

City Research Online

City, University of London Institutional Repository

Citation: Nykteri, G., Koukouvinis, P., Avila, S. R. G., Ohl, C-D. & Gavaises, M. (2020). A Σ - Υ two-fluid model with dynamic local topology detection: Application to high-speed droplet impact. Journal of Computational Physics, 408, 109225. doi: 10.1016/j.jcp.2019.109225

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/23546/

Link to published version: https://doi.org/10.1016/j.jcp.2019.109225

Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
 City Research Online:
 http://openaccess.city.ac.uk/
 publications@city.ac.uk

3

4 5

6

A Σ-Y two-fluid model with dynamic local topology detection: Application to high-speed droplet impact

Georgia Nykteri¹, Phoevos Koukouvinis¹, Silvestre Roberto Gonzalez Avila², Claus-Dieter Ohl², Manolis Gavaises¹

7 1. School of Mathematics, Computer Science & Engineering, Department of Mechanical Engineering & Aeronautics,

8 City University of London, Northampton Square EC1V OHB, United Kingdom

9 2. Institute of Physics, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39016 Magdeburg, Germany

10

11 Abstract

12 A numerical methodology resolving flow complexities arising from the coexistence of both multi-scale 13 processes and flow regimes is presented. The methodology employs the compressible Navier-Stokes 14 equations of two interpenetrating fluid media using the two-fluid formulation; this allows for 15 compressibility and slip velocity effects to be considered. On-the-fly criteria switching between a sharp 16 and a diffuse interface within the Eulerian-Eulerian framework along with dynamic interface 17 sharpening is developed, based on an advanced local flow topology detection algorithm. The sharp 18 interface regimes with dimensions larger than the grid size are resolved using the VOF method. For 19 the dispersed flow regime, the methodology incorporates an additional transport equation for the 20 surface-mass fraction (Σ -Y) for estimating the interface surface area between the two phases. To 21 depict the advantages of the proposed multiscale two-fluid approach, a high-speed water droplet 22 impact case has been examined and evaluated against new experimental data; these refer to a 23 millimetre size droplet impacting a solid dry smooth surface at velocity as high as 150m/s, which 24 corresponds to a Weber number of ~7.6×10⁵. Droplet splashing is followed by the formation of highly 25 dispersed secondary cloud of droplets, with sizes ranging from 10⁻⁵mm close to the wall to less than 26 1µm forming at the later stages of droplet fragmentation. Additionally, under the investigated impact 27 conditions, compressibility effects dominate the early stages of droplet splashing. A strong shock wave 28 forms and propagates inside the droplet, where transonic Mach numbers occur; local Mach numbers 29 up to 2.5 are observed for the expelled surrounding gas outside the droplet. Relative velocities 30 between the two fluids are also significant; local values on the tip of the injected water film up to 5 31 times higher than the initial impact velocity are observed. The proposed numerical approach is found 32 to capture relatively accurately the flow phenomena and provide additional information regarding the 33 produced flow structure dimensions, which is not available from the experiment.

Keywords: two-fluid model; compressible Navier-Stokes; Σ-Y formulation; supersonic flow; adaptive
 flow topology detection; droplet impact

36 1. Introduction

37 Multiscale complexities are realised in numerous multiphase flow fields of both industrial and more 38 theoretical interest due to the temporal and spatial geometric diversity of the flow patterns formed 39 by the interacting phases. The different flow structures are characterized by a broad range of scales 40 which as a result, impose the coexistence and dynamic transition between different flow regimes 41 (Kolev, 2007). Examples from the plethora of multidisciplinary applications include fuel spray injection 42 in internal combustion engines, droplet aerodynamic-induced breakup occurring in all type of liquid-43 fuel combustors (Theofanous, 2011), droplet splashing (Moreira, Moita and Panão, 2010), bubble 44 column bioreactors for chemical processes (Schügerl and Bellgardt, 2000) and even the Rayleigh-45 Taylor instability in a supernova explosion (Sharp, 1983). With regards to the two-phase flow of a liquid 46 and a gaseous phase, macroscales dominate the free surface regions, where the two phases are 47 separated with a well-defined interface in the presence of a segregated regime (Ishii and Hibiki, 2011), 48 while flow regions with an intense fluid dispersity due to the dominance of fluid microparticles 49 indicate a dispersed regime (Ishii and Hibiki, 2011). Adding to the complexities imposed by the scale 50 heterogeneity of the flow field, the simultaneous presence of different regimes comes with additional 51 limitations arising from the different physical factors influencing them; surface tension effects 52 dominate the segregated flow, while aerodynamic forces play the dominant role in the dispersed flow 53 regions. Thus, under the scope of a mathematical modelling, it remains challenging and 54 computationally demanding to deal with such multiscale flow systems and simultaneously account for 55 different scaled structures, governed by different physical scales that cannot be captured by the grid 56 resolution available.

57 Several numerical approaches have been proposed in the literature over the years, regarding the 58 modelling of multiphase flows in engineering applications. Among the most classic models is the 59 Discrete Droplet Method (DDM) (Dukowicz, 1980), in which the dispersed phase is considered as a 60 number of similar physical droplets within a stochastic Lagrangian framework; the conservation 61 equations are solved for the Eulerian continuous phase. Even though the DDM method has been 62 widely utilised in different applications (see selectively (Berlemont, Desjongueres and Gouesbet, 63 1990), (Boileau et al., 2008), (Gorokhovski and Saveliev, 2003)), it is generally valid only when the 64 liquid volume fraction is relatively small and the droplets are homogeneously distributed, introducing 65 remarkable limitations in many simulations. In the context of an exclusively Eulerian approach, the 66 homogeneous mixture model (Drew, 1983) is based on the assumption of a single velocity field for 67 both the dispersed and the continuous phases. Due to the simple mathematical formulation and the 68 computational feasibility in liquid fuel spray injection applications under realistic geometries and 69 operating conditions (Koukouvinis et al., 2016), (Pei et al., 2015), the homogeneous mixture model 70 has been implemented and extensively used in both open-source and commercial software. However, 71 the deficiencies regarding the two-phase mixture assumption, the interface diffusivity and the 72 absence of physical sub-grid scale models, often restrict the physical consistency of the obtained 73 results. Under a fully Eulerian formulation, the inhomogeneous mixture model (Ishii and Mishima, 74 1984), often referred to as the multifluid model, is another alternative approach in which each of the 75 interpenetrating phases is considered separately with a different set of conservation equations; 76 numerical modelling of the mass, momentum and energy exchange mechanisms is required for 77 simulating the interactions between them. Nevertheless, the Eulerian-Eulerian approach provides 78 more accurate results mainly under highly dispersed conditions away from regimes where a dispersed 79 phase cannot be distinguished (Rusche, 2002).

80 In an attempt to overcome the limitations of the previous models and improve the accuracy of 81 multiphase flow simulations, Direct Numerical Simulations (DNS), which correspond to a full-scale 82 analysis of the local variable topology without any assumptions or additional numerical models 83 introduced, are the optimum numerical tool. However, very few DNS or unresolved-DNS studies can 84 be found in the literature (selectively (Rossinelli et al., 2013), (Gorokhovski and Herrmann, 2008), 85 (Herrmann, 2010), (Shinjo and Umemura, 2010), (Shinjo and Umemura, 2011)), particularly for 86 industrial applications; this is due to the prohibitive computational cost with the current 87 computational capabilities. Focusing specifically on improving the representation of the liquid gas 88 interface, several interface capturing and interface tracking methods have been proposed with the 89 volume of fluid (VOF) method (Hirt and Nichols, 1981), (Scardovelli and Zaleski, 1999), the level-set 90 method (Osher and Fedkiw, 2006), (Sethian, 1996), the ghost-fluid method (Fedkiw et al., 1999) and 91 the front-tracking method (Unverdi and Tryggvason, 1992), (Tryggvason et al., 2002) to be commonly 92 used. A sharp interface approach can be applicable in segregated flows, where large-scale flow

features are dominant and the local interfacial structures can be well resolved under the requirement
 of a sufficiently fine computational mesh. Thus, an interface sharpening formulation in dispersed flow

95 regions with occurring micro- or even nanoparticles is not computationally feasible.

96 Recently, more advanced numerical models have been developed in order to overcome the 97 dependency on local flow regimes in specific multiphase flow applications. The ELSA model (Vallet, 98 Burluka and Borghi, 2001) is based on the principles of the Σ -Y model (Vallet and Borghi, 1999), which 99 was initially proposed for simulating the flame surface area evolution in combustion simulations 100 (Marble and Broadwell, 1977); it provides a dynamic transition between a Eulerian and a Lagrangian 101 framework in the primary and secondary liquid spray atomization regions, respectively. The additional 102 transport equation for the liquid gas interface surface area density (Σ) allows for representation of 103 unresolvable sub-grid scale structures with a viable computational cost, ought to the physical 104 modelling of the mechanisms responsible for the interface surface area density formation (Lebas et 105 al., 2009). Several variations and improvements of the original ELSA model have been proposed so far, 106 including vaporisation (Lebas et al., 2009) and slip-velocity effects (Andreini et al., 2016), as well as a 107 sharp interface formulation in the Eulerian part of an atomizing spray (Anez et al., 2018). A further 108 insight into the sub-grid scale phenomena can be gained with the implementation of a probability 109 density function (PDF) so as to obtain secondary droplet size distributions and other stochastic 110 properties of the dilute spray using the Method of Moments (Marchisio et al., 2003), (Marchisio et al., 111 2003). In one of the most recent formulations, a joint sub-grid scale volume surface PDF (Navarro-112 Martinez, 2014) is introduced for the liquid surface and volume dependence to predict in more detail 113 the interface surface area density production and destruction at sub-grid level within the ELSA model 114 (Vallet, Burluka and Borghi, 2001). With respect to commercial CFD codes, a complete atomization 115 model for liquid fuel spray simulations has been integrated in AVL FIRE® (AVL, 2013), using a fully 116 Eulerian formulation. The interacting phases are resolved with the incorporation of a specific number 117 of Eulerian droplet classes, which share the same properties (Vujanović et al., 2015). Moreover, in the 118 recent versions of OpenFOAM®, a hybrid fully Eulerian incompressible solver has been implemented, 119 namely multiphaseEulerFoam (Wardle and Weller, 2013) and used in multiscale vertical plunging jets 120 (Shonibare and Wardle, 2015), supporting a dynamic switching between a diffuse and a sharp 121 interface approach within the same multifluid framework. However, the advantages of the state-of-122 the-art numerical models over the more classic approaches are restricted to the needs of the specific 123 applications for which they were developed. Therefore, there is a gap in the literature for a holistic 124 numerical approach, which can be applicable in any flow field governed by a multiscale character and 125 complex physical phenomena, including high compressibility and slip velocity effects, regardless of the 126 limitations of local flow characteristics.

127 The above methodologies can be applied to the case of a droplet impacting on solid surfaces, which 128 represents a fundamental multiscale flow problem, that still attracts the scientific interest, due to its 129 relevance in many engineering applications, such as cooling, coating, inkjet printing, fuel injection in 130 internal combustion engines, as it is stated in the review works of (Kandlikar and Bapat, 2007), 131 (Moreira, Moita and Panão, 2010). The droplet deformation and potential fragmentation after impact 132 is very sensitive to several parameters regarding the impact and target conditions; namely the impact 133 velocity, the droplet initial diameter and physical properties, target wettability, roughness and surface 134 temperature, as it has been investigated in numerous experimental studies (see selectively (Pan, 135 Tseng and Wang, 2010), (Visser et al., 2012), (Antonini, Amirfazli and Marengo, 2012), (Roisman, 136 Lembach and Tropea, 2015), (Liang and Mudawar, 2017)). The post-impact outcomes are subject to 137 different regimes, ranging from spreading or even sticking on the surface to rebounding and splashing 138 and they have been comprehensively presented in the literature (Rein, 1993), (Yarin, 2006), (Josserand 139 and Thoroddsen, 2016) and illustrated on regime maps as a function of dimensionless impact

140 parameters (Ma et al., 2017), (Bertola, 2015). Several correlations to define the splashing regime 141 threshold have been established (Yarin and Weiss, 1995), (Range and Feuillebois, 1998), while the 142 most widely used criterion for the transition between the deposition and splashing regimes under 143 large impact velocities is the parameter of Mundo (Mundo, Sommerfeld and Tropea, 1995), which is 144 based on the Weber and Ohnesorge numbers. Additionally, conducted experimental studies have 145 been utilised for the development of empirical models, corresponding to the droplet post-impact 146 characteristics under the influence of different impact regimes, as it is thoroughly described in (Cossali, 147 Santini and Marengo, 2005), in order to provide numerical models for spray impingement simulations.

