficients. First, a p� q contrast matrix C is defined where q is the
number of variables to reconstruct and cij ¼ 1 indicates that the i-th re-
gressor should be evaluated.8 Then, the design variables to be decoded
are again given by equation (16).

When predicted variables have been calculated from (15), decoding
accuracy is determined as the Pearson correlation between original re-
gressor and reconstructed regressor for each variable of interest, i.e.

rj ¼ corr
�b~t�j;~t�j�; j¼ 1;…; q : (18)

Note that, when T has been reconstructed via bT , any desired measure
of decoding accuracy may be applied. For example, if parametric re-
gressors represent basis functions over stimulus space (e.g. Brouwer and
Heeger, 2009), it may be more informative to recover the stimulus by
5 In this equation, the subscript :j indicates that bΓ:j and T:j are vertical
concatenations and that U:j is a block-diagonal combination of the respective
session-wise matrices.
6 When there are just two classes, C can also be a p� 1 vector with þ1’s and

–1’s.
7 Equation (17) uses Iverson bracket notation, i.e. ½p� ¼ 1, if p true and ½p� ¼

0, if p false.
8 In our implementation of the method (see Section 6), C can also be a p� 1

vector.



Fig. 3. A hypothetical reconstruction. This figure summarizes our approach and illustrates trial-wise reconstruction of experimental design information. (A) Using the

multivariate transformed encoding model (see Section 2.7), the trial-wise parameter estimates bΓ are assumed to be a linear combination of experimental conditions T,
weighted by voxel-wise regression coefficients B, and a noise matrix H with trial-by-trial correlations U and voxel-to-voxel covariance Σy . For this example, T and U
were obtained from an SPM template data set on face repetition priming (Henson et al., 2002) while B and Σy were chosen as ground truth. B was set such that voxels
exhibit an overall effect (e.g. voxel 1), main effects (voxels 3 & 7) or an interaction effect (voxel 9) in the 2� 2 design. (B) Using the inverse transformed encoding

model (see Section 2.8), a reconstruction bT is obtained by multiplying the trial-wise response amplitudes bΓ with a weight matrix cW , estimated from the inverse model.

As one can see when comparing bT with T, experimental conditions can be read out from the reconstruction (see Section 2.9). (C) The product of activation pattern and

estimated weight matrix, BcW , approximates the identity matrix – confirming an assumption made when deriving the inverse model (see Appendix C).
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combining information across reconstructed basis functions within trials
(e.g. Sprague et al., 2016, suppl. eq. 5) rather than calculating the
reconstruction accuracy of each basis function across trials.

An overview of our modelling logic is given in Fig. 3. In this
demonstration example, we generated trial-wise response amplitudes bΓ
using equation (10) based on ground truth values for T, B, U and Σy (see

Fig. 3A). Then, estimation of cW using equation (13) and predicition of bT
using equation (15) without cross-validation gave rise to a within-sample
6

reconstruction of T (see Fig. 3B). Finally, we calculated BcW to validate
assumptions made in our derivations (see Fig. 3C).

3. Simulation

3.1. Methods

For simulation validation, we repeat and adapt a simulation reported
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Fig. 4. Simulation validation: statistical power. For each combination of inter-stimulus-intervals (tisi) and noise variance (σ2), the true positive rate (TPR) of a two-
sample t-test between trial-wise response amplitudes from two experimental conditions is given for the naïve approach (LS-A, red), the standard approach (LS-S, blue)
and the proposed approach (ITEM, green). For long tisi and low σ2, all tests have power of 100%. When the noise variance is high (bottom row) or inter-stimulus-
intervals are short (left column), the ITEM approach outperforms or levels with the state-of-the-art approach.
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earlier (Mumford et al., 2012) that was designed to investigate different
methods of obtaining trial-wise response amplitudes for multivariate
pattern analysis in fMRI. All simulation code is available from GitHub
(https://github.com/JoramSoch/ITEM-paper).

In our simulation, we compare three approaches of inference from
trial-wise parameter estimates: the naïve approach ignoring trial-by-trial
correlations (Mumford: “least squares, all”, LS-A), the state-of-the-art
approach found optimal in the previous simulation (Mumford: “least
squares, separate”, LS-S) and the approach proposed here, i.e. inverse
transformed encoding modelling (ITEM). LS-A entails decoding without
accounting for correlation and taking trial-wise parameter estimates from
equation (4) “as is”. Within our framework, this is equivalent to setting
U ¼ It instead of taking U from equation (7), i.e. assuming no correlation
between adjacent trials. LS-S cannot be represented within our approach,
because it is based on obtaining trial-wise parameter estimates using a
separate design matrix for each trial, including one regressor for this trial
and one regressor for all other trials (Mumford et al., 2012).

In the simulation, data were generated as follows: First, trials were
7

randomly sampled from two experimental conditions, A and B. Second,
trial-wise response amplitudes γ were sampled from normal distributions
with expectations μA ¼ 5 and μB ¼ 3 and variances σ2A and σ2B where σA ¼
σB ¼ 0:5. Third, inter-stimulus-intervals tisi were sampled from a uni-
form distribution Uðtmin; tmaxÞ where tmin 2 f0; 2;4g and tmax ¼ tmin þ 4
seconds. Fourth, the design matrix Xt was generated based on the inter-
stimulus-intervals tisi and convolution with the canonical hemodynamic
response function (cHRF) using stimulus duration tdur ¼ 2 s and repeti-
tion time TR ¼ 2 s. An exemplary design matrix for the case tisi � Uð0; 4Þ
is given on the left of Fig. 1A. Finally, a univariate signal was generated
by multiplying the trial-wise design matrix Xt with trial-wise response
amplitudes γ and adding zero-mean Gaussian noise ε with variance σ2

where σ 2 f0:8;1:6;3g. In this way, N ¼ 1;000 simulation runs with S ¼
2 sessions (for cross-validation) and t ¼ 60 trials (30 per condition) were
performed. A detailed description of the simulation and our modifica-
tions is given in Appendix E.

