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p.179, Figure 1a), ks/k has been corrected with the drag coeffi-
cients CD computed at the stem mid location where the local flow
is unaffected by the ends. Symbols as in Table 4.1.The dash line
represents a theoretical case for which ks/k ∝ λeff. . . . . . . . . . 97

4.6 Equivalent sand roughness for various k-surfaces versus the solidity
λeff, corrected with empirical drag coefficients CD. Image adapted
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Abstract

A detailed analysis of turbulent flows in an open channel over rigid submerged
canopies, at a moderate bulk Reynolds number (i.e. Reb = UbH/ν = 6000, H
being the open channel depth and Ub the bulk velocity) has been carried out.
Untangling the physical behaviour of these flows can become an impossible task
if all the parameters that govern their physics are kept into account, e.g. the
density of the layer, the level of submersion of the canopy and the flexibility of
the stems, just to mention few of them. Nepf (2012a), after reviewing a number
of relevant previous research works on canopy flows in her annual review, suggests
to classify the behaviour of the flow by considering the geometrical features of the
filamentous layer only. In the case of submerged canopies, based on the solidity of
the canopy, three particular regimes are identified: sparse, dense and transitional.
While sparse canopies are treated as rough walls, the form drag yielded by the
filaments in a dense canopy induces the onset of two inflection points in the
mean velocity profile. These two inflection points divide the intra-canopy flow
into separate regions: an inner region, very close to the bed, populated by stems
generated wakes, an outer region that mainly extends above the canopy and is
usually modelled as a flow over a porous/rough wall, and an overlap region (Poggi
et al., 2004). The latter can be assumed to behave as a peculiar Couette flow (in
the literature it has been also described as a mixing-layer region, see Finnigan,
2000) characterised by large fluctuations produced by the meandering of the flow
in between the canopy elements. Finally, the transitional regime can be thought
of as a dense regime with a higher penetration of the upper layer flow structures
into the canopy, where they concentrate (Nepf, 2012a).

Although some phenomenological models for dense canopy regimes are pro-
posed in the literature, they are either based on two-dimensional or even local
one-dimensional measurements (Ghisalberti and Nepf, 2004, Nepf, 2012a, Poggi
et al., 2004, Raupach et al., 1996) or on numerical simulations that adopt simpli-
fied canopy models (Bailey and Stoll, 2013, 2016, Finnigan et al., 2009, Watan-
abe, 2004). In this context, the present thesis provides an accurate and detailed
characterisation of canopy flows through a fully resolved, numerical approach
tackling rigid, filamentous canopies made of cylindrical stems mounted normally
to an impermeable wall. Firstly, a transitional-dense regime has been considered.
Specifically, the first part of the thesis provides a novel and detailed insight that
includes a new phenomenological model that also covers the character of the flow
within the canopy. Moreover, an original scaling for the mean flow quantities is
also proposed. The new approach allows highlighting important similarities and
simplify the analysis.

In the second part of the thesis, a parametric study aimed to investigate the
relation between the height of the canopy (i.e. its solidity) and the flow regimes
is performed. Specifically, four canopy configurations have been considered. All
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of them share the same in-plane solid fraction while the canopy to open channel
height ratio, h/H, has been selected within the range h/H = [0.05, 0.4]. The
lowest and the highest values are representative of a quasi- sparse and a dense
canopy regime, respectively. The other two h/H ratios nominally belong to the
transitional regime values. The systematic variation of the height of the filamen-
tous layer allowed us to unravel the main features characterising the different
regimes. Particular attention has been paid to the relative locations of the two
inflection points of the mean velocity profile and the virtual wall origin (origin
seen from the outer flow located in the canopy layer). In view of the relative vari-
ations of their distance from the wall and the canopy tip, we propose to adopt the
crossing between the internal inflection point and the virtual origin as a condition
to infer the transition between canopy flow regimes when the solidity is varied.
The structures of the different regimes have been also compared, highlighting the
role played by the increasing solidity of the canopy as a natural splitter between
the logarithmic structures of the outer flow and the coherent structures located
inside the canopy. The wall-normal permeability of the canopy is identified as the
main vehicle to transfer momentum through the different canopy layers, playing
an important role in shaping the structures of the flow within the filamentous
layer. Finally, a new scaling that adapts the flow conditions to the sparsity of
the canopy is proposed.

All the results presented in the thesis have been obtained through fully re-
solved simulations. To the best of our knowledge, this is the first time that
a simulation directly tackles the region occupied by the canopy imposing the
zero-velocity condition on every single stem by means of an immersed boundary
method, thus overcoming the problem of the canopy modelling. Conversely, the
outer flow is dealt with a large-eddy formulation that adopts a state-of-the-art
grid independent closure for the unresolved scales of motion (Piomelli et al., 2015,
Rouhi et al., 2016).

Keywords: canopy flow, scaling, large coherent structures, large-eddy sim-
ulation, immersed boundary method.



Nomenclature

Mathematical Symbols

C Convolution operator

D Divergence operator

G Gradient operator

I Interpolation operator

L Laplacian operator

N Nonlinear operator

R Real numbers set

Z Integer numbers set

Greek Characters

Γ Surface of the immersed body

∆l Grid spacing in a generic direction

∆S Average linear spacing between two consecutive filaments

∆t Time step

∆U Velocity difference between the low- and the high-speed free-stream regions
in a mixing-layer

∆U+ Roughness function

∆V Volume of a single CV

∆x Grid spacing in the streamwise direction

∆y Grid spacing in the wall-normal direction
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∆z Grid spacing in the spanwise direction

Λx Streamwise wavelength of the initial Kelvin-Helmholtz instability in a
mixing-layer

Φu′u′ Spectrum of the streamwise velocity fluctuations component

Φv′v′ Spectrum of the wall-normal velocity fluctuations component

Φw′w′ Spectrum of the spanwise velocity fluctuations component

Φu′v′ Cospectrum of the streamwise and wall-normal velocity fluctuations com-
ponents

Ω Domain size

ΩI Support size

α Stretching factor

δ Dilation parameter

δe Penetration length

δij Kronecker’s delta

δν Viscous length

δω Vorticity thickness

ε Characteristic volume related to the local dilation coefficients of the win-
dow function

Turbulence dissipation

~ε Characteristic volume vector related to the local dilation coefficients of the
window function

η Dilation parameter

κ Von Karman constant

Modified wavenumber

κx Streamwise wavenumber

κz Spanwise wavenumber

λ Solidity
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Interpolation factor

λeff Effective solidity

λx Streamwise wavelength

λz Spanwise wavelength

µ Dynamic viscosity

ν Kinematic viscosity

νt Subgrid viscosity

ρ Density

σ Dilation parameter

τ Total shear stress

τij Generic component of the viscous stress tensor

Generic component of the subgrid stress tensor

φ Projection variable

φeddy Eddy diameter

ωx Streamwise vorticity component

ωy Wall-normal vorticity component

ωz Spanwise vorticity component

Roman Characters

A Matrix of the discrete integral of the product between two window func-
tions centred in two different Lagrangian nodes

B Vogel number

Log-law parameter

CD Drag coefficient

CL Lift coefficient

CV Control Volume

D Drag
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Cylinder diameter

DE Dense

D0 Integral value of the mean drag

Dr Drag per unit length

E Computational node to the east of P

F Generic flux on the surface of a CV

Fi Vectorial field: ith component

F Force field on the Lagrangian grid

F c Convective flux

F d Diffusive flux

H Open channel height

Half channel height

Rescaling matrix

L Lift per unit length

L∗ Reference length

Ls Shear scale

Lx Streamwise length of the domain

Ly Wall-normal length of the domain

Lz Spanwise length of the domain

LP,E Length between nodes P and E

M Matrix of the moments obtained from the reproducing conditions

MD Marginally Dense

MS Marginally Sparse

N Computational node to the north of P

Number of nodes on the Lagrangian grid
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P Pressure

Computational node considered

Turbulence production

Q Generic function integrated over the volume of a CV

Re Reynolds number

Reb Bulk Reynolds number

Reτ Friction Reynolds number

Reτ,l Local friction Reynolds number

ReD Reynolds number based on the free-stream velocity and the cylinder diam-
eter

Red Reynolds number based on the mean velocity in the canopy layer and the
stems diameter

Ru′u′ Autocorrelation function of the preaveraged streamwise velocity fluctua-
tions

Rv′v′ Autocorrelation function of the preaveraged wall-normal velocity fluctua-
tions

Rw′w′ Autocorrelation function of the preaveraged spanwise velocity fluctuations

S Surface

Computational node to the south of P

Sij Generic component of the strain rate tensor

TR Transitional

U∗ Reference velocity

Ub Bulk velocity

U∞ Free-stream velocity

Ucan Mean streamwise velocity within the canopy

U Velocity field on the Lagrangian grid

V Volume
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W Computational node to the west of P

X Lagrangian grid nodes

a Ratio between the canopy solid frontal area and the volume of interest
occupied by the canopy

Adjustable parameter

b Bottom face of a CV

bi One-dimensional modified window function coefficients

bi,j Two-dimensional modified window function coefficients

bi,j,k Three-dimensional modified window function coefficients

~b Modified window function coefficients

d Filaments diameter

e East face of a CV

eη Versor parallel to the CV surface

eξ Versor directed alongside the line connecting the nodes P and E

ei Versor in the ith direction

~e1 Zeros vector with first term equal to one

f Generic integrand function

Generic function

fi Body force: ith component

f Body force vector

fa Approximated function

f(y) Shape function

h Canopy height

i Integer counter

j Integer counter
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k Integer counter

Roughness length

ks Equivalent sand roughness length

l Integer counter

m Integer counter

mi Moments obtained from the reproducing conditions

ṁ Mass flux

n North face of a CV

Interpolating polynomial degree

ni Normal versor: ith component

n Normal versor

ni Number of nodes in the streamwise direction

nj Number of nodes in the wall-normal direction

nk Number of nodes in the spanwise direction

p Pressure

q Generic integrand function

r Normalised curvilinear coordinate

r Position vector

s South face of a CV

Curvilinear coordinate

t Time

Top face of a CV

Curvilinear coordinate

u Streamwise velocity component

ui Velocity: ith component
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u Velocity vector

uτ Friction velocity

uτ,l Local friction velocity

v Wall-normal velocity component

Curvilinear coordinate

w Spanwise velocity component

West face of a CV

wδ Mono-dimensional kernel function

wδ,η Two-dimensional kernel function

wδ,η,σ Three-dimensional kernel function

wη Mono-dimensional kernel function

wσ Mono-dimensional kernel function

x Streamwise coordinate

Generic variable

xi Coordinates: ith component

x Grid (or Eulerian grid) nodes

y Wall-normal coordinate

ỹ Wall-normal coordinate with a shifted origin

yvo Wall-normal location of the virtual origin

y+
α Scaled local wall units

ys Location of a possible inviscid instability

y+
∆S Local wall units scaled with ∆S

y+
h Local wall units scaled with h

z Spanwise coordinate

Operators
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〈 · 〉 Average in time and in the two homogeneous spatial directions

〈 · 〉x Average in the streamwise (homogeneous) spatial direction

〈 · 〉z Average in the spanwise (homogeneous) spatial directions

· ′ Fluctuations value

· Quantity related to the resolved field

·̂ Fourier coefficient

·̃ Quantity related to the modified window function

Subscripts

· P Quantity related to the node P

· E Quantity related to the node E

· e Quantity related to the east face of a CV

· w Quantity computed at the wall

· h Quantity computed at the canopy tip

· in Quantity related to the inner flow, in particular computed at the wall

· old Quantity related to the previous time-step

· out Quantity related to the outer flow, in particular computed at the canopy
tip or at the virtual origin

· rms RMS value

Superscripts

· + Wall (or local wall) units

· ∗ Predicted quantity

· Γ Boundary value of a quantity on the immersed body

· n Time n





Chapter 1

Introduction

The considerable attention for bio-inspired technological advances in aeronautics,
hydraulics, chemical engineering, environmental, medical and biological sciences
highlights the growing interest in unravelling the interaction mechanisms between
complex-textured surfaces and fluid flows. Due to the ubiquitous diffusion in na-
ture, filamentous layers exposed to viscous flows constitute a compelling case
(Figure 1.1). Living organisms use surfaces with complex texture and their in-
teraction with surrounding fluid flows to achieve several goals, e.g., decrease the
skin friction drag (seal fur) (Itoh et al., 2006), control the flight aerodynamics
(bird’s feathers) (Carruthers et al., 2007), reduce the form drag (shape recon-
figuration of tree foliage) (Vogel, 1989). Living organs use ciliated walls for the
control of numerous physiological processes like locomotion, digestion, circula-
tion, respiration, and reproduction (Dauptain et al., 2008, Gardiner, 2005). In
many cases, the interaction is also characterised by an adaptive reconfiguration
of the textured surface as in the case of the lateral side of shark bodies which
are covered with a distributed layer of movable micro denticles able to pop up
when the local flow direction is reversed (Lang et al., 2014). Vegetation habitats,
occupying a large portion of the terrestrial and aquatic lands, picture another im-
portant case of fluid flows over filamentous surfaces. Forming a porous medium
called the canopy layer, plant elements alter the flow in various ways, slowing
down the flow motion by absorbing its momentum, increasing the turbulence in-
tensity of the flow by generating eddies, exchanging radiation energy and sensible
heat with the atmosphere, and serving as sources and sinks of numerous trace
gases (Lee et al., 2018). A compelling case are vegetative plants (macrophytes)
in rivers. Macrophytes significantly affect the stream, controlling the sediment
transport, creating habitats for microorganisms, influencing the nutrient trans-
port, and improving water quality (Mars et al., 1999). Their economic impact has
been estimated to be over 10 trillion dollars in the globe (Costanza et al., 2016).
The societal, technological and economic importance has driven a special interest
in unravelling the mechanisms of the interaction between the vegetation and the
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Figure 1.1: Example of filamentous surfaces exposed to fluid flows. From top-left
to bottom-right: wheat field (photo credit: Adrian Studer), city skyline (Dubai,
UAE; photo credit: Anna Shtraus Photography/Getty Images), fur of a seal
(pictures taken from harpseals.org), villi in a human small intestine (photo credit:
Alamy Stock Photo).

flow. In particular, the turbulent flows over submerged vegetation have received
much attention over the last decades. In this regime, the flow-plants interac-
tion triggers the development of large coherent structures that heavily condition
the scalar fluxes governing the nutrient exchange, sediment deposition, and the
chemical reaction within the vegetative zones.

The research on vegetative canopy flows started with the pioneering study
of Ree and Palmer (1949) where, for the first time, a methodology able to de-
termine an estimate of the drag induced by the vegetation in an open channel
was put forward, thus allowing to predict the actual discharge capacity. From
that first relevant paper, the research on canopy flows started bursting in the
fluid-mechanics field. A witness of this effect is the featuring of the topic in
three annual reviews that shape, like milestones, the present knowledge on these
flows (Finnigan, 2000, Nepf, 2012a, Raupach and Thom, 1981). Nowadays, the
state-of-the-art research seems to suggest that untangling the physical behaviour
of these flows can become an impossible task when the effect of all possible pa-
rameters are kept into account: vegetation distribution and density, macrophytes
stiffness, level of submersion and Reynolds number just to mention few of them.
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Figure 1.2: Geometrical parameters governing a canopy flow according to Nepf
(2012a). In our simulation, the filaments are randomly distributed on the canopy
bed, each one occupying an average area ∆S2.