148 Even though the single droplet impact onto solid surfaces has been extensively investigated with 149 experimental studies since 1877 (Worthington, 1877), the mechanisms of the prompt and violent 150 splashing under high impact velocities, which correspond to the massive spatial dispersion of the 151 produced secondary droplets far away from the solid surface and the dominance of compressibility 152 phenomena with strong propagating shock waves inside the deforming droplet, have not been 153 precisely revealed yet. Due to the limitation of the high speeds and small structures involved, recent 154 advancements in imaging technologies (Thoroddsen, Etoh and Takehara, 2008) have contributed to 155 the performance of new experiments under higher impact velocities. In (Xu, Zhang and Nagel, 2005) 156 the corona splashing of an ethanol droplet on a dry and smooth surface with impact Weber number 157 equal to 1685 was examined; the created lamella reached a maximum spreading velocity of 30m/s. In 158 (Visser et al., 2015) experiments with water microdroplets have been conducted, impacting on both 159 hydrophilic and hydrophobic surfaces with velocities up to 50m/s and Weber numbers that do not 160 exceed the value of 1770. However, despite the high speed conditions, no splash but only spreading 161 of the droplet on the surface was observed, due to the influence of the surrounding air. One of the 162 few and most recent experiments in which a prompt splashing was illustrated is the work of 163 (Thoroddsen, Takehara and Etoh, 2012), in which a water droplet was subject to an impact with a 164 smooth and solid surface at Weber numbers up to 2480, followed by the creation of water 165 microdroplets with maximum spreading velocity of 100m/s. Finally, in (Field, Dear and Ogren, 1989) 166 an experiment of high speed droplet impact at 110m/s was performed, with emphasis put on 167 capturing the propagating shock wave inside the droplet at the early stages of the impact with the 168 target, without examining the later splashing effects. Thus, it is noticeable from the literature that 169 high-speed droplet impact experiments are limited; available studies do not exceed Weber number 170 values of 2500 and they mainly focus on the early stages of the droplet and wall interaction.

171 Regarding the numerical investigation of droplet impact cases, most recent studies examine the 172 impact on solid surfaces under the spreading (Malgarinos et al., 2014), (Visser et al., 2015) or the 173 corona splashing (Guo, Lian and Sussman, 2016), (Wu and Cao, 2017) regimes; they utilise an interface 174 capturing method for the conducted simulations. With the VOF method to be the most commonly 175 used approach, the droplet deformation and spreading on the target can be captured in detail with a 176 sufficiently fine mesh. However, in the case of higher impact velocities, which result to splashing and 177 fragmentation of the droplet into secondary microscale structures, the performed simulations are 178 restricted to the early stages of the phenomena since the later stages of droplet fragmentation are 179 dominated by computationally prohibitive scales for a VOF simulation. Thus, a more advanced 180 numerical modelling is required to deal simultaneously with the early and later stages of the splashing 181 droplet evolution. Moreover, other studies perform high-speed droplet impact simulations with the 182 focus on capturing the occurring compressibility phenomena (Haller et al., 2002), (Niu and Wang, 183 2016), (Kyriazis, Koukouvinis and Gavaises, 2018), (Wu, Xiang and Wang, 2018) namely the strong 184 shock waves inside the droplet and the produced cavitation regions, which are formed and dominate 185 during the early stages of the impact, excluding in this manner the secondary droplet dispersion from 186 the scope of their numerical investigation.

187 Following the limitations of the currently used numerical methodologies in multiscale flow 188 applications, the present study proposes a new numerical framework which has been developed in 189 OpenFOAM® utilising the two-fluid formulation (Ishii and Mishima, 1984); this allows for both 190 compressibility and slip velocity effects to be taken into account. The model solves for an additional 191 transport equation for the interface surface area density; the previously developed Σ -Y model (Vallet 192 and Borghi, 1999) for incompressible flows is coupled here for the first time with a compressible two-193 fluid framework. This provides significant information for the unresolved sub-grid scale phenomena, 194 which are related to the interface formation during the flow development. The Σ -Y two-fluid model is 195 also combined with a dynamic switching between the sharp and the diffuse interface approaches that 196 co-exist during the numerical solution at different parts of the computational domain. Thus, it is 197 possible to deal simultaneously with the segregated and the dispersed flow regions; the two-fluid 198 model formulation has been coupled with the VOF method to operate under the segregated flow 199 regime. The dynamic switching is performed with an advanced topology detection algorithm relative 200 to criteria available in the literature (Wardle and Weller, 2013), (Anez et al., 2018). However, apart 201 from the numerical limitations of the VOF and the diffuse interface approaches with respect to the 202 computational mesh which correspond to the commonly used switching criteria, the proposed flow 203 topology detection algorithm also evaluates the local flow characteristics. The developed 204 methodology is initially validated against a shock tube problem and a rising bubble. Following, 205 validation is performed against the challenging case of a high-speed droplet impact, using new 206 experimental data obtained specifically for this case. These refer to impact Weber number of the order 207 of 10⁵, which is much higher than the available up-to-date literature. Finally, emphasis from the 208 numerical perspective is given on providing an insight into the dispersed regions of the flow field at 209 the later stages of the droplet fragmentation evolution, where even the experimental investigation 210 cannot contribute with sufficient information due to limitations in diagnostic methods for high Mach 211 number flows consisting of a large number of droplets with sizes less than $1\mu m$.

212 2. Numerical Model

The Σ-Y two-fluid model with dynamic local topology detection has been implemented in OpenFOAM[®] with further developments on twoPhaseEulerFoam solver, an available compressible Eulerian pressure-based solver. In principle, the numerical model consists of the same set of governing equations for both multiscale formulations, namely the sharp and the diffuse interface approach, with specific source terms to be activated and deactivated depending on the currently operating formulation of the solver, as it is described in detail below.

219 2.1. Two-Fluid Model Governing Equations

In the context of a two-fluid approach (Ishii and Mishima, 1984), the volume averaged conservation
 equations governing the balance of mass, momentum and energy are solved separately for each phase
 k:

223
$$\frac{\partial}{\partial t}(a_k\rho_k) + \nabla \cdot (a_k\rho_k u_k) = 0$$
(1)

224
$$\frac{\partial}{\partial t}(a_k\rho_k u_k) + \nabla \cdot (a_k\rho_k u_k u_k) = -a_k\nabla p + \nabla \cdot \left(a_k\boldsymbol{\tau}_k^{eff}\right) + a_k\rho_k g + \sum_{\substack{n=1\\n\neq k}}^2 M_{kn}$$
(2)

225
$$\frac{\partial}{\partial t} [a_k \rho_k (e_k + k_k)] + \nabla \cdot [a_k \rho_k (e_k + k_k) u_k] = -\nabla \cdot \left(a_k \boldsymbol{q}_k^{eff}\right) - \left[\frac{\partial a_k}{\partial t} p + \nabla \cdot (a_k u_k p)\right]$$
226
$$+ a_k \rho_k g \cdot u_k + \sum_{\substack{n=1\\n \neq k}}^2 E_{kn} \tag{3}$$

227 The numerical method is based on a finite-volume framework, using an implicit pressure-based solver 228 for the governing equations of the two-fluid model. Numerical coupling for the independent systems 229 of conservation equations is achieved through additional source terms added to the Navier-Stokes 230 equations, which appear after the imposed averaging procedure. These source terms account for the 231 mass, momentum and energy exchange phenomena by providing suitable closure relations for the 232 macroscopic interfacial interactions occurring in a transient multiphase flow system. Specifically, the 233 interfacial momentum source term M_{kn} represents the forces acting on the dispersed phase and 234 depends on local topology, since different forces are dominant under different flow regimes. The 235 interfacial energy source term E_{kn} demonstrates the heat transfer between the phases that can be 236 modelled via a standard heat transfer law. The interfacial mass source term, which is responsible for 237 the mass transfer due to phase-change effects or other interfacial phenomena that result to 238 production or destruction of the interface, such as sub-grid scale turbulence and droplet interactions, 239 is not implemented in the continuity equations as expected. Instead, in the present work the mass 240 exchange contributions with an effect on interface formation are considered in the transport equation 241 for the liquid gas interface surface area density. Phase-change phenomena, like vaporisation and 242 cavitation, are neglected since they are negligible in the examined high-speed droplet impact case at 243 the early stages of impact, where temperature variation around the standard conditions is not 244 significant and local pressure drop is not sufficient to cause remarkable cavitation regions, as it has 245 been stated before in the literature for similar impact conditions (Niu and Wang, 2016), (Kyriazis, 246 Koukouvinis and Gavaises, 2018).

Viscous and turbulence effects are introduced in the model with the effective stress tensor τ^{eff} in the 247 momentum equations and the effective heat flux vector \mathbf{q}^{eff} in the energy equations; $\mathbf{\tau}^{\text{eff}}$ accounts for 248 the molecular viscosity and the Reynolds stress tensor, which based on Boussinesq's hypothesis 249 relates turbulent velocity fluctuations to the eddy viscosity (Boussinesq, 1877); **q**^{eff} corresponds to the 250 251 laminar and turbulent thermal diffusivity. For the turbulent components, appropriate models are 252 implemented within either a RANS or an LES framework in OpenFOAM®; LES modelling is used for the 253 turbulent flow cases in the present study with the implementation of the one-equation SGS model 254 (Lahey, 2005). Given the occurring Reynolds numbers, a dimensionless wall distance y^{+} with a value 255 lower 1 is observed; thus, the appropriate turbulent wall functions are implemented for capturing the 256 near-wall phenomena; the two-layer wall function is used which is a blending between the logarithmic 257 and the linear laws for the turbulent and viscous sublayers, respectively.

258 Finally, the thermodynamic closure of the system is achieved by solving independently an individual 259 equation of state for each phase from which the corresponding density field is obtained. In the 260 following simulations, the ideal gas equation of state is used for the gaseous phase and the stiffened 261 gas equation of state (lvings, Causon and Toro, 1998) has been implemented and used for the liquid 262 phase. The stiffened gas equation of state is basically the same as the ideal gas equation of state with 263 an additional pre-pressurization term to match the density and stiffness of the liquid. Despite its 264 deficiencies, it is commonly used in fundamental studies (Saurel, Petitpas and Abgrall, 2008) and highly 265 violent phenomena (Beig, Aboulhasanzadeh and Johnsen, 2018); moreover, it is known to be valid for 266 the pressure and temperature conditions examined here.

267 Σ-Y Model Transport Equations:

The liquid dispersion in a liquid and gaseous flow is simulated with the liquid phase volume fraction transport equation, which represents the volume proportion of liquid at a given volume in the computational domain. The transport equation for the liquid volume fraction in a compressible two-

271 phase flow is:

$$272 \quad \frac{\partial a_l}{\partial t} + \nabla \cdot (a_l u_m) + v_{topo} [\nabla \cdot (a_l (1 - a_l) u_c)] = a_l a_g \left(\frac{\psi_g}{\rho_g} - \frac{\psi_l}{\rho_l}\right) \frac{Dp}{Dt} + a_l \nabla \cdot u_m - (1 - v_{topo}) R_{a_l}$$
(4)

where the topological parameter ν_{topo} allows for distinguishing between the two different interface 273 274 approaches by taking either 0 or 1 value under a diffuse or sharp interface formulation respectively. 275 uc is the artificial compression velocity (Deshpande, Anumolu and Trujillo, 2012) that is introduced 276 along the interface as a countereffect of the inevitable numerical diffusion in order to maintain 277 interface sharpness in flow regions subject to a segregated regime. The turbulent liquid flux R_α (Vallet, 278 Burluka and Borghi, 2001) on the RHS of the transport equation accounts for the liquid dispersion 279 induced by turbulent velocity fluctuations, which is important in dispersed flows and smaller scales. 280 Additionally, since a compressible flow is involved, the gradients of liquid density that are related to 281 compressibility effects on the liquid volume fraction are taken into consideration (Jadidi et al., 2014).

