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Sequence Classification Restricted Boltzmann
Machines with Gated Units

Son N. Tran, Artur d’Avila Garcez, Tillman Weyde, Jie Yin, Qing Zhang, Mohan Karunanithi

Abstract—For the classification of sequential data dynamic
Bayesian networks and recurrent neural networks (RNNs) are
the preferred models. While the former can explicitly model
the temporal dependencies between variables, the latter have the
capability of learning representations. The recurrent temporal re-
stricted Boltzmann machine (RTRBM) is a model that combines
these two features. However, learning and inference in RTRBMs
can be difficult because of the exponential nature of its gradient
computations when maximizing log-likelihoods. In this paper,
first, we address this intractability by optimizing a conditional
rather than a joint probability distribution when performing
sequence classification. This results in the “sequence classification
restricted Boltzmann machine” (SCRBM). Second, we introduce
gated SCRBMs (gSCRBMs), which use of an information process-
ing gate, as an integration of SCRBMs with Long-Short Term
Memory (LSTM) models. In the experiments reported in this
paper, we evaluate the proposed models on optical character
recognition, chunking and multi-resident activity recognition in
smart homes. The experimental results show that gSCRBMs
achieve performance comparable to that of the state-of-the-art
in all three tasks. gSCRBMs require far fewer parameters in
comparison with other recurrent networks with memory gates,
in particular, LSTMs and Gated Recurrent Units (GRUs).

Index Terms—Recurrent neural networks, Restricted Boltz-
mann machines, Temporal learning, Sequence classification

I. INTRODUCTION

MODELLING sequences is an important research topic
with a variety of applications, ranging from natural

language processing [1], [2] to computer vision [3]. While
some studies focus on predicting time-series events [4], [5],
[6], classification with sequential data also receives significant
attention [7], [8], [9]. A sequence can be associated with one
label for a full input sequence or with a sequence of labels,
typically one for each element of the sequence. In [10], [11]
the terms conventional and strong are established, respectively,
for these classification for tasks. In this paper, for ease of
presentation, we use the term sequence classification to refer
to the strong case, i.e. the labelling of each element of the
sequence. Solutions to this classification problem can enable
a wide range of real-world applications. For example, speech
recognition transcribes a sequence of acoustic feature vec-
tors with spoken words, optical character recognition (OCR)
converts images of handwritten or printed text into machine-
encoded text, and activity recognition predicts human actions
from a sequence of sensor data.
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The sequence classification problem has attracted research
in dynamic Bayesian models such as hidden Markov models
(HMMs) [12] and conditional random fields (CRFs) [13]. An
advantage of these models is the ability to learn relation-
ships between sequence labels, which is useful for temporal
reasoning. However, recent research has seen an increasing
interest in recurrent neural networks (RNNs) for sequence
classification. Different from dynamic Bayesian models, most
RNN models assume that the class labels in a sequence are
independent given the sequence inputs. This makes inference
easier, but sacrifices dynamic inference based on the temporal
dependencies between the sequence labels. A key advantage of
RNNs is the ability to learn temporal representations from data
using recurrent hidden layers, however, they have a problem of
vanishing/exploding gradients, especially when learning from
long sequences using back-propagation through time [14]. This
issue can be addressed by incorporating different memory
gates in hidden layers, as shown in Long Short Term Memory
(LSTM) [14] and Gated Recurrent Units (GRUs) [15]. There
have been many attempts to combine the advantages of rep-
resentation learning with dynamic inference. Most approaches
integrate a dynamic Bayesian model and deep neural network
[16], e.g. by placing a CRF on top of a bidirectional LSTM
[17]. Another approach is the recurrent temporal restricted
Boltzmann machine (RTRBM), an extension of the Restricted
Boltzmann Machine (RBM). The RTRBM is a generative
graphical model that represents a distribution of sequences
and has the ability to learn hidden features [6], [18]. However,
learning and inference in RTRBMs are difficult because of the
high complexity of computing a joint distribution.

A. Contributions

As the first contribution of this paper, we propose a
novel and compact model based on restricted Boltzmann ma-
chines (RBMs), which we call sequence classification RBMs
(SCRBM), to support representation learning and dynamic
inference on the classification of sequences. The SCRBM is
constructed by rolling RBMs with their class nodes over time.
Each RBM at time t has a layer of visible units (Xt) and
a layer of hidden units (Ht). Together with class nodes Y t

denoting the labels at time t, they form a model representing
a distribution: p(y1:T ,x1:T ,h1:T ). When it comes to inference,
there are two questions to answer. First, in order to compute
gradients, one needs to infer the hidden states given the state
of the input layer and the class labels from the distribution
p(H1:T |x1:T , y1:T ). This can be done using variational meth-
ods, i.e. treating a hidden unit as a mean-field, similarly to [6].
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Second, to predict the state of the class labels given the state
of the input layer, in the best case, one can search for the most
probable labels from the conditional distribution, i.e. solving
arg maxY 1:T p(Y 1:T |x1:T ). In this paper, we show that this
type of inference can be carried out efficiently by propagating
the expectation of the prediction for the previous labels to
compute the state of the hidden layer. In other words, the
hidden state at time t is dependent on the previous prediction
(class labels at t − 1), thus, by association, the state of the
class labels at any time point is dependent on the prediction
of the labels at the previous time point. For learning, we
maximise the log-likelihood of the training data. It has been
shown that learning a local RBM with labels is tractable [19],
[20], but learning the entire sequence is not. This is because
it is not easy to marginalise out hidden units in the sequential
case, which can be done analytically in the case of a single
discriminative RBM. Also, computation becomes expensive
due to the exponential growth of possible assignments to the
sequence of labels. To solve this problem, we use the mean-
field technique mentioned above to factorise the conditional
probability of a sequence into a product of probabilities of
local discriminative RBMs.