In recent contributions on aquatic plants, Nepf (2012a) and her collaborators
proposed to classify canopy flows only considering their geometrical properties.
In particular, the ratio between the flow depth H and the canopy height h (see
Figure 1.2), i.e. the level of submersion, is used to distinguish canopies as emer-
gent (H/h = 1), shallow submerged (1 < H/h < 5) and deeply submerged
(H/h > 10). This subdivision separates canopy flows according to the relative
importance between turbulent stresses, pressure gradient and drag forces (Nepf
and Vivoni, 2000). For emergent canopies, the turbulence length scale is imposed
either by the stem diameter d or by the average spacing between filaments ∆S
(see Figure 1.2) if the latter is smaller than the former (Nepf, 2012a). In these
types of canopy flows, the momentum equation reduces to a balance between the
drag force and the pressure gradient driving the mean flow. The consequence of
this balance is a self-similar velocity profile (Lightbody and Nepf, 2006) which
only depends on the ratio between the frontal area and the canopy volume of
influence a(y) = d(y)/∆S2. Submerged canopies substantially differ from the
emergent ones. The flow approaches two limiting regimes (Nepf, 2012a, Poggi
et al., 2004), a sparse and a dense one that are obtained by varying the canopy
solidity, defined as

λ =

∫ h

0

a(y) dy, (1.1)

i.e. the ratio between the frontal area of the canopy and the bed area, that in
case of uniform diameter reduced to

λ =
d h

∆S2
. (1.2)

In particular, if λ is much smaller than a threshold value (i.e. λ � 0.1) then
the flow velocity within and above the canopy shows a behaviour comparable
to the one observed in a turbulent boundary layer over a rough wall with a
dominance of bed drag over the actual canopy form drag. Conversely, for large
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Figure 1.3: Sketch of the typical mean velocity profiles shape of canopy flows in
sparse (left image), transitional (middle image) and dense (right image) regimes.
The typical dominant turbulence scales are also sketched. Image courtesy of Nepf
(2012b).

values of λ (i.e. λ � 0.1), the canopy drag becomes larger than the one offered
by the bed (see Figure 1.3). This condition, termed dense regime, features a drag
discontinuity at the top of the canopy that, in turns, determines the appearance
of an inflection point in the mean velocity profile near the canopy edge and
another one close to the canopy bed, leading to the establishment of two separate
shear layers. This conceptual classification has been firstly proposed by Belcher
et al. (2003). Later, Poggi et al. (2004) carried out an experiment campaign
on rigid canopy flows varying the canopy rods density. The obtained results
showed that the mean velocity profile has no (or very slight) inflection point at
the canopy edge for values λ < 0.04 (sparse regime). Differently, when λ � 0.1,
the mean velocity profile displayed two pronounced inflection points, which is in
agreement with the classification by Nepf (2012a). Inspired by their experimental
observations, the authors also proposed two phenomenological models. In the
sparse regime, the flow is considered to behave like a boundary layer, being the
canopy like a canonical rough-wall, while in dense regimes, the flow structure
can be envisaged as a weighted superimposition of three different dominant flow
behaviours dictated by the actual eddy size that can locally penetrate the canopy
(i.e. inner, outer and overlap region). In the inner region, i.e. y/h � 1, for
sufficiently high Reynolds number the flow field would be characterised by the
von Kármán street vortices, size and intensity depending on the diameter of the
stems. The outer region, i.e. y/h � 2, would resemble a typical boundary layer
over a rough wall, although in shallowly submerged canopies the development
of the flow is constrained by the space available between the canopy edge and
the free surface. In canopies characterised by a large H/h ratio (H/h > 10),
the boundary layer region is clearly observable (Finnigan, 2000, Raupach et al.,
1996). Finally, in the region overlapping the innermost and outermost zones, by
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the canopy edge (y/h ≈ 1), the flow would behave as a turbulent mixing-layer
with a similar inflected mean velocity profile. Similar to the mixing-layer, the
inflection point would induce a Kelvin-Helmholtz (KH) instability that develops
large scale spanwise rollers of a size comparable to the canopy height (the so-
called canopy-scale turbulence) (Nepf, 2012a). In this dense regime, these vortices
should control the bulk momentum transport between the outer and the inner
regions. Raupach et al. (1996) observed that in a fully developed mixing-layer,
the streamwise wavelength of the initial KH instability, Λx, is preserved and
in particular, the ratio between Λx and the vorticity thickness that describes a
mixing-layer,

δω =
∆U

(d〈u〉/dy)max
, (1.3)

where ∆U is the velocity difference between the low- and high-speed free-stream
regions, falls into a specific range (Finnigan, 2000), 3.5 < Λx/δω < 5. These
authors also suggest that in canopy flows, a direct comparison with the coherent
structures appearing in canonical mixing-layer flows can be inferred in the region
close to the canopy edge. If the low-speed region velocity of the mixing-layer
is much lower than 〈u〉(h) (hypothesis verified if the canopy is very dense), the
height of this region turns out to be proportional to the thickness of the vorticity
layer developing at the canopy tip,

Ls =
〈u〉(h)

(d〈u〉/dy)(y=h)

≈ 1

2
δω. (1.4)

Raupach et al. (1996) also observed that the ratio between the streamwise wave-
length of the KH rollers and the shear scale (1.4) must fall into a specific range,
7 < Λx/Ls < 10, the validity of which was confirmed by several experiments over
a wide range of canopies with different geometric properties. These experiments
also allowed to narrow the suggested range, indicating that a robust relation is
obtained by considering Λx ' 8.1Ls. Within the same context of dense sub-
merged canopies, Nezu and Sanjou (2008) proposed a model similar to the one
proposed by Poggi et al. (2004). They also proposed the existence of three regions
with their respective vorticity structure, i.e., the emergent zone, the mixing-layer
zone and the log-law zone. These zones may not significantly overlap in space
because the production mechanism of each zone would prevent the formation of
other types of vorticity (Poggi et al., 2004).

Canopy flexibility adds further complexity to the classification of the flow fea-
tures. In fact, elastic hairy surfaces can drastically modify the turbulent struc-
tures and their entrainment inside the porous layer, depending on the natural
frequency of the filamentous surface (Sundin and Bagheri, 2019). In the elas-
tic canopy scenario, the drag exerted by the canopy layer on the mean flow is
reduced compared to the rigid case due to the reconfiguration mechanism, i.e.
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the new shape of the filaments after the flow-induced deformation (Vogel, 1984).
In fact, the filaments bend in response to the fluid motion, thus reducing the
projected area perpendicular to the flow, and assume a more streamlined shape
(Vogel, 1989). In nature, the reconfiguration is also used as an expedient to avoid
uprooting or breaking under strong currents by leaves of terrestrial or aquatic
plants (Vogel, 1984). The variation of drag can be represented as a departure
from the drag quadratic law with velocity. In particular the Vogel number B was
introduced (Vogel, 1989), such that the power law dependence of the drag with
the flow velocity reads D ∝ 〈u〉(2+B), with −2 < B < 0. Based on the stiffness of
the flexible elements, two asymptotic regimes of reconfiguration were identified.
In particular, with objects almost rigid, the reconfiguration effect is almost neg-
ligible and the quadratic law for the drag is recovered, i.e. B ≈ 0. On the other
hand, in a regime of strong reconfiguration with the flexible elements completely
bent, very specific values of the Vogel number were proposed, depending on the
initial shape considered, with the typical value B = −2/3, associated with the
loss of one characteristic length, such as the bending of a beam or a rectangular
plate along a single axis, and B = −4/3, if reconfiguration leads to the loss of
two characteristic lengths, such as the crumpling of a paper or the rolling of a
disk into a cone (Pan et al., 2014). A transitional regime of weak reconfiguration
was also considered. In particular, Pan et al. (2014) observed that the Vogel
number is maximised in this last regime in correlation with a preferential pene-
tration of strong events into the canopy layer. When these strong events transit
on the flexible canopy with sufficient momentum able to generate enough drag
to overcome buoyancy and rigidity, the filaments start to move in a synchronous
(honami for terrestrial vegetation, monani for aquatic plants) or asynchronous
(gently swaying) coherent motions of the filaments can appear (Pan et al., 2014).
In particular, Ghisalberti and Nepf (2002) observed that the frequency of the
coherent deformation of the filamentous layer was in good agreement with the
frequency predicted for the KH instability in free mixing-layers, thus implying the
high correlation between the two phenomena (Okamoto and Nezu, 2009). The
presence of honami also affects the turbulent momentum exchange and mixing
between the canopy and the overlying flow. Honami, in fact, allow the turbulent
fluxes to penetrate closer to the bed, but the resulting momentum transfer is less
efficient (i.e. lower amplitude of the turbulent shear stresses) compared with rigid
canopy scenarios (Nepf, 2012a) because the strong events are dampened by the
coherent motions of the vegetation.

Despite the amount of work done to unravel the physics of canopy flow, most of
the knowledge accumulated until recent times was based on the limited informa-
tion obtained from laboratory experiments (Finnigan, 2000, Ghisalberti and Nepf,
2002, 2004, Liu et al., 2008, Nepf, 2012a, Nezu and Sanjou, 2008, Poggi et al.,
2004, Raupach et al., 1996) (usually 2D or point-wise measurements) and few
numerical predictions based on oversimplified flow-vegetation interaction models
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(Finnigan et al., 2009, Harman and Finnigan, 2007, López and Garćıa, 2001).
In this context, high-fidelity simulations have a potential to become a power-
ful tool to study vegetative flows, providing researchers with three-dimensional
and detailed instantaneous flow representations. Indeed, in the last decade, few
large-eddy simulations (LES) of flows over dense canopies (Bailey and Stoll, 2013,
2016, Cui and Neary, 2008, Huang et al., 2009, Watanabe, 2004) modelled by a
system of volume forces have demonstrated their capability in unravelling the
morphology of the coherent structures above the vegetation layer. Untangling
the presence and the dynamics of these structures has also allowed to put for-
ward conceptual models describing their generation and evolution (Bailey and
Stoll, 2013, 2016). In particular, the recent simulations obtained by Bailey and
Stoll (2016) allowed to shed some more light on the emergence and evolution of
the coherent structures of a quasi-dense canopy flow. The authors found that
near the canopy, quasi two dimensional mixing-layer-like rollers (similar to those
proposed by Raupach et al., 1996) dominate the transport of finer vorticity in and
out of the canopy. In particular, the large, spanwise-oriented structures stretch
upward forming hairpin vortices that eventually break down, de-correlating from
the roller structures, generating a wider range of vorticity scales.

The present thesis is a contribution to the study of canopy flows that sheds
some new light on their phenomenology, their structure and on the mechanisms
that determine the genesis of the three canopy flow regimes that have been iden-
tified to take place in a rigid canopy as a function of its geometrical features
by a number of researchers in the last few decades. In particular, the solidity λ
turns out to be the parameter that allows us to discriminate the flow into three
phenomenological different regimes. Although the emergence of a certain regime
as a function of λ has been determined via experimental evidences (Nepf, 2012a,
Poggi et al., 2004), its characterisation, the exact inception condition and the
identification of the leading physical mechanisms that promote the appearance
or disappearance of the flow structures typical of each canopy flow are still open
research topics that need further clarification. Other open questions concern the
role played by ∆S and h in defining λ and the role of the filaments inclinations
(soft canopies) or their eventual flexibility. Concerning the phenomenology of the
flow, it is not well understood how the flow inside the canopy scales including the
definition and the importance of the right Reynolds numbers in every region and
the related question on the mechanisms governing the interactions between the
inner and the outer canopy regions.

The focus of this thesis is on rigid canopy flows with different relative heights
ratios, h/H. The genesis of each regime is explored in detail providing novel
insights on the flow phenomenology and the physical mechanisms promoting the
emergence of the various flow conditions described in literature when the solidity
changes.
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1.1 Outline

The outline of the thesis is as follows. In Chapter 2 we present the baseline prob-
lem set-up employed in this work. The chapter includes the physical and mathe-
matical definitions of the flow together with the adopted numerical discretisation
and its validation. Chapter 3 covers the discussion of the results obtained when
considering the flow over a wall-normal rigid canopy in a mildly dense regime as
first attempt to analyse the scaling and characterises the flow structures arising
from the canopy flow turbulence interaction. The content of this chapter reflects
a journal article recently appeared on Physics of Fluids. In Chapter 4 we discuss
how the height of the canopy layer influences the transition of the regimes fol-
lowing Nepf’s (2012a) classification. In particular we will look at the interaction
between the ”flow layers” using a detailed spectral analysis of the energy content
of the velocity fluctuations. The content of this chapter has been submitted to
Journal of Fluid Mechanics and is currently under review. Finally, some conclu-
sions will be drawn at the end of the thesis in Chapter 5 and an outlook on the
continuation of this research work will be put forward. The results produced in
this thesis have been submitted to the aforementioned archival journals and have
been presented at international conferences.

• A. Monti, M. Omidyeganeh, and A. Pinelli. Large-Eddy Simulation of an
open channel flow with submerged rigid vegetation. EPiC Series in Engi-
neering, 2018;

• A. Monti, M. Omidyeganeh, and A. Pinelli. Large-Eddy Simulation of an
open channel flow with submerged rigid vegetation. Direct and Large-Eddy
Simulation XI - Springer, 2019;

• A. Monti, M. Omidyeganeh, and A. Pinelli (2019). Large-Eddy Simulation
of an open channel flow bounded by a semi-dense rigid filamentous canopy:
scaling and flow structure. Physics of Fluids, 31(6), 065108;

• A. Monti, M. Omidyeganeh, B. Eckhardt and A. Pinelli. On the genesis
of different regimes in canopy flows: a numerical investigation. Journal of
Fluid Mechanics, under review;

• A. Monti, M. Omidyeganeh, and A. Pinelli. Large-Eddy Simulation of an
open channel flow with rigid vegetation. DLES11, Pisa (Italy), May 2017;

• A. Monti, M. Omidyeganeh, and A. Pinelli. Large-Eddy Simulation of an
open channel flow with rigid vegetation. IAHR5, Trento (Italy), June 2018;
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• A. Monti, M. Omidyeganeh, and A. Pinelli. Large-Eddy Simulation of an
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Chapter 2

Methodology

In this work, we will deal with the governing equations of the unsteady isochoric
flows, i.e. the incompressible Navier-Stokes equations. The momentum and con-
tinuity equations, in an inertial, Cartesian frame of reference, can be written
as

∂ui
∂t

+
∂uiuj
∂xj

= − ∂p

∂xi
+

1

Re

∂2ui
∂xj∂xj

+ fi,

∂ui
∂xi

= 0,

(2.1)

where ui is the ith velocity component, p is the pressure acting as a Lagrange mul-
tiplier that forces the velocity field to live in a solenoidal space, fi a volume force,
and Re is the Reynolds number. Repeated indices are summed over. To make
the set (2.1) nondimensional, we chose a reference length and velocity, L∗ and
U∗, therefore introducing the corresponding Reynolds number Re = ρU∗L∗/µ,
where ρ and µ are the density and dynamic viscosity of the fluid, respectively.
The closure of (2.1) is ensured by imposing the associated boundary conditions
and a compatible initial state.

2.1 Finite volume method

A numerical solution of the set (2.1) is obtained by applying the Finite Volume
Method to the integral form of the equations. An exhaustive discussion on this
methodology is contained in Ferziger and Peric (2012) and Rosti (2016) but, to
cover every aspect, we shall give here a brief introduction. The incompressible
Navier-Stokes equations (2.1) are firstly integrated over an arbitrary control vol-
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Figure 2.1: Left: a typical CV with the compass notation used for the neighbour
cell centres and the CV faces. Right: a typical CV with a skewed grid.

ume V ,

∂

∂t

∫
V

ui dV +

∫
S

uiujnj dS = −
∫
V

∂p

∂xi
dV +

∫
S

τijnj dS +

∫
V

fi dV,∫
S

uini dS = 0,

(2.2)

being S the surface that bounds V , ni the ith component of the outward versor
normal to S, and τij the viscous stress tensor

τij =
1

Re

(
∂ui
∂xj

+
∂uj
∂xi

)
. (2.3)

To obtain the surface integrals (the fluxes) in (2.2), we applied the Gauss’ theo-
rem, ∫

V

∂Fi
∂xi

dV =

∫
S

Fini dS, (2.4)

to a generic differentiable vectorial field Fi.

A numerical approximation to (2.2) is obtained by applying the integral equa-
tions to every contiguous, non-overlapping Control Volume (CV), in which the
solution domain has been subdivided (see Figure 2.1). This method has the pecu-
liarity to be conservative by construction, i.e., considering a CV and its neighbour,
the fluxes entering a CV are the same ones exiting the adjacent CV on the sharing
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boundary. The computational variables, ui and p, are assigned at the centroid
of every CV (colocated approach). In this way, the amount of data to be stored
and computed is minimised, and the programming is simplified. The colocated
approach has also other significant advantages when dealing with complicated
domains, or when the boundary conditions have discontinuities. However, this
approach may lead to some difficulties with the pressure-velocity coupling and
the occurrence of spurious oscillations in the pressure field, that cause a natural
nonconservation of the mass (see §2.1.1).

To find a numerical solution of the set of equations (2.2), a numerical approxi-
mation for the volume and surface integrals has to be introduced using quadrature
formulae.

Since in this thesis we will only consider CVs with cuboidal shape in three-
dimensions (quadrangular in the bi-dimensional scenario), the surface that bounds
the CV is composed of six (four) plane faces. In Figure 2.1, a typical 2D control
volume used in this work is shown together with the notation we shall use. The
extension to the third dimension is straightforward.