The liquid gas interface surface area density, namely the surface area of the liquid gas interface per unit of volume, provides supplementary information regarding the interface formation without the assumption of a particular shape in the produced flow features. The transport equation for the liquid gas interface surface area density (Lebas *et al.*, 2009) is described as follows:

$$286 \quad \frac{\partial \Sigma'}{\partial t} + \nabla(\Sigma' u_m) = (1 - v_{topo}) \left[-R_{\Sigma} + C_{SGS} \frac{\Sigma}{\tau_{SGS}} \left(1 - \frac{\Sigma}{\Sigma_{SGS}^*} \right) \right]$$
(5)

287 The turbulent flux of the interface surface area density R_{Σ} , namely the first source term on the RHS of 288 the transport equation, represents the surface area diffusion due to turbulent velocity fluctuations. 289 The second source term on the RHS accounts for all physical mechanisms which fall below the 290 computational mesh resolution and are responsible for the surface area production and destruction. 291 In sharp interface regions with dominant large scale features the evolution of the interface surface 292 area is captured directly by the computational model and grid. On the contrary, in highly diluted and 293 dispersed flows, the interface production and destruction at sub-grid level affects significantly the 294 overall interface formation; thus, appropriate modelling is required to obtain this sub-grid scale 295 information. Under the assumption of a minimum interface surface area due to simultaneous 296 existence of liquid and gas on the interface (Chesnel et al., 2011), the total interface surface area 297 density is defined as:

$$298 \qquad \Sigma = \Sigma' + \Sigma_{min} \tag{6}$$

where Σ_{\min} is the minimum interface surface area density that can be found within a control volume for a given liquid volume fraction value with $0 < \alpha_l < 1$, which imposes the present of two phases and thus, the presence of an interface in the examined control volume. Based on empirical correlations obtained from CDNS studies and under the assumption of a spherical droplet inside the examined computational cell, Σ_{\min} is defined as $\Sigma_{min} = 2.4 \sqrt{a_l(1-a_l)} V_{sphere}^{-1/3}$ (Chesnel *et al.*, 2011).

304 2.2. Sharp Interface Approach

Interface sharpening is implemented in OpenFOAM[®] with the MULES algorithm (Deshpande, Anumolu and Trujillo, 2012), an iterative technique which guarantees boundness of the volume fraction and sharpness at the interface by modifying the advection term in the transport equation for the volume fraction. In this manner, an additional advection term is introduced which acts as an artificial compression in order to maintain sharpness without the need for interface reconstruction. This approach has been implemented within the proposed multiscale two-fluid framework and thus in the segregated flow regions the transport equation for the liquid volume fraction takes the final form of equation (4) with the topological parameter v_{topo} set to 1. Then, the artificial compression velocity u_c
 is given by the expression:

314
$$u_c = C_a |u_m| \frac{\nabla a_l}{|\nabla a_l|}$$
(7)

with C_{α} the interface compression parameter that takes values equal or greater than 1 so as to increase the imposed interface sharpness. In the following simulations the typical value of C_{α} =1 has been implemented so as to introduce interface sharpness with the MULES algorithm.

318 However, the introduction of an interface sharpening approach within a two-fluid framework requires 319 further modifications in the numerical model. In the limit of a sharp interface, the velocities on either 320 side of the interface must be equal in order to eliminate the relative velocity and meet the no-slip 321 interface condition. At the same time, a fundamental principle of the two-fluid model is the presence 322 of separate velocity fields for the two interpenetrating liquids. Several studies in the literature (Černe, 323 Petelin and Tiselj, 2001), (Wardle and Weller, 2013), (Strubelj and Tiselj, 2011) are dealing with the 324 coupling of a two-fluid model and an interface sharpening method by implementing an additional 325 source term in the momentum equations. This extra term practically imposes large interfacial drag 326 values; as a result, the relative velocity on the interface is eliminated and finally the coupling between 327 the two-fluid model and the sharp interface approach is stabilized. In the present model the source 328 term introduced in the momentum equations (2) has an expression similar to the aerodynamic drag 329 force (Strubelj and Tiselj, 2011) and enforces instantaneous equalizing of the velocities near the 330 resolved interface. The artificial drag force is defined as:

$$331 F_{Da} = v_{topo} F(u_r) \frac{t_r}{\Lambda t} (8)$$

332 where $F(u_r)$ is an expression proportional to the relative velocity u_r between the two phases and the density of the two-fluid mixture ρ_m with $F(u_r) = a_l(1-a_l)u_r\rho_m$ as proposed by (Strubelj and Tiselj, 333 334 2011), Δt the computational time step and τ_r a relaxation factor which needs to be calibrated 335 correspondingly, in order to meet the no-slip interface condition. As it is described in detail in 336 paragraph 3.2, the elimination of the interfacial relative velocity, which practically results to a stronger 337 coupling between the two-fluid model and the sharp interface approach, is achieved by maximizing 338 the relaxation factor τ_r . In an attempt to avoid any case-dependent calibration of τ_r , an on-the-fly 339 algorithm has been developed which gradually increases the value of τ_r starting from the value of 1, 340 until the point that the tangential component of the relative velocity on the interface reaches a 341 sufficiently low lower-bound close to zero; under this condition, the no-slip interface condition is 342 satisfied. In practice, a numerical criterion is examined on the interface, which requires for the 343 tangential component of the relative velocity to be only a small proportion of the total local relative 344 velocity, approaching a zero value.

345 Under a segregated flow regime, the surface tension plays a greater role against the aerodynamic 346 forces. Therefore, its contribution should be taken into consideration and a surface tension force is 347 added as a source term in the momentum equations (2). The surface tension force is defined by the 348 Continuum Surface Force (CSF) (Brackbill, Kothe and Zemach, 1992) as:

349
$$F_s = v_{topo} \sigma \kappa \frac{\nabla \rho}{[\rho] \langle \rho \rangle}$$
(9)

where σ is the surface tension coefficient, κ the interface curvature, [p] the density jump described as [p]= ρ_g - ρ_l and the density at the interface given by =½(ρ_l + ρ_g) in order to replace the local discontinuity with a smooth variation. Regarding the interface density, all sub-grid scale phenomena, which are modelled via source terms in equation (5), are out of the scope of a sharp interface approach and thus, the RHS of the transport equation is set to zero. Besides, a basic principle of the multiscale formulation is the accurate topological distinction between different flow regimes and the imposition of a sharp interface approach in regions where all present flow features can be resolved by the grid resolution used.

358 2.3. Diffuse Interface Approach

Under a dispersed flow regime with prevailing small dispersed structures, the aerodynamic forces and particularly the drag force acting on the dispersed phase is the dominant factor in interfacial momentum exchange between the liquid and gaseous phases. Different drag models are implemented depending on local flow conditions (Marschall, 2011), i.e. dispersed droplets in continuous gas or dispersed bubbles in continuous liquid. The drag force, which is introduced as the interfacial momentum source term in momentum equations (2), is described as:

365
$$F_D = (1 - v_{topo}) \frac{1}{2} C_D \rho_{continuous} u_r |u_r| A_{particle}$$
(10)

where p_{coninuous} is the density of the phase, which is considered continuous and A_{particle} is the projected
area of a typical dispersed particle. For the estimation of the drag coefficient C_D, there are many
empirical models in the literature (Schiller and Naumann, 1933), (Ishii and Zuber, 1979), (Tomiyama
and Shimada, 2001) depending on properties of the flow field and the discrete particle characteristics.
In the present work, where the focus is mainly on the motion of very small droplets in highly dispersed
flows with low or moderate Reynolds numbers, C_D is obtained from the model of Rodi and Fueyo
(Kelbaliyev, 2011):

$$373 \quad C_D = \begin{cases} \frac{16}{Re}, & Re < 1.5\\ \frac{14.9}{Re^{0.78}}, & 1.5 < Re \le 80\\ \frac{49.9}{Re} \left(1 - \frac{2.21}{Re^{0.5}}\right) + 1.17 \times 10^{-8} Re^{2.615}, & 80 < Re \le 1530\\ 2.61, & Re > 1530 \end{cases}$$
(11)

374 However, since many semi-empirical correlations are involved, the closure relations of the interfacial 375 source terms are usually the main cause for the uncertainties of the two-fluid model. In an attempt to 376 reduce the possible inaccuracies, in the proposed numerical model the interface surface area is 377 obtained from the transport equation for the interface surface area density, which is used to calculate 378 a characteristic length corresponding to the flow structures in each computational cell. More 379 specifically, the diameter of a spherical particle which has the same volume to surface area ratio as 380 the examined computational cell volume to the calculated interface surface area density, is used as 381 the equivalent dispersed particle diameter in drag force calculations. Then, the interface surface area 382 density diameter can be defined as follows (Chesnel et al., 2011):

$$d_{\Sigma} = \frac{6a_l(1-a_l)}{\Sigma}$$
(12)

384 Concerning the transport equation for the liquid volume fraction, the diffuse interface approach results to exclusion of the interface compression term; consideration of the sub-grid turbulent 385 386 fluctuations, as it appears in equation (4) with the topological parameter v_{topo} , is set to 0. The turbulent 387 liquid flux $R_{\alpha l}$ (Vallet, Burluka and Borghi, 2001) on the RHS of the transport equation represents 388 stochastic liquid dispersion phenomena due to the occurring turbulence. Previous studies on 389 modelling $R_{\alpha l}$ (Demoulin *et al.*, 2007), (Andreini *et al.*, 2016) depict a relation between the statistically 390 dependent turbulent velocity fluctuations and the averaged local relative velocity, which corresponds 391 to a correlation between slip and drift velocities of the mean flow field, as presented below:

392
$$R_{a_l} = -\nabla \cdot \left(a_l' \widetilde{\rho_l' u_m''} \right) = -\nabla \cdot \left[a_l (1 - a_l) \rho_l V_r \right] = -\nabla \cdot \left[a_l (1 - a_l) \rho_l (u_r - V_D) \right]$$
(13)

where V_r is the local relative velocity, u_r the slip velocity and V_D the drift velocity. The slip velocity contribution to the turbulent liquid flux can be calculated directly without the need of modelling due to the two-fluid formulation. As for the drift velocity effects, they are modelled via a first order closure (García-Oliver *et al.*, 2013), namely a classic gradient law using the turbulent properties of the liquid and gaseous mixture.

398 A significant advantage of the proposed multiscale two-fluid formulation is the coupling with the 399 transport equation for the interface surface area density. Especially within the framework of a diffuse 400 interface approach, where the interface is neither tracked nor resolved by the grid resolution, this 401 additional information provides an insight into the interface surface area density evolution in space 402 and time even in the sub-grid scales. Examining the source terms on the RHS of equation (5), which 403 are activated under the dispersed regime, the turbulent flux of the interface surface area density R_{Σ} 404 accounts for its dispersion due to turbulence. Analogous to the turbulent liquid flux $R_{\alpha l}$ on the RHS of 405 equation (4), R_{Σ} is a turbulent diffusion term. Then, with respect to the closure of the turbulent liquid 406 flux R_{α} in equation (13), the turbulent diffusion flux R_{Σ} is modelled accordingly (Andreini *et al.*, 2016):

407
$$R_{\Sigma} = -\nabla \cdot \left(\widetilde{\Sigma' u_m'} \right) = -\nabla \cdot \left[\Sigma a_l (1 - a_l) (u_r - V_D) \right]$$
(14)

408 The last term on the RHS of equation (5) represents the sub-grid scale mass exchange phenomena 409 between the liquid and gaseous phases, which have been neglected from the continuity equations (1) 410 and are related to the interface surface area density production and destruction. Different physical 411 mechanisms with an effect on interface formation are included and described by their characteristic 412 time scale τ_{SGS} , the critical interface surface area density Σ^*_{SGS} at an equilibrium state between 413 production and destruction of the interface and an adjustable constant coefficient C_{SGS} set to 1 in the 414 presented cases. In the proposed model, the contributions of turbulent flow stretching and wrinkling 415 particularly in dense flow regions, the droplet collision and coalescence effects, as well as the 416 secondary breakup effects of produced droplets are taken into account with the appropriate closure 417 relations (Lebas et al., 2009) and the implementation of their characteristic time scales τ_{SGS} , which 418 correspond to the Kolmogorov time scale, the collision time scale obtained from the particle collision 419 theory and the breakup time scale based on the droplet Weber number, respectively, to be 420 summarized in Table 1.

421 Table 1 Closure relations for the SGS terms in equation (5) related to interface surface area production and destruction.

SGS mechanism	$ au_{ m SGS}$	$\Sigma^*_{ m SGS}$
turbulence	$\frac{k}{\varepsilon}$	$rac{lpha_l(1-lpha_l) ho_m k_m}{\sigma W e^*_{turb}}$ with $W e^*_{turb} = 1$ at equilibrium
collision/coalescence	$\frac{1}{\Sigma\sqrt{\frac{2}{3}k_m}}$	$rac{6lpha_l(1-lpha_l)}{d^*_{\Sigma}}$ with $d^*_{\Sigma} = d_{\Sigma} rac{1+rac{We^N_{coll}}{6}}{1+rac{We^N_{coll}}{6}}$
		• critical We for coalescence: $We_{coll}^N = 12$
		• relevant We for collision: $We_{coll} = \frac{4\alpha_l(1-\alpha_l)\rho_l k_m}{\sigma\Sigma}$
secondary breakup	$f(We_{BU}) \frac{d_{\Sigma}}{u_r} \sqrt{\frac{\rho_l}{\rho_g}}$	$\frac{6\rho_g \mathrm{u}_r^2 \alpha_l (1-\alpha_l)}{\sigma W e_{BU}^*}$
	with $We_{BU} = \frac{6\rho_g u_r^2 \alpha_l (1-\alpha_l)}{\sigma \Sigma}$	with $We_{BU}^* = 12(1 + 1.0770h^{1.6}) \cong 12$ for Oh <<

423 2.4. Flow Topology Detection Algorithm

424 A key factor for the accurate functioning of the multiscale formulation is the implementation of a 425 stable topology detection methodology. The developed algorithm can detect instantaneous 426 topological changes in flow regimes, evaluate the most appropriate numerical treatment for local 427 interfaces and allow for a flexible two-way switching between sharp and diffuse interface approaches. 428 The switching criteria, described in detail below, are applied exclusively in interfacial flow regions as 429 in single phase regions a sharp interface is defined by default.