One drawback of SCRBM is that it cannot capture long
term information and is prone to the problem of vanish-
ing/exploding gradient, similar to RNNs [14]. Therefore, in the
second contribution of this paper we improve the performance
of SCRBM by proposing an idea to integrate SCRBM with
Long Short Term Memory through an information processing
gate. This model is called gated SCRBM (gSCRBM). The idea
is to take advantage of LSTM cells which use different types
of memory gates to handle temporal information. In particular,
besides the hidden state, a LSTM cell maintains a cell state
to convey the information along the chain over time, while
memory gates are used to decide which information should be
added or removed from the cell state. In gSCRBM, the cell
state is the same as in LSTMs and we integrate a memory
gate layer into the hidden layer of the SCRBM. By doing
this we keep the information processing mechanism as it is
in LSTMs while allowing probabilistic inference of the class
layer as done in SCRBM.

In our experiments, we evaluate the SCRBM and gSCRBM
models on three tasks: optical character recognition (OCR),
Conll 2000 chunking, and multi-resident activity recognition
in a smart home. The results show that gSCRBM outperforms
the state-of-the-art in all three tasks.

Despite having a simpler structure, SCRBM achieves
promising results in OCR and, notably, the highest accuracy
for Chunking. This motivated further empirical exploration to
compare SCRBM with RNNs, especially with ones having
complex memory gates such as GRUs [15] and LSTMs [14].
The results show that the performance of the SCRBM, in some
cases, is comparable to that of GRUs and LSTMs, even though
SCRBM is considerably more compact, requiring far fewer
parameters. The source code for the proposed models can be
found at https://github.com/sontranai/scrbm/.

The remainder of the paper is organized as follows. In the
next Section II, we discuss the related literature. Section III
presents the sequence classification RBM (SCRBM) model.

In Section IV, we propose the integration of LSTM gating
techniques into the SCRBM, leading to the gSCRBM. Section
V describes the empirical evaluation of the proposed models.
Section VI concludes this paper and discusses future work.

II. RELATED WORK

Recent work on dynamic Bayesian models has focused on
improving the learning of CRFs by using gradient boosting
techniques such as second-order gradient boosting [9] and gra-
dient tree boosting [21]. In order to incorporate representation
learning into CRFs, in [16] the authors propose Neural CRF,
which extends CRFs by using neural networks to represent
energy functions. On the side of neural networks, LSTMs have
been the dominant approach as they can mitigate the problem
of vanishing gradients. Other variants of gated neural network
are also used in a wide range of sequence classification
problems which can be categorised into architecture variants
and cell variants [22]. In terms of network architectures, bidi-
rectional LSTMs (bi-LSTM) where two LSTMs are coupled
together, one for forward inference and another for backward
inference, have been successful in language processing [23].
In [17], a CRF is placed on top of a bi-LSTM, in which the
lower part is used for representation learning and the upper
part is used for dynamic inference. In terms of cells, GRU [15]
is another variant of gated recurrent neural networks, which
reduces the complexity compared to LSTMs by combining
input and forget gates and sharing values between cell state
and hidden state. Another variant of LSTM is peephole LSTM
where cell states are added to the gates [24].

Besides the Bayesian and neural approaches discussed
above for sequence classification, modelling sequence data
with RBMs has been studied previously [5], [6]. However, as
generative models, they are not easy to apply to classification
tasks. The key problem is that the exact gradient can not be
computed analytically, so that of approximation algorithms
have to be used. By contrast, SCRBM is a discriminative
model whose log-likelihood is tractable, building on the work
on discriminative RBMs. In addition to tractability, another
motivation for having a discriminatively-learned variant of
RTRBMs is the desire for better classification performance. It
has been shown in [25] that with sufficient training examples,
discriminative learning tends to do better on the task it is
optimized for than its generative counterpart model. This has
been confirmed by the empirical results of classRBM on non-
sequential data [19]. Differently from that work, SCRBM
as proposed here is designed for classification with sequence
data. Graphically, an SCRBM can be seen as a classRBM
with recurrent connections between hidden units, similar to
the relation between RNNs and feed-forward neural networks.
However, the design of the SCRBM is less straightforward as
we have to solve the issue of intractability, as detailed in the
next section.