After data generation, models were estimated as follows: For LS-A and
ITEM, trial-wise parameter estimates bγ were obtained by equation (4)

https://github.com/JoramSoch/ITEM-paper


Fig. 5. Simulation validation: decoding accuracies. For each combination of inter-stimulus-intervals (tisi) and noise variance (σ2), decoding accuracies for classification
between two experimental conditions are given for the naïve approach (LS-A, red), the standard approach (LS-S, blue) and the proposed approach (ITEM, green). For
long tisi and low σ2, decoding accuracies of all algorithms are close to 1. When the noise variance is high (bottom row) or inter-stimulus-intervals are short (left
column), the ITEM approach outperforms or levels with the state-of-the-art approach. In each boxplot, the central mark is the median; the box edges are the 25th and
75th percentiles; whiskers correspond to the most extreme data points within 1:5� the interquartile range from the box edges; and black crosses represent outliers.

9 Findings denoted as “results not shown” can be found in the sub-folder
“Simulation/null_results/” of the accompanying GitHub repository (https://gi
thub.com/JoramSoch/ITEM-paper).
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using design matrix Xt (Mumford: XS). For ITEM, bγ was subjected to an
additional restricted maximum likelihood (ReML) analysis, as described
in Appendix B, in order to separate the natural trial-to-trial variability
(coming from σ2A and σ2B) from the induced trial-by-trial correlations
(coming from Xt). For LS-S, bγ was obtained as described above using trial-
specific design matrices Xi where i ¼ 1;…; t (Mumford: XTi). Afterwards,
parameter estimates were subjected to a two-sample t-test in order to
assess statistical power (by calculating the proportion of positive results
when the alternative hypothesis is true) and a logistic regression in order
to assess decoding accuracy (see next section).

3.2. Results

The present simulation entails a comparison between activation
patterns from two experimental conditions. The classical equivalent to
decoding between two conditions is a two-sample t-test. For LS-A and LS-
S, trial-wise parameter estimates bγ are simply grouped into two vectors
which are t-tested against each other. For ITEM, in order to account for
correlations in trial-wise parameter estimates bγ , the transformed encod-
ing model given by (8) is estimated using (9) with T and U given by
Figs. 1A and 2A, respectively. Then, a two-sample t-test was performed
via standard contrast-based inference, as implemented in SPM
8

(Ashburner et al., 2003, ch. 8; Friston et al., 2007, ch. 9), using the
contrast vector c ¼ ½þ1;�1�T .

Each procedure leads to one p-value per simulation and the null hy-
pothesisH0 : μA ¼ μB is rejected in favor of the alternativeH1 : μA 6¼ μB, if
p < 0:05. We found that, when setting μA ¼ μB ¼ 3, such that H0 is true,
all approaches considered have a false positive rate (FPR) of around 5%
(results not shown9) for all levels of trial collinearity (tisi) and signal-to-
noise ratio (σ2). Therefore, none of the approaches inflates the FPR
beyond its nominal level. Furthermore, when setting 5 ¼ μA 6¼ μB ¼ 3,
such thatH1 is true, the true positive rate (TPR) of LS-A drastically suffers
from a combination of short stimulus intervals and high noise variance
(see Fig. 4, lower-left panel) whereas ITEM reaches or outperforms LS-S
in terms of power (see Fig. 4, lowermost row). Therefore, ITEM offers the
most powerful test across all scenarios considered.

Of course, the two experimental conditions cannot only be statisti-
cally tested against each other, but also read out from the generated data.
A very simple method for decoding between two conditions is logistic

https://github.com/JoramSoch/ITEM-paper
https://github.com/JoramSoch/ITEM-paper


Fig. 6. Empirical validation: experimental paradigm. (A) Exemplary stimulus display during a single trial of the receptive field mapping experiment. (B) Schematic
view of the 48 sectors which the stimulus display consists of. Each numbered field on the right corresponds to a 2� 2 checkerboard on the left.
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regression. For LS-A and LS-S, condition labels for A and B are coded as 1
and 2 and the corresponding logistic model is estimated. Then, log-odds
for the left-out session are predicted from trial-wise response amplitudes
and trials are classified into conditions A and B (Mumford et al., 2012).
For ITEM, as the presence of correlations in trial-wise parameter esti-
mates makes logistic regression more difficult, the decoding procedure
outlined above (see Sections 2.8 and 2.9) was employed for
cross-validated classification of trial types. For all approaches, proportion
correct (Pcorr), i.e. the percentage of trials correctly assigned, was used as
the measure of decoding accuracy and decoding accuracy was averaged
over the two sessions.

Each procedure leads to one Pcorr per simulation, the distributions of
which are visualized as box plots across simulations. We found that,
when setting μA ¼ μB ¼ 3, such that no difference between the condi-
tions exist, all approaches considered have an average decoding accuracy
of around 50% (results not shown9) for all levels of trial collinearity (tisi)
and signal-to-noise ratio (σ2). Therefore, there is no evidence for above-
chance classification in the absence of a real effect. Furthermore, when
setting 5 ¼ μA 6¼ μB ¼ 3, such that there is a real effect, LS-A drastically
suffers from a combination of short stimulus intervals and high noise
variance (see Fig. 5, lower-left panel), whereas median decoding accu-
racies of ITEM are up to 8.33% higher than those of LS-S (see Fig. 5,
upper-left panel), but at most 0.83% smaller than them (see Fig. 5, lower-
left panel). Therefore, the ITEM approach outperforms the previously
best known approach in terms of sensitivity, when considered across
simulation scenarios.

4. Application

4.1. Experiment

For empirical validation, we re-analyze data from an earlier experi-
ment on visual receptive fields (Heinzle et al., 2011) that was designed to
investigate relationships between sensory-visual and cortico-cortical
receptive fields. This data set is available in BIDS format from Open-
Neuro (https://openneuro.org/datasets/ds002013).