430 2.4.1. Switching criterion from sharp to diffuse interface approach

431 In any computational cell under the sharp interface approach, a diameter of an equivalent spherical432 structure based on the curvature of the interface can be calculated as (Shonibare and Wardle, 2015):

$$433 \qquad d_{curv} = \frac{2}{\kappa} \tag{15}$$

Assuming that at least 3 computational cells are needed for the grid resolution to capture any spherical
structure with sufficient sharpness (Shonibare and Wardle, 2015), the following geometric criterion
can be proposed as the limit for the sharp interface approach:

437
$$d_{curv} < 3 * max (d_{cell})$$
 (16)

438 Nevertheless, this geometric criterion can only be considered as an indication for a potential switch
439 to a diffuse interface approach. All computational cells which meet criterion (16) are subject to a
440 second stage of topological examination based on the condition of their neighbour cells. The three
441 different possibilities are as follows:

- A single cell which is supposed to follow a diffuse interface approach based on the geometric
 criterion but belongs to a strictly segregated region with sharp interfaces, will remain unaffected
 by changes, as shown in Figure 1(a).
- When a cell is part of a topologically unstable region, where all its neighbour cells previously respected a sharp interface approach but now some of them are also subject to changes, then as depicted in Figure 1(b), an expanded region is examined. Specifically, the surrounding area of the neighbour cells which are of particular interest is evaluated with regards to the occurring topological conditions. Finally, if the examined cell belongs to a highly transitional region, then the topological criterion is met and a change for the interface approach is applied.
- As illustrated in Figure 1(c), any cell that is in the border of transition between segregated and
 highly dispersed flow regimes will follow the tendency of local interface formation and will be
 subject to the diffuse interface approach in the following time step.
- 454 455

2.4.2. Switching criterion from diffuse to sharp interface approach

The reset of a sharp interface approach for a previously diffuse cell is performed after meeting a single geometric criterion, which correlates the interface surface area density diameter from equation (12) to the local computational mesh resolution. When the calculated diameter d_{Σ} is larger than the cell size, then the presumed dispersed flow features can no longer be treated as mesh unresolvable structures and a switch to a sharpened interface state is required.

461 $d_{\Sigma} > min(d_{cell})$

(17)

462 Since the overall concept of the diffuse interface approach is inextricably linked to sub-grid scale 463 structures, the described geometric criterion is sufficient for changing the interface formulation 464 without examining the surrounding flow conditions, as shown in Figure 1(d).

465

Figure 1 Local topology detection and distinction criteria between the segregated and the dispersed flow regimes in order to impose the appropriate interface approach in each time step. Application in the multiscale flow of a droplet impact on a rigid wall with indicative dominant scales under each flow regime.

469 **3. Results and Discussion**

470 3.1. Two-Phase Shock Tube Problem

471 Initially, the capability of the proposed compressible two-fluid model to capture accurately the wave 472 dynamics under high density ratios between the interacting phases is examined against the 473 benchmark case of a two-phase shock tube. A one-dimensional 1m long two-fluid shock tube without 474 mass transfer and initial discontinuity at x=0.75m, as studied by (Saurel, Petitpas and Abgrall, 2008), 475 is used for validation. The left part of the shock tube is occupied by liquid dodecane at high pressure 476 $p_i=10^8$ Pa and density $\rho_i=500$ kg/m³, while the right part is set at atmospheric conditions with the 477 occurring vapour dodecane at density $\rho_v=2kg/m^3$. The simulation is performed using the 478 twoPhaseEulerFoam solver in a uniform computational grid of 1000, 10000 and 20000 cells with 479 second order spatial accuracy and an adaptive time step to meet the convective Courant-Friedrichs-480 Lewy (CFL) number of 0.2. As a matter of consistency between the conducted simulation and the results of (Saurel, Petitpas and Abgrall, 2008) using the hyperbolic two-fluid model with two 481 temperature and entropy fields but a single pressure and velocity field, the stiffened gas equation of 482 483 state with the exact parameters utilised in (Saurel, Petitpas and Abgrall, 2008) has been implemented 484 in OpenFOAM[®] and applied for the thermodynamic closure. In Figure 2 the results obtained from the 485 proposed two-fluid approach and the model of (Saurel, Petitpas and Abgrall, 2008) are compared with 486 the exact solution at 473µs after the initial contact discontinuity was removed. The involved 487 convectional waves, namely the left-facing rarefaction wave propagating through the liquid dodecane, 488 the moving from left to right contact discontinuity and the right-facing shock wave propagating though 489 the vapour dodecane are accurately captured with the proposed two-fluid model. Moreover, the 490 increase in mesh resolution eliminates the numerical diffusion in the pressure and mixture velocity 491 fields and the illustrated results using the finest mesh converge to a satisfactory agreement with the 492 exact solution of the shock tube problem.

494 Figure 2 Dodecane liquid-vapour shock tube problem. Pressure, mixture velocity, mixture density and vapour dodecane
 495 mass fraction fields at 473µs after the initial contact discontinuity was removed. Comparisons between the exact solution
 496 and the numerical solutions of (Saurel, Petitpas and Abgrall, 2008) and the two-fluid model with different mesh resolutions.

497 3.2. Rising Bubble

493

498 The effective coupling between the two-fluid model and the implemented sharp interface method is 499 evaluated against the behaviour of a rising bubble in a quiescent viscous liquid under the influence of 500 the gravitational force. The dynamic deformation of a single rising bubble in a liquid column has been extensively examined with experimental studies (see selectively (Clift, Grace and Weber, 2005), 501 502 (Bhaga and Weber, 1981), (Tomiyama et al., 2002) among many others). Thus, the obtained bubble 503 shape diagram, also known as the Grace diagram (Clift, Grace and Weber, 2005), depicts 504 comprehensively a regime classification based on the final bubble shape and its terminal velocity as a 505 function of dimensionless numbers. From a numerical perspective, a rising bubble simulation is 506 commonly used to validate interfacial flow solvers, due to the high variety of interface deformation 507 patterns under slightly modified flow conditions. For this purpose, in the absence of any analytical 508 solution, (Hysing et al., 2009) performed a two-dimensional numerical benchmark configuration with 509 different codes and established a reference solution for two numerical cases of different density and 510 viscosity ratios between the gas bubble and the surrounding liquid. A numerical benchmark case of an 511 initially circular gas bubble rising in an initially stagnant liquid with liquid density 1000kg/m³, liquid 512 dynamic viscosity 10Pas and both density and viscosity ratios equal to 10, as proposed by (Hysing et al., 2009) is used here for validation of the developed method. The gravity in the system is g=-0.98 m/s² 513 514 and the surface tension between the two fluids is σ =24.5N/m. Under these conditions, which 515 correspond to intermediate Reynolds and Eotvos numbers with values 35 and 10, respectively, a 516 moderate shape deformation is expected with a final bubble unbroken ellipsoidal shape based on the 517 Grace diagram (Clift, Grace and Weber, 2005). The two-dimensional simulation was conducted with

the initial configuration and boundary conditions of Figure 3 in a uniform computational mesh of

519 320×640 cells.

520

521 Figure 3 Initial configuration and boundary conditions for a two-dimensional circular gas bubble rising in a liquid column.

522 The rising bubble shape is presented in Figure 4 in three successive time instances and under the effect 523 of different relaxation factor τ_r values, which appears in the artificial drag force of equation (8) as a 524 case-dependent parameter to regulate an efficient coupling between the two-fluid model and the 525 sharp interface approach. Focusing on the macroscopic evolution of the two-dimensional bubble 526 interface, it is observed that the circular bubble is gradually deformed to an ellipsoid shape, due to 527 the counter-action of gravitational and surface tension forces. Under the occurring ellipsoid regime 528 (Clift, Grace and Weber, 2005), surface tension is dominant and mainly responsible for the evolution 529 of a moderate bubble deformation without breakup of the interface. As it is also depicted in Figure 4, 530 a stronger coupling between the two-fluid model and the sharp interface approach is achieved by 531 maximizing the relaxation factor, corresponding to the elimination of the interfacial relative velocity. 532 This numerical trick practically overcomes the two-fluid principle of the mathematical model, which 533 imposes different velocity fields for each phase and approaches a standard sharp interface 534 formulation, in which the two phases share a single momentum equation and respect the no-slip 535 condition on the interface. Additionally, an increase of the relaxation factor, apart from the gradual 536 elimination of the gas liquid relative velocity on the interface, has an apparent effect on the 537 macroscopic bubble shape development.

538 However, the case-dependent calibration of τ_r has been avoided with the implementation of an on-539 the-fly algorithm which evaluates the interfacial region and gradually increases the value of τ_r , until 540 the point that the tangential component of the relative velocity on the interface reaches a defined 541 lower-bound close to zero. More specifically, in each iteration of the pressure correction the 542 computational cells in the interfacial regions are evaluated to meet the no-slip condition. The criterion 543 used relates the tangential component of the relative velocity on the interface with its total local value 544 and sets a sufficiently low lower-bound, as follows:

545
$$\left|u_{r,tangential}\right| < 10^{-5} |u_r|$$

546 In the case that the above condition is not satisfied, the τ_r value is increased starting from the value of 547 1 for each interfacial cell in each new time step of the pressure correction algorithm. In order to avoid 548 significant jumps on the drag force values and to improve the performance with reduction of the 549 computation cost, a smoothing of the τ_r values in the neighbour cells is performed. A demonstration 550 of the algorithm with different local values for τ_r with respect to the no-slip interface condition is 551 illustrated in Figure 5 for the rising bubble. The maximum values for τ_r are observed on the sides of

- the rising bubble, where also peaks in the relative velocity are observed due to the vertical motion of
- the bubble in the surrounding liquid.

Figure 4 Tangential relative velocity distribution on the interface of a rising bubble and gas liquid mixture velocity vectors at

556 successive times under the effect of different relaxation factors τ_r .

558 Figure 5 Relaxation factors τ_r calculated on the interface of the rising bubble with the on-the-fly algorithm for meeting the 559 no-slip interfacial condition.

In the scope of a rigorous quantitative analysis, the mass centre position, the mean rise velocity and 560 561 the deformed bubble circularity obtained with different relaxation factor values are examined in Figure 6. The computed benchmark quantities are compared with the reference solution of (Hysing et 562 563 al., 2009) and the results presented by (Štrubelj, Tiselj and Mavko, 2009), using a similar concept of 564 coupling the two-fluid model with an interface sharpening approach; in this case, a conservative level 565 set method has been utilised. Hereby, it is verified that a stronger coupling with the implementation 566 of maximum value for the relaxation factor ensures that the evolution of the rising bubble will reach 567 the expected behaviour. Specifically, the final position of the bubble centre of mass with the optimum relaxation factor τ_r =1000 is at 1.055m and differs 1.22% from (Štrubelj, Tiselj and Mavko, 2009) results. 568 Furthermore, the maximum rise velocity is observed at 0.92s and with a value of 0.239m/s deviates 569 570 by 2.58% from (Strubelj, Tiselj and Mavko, 2009) solution. Regarding the bubble shape deformation, 571 the minimum circularity value occurs at 1.98s, approximately 0.1s later than in (Strubeli, Tiselj and 572 Mavko, 2009) study; however, with respect to the tendency of circularity evolution in time the 573 quantitative error is 1.7%. Finally, the shape of the rising bubble at its final position at 3s, as calculated 574 with both the minimum and maximum relaxation factor values, shows the significant effect of an 575 effective coupling between the two-fluid model and the sharpened interface approach on the bubble 576 shape development with regards to the results in the literature (Hysing *et al.*, 2009), (Strubelj, Tiselj 577 and Mavko, 2009). The results obtained from the on-the-fly algorithm also meet a satisfactory 578 agreement with the reference solution and show that the use of the proposed automatic algorithm 579 for calibrating on-the-fly the relaxation factor τ_r is a good compromise to avoid any arbitrary case-580 dependent calibration and the significantly increased computational cost, when the artificial drag 581 force is maximised in the whole interfacial region with an effect on the converge of the pressure 582 correction algorithm.

Figure 6 Bubble benchmark quantities, i.e. mass centre position, rise velocity and circularity, evolution in time under the effect of different relaxation factors τ_r . Bubble shape at its final position at 3s computed with minimum and maximum τ_r values. Comparisons with the reference solution of (Hysing *et al.*, 2009) and the simulation results performed by (Štrubelj, Tiselj and Mavko, 2009).