In recent work, the Recurrent Temporal Discriminative Re-
stricted Boltzmann Machine (RTD-RBM) has been proposed
[26]. It is a generalized version of the RTRBM tailored for
discriminative inference. In the SCRBM we use a similar
approach to the RTD-RBM, but with a different architecture
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(a) Recurrent neural network cell. (b) SCRBM cell.
Fig. 1: Graphical representation of recurrent neural network and sequence classification restricted Boltzmann machine. The
green arrows indicate directed connections from the previous hidden nodes; the red and blue arrows (resp. lines) indicate the
directed (resp. undirected) connections from current labels and inputs, respectively.

and a broad evaluation (the RTD-RBM was only evaluated on
melody prediction). Also, RTD-RBMs require more parame-
ters than SCRBMs because RTD-RBMs generalize RTRBMs
by including connections from previous hidden layers to the
current class labels. Another related model is the dynamic
Boltzmann machine [27] which supports online learning for
sequence prediction, mainly applied to regression. Combining
LSTM and RTRBM has been studied in [28], but for genera-
tion rather than classification.

III. SEQUENCE CLASSIFICATION RESTRICTED
BOLTZMANN MACHINE (SCRBM)

A. Model

A Sequence Classification Restricted Boltzmann Machine
(SCRBM) is constructed by rolling RBMs with class labels
over time. The model defines a probability distribution:

p(y1:T ,x1:T ,h1:T ) =
T∏
t=1

p(yt,xt,ht|ht−1) (1)

where x1:T , h1:T are time-series of the visible and hidden
states; y1:T is the class-label sequence; h0 are the biases of
the hidden units.

The main problem of this model, as highlighted in [5], is
that inference is intractable. This, however, can be solved by
adding recurrent connections, as done for the RTRBM [6]. In
RTRBM, class labels are not included. In SCRBMs, the local
distribution at time t: p(yt,xt,ht|ht−1) is replaced by:

p(yt,xt,ht|ĥt−1) =
exp(−Eθ(yt,xt,ht; ĥt−1)∑

y′,x′,h′ exp(−Eθ(y′,x′,h′; ĥt−1)
(2)

where ĥt−1 is the vector of expected values of the hidden
units at t− 1:

ĥt−1 = E[Ht−1|x1:t−1, y1:t−1] (3)

with the local energy function:
Eθ(yt,xt,ht; ĥt−1) =− [(xt)>Wxh + u>

yt
+ (ĥt−1)>Whh]ht

− a>xt − byt − c>ht
(4)

which is characterised by the parameters: θ =
{Wxh,Whh,U,a,b, c}. The local energy function (4)
is an extension of the standard notation of the energy function
of RBMs [29]. The total energy of an SCRBM is the sum of
all local energy functions from time 1 to T . It represents the
correlation between hidden units and the external units (input,
labels, previous hidden) with weight matrices applied and it
is also used to compute a probability distribution as shown
in (2). Here, Wxh is the weight matrix between visible units
and hidden units; Whh is the recurrent/temporal connection

weight matrix of the hidden units; U is the weight matrix
between the class units (represented by one-hot vectors) and
the hidden units; a,b and c are the biases of the visible units,
hidden units, and class units respectively; uyt is the column
vector yt of U which is the result of the multiplication of U
and the one-hot vector for yt.

The set of parameters in (4) can be reduced by omitting
the biases of the visible units because it will be cancelled
out in the conditional distribution calculation. Figures 1a and
1b show the resulting structure of the SCRBM. It has the
same set of parameters as a recurrent neural network. However,
the SCRBM is very different in terms of its formulation as
defined above and in terms of inference and learning as will
be described in sub-section III.B and III.C.

Different from the generative distribution (equation 1, the
conditional distribution is tractable. It offers a computational
advantage at inference and learning, where sampling is not
needed, as shown in the next two sections. In a nutshell,
with the above realization, SCRBM is a tractable RTRBM
for sequence classification.

B. Inference

As mentioned earlier, inference for units in the hidden layer
given the inputs and labels is easy, as in [6], where each hidden
unit can be treated as a mean-field, as follows:

ĥt = σ(W>
xhxt + uyt + W>

hhht−1 + ct) (5)

For classification with the SCRBM, one would like to search
for the most probable assignment of Y 1:T given the inputs
x1:T . In this paper, we show that SCRBM can efficiently infer
the state of the hidden layer while at the same time performing
prediction. As discussed earlier, once the class labels at t-1 are
known, it is straightforward to infer the state of the hidden
layer. We now show that inference of class labels is also easy
given the state of the hidden layer. In particular, from the
mean-field values of the hidden layer in the previous time step
we can infer the class labels using the following conditional
distribution:

p(yt|xt, ĥt−1) =
exp (−F(xt, yt, ĥt−1))∑
y′

exp (−F(xt, y′, ĥt−1))
(6)

with free energy:

F(xt, y, ĥt) = −by −
∑
j

log(1 + exp(w>xh,jx
t + uyj + cj)) (7)

where wxh,j is the jth column of the weight matrix Wxh

between the hidden units and the units of the visible layer
corresponding to the inputs, and uyj is an element of the



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

weight matrix U between the hidden units and the units Y
corresponding to the class labels. Here, the visible biases
a have been cancelled out which makes the number of
parameters equivalent to that of a standard RNN with the same
number of hidden units, i.e. θ = {Wxh,Whh,U,b, c}.