Four right-handed, healthy subjects participated in a retinotopic
mapping experiment that was used to define regions of interest (ROI) for
the visual cortex (V1, separately for left and right hemisphere) as well as
a visual stimulation experiment that is used for ITEM-based visual
reconstruction in the present work.

In the main experiment, subjects were viewing a dartboard-shaped
flickering checkerboard stimulus (see Fig. 6A). The whole display was
subdivided into 4 rings and 12 segments, giving rise to 48 sectors (see
Fig. 6B). Across trials, these sectors changed their local contrast inde-
pendently and randomly between 4 levels generated using M-sequences
(Bura�cas and Boynton, 2002). These intensity levels were logarithmically
9

spaced between 0.1 and 1 and used for analysis as linearly spaced be-
tween 0 and 1 in steps of 1/3. The duration of one trial was 3 s and there
was no inter-stimulus-interval (tisi ¼ 0 s). In total, 100 trials were pre-
sented in each of the 8 sessions. In addition, there was a 15 s rest period at
the beginning and at the end of each session.

Throughout the experiment, subjects were engaged in a control task
to keep their fixation to the center of the visual display. Landolt’s C was
presented in the middle of the screen and subjects had to indicate
whether it opened to left or to the right side. The open and close times
were 800 ms each, with a total stimulus duration of T ¼ 1.6 s in order to
avoid divisibility with the acquisition TR ¼ 1.5 s.

Magnetic resonance imaging (MRI) data were collected on a 3-T
Siemens Trio with a 12-channel head coil. In each session of the visual
stimulation experiment, 220 T2*-weighted, gradient-echo EPIs were ac-
quired at a repetition time TR ¼ 1500 ms, echo time TE ¼ 30 ms, flip
angle α ¼ 90	 in 25 slices (slice thickness: 2 mm (þ1 mm gap); matrix
size: 64� 64) resulting in a voxel size of 3� 3� 3 mm. During the
separate retinotopic mapping experiment, 160 T2*-weighted volumes
were acquired with 33 slices, TR ¼ 2000 ms and all other parameters as
above.

4.2. Analysis

In pre-processing, fMRI data were converted from 3D into 4D NIfTIs,
transformed into the BIDS format (Gorgolewski et al., 2016), reoriented
to the axis from commissura anterior (AC) to commissura posterior (PC),
acquisition-time-corrected (slice timing) and head-motion-corrected
(spatial realignment) using SPM12. The retinotopic mapping was based
on a standard traveling wave method (Wandell et al., 2007) and analyzed
to yield flattened angular and eccentricity maps (Heinzle et al., 2011).

In statistical analysis, an ROI-based ITEM analysis was performed via
these steps:

1. standard GLM specification: A standard design matrix X was specified
with the following regressors: (i) 1 onset regressor describing visual
stimulation throughout the experiment; (ii) 48 parametric modula-
tors describing intensity levels in the 48 sectors of the visual stimulus;
(iii) 2 onset regressors describing the control fixation task during the
experiment; (iv) 6 motion regressors describing head movements; (v)
5 filter regressors describing periodic drifts; and (vi) 1 constant re-
gressor describing the implicit baseline. An exemplary design matrix
for one session from one subject is given on the left of Fig. 1B.

2. standard GLM estimation: Using this model, the temporal covariance
matrix V was estimated using SPM’s AR (1) model. An exemplary
covariance matrix for the same session and subject is given in the
middle of Fig. 2B.

https://openneuro.org/datasets/ds002013


Fig. 7. Empirical validation: decoding accuracies. For each sector, cross-validated decoding accuracies are given as correlation coefficients between presented contrast
and reconstructed contrast, when using (A) the naïve approach ignoring trial-by-trial correlations (LS-A), (B) the standard approach using separate design matrices (LS-
S) and (C) the proposed approach, i.e. inverse transformed encoding modelling (ITEM). Each row shows mean correlations, averaged over 8 sessions and 4 subjects
(left column), as well as standard errors over subjects (middle column). For comparison purposes, all panels in one column use the same color axis. (D) For orientation
purposes, the sector indices are recapitulated. (E) The three approaches are summarized using average mean correlations and standard errors over sectors (lower-right
panel). ITEM-based reconstruction (mean r: 0.311) strongly outperforms LS-A (mean r: 0.070) and mildly outperforms LS-S (mean r: 0.247). All pairwise comparisons
are significant at p < 0.001.
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3. trial-wise GLM specification: Using SPM-compatible MATLAB code (see
Section 6), the trial-wise design matrix Xt (see Fig. 1B) and the
transformation matrix T were generated based on design information
assembled during SPM model specification.

4. trial-wise GLM estimation: Trial-wise parameter estimates bγ and the
trial-by-trial covariance matrix U (see Fig. 2B) were calculated using
equation (4) and (7).

5. model comparison & voxel selection: As our goal was not searchlight
decoding, but visual reconstruction from V1, we performed an in-
termediate step10 of cross-validated Bayesian model selection
(cvBMS; Soch et al., 2016) using routines from the MACS toolbox
(Soch and Allefeld, 2018) to identify voxels processing visual
information:
10 Note that this step would normally not be required when an a priori
(structural or functional) ROI image is already available or when a searchlight-
based ITEM analysis is desired.

10
a. To this end, 48 single-sector models, each describing intensity
levels in one of the 48 sectors, and 1 null model, describing no
individual sector, were specified as design matrices T predicting
trial responses bγ (see eq. (8)). Then, models were assessed using
the cross-validated log model evidence (cvLME) and the family of
single-sector models was compared against the null model.

b. In each hemisphere, the 48 V1 voxels with the highest evidence in
favor of the family of single-sector models were identified,
resulting in a combined ROI containing 96 voxels used for recon-
struction in the left-out session.