588 3.3. High-Speed Droplet Impact

3.3.1. Experimental Set-up

590 In order to validate the multiscale approach developed, new experiments have been performed for a 591 droplet impact onto a solid surface. The experiments have been conducted at the University of 592 Magdeburg and concern a water droplet impact onto a high-speed moving target in three different 593 cases summarized in Table 2. The deionized water droplet is slightly deformed to an ellipsoid shape, 594 due to the acoustic field which keeps it levitated; the droplet is hit by the flat and smooth moving 595 target, propelled from an initial distance of 2.35m away from the levitating droplet. The experiments 596 were performed at room temperature 21°C and atmospheric pressure conditions; the surface tension 597 between the water droplet and the surrounding air is equal to 0.072N/m. The high-speed impact 598 velocities of 120, 150 and 200m/s correspond to significantly high Weber and Reynolds numbers both 599 of the order of 10⁵ to 10⁶, as calculated for the droplet properties at impact conditions. The rapid 600 droplet splashing and the subsequent violent fragmentation of the produced secondary structures 601 were visualized with the use of a high speed camera of 5 million frames per second and a spatial 602 resolution of 50µm per pixel; recording of video started when the moving target was approximately 603 3.17mm away from the droplet.

- 604
- 605
- 606

607 Table 2 Impact conditions for the examined experimental cases of high-speed droplet impact on a moving target.

case	d _x [mm]	d _y [mm]	u _{imp} [m/s]	target	We [-]	Re [-]	Oh [-]
1	2.017	1.55	120	teflon	3.6×10⁵	2.2×10 ⁵	7.6×10 ⁻³
2	2.65	2.2	150	teflon	7.6×10⁵	3.7×10 ⁵	5.5×10 ⁻³
3	2.14	1.796	200	acrylic	1.1×10 ⁶	4.2×10 ⁶	6.9×10 ⁻³

608

609 3.3.2. Simulation Results

610 For the numerical simulations of high-speed droplet fragmentation, the problem is set-up in a different 611 but corresponding manner with the water droplet moving with the impact velocity towards a rigid 612 wall target. The simulations were performed in a 3D wedge geometry with one cell thickness, using a 613 computational mesh of 412,500 cells; the details are described in Figure 7. For the purpose of a grid 614 dependency investigation regarding the multiscale model functionality, two additional computational 615 meshes have been used with twice coarser and twice finer resolution compared to the original mesh 616 in the region around the droplet and wall interaction, illustrated as zone I in Figure 7. At the initial 617 time step the moving droplet is set 0.9mm away from the rigid wall. Apart from the liquid phase 618 velocity field, which is initialized with the initial velocity of the moving droplet, the air velocity field is 619 also initialized from a developed field obtained with the impact velocity set as an inlet in the right 620 patch of the computational domain. Using this configuration, the effect of the moving target on the 621 surrounding air in the original experimental set-up is adequately represented in the conducted 622 simulations. The liquid gas interface surface area density is initialized on the droplet interface as the 623 surface area of an ellipsoid with the dimensions of the examined water droplet which corresponds to 624 a 5° wedge per unit of the local computational cell volume. On the wall, the no-slip boundary condition 625 is applied for the velocity fields, while a Neumann boundary condition is satisfied for the other 626 computed flow fields.

627 The spatial discretization used is based on second order linear discretization schemes, limited towards 628 a bounded first order upwind scheme in regions of rapidly changing gradients. Time stepping is 629 performed adaptively during the simulation, so as to respect the selected limit for the convective 630 Courant–Friedrichs–Lewy (CFL) condition of 0.4. Even though the turbulent state corresponds to fully 3D-developed phenomena, the evolution of the droplet fragmentation under the examined impact 631 632 conditions is found to be significantly quicker compared to the turbulence time scales. Therefore, the 633 configuration of Figure 7, which is utilised in the performed simulations, is an acceptable compromise 634 between the accuracy of the numerical model and a viable computational cost.

635 The simulations conducted were based on the assumption that the liquid phase is the only present 636 dispersed phase, interpenetrating and interacting with the continuous air phase. Under the high-637 speed impact conditions corresponding to very high Weber numbers ranging from 10⁵ to 10⁶, the 638 droplet impact on the wall and the imposed prompt splashing will evolve rapidly; thus, contact angle 639 boundary conditions are not explicitly defined and a zero gradient boundary condition for the water 640 volume fraction on the wall is imposed (Kyriazis, Koukouvinis and Gavaises, 2018). With regards to 641 phase-change phenomena, vaporisation plays a minor role at the early stages of impact, since the 642 temperature variations around the room conditions are not significant in comparison to the other 643 physical phenomena that take place (Kyriazis, Koukouvinis and Gavaises, 2018). Specifically, in the 644 present simulations the local water temperature does not increase more than 20K at the moment of 645 impact, when the strong shock wave is formed inside the droplet and the maximum local pressure of 646 about 10⁸Pa is observed. On the contrary, cavitation is produced inside the droplet due to the 647 influence of strong compressibility effects; however, in this particular case its influence is negligible

648 compared to other dominant physical phenomena and it is not taken into consideration in the 649 numerical modelling, as it is analysed in detail in the following paragraphs.

Figure 7 Initial configuration and information regarding the computational mesh for the simulation of high-speed droplet impact on a rigid wall.

The evolution of the droplet fragmentation at 2, 4 and 6µs after the impact on the target are presented 653 654 in Figures 8, 9 and 10, respectively, as it has been captured by the experimental study and the performed simulations with the proposed multiscale two-fluid model under the three different impact 655 656 conditions of Table 2. In the numerical investigation, the widespread and highly dispersed water cloud 657 produced after the prompt splashing of the droplet is subject to the diffuse interface formulation of 658 the multiscale two-fluid model, shown as a grey iso-surface in the results. Therefore, the dominant 659 sub-grid scale structures are modelled accordingly within the dispersed flow regime formulation of 660 the numerical model and the interface surface area density diameters are calculated and used in the 661 drag force calculations. Despite the vast spectrum of scales involved, the macroscopic characteristics of the successive stages of the droplet fragmentation are adequately predicted by the performed 662 simulations, with the corresponding results to depict the radially expanding water cloud. In cases 1 663 664 and 2, which correspond to Weber numbers at impact conditions of the order of 10^5 , a similar 665 evolution of the phenomenon is observed with an expected more rapid water dispersion under the 666 impact velocity of 150m/s. On the contrary, in case 3 the increase in the Weber number of the order 667 of 10⁶ results to a significantly violent droplet splashing with a widespread water cloud corona to be captured both by the experimental results and the simulation. However, the water microjet injected 668 from the centre of the deforming droplet surface opposite to the droplet motion, which is depicted in 669 670 the experimental captures as an effect of the secondary cavitation formation inside the droplet, is a low intensity phenomenon compared to the dominant and rapid water dispersion. 671

Figure 8 Droplet fragmentation 2μs after impact on the target in cases 1, 2, 3. Comparison between the experimental results
 captured 32° from the perpendicular view and the 3D reconstructed flow fields from the simulation. Blue iso-surface
 represents the sharp interface regions and grey iso-surface the diffuse interface regions calculated with the multiscale two fluid approach.

Figure 9 Droplet fragmentation 4μs after impact on the target in cases 1, 2, 3. Comparison between the experimental results
 captured 32° from the perpendicular view and the 3D reconstructed flow fields from the simulation. Blue iso-surface

680 represents the sharp interface regions and grey iso-surface the diffuse interface regions calculated with the multiscale two-681 fluid approach.

682

Figure 10 Droplet fragmentation 6μs after impact on the target in cases 1, 2, 3. Comparison between the experimental results
 captured 32° from the perpendicular view and the 3D reconstructed flow fields from the simulation. Blue iso-surface
 represents the sharp interface regions and grey iso-surface the diffuse interface regions calculated with the multiscale two fluid approach.

687 The evolution of the droplet impact with the target under the impact velocity of 150m/s (case 2), the 688 prompt splashing at the early stages of impact along with the severe fragmentation and water 689 dispersion at later stages are presented in Figures 11 and 12. In successive time instances, the 690 experimental video snapshots are compared with the 3D reconstructed water volume fraction iso-691 surface at 10⁻³ obtained from the performed simulations with the proposed multiscale two-fluid model 692 and the compressibleInterFoam solver, which is based on a VOF method commonly used for this type of problems. The iso-line of the water volume fraction at a value of 10^{-5} , as calculated with the 693 694 multiscale two-fluid approach, is plotted against the experimental results. Moreover, the detected 695 dispersed flow regions using 3 different computational grids, namely the original grid of Figure 7 along 696 with two new grids with twice coarser and twice finer resolution in region I, respectively, are 697 presented to depict the dependency of the interfacial approaches capabilities and the performed 698 topological investigation on the local mesh resolution.

699 As it can be observed in Figure 11, at the moment of impact the flow field is dominated by a segregated 700 flow regime with perfectly separated two phases as defined by the droplet interface. Thus, up to this 701 point, the sharp interface approach is applied exclusively in the whole flow field; good results are 702 obtained with respect to the initial droplet shape. At that time, the occurring impact conditions 703 correspond to a very high Weber number of 7.6×10⁵ and thus, a prompt splashing is imposed driven 704 by the dominant droplet inertia. Subsequently, the violent impact conditions do not allow for a liquid 705 lamella to be formed, as depicted in the experimental results; instead, the production of a dense cloud 706 of secondary droplets and ligaments is observed, which is moving radially ahead of the deformed

707 droplet. At these stages, which correspond to times 1-3µs in Figure 11, the topological algorithm 708 detects the first transitions in the dispersed flow regime; the cloud of the produced fluid structures 709 after the droplet and wall impact is subject to a diffuse interface approach, since it consists of 710 structures smaller than 10^{-5} m that cannot be resolved by the local mesh resolution. On the contrary, 711 the simulation with the VOF method applied in the whole flow field captures accurately the tendency 712 of a radial water expansion. However, the overall sharp interface formulation leads to the prediction 713 of an unphysical thin water film after the impact, as in the case of a well-formed lamella under 714 moderate impact conditions, instead of the experimentally observed wide cloud of secondary 715 droplets. This predicted behaviour corresponds to the deficiency of the VOF method to resolve small 716 fluid structures in the sub-grid scale limit. As a result, the computational cells with relatively small 717 volume fractions, that imply the existence of microscale secondary droplets, are underestimated and 718 therefore, a thin water film is calculated in the regions of a high water volume fraction concentration. 719 It is interesting to notice that at the examined early stages of impact, the multiscale two-fluid model 720 with a finer mesh can predict more accurately the extent of the water spatial dispersion compared to 721 the original or an even coarser mesh, as it is illustrated in Figure 11 at 2 and 3µs. Given the fact that 722 large-scale structures dominate the dispersed regions at the first time instances after impact, it is 723 expected that a finer mesh can obtain most of the flow field information with the multiscale model to 724 operate under a diffuse interface approach. Nevertheless, this is not the case for the later stages of 725 impact, in which the microscale droplets overtake the larger initially produced droplets of the dense 726 water cloud, as it will be discussed afterwards.

727 Later stages of the droplet impact are depicted in Figure 12, where the flow is highly dispersed with 728 an extended cloud of secondary features expanding radially away from the target. A widespread 729 dispersed region in the form of an expanding corona is also captured by the multiscale two-fluid 730 model; however, the calculated radial water dispersion is limited compared to the experimental 731 observation. More specifically, after 4µs in regions of apparent water concentration in the experiment, 732 approximately 1 mm away from the target, there is not any significant amount of water volume 733 fraction present in the simulation. Moreover, as shown in Figures 8, 9, 10, the smaller structures are 734 underestimated at the outer sides of the expanding cloud and the mixing of the injected water with 735 the surrounding air is limited. Due to the supersonic conditions of the expelled surrounding air at the 736 later stages of impact and the significant increase in local air temperature, vaporisation may be the 737 key mechanism of water dispersion at the borders of the expanding water cloud; thus, the 738 consideration of vaporisation effects should lead to an improved and more realistic capturing of the 739 extended water dispersion at the later stages of impact. However, as it is comprehensively presented 740 in Figure 13, the vertical expansion of both the attached on wall water film and the dispersed 741 secondary droplets cloud is well predicted with the performed simulation under the existing highly 742 multiscale conditions in the course of the impact and meets satisfactorily the experimental 743 measurements for the lower values of the water volume fraction. Therefore, the obtained results 744 provide a relatively accurate insight into the presence of an extended and chaotic water dispersion in 745 contrast to the VOF method results, which are restricted to a non-realistic water film spreading with 746 only a few droplets being formed as a numerical result of the strict sharp interface implementation. 747 Within the scope of a grid dependency analysis, it is noticeable in Figure 12 that for the occurring 748 dominant dispersed flow regime, a coarser computational mesh along with the multiscale approach 749 can provide locally a more extended radial water dispersion region. Some of the original 750 computational cells with negligible water volume fraction are now incorporated to neighbour cells 751 and therefore, are subject to a diffuse interface regime for the modelling of local sub-grid scale 752 secondary droplets with dimensions even less than $1\mu m$. This behaviour comes in contrast to the 753 results obtained with the multiscale approach and a finer mesh, which predict a limited radial water

spreading and approach the results of the pure VOF simulation. Consequently, the application of the multiscale two-fluid model in flow regions with multiple dynamic transitions between the segregated and dispersed regimes using a locally uniform computational grid, as performed in the conducted simulations, requires a compromise regarding the selected grid resolution. More specifically, given the numerical limitations of the VOF and the diffuse interface methods with respect to the computational grid and the switching criteria of the flow topology detection algorithm, an intermediate grid resolution is defined as optimum.