As opposed to the joint distribution in (2), the condi-
tional distribution (6) is tractable, i.e. it can be computed
analytically. The difference lies in the denominators of the
two distributions:

∑
y′,x′,h′ exp(−Eθ(y′,x′,h′; ĥt−1)) of the

joint distribution and
∑
y′ exp (−F(xt, y′, ĥt−1)) of the con-

ditional distribution. While the joint distribution sums over
all possible values of the input, label, and hidden states the
conditional distribution only needs to perform a summation
over all possible values of labels, which is much more feasible.
This also helps to simplify the learning with SCRBM as we
will show in the next sub-section.

From (6) we can predict the value of the class labels.
Once yt is known we use it to infer the mean-field values
ĥt as in (5). Let us put this in a specific context, starting
from t = 1: the conditional distribution p(y1|x1, ĥ0) can be
computed exactly by marginalizing out the hidden variable h1

while having ĥ0 as parameters. In order to calculate the values
of the current step from the prediction of the previous step,
we do not use its predicted value of y1, instead we use the
distribution to infer the mean-field value ĥ1. This value is then
passed to the next prediction step, and so on. The details of
the SCRBM inference algorithm are given in Algorithm 1.

Algorithm 1 Inference with SCRBM
Data: Input: x1:T

Result: Output: y1:T

for t = 1 : T do
set ŷt = p(yt|xt, ĥt−1)
set yt = arg maxk ŷtk
set ĥt = σ(Wxhxt + Uŷt + Whhht−1 + ct)

end

From Algorithm 1 we can see that SCRBMs can capture
the dependencies between class variables over time through
the inference of hidden units using the expected values of the
class units.

C. Learning

In SCRBMs, we are interested in learning the conditional
distribution:

p(y1:T |x1:T ) =
p(x1:T , y1:T )∑

y′1:T p(x1:T , y′1:T ) (8)

However, it is difficult to marginalize out all hidden variables
h1:T to compute this distribution exactly. The complexity
of learning our model would increase exponentially with
the length of the sequence, due to the need to sum over
all possible combinations of classes at every time step. So,
instead of computing the distribution directly we simplify it
by marginalizing out the hidden variable at each time t using
the expectation of the hidden state at the previous time t− 1.
Let us consider:

p(x1:T , y1:T ) =
∑
h1:T

p(y1:T ,x1:T ,h1:T )

=
∑
h1:T

T∏
t=1

p(yt,xt,ht|ht−1)
(9)

If we first compute the expectation of ht−1 given the pre-
vious input states x1:t−1 and y1:t−1 , which is equivalent to
minimizing the total energy function of the SCRBM, then we
have:

q(x1:T , y1:T ) =
T∏
t=1

p(yt,xt|ĥt−1) (10)

One can view this as an expectation step to be followed by an
optimization step which maximizes the log-likelihood of this
simplified distribution:

q(y1:T |x1:T ) =

∏T

t=1 p(yt,xt|ĥt−1)∑
y′1:T

∏T

t=1 p(y′t,xt|ĥt−1)

=

∏T

t=1 p(yt,xt|ĥt−1)∏T

t=1

∑
y′t

p(y′t,xt|ĥt−1)

=
T∏
t=1

p(yt|xt, ĥt−1)

(11)

Since p(yt|xt, ĥt−1) is tractable as shown in (6), we can
compute the above distribution exactly. Now, one can learn
the model by maximizing the log-likelihood function:

` =
∑

y1:T ,x1:T

T∑
t=1

log p(yt|xt, ĥt−1) . (12)

Similarly to other time-series connectionist models, such as
standard RNNs and RTRBMs, we train the model using back-
propagation through time. The update of the model’s set of
parameters, denoted by θ, is shown below.

∇θ =
T∑
t=1

(
∂θ log p(yt|xt, ĥt−1)

∂θ
+
∂θĥt

∂θ
Ot) (13)

where ∂θĥt
∂θ = ∂θσ(W>

xhxt+uyt+W>
hhht−1+ct)

∂θ and
∂θ log p(yt|xt,ĥt−1)

∂θ are local derivatives, and ĥt−1 is a
value, not a function of θ; and for mathematical convenience,

Ot = W>hhĥt+1(1− ĥt+1)Ot+1 +
∂ log p(yt+1|xt+1, ĥt)

∂ĥt
. (14)

IV. GATED SCRBMS

The previous section showed how SCRBMs are constructed,
learned and used for the classification of sequences. How-
ever, similar to RNNs, SCRBMs are not able to model long
term dependencies and are prone to the problem of vanish-
ing/exploding gradients [14]. In order to address these points,
in this section, we show how to integrate memory gates like in
long-short term memory with SCRBMs, which results in the
“gated SCRBM” (gSCRBM). A graphical representation of
hidden layers in gSCRBM is shown in Figure 2b. It is similar
to the LSTM in Figure 2a except that we take one memory
gate (the output gate in this case) and integrate it into the
SCRBM.