6. reconstruction: Finally, session-wise transformation matrices T,
uncorrelation matricesU and response amplitudes within the selected
voxels bΓ were used for cross-validated reconstruction of intensity
levels in the 48 sectors using equation (14) and (15). For all re-
constructions, decoding accuracy was quantified via correlation co-
efficients and then averaged over sessions and subjects, but not
sectors.



Fig. 8. Empirical validation: exemplary reconstructions. From all ITEM-based decoding analyses (see Fig. 7C), (A) the worst reconstruction, corresponding to the
lowest absolute correlation coefficient, (B) a medium reconstruction, corresponding to the median among all correlations, and (C) the best reconstruction, corre-
sponding to the highest correlation coefficient, were selected for display. Each panel shows the actually presented contrast (red), normalized to a range from � 1 to þ
1, and the reconstructed contrast (blue) across trials.
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The complete empirical data analysis can be reproduced using
MATLAB code available from GitHub (https://github.com/JoramSoch
/ITEM-paper).
11 This means that backwards regression using equation (14) and (15) with
U ¼ It was used for LS-A and LS-S. We also applied support vector regression
(SVR) to reconstruct sector intensity levels from LS-A and LS-S estimates, but
reconstruction performance was inferior to the results reported here and ob-
tained using ITEM-style inversion (see Section 4.2, Step 6). SVR code is available
on the GitHub repository (https://github.com/JoramSoch/ITEM-pap
er/blob/master/README.md#Application).
4.3. Results

The present experiment constitutes an ideal proof of concept for the
ITEM framework due to (i) the extremely rapid event-related design
without any inter-stimulus-intervals and (ii) the massive parametric
design information to be decoded.

Using an ITEM-based analysis, visual contrast in almost all parts of the
visual field could be reliably decoded from fMRI signals in left and right
V1 (see Fig. 7C). Reconstruction performance is better for sectors which
are far from the center (e.g. 45 vs. 9) and for sectors which are close to the
horizontal axis (e.g. 45 vs. 48) of the visual field, providing evidence for
the so-called “oblique effect” in visual cortex (Li et al., 2003).

To compare the ITEM approach against LS-A and LS-S, the same
reconstruction was applied without incorporating the temporal covari-
ance matrix U (LS-A) and to trial-wise response amplitudes estimated via
11
separate design matrices Xi (LS-S).11 As expected, LS-A provided the
lowest correlation coefficients when compared to LS-S or ITEM (see
Fig. 7A), probably suffering from high trial-by-trial correlations due to
the short inter-stimulus-intervals. LS-S improves significantly over LS-A
in terms of decoding accuracies (see Fig. 7B), but is still outperformed
by ITEM (see Fig. 7E).

From the correlation coefficients across all subjects, sessions and
sectors obtained with ITEM-based reconstruction, the highest correla-
tion, the lowest absolute correlation and the median correlation were
selected as examples for a particularly good, a particularly bad and a
medium-quality reconstruction (see Fig. 8). Time courses of presented

https://github.com/JoramSoch/ITEM-paper
https://github.com/JoramSoch/ITEM-paper
https://github.com/JoramSoch/ITEM-paper/blob/master/README.md#Application
https://github.com/JoramSoch/ITEM-paper/blob/master/README.md#Application
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contrast and reconstructed contrast can be plotted with each other,
showing considerable covariation for the best reconstruction (see
Fig. 8C).

5. Discussion

We have introduced inverse transformed encoding modelling (ITEM), an
integrated framework for trial-wise linear decoding of experimental
manipulations from fMRI data that accounts for trial-by-trial correlations
and thus avoids suboptimal decoding accuracies resulting from inaccu-
rate parameter estimates. ITEM allows for classification of discrete
experimental conditions as well as reconstruction of continuous modu-
lator variables. In a simulation study on binary classification, ITEM
reached or outperformed LS-S, the previously best known approach
(Mumford et al., 2012), for most noise variances and
inter-stimulus-intervals tested (see Fig. 5). In an empirical application to
visual reconstruction, ITEM was used to successfully decode visual
stimulation from multivariate signals in left and right V1 (see Fig. 7).

The problem of correlated trial-by-trial parameter estimates has already
been discussed several times in the fMRI/MVPA literature (Mumford
et al., 2012, 2014; Turner et al., 2012; Weeda, 2018). Previous contri-
butions have pointed out that a naïve approach ignoring trial-by-trial
correlations (i.e. LS-A) leads to suboptimal parameter estimates and
found that a revised method estimating each trial’s activation using a
separate design matrix (i.e. LS-S) better controls for trial-to-trial covari-
ance. This procedure is based on the idea that including a regressor
modelling all other trials in addition to the regressor modelling the trial
of interest will largely reduce collinearity between trials (Mumford et al.,
2012).

Here, we extend this previous work by providing a principled
approach, based on the actual distribution of the trial-wise parameter esti-
mates (i.e. ITEM), as implied by the trial-wise design matrix (see Section
2.6 and Equation (7); see also Mumford et al., 2014, p. 132). Unlike LS-S,
ITEM is not simply an alternative way of calculating trial-wise parameter
estimates, but an integrated decoding approach accounting for
trial-by-trial correlations (see Section 2.8).

However, ITEMs are not only applicable to rapid event-related de-
signs, but generally useful when fMRI-based trial-wise linear decoding is the
goal. Other than a decoding algorithm, e.g. a linear SVM applied to trial-
wise response amplitudes, ITEM controls for correlation of trial-specific
activations with any covariate present in the experimental design (see
Fig. 2B and Equation (6)). A disadvantage compared to other approaches
(e.g. Weeda, 2018) is that ITEM requires an assumption about the shape
of the hemodynamic response in the form of an HRF (e.g. the canonical
HRF). Future researchmay investigate whether the (inverse) transformed
12
encoding model can be combined with a trial-wise GLM using a finite
impulse response (FIR) basis set in order to allow for more flexibility with
respect to the HRF shape.