Integration over the volume of a CV can be estimated with a second-order
accurate approximation, obtained extending the midpoint rule in 3D cases. In this
quadrature technique, the integral is estimated as the product of the integrand
at the cell centre and the corresponding volume,

QP =

∫
V

q dV ≈ qPVP , (2.5)

where qP is the value of q at the CV centre and VP is the volume of the re-
spective cell. Having set the computational node in the centroid of the CV, no
interpolation to compute qP is needed.

The net flux through a CV boundary, instead, can be computed as the sum
of the contributions over the faces of the CV,∫

S

f dS =
∑
k

∫
Sk

f dS, (2.6)

where f is any component of a flux vector in the direction normal to the face (e.g.,
the normal convective or viscous flux in the momentum equations,

∫
S
uiujnj dS

and
∫
S
τijnj dS, respectively). Note that, for an incompressible fluid with constant

viscosity, the viscous flux reduces to∫
S

τijnj dS =
1

Re

∫
S

∂ui
∂xj

nj dS. (2.7)

The surface integral is estimated using again the midpoint rule, leading to an
approximation of second-order accuracy. As an example the flux on the east face
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(see Figure 2.1) of a rectangular cell would read as

Fe =

∫
Se

f dS ≈ feSe. (2.8)

Equation (2.8) requires the values of the variables at the face centre. To obtain
these values, we use a linear interpolation between the two nearest nodes, fE and
fP . For example, at location e we have

fe = fEλe + fP (1− λe), (2.9)

where the linear interpolation factor, λe, is defined as

λe =
xe − xP
xE − xP

. (2.10)

This method, which corresponds to the first-order approximation Taylor polyno-
mial evaluated in the neighbourhood of P , is also second-order accurate and, on
a uniform, Cartesian mesh, would correspond to the central-difference approxi-
mation of the first derivative in a finite difference framework. The assumption
of a linear variation between points P and E, provides also a simple method to
approximate the derivative, (

∂f

∂x

)
e

≈ fE − fP
xE − xP

. (2.11)

We will apply now the approximation principles just described to set (2.2), in
order to obtain a spatial discretisation of the equations. The volume integrals,
corresponding to the unsteady, pressure and forcing terms, can be easily computed
applying equation (2.5). The convective flux F c is computed by assuming that
the mass flux ṁ is already known, using the midpoint rule approximation,

F c
e =

∫
Se

uu · n dS ≈ ṁeue. (2.12)

Here, again for the sake of simplicity, we have considered only the x component
of the velocity field, being ṁe the mass flux through the e face, computed as

ṁe =

∫
Se

ujnj dS ≈ (u · n)e Se. (2.13)

The approximation of the diffusive flux, F d,

F d
e =

∫
Se

1

Re

∂u

∂xj
nj dS ≈ 1

Re
(∇u · n)e Se, (2.14)
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the gradient of u at the cell face centre is needed. First, we approximate the
derivative at the CV centre by the average value over the cell,(

∂u

∂xi

)
P

≈ 1

VP

∫
V

∂u

∂xi
dV ; (2.15)

then, the volume integral at the numerator in the above equation can be substitute
with a surface integral applying the Gauss’ theorem, i.e.∫

V

∂u

∂xi
dV =

∫
S

uei · n dS ≈
∑
c

ucS
i
c for c = e, n, w, s, b, t, (2.16)

where ei is the versor in the ith direction. Finally, the derivative can be computed
as (

∂u

∂xi

)
P

≈
∑

c ucS
i
c

VP
. (2.17)

However, interpolating the derivatives to get the cell face values may not detect
the generation of an oscillatory solution. To avoid this problem and prevent
oscillatory solutions, we use the so-called deferred correction method (Böhmer
et al., 1984), where an additional term, which is the difference between the correct
and approximated flux, is added. The deferred correction approach adjusts the
diffusive flux as follow,

F d
e = F d

e impl +
[
F d
e expl − F

d
e impl

]old
, (2.18)

where ”old” stands for a value from the previous iteration or time-step, and ”impl”
or ”expl” means that the term is computed using a central difference scheme
or the interpolated value on the face centre obtained from (2.17), respectively.
Muzaferija (1994) suggested an effective method for quasi-orthogonal grid: when
the line connecting nodes P and E is nearly orthogonal to the cell face, the
derivative with respect to n can be estimated by a derivative with respect to the
coordinate eξ along that line, using an implicit flux approximation,

F d
e impl =

1

Re
Se

(
∂u

∂ξ

)
e

=
1

Re
Se

uE − uP
‖rE − rP‖

, (2.19)

that, in particular, leads to a second order accurate approximation when the line
connecting P and E is orthogonal to the surface. When the grid is nonorthogonal,
the deferred correction term must contain the difference between the gradient in
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the n and eξ directions (see Figure 2.1). So, the diffusive flux can be written as

F d
e =

1

Re
Se

(
∂u

∂ξ

)
e

+
1

Re
Se

[(
∂u

∂n

)
e

−
(
∂u

∂ξ

)
e

]old

, (2.20)

where the first term on the right hand side is the one treated implicitly, while
the second one is the deferred correction, which is calculated using interpolated
cell centre gradients (2.17), resulting in the following expression for the diffusive
fluxes,

F d
e =

1

Re
Se
uE − uP
LP,E

+
1

Re
Se (∇u)old

e ·
(
n− eξ

)
, (2.21)

i.e. the second term is treated completely explicitly, as opposed to (2.18). If
the line connecting nodes P and E is orthogonal to the cell face, the deferred
correction term is null as expected. Note that this correction does not affect the
overall second-order accuracy of the method.

2.1.1 Time discretisation

The numerical solution of the incompressible Navier-Stokes equations is com-
plicated by the lack of an independent equation for the pressure. In fact, the
continuity equation represents only a kinematic constraint for the velocity field,
without supplying a dynamic equation for a thermodynamic variable, such as
pressure or density. Therefore, when dealing with incompressible flows, the ther-
modynamics becomes meaningless and the absolute pressure is of no significance
(only its gradient affects the flow). A way out to this problem is to construct a
pressure field that guarantees satisfaction of the continuity constraint. One of the
mainstream approaches to accomplish this possibility is to rely on the fractional
step method. This technique was firstly developed by Chorin (1968) and later
on modified and improved by several other authors. The results obtained in the
thesis rely on a modified version of the method originally proposed by Kim and
Moin (1985). The algorithm is based on the Helmholtz–Hodge decomposition of
the velocity field on a simply connected domain into a solenoidal and an irrota-
tional part, and consists of two stages: the prediction step, where the momentum
equation is solved computing a velocity field that does not satisfy the continuity
equation, and the correction step, where the previous solution is corrected by
projecting the velocity field onto a divergence-free field.

We can write the numerical discretisation of the incompressible Navier-Stokes
equations concisely as follows,

u∗ − un

∆t
= −Nl

(
un,un−1

)
+

1

Re
L (u∗,un)− G (φn) , (2.22)
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un+1 − u∗

∆t
= −G

(
φn+1

)
, (2.23)

with the constraint
D
(
un+1

)
= 0, (2.24)

where u∗ is the predicted velocity field, un the solenoidal velocity field at time n,
∆t the time step, Nl, G, D and L are the discrete nonlinear, gradient, divergence
and Laplacian operators, respectively, and φ is the projection variable. Note that,
the operators include coefficients that are specific to the selected time scheme.
The variable φn+1 to be used in the projection step (2.23) can be found by solv-
ing a Poisson’s equation for φ, obtained by applying the divergence operator to
equation (2.23), which gives

Lφn+1 =
1

∆t
D (u∗) , (2.25)

with the boundary condition
∂φn+1

∂n
= 0, (2.26)

being n the outward normal vector. So, the fractional step method used to solve
the incompressible Navier-Stokes equations can be resumed with a sequence of
phases, i.e. a prediction step (2.22), the solution of a Poisson’s equation (2.25),
and a final correction step (2.23) that ensures the divergence-free property of
the velocity field. From a computational point if view, the most expensive step
is the one related with the solution of the Poisson pressure equation. However,
when one of the directions is homogeneous, periodic boundary conditions can
be assumed and a 3D Poisson’s equation can be transformed into a series of
two-dimensional Helmholtz equations in the wave numbers space via a discrete
fast Fourier transform (FFT). In particular, assuming the spanwise direction z to
be the periodic direction, φ is transformed in the wave number space using the
discrete anti-transform

φ (x, y, z) =
N−1∑
l=0

φ̂l (x, y) exp (ilz) , (2.27)

where φ̂l is the lth Fourier coefficient of φ and N is the number of modes consid-
ered (i.e., l = 0, . . . , N − 1). Using the orthonormality of the Fourier basis, we
obtain a set of N decoupled Helmholtz equations,

∂2φ̂l
∂x2

+
∂2φ̂l
∂y2
− κlφ̂l = r̂l, (2.28)

where κl is the modified wave number and r̂l is the Fourier transform of the right
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hand side of equation (2.25). Further details can be found in Canuto et al. (2012).
When a colocated arrangement of variables on a numerical grid is used, the

divergence term of equation (2.25) requires the values of the velocities at cell faces
that can be obtained by linear interpolation. As a consequence, the Poisson’s
equation needs to be discretised on a grid which is coarser than the one used for
the predicted variables. The mismatch in the number of discrete values makes the
kernel of the pressure operator nontrivial, giving rise to pressure spurious modes.
To eliminate those modes we use a method originally proposed by Rhie and Chow
(1983). Initially, we solve the momentum equation as usual, and then, before
solving the Poisson’s equation, the mass fluxes obtained with the interpolated
velocity are corrected by subtracting the difference between the pressure gradient
and the interpolated gradient at the cell face location obtained at the previous
time step, in a sort of deferred correction fashion (2.18),

ṁe = (u · n)e Se −∆tSe
[
(pE − pP )−∇p · eξ

]old
. (2.29)

This method automatically detects the oscillations and smooths them out.

2.1.2 Numerical implementation

(a) (b)

Figure 2.2: (a) Spatial accuracy of the finite volume code. The dashed lines
represents the first and second order accuracy, while the solid line is the accuracy
of our finite volume code. (b) Scalability of the finite volume code. The dashed
line represents the reference linear value, while the solid lines are the speed-up of
our code ( nj = 194; nj = 388; nj = 776).

The discrete counterparts of equations (2.1) have been implemented in a well-
established curvilinear finite volume code (Omidyeganeh and Piomelli, 2013a,b,
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Rosti, 2016) written in Fortran 77. As previously mentioned, the code approx-
imates the fluxes using a second-order central formulation (Figure 2.2a), and
the method proposed by Rhie and Chow (1983) to avoid the pressure spurious
oscillations. The equations are advanced in time using a second-order semi-
implicit fractional-step procedure (Kim and Moin, 1985), where the implicit
Crank-Nicolson scheme is implemented for the wall-normal diffusive terms while
an explicit Adams-Bashforth scheme is applied to the other terms. The Pois-
son’s pressure equation, that needs to be solved at each time step to enforce
the solenoidal condition of the velocity field, is transformed into a series of two-
dimensional Helmholtz equations in the wavenumber space via a Fast Fourier
Transform (FFT) in the spanwise direction. Each of the resultant elliptic 2D
problem is then solved using a preconditioned Krylov method (usign the PETSc
library implementation, Balay et al., 2017). In particular, we have found the
iterative Biconjugate Gradient Stabilized (BiCGStab) method with an algebraic
multigrid preconditioner (boomerAMG, Yang et al., 2002) to behave quite effi-
ciently. The code is parallelised using the domain decomposition technique and
the message passing interface (MPI) library. Figure 2.2b shows the strong scaling
of the code, defined as the ratio between the time needed to perform one time-
step with one processor T1 and the time using n processors Tn, carried out on the
ARCHER platform. This test has been produced with a series of channel flow
simulations at friction Reynolds number, based on the mean wall-shear velocity
and the channel half height, Reτ = 1000. The test was performed on a Cartesian
grid with 10080× nj× 16 points in the x, y and z directions respectively. Differ-
ent series have been produced varying the number of points in the wall-normal
direction, nj. For every series (solid lines with symbols), the problem size has
then been kept fixed while increasing the computing nodes up to 35 (each node
has 24 CPUs). The dashed line shows the ideal strong scaling. The solid lines
overcome the ideal scaling for lower number of nodes. This effect is caused by
the nonlinearity of the memory (and cache) available increasing the number of
nodes.

2.1.3 Turbulent channel flow

We consider the flow of an incompressible viscous fluid through a channel with
smooth, impermeable walls, as sketched in Figure 2.3. We introduce the Cartesian
coordinate system shown in Figure 2.3, where x, y and z denote the streamwise,
wall-normal and spanwise coordinates, while u, v and w denote the respective
components of the velocity vector field. The lower and upper walls are placed
at a distance Ly = 2H and are located at y = 0 and y = 2H, respectively. At
the walls, a no-slip condition is imposed. It is assumed that the fully developed
turbulent channel flow is homogeneous in the streamwise and spanwise directions,
so that periodic boundary conditions can be used in these directions. The use of
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Figure 2.3: Sketch of the channel geometry.

the periodic boundary condition can be justified if the computational box is long
and large enough to include the largest eddies in the flow (Kim et al., 1987).

In order to write the problem in a dimensionless form, we select the channel
semi-height as characteristic length,

L? = H, (2.30)

and the bulk velocity as characteristic velocity,

U? = Ub =
1

2H

∫ 2H

0

〈u〉 (y) dy, (2.31)

where 〈u〉 (y) is the mean velocity in the streamwise direction and the 〈 · 〉 indicates
the average over both time and homogeneous directions, x and z. With this
choice, the Reynolds number is defined as

Reb =
UbH

ν
, (2.32)

where ν is the kinematic viscosity defined as ν = µ/ρ.
To validate the value of the code used, we select a typical channel flow simula-

tion at Reb = 2800 and we compare our results with the ones in the well-known,
seminal paper by Moser et al. (1999). The simulation is carried out on a compu-
tational grid of 256× 192× 192 points, in the x, y and z directions respectively.
The computational domain size is set to 2πH × 2H × πH in the x, y ans z di-
rections. The mesh in the nonhomogeneous direction y has been generated with
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(a) (b)

Figure 2.4: (a) Mean velocity profile in wall units. (b) The total shear stress
(solid line), decomposed in the viscous stress (dash-dotted line) and Reynolds
shear stress (dashed line) obtained from the simulation. The circles in both the
plots are used for the results by Moser et al. (1999).

the stretching function,

y =
tanh (ay)

a
, (2.33)

where a is an adjustable parameter used to modify the mesh deformation, and y
is a mesh grid with constant spacing coming from the lower to the upper wall.

With the mentioned grid, the resolution turns out to be ∆x+ ≈ 5 in wall
units in the streamwise direction, ∆z+ ≈ 3 in the spanwise direction, and with a
minimum ∆y+ in the wall-normal direction which is less than 1. The wall units,
indicated by the superscript · +, are measured in terms of the viscous length δν ,
which is defined as follows

δν =
ν

uτ
, (2.34)

where uτ is the friction velocity that, in a turbulent channel flow with solid walls,
is defined as follows

uτ =

√
ν

d〈u〉
dy

∣∣∣∣
y=0

, (2.35)

where y/H = 0 is the location of the wall. Note that the viscous length and the
friction velocity as reference length and velocity scale, respectively, are used in
the near-wall regions.

The Reynolds number based on the friction velocity uτ and the channel semi-
height is called friction Reynolds number Reτ , and is defined as Reτ = uτH/ν.
In our case, with the choice of Reb = 2800, the friction Reynolds number is
Reτ = 180.
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Figure 2.4a shows the mean velocity profiles u+ = u/uτ versus the logarithm
of the distance from the wall expressed in wall units. The solid line is used for
the results of our simulation, while the circles for the reference values of Moser
et al. (1999). The agreement is very good, even if our friction velocity is slightly
underestimated.

The total shear stress, τ , defined as the sum of the Reynolds shear stress with
the viscous stress

τ = µ
d〈u〉
dy
− ρ〈u′v′〉. (2.36)

is given in Figure 2.4b, compared with the results by Moser et al. (1999). As for
the mean velocity profile, the agreement between our simulation and the reference
data is very good.

The next section will introduce the immersed boundary method which is the
technique that has been chosen to deal with the presence of complex and/or
moving portions of the boundary.