The information processing in gSCRBM operates as fol-
lows:
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(a) Long short term memory cell. (b) SCRBM cell with gated output.
Fig. 2: Long short term memory and SCRBM with gated units

it = Wxixt + Whiht−1 + bi (15)

f t = Wxfxt + Whfht−1 + bf (16)

ot = Wxoxt + Whoht−1 + bo (17)

c̃t = Wxcxt + Whcht−1 + bc (18)

ŷtk =
exp(bk)

∏
j
(1 + exp(otj + ukj))∑

k′
exp(bk′ )

∏
j
(1 + exp(otj + uk′j))

(19)

yt = arg max
k

ŷtk (20)

ôt = ot + Uŷt (21)

ct = σ(f t) ∗ ct−1 + σ(it) ∗ c̃t (22)

ht = σ(ôt) ∗ tanh(ct) (23)

The computations of the input gate, forget gate, output
gate and c̃, which can be seen in (15), (16), (17) and (18),
respectively, are similar to an LSTM. In order to integrate
the output gate into the SCRBM, we add a mean-field unit
(ô) for that gate, similar to the approach in Section III-A.
The same can be done for other gates in LSTMs, however in
our experiments we found that a gSCRBM with input gate
only (denoted as gSCRMi), and a gSCRBM with output gate
only (denoted as gSCRMo), perform better than gSCRBMs
with more gates. This indicates that the input and output gates
contain the most predictive information.

For the input gate we replace (19), (21), (22), and (23) by
the following equations (24), (25), (26), and (27), respectively:

ŷtk =
exp(bk)

∏
j
(1 + exp(itj + ukj))∑

k′
exp(bk′ )

∏
j
(1 + exp(itj + uk′j))

(24)

ît = it + Uŷt (25)

ct = σ(f t) ∗ ct−1 + σ(̂it) ∗ c̃t (26)

ht = σ(ot) ∗ tanh(ct) (27)

In this case, the cell state is updated with the probability
estimation of labels though input gate, as shown in (26).

V. EXPERIMENTS

A. Optical Character Recognition

1) Dataset: The MIT OCR dataset1 is a widely used
benchmark for evaluating sequence classification algorithms
[30]. We use two popular partitions from [8] and from [16],
[9]. In the former, called here ‘ms’ for model selection, the
data is partitioned into 10 groups, each consisting of a training,
validation and test set. We select models based on performance
on the validation set and report their average accuracy on the
test sets. In the latter, here called ‘cv’ for cross-validation, the

1http://www.seas.upenn.edu/˜taskar/ocr/

data is divided into 10 folds without validation sets for model
selection.

2) Evaluation Method: Each model is expected to predict
the correct label corresponding to the image of a character as
it is drawn. All the models are evaluated using the average
classification accuracy per sequence E(y, y∗), where y and y∗

are the predicted and the true sequence sets respectively, as
follows:

E(y, y∗) =
1
N

N∑
i=1

[
1
Li

Li∑
j=1

I((yi)j 6= (y∗i )j)

]
(28)

where N is the total number of test examples, Li is the length
of the ith sequence, and I is the 0− 1 indicator function.

3) Model comparison:: We compare the performance
of SCRBM on the above sequence labelling task with
the following models: Multiclass support vector machines
(SVMmulticlass) [31], Structured support vector machines
(SVMstruct) [32], Max-margin Markov network (M3N)[30],
Averaged Perceptron [33], Search-based structured predic-
tion (SEARN) [34], Conditional random field (CRF) [13],
[35], Hidden Markov model (HMM) [12], LogitBoost [36],
TreeCRF [21], RTDRBM [26] (using the inference algorithm
proposed in this paper to adapt to the sequence labelling task),
and state-of-the-art models:
• Structured learning ensemble (SLE) [8]: An optimised

ensemble of 7 models: SVMmulticlass, SVMstruct, M3N,
Perceptron, SEARN, CRF and HMM.

• Neural CRF [16]: A combination of CRF and deep
networks.

• Gradient boosting CRF (GBCRF) [9]: CRF trained by a
gradient boosting algorithm.

4) Results: For the ‘ms’ partitioning, a grid search was
carried out to determine the best model. We report the best
results of the methods evaluated in [8]. For the SCRBMs,
RTDRBM, and RNNs, the optimised hyper-parameters include
the learning rate and the number of hidden units. The tradi-
tional RNNs employ tanh as the activation function for the
hidden units. We also use early stopping, with the performance
of the models on the validation set being determined after each
epoch. The training was stopped if the validation performance
does not improve in 10 consecutive epochs. The models
have been trained using the Adam algorithm [37]. For the
‘cv’ partition, since model selection is not possible, we run
each model using a different number of hidden units from
{50, 100, 500, 1000, 2000, 5000, 10000} and report the lowest
average test error rate for the models. The training method is
Adam starting at learning rate 0.001. In the ‘ms’ partition, this
hyper-parameter value was found to be an optimal choice for
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Model ms cv
gSCRBMi 11.414 04.302
gSCRBMo 11.125 04.178
SCRBM 14.812 04.783
LSTM 11.72 04.76
GRU 14.23 06.38
RTD-RBM 15.46 -
Neural CRFCML - 04.44
Neural CRFLM - 04.56
SLE 20.58 -
GBCRF - 04.64
TreeCRF - 06.99
LogitBoost - 09.67
RNN 22.92 -
M3N 25.08 13.46
Perceptron 26.40 -
SEARN 27.02 -
SVMmulticlass 28.54 -
SVMstruct 21.16 -
HMM 23.70 -
CRF 32.30 14.20

TABLE I: The averaged test set error rates (%) of various
models on the MIT OCR sequence labelling task. The ‘ms’
variant uses model selection and ‘cv’ uses cross-validation
without model selection.

all connectionist models: RNN, GRU, LSTM, SCRBM, and
gSCRBM. The number of training epochs is fixed to 30.