The ITEM approach is very similar to the technique of inverted
encoding models (IEM; Sprague et al., 2015) that is used frequently for
reconstruction of sensory information (Brouwer and Heeger, 2009;
Saproo and Serences, 2014). In Appendix D, we outline two key differ-
ences between ITEMs and IEMs, namely (i) the reversed order of model
estimation and model inversion in the reconstruction process and (ii) the
fact that IEM in its most frequent implementation does not account for
possible covariance between trials by not considering the U matrix.

ITEM has been made available as an SPM plug-in on GitHub (see
Section 6). While the present work only used decoding from regions of
interest (ROI), an implementation for decoding from searchlights (SL) is
also available. We hope that ITEM-based decoding will increase the
sensitivity of MVPA for rapid event-related fMRI designs.

6. Implementation

An SPM12-compatible MATLAB implementation of the ITEM
approach (https://github.com/JoramSoch/ITEM) as well as all code
underlying the analyses in this paper (https://github.com/JoramSoch
/ITEM-paper) are available from GitHub.

The data set used for empirical validation in Section 4 has been BIDS-
formatted and uploaded to OpenNeuro (https://openneuro.org/datasets
/ds002013). Further instructions on data processing can be found in the
readme file of the accompanying repository (https://github.com/Jor
amSoch/ITEM-paper/blob/master/README.md).
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Appendix

A. Derivation of the transformed encoding model

The following derivation of the transformed encoding model (TEM) makes use of the linear transformation theorem for the multivariate normal
distribution:

Theorem 0. Let x follow a multivariate normal distribution:

x � Nðμ;ΣÞ : (A.1)

Then, any linear transformation of x is also multivariate normally distributed:

y¼Axþ b � N
�
Aμþ b;AΣAT

�
: (A.2)

https://github.com/JoramSoch/ITEM
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Proof: This is standard textbook knowledge (see e.g. Koch, 2007, eq. 2.202).

To recapitulate (see Sections 2.2–2.3), the standard general linear model (GLM) and the trial-wise GLM for first-level fMRI data analysis are given by

y¼Xβþ ε; ε � N
�
0; σ2V

�
; (A.3)

y¼Xtγþ εt; εt � N
�
0; σ2

t V
�
: (A.4)

These two models are linked to each other by the transformation matrix (see Section 2.4):

X¼Xt T : (A.5)

Parameter estimates for the trial-wise GLM are given by weighted least squares:

bγ ¼ �
XT

t V
�1Xt

��1
XT

t V
�1y : (A.6)

The distribution of these parameter estimates is specified by the 1st TEM theorem:

Theorem 1. The trial-wise parameter estimates bγ are distributed as

bγ � N
�
Tβ; σ2U

�
(A.7)

when (A.3) is the ground truth, where the covariance matrix U is given by

U¼ �
XT

t V
�1Xt

��1
: (A.8)

Proof: Combining (A.3) with (A.2), we have:

y � N
�
Xβ; σ2V

�
: (A.9)

Note that the bγ given in (A.6) is a linear transformation of the y given by (A.9). Thus, we can again apply (A.2) which gives:

bγ � N
�h�

XT
t V

�1Xt

��1
XT
t V

�1
i
Xβ ;

σ2
h�
XT
t V

�1Xt

��1
XT
t V

�1
i
V
h
V�1Xt

�
XT
t V

�1Xt

��1
i �

� N
��

XT
t V

�1Xt

��1
XT
t V

�1Xt Tβ; σ2
�
XT
t V

�1Xt

��1
XT
t V

�1Xt

�
XT
t V

�1Xt

��1
�

� N
�
Tβ; σ2

�
XT
t V

�1Xt

��1
�
:

(A.10)

This distribution can also be written as the following equation which is referred to as the transformed encoding model (TEM):

bγ ¼Tβþ η; η � N
�
0; σ2U

�
: (A.11)

The U matrix is an important component of the transformed encoding model framework, because it accounts for the covariance induced into the
trial-wise parameter estimates by overlapping HRFs in rapid event-related designs. Being derived from the trial-wise design matrix (A.4), it simply
adjusts for the correlations caused by this estimation method in the trial-wise encoding model (A.11).

Parameter estimates for this model are again given by weighted least squares:

bβ ¼ �
TTU�1T

��1
TTU�1bγ : (A.12)

An equivalence of these parameter estimates is stated by the 2nd TEM theorem:

Theorem 2. The parameter estimates of the TEM

bβ ¼ �
TTU�1T

��1
TTU�1bγ (A.13)

are equivalent to the parameter estimates of the standard GLM

bβ ¼ �
XTV�1X

��1
XTV�1y : (A.14)

Proof: To see this, apply the inverse covariance matrix from (A.8), the transformation matrix definition in (A.5) and the trial-wise parameter es-
timates given by (A.6) to the condition-wise parameter estimates given by (A.12):
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bβ ¼ðA:12Þ�TT U�1 T
��1

TT U�1 bγ

¼ðA:8Þ�TT

�
XT
t V

�1Xt

�
T
��1

TT
�
XT
t V

�1Xt

�bγ
¼ðA:5Þ�XTV�1X

��1
TT XT

t V
�1Xt bγ

¼ðA:6Þ�XTV�1X
��1

TT XT
t V

�1Xt

h�
XT
t V

�1Xt

��1
XT
t V

�1y
i

¼ �
XTV�1X

��1
TT XT

t V
�1y

¼ðA:5Þ�XTV�1X
��1

XTV�1y

(A.15)

This demonstrates that parameter estimates from the trial-wise model (A.11) are equivalent to parameter estimates from the scan-wise model (A.3)
when the transformation matrix T is chosen in a way that maps from the trial-wise design matrix Xt to the standard design matrix X (see Fig. 1). This is
achieved by virtue of the trial-by-trial covariance matrix U that is derived from Xt to accommodate the correlation introduced into trial-wise parameter
estimates bγ by using HRFs overlapping in time (see Fig. 2).