2.2 Immersed Boundary Method

The Immersed Boundary Method (IBM) is a numerical technique able to simu-
late fluid flows around moving or deforming bodies with complex surface geometry
without requiring a computational grid that conforms to the immersed-body ge-
ometry itself. The pioneer of this numerical technique has been Charles Peskin
who, back in the seventies, was able to simulate the blood flow around the natural
mitral valve in a human heart (Peskin, 1972). As mentioned, the key feature of
this method is that the numerical grid is not required to conform to the geome-
try of the object, which is replaced by an appropriate body force distribution f
that mimics the effect of the body on the fluid by restoring the desired velocity
boundary values on its immersed surface at every time step.

This technique has drawbacks and advantages that need to be considered.
Concerning the former, surely the imposition of the right boundary conditions is
not straightforward and the impact of the method on the accuracy and conserva-
tion properties of the numerical scheme is not obvious. Moreover, a body-fitted
grid would allow a better control on the grid resolution close to the boundary of
the body. Despite this, the advantages of the IBM become huge when dealing
with complex surfaces or moving bodies. In fact, with complex surfaces, the pri-
mary advantage brought by the IBM is the simplification of the grid generation
process that could be burdensome. When it comes to moving bodies, the compu-
tational cost of regenerating the grid at every time step would significantly impact
the overall computational cost. Moreover, the IBM allows keeping a Cartesian
grid that has a significant lower computational cost per grid-point compared with
a curvilinear, body-shaped grid (Mittal and Iaccarino, 2005). Many IBMs were
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proposed in the past (a detailed overview can be found in Mittal and Iaccarino,
2005). The main difference between the methods is related with the way in which
the aforementioned body force distribution is computed. IBMs can be grouped
in two main categories, the continuous and discrete forcing ones. In the first
approach the forcing is incorporated into the continuous equations before dis-
cretisation, whereas in the second approach the forcing is introduced after the
equations are discretised. The method used in this thesis, developed by Pinelli
et al. (2010), belongs to the first group and is based on the Reproducing Kernel
Particle Method (RKPM) (Liu et al., 1996, 1995).

Next, we explain how the equations are modified to take into account the
presence of an immersed body when using the RKPM approach. Firstly, the
surface Γ of the immersed surface delimiting the body is discretised using N
markers, called Lagrangian points X. These points, in general, do not correspond
with the grid nodes x.

The discrete equations are then modified in order to accomplish the pres-
ence of the immersed body by introducing the body force distribution, as men-
tioned above. The surface that delimits the immersed body is discretised with
a Lagrangian grid using N markers that, in general, do not conform with the
underlying domain grid (Eulerian grid). To advance in time the Navier-Stokes
equations, firstly, a simple prediction step (2.22) is performed, without taking
into account the presence of the immersed object. To compute the velocity onto
the embedded geometry , U ∗, an interpolation operator, I, is applied to the
surrounding Eulerian grid points with corresponding velocity u∗,

U ∗ = I (u∗) . (2.37)

The values of U ∗ are then used to determine a distribution of singular forces
along Γ that restore the prescribed boundary values UΓ as

F ∗ =
UΓ −U ∗

∆t
. (2.38)

The force field defined over Γ is transformed into a body force distribution applied
to the fluid grid using a convolution operator, C,

f ∗ = C (F ∗) . (2.39)

Then, the prediction step of the momentum equation is repeated adding the
computed volume force field as a source term,

u∗ − un

∆t
= −Nl

(
un,un−1

)
+

1

Re
L (u∗,un)− G (φn) + f ∗, (2.40)

and a new predicted, nonsolenoidal velocity field u∗ is computed. Finally, the
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time advancement step can be completed with the usual solution of the pressure
Poisson’s equation and the predicted velocity field is projected onto a divergence-
free space. The given procedure is common to a number of IB methods. The
peculiarity of the present method concerns the way in which the operators I and
C are built.

2.2.1 Interpolation and convolution

We use the Reproducing Kernel Particle Method (RKPM) (Liu et al., 1996, 1995,
Pinelli et al., 2010, Zhang et al., 2004) to define the interpolation and spreading
operators. In this method, the approximation fa (x) of the value of a given smooth
function at point x ∈ Ω can be expressed as a kernel approximation,

fa (x) =

∫
Ω

wδ (x− s) f (s) ds, (2.41)

where wδ is a non-negative kernel function with compact support, and the sub-
script indicates the dependence of the kernel function on a parameter δ, called
dilation parameter. The latter determines the dimension of the support, ΩI .
Hence, wδ is nonzero only in a subdomain ΩI of Ω and zero elsewhere, i.e. in
ΩI \Ω. It is worth noticing from (2.41) that, if the kernel is the Dirac delta func-
tion, then fa (x) = f (x) and the considered function f is exactly reproduced.
Roma et al. (1999) proposed a discrete approximation of the kernel function,

wδ (r) =


1

6

(
5− 3|r| −

√
−3
(
1− |r|

)2
+ 1

)
, if 0.5 ≤ |r| ≤ 1.5,

1

3

(
1 +
√
−3r2 + 1

)
, if |r| ≤ 0.5,

0, otherwise,

(2.42)

with r = (x− s) /δ (see Figure 2.5a), that satisfies the following properties:

1. wδ (r) is continuous;

2. wδ (r) = 0 if |r| > 1.5;

3.
∑

l wδ (r − l) = 1;

4.
∑

l (r − l)wδ (r − l) = 0;

5.
∑

l

[
wδ (r − l)

]2
= 1/2.

The latter is valid ∀r ∈ R and ∀l ∈ Z. Figure 2.5a shows the function wδ and its
discrete counterpart (represented with dots in the figure), considering r = 0.0.
The discrete kernel function is not null only for l = −1, 0, 1.
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(a) (b)

Figure 2.5: (a) Kernel function proposed by Roma et al. (1999). (b) Taken from
Pinelli et al. (2010). The black rectangle is the cage around one of the Lagrangian
points, shown as dots. The squares represents grid points, and the black ones are
the grid points falling within the cage.

Since the previous properties involve the natural number l, they can be sat-
isfied by a function interpolated using equation (2.41) and equation (2.42) only
if the nodes are equispaced. To extend this approach to a nonuniform lattice,
following Liu et al. (1995) and Pinelli et al. (2010), we use a modified window
function w̃δ, defined as

w̃δ (x− s) =
n∑
i=0

bi (x− s)iwδ (x− s) , (2.43)

where bi are n+ 1 coefficients determined by imposing the continuous equivalent
of properties 3 and 4,

m̃i (x) =

∫
Ω

(x− s)i w̃δ (x− s) ds = δi0 for i = 0, 1, . . . , n (2.44)

where δij is the Kronecker’s delta. Note that these conditions imply the exact rep-
resentation of the elements of the canonical polynomial base {1, x, x2, . . .}. The
number n is the higher order of the polynomial that we want to represent exactly.
For example, n = 2 would lead to an exact representation of all polynomials of
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degree up to 2. Substituting equation (2.43) into equation (2.44), we obtain

m̃i (x) =

∫
Ω

(x− s)i w̃δ (x− s) ds =
n∑
j=0

bjmi+j (x) = δi0, (2.45)

for i = 0, 1, . . . , n, where we have defined

mi (x) =

∫
Ω

(x− s)iwδ (x− s) ds. (2.46)

The equations (2.45) form a symmetric linear system M~b = ~e1, where the right
hand side ~e1 is a vector, whose elements are all zeros, except the first one which
is equal to 1. From the solution of this linear system (2.45), we can obtain the
coefficients bi and, finally, we can write the corrected window function (here given
for n = 2) as

w̃δ (x− s) = [bo + (x− s) b1 + (x− s)2 b2]wδ (x− s) . (2.47)

The procedure can be extended to higher dimensions, defining the window
function as a Cartesian product of the 1D kernels. In 2D, it becomes

wδ,η (x− s, y − t) = wδ (x− s)wη (y − t) (2.48)

and in 3D

wδ,η,σ (x− s, y − t, z − v) = wδ (x− s)wη (y − t)wσ (z − v) , (2.49)

where δ, η and σ are the dilatation parameters in the coordinate directions. The
linear systems to find the coefficients bi,j and bi,j,k are obtained from the following
conditions

m̃i,j =

∫
Ω

(x− s)i (y − t)j w̃δ,ηds = δl0 for i, j = 0, 1, . . . , n, (2.50)

in 2D, where l = i+ j and i+ j ≤ n, and

m̃i,j,k =

∫
Ω

(x− s)i (y − t)j (z − v)k w̃δ,η,σds = δl0 for i, j, k = 0, 1, . . . , n,

(2.51)
in 3D, where l = i+ j + k and i+ j + k ≤ n. So, the corrected window functions
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in 2D and 3D are

w̃δ,η (x− s, y − t) = [b0,0 + (x− s) b1,0 + (y − t) b0,1+

(x− s) (y − t) b1,1 + (x− s)2 b2,0 + (y − t)2 b0,2]×
wδ,η (x− s, y − t) ,

(2.52)

and

w̃δ,η,σ (x− s, y − t, z − v) = [b0,0,0 + (x− s) b1,0,0 + (y − t) b0,1,0 + (z − v) b0,0,1+

(x− s) (y − t) b1,1,0 + (y − t) (z − v) b0,1,1 + (z − v) (x− s) b1,0,1+

(x− s)2 b2,0,0 + (y − t)2 b0,2,0 + (z − v)2 b0,0,2]×
wδ,η,σ (x− s, y − t, z − v) ,

(2.53)

respectively.

Finally, we briefly describe the implementation of the IB based on RKPM.
Around every node belonging to the Lagrangian lattice, X, we define a cage that
contains at least three nodes of the underlying Eulerian mesh in every direction,
as shown in Figure 2.5b, whose edges measure 3δ, 3η and 3σ in x, y and z,
respectively, as suggested by equation (2.42). Once the Eulerian nodes that
fall within the cage have been defined, the terms of the moments matrix (the
3D version of (2.46)) can be numerically evaluated to assemble the local window

function, using the mid-point quadrature rule. The coefficients ~b of the correction
polynomials are found by solving the symmetric linear system M~b = ~e1 for every
Lagrangian point. Due to the very low values that the window function may
take at the nodes close to the boundary of the cage, the moment matrix may
become ill conditioned. This problem is avoided by rescaling the linear system,
and solving the equivalent one HMH−1~b = ~e1, where the diagonal matrix H has
the inverse of the dilation factors in the main diagonal. In 3D, H can be written
as

H = diag

(
1,

1

δ
,

1

η
,

1

σ
,

1

δη
,

1

ησ
,

1

δσ
,

1

δ2
,

1

η2
,

1

σ2

)
. (2.54)

Once the coefficients ~b have been computed, the window function, w̃δ,η,σ, can be
used for the interpolation (2.37) and spreading (2.39) operations. In particular,
the discrete interpolation, using the midpoint rule, becomes

Ul = I
(
ui,j,k

)
=

∑
i,j,k∈ΩI

ui,j,kw̃δ,η,σ
(
xi,j,k −Xl

)
∆Vi,j,k, (2.55)
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while the spreading operation reads as

fi,j,k = C (Fl) =
N∑
l=1

Flw̃δ,η,σ
(
xi,j,k −Xl

)
εl, (2.56)

where εl is a characteristic volume related to the local dilation coefficients of the
window function. To determine the correct value of ε, first, we consider the value
of the force on the Lagrangian points, obtained by interpolation,

Fl =
∑

i,j,k∈ΩI

fi,j,kw̃δ,η,σ
(
xi,j,k −Xl

)
∆Vi,j,k, (2.57)

then, we replace fi,j,k with (2.56), thus obtaining

Fl =
∑

i,j,k∈ΩI

 N∑
m=1

Fmw̃δ,η,σ
(
xi,j,k −Xm

)
εm

 w̃δ,η,σ (xi,j,k −Xl

)
∆Vi,j,k. (2.58)

The linear system (2.58) can be written, using a matrix notation, as

A diag (~ε) ~F = ~F . (2.59)

By requiring that ~ε is independent of the actual force distribution, we obtain the
constraint det

[
A diag (~ε)− I

]
= 0, whose solution is found by solving

A~ε = ~1, (2.60)

where ~1 is a vector of ones. As shown by Pinelli et al. (2010), the conditioning
of the matrix A depends on the ratios between the distances of the Lagrangian
nodes and the local grid size. When the Lagrangian spacing is approximately
equal to the local grid size (or slightly higher), the linear system for ~ε is well
conditioned and is easily solved.

2.2.2 Flow around a cylinder

The validation of the RKPM immersed boundary implementation is done by
simulating the flow of an incompressible viscous fluid around a circular cylinder,
as sketched in Figure 2.6. We introduce the Cartesian coordinate system shown
in Figure 2.6, where x and y denote the streamwise and normal coordinates, while
u and v denote the respective components of the velocity vector field. On the
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Figure 2.6: Sketch of the computational domain around a cylinder.

lower and upper surfaces, we impose the free slip condition, i.e.

∂ui
∂y

= 0; v = 0, (2.61)

while the no-slip condition is imposed on the body surface. At the inlet, a uniform
velocity in the streamwise direction, U∞, is imposed, while a convective outflow
condition, computed using

∂u

∂t
+ (uold ·∇)u = 0, (2.62)

where uold is the velocity computed at the previous time-step, is enforced at the
outlet. The problem is made dimensionless by using the cylinder diameter as
characteristic length,

L∗ = D, (2.63)

and the free-stream velocity as characteristic velocity,

U∗ = U∞. (2.64)

Consistently, the Reynolds number is defined as

ReD =
U∞D

ν
. (2.65)

We fixed the Reynolds number to ReD = 100. The simulation is is carried out on
a lattice of 672× 671 points, that spans a computational domain of 40D × 40D.
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(a) (b)

Figure 2.7: (a) Grid in the proximity of the cylinder (nodes are plotted with a
skip index of 5). (b) The values of ε (2.60) for every Lagrangian point.

The centre of the cylinder is at (10D, 20D), and its surface is discretised with
288 equispaced Lagrangian points. In the region inside and surrounding the
cylinder, the mesh is uniform with a spacing of 0.0084D and stretches towards
the boundaries of the domain, as shown in Figure 2.7a. Figure 2.7b reports the
values of ε (2.60) computed for every Lagrangian point. Note that the square
root of the average value 0.0102D is close to the mesh spacing.

Figure 2.8a shows the instantaneous contours of the spanwise vorticity, ωz,
around the cylinder. At this Reynolds number, the wake of the cylinder is char-
acterised by the von Kármán vortex street typical of bluff bodies. Vortices of
opposite sign are shed from the cylinder periodically, at a Strouhal number equal
to St = fsD/U∞ = 0.17, which is close to the experimental value of St = 0.165
reported by Williamson (1996). The value was obtained by the spectrum of the
instantaneous lift coefficient value, CL = 2L/(ρU2

∞D) (where L is the lift per
unit length), whose time history is reported in Figure 2.8b with a solid line to-
gether with the drag coefficient, CD = 2Dr/(ρU

2
∞D) (where Dr is the drag per

unit length), shown with a dashed line. The mean lift and drag coefficients are
CL = 0.0 and CD = 1.35, respectively. The maximum absolute lift value is
Cmax
L = 0.33. These results show good agreement with the ones obtained by

Guilmineau and Queutey (2002), who found a mean drag coefficient CD = 1.35,
and a maximum lift equal to Cmax

L = 0.36 using an O-type structured grid, with a
mesh built using 120 points in the angular direction and 100 points in the radial
direction. The first points of the mesh in the fluid are located at y = 0.001D
away from the cylinder wall.

Table 2.1 reports the mean drag coefficients CD and the maximum instan-
taneous lift coefficients Cmax

L obtained from various simulations, changing the
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(a) (b)

Figure 2.8: (a) Contours of the spanwise vorticity ωz. (b) Evolution of the lift
CL (solid line) and drag coefficients CD (dashed line) over time.

Table 2.1: Aerodynamic coefficients for the cylinder simulations campaign. The
data of the reference case shown in the first row are taken from Guilmineau and
Queutey (2002).

Case N Cmax
L CD

Ref. − 0.36 1.35
Cyl-1 96 0.35 1.52
Cyl-2 144 0.35 1.43
Cyl-3 216 0.35 1.39
Cyl-4 288 0.33 1.35
Cyl-5 320 0.33 1.35

number of Lagrangian points used to represent the cylinder surface. We notice
that the cases with 288 and 320 points have the same values, meaning that 288
points are enough to correctly represent the solid cylinder at this Reynolds num-
ber.