761

Figure 11 Early stages of droplet impact with the target under the impact velocity of 150m/s (case 2). Comparisons between the experimental results from side view and the 3D reconstructed water volume fraction iso-surface at 10⁻³ obtained with the multiscale two-fluid model and the VOF method. The diffuse interface regions, calculated with the multiscale two-fluid model using 3 different mesh resolutions, are compared in the last column. Yellow iso-line represents the water volume fraction at 10⁻⁵, red isoline the diffuse interface regions using a coarse mesh and green isoline the diffuse interface region using a fine mesh.

Figure 12 Later stages of droplet impact with the target and intense water dispersion under the impact velocity of 150m/s (case 2). Comparisons between the experimental results from side view and the 3D reconstructed water volume fraction isosurface at 10⁻³ obtained with the multiscale two-fluid model and the VOF method. The diffuse interface regions, calculated with the multiscale two-fluid model using 3 different mesh resolutions, are compared in the last column. Yellow iso-line represents the water volume fraction at 10⁻⁵, red isoline the diffuse interface regions using a coarse mesh and green isoline the diffuse interface region using a fine mesh.

775

Figure 13 Droplet fragmentation under the impact velocity of 150m/s (case 2). Comparisons between the experimental and
 the numerical results with different water volume fraction values for the vertical expansion of the attached on wall water
 film and the secondary droplets cloud.

779 The high-speed droplet impact is governed by significant compressibility effects inside the droplet at 780 the early stages of the interaction with the rigid wall. After the moment that the droplet reaches the 781 wall, a strong shock wave is formed inside the droplet with local pressure up to 1200bar, as depicted 782 in Figure 14 at 0.4 µs. The shock wave is propagating and moving outwards, opposite to the droplet 783 motion, while it gradually overtakes the contact line between the target and the deforming droplet. 784 At 1.7µs it is observed that the shock wave is reflected normal to the droplet outer free surface and an expansion wave adjacent to the free surface is created (Haller et al., 2002), (Wu, Xiang and Wang, 785 786 2018). Afterwards, the shock wave propagation continues with the formation of an increasing low 787 pressure region inside the droplet, until the time it reaches the boundary of the deforming droplet 788 interface and it is reflected backwards at 2.7 µs. This shock wave reflection results to the creation of 789 strong rarefaction waves (Haller et al., 2002), (Wu, Xiang and Wang, 2018) at 2.9µs, which could result 790 to extended cavitation regions inside the droplet. However, it has been shown in previous numerical 791 studies (Niu and Wang, 2016), (Kyriazis, Koukouvinis and Gavaises, 2018), (Wu, Xiang and Wang, 2018) 792 that under similar conditions the produced vapour volume fraction after the shock wave reflection 793 does not exceed the value of 0.03, defining a non-significant cavitation effect. Since the droplet impact 794 evolution is not driven by cavitation under the examined impact conditions, a model for cavitation has 795 not been implemented in the developed multiscale framework; instead, a very small volume fraction 796 of air of order of 10⁻⁶, which corresponds to the nucleation volume fraction, is introduced in the initial 797 droplet volume fraction. Under this assumption, the small gaseous volumes inside the droplet will 798 expand after the significant pressure drop, leading to volumes equal to those that would occur with 799 cavitation. The pressure evolution inside the droplet will continue with the gradual elimination of the 800 created regions of small gaseous volumes, as long as the droplet widespread splashing is dominating 801 the surrounding flow field.

802

Figure 14 Time evolution of the pressure field inside the droplet, the shock wave formation and propagation along with the
 density gradient and the Mach number for the surrounding air after the droplet impacting the rigid target with a velocity of
 150m/s (case 2).

806 After the droplet impact and along with the beginning of a strong shock wave propagation inside the 807 droplet, the development of a high speed jetting is observed in Figure 15. The injected water film, 808 which just after the droplet impact at 1μ s has a velocity 5 times larger than the impact velocity, is 809 responsible for the rapid lateral and radial water dispersion. This observation also meets the 810 experimental measurements of a maximum liquid film expanding velocity at around 720m/s. At the 811 same time, a supersonic flow with strong propagating shock waves is observed in the surrounding air, 812 due to the high speed dispersion of the produced water cloud. As illustrated in Figure 14, the formation and high-speed injection of the water film at the early stages of the droplet impact, 813 814 corresponds to a violent displacement of the surrounding air, resulting to a supersonic flow for the air 815 with local Mach numbers up to 2.5. Subsequently, during the droplet lateral spreading on the wall 816 target, the intensity of the initial jetting and the propagating shock waves in the air is reduced; 817 however, the velocities of the water phase remain significant with peaks on the dispersed flow regions 818 where the secondary droplets cloud is penetrating the surrounding air. An examination of the 819 temporal and spatial evolution of the relative velocities between the droplet and the surrounding air 820 in Figure 15 comes to the same conclusion that the highest water velocities occur at the borders of 821 the expanding water cloud. Thus, in highly dispersed flow regions, where practically very small 822 droplets are present, the consideration of aerodynamic and slip velocity effects increases the physical 823 coherency of the numerical model.

825

Figure 15 Time evolution of the water velocity field inside the droplet and the relative velocity field in the surrounding areaafter the droplet impacting the rigid target with a velocity of 150m/s (case 2).

828 In Figure 16 the temporal evolution of the calculated interface surface area under different impact 829 velocities is presented, as it is obtained from the transport equation for the liquid gas interface surface 830 area density (5). A similar pattern regarding the interface surface area production over time is observed irrespectively of the impact conditions. More specifically, after the droplet impact the 831 832 interface surface area is gradually increasing with the same rate till approximately point A. These time instances, as shown in Figure 17, correspond to the early stages of splashing, where the water film 833 834 lateral spreading on the wall target dominates the formation and expansion of the dispersed water 835 cloud. Since the surface area of the undeformed droplet interface remains unchanged, the maximum 836 values of the interface surface area are observed on the dispersed regions away from the wall target 837 where sub-grid scale turbulent mixing and secondary droplet coalescence and breakup have a crucial 838 effect on interface production, as described in equation (5). After that and until approximately point 839 B in Figure 16, the interface surface area performs a rapid increase which is more intense with an 840 increase on the impact velocity and is related to later stages of the fragmentation evolution with the 841 water dispersion becoming the main effect on interface production. After point B and until the end of 842 the observation of the phenomenon, an almost smooth increase in interface surface area is shown 843 due to the penetration of the already produced secondary droplets cloud in the surrounding area.

846Figure 16 Time evolution of the interface surface area for the developed water cloud and the secondary flow features after847the droplet impact on wall with respect to the initial ellipsoid droplet surface area S_0 under different impact velocities. As848time zero is set the moment of impact onto the rigid wall for the droplet with impact velocity 150m/s.

In Figure 18, two characteristic time instances at the earlier and later stages of the droplet 853 854 fragmentation under the impact velocity of 150m/s are selected to depict the functionality of the flow 855 topology detection algorithm. On the left side of the axis of symmetry are illustrated the calculated 856 diameters based on the interface curvature d_{curv}, which are used for the first geometric criterion of 857 equation (16) in the sharp interface regions. As shown, the local interface curvature can obtain 858 relatively large values which based on equation (15) are correlated with small fluid structures, 859 reaching the limit of the local mesh resolution and the accuracy capabilities of the sharp interface 860 approach. However, only the geometric criterion is not sufficient to keep a physical consistency 861 regarding the areas of small d_{curv} values, with such small fluid structures to be detected even in areas 862 inside the deforming droplet core where the presence of small droplets has no physical interpretation. 863 Thus, the additional topological criteria are the key factor in introducing a switching between sharp 864 and diffuse interface approaches with respect to the local flow development and the physical 865 transition from a segregated to a dispersed flow regime. The computational cells which satisfy both the geometric and the topological criteria and are subject to a diffuse interface formulation in the 866 867 following time step are marked in green. As expected, these regions are detected at the borders of 868 the already diffuse interface regions within the dispersed water cloud and they concern relatively large 869 flow structures, which were previously resolvable by the mesh resolution with local minimum cell sizes 870 of 10⁻⁵m. On the right side of figure 18 the calculated interface surface area density diameters d_{Σ} for 871 the currently diffuse interface region within the highly dispersed secondary droplet cloud are 872 illustrated. As shown, the local diameters used for the local drag force calculation range from the 873 spectrum of microscales to 10^{-5} m, which is the local minimum cell size and correspondingly the limit 874 for a sub-grid scale analysis. In both time instances there are detected a few computational cells in 875 the borders between sharp and diffuse interface approach regions with d_{Σ} that exceed the local cell 876 dimensions; these computational cells are subject to a sharp interface approach based on the 877 geometric criterion of equation (17).

Figure 18 Droplet fragmentation with impact velocity 150m/s (case 2). Blue iso-surface represents the sharp interface regions
 and grey iso-surface the diffuse interface regions calculated with the multiscale two-fluid approach. (on the left) The
 calculated diameters based on the interface curvature. In green are marked the cells switching from sharp to diffuse interface
 approach. (on the right) The calculated interface surface area density diameters. In green are marked the cells switching
 from diffuse to sharp interface approach.

884 Considerable emphasis has been put on correlating the geometric switching criteria of the flow 885 topology detection algorithm, which in essence act as an indication for the numerical capabilities of 886 the sharp and diffuse interface approaches, with the physically observed transition between different 887 flow regimes during the flow development. Therefore, in Figure 19 are presented the Weber and 888 Reynolds numbers for the dispersed secondary droplets after impact, which are subject to an 889 aerodynamic breakup induced by the relative velocity between the injected droplet with calculated 890 diameter d_{Σ} and the expelled surrounding air. As illustrated for successive time instances, the flow 891 development after impact is restricted by the limit of Ohnesorge numbers less than 0.1, which 892 indicates that the produced secondary droplets breakup is mainly controlled by the droplet Weber 893 number (Guildenbecher, Lopez-Rivera and Sojka, 2009). Additionally, only inside the diffuse interface 894 region are observed Weber numbers with values larger than 0.5, which correspond to the beginning 895 of the droplets oscillation and deformation (Guildenbecher, Lopez-Rivera and Sojka, 2009), confirming 896 that the flow topology detection predicts accurately the dispersed flow region. Within the diffuse 897 interface region and closer to the edges of the radially expanding cloud of secondary droplets are 898 detected regions with increasing Weber number and values larger than 10, which is set as a limit for 899 the droplet aerodynamic breakup (Guildenbecher, Lopez-Rivera and Sojka, 2009).

901 Figure 19 Droplet fragmentation with impact velocity 150m/s (case 2). Blue iso-surface represents the sharp interface regions

- 902 and grey iso-surface the diffuse interface regions calculated with the multiscale two-fluid approach. (on the left) The Weber 903 number field for the aerodynamic breakup of the produced secondary droplets after impact. Black iso-line corresponds to
- 903 number field for the aerodynamic breakup of the produced secondary droplets after impact. Black iso-line corresponds to 904 Weber number value of 0.5. (on the right) The Reynolds number field for the aerodynamic breakup of the produced

905 secondary droplets after impact. Red iso-line corresponds to Ohnesorge number value of 0.1.