B. Extension with trial-wise response variability

Note that, when proving Theorem 1, ywas assumed to be generated by the standard GLM (A.3) assuming equal trial-wise response amplitudes within
experimental conditions. In contrast, if y is assumed to be generated by the trial-wise GLM (A.4) allowing for variation of trial-wise response amplitudes
within experimental conditions, the distribution of bγ becomes more complicated, as asserted by the 3rd TEM theorem:

Theorem 3. When the true model is the trial-wise GLM

y¼Xtγþ εt; εt � N
�
0; σ2

t V
�

(B.1)

and the trial-wise response amplitudes γ follow the equation

γ¼Tβþ ξ; ξ � N
�
0; σ2

γ It
�
; (B.2)

then the trial-wise parameter estimates bγ from (A.6) are distributed as

bγ � N
�
Tβ; σ2

γ It þ σ2t U
�

(B.3)

where σ2γ is the trial-to-trial variance and U is given by (A.8).
Proof: When the trial-wise GLM is true, this means that response amplitudes differ across trials which is equivalent to the assumption that the trial-

to-trial variance σ2γ is not zero. Here, we make the assumption that the true trial-wise response amplitudes are drawn as i.i.d. samples with an
expectation that is a function of the trial matrix T and condition-wise activations β, as indicated by (B.2). Together with (B.1) and (A.5), this implies:

y¼XtTβ þ Xtξþ εt ¼ Xβ þ Xtξþ εt : (B.4)

Applying (A.2) to (B.4) and summing the covariances of the independent normal variates Xtξ and εt , it follows that (cf. Mumford et al., 2014, eq. 4):

y�N
�
Xβ; σ2V

�¼N
�
Xβ; σ2

γ XtXT
t þ σ2t V

�
: (B.5)

The bγ given in (A.6) is a linear transformation of the y given by (B.5). Thus, we can again apply (A.2) which gives (cf. Mumford et al., 2014, eq. 6):

bγ� N
���

XT
t V

�1Xt

��1
XT
t V

�1
i
Xβ;h�

XT
t V

�1Xt

��1
XT
t V

�1
i�
σ2
γ XtXT

t þ σ2
t V

�h
V�1Xt

�
XT
t V

�1Xt

��1
i�

� N
��

XT
t V

�1Xt

��1
XT
t V

�1Xt Tβ; σ2
γ X
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t V
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��1 þ σ2t
�
XT
t V

�1Xt

��1
�

� NðTβ; Σbγ Þ ¼ N
�
Tβ; σ2γ It þ σ2t U

�
:

(B.6)

Formally, with moving from (A.4) to (B.4), the first-level GLM changes from a fixed-effects model into a random-effects model, because γ becomes a
random variable by (B.2). This also allows for a new interpretation of (A.3), since its covariance σ2V is now replaced by two components, as given in
(B.5).

As becomes apparent from (B.6), the covariance of the trial-wise parameter estimates also consists of two components, one coming from the original
trial-to-trial variability assumed by (B.2) (the “natural” covariance) and the other due to the trial-wise designmatrix Xt viaU (the “induced” covariance).

If the trial-to-trial variance is assumed to be zero, i.e. σ2γ ¼ 0, the distribution becomes

bγ � N
�
Tβ; σ2

t U
�
; (B.7)

such that the model can be estimated via weighted least squares (WLS):

bβ ¼ �
TTU�1T

��1
TTU�1bγ : (B.8)
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On the other hand, if inter-stimulus-intervals are sufficiently long12 such that trial-wise HRF regressors are not correlated, then U ¼ ut It and the
distribution becomes

bγ � N
�
Tβ;

�
σ2
γ þ σ2

t ut
�
It
�
; (B.9)

such that the model can be easily estimated via ordinary least squares (OLS):

bβ ¼ðTTTÞ�1
TTbγ : (B.10)

However, in the presence of covariates (see Fig. 2B) or in rapid event-related designs (see Fig. 2A), this is practically never fullfilled so that U 6¼ ut It
and a variance components model (VCM; Searle et al., 1992) with known covariance components (It , U) and unknown variance factors (σ2

γ , σ
2
t ) has to be

estimated.
Let bΓ ¼ ½bγ1;…;bγv� be a t � vmatrix of horizontally concatenated trial responses over voxels with number of voxels v. Then, the VCM in (B.3) can be

inverted using SPM’s restricted maximum likelihood (ReML) algorithm (Friston et al., 2002a) which has to be implemented via the SPM command�bσ2
γ ; bσ2

t

�¼ spm reml
�
YY; X;

	
Q1; Q2


�
(B.11)

where YY ¼ ð1 =vÞ bΓbΓT
, X ¼ T, Q1 ¼ It and Q2 ¼ U. The function output can then be used to calculate ReML estimates as

bΣbγ ¼ bσ2
γ It þ bσ2

t Ubβ ¼
�
TT bΣbγ�1T

��1
TT bΣbγ�1bγ : (B.12)

In principle, ReML estimation can be performedwhen v ¼ 1, but estimates of variance components becomemore accurate with increasing number of
signals, i.e. voxels. In our simulation study, we have used (B.11) with signals to improve ITEM-based classification (see Appendix E). In our empirical
validation, we have found no improvement of ITEM-based reconstruction by ReML estimation which is why this extension is currently not implemented
in the released code (see Section 6).

C. Conversion from forward to backward model

Extending the univariate transformed encoding model (TEM) from (A.11) to several voxels, one arrives at the multivariate TEM (see Section 2.7)
which also forms the basis for motivating the inverse TEM (see Section 2.8). This way of proceeding from the MTEM to the ITEM is the subject of the 4th
TEM theorem:

Theorem 4. Consider the multivariate transformed encoding model

bΓ¼TBþH; H � MN
�
0;U;Σy

�
(C.1)

and let B W ¼ Ip. This implies the inverse transformed encoding model

T ¼ bΓW þN; N � MNð0;U;ΣxÞ (C.2)

with the covariance matrix Σx ¼ WTΣyW .
Proof: If there is a v� pmatrixW such that B W ¼ Ip, this extraction filterW is the right-inverse of the activation pattern B (cf. Haufe et al., 2014, eq.