Figure 2.9a shows the contours of the instantaneous streamwise velocity around
the cylinder. In Figure 2.9b the u and v velocity profiles on a vertical line passing
through the centre of the cylinder at x = 10D are reported using solid and dashed
lines, respectively. Both the velocity components have values close to 0 at the
cylinder boundary. The symbols represent the points of the mesh, showing the
density of the mesh in the cylinder region.
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(a) (b)

Figure 2.9: (a) Contours of the streamwise velocity u/U∞. (b) u/U∞ (solid
line) and v/U∞ (dashed line) velocity profiles at x = 10D. The red dashed
line represents the zero velocity line, while the blue dash-dotted lines mark the
boundaries of the cylinder.

2.3 Flow above a rigid canopy

We now briefly describe the numerical set-up that has been used as a common
ground to simulate the flow above an infinite rigid canopy composed of resolved
filamentous elements. In order to be able to correctly simulate this flow, avoiding
very costly simulations that would have taken very long time, we used a Large-
Eddy Simulation (LES) approach. The computational cost is lowered by reducing
the computational grid that would be necessary to catch the right dissipation
induced, for instance, by the wakes behind the canopy elements as the Reynolds
number is increased. In order to include this contribution and make sure that the
dissipation introduced in the flow field is enough, we need to add an unresolved
subgrid stress tensor to the Navier-Stokes momentum equation. In this section,
in particular, we will introduce the closure model used to deal with the subgrid
stress tensor for the LES, the grid and the boundary conditions. This section
terminates with the description of test cases used to verify and to validate the
numerical implementation.

2.3.1 Numerical set-up

We now consider an incompressible three-dimensional unsteady flow field in an
open channel, with infinite streamwise and spanwise dimensions, above a rigid
canopy. The computational domain is shown in Figure 2.10. In the LES ap-
proach, the governing equation are obtained by filtering out the smallest length-
scales from the velocity and pressure fields (Leonard, 1975). Thus, in a Cartesian
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Figure 2.10: Sketch of the computational domain (on the left) with the emphasis
on the mesh in the wall-normal direction (on the right).

reference frame – being x1, x2 and x3 (u1, u2 and u3) the streamwise, wall-normal
and spanwise directions (velocities) respectively, also referred to x, y and z (u, v
and w) – the dimensionless equations for the resolved fields are

∂ui
∂t

+ uj
∂ui
∂xj

= −∂P
∂xi

+
1

Reb

∂2ui
∂xj∂xj

+
∂τij
∂xj

+ fi,

∂ui
∂xi

= 0,

(2.66)

where Reb is the Reynolds number based on the flow depth H and the bulk
velocity,

Ub =

∫ H

0

〈u〉 dy, (2.67)

being ν the kinematic viscosity. The symbols · represents the resolved field. The
unresolved, subgrid stress tensor, τij = uiuj − uiuj, comes from the drainage of
momentum by the unresolved small scales over the resolved ones. To close the
set (2.66), τij is modelled using an eddy-viscosity assumption

τij − δijτkk/3 = −2νtSij (2.68)

where νt is the subgrid eddy-viscosity, Sij = (∂ui/∂xj+∂uj/∂xi)/2 is the resolved
strain-rate tensor. The subgrid eddy-viscosity is modelled using the Integral
Length-Scale Approximation (ILSA) model described in Piomelli et al. (2015)
and Rouhi et al. (2016), which consists of a grid-independent spatial filtering
operation.

The computational domain is meshed with uniform spacings in the homoge-
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Figure 2.11: Panel (a) Computational domain with the filaments distribution:
wall-parallel view. The red box is zoomed out in panel (b), where the random
allocation of each filament into its own tile of size ∆S ×∆S is highlighted.

neous directions and with a stretched grid in wall-normal direction to capture
the right shear in the region of a very high velocity gradient (see Figure 2.10).
The canopy elements are resolved directly introducing a set of rigid and solid
filaments of finite cross-section, related to the local grid size, which are placed
perpendicularly to the horizontal wall. To impose the boundary conditions that
each rigid filament exerts on the fluid (i.e., zero velocity) we have used the IBM
described in §2.2.

The domain has been divided into tiles of area ∆S2 and a single filament has
been placed with a random uniform distribution in each tile (see Figure 2.11).
The tile size (∆S) and the filament height h have been chosen in order to design
the canopy configuration needed, based on the solidity λ = d h/∆S2 (Nepf, 2012a,
see also Figure 1.2). The random distribution of the filaments into each tile has
been selected in order to avoid the introduction of any particular momentum
increase or decrease into the canopy layer due to the blockage effect introduced
by the filaments.

The simulations have been carried out on a periodic box in the streamwise
(i.e. x) and spanwise (i.e. z) directions. The choice of selecting a streamwise
periodic condition has been motivated by the experiments of Ghisalberti and
Nepf (2004). Although they observed the presence of a mixing-layer developing
at the canopy edge, they also suggested that its thickness was independent of
the streamwise location, meeting the conditions required by periodic boundaries.
At the bottom wall, a no-slip boundary condition is imposed while a free slip
condition, i.e. (2.61), is set at the top surface (see Figure 2.10). The simulations
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Figure 2.12: Filament cross section representation with RKPM method using one
(RKPM1) or four (RKPM4) blobs.

are driven by a uniform pressure gradient in streamwise direction that maintains
the bulk velocity Ub of the flow constant, to keep the desired Reb.

2.3.2 Assessment of the IB method behaviour

To verify the suitability of the method that we have used to enforce the zero ve-
locity conditions at the stems locations, we compare results from simulations that
have been carried out using an identical box, smaller than the case studied in this
work, with identical driving force, but with two different IB methods adopted to
enforce the presence of the stems. The reference case adopts the bilinear direct
forcing (DF) approach (Fadlun et al., 2000), that was already validated in our
code (Pinelli et al., 2017). This approach delivers a sharp zero velocity condition
on the immersed body surface but requires a significantly higher resolution in the
horizontal planes within the canopy. The second approach (RKPM) is the one
chosen for the present study. The RKPM IB method approximates each filament
using a set of nodes distributed on a formally unidimensional stem. The effective
thickness of the filaments depends on the size of the support containing the mesh
nodes surrounding each stem node. Here we consider two cases where the rep-
resentation of the cross section of the filament is kept into account either using
one single blob (a support obtained using three mesh nodes in each direction,
see Figure 2.5b – RKPM1) or using four adjacent blobs (a support made by the
union and intersection of the three mesh nodes support of the four single blobs
– RKPM4), as sketched in Figure 2.12. Since this is a purely numerical exercise,
we have considered small boxes to compare the three cases, DF vs RKPM1 vs
RKPM4. In particular, we chose a box built around a set of four filaments. The
distribution of nodes along each stem for the RKPM cases (i.e., the normal reso-
lution) is kept uniform. The cross plane resolution needs to be adopted to the IB
method of choice, as summarised in Table 2.2. The simulations are driven by the
same uniform pressure gradient, which has been chosen to be a periodic function
of time mimicking a pseudo-turbulent condition obtained from a precursor simu-
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(a) (b) (c)

(d) (e)

Figure 2.13: Methodology verification. Comparison of the inner velocity and rms
fluctuations profiles (note, the latter only in the in-canopy region) obtained by
using DF, RKPM1 and RKPM4 methods: in solid red, the curve obtained using
a typical direct forcing (DF); in solid blue and black, the curves obtained using
RKPM1 and RKPM4, respectively. The dashed line in panel (a), where the full
domain is considered, represents the canopy height h.
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Table 2.2: Verification case parameters.

DF RKPM1 RKPM4
Reb ≈ 6000 ≈ 6000 ≈ 6000
Lx/H 0.25 0.25 0.25
Ly/H 1 1 1
Lz/H 0.25 0.25 0.25
h/H 0.25 0.25 0.25
ni 168 12 24
nj 450 450 450
nk 168 12 24

lation over a large computational box. The applied forcing term gives an average
flow rate that sets the bulk Reynolds number,

Reb =
UbH

ν
≈ 6000. (2.69)

Figure 2.13 shows a good agreement among the mean velocity profiles normalised
with their value at the canopy tip, uh. However, the Reynolds stresses inside the
canopy differ considerably. In particular, the RKPM1 method is not sufficiently
accurate (solid blue lines in figure 2.13), while the approximate RKPM4 approach
allows us to reproduce satisfactorily higher order statistics of the dynamics of the
flow in the canopy region as compared to the highly resolved DF method. This
numerical test allows to determine the size of the filament diameter obtained
using a RKPM method that does not define a sharp boundary surface but rather
a set of mesh nodes where the boundary condition is only weakly enforced (Favier
et al., 2014). In particular, by comparing with the sharp DF method, we found
that the hydraulic diameter of each stem corresponds to approximately 1.15∆x,
i.e. 1.15 times the size of the finite volume cell in the horizontal direction. Using
RKPM4 instead of the fully resolved DF approach allows a massive saving in
terms of required computational resources, at least two orders of magnitude.

2.3.3 Validation case

While the baseline Navier-Stokes solver was extensively validated in the past
(Omidyeganeh and Piomelli, 2011, 2013a,b, Rosti et al., 2016), its combination
with a network of immersed filaments required further validation. To this end,
we have considered the flow over a submerged canopy that was experimentally
characterised by Shimizu et al. (1991). The parameters of the simulation used
for the validation case are provided in Table 2.3 together with the corresponding
experimental values (Shimizu et al., 1991). The velocity boundary conditions are
set to no-slip at the bed and to free slip at the top surface, while the streamwise
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Table 2.3: Validation case. The reference case is the experiment R31 carried out
by Shimizu et al. (1991). The Reynolds numbers are defined through the flow
depth H, and the bulk velocity Ub, the friction velocity computed at the wall,
uτ,in and the friction velocity computed at the canopy tip, uτ,out, from top to
bottom respectively.

Current Ref.
Reb 7070 7070
Reτ,in 535 –
Reτ,out 1310 –
Lx/H 2π –
Ly/H 1 1
Lz/H 1.5π –
h/H 0.65 0.65
λ 0.83 0.83
Resolution
∆x+

in ×∆y+
w,in ×∆z+

in 6× 0.15× 6 –
∆x+

out ×∆y+
h,out ×∆z+

out 20× 0.5× 20 –

and the spanwise directions are set to be periodic. The domain is discretised
with a Cartesian grid system with a number of nodes (equispaced in streamwise
and spanwise directions) that yield a resolution in inner viscous units of ∆x+

in ≈
6, ∆y+

w,in ≈ 0.15 and ∆z+
in ≈ 6, in the streamwise, wall-normal and spanwise

directions, respectively. The inner viscous units are defined as

∆x+
i,in =

uτ,in ∆xi
ν

(2.70)

being uτ,in = (τw/ρ)0.5 the friction velocity obtained from the wall shear stress at
the bottom wall. Alternatively, one could define the viscous units as

∆x+
i,out =

uτ,out ∆xi
ν

, (2.71)

being uτ,out the friction velocity obtained from the total shear stress on a plane
parallel to the bottom wall, located at the canopy (the region with the highest
shear stress). With this alternative definition, the resolution measured using the
viscous units computed turns out to be ∆x+

out ≈ 20, ∆y+
h,out ≈ 0.5 and ∆z+

out ≈ 20.
The comparison of the mean velocity profile with the reference experimental

data reveals to be very good, as shown in the left panel of Figure 2.14. The inset
in the same figure highlights the imposition of part of the free slip condition, i.e.
∂u/∂y = 0, that has been numerically imposed as

unj = unj−1, (2.72)



2.3 Flow above a rigid canopy 67

(a) (b)

Figure 2.14: On the left, comparison of the predicted mean velocity profile (solid
line) with the experimental values R31 of reference Shimizu et al. (1991) (dotted
curve). The inset represents the zoom of the area highlighted in red. On the
right, Reynolds shear-stress distribution predicted by our numerical method (solid
line) versus the experimental value R31 (Shimizu et al., 1991). The dashed line
represents the location of the canopy tip h.

being nj the number of points used to discretise the mesh in the wall-normal
direction. In the same way, we impose all the Neumann conditions of (2.61).
This numerical imposition of the boundary condition has been applied to all the
cases described in the next chapters.

Concerning the comparison of the Reynolds shear stress, the profiles plotted
in the right panel of Figure 2.14 show a satisfactory agreement. Some minor
inconsistencies can be observed in the velocity profile that can be attributed to
the limitations of the measurement technique in the region close to the solid
elements.

2.3.4 Summary

The most important methodological feature of the present thesis concerns the
treatment of the canopy elements. In particular, we have used an improved and
adapted version of the IB method described in §2.2 to enforce the zero-velocity
boundary conditions on every stem.

In this chapter, we have introduced the baseline IB method and the consid-
ered variations whose accuracy and reliability have been assessed by conducting
a series of numerical experiments. The preliminary part of the methodology has
concerned the set-up of a benchmark case made of a limited number of filaments
embedded in a background flow mimicking turbulent conditions. Although the
case has no physical meaning, it allowed us to assess and tune the IB method
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selected to model the presence of the stems. In particular, the verification and the
accuracy assessment has been carried out by comparing the results of two weak IB
methods (RKPM with two different numbers of Lagrangian points representing
the cross section of the filaments, termed RKPM1 and RKPM4, see §2.3.2) with
a direct IB method that guarantees a sharp imposition of the boundary condi-
tions at the stems surfaces. This systematic comparison has shown that RKPM4
delivers mean statistical values in very good agreement with the more computa-
tionally expensive predictions obtained using the direct IB method (see §2.3.2).
The assessment campaign has also allowed the calibration of the IB method. In
particular, the diameter of the stems that depends on the support and the density
of the underlying grid has been measured.

To validate the overall methodology, we compared our numerical predictions
with the measurements of Shimizu et al. (1991). The comparison between the
mean values measured in a rigid canopy and the actual predictions presented in
§2.3.3 showed a quite good agreement. All the simulations that will be presented
in the results sections have been undertaken using a very similar resolution in the
cross plane x − z as the one used to assess our predictions versus the aforemen-
tioned experiment.



Chapter 3

Flow over a rigid wall-normal
canopy in a mildly dense regime

Although some pioneering numerical simulation started to appear in the literature
(see Chapter 1), their use was limited to very dense canopy scenario, where the
flow has difficulties to seep into the thick layer of stems (Finnigan et al., 2009).
Thence, the simulations proposed in the literature do not resolve the canopy
”stem-by-stem” by imposing the required zero-velocity boundary conditions on
each element, but rather rely on modelling the presence of the canopy via a
distributed set of body forces mimicking the drag offered by the canopy on the
flow. This approach breaks down when applied to sparser canopies, where the
hydrodynamic interactions between the stems become progressively important as
the stem Reynolds number, Red(y) = Ucan(y) d/ν (being d the stem diameter and
Ucan(y) the mean streamwise velocity inside the canopy) increases and local von
Kármán wakes generate extra vorticity. Moreover, those models fail to predict
the drag close to the stems extrema because the finite size of the filamentous
elements is not kept into account by a quadratic law (Bailey and Stoll, 2013,
2016).

Differently from other authors (Sharma and Garćıa-Mayoral, 2018), the ap-
proach that we have considered in this thesis relies instead on a genuine direct
simulation inside the canopy (see §2.3). To our knowledge, this is the first sim-
ulation of a canopy flow offering such a high level of accuracy. In particular, we
report results obtained using an LES of a fully developed turbulent flow through
an open channel bounded by a shallow submerged, mildly dense, rigid vegetation
layer. The aim of the work is to explore the mechanisms that govern the interac-
tion between the turbulent flow and the canopy in a regime that, a priori, cannot
be classified as dense or sparse. Identifying the proper scaling of a turbulent
canopy flow in this regime is also one of the major motivations.

This chapter is subdivided as follows: firstly a brief set-up of the numerical
simulation, introducing the parameters used, will be presented §3.1, after that
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Table 3.1: Simulation parameters.

External Inner wall Outer wall
units units units

Reynolds Reb Reτ,in Reτ,out
number 6000 270 940
Length l/H l+in l+out
Lx 2π 1700 5900
Ly 1 270 940
Lz 1.5π 1270 4430
h 0.25 68 236
∆S Lx/48 35 133
Resolution ∆l+in ∆l+out
∆x×∆yw/h ×∆z 3× 0.3× 3 11× 0.3× 11

the results will be reported and discussed §3.2. Finally, some conclusions will be
drawn in §3.3.

3.1 Numerical set-up

The solver tackles the LES governing equations (2.66) using a second order accu-
rate, cell centred finite volume approach described in Chapter 2. As described in
§2.3.1, the domain has been divided into tiles of area ∆S2 and a single filament
has been placed with a random uniform distribution in every tile (see Figure 2.11).
The tile size (∆S) and the filament height h have been chosen in order to design a
mildly dense canopy, based on the solidity parameter, λ = d h/∆S2 (Nepf, 2012a)
(in particular, here λ ≈ 0.35 > 0.1).