Table I shows the individual results. gSCRBMo outperforms
all the other models. It is worth noting that the performance
of our model is considerably better than that of SLE, Neural-
CRF, and GBCRF, which are the state-of-the-arts to this OCR
task.

B. Chunking

The CoNLL 2000 shared task2 is a benchmark dataset for
sequence classification with a focus on chunking. The task
is to classify the words in sentences into syntactic parts,
e.g. noun phrase (NP) or verb phrase (VP). The dataset
consists of 8936 and 2012 sentences for training and testing,
respectively. We use the binary features from [38] for these
data. In this experiment, we use the 50000 most common
features from the training set. The motivation behind the
selection of this type of features is that it can help RNNs
to achieve better performance than the Glove.6B or word2vec
features. Although the word2vec features are smaller in terms
of size, generic approaches such as RNN, GRU, and LSTM
do not perform well, and therefore more complex variants,
i.e. biLSTM[39], bi-LSTM-CRF [17] and CNN-biLSTM-CRF
[40] are needed.

Since the dataset only includes training and testing samples
we do not perform model selection and early stopping. Instead,
we tested different numbers of hidden units [50,100,500,1000]
and report the best results on the test set. These values are
chosen based on the computational capacity of the machines
used for this experiment as a higher number of hidden units
would have resulted in computational overload. We use again
Adam to take the advantage of the sparsity of the features,
the initial learning rate for it is 0.001 as this setting worked
very well in the case of OCR above, and also in many other
cases from our experience. For evaluation, we use F1 score:

2https://www.clips.uantwerpen.be/conll2000/chunking/

F1 = 2 precision∗recallprecision+recall . The results of the experiments as well
as the state-of-the-art results reported in [41], [17], [42], [43],
[44], are shown in Table II.

Models F1 score
gSCRBMi 95.141
gSCRBMo 95.050
SCRBM 95.307
LSTM 95.163
GRU 94.719
RNN 94.199
Suzuki et. al. [41] 95.15
Huang et. al. [17] 94.46
Sun et. al. [42] 94.34
Collobert et. al.[43] 94.32
Tsuruoka et. al. [44] 93.81

TABLE II: F1 scores for the CoNLL 2000 chunking task.
Again, the SCRBM with gated input performs better than
RNN-based methods. Differently from in the OCR task,
combining the SCRBM with output gates achieves lower
performance than an LSTM model. In this case, due to the
much larger number of features in comparison with the size
of the training data, more complex models, such as GRU,
LSTM and gSCRBM, seem to overfit while the plain SCRBM,
with a much lower number of parameters, achieves the highest
accuracy.

C. Activity Recognition in Smart Homes

In this experiment, we evaluate our models on activity
recognition in smart homes. We use the CASAS data3, which
is available from Washington State University and contains
data from the smart department testbed with two residents
where each resident performing 15 unique activities. The
data was collected over 26 days in a smart home equipped
with 37 ambient sensors. The data in CASAS is presented
in “Date Time Sensor ID Value Resident ID Activity”
format. For example, “2008-11-10 14:28:17.986759 M22
ON 2 2” shows that resident 2 is hanging up clothes at
14:28:17.986759 on 2008-11-10 when motion sensor M22
is triggered. Similarly, “2008-11-10 14:38:47.974299 M13
OFF 2 8 1 9” means at 14:38:47.974299 on 2008-11-10, when
motion sensor M13 is off, resident 1 is setting the dining room
table for dinner while resident 2 is setting out ingredients for
dinner in the kitchen. Different from the previous tasks on
OCR and Chunking, activity recognition in smart homes is
very challenging because of the following reasons. First, the
sequences in the dataset are considerably long as each of them
has been recorded in several hours each day. The minimum
length of the sequences is 500 and the maximum length is
866. Second, data collection and annotation are difficult which
results in a small number of samples for training.

We partition the CASAS data into 24 days for training,
1 day for validation and 1 day for testing. The competitors
to our models are the state-of-the-arts used for multi-resident
activity recognition in smart homes, including: factorial HMM
[45], [46] and factorial CRF [38], [47]. We also compare
with different types of recurrent neural networks, denoted
as mRNNs, mGRUs, mLSTMs, which have multiple outputs

3http://ailab.eecs.wsu.edu/casas/
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representing activities of different residents. Since in this paper
we design our models for single output we combine the
activities of multiple residents to a single label. We performed
the model selection by using grid search on the number
of hidden units and learning rate, similar to the previous
experiments on ”ms” partition of OCR. For completeness, we
carry out a comparison with HMMs, CRFs, RNNs, GRUs, and
LSTMs on the same combined labels.