A.1). Such a matrix exists, if the rows of B are linearly independent or, in other words, if all regressors in T have mutually dissociable activation patterns.
Then, right-multiplying the multivariate forward model with W yields

bΓW ¼TBW þHW ; HW � MN
�
0;U;WTΣyW

�
: (C.3)

Applying B W ¼ Ip and rearranging, we have

T ¼ bΓW �HW ; HW � MN
�
0;U;WTΣyW

�
: (C.4)

Substituting N ¼ HW and Σx ¼ WTΣyW , we get

T ¼ bΓW �N; N � MNð0;U;ΣxÞ : (C.5)

Because N is mean-free and a zero-mean (matrix-)normal distribution is symmetric around zero, �N has the same distribution as þ N, such that

T ¼ bΓW þN; N � MNð0;U;ΣxÞ : (C.6)
12 To be more precise, this requires that (i) inter-stimulus-intervals are sufficiently long (such that HRF regressors do not overlap), (ii) serial correlations are suf-
ficiently weak (such that non-overlapping HRF regressors are not mixed by V), (iii) there are no regressors of no interest (such that there are no trial-by-covariate
correlations) and (iv) each trial is convolved with the same HRF (such that U is not only a diagonal matrix, but a product of the identity matrix).
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Note that in step (C.3), because we are multiplying withW from the right and not from the left, Theorem 0 (see eq. (A.2)) does not affect the temporal
covariance U, but has to be applied to the spatial covariance Σy . In fact, because the dependent variable in (C.6) is T, this is not a spatial covariance
anymore, but rather a design covariance now, as it pertains to correlations between trial-wise experimental design variables.

This makes the newmodel somewhat problematic, because other than B in (C.1), the parameter matrixW enters in (C.2) in twoways: as the mapping
from bΓ to T and in the distribution of the noise matrix N. However, if the estimation ofW can be understood as separate column-by-column operations
on T, this problem can be ignored as Σx only applies to relations between columns of T. In fact, the estimates used for reconstruction in (14) are in some
sense optimal, as stated by the 5th TEM theorem:

Theorem 5. Given the inverse transformed encoding model

T ¼ bΓW þN; N � MNð0;U;ΣxÞ ; (C.7)

the weighted least squares solution for the weight matrix

bW ¼ �bΓT
U�1bΓ��1bΓT

U�1T (C.8)

is the best linear unbiased estimator (BLUE) of W.

Proof: The best linear unbiased estimator bθ of a certain quantity θ estimated from measured data y is 1) an estimator resulting from a linear
operation f ðyÞ, 2) whose expected value is equal to θ and 3) which has, among those satisfying 1) and 2), the minimum variance

1) First, cW is a linear estimator, because it is of the form ~W ¼ MbT where M is an arbitrary v� t matrix

2) Second, cW is an unbiased estimator, if 〈cW 〉 ¼ W . By applying (A.2) to (C.7), the distribution of ~W is

~W ¼MT � MNðMbΓW ;MUMT ;ΣxÞ (C.9)

which requires that MbΓ ¼ Iv. This is fulfilled by any matrix M ¼ ðbΓT
U�1bΓÞ�1bΓT

U�1 þ D where D is a v� t matrix which satisfies DbΓ ¼ 0

3) Third, the best linear unbiased estimator is the one with minimum variance, i.e. the one that minimizes the expected Frobenius norm

Varð ~WÞ¼ 〈tr½ð ~W �WÞT ð ~W �WÞ�〉 : (C.10)

Using the distribution of ~W from (C.9)

ð ~W �WÞ � MNð0;MUMT ;ΣxÞ (C.11)

and the Wishart distribution property

X�MNð0;U;VÞ ⇒ 〈XXT〉¼ trðVÞ U ; (C.12)

this variance can be evaluated as a function of M:

Var½ ~WðMÞ� ¼ trðΣxÞ trðMUMT Þ : (C.13)

As a function of D and using DbΓ ¼ 0, it becomes:

Var½ ~WðDÞ� ¼ trðΣxÞ tr
"��bΓT

U�1bΓ��1bΓT
U�1 þ D


U
��bΓT

U�1bΓ��1bΓT
U�1 þ D

T
#

¼ trðΣxÞ tr
��bΓT

U�1bΓ��1 bΓT
U�1UU�1bΓ �bΓT

U�1bΓ��1
þ�bΓT

U�1bΓ��1bΓT
U�1UDT þ DUU�1bΓ�bΓT

U�1bΓ��1
þ DUDT

¼ trðΣxÞ
�
tr
��bΓT

U�1bΓ��1

þ trðDUDT Þ

(C.14)

Since DUDT is a positive-semidefinite matrix, all its eigenvalues are non-negative. Because the trace of a square matrix is the sum of its eigenvalues,

the mimimum variance is achieved by D ¼ 0, thus producing cW as in (C.8).

D. Relation of ITEMs to inverted encoding models

Let bΓ be the t � vmatrix of voxel-and-trial-wise response amplitudes, T be the t � pmatrix of trial-wise experimental manipulations and B be the p� v
matrix of voxel-wise activation patterns. The following derivation requires that t > v > p, i.e. there are more trials than voxels and there are more voxels
than conditions to classify or variables to reconstruct.