The simulation has been carried out on a periodic in streamwise (i.e. x)
and spanwise (i.e. z) directions domain. The size of the computational box is
Lx = 2πH, Ly = H and Lz = 3/2πH, (a size similar to the one used by Bailey
and Stoll, 2013), being H the open channel height. At the bottom wall, a no-slip
boundary condition is imposed while a free slip condition is set at the top surface.
A sketch of an (x−y) slice of the domain with the respective boundary conditions
applied is shown in Figure 2.10.

As similarly done in §2.3.3, the domain is discretised with a Cartesian lat-
tice, equispaced in streamwise and spanwise directions and stretched in the wall-
normal direction using two tangent hyperbolic distributions, inside and outside
the canopy, ensuring that the ratio between neighbouring cells in the interval
[0, h]∪ [h,H] is kept below 4%. The stretching in the wall-normal lattice is meant
to capture the high velocity gradients at the wall and at the canopy tip.

The number of nodes chosen yields a resolution in inner viscous units of
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∆x+
in ≈ 3, ∆y+

w,in ≈ 0.3 and ∆z+
in ≈ 3, in the streamwise, wall-normal and span-

wise directions, respectively. The definition of the generic inner viscous units,
∆l+in is given in (2.70). For the region above the canopy, we considered a virtual
wall for the outer flow (later on, we will explain how the virtual wall location
has been computed) and computed the viscous length on that virtual origin, a
slightly different definition of ∆l+out from (2.71). The resolution for the outer flow
turned out to be ∆x+

out ≈ 11, ∆y+
vo,out ≈ 0.3 and ∆z+

out ≈ 11, in the streamwise,
wall-normal and spanwise directions, respectively. The subscripts w and vo indi-
cates the location of the wall and the virtual origin, respectively. The resolution
and the simulation are validated and numerically verified (see §2.3.4).

The simulation is driven by a uniform pressure gradient in streamwise direc-
tion that keeps the bulk velocity Ub of the flow, i.e. (2.67), constant and the
Reynolds number based on the bulk velocity and the domain height H has been
fixed to Reb = 6000, which is in the range of the one used in the experiments
reported in Ghisalberti and Nepf (2004). The simulation parameters are sum-
marised in Table 3.1.

The simulation ran for about 2000 hours on 96 processors of the Cray XC30
(Phase 2) supercomputer of ARCHER, the UK National Supercomputing Service.

3.2 Results

As clearly visible from Figure 3.1 (a), the mean velocity profile of a turbulent
canopy flow in a sufficiently dense regime (e.g., λ > 0.1, Nepf, 2012a) exhibits
two inflection points (Nepf, 2012a, Poggi et al., 2004), one at the edge of the
canopy and the other closer to the wall. The inflection points of the mean profile
are ultimately caused by the drag exerted by the filamentous layer on the flow that
produces a convexity in the velocity profile. The location of the inflection points
can be evaluated by determining the zeros of the average momentum balance in
the streamwise direction,

1

Reb

d2〈u〉
dy2

=
∂P

∂x
+

d〈u′v′〉
dy

+ 〈D〉. (3.1)

In the above, the symbol 〈 · 〉 represents the triple average in time and in the
two homogeneous, x and z, spatial directions (note that the average includes the
volume occupied by the stems). In the balance equation (3.1), the first term
represents the mean viscous force, the second is the mean pressure gradient, the
third is the contribution of the mean Reynolds stresses and 〈D〉 contains the
mean canopy drag. The two inflection points enclose a transitional zone between
two boundary layers located in the innermost and outermost portions of the
canopy (Poggi et al., 2004) and can be thought of as a local Couette-type flow.
Figure 3.1 (b) shows the mean velocity profile of the inner and the outer layers
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Figure 3.1: Mean velocity profiles. On the left panel (a): mean velocity profile
normalised with the outer units. The black dashed line represents the canopy
height at y = h. The red dashed line identifies the position of the virtual origin
of the outer region. On the right panel (b), the blue dotted line shows the velocity
profile of a channel flow over a smooth wall at Reτ = 950 (Hoyas and Jiménez,
2008). The black line represents the results of the present simulation scaled with
the inner and the outer wall units. The coordinate ỹ+ indicates the wall-normal
distance in wall units of the inner and outer flow from their respective origins,
i.e. ỹ+ = y uτ,in/ν in the inner region and ỹ+ = (y − yvo) uτ,out/ν in the outer
region.

made dimensionless using two different friction velocities inside and outside the
canopy. In particular, for the inner boundary layer, the friction velocity has been
defined as uτ,in =

√
τw/ρ, τw being the skin friction at the bottom wall (i.e.

y/H = 0). Differently, the external velocity profile is scaled with uτ,out, a velocity
scale computed using the total shear stress evaluated at location yvo within the
canopy. In particular, yvo is the origin of the ”external boundary layer” assumed
to obey the ”shifted” velocity log-law,

〈u〉 =
uτ
κ

log

[
(y − yvo)uτ

ν

]
+B, (3.2)

where uτ = uτ (yvo), being B a parameter that depends on the roughness of the
wall surface. Equation (3.2) is a nonlinear, implicit equation that can be used
to determine the value of yvo for any given value of κ. Table 3.2 shows a sen-
sitivity analysis of the location of the virtual origin and of the external friction
Reynolds number for values of the von Kármán constant κ chosen within the
range [0.37− 0.43], an interval covering a wide range of values obtained in exper-
iments and simulations for various geometrical configurations (Bailey and Stoll,
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Figure 3.2: Pressure gradient balance. (a) Black line: left hand side of equation
(3.3); Red line: viscous shear stress; Blue line: Reynolds shear stress; Green line:

cumulative drag component. The term, D0 =
∫ H

0
〈D〉 dy, represents the integral

of the mean drag. (b) Same as (a) but the viscous and the Reynolds shear stress
have been rescaled with the local friction velocity defined in (3.8).

2013). The variations of the coordinate of the virtual origin are within 4% of

Table 3.2: Sensitivity analysis of the virtual origin location and friction Reynolds
number as a function of the assumed constant κ in (3.2)

κ yvo/H Reτ,out
0.37 0.1075 997
0.39 0.1231 970
0.41 0.1303 948
0.43 0.1494 926

H for the considered range of κ. From now on, we consider a canonical value
of κ = 0.41 that leads to a virtual origin location at yvo/h = 0.55, as indicated
in Figure 3.1 (a) with a dashed red line. Concerning the inner flow, Figure 3.1
(b) reveals that the flow matches a typical velocity profile of a turbulent channel
flow only in the viscous sub-layer, where the wall skin friction drag dominates
the drag of the stems. As it will be further discussed, it is also noticed that the
buffer layer profile is completely altered by the combined actions of the stems-
induced hydrodynamics and by the penetration of the outer flow. Differently,
when scaling the outer flow velocity profile with the friction velocity computed
at the virtual origin, a standard boundary layer logarithmic profile is recovered.
As expected, the intercept B in equation (3.2) differs from the usual value of a
flow over a smooth wall, indicating that the canopy layer behaves like a rough
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surface as seen by the outer flow (Jiménez, 2004). Although the standard buffer
layer characteristics are altered by the presence of the stems, overall the loga-
rithmic structures of the outer flow are not significantly modified. In different
frameworks, other authors (Flores and Jiménez, 2006, Mizuno and Jiménez, 2013)
have reported the robust behaviour of the outer, large-scale motions in the loga-
rithmic layer even in presence of strong alterations of the region close to the wall
(i.e. the buffer layer). In particular, Flores and Jiménez (2006) have carried out
numerical experiments replacing the smooth-wall boundary condition with im-
posed velocity disturbances, while Mizuno and Jiménez (2013) have completely
removed the wall imposing instead a condition based on matching a prescribed
buffer layer turbulent velocity profile representative of the mean flow over rough
surfaces. Both numerical experiments showed a very robust and consistent be-
haviour of the outer flow structure independently of the imposed manipulations
at the wall.

Next, we consider the average momentum balance (3.1) integrated from the
wall to a distance y measured from the bed location,

∂P

∂x
y + τw +

∫ H

0

〈D〉 dy = µ
d〈u〉
dy
− ρ〈u′v′〉+

∫ H

y

〈D〉 dy. (3.3)

Integrating equation (3.1) again, using as an upper limit of the integral the free
slip surface location, i.e. substituting y = H in equation (3.3), the total balance
(3.3) reads as

τw +

∫ H

0

〈D〉 dy = −H∂P

∂x
. (3.4)

Therefore, equation (3.3) can be also restated as(
1− y

H

) ∣∣∣∣∂P∂x
∣∣∣∣H = µ

d〈u〉
dy
− ρ〈u′v′〉+

∫ H

y

〈D〉dy. (3.5)

In the previous equation, we have used the absolute value of the pressure gradient
to highlight that the left-hand-side of the balance (3.5) is a non-negative quantity.
The computed contributions of all the terms appearing in the balance are reported
in Figure 3.2 (a). To include the contribution of the mean drag into the shear
stress, we can reorganise equation (3.5), obtaining the balance

µ
d〈u〉
dy
− ρ〈u′v′〉 =

(
1− y

H

) ∣∣∣∣∂P∂x
∣∣∣∣H − ∫ H

y

〈D〉 dy = f(y)

(
1− y

H

) ∣∣∣∣∂P∂x
∣∣∣∣H,
(3.6)



3.2 Results 75

In (3.6), f(y) is a dimensionless shape function defined as

f(y) = 1−
∫ H
y
〈D〉 dy(

1− y

H

) ∣∣∣∣∂P∂x
∣∣∣∣H . (3.7)

The balance provided by equation (3.6) allows introducing a local friction velocity
(Sharma and Garćıa-Mayoral, 2018, Tuerke and Jiménez, 2013) that incorporates
the contribution of the mean drag in the total stress as

uτ,l(y) =

√
f(y)

ρ

∣∣∣∣∂P∂x
∣∣∣∣H =

√
µ dy〈u〉 − ρ〈u′v′〉
ρ(1− y/H)

. (3.8)

It is easy to verify that, when the total stress is scaled by uτ,l(y), the non-
dimensional linear profile (1 − y/H) is recovered as also apparent in Figure 3.2
(b).
Figure 3.3 shows the diagonal Reynolds stresses outside and inside the canopy,
with a standard and a local normalisation (i.e. obtained using as a velocity scale
uτ,l(y) given in (3.8)). Outside the canopy, the velocity fluctuations reveal a clear
resemblance with the ones in an open channel flow over a rough surface, as for
example reported by Scotti (2006). The behaviour of the diagonal stresses out-
side the canopy highlights once more that, away from the wall, surface roughness
or even filamentous canopy elements have little effects on the structures of the
external flow. In Figure 3.3, we also compare the normal Reynolds stresses dis-
tribution, made non-dimensional with both the local friction velocity, as in (3.8)
and with the outer friction velocity uτ,out = uτ (yvo). The figure also displays how
the canopy influences the velocity fluctuations in the wall-parallel directions by
weakening the streamwise component, while significantly increasing the intensity
of the spanwise fluctuations. This redistribution of velocity fluctuations is gen-
erated by the presence of the stems that disrupt the coherence of the streamwise
velocity fluctuations while acting as obstacles that continuously deviate the flow
in the spanwise direction. This mechanism is confirmed by the distribution of
the vertical component of the velocity fluctuations that remain almost unaffected
by the blocking effect of the obstacles, showing the ”bi-dimensional” effect of the
stems in the innermost region of the canopy. From Figure 3.3, one can also assess
the range of validity of the proposed scaling (3.8) that holds valid until the canopy
edge region is approached. A possible explanation of this deficiency can be based
on the unbalance between turbulence production and dissipation as already sug-
gested for flows with an imposed, discontinuous body force by Tuerke and Jiménez
(2013). From Figure 3.4, we notice a production peak close to the bed that, differ-
ently from a standard channel flow, drops soon after having reached its maximum
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Figure 3.3: Velocity fluctuations RMS. Comparison between the present case
(solid black) normalised with the local friction velocity uτ,l (thicker line) and
the reference values from the turbulent channel flow at Reτ = 950 (Hoyas and
Jiménez, 2008) (blue dotted). The difference in v′+ at the top of the domain is
due to the different boundary conditions (open channel vs. channel flow) applied
for the simulation. The thin black solid line represents the RMS of the velocity
fluctuations normalised with the outer friction velocity uτ,out evaluated at yvo.
The black and red dashed lines refer to the same locations as in Figure 3.1.

value. A second broader peak is also present just outside the canopy region indi-
cating that a production mechanism, similar to the one found at the bed (i.e. a
wall production cycle, Jiménez and Pinelli, 1999) also operates by the interface
canopy-outer flow. In Figure 3.5, the joint p.d.f. of u′ and v′ at a distance from
the virtual origin y+

out = (y − yvo) uτ,out/ν = 48 is shown together with the same
quantity measured at a similar distance (i.e. y+ = 35) from a smooth wall in a
plane turbulent channel flow (Ong and Wallace, 1998). The comparison between
the two indicates that the canopy tip behaves as a permeable wall for the outer
flow inducing a shift of the peak towards the second quadrant (i.e. positive v′),
while in an impermeable wall, where the sweeps events are more probable than
ejections, the maximum is located in the fourth quadrant. Also note that, in
Figure 3.5, the local maximum probability associated with negative streamwise
velocity fluctuations occurring when the wall-normal velocity fluctuations are al-
most zero, is related to the presence of the canopy stems. Another interesting
observation concerns the peaks of the velocity fluctuations whose locations match
the ones of the reference channel flow data (Hoyas and Jiménez, 2008) although
the extrema are located inside the canopy. From Figure 3.6, displaying the pro-
files of the vorticity fluctuations, it is noticed that the location of the peak of the
wall-normal component ωy,rms is only slightly shifted outwards when compared
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Figure 3.4: Turbulent kinetic energy production to dissipation ratio. Thick solid
line: ratio normalised with the local friction Reynolds number, defined as Reτ,l =
uτ,lH/ν, where uτ,l is as given in (3.8); Thin solid line: same quantity normalised
with the outer friction Reynolds number; Dashed horizontal line: production to
dissipation equilibrium condition (i.e. 1/Reτ,l); Blue dotted symbols are plane
turbulent channel flow data at Reτ = 950 (Hoyas and Jiménez, 2008).

to the set of channel flow reference data (Hoyas and Jiménez, 2008). The short
distance between the peaks further emphasises the analogy between the outer
region of the canopy flow with the flow developing over a rough wall. This shift
between peaks can be attributed to the variation of the spanwise velocity fluc-
tuation in the streamwise direction (i.e. ∂w/∂x) caused by the presence of the
filamentous canopy. The instantaneous snapshots in Figure 3.7, representing the
velocity fluctuations on a plane parallel to the wall within the canopy and close to
the bed, clearly illustrate the effect of the stems that deviate the flow in a sinuous
fashion in the spanwise and streamwise directions contributing to the increase of
the coherence of the spanwise velocity fluctuations w′.