906 **4. Conclusion**

907 A compressible Σ -Y two-fluid model with dynamic interface sharpening based on local topological 908 criteria has been developed and implemented in OpenFOAM [®]. The aim of the present study was to 909 simulate highly compressible flows with significant slip velocity effects and multiscale complexities 910 using a uniform solver, which detects dynamically the different coexisting flow regimes and operates 911 under the most appropriate formulation. The numerically challenging coupling of a two-fluid model 912 with an interface sharpening method has been examined and validated against a benchmark case of 913 a shock tube and a rising bubble, obtaining useful results on how eliminating the relative velocity at 914 the interfacial region to achieve an effective coupling. The overall model functionality has been 915 thoroughly examined and applied in the highly compressible and multiscale case of a high-speed 916 droplet impact; new experiments have been performed for a water droplet splashing on a surface at 917 Weber number $\sim 10^5$ that have not been previously reported in the literature. The obtained results 918 have shown a good agreement with the conducted experimental study regarding the capturing of the 919 macroscopic characteristics of droplet fragmentation. Additionally, the proposed model has provided 920 significant advantages particularly under a dispersed flow regime which dominates the later stages of 921 droplet splashing in comparison to numerical methods imposing a sharpened interface and thus 922 excluding all the relevant sub-grid scale phenomena. The developed multiscale two-fluid methodology 923 contributes with significant additional information regarding the physical phenomenon evolution, like 924 the relative velocity field, the shock waves development and the interface surface area evolution, 925 which have contributed to a better understanding and more accurate modelling of complex multiscale

926 flow fields.

927 Acknowledgements

928 The research leading to these results has received funding from the European Union's Horizon 2020

929 Research and Innovation programme under the Marie Skłodowska-Curie Grant Agreement No 675676.

930 Nomenclature

931	α	volume fraction [-]
932	Cα	interface compression coefficient [-]
933	C _D	drag coefficient [-]
934	C _{SGS}	sub-grid scale mechanisms adjustable constant coefficient [-]
935	d	diameter [m]
936	Δt	computational time step [s]
937	е	specific internal energy [kJ/kg]
938	E	interfacial energy source term [W/m ²]
939	F _D	drag force [N]
940	$F_{D\alpha}$	artificial drag force [N]
941	Fs	surface tension force [N]
942	g	acceleration of gravity [m/s ²]
943	k	specific kinetic energy [kJ/kg]
944	К	interface curvature [1/m]
945	Μ	interfacial momentum source term [Pa/m]
946	ν	kinematic viscosity [m ² /s]

947	V _{topo}	topological parameter [-]
948	Oh	Ohnesorge number [-]
949	р	pressure [Pa]
950	q ^{eff}	effective heat flux vector [W/m]
951	R _{αl}	turbulent liquid flux
952	R _Σ	turbulent flux of interface surface area density
953	Re	Reynolds number [-]
954	ρ	density [kg/m³]
955	σ	surface tension coefficient [kg/s ²]
956	Sc	Schmidt number [-]
957	Σ	liquid gas interface surface area density [1/m]
958	Σ*	equilibrium liquid gas interface surface area density [1/m]
959	Σ _{min}	minimum liquid gas interface surface area density [1/m]
960	τ^{eff}	effective stress tensor [Pa]
961	τ _r	artificial drag force relaxation factor [-]
962	τ _{sgs}	sub-grid scale mechanisms time scale [1/s]
963	u	velocity field [m/s]
964	Uc	artificial compression velocity field [m/s]
965	Ur	relative velocity field [m/s]
966	We	Weber number [-]
967	у +	dimensionless wall distance [-]
968	ψ	compressibility [s/m]

969 Subscripts

970	g	gaseous phase
971	I	liquid phase
972	m	liquid and gaseous mixture
973	SGS	sub-grid scale component
974	t	turbulent component

975 **References**

- 976 Andreini, A. *et al.* (2016) 'Development of a turbulent liquid flux model for Eulerian-Eulerian
- 977 multiphase flow simulations', *International Journal of Multiphase Flow*. Elsevier Ltd, 81, pp. 88–103.
 978 doi: 10.1016/j.ijmultiphaseflow.2016.02.003.
- 979 Anez, J. *et al.* (2018) 'Eulerian–Lagrangian spray atomization model coupled with interface capturing
- 980 method for diesel injectors', *International Journal of Multiphase Flow*. Elsevier Ltd. doi:
- 981 10.1016/j.ijmultiphaseflow.2018.10.009.
- Antonini, C., Amirfazli, A. and Marengo, M. (2012) 'Drop impact and wettability: From hydrophilic to
 superhydrophobic surfaces', *Physics of Fluids*, 24(10). doi: 10.1063/1.4757122.
- 984 AVL (2013) FIRE v2013 Manuals. Graz, Austria, AVL LIST GmbH.
- 985 Beig, S. A., Aboulhasanzadeh, B. and Johnsen, E. (2018) 'Temperatures produced by inertially
- collapsing bubbles near rigid surfaces', *Journal of Fluid Mechanics*, 852, pp. 105–125. doi:
 10.1017/jfm.2018.525.
- Berlemont, A., Desjonqueres, P. and Gouesbet, G. (1990) 'Particle lagrangian simulation in turbulent
 flows', *International Journal of Multiphase Flow*, 16(1), pp. 19–34. doi: 10.1016/0301-
- 990 9322(90)90034-G.

- 991 Bertola, V. (2015) 'An impact regime map for water drops impacting on heated surfaces',
- 992 International Journal of Heat and Mass Transfer. Elsevier Ltd, 85, pp. 430–437. doi:
- 993 10.1016/j.ijheatmasstransfer.2015.01.084.
- Bhaga, D. and Weber, M. E. (1981) 'Bubbles in viscous liquids: shapes, wakes and velocities', *Journal* of Fluid Mechanics, 105, pp. 61–85. doi: 10.1017/S002211208100311X.
- Boileau, M. *et al.* (2008) 'Investigation of Two-Fluid Methods for Large Eddy Simulation of Spray
 Combustion in Gas Turbines', *Flow, Turbulence and Combustion*, 80(3), pp. 291–321. doi:
 10.1007/s10494-007-9123-1.
- 999 Boussinesq, J. (1877) 'Essai sur la théorie des eaux courantes', *Mémoires présentés par divers* 1000 *savants à l'Académie des Sciences*, 23(1), pp. 1–680.
- 1001 Brackbill, J. U., Kothe, D. B. and Zemach, C. (1992) 'A Continuum Method for Modeling Surface 1002 Tension', *Journal of Computational Physics*, 100(335–354).
- 1003 Černe, G., Petelin, S. and Tiselj, I. (2001) 'Coupling of the Interface Tracking and the Two-Fluid
- Models for the Simulation of Incompressible Two-Phase Flow', *Journal of Computational Physics*,
 171(2), pp. 776–804. doi: 10.1006/jcph.2001.6810.
- 1006 Chesnel, J. *et al.* (2011) 'Large Eddy Simulation of liquid jet primary breakup', *Atomization and* 1007 *Sprays*, 21(9), pp. 711–736.
- 1008 Clift, R., Grace, J. and Weber, M. (2005) *Bubbles, drops, and particles*. Courier Corporation.
- 1009 Cossali, G. E., Santini, M. and Marengo, M. (2005) 'Single-Drop Empirical Models for Spray Impact on
- 1010 Solid Walls: a Review', *Atomization and Sprays*, 15(6), pp. 699–736. doi:
- 1011 10.1615/AtomizSpr.v15.i6.50.
- 1012 Demoulin, F.-X. *et al.* (2007) 'A New Model for Turbulent Flows with Large Density Fluctuations:
- Application to Liquid Atomization', *Atomization and Sprays*, 17(4), pp. 315–346. doi:
 10.1615/AtomizSpr.v17.i4.20.
- Deshpande, S. S., Anumolu, L. and Trujillo, M. F. (2012) 'Evaluating the performance of the twophase flow solver interFoam', *Computational Science and Discovery*, 5(1). doi: 10.1088/17494699/5/1/014016.
- 1018 Drew, D. A. (1983) *Mathematical modeling of two-phase flow., Annual Review of Fluid Mechanics.*1019 doi: 10.1146/annurev.fl.15.010183.001401.
- Dukowicz, J. (1980) 'A Particle-Fluid Numerical Model for Liquid Sprays', *Journal of Computational Physics*, 35, pp. 229–253.
- 1022 Fedkiw, R. P. *et al.* (1999) 'A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows
- 1023 (the Ghost Fluid Method)', *Journal of Computational Physics*, 152(2), pp. 457–492. doi:
- 1024 10.1006/jcph.1999.6236.
- Field, J. E., Dear, J. P. and Ogren, J. E. (1989) 'The effects of target compliance on liquid drop impact', *Journal of Applied Physics*, 65(2), pp. 533–540. doi: 10.1063/1.343136.
- García-Oliver, J. M. *et al.* (2013) 'Diesel spray CFD simulations based on the Σ-Y eulerian atomization
 modely', *Atomization and Sprays*, 23(1), pp. 71–95. doi: 10.1615/AtomizSpr.2013007198.
- 1029 Gorokhovski, M. A. and Saveliev, V. L. (2003) 'Analyses of Kolmogorov's model of breakup and its
- application into Lagrangian computation of liquid sprays under air-blast atomization', *Physics of Fluids*, 15(1), pp. 184–192. doi: 10.1063/1.1527914.
- 1032 Gorokhovski, M. and Herrmann, M. (2008) 'Modeling Primary Atomization', Annual Review of Fluid

- 1033 *Mechanics*, 40(1), pp. 343–366. doi: 10.1146/annurev.fluid.40.111406.102200.
- Guildenbecher, D. R., Lopez-Rivera, C. and Sojka, P. E. (2009) 'Secondary atomization', *Experiments in Fluids*, 46(3), pp. 371–402. doi: 10.1007/s00348-008-0593-2.

1036 Guo, Y., Lian, Y. and Sussman, M. (2016) 'Investigation of drop impact on dry and wet surfaces with 1037 consideration of surrounding air', *Physics of Fluids*, 28(7). doi: 10.1063/1.4958694.

Haller, K. K. *et al.* (2002) 'Computational study of high-speed liquid droplet impact', *Journal of Applied Physics*, 92(5), pp. 2821–2828. doi: 10.1063/1.1495533.

Herrmann, M. (2010) 'Detailed Numerical Simulations of the Primary Atomization of a Turbulent
Liquid Jet in Crossflow', *Journal of Engineering for Gas Turbines and Power*, 132(6), p. 061506. doi:
10.1115/1.4000148.

Hirt, C. W. and Nichols, B. D. (1981) 'Volume of Fluid (VOF) Method for the Dynamics of Free
Boundaries', *Journal of Computational Physics*, 39, pp. 201–225.

Hysing, S. *et al.* (2009) 'Quantitative benchmark computations of two-dimensional bubble dynamics', *International Journal for Numerical Methods in Fluids*, 60, pp. 1259–1288. doi: 10.1002/fld.1934.

- 1047 Ishii, M. and Hibiki, T. (2011) *Thermo-Fluid Dynamics of Two-Phase Flow*. 2nd edn. Springer-Verlag
 1048 New York. doi: 10.1007/978-1-4419-7985-8.
- Ishii, M. and Mishima, K. (1984) 'Two-fluid model and hydrodynamic constitutive relations', *Nuclear Engineering and Design*, 82(2–3), pp. 107–126. doi: 10.1016/0029-5493(84)90207-3.
- Ishii, M. and Zuber, N. (1979) 'Drag coefficient and relative velocity in bubbly, droplet or particulate
 flows', *AIChE Journal*, 25(5), pp. 843–855. doi: 10.1002/aic.690250513.
- 1053 Ivings, M. J., Causon, D. M. and Toro, E. F. (1998) 'On Riemann solvers for compressible liquids',
 1054 *International Journal for Numerical Methods in Fluids*, 28(3), pp. 395–418. doi: 10.1002/(SICI)1097 1055 0363(19980915)28:3<395::AID-FLD718>3.0.CO;2-S.
- Jadidi, M. *et al.* (2014) 'Coupled Level Set and Volume of Fluid method in OpenFoam with application
 to compressible two-phase flow', in *22nd Annual Conference of the CFD Society of Canada*.
- Josserand, C. and Thoroddsen, S. T. (2016) 'Drop Impact on a Solid Surface', *Annual Review of Fluid Mechanics*, 48, pp. 365–391. doi: https://doi.org/10.1146/annurev-fluid-122414-034401.
- 1060 Kandlikar, S. G. and Bapat, A. V. (2007) 'Evaluation of jet impingement, spray and microchannel chip
 1061 cooling options for high heat flux removal', *Heat Transfer Engineering*, 28(11), pp. 911–923. doi:
 1062 10.1080/01457630701421703.
- Kelbaliyev, G. I. (2011) 'Drag Coefficients of Variously Shaped Solid Particles , Drops , and Bubbles',
 45(3), pp. 248–266. doi: 10.1134/S0040579511020084.
- Kolev, N. I. (2007) *Multiphase flow dynamics 2. Thermal and mechanical interactions*. 3rd edn.
 Springer-Verlag Berlin Heidelberg. doi: 10.1007/3-540-69835-3.
- 1067 Koukouvinis, P. *et al.* (2016) 'Large Eddy Simulation of Diesel injector including cavitation effects and 1068 correlation to erosion damage', *Fuel*. Elsevier Ltd, 175, pp. 26–39. doi: 10.1016/j.fuel.2016.02.037.
- Kyriazis, N., Koukouvinis, P. and Gavaises, M. (2018) 'Modelling cavitation during drop impact on
 solid surfaces', *Advances in Colloid and Interface Science*. Elsevier B.V., 260, pp. 46–64. doi:
 10.1016/j.cis.2018.08.004.
- Lahey, R. T. (2005) 'The simulation of multidimensional multiphase flows', *Nuclear Engineering and Design*, 235(10–12), pp. 1043–1060. doi: 10.1016/j.nucengdes.2005.02.020.