Consider the multivariate transformed encoding model (MTEM) given by
16
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bΓ¼TBþ H : (D.1)
This model can be inverted with respect to the parameter matrix

bB¼ðTTTÞ�1
TT bΓ (D.2)

or, when treating B as a constant, with respect to the design matrix

bT ¼ bΓBT ðBBT Þ�1
: (D.3)

In an inverted encoding model (IEM) analysis, one applies step (D.2) to the training data and then applies step (D.3) to the test data which yields the
following reconstruction (e.g. Brouwer and Heeger, 2009, eq. 3; Saproo and Serences, 2014, eq. 3):

cT2 ¼ bΓ2

hbBT

1

�bB1bBT

1

��1i
: (D.4)

Now consider the inverse transformed encoding model (ITEM) given by

T ¼ bΓW þN; N � MNð0;U;ΣxÞ : (D.5)

This model can be estimated using weighted least squares

bW ¼ �bΓT
U�1bΓ��1bΓT

U�1T (D.6)

and the predicted, estimated or fitted signals are given by

bT ¼ bΓ bW : (D.7)

In an ITEM-based analysis, one applies step (D.6) to the training data and then applies step (D.7) to the test data which yields the following
reconstruction (see eq. (15)):

cT2 ¼ bΓ2 bW 1 ¼ bΓ2

h�bΓT

1U
�1
1
bΓ1

��1bΓT

1U
�1
1 T1

i
: (D.8)

When comparing (D.4) with (D.8), one can see that both of them right-multiply an operator matrix to the test data bΓ2, but these matrices are quite
different from each other: One difference is that the IEM operator results from inversion of an estimated model whereas the ITEM operator results from
estimation of an inverse model. Another and more important difference is that the IEM approach ignores covariance between trials (and covariance of
trials with other covariates) indicated by the matrix U in (D.6), simply because the parameter matrix is estimated via ordinary least squares in (D.2).

E. Simulation adapted from Mumford et al. (2012)

The generative model underlying Mumford et al.‘s simulations can be described as follows. First, in each session from each simulation run, t ¼ 60
trials are evenly distributed into 2 experimental conditions or trial types (tt)

tti ¼ 1 or tti ¼ 2 (E.1)

where tti ¼ 1 and tti ¼ 2 for 30 trials each.
Second, trial-wise activations are independently sampled from a normal distribution

γi �N
�
μtti ; σ

2
β

�
; i¼ 1;…; t (E.2)

where μ1 ¼ 5, μ2 ¼ 3 and σ2β ¼ 0:52.
Third, inter-stimulus-intervals are independently sampled from a uniform distribution

ti �Uðtmin; tmaxÞ; i¼ 1;…; t � 1 (E.3)

where tmin 2 f0;2; 4g and tmax ¼ tmin þ 4.
Based on the sampled inter-stimulus-intervals (ISIs), the canonical hemodynamic response function (cHRF) as well as stimulus duration tdur and

repetition time TR, a trial-wise design matrix Xt is generated which instantiates the sampled ISIs (see Fig. 1A as an example for tisi � Uð0;4Þ). Moreover,
a temporal correlation matrix V embodying an AR(1) process is generated with ρ ¼ 0:12 as

vij ¼ ρji�jj; i; j ¼ 1;…; n : (E.4)

Finally, fMRI signal noise is sampled with standard deviation σ 2 f0:8; 1:6;3g as

εt � N
�
0; σ2V

�
(E.5)

and the simulated data are generated according to the trial-wise GLM as
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y¼Xtγ þ εt : (E.6)
The combination of the 3 different options for tmin/tmax and the 3 different options for σ2 leads to 9 different simulation scenarios (see Figs. 4 and 5).
In each scenario, N ¼ 1;000 simulations with S ¼ 2 sessions per simulation were performed.

After data generation, trial-wise activations are estimated and trial types are decoded. In the “least squares, all” (LS-A) approach, bγ was obtained via
equation (4) and a logistic regression was trained on the estimates from one session to predict trial types in the other session and vice versa (Mumford
et al., 2012, App. A). Decoding accuracy was quantified as the proportion of trials correctly assigned to trial types 1 and 2 based on calculated log-odds in
the test session. In the “least squares, separate” (LS-S) approach, bγ was obtained using a separate design matrix for each trial, including one regressor for
this trial and one regressor for all other trials (Mumford et al., 2012, Fig. 1), and the same logistic regression was applied. For inverse transformed
encoding modelling (ITEM), bγ was obtained via equation (4) and trial types were decoded via equation (7), (14) and (15), with decoding accuracy being
assessed via equation (17).

The present simulation differs from Mumford et al.‘s in the following respects:

� In the original simulation, the simulated data were high-pass filtered although no temporal drifts were in the ground truth. In the present simulation,
data were not filtered.

� In the original simulation, the simulated data were not whitened although mild autocorrelation was induced into the ground truth (see Equation
(E.4)). In the present simulation, this was handled by using the V matrix in equation (4) and (7).

� These two differences may have contributed to the fact that decoding accuracies reported in the present simulation (see Fig. 5) were generally higher
than in the original simulation (Mumford et al., 2012, Fig. 3).

� The stimulus duration tdur and repetition time TR from the original simulation were not reported in the respective paper and could not be recalled by
the corresponding author, so tdur ¼ 2 s and TR ¼ 2 s were used.

� The simulation scenarios characterized by tmin ¼ 6 and tmax ¼ 10, i.e. with ISIs distributed as tisi � Uð6; 10Þ, were omitted from the simulation,
because no changes relative to tisi � Uð4; 8Þ could be observed.

� In the present simulation, the design matrix was identical for all simulation runs belonging to one simulation scenario (as opposed to tt and tisi being
resampled in every simulation run). This was necessary for applying the ReML approach within the ITEM framework (see Appendix B, esp. Equation
(B.11)) and is consistent with typical fMRI data analysis where the same design matrix (and covariance matrix) is used to analyze all voxels (which
correspond to simulation runs).

� This means that the present simulation provides no statistics across randomized designs within a scenario. Nonetheless, repeating the simulation
with different random designs gives qualitatively equivalent results.

� In the present simulation, N ¼ 1; 000 (instead of N ¼ 500) simulation runs were used for higher precision in estimating statistical power and
decoding accuracies.

� In the present simulation, S ¼ 2 (instead of S ¼ 3) sessions per simulation were used, because there was no need for the double cross-validation
procedure for hyper-parameter tuning required by some other estimation methods considered in the original simulation (Mumford et al., 2012,
Fig. 1).
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