Further insight on the emergence and on the organisation of the large coherent
structures that characterise the flow can be obtained by considering the spectral
energy content and the two-point velocity autocorrelation function of the velocity
components. The top row of Figure 3.8 and of Figure 3.9 shows the premultiplied
spectra and the two-point autocorrelation functions of the velocity fluctuations
as a function of the distance from the bed and as a function of either wavelengths
λx or the streamwise separation ∆x. Figure 3.8 was obtained by averaging the
spectra of the velocity fluctuations in the spanwise direction, while Figure 3.9
was obtained by pre-applying the spanwise average operator, 〈 · 〉z, to the ve-
locity fluctuations and then computing the two-point autocorrelation function
in the streamwise direction. As an example, the autocorrelation function in the
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Figure 3.5: Joint probability density function of streamwise and wall-normal
velocity fluctuations. Solid black iso-lines: actual predictions at y/H = 0.18
(y+
out = 48) of (u′+, v′+) = (u′/uτ,l, v

′/uτ,l). Dotted red lines: isolines from Ong
and Wallace (1998) at y+ = 35 in a smooth-wall channel flow. Range and in-
crements as in figure 10(a) of Ong and Wallace (1998). Dashed red lines are the
Cartesian axes passing through the origin.
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Figure 3.6: Black lines refer to the actual canopy simulation while the blue ones
are taken from the channel flow data of Hoyas and Jiménez (2008). Solid line
ω′+x,rms, dashed-dotted line ω′+y,rms, dashed line ω′+z,rms. The wall units are based on
the local friction velocity uτ,l.

streamwise direction of the pre-averaged u component, 〈u′〉z, can be computed as

Ru′u′ =
〈 〈u′〉z(0, y) 〈u′〉z(∆x, y) 〉

〈u′〉2z(0, y)
. (3.9)

This technique is useful to evince the presence of the largest structures that popu-
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(a) (b)

Figure 3.7: Panel (a): contours of instantaneous streamwise velocity fluctuations
inside the canopy, on a plane located at y/H = 0.02. Panel (b): spanwise velocity
fluctuations on the same plane as (a)

late the flow. The second row of the same two figures report the same quantities,
averaged (or pre-applying the streamwise averaged operator, 〈 · 〉x, to the veloc-
ity fluctuations, as described above) in the streamwise direction as a function of
either the spanwise wavelength λz or the separation ∆z. A quick glance at Fig-
ure 3.8 reveals the presence of fluctuations maxima taking place at three different
spatial location along the wall-normal direction. Some extrema are localised in
the outer region, while others lie within the canopy either in its core or in the
bed proximity. With the aim of simplifying the interpretation of the spectra, we
also consider Figure 3.10 illustrating the same premultiplied spectra as a func-
tion of the streamwise and spanwise wavelengths at three wall-normal locations
(y/H = 0.02, y/H = 0.18 and y/H = 0.63) roughly corresponding to the centres
of the three aforementioned regions (no space average involved). Concerning the
outer region, panel (g) in Figure 3.10 and panel (a) of Figure 3.8 and Figure 3.9
reveal the presence of highly elongated streamwise velocity streaks that span a
third of the domain in the spanwise direction (panel (d) of Figure 3.9). The
large outer velocity streaks are also clearly visible in the instantaneous snapshot
of Figure 3.11. The v′ and w′ spanwise energy maxima located just above the
canopy displayed in panels (e) and (f) of Figure 3.8 show that the outer veloc-
ity streaks are connected with a system of streamwise vortices with an average
streamwise length of roughly one channel height H (see panels (b) and (c) of the
same figure), separated by about the same distance λz ' H in the spanwise di-
rection (see panels (h) and (i) of Figure 3.10). The association between the outer
streamwise velocity streaks and the aforementioned system of quasi-streamwise
vortices is also revealed by the joint p.d.f. of the streamwise and wall-normal
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(d) (e) (f)

Figure 3.8: The panels in the first row are the premultiplied spectra of the velocity
components as a function of the streamwise wavelength and the wall-normal co-
ordinate: Panel (a): κxΦu′u′/u

2
τ,l; Panel (b): κxΦv′v′/u

2
τ,l; Panel (c): κxΦw′w′/u2

τ,l.
The panels in the second row are the premultiplied spectra of the velocity compo-
nents as a function of the spanwise wavelength and the wall-normal coordinate:
(d): κzΦu′u′/u

2
τ,l; Panel (e): κzΦv′v′/u

2
τ,l; Panel (f): κzΦw′w′/u2

τ,l. The levels range
from 0 (white) to 0.6 (dark) with spacing of 0.05. The red dashed line represents
the canopy height. All the spectra are normalised with the local friction velocity.

vorticity components (Ong and Wallace, 1998) shown in Figure 3.12. The joint
p.d.f., computed for two x − z planes above the virtual origin at y+

out = 48 and
541, clearly indicates a preference for ωx and ωy to occur with the same sign at
the same time (note that ωx and ωy represent footprints of the streamwise ve-
locity streaks and of the quasi-streamwise vortices typical of wall-bounded flows,
Jiménez and Pinelli, 1999). The streamlines obtained by space averaging the v
and w component using a time snapshot plotted on the y–z side of the compu-
tational box in Figure 3.11, offer a clear visual, further evidence of the presence
of these streamwise vortices that penetrate vertically the whole canopy (see pan-
els (d), (e) and (f) of Figure 3.9 as well). The existence of streamwise coherent
velocity streaks above the canopy has been reported in previous studies (Bailey
and Stoll, 2016, Finnigan et al., 2009). They also highlighted the co-existence
of the outer velocity streaks with large hairpin vortices whose heads are sequen-
tially pointing upward and downward. On one hand, our results seem to confirm
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Figure 3.9: Contour maps showing the variation of the two-point autocorrelation
functions of the velocity fluctuations. Panels (a), (b) and (c) in the first row refer
to the streamwise auto-correlations of u, v and w respectively. Panels (d), (e) and
(f) in the second row refer to the spanwise auto-correlations of u, v and w respec-
tively. The contours are spaced by 0.1, starting from one. The negative values are
plotted with a dashed line. The red line represents the zero-level. The leftmost
column shows the streamwise velocity component Ru′u′ , the central one shows
the wall-normal component Rv′v′ , and the rightmost column shows the spanwise
component Rw′w′ . Note that, in the panels of the first row, the spanwise average
operator was pre-applied to the velocity fluctuations, and then the streamwise
autocorrelation function was computed. In the panels of the second row, instead,
the streamwise average operator was pre-applied to the velocity fluctuations, and
then the spanwise autocorrelation function was computed (see equation (3.9) as
an example).

that the outer flow is characterised by the typical structure found in the loga-
rithmic region of wall-bounded flows. The latter is known not to be very much
affected by the geometric details of the solid boundary, presenting an almost
universal behaviour (Flores and Jiménez, 2006, Mizuno and Jiménez, 2013), thus
verifying the Townsend’s similarity hypothesis (Townsend, 1976). Concerning the
sequence of hairpin vortices described by the aforementioned authors, the results
of our simulation do not display any clear evidence of their presence. This may
be attributed to the short distance between the canopy tip and the upper bound-
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Figure 3.10: Contour maps showing the variation of the two-dimensional premul-
tiplied velocity fluctuations spectra κxκzΦu′iu

′
i
/u2

τ,l at three selected distances from
the bottom wall. Panels (a), (b) and (c) are computed at y/H = 0.02 and refer
to the streamwise, wall-normal and spanwise components, respectively. Panels
(d), (e) and (f) represent the same spectra at y/H = 0.18 while the spectra in
panels (g), (h) and (i) have been computed at y/H = 0.63. The short green
lines mark the average filament spacing ∆S, while the short red line marks the
filament height h. The darkest colour represents the highest value, the grey levels
range from 0 to 0.1 with iso-levels sampled at each 0.01 interval.
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Figure 3.11: Instantaneous isosurfaces of streamwise velocity fluctuations. The
streamlines drawn on the lateral sides have been obtained by averaging the in-
stantaneous velocity fluctuations along the normal to the considered faces: the
spanwise direction (〈u〉z, 〈v〉z) for the left lateral side and the streamwise di-
rection (〈v〉x,〈w〉x) for the frontal face. The plane indicated with the blue line
corresponds to the tip of the canopy, while the black line indicates the bottom
solid wall.

ary that would constrain the emergence of these structures in their wholeness by
inhibiting the formation of their heads. The energy distribution in the region
occupied by the core of the canopy is shown in the central row of Figure 3.10 that
reveals a bimodal pattern. While the footprints of the outer structures are still
visible for all velocity fluctuations (i.e. peaks at λx/H = λz/H = O(1) for v′ and
w′, and λx/H ∼ 2 − 3, λz/H = O(1) for u′), a set of new maxima is generated
for shorter wavelengths. While the peak of w′ seems to be inherited from the
outer vortices that penetrate the canopy (see also panel (f) of Figure 3.9), the
peak of u′ in panel (d) of Figure 3.10 that penetrates down to the canopy bed
(see panel (a) of the same figure) is related to the appearance of a system of
spanwise oriented vortices. This observation is confirmed by two-point velocity
autocorrelation functions, especially the one that concerns the normal-to-the-wall
component that is less affected by the filtering effect of the canopy stems. In-
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Figure 3.12: Joint probability density function of ωx and ωy. Panel (a), on the left
is computed on a x− z plane at y/H = 0.18 (y+

out = 48); Panel (b) is for a x− z
plane at y/H = 0.63 (y+

out = 541). The vorticity components are normalised with
ν/u2

τ,out. Range and increment in (a) are [0:5:50], in (b) [0:10:50]. Red dashed
lines are the Cartesian axes through the origin.

deed, panel (b) of Figure 3.9 shows that, inside the canopy, the v′ correlation
goes from positive to negative values within a streamwise correlation length of
roughly one canopy height that matches the one corresponding to maximum of
the energy content of v′ (i.e. the location of the internal maxima in panel (e) of
Figure 3.10). This system of vortices is not easily detectable from the stream-
wise two-point autocorrelation of u′ partly because of the disrupting effect of the
canopy elements and partly because modulated in the spanwise direction by the
presence of the outer structures: note that the spanwise correlation length of u′

in panel (d) of Figure 3.9 matches the ones of panels (e) and (f) in the same row
of the same figure. Nonetheless, the existence of organised short spanwise rollers
is confirmed by visual inspection of the streamlines plotted on the x–y side of
the box in Figure 3.11 (streamlines obtained by spanwise averaging the u′ and v′

component) and by the instantaneous isocontours of the streamwise velocity com-
ponents close to the bed, revealing a strong directional coherence albeit chopped
by the sweep-ejection action of the outer quasi-streamwise vortices. Moreover,
the appearance of spanwise oriented rollers is a ubiquitous characteristic of all
flow fields over textured surfaces (e.g. canopies (Nepf, 2012a), porous (Jiménez
et al., 2001) or ribletted walls (Garćıa-Mayoral and Jiménez, 2011)) that induce
an inflection point in the mean velocity profile. In our case, the inflection point
is generated by the discontinuous drag imposed by the canopy on the mean flow
and is located at its tip. As already pointed out by Finnigan et al. (2009), the
inflection point leads to a Kelvin-Helmholtz instability that induces the forma-
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tion of large spanwise rollers that are advected downstream by the mean flow.
Finally, the panels (a) and (c) of Figure 3.10 show two intense peaks associated
energy content of u′ and w′ fluctuations very close to the impermeable bed. These
peaks are due to the presence of the wall that inhibits all wall-normal velocity
fluctuations to take place. Because of the solenoidal condition on the flow field,
strong accelerations or decelerations of the wall-normal velocity imply an insur-
gence of in-plane motions (i.e. ∂yv = − (∂xu+ ∂zw)). In particular, the sweeps
and ejections induced by the outer quasi-streamwise vortices and the spanwise
rollers generate coherent u′ and w′ patterns that are clearly visible in Figure 3.7.

3.3 Conclusion

We have carried out a resolved numerical simulation of a turbulent flow over a
rigid canopy with the aim of exploring the structure of the flow generated by the
interaction of a pressure-driven open channel flow with a mildly dense filamen-
tous layer covering the solid wall. This condition, often termed transitional (Nepf,
2012a), is achieved when the ratio between the in-plane solidity and the depth of
the canopy is fixed to a value that corresponds to a physical situation in which the
outer, turbulent structures partially penetrate the canopy and the contribution to
the total drag offered by the canopy itself is comparable in magnitude to the one
generated by the shear at the bed. The main conclusions of our work are of both
methodological and physical character. Concerning the simulation methodology,
it should be highlighted that the numerical technique that has been presented
and validated in this work allows carrying out accurate and resolved canopy flow
simulations efficiently. Indeed, to the authors’ knowledge, this is the first time
that a canopy-flow simulation in which the physical boundary values are imposed
stem-by-stem has been reported in the literature. The other main conclusions
concern the physical characterisation of the flow. In the particular regime that
has been considered the flow can be roughly divided into three regions. The outer
region shows strong similarities with high Reynolds number wall turbulence de-
veloping over a rough, solid boundary. The classical logarithmic velocity profile
can be obtained by introducing a classical shift of the origin of the wall-normal
axis (i.e. a virtual origin located inside the canopy). The scalings of the outer
fluctuations, normalised in wall units based on the friction velocity obtained from
the total stress at the virtual origin, also present a reasonable collapse over data
obtained by other authors in the logarithmic layer of turbulent channel flows at
moderately high Reynolds numbers. The structure of the outer flow resembles
the one found within the logarithmic layer of wall-flows at Reynolds numbers suf-
ficiently high to allow a scale separation: long elongated velocity streaks flanked
by vortices oriented along the streamwise direction. The streamwise vortices are
particularly intense and, because of the high wall-normal permeability of the



86 Flow over a rigid wall-normal canopy in a mildly dense regime

canopy, they fully penetrate the canopy eventually reaching the bed. The intra-
canopy-region velocity distribution scales reasonably well with a friction velocity
distribution obtained locally along the wall-normal direction. The mean velocity
profile shows two inflections points. The top one is imposed at the canopy tip by
the drag discontinuity and, in turns, it is known to trigger a Kelvin-Helmholtz
instability producing a series of counter-rotating spanwise rollers that may form
a mixing-layer of quasi-constant thickness above the canopy (Nepf, 2012a). Ac-
cording to some authors, this system of spanwise vortices would induce a series
of alternating regions of upwash and downwash events that would locally bend
up or bend down the rollers forming the so-termed head-up, head-down hairpin
vortices (Finnigan et al., 2009). Our simulation seems to offer an alternative
point of view in which the spanwise vorticity formed as a consequence of the
inflectional instability loose part of its coherence as a result of the strong sweeps
and ejections generated by the outer, quasi-streamwise vortices. The existence or
the prevalence of this mechanism or of the one based on the self-induced lifting
and depression of the rollers proposed by other authors probably depends on the
parameters defining the canopy solidity. Finally, the region in the proximity of
the bed is again strongly influenced by the outer structures which provoke vig-
orous inrush and ejections towards and from the bed that encounter almost no
resistance in the wall-normal direction. The wall-normal velocity field induced by
the outer flow interacts with the impermeable bed conditions forming organised
streamwise and spanwise velocity patterns in the proximity of the wall.



Chapter 4

On the genesis of different
regimes in canopy flows: a
numerical investigation

In this chapter, we report the analysis on wall-resolved large-eddy simulations of
flows over submerged rigid canopies. All the numerical predictions have been ob-
tained considering the same nominal bulk Reynolds number (i.e. Reb = UbH/ν =
6000, H being the open channel depth and Ub the bulk velocity). We used the
methodology described in §2.3 to tackle the canopy flows. Four canopy configu-
rations have been considered. All of them share the same in-plane solid fraction
while the canopy to channel height ratios have been selected within the range
h/H = [0.05, 0.4]. The lowest and the highest values lead to flow conditions
approaching the two asymptotic states that in literature are usually termed as
sparse and dense regimes (see Nepf, 2012a). The other two h/H selected ratios
are representative of transitional regimes, a generic category that incorporates all
the non-asymptotic states. While the interaction of a turbulent flow with a fila-
mentous canopy in the two asymptotic conditions is relatively well understood,
not much is known on the transitional flows and on the physical mechanisms
that are responsible for the variations of flow regimes when the canopy solidity
is changed.

The aim of this work has concerned the exploration of the effect of the canopy
solidity on the intra-canopy flow, on the outer flow and on their mutual interac-
tion. We will also provide clear evidence on the key role played by the relative
positions of the mean profile inflection points and the location of the wall origin
(origin seen from the outer flow). Indeed, the relative locations of these points
ultimately determine the flow structure that results from the interaction between
the outer turbulence and the canopy layer. The work also seeks to unravel the
appropriate scales that govern the canopy flows. Thus, new phenomenological
models will be proposed based on the universality of the flow found. In fact, de-
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spite the proliferation of canopy-flow models (Bailey and Stoll, 2013, Nepf, 2012a,
Poggi et al., 2004, Raupach et al., 1996), the identification of the dominant ve-
locity and length scales in different canopy-flow regimes is still an open research
topic. In particular, the insurgence of different intra-canopy flows at interme-
diate flow regimes is still not well understood. In this transitional regime, the
outer structure can deeply penetrate in the bed-normal direction and the long
stems redistribute the outer momentum that rushes normally into the canopy
into in-plane, small scale motions. At the same time, the presence of the Kelvin-
Helmholtz generated spanwise vorticity rollers, their modification by the outer
flow structures and their role in redistributing the local momentum (Monti et al.,
2019) are features that in the past have not been investigated in-depth.

The Chapter is organised as follows. In §4.1, we will briefly report the infor-
mation on the simulations carried out, while in §4.2, we will describe and analyse
the obtained results, focusing on the statistical analysis and then identifying the
structures that populate the flows. Finally, some conclusions will be drawn in
§4.3.