R1 R2 Rall
gSCRBMi 92.69 91.46 86.44
gSCRBMo 90.92 90.78 85.22
SCRBM 81.64 80.06 73.72
GRU 89.84 86.24 81.25
LSTM 91.17 90.47 85.55
mGRU 92.70 88.91 83.10
mLSTM 91.19 89.90 83.23
CRF 76.40 66.07 64.32
RNN 80.03 77.41 71.73
HMM 65.24 65.82 56.58
fHMM 73.55 67.44 55.43
mRNN 78.41 70.07 58.38
fCRF 58.21 56.76 45.84

TABLE III: Prediction accuracy for all models on CASAS
dataset. R1, R2, Rall are the accuracy of predicted activities
of resident 1, resident 2 and the joint activities.

In Tabel III we show the performance for activities of two
residents in the smart house. Each model is tested 20 times and
the averaged prediction accuracy is reported. The performance
of a model is measured by the accuracy of each resident’s
activities and the accuracy of all residents’ activities. The
former is computed as:

Rm =
1

|Dtest|

∑
am,1:T∈Dtest

1
T

∑
t

(am,t == âm,t) (29)

where am,t and âm,t are the ground truth and the predicted
activity of resident m at time t respectively; am,t == âm,t is
1 if the activity of resident m at time t is predicted correctly,
otherwise it is 0. Similarly, the accuracy for activities of all
residents is:

Rall =
1

|Dtest|

∑
a1:T∈Dtest

1
T

∑
t

(
∧
m

(am,t == âm,t)) (30)

where
∧
m is the boolean AND operator and a1:T ∈ Dtest is

the activities of all residents in the test set.
The results show that by using memory gates performance

of predicting both residents’ activities can be improved signif-
icantly, e.g. from 58.38% with mRNN to 83.10% and 83.23%
with mGRU and mLSTM respectively, and from 71.73%
with RNN to 81.25% and 85.55% with GRU and LSTM
respectively. This is because the lengths of the data sequences
are substantial which bolsters the need for memory gates,
while the consistency in daily activities of the residents is
high enough to largely reduce the risk of having overfitting.
It is shown that SCRBM with input gating achieved the
highest performance, better than the other models. In the case
of resident 1, multi-task GRU has similar performance with
gSCRBMi but achieved lower accuracy for resident 2 and for
joint activities. Note that in the smart house it is very important
to predict exact activities of all resident at a time to understand
their collaborative and interactive behaviors.

D. SCRBM versus GRU and LSTM

As shown in the experiments above, SCRBM has achieved
promising empirical results in the OCR and Chunking tasks
despite its lack of complex memory gates. This motivates a fur-
ther investigation into this model in comparison with popular
variants of recurrent neural networks such as gated recurrent
units and long short term memory, which use complex memory
gates in their hidden units, and with a standard RNN using
tanh hidden units. It is worth noting that for a visible layer
with M units and a hidden layer with N units, the number of
weights in the RNN and SCRBM is the same, while GRUs
and LSTMs will have, respectively, 2N(M + N + 1) and
3N(M + N + 1) more weights than the RNN and SCRBM.
In general, if the number of labels is small then the SCRBM
will be approximately 3 times more compact than the GRU
and 4 times more compact than the LSTM.

First, we evaluate the SCRBM, RNN, GRU, and LSTM
on POS tagging dataset from Penn Treebank4. The data is
partitioned into different training sets with 500, 1000, 2000,
4000 and 2000 examples. Models are selected by holding out
10% of the examples and are then evaluated on a test set
with some 1600 sentences. The challenge here is that the
lexical features are very large, approximately 450, 000. Table
IV shows the results where we can see that SCRBM performs
competitively in comparison to GRU and LSTM. In particular,
SCRBM is better than RNN in all five cases, better than GRU
in 2 cases, and better than LSTM in 3 cases.

Second, we evaluate the effectiveness of SCRBM, RNN,
GRU, and LSTM when they have the same number of pa-
rameters: 100 hidden units for both SCRBM and RNN, 33
hidden units for GRU and 25 hidden units for LSTM. For
completeness, we also include in the graphs below, GRU and
LSTMs with 100 hidden units each. We evaluate the models
on the OCR, POS tagging with 2000 training sentences, and
Conll2000 chunking. Since the original chunking data does not
provide a validation set, we used 2.5% of their training data for
training, and the rest for validation. The original test set was
used for testing as provided. In this experiment, for efficiency,
we only use 3 chunking labels as in [38]. The evaluation
metrics are the predictive error rate (as before) and the average
negative log-likelihood on the validation and test sets. All
models are trained using Adam with an initial learning rate of
0.001 which, as we found, is generally good for all the models
on all three datasets. Figures 3 and 4 show that SCRBM
generalises better than RNNs, GRU and LSTM with the same
size or number of hidden units. Figures 3b.1, 3b.2, 3c.1 and
3c.2 show that in the POS tagging and chunking datasets,
all models achieve their best performances very quickly after
only a few epochs, with the SCRBM achieving at that point
the lowest test set error. Figure 3a.1 shows that in the OCR
dataset, SCRBM performs similarly to the LSTM with the
same number of 100 hidden units. As for the average negative
log-likelihood, one can see in Figures 4a.1, 4a.2, 4b.1, 4b.2,
4c.1, 4c.2 that the SCRBM generalises better than the other
models as it achieves the lowest negative log-likelihoods on
the validation and test sets. This, along with Table IV, explains

4http://www.cis.upenn.edu/treebank
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(a.1) OCR train. (b.1) POS train. (c.1) Chunking train.