- Lebas, R. *et al.* (2009) 'Numerical simulation of primary break-up and atomization: DNS and modelling study', *International Journal of Multiphase Flow*. Elsevier Ltd, 35(3), pp. 247–260. doi:
- 1076 10.1016/j.ijmultiphaseflow.2008.11.005.

Liang, G. and Mudawar, I. (2017) 'Review of drop impact on heated walls', *International Journal of Heat and Mass Transfer*, 106, pp. 103–126. doi: 10.1016/j.ijheatmasstransfer.2016.10.031.

- Ma, T. *et al.* (2017) 'A numerical study of spray/wall impingement based on droplet impact
 phenomenon', *International Journal of Heat and Mass Transfer*, 112, pp. 401–412. doi:
 10.1016/j.ijheatmasstransfer.2017.04.110.
- Malgarinos, I. *et al.* (2014) 'VOF simulations of the contact angle dynamics during the drop
 spreading: Standard models and a new wetting force model', *Advances in Colloid and Interface Science*. Elsevier B.V., 212, pp. 1–20. doi: 10.1016/j.cis.2014.07.004.
- 1085 Marble, F. E. and Broadwell, J. E. (1977) 'The Coherent Flame Model of the Turbulent Chemical 1086 Reactions', *Acta Astronautica*, 4, pp. 291–391.
- Marchisio, D. L. *et al.* (2003) 'Quadrature method of moments for population-balance equations',
 AIChE Journal, 49(5), pp. 1266–1276. doi: 10.1002/aic.690490517.
- 1089 Marschall, H. (2011) *Technische Universität München Lehrstuhl I für Technische Chemie Towards the* 1090 *Numerical Simulation of Multi-Scale Two-Phase Flows*.
- Moreira, A. L. N., Moita, A. S. and Panão, M. R. (2010) 'Advances and challenges in explaining fuel
 spray impingement: How much of single droplet impact research is useful?', *Progress in Energy and Combustion Science*, 36(5), pp. 554–580. doi: 10.1016/j.pecs.2010.01.002.
- Mundo, C., Sommerfeld, M. and Tropea, C. (1995) 'Droplet-wall collisions: Experimental studies of
 the deformation and breakup process', *International Journal of Multiphase Flow*, 21(2), pp. 151–173.
 doi: 10.1016/0301-9322(94)00069-V.
- 1097 Navarro-Martinez, S. (2014) 'Large eddy simulation of spray atomization with a probability density
 1098 function method', *International Journal of Multiphase Flow*. Elsevier Ltd, 63, pp. 11–22. doi:
 1099 10.1016/j.ijmultiphaseflow.2014.02.013.
- Niu, Y. Y. and Wang, H. W. (2016) 'Simulations of the shock waves and cavitation bubbles during a
 three-dimensional high-speed droplet impingement based on a two-fluid model', *Computers and Fluids*. Elsevier Ltd, 134–135, pp. 196–214. doi: 10.1016/j.compfluid.2016.05.018.
- Osher, S. and Fedkiw, R. (2006) *Level set methods and dynamic implicit surfaces*. Vol. 153. Springer
 Science & Business Media.
- Pan, K. L., Tseng, K. C. and Wang, C. H. (2010) 'Breakup of a droplet at high velocity impacting a solid
 surface', *Experiments in Fluids*, 48(1), pp. 143–156. doi: 10.1007/s00348-009-0697-3.
- Pei, Y. *et al.* (2015) 'Large eddy simulation of a reacting spray flame with multiple realizations under
 compression ignition engine conditions.', *Combustion and Flame*, 162(12), pp. 4442–4455.
- Range, K. and Feuillebois, F. (1998) 'Influence of Surface Roughness on Liquid Drop Impact', *Journal*of colloid and interface science, 203(1), pp. 16–30.
- 1111 Rein, M. (1993) 'Phenomena of liquid drop impact on solid and liquid surfaces', *Fluid Dynamics* 1112 *Research*, 12(2), pp. 61–93. doi: 10.1016/0169-5983(93)90106-K.
- 1113 Roisman, I. V., Lembach, A. and Tropea, C. (2015) 'Drop splashing induced by target roughness and
- 1114 porosity: The size plays no role', *Advances in Colloid and Interface Science*. Elsevier B.V., 222, pp.
- 1115 615–621. doi: 10.1016/j.cis.2015.02.004.

- 1116 Rossinelli, D. et al. (2013) '11 PFLOP/s simulations of cloud cavitation collapse', in *Proceedings of the*
- 1117 International Conference on High Performance Computing, Networking, Storage and Analysis, pp. 1–
- 1118 13. doi: 10.1145/2503210.2504565.
- Rusche, H. (2002) Computational Fluid Dynamics of Dispersed Two-Phase Flows at High Phase
 Fractions, PhD Thesis. doi: 10.1145/1806799.1806850.
- 1121 Saurel, R., Petitpas, F. and Abgrall, R. (2008) *Modelling phase transition in metastable liquids:*
- 1122 application to cavitating and flashing flows, Journal of Fluid Mechanics. doi:
- 1123 10.1017/S0022112008002061.
- Scardovelli, R. and Zaleski, S. (1999) 'Direct numerical simulation of free-surface and interfacial flow',
 Annual Review of Fluid Mechanics, 31(1), pp. 567–603.
- 1126 Schiller, L. and Naumann, A. Z. (1933) 'Über die grundlegenden Berechnungen bei der
- 1127 Schwerkraftaufbereitung', *Ver. Deut. Ing.*, 77(12), pp. 318–320.
- Schügerl, K. and Bellgardt, K.-H. (2000) *Bioreaction engineering: modeling and control.* 1st edn.
 Springer-Verlag Berlin Heidelberg. doi: 10.1007/978-3-642-59735-0.
- 1130 Sethian, J. A. (1996) 'A fast marching level set method for monotonically advancing fronts.',
- 1131 Proceedings of the National Academy of Sciences, 93(4), pp. 1591–1595. doi:
- 1132 10.1073/pnas.93.4.1591.
- 1133 Sharp, D. H. (1983) 'An Overview of Rayleigh-Taylor Instability', in *International conference on* 1134 *"Fronts, Interfaces and Patterns"*.
- Shinjo, J. and Umemura, A. (2010) 'Simulation of liquid jet primary breakup: Dynamics of ligament
 and droplet formation', *International Journal of Multiphase Flow*. Elsevier Ltd, 36(7), pp. 513–532.
 doi: 10.1016/j.ijmultiphaseflow.2010.03.008.
- Shinjo, J. and Umemura, A. (2011) 'Surface instability and primary atomization characteristics of
 straight liquid jet sprays', *International Journal of Multiphase Flow*. Elsevier Ltd, 37(10), pp. 1294–
 1304. doi: 10.1016/j.ijmultiphaseflow.2011.08.002.
- Shonibare, O. Y. and Wardle, K. E. (2015) 'Numerical investigation of vertical plunging jet using a
 hybrid multifluid-VOF multiphase CFD solver', *International Journal of Chemical Engineering*, 2015.
 doi: 10.1155/2015/925639.
- 1144 Strubelj, L. and Tiselj, I. (2011) 'Two-fluid model with interface sharpening', *International Journal for* 1145 *Numerical Methods in Engineering*, 85, pp. 575–590.
- Štrubelj, L., Tiselj, I. and Mavko, B. (2009) 'Simulations of free surface flows with implementation of
 surface tension and interface sharpening in the two-fluid model', *International Journal of Heat and Fluid Flow*. Elsevier Inc., 30(4), pp. 741–750. doi: 10.1016/j.ijheatfluidflow.2009.02.009.
- 1149 Theofanous, T. G. (2011) 'Aerobreakup of Newtonian and Viscoelastic Liquids', *Annual Review of* 1150 *Fluid Mechanics*, 43(1), pp. 661–690. doi: 10.1146/annurev-fluid-122109-160638.
- 1151 Thoroddsen, S. T., Etoh, T. G. and Takehara, K. (2008) 'High-Speed Imaging of Drops and Bubbles',
- 1152 Annual Review of Fluid Mechanics, 40(1), pp. 257–285. doi:
- 1153 10.1146/annurev.fluid.40.111406.102215.
- 1154 Thoroddsen, S. T., Takehara, K. and Etoh, T. G. (2012) 'Micro-splashing by drop impacts', *Journal of* 1155 *Fluid Mechanics*, 706, pp. 560–570. doi: 10.1017/jfm.2012.281.
- 1156 Tomiyama, A. *et al.* (2002) 'Terminal velocity of single bubbles in surface tension force dominant 1157 regime', *International Journal of Multiphase Flow*, 28(9), pp. 1497–1519. doi: 10.1016/S0301-

1158 9322(02)00032-0.

1159 Tomiyama, A. and Shimada, N. (2001) 'A numerical method for bubbly flow simulation based on a 1160 multi-fluid model', *Journal of pressure vessel technology*, 123(4), pp. 510–516.

1161 Tryggvason, G. *et al.* (2002) 'A Front-Tracking Method for the Computations of Multiphase Flow', 1162 *Journal of Computational Physics*, 169(2), pp. 708–759. doi: 10.1006/jcph.2001.6726.

- Unverdi, S. O. and Tryggvason, G. (1992) 'A front-tracking method for viscous, incompressible, multifluid flows', *Journal of Computational Physics*, 100(1), pp. 25–37. doi: 10.1016/0021-9991(92)90307K.
- 1166 Vallet, A. and Borghi, R. (1999) 'Modelisation eulerienne de l'atomisation d'un jet liquide', pp. 1015–
 1020.
- 1168 Vallet, A., Burluka, A. A. and Borghi, R. (2001) 'Development of a Eulerian model for the 1169 "atomization" of a liquid jet', *Atomization and sprays*, 11(6).
- 1170 Visser, C. W. *et al.* (2012) 'Microdroplet impact at very high velocity', *Soft Matter*, 8(41), pp. 10732–
 1171 10737. doi: 10.1039/c2sm26323h.

1172 Visser, C. W. et al. (2015) 'Dynamics of high-speed micro-drop impact: Numerical simulations and

- experiments at frame-to-frame times below 100 ns', *Soft Matter*. Royal Society of Chemistry, 11(9),
 pp. 1708–1722. doi: 10.1039/c4sm02474e.
- 1175 Vujanović, M. *et al.* (2015) 'Numerical modelling of diesel spray using the Eulerian multiphase
- 1176 approach', *Energy Conversion and Management*, 104, pp. 160–169. doi:
- 1177 10.1016/j.enconman.2015.03.040.
- 1178 Wardle, K. E. and Weller, H. G. (2013) 'Hybrid multiphase CFD solver for coupled
- dispersed/segregated flows in liquid-liquid extraction', *International Journal of Chemical Engineering*, 2013(1). doi: 10.1155/2013/128936.
- 1181 Worthington, A. M. (1877) 'XXVIII. On the forms assumed by drops of liquids falling vertically on a 1182 horizontal plate', *Proceedings of the royal society of London*, 25(171–178), pp. 261–272.
- 1183 Wu, W., Xiang, G. and Wang, B. (2018) 'On high-speed impingement of cylindrical droplets upon
 1184 solid wall considering cavitation effects', *Journal of Fluid Mechanics*, 857, pp. 851–877. doi:
 1185 10.1017/jfm.2018.753.
- 1186 Wu, Z. and Cao, Y. (2017) 'Dynamics of initial drop splashing on a dry smooth surface', pp. 1–11.
- 1187 Xu, L., Zhang, W. W. and Nagel, S. R. (2005) 'Drop splashing on a dry smooth surface', *Physical* 1188 *Review Letters*, 94(18), pp. 1–4. doi: 10.1103/PhysRevLett.94.184505.
- Yarin, A. L. (2006) 'DROP IMPACT DYNAMICS: Splashing, Spreading, Receding, Bouncing...', Annual
 Review of Fluid Mechanics, 38(1), pp. 159–192. doi: 10.1146/annurev.fluid.38.050304.092144.
- Yarin, A. L. and Weiss, D. A. (1995) 'Impact of Drops on Solid Surfaces: Self-Similar Capillary Waves,
 and Splashing as a New Type of Kinematic Discontinuity', *Journal of Fluid Mechanics*, 283, pp. 141–
 173. doi: 10.1017/S0022112095002266.