(a.1) OCR validation. (b.1) POS 2000 validation. (c.1) Chunking validation.

(a.2) OCR test. (b.2) POS 2000 test. (c.2) Chunking test.
Fig. 3: x-axis: number of epochs; y axis: predictive errors. All models achieve their best performance very quickly after only
a few epochs, with the SCRBM achieving at that point the lowest test set error, except for the OCR dataset where the LSTM
with 100 hidden neurons is slightly better.

(a.1) OCR train. (b.1) POS train. (c.1) Chunking train.

(a.1) OCR validation. (b.1) POS 2000 validation. (c.1) Chunking validation.

(a.2) OCR test. (b.2) POS 2000 test. (c.2) Chunking test
Fig. 4: x-axis: number of epochs; y axis: average negative log-likelihood. SCRBM achieves the lowest negative log-likelihoods
on validation and test sets.

why in some cases GRUs and LSTMs may be better but only
when they have more hidden units.

POS500 POS1000 POS2000 POS4000 POS8000

RNN 22.921 12.220 10.480 09.207 09.303
GRU 15.853 11.663 09.892 09.011 08.759

LSTM 13.329 12.012 10.168 09.273 08.561
SCRBM 14.808 12.119 10.061 09.178 08.286

TABLE IV: The averaged test set errors of RNNs with
Tanh units, GRU, LSTM and SCRBM on the tagging dataset
with different training sets of size 500, 1000, 2000, and the
chunking dataset. Model sizes and other hyperparameters were
optimised through a grid search. SCRBM achieves perfor-
mance comparable to LSTMs and GRUs using a much simpler
model, e.g. in the OCR dataset, LSTM uses 2000 hidden units
while SCRBM uses 100 hidden units.

E. SCRBM versus BiLSTM and Stacked-LSTM

In the previous experiments, we compare our SCRBM cell
with different types of cells including traditional RNN cell,
GRU cell, and LSTM cell. We also carried out an experiment
on LSTM peephole cell on ORC and Chunking datasets which
achieved lower results than our gSCRBM.

In this section, we compare the performance of
SCRBM/gSCRBM with advanced LSTM structures [22]. In
particular we choose Bi-directional LSTM (BiLSTM) [39],
[48] and Stacked LSTM (StackedLSTM) [49], [50]. Although
a direct comparison with (vanilla) SCRBM/gSCRBM may not
be fair, experiments in the OCR dataset show that gSCRBMo

is slightly better than both BiLSTMs and StackedLSTMs (2
layers), but the differences are not statistically significant. For
chunking, BiLSTMs outperform SCRBMs but SCRBMs are
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much faster. In Table V we report the results of SCRBMi,
BiLSTM and StackedLSTM using the activity recognition
dataset in Section V-C. It is showed that in this dataset both
BiLSTM and StackedLSTM perform slightly better than
gSCRBMi, which is not surprised because gSCRBMi, as a
generic model, does not use bi-directional connections or
stacking architecture.

Models R1 R2 All
gSCRBMi 92.96 91.46 86.44
BiLSTM 93.15 91.48 86.65

StackedLSTM 93.72 92.11 86.71

TABLE V: gSCRBMi vs BiLSTM and StackedLSTM

VI. CONCLUSION AND FUTURE WORK

We have proposed a simple model for the classification
of sequences by rolling Restricted Boltzmann Machines with
class labels over time. The main advantages of SCRBM are: it
performs representation learning and inference efficiently and
it is very compact with a number of parameters equivalent
to that of standard recurrent neural networks with the same
number of hidden neurons. Inference with SCRBM is done
by performing prediction of the class and computing mean-
field values of the hidden layer at each time t. We train
SCRBM by computing the expectation of hidden units at time
t − 1 for each element of the conditional distribution. This
makes learning tractable. More importantly, when coupling
SCRBM with complex memory gates in LSTM we can achieve
performance improvement in certain cases. In the experi-
ments, we evaluate the effectiveness of the proposed model
in sequence classification on three tasks: OCR, Chunking and
multi-activity recognition. In these tasks, we show that the
combination of SCRBM and input or output memory gate of
LSTM outperforms the state-of-the-art. Furthermore, we show
that SCRBM can perform better than all other models in the
Chunking task, and it can generalise at least as well as GRU
and LSTMs without the need for complex memory gates in
the hidden units in the case of OCR, POS, and Chunking.
As future work, we intend to perform further evaluations of
the SCRBMs at sequence learning. The systematic study of
such simple recurrent models, possibly together with the use
of knowledge extraction, should offer a better understanding
of the basic ingredients for effective sequence learning.

Finally, there has been a resurgence of interest in RBMs
although not for sequence classification [51], [52]. In [51] a
regularization technique is proposed to train RBMs for static
data using generative methods. In [52] learning of RBMs is
accelerated by using parallel computing and hardware design.
The addition of regularization, attention, and dropout, as well
as parallel speed-ups, are all possible directions of extensions
of SCRBMs.
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