4.1 Numerical set-up

The solver tackles the LES governing equations (2.66) using a second order ac-
curate, cell centred finite volume approach described in Chapter 2. To distribute
the stems on the bottom wall, we subdivided the latter in a Cartesian mesh of
uniform squares of area ∆S2 (see Figure 1.2). Each filament was attached or-
thogonally to each squared tile, with its local positioning determined according
to a uniform random distribution (see Figure 2.11). We decided to use a stem
random assignment to minimise channelling effects within the canopy, i.e. prefer-
ential flow corridors in an aligned positioning, or repeating, ordered flow patterns
as in a staggered configuration. The tile size and the filament height h can be
adjusted to match any solidity value λ, that for stems of uniform cross-sectional
area (i.e. constant stem diameter d ) is defined as

λ =
d

∆S

h

∆S
. (4.1)

In particular, by keeping constant the tiles and the stems cross-sectional areas
while varying the height of the canopy (i.e. of each stem), we selected four solid-
ity values λ, that would nominally lead to different canopy-flow-regimes (Nepf,
2012a), as detailed in table 4.1. For all the four cases, the computational box size,
made dimensionless with the open channel height H is Lx/H = 2π, Ly/H = 1
and Lz/H = 3/2π (a size similar to the one used by Bailey and Stoll (2013) for
the case of a nominally dense canopy flow regime). The numerical domain is set
to be periodic in both the stream- (i.e., x) and the spanwise (i.e., z) directions.
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Case Canopy height h/H Solidity λ Nominal Regime
MS 0.05 0.07 marginally sparse
TR 0.10 0.14 transitional
MD 0.25 0.35 marginally dense
DE 0.40 0.56 dense

Table 4.1: Considered canopy configuations: canopy solidity and corresponding
nominal regimes (Nepf, 2012a).

The choice of selecting a streamwise periodic condition, even for the densest case,
has been motivated by the experiments of Ghisalberti and Nepf (2004). Although
they observed the presence of a mixing-layer developing at the canopy edge, they
also suggested that its thickness was independent of the streamwise location. At
the bottom wall, i.e. the canopy bed, a zero-velocity boundary condition is im-
posed. Conversely, to model an open channel flow condition, a free slip condition,
i.e. (2.61), is set at the top surface (see Figure 2.10 for a sketch of the domain).
The four simulations have been carried out using a Cartesian grid with a uniform
distribution in the x and z directions, and with a mildly stretched distribution
of the nodes in the bed-normal direction. While the grid on each x − z plane
has been kept the same for the four simulations, the wall-normal distribution has
been adjusted to adapt to the variations of the height of the stems. The number
of nodes in the x and z directions is set to ni = 576 and nk = 432, respectively.
In the y-direction, the number of grid points ranges from a minimum value of
nj = 180, for the sparse (MS) case, to a maximum of nj = 340 for the densest
canopy (DE). With this choice, the x and z spacings in wall units inside the
canopy are kept below 3, i.e. ∆x+

in = ∆x · uτin/ν ≤ 3 and ∆z+
in = ∆x+

in ≤ 3 (note
that uτin =

√
τw/ρ, where τw is the wall shear stress at the bed, i.e. at y = 0).

In the portion of the flow outside the canopy, the x and z spacings verify the
inequalities ∆x+

out = ∆x · uτout/ν ≤ 11 and ∆z+
out = ∆x+

out ≤ 11, thus well within
literature values (Kim et al., 1987). Here uτout is a friction velocity determined
using the total stress in the y location corresponding with the origin of the outer
logarithmic boundary layer (further explanations are provided in §3.2 and in the
next section). Concerning the grid spacings along the y-direction, two tangent
hyperbolic distributions have been used inside and outside the canopy ensuring
that the ratio between neighbouring cells in the interval [0, h] ∪ [h,H] is kept
below 4%. Table 4.2 summarises the adopted y−spacings inside and outside the
canopy. Further discussion on the suitability of the numerical scheme and on the
adopted resolution inside and outside the canopy can be found in §2.3.4.

Finally, concerning the global channel flow equilibrium, a uniform pressure
gradient is applied in the streamwise direction. In particular, at each time step,
the mean streamwise pressure gradient is adjusted to fix the volumetric flow rate
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Case Spacing at y = 0 Spacing at y = h Spacing at y = H
MS ∆y = 10−3 H ∆y = 7.0× 10−4 H ∆y = 3.2× 10−2 H
TR ∆y = 10−3 H ∆y = 5.0× 10−4 H ∆y = 2.0× 10−2 H
MD ∆y = 10−3 H ∆y = 3.0× 10−4 H ∆y = 2.3× 10−2 H
DE ∆y = 10−3 H ∆y = 2.5× 10−4 H ∆y = 2.0× 10−2 H

Table 4.2: Details on the nodes distribution in the wall normal direction for the
four simulated canopies. Note that for cases MS and TR the max(∆yj+1/∆yj) ≤
1.03, ∀j, while for cases MD and DE the max(∆yj+1/∆yj) ≤ 1.04, ∀j.

to a constant value leading to a bulk Reynolds number of Reb = Ub H/ν = 6000
(being Ub the bulk velocity of the flow, defined as in (2.67)) very close to the one
used in the experimental work of Ghisalberti and Nepf (2004).

Each simulation ran for about 2000 hours on 96 processors of the Cray XC30
(Phase 2) supercomputer of ARCHER, the UK National Supercomputing Service.

4.2 Results

To shed some light on the physical mechanisms that are responsible for generating
different flow regimes when varying the solidity λ of a canopy as defined in (4.1),
we have considered the four cases detailed in Table 4.1. As already mentioned,
the four different values of λ are attained by varying the canopy height while
keeping constant both the ratio between the filament diameter and the size of the
tile occupied by each stem. In particular, in (4.1) we have set ∆S/d ≈ 5.5.

4.2.1 Mean velocity profiles

We start by considering the effect of λ on the mean velocity profiles. In a non-
sparse regime (i.e., λ > 0.04), the mean velocity profile of a turbulent canopy
flow is known to exhibit two inflection points (Nepf, 2012a, Poggi et al., 2004),
one at the edge of the canopy and the other closer to the wall. The mean velocity
profiles obtained for the four considered λ values, shown in Figure 4.1, exhibit
the aforementioned pair of inflection points. The inflection point at the canopy
edge is due to the drag discontinuity arising as a consequence of the sudden
end of the stems, while the inner inflection point is a result of the merging of
the linear, close-to-the-bed velocity profile with the convex shape of the mean
velocity distribution at the canopy tip. The location of the inflection points can
be determined by computing the zeros of the average, streamwise momentum
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Figure 4.1: Mean velocity profiles for the four cases. The inset in each plot shows
an enlarged view. The profiles are ordered left to right, top to bottom according
to the λ value of each case: (a) MS (λ = 0.07 and h/H = 0.05); (b) TR (λ = 0.14
and h/H = 0.10); (c) MD (λ = 0.35 and h/H = 0.25); (d) DE (λ = 0.56 and
h/H = 0.40). The three lines parallel to the bed indicate: the location of the first
inflection point (dotted line), the location of the virtual origin (dashed line) and
the location of the canopy height, i.e. the second inflection point (dash-dotted
line).
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balance,
1

Reb

d2〈u〉
dy2

=
∂P

∂x
+

d〈u′v′〉
dy

+ 〈D〉. (4.2)

In the above equation, the symbol 〈 〉 denotes the triple average operator ob-
tained by taking the mean values in time and along the two homogeneous spatial
directions, x and z. The first term of (4.2) represents the mean viscous force,
the second the mean pressure gradient, the third the mean Reynolds stresses and
the last one keeps into account the global mean drag offered by the canopy stems
which is discontinuous at y = h/H. The two inflection points enclose a transi-
tional zone, where a mixing-layer-like flow develops between the innermost and
outermost boundary layers (Poggi et al., 2004). Along the wall-normal direction,
the origins of these two boundary layers are located at the solid wall and just
below the canopy tip, respectively. The wall location seen by the outer flow, yvo,
representing the position of the virtual origin of the boundary layer developing
above the canopy, is determined by enforcing the mean outer flow to take on a
canonical logarithmic shape,

〈u〉 =
uτ,out
κ

log

(
(y − yvo)uτ,out

ν

)
+B. (4.3)

The above is one of the standard modifications of the boundary layer log laws
for flows over rough surfaces (Jiménez, 2004). In (4.3) κ is the von Kármań
constant (e.g. κ ∈ [0.37, 0.42]), B a parameter that depends on the roughness
of the wall surface (B = 5.2 for a smooth surface) and uτ is the friction velocity
computed using the value of the total stress at the virtual origin yvo, i.e. uτ,out =
(τ(yvo)/ρ)1/2, being

τ(yvo) = µ
d〈u〉
dy

∣∣∣∣
y=yvo

− ρ〈u′v′〉(yvo). (4.4)

The logarithmic law (4.3) represents an implicit equation that can be solved in
yvo once the total stress profile is known (see also §3.2 for further details). The
virtual origin of the external flow and the locations of the two inflection points
of the mean velocity profile of a canopy flow in a non-sparse configuration, and
particularly their mutual signed distances, constitute a signature of the actual
canopy flow regime as they ultimately define the level and the nature of the in-
teraction between the inner and the outer boundary layers. In particular, in our
methodology, the canopy becomes sparser as its height h is shortened leading to
a shorter transition region that can be also interpreted as an increase in the size
of the band where the internal and external boundary layers overlap. By further
decreasing the canopy height, the virtual origin asymptotically moves towards the
canopy bed and the two inflection points gradually merge and eventually disap-
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Figure 4.2: (a) Mean locations of the two inflection points and of the virtual
origin along the canopy stem (virtual origin: ; inner inflection point: ;
outer inflection point: ). (b) Location of the virtual origin in a reference
system whose zero is set at the canopy tip. Note that the small dot on the left of
the horizontal axis (bottom in (a) and top in (b)) represents a flow on a smooth
surface (i.e. no-canopy).

pear by collapsing into a single location. This condition is typical of very sparse
canopy regimes (i.e. λ < 0.04) or, more in general, of turbulent boundary layer
flow over rough surfaces. Figure 4.2(a) shows the locations of the two inflection
points and of the virtual origin found for the four λ cases under consideration.
Note that the location of the virtual origin has been determined by setting the von
Kármán constant to the canonical value κ = 0.41 in (4.3) (selecting any other
value within the range 0.37 ≤ κ ≤ 0.42 gives a variation of the virtual origin
within 5% of h/H, see Monti et al., 2019). As anticipated, Figure 4.2(a) shows
that, as the height of the canopy (or, equivalently, λ) is reduced, the wall-normal
location of the virtual origin moves closer to the wall and the innermost inflection
point approaches the canopy edge where the outer inflection point is situated (i.e.
at y = h). For the sparser cases that we have considered (i.e. the MS and TR
cases of Table 4.1), the location of the virtual origin is below the close-to-the-bed
inflection point indicating that the outer boundary layer has a strong interaction
with the intra-canopy flow despite the fact that the values of λ for the MS and the
TR cases are above the sparse/dense threshold identified by Nepf (2012a). The
above observation and, more in general, the variations of the distances of the two
inflection points and of the virtual origin from the bed, caused by different values
of λ reported in Figure 4.2(a) suggest that a sharper and more stringent criterion
to separate the flow regimes, in particular providing a lower bound for the incep-
tion of the dense regime, can be based on the signed distance between yvo and the
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∆S − d < h

∆S − d = h
∆S − d > h

Figure 4.3: Sketch of the largest vortex size able to penetrate from the outer layer
into the canopy. The vortex is represented as a circle with diameter ∆S− d or h.

coordinate of the inner inflection point. Figure 4.2(b) shows the variations of the
distance between the virtual origin and the outer inflection point (i.e. the canopy
tip). From the figure, it appears that h− yvo approaches a constant value as the
canopy becomes denser (i.e. increasing the λ value). This asymptotic saturation
of the virtual origin location corresponds to a decoupling of the outer flow from
the inner one: for large values of λ, the outer turbulent flow does not see a canopy
but a rough wall with a roughness height that becomes progressively independent
of an increasing λ value.

A heuristic model able to explain the variations of the y coordinates of the
virtual origin and of the mean profile inflection points can be developed by con-
sidering the ratio of the size of the close-to-the-canopy, outer eddies and the
geometric dimensions of the canopy. In particular, (∆S−d)/h defines the magni-
tude of the in-plane canopy voids as compared to the canopy depth. If ∆S/h < 1
(for slender canopies, ∆S/h >> d/h), only vortices of diameter φeddy < O(∆S)
will be able to fully penetrate the canopy. However, in this circumstance, the
typical length scale close to the canopy tip is ∆S itself (by the stems tips, eddies
are produced at a length scale comparable to their spacings) and therefore only
eddies with a size ' ∆S can be hosted in-between the stems and the virtual
origin of the outer flow will saturate close to the edge at a distance from the tip
of O(∆S) (see Figure 4.3 for a conceptual sketch). The given description is not
very dissimilar from the d-type roughness scenario proposed by Perry et al. (1969)
that envisaged a situation in which stable vortices forms in-between roughness
elements. Conversely, if ∆S/h > 1, the mean canopy separation ∆S will no more
fix the allowed eddy size, and it will be the distance from the cores of the eddies to
the bottom wall to determine how deep the outer eddies can leak into the canopy.
In this condition, for sufficiently tall canopies, yvo becomes a function of h/H
(or λ), a situation that recalls a k-type roughness behaviour (Schultz and Flack,
2009). Using the heuristic argument explained above, we can estimate the value
of the canopy height for which the virtual origin collapses into the innermost
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inflectional point, i.e. when ∆S − d ' h:

∆S − d
h

' 1 → h

H
' (1− 0.182)

∆S

H
→ h

H
' 0.1063 → λ ' 0.15. (4.5)

In the above equation we have used the specific geometric data of the present
simulation (i.e. d ' 0.182∆S, ∆S ' 0.13H and λ = 0.14h/H). The above
estimate matches the numerical value corresponding to the crossing between yvo
and the internal inflection point of Figure 4.2, showing that the simple argument
used above can be used to predict the threshold h/H value for dense canopies.
Note that this value is also the value indicated by Schlichting (1936) to distinguish
between the sparse and the dense k− type roughness regimes. For values of h/H
exceeding the threshold value, the canopy becomes denser and the depth of the
virtual origin saturates towards a value ' ∆S. In these conditions, for large
values of h/∆S, the outer and the internal boundary layers are almost decoupled
with very weak interactions in-between them.

4.2.2 Statistical characterisation of the intra-canopy and
of the outer flows

To identify the structure of the regions of a canopy flow, we start by considering
the mean velocity profiles in semi-logarithmic axes, as shown in Figure 4.4. The
profiles are made dimensionless using two different friction velocities inside and
outside the canopy. In particular, for the inner boundary layer, the friction
velocity is defined as uτ,in =

√
τw/ρ, being τw the skin friction at the bottom

wall at y/H = 0, while the external velocity profile is normalised with a different
scale, uτ,out, computed using the total stress evaluated at the virtual origin yvo as
in (4.4).

Figure 4.4 reveals that, close to the bed, the velocity profiles obtained with
different values of λ collapse together only in the viscous sublayer region where
the wall friction dominates over the drag of the stems, independently of the
canopy sparsity. Further away from the bed, the shape of the buffer layers is
highly affected by the value of λ that determines the importance of the local
hydrodynamic effects versus the inrush of momentum from the outer layer. Unlike
the intra-canopy flow, when the outer flow velocity profiles are scaled with uτ,out
and with the corresponding viscous length, δν = uτ,out/ν, a universal distribution
following standard logarithmic profiles of boundary layers is recovered for all λ
values. The effect of the canopy sparsity is limited to the shift of the logarithmic
layer revealing that, seen from the outer flow, the canopy simply acts as a rough
wall with the equivalent surface elements height determined by the value of λ. In
fact, the logarithmic law for a turbulent boundary layer over a rough wall can be
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Figure 4.4: Mean velocity profiles normalised using both the inner wall units
(below y+

in ' 4) and the outer ones (above y+
out ' 10). The abscissa ỹ+ represents

the wall-normal coordinate rescaled with the inner or outer wall units considering
an origin located either on the canopy bed or at the virtual origin yvo: i.e. ỹ+ =
uτ,iny/ν or ỹ+ = uτ,out(y − yvo)/ν, respectively. The solid black line without
symbols refers to the profile of the plane channel flow at Reτ = 950 by Hoyas and
Jiménez (2008). Symbols as in Table 4.1.

written as
U+
out = κ−1 log(y+

out) + 5.5−∆U+
out, (4.6)

where ∆U+
out, called roughness function (Hama, 1954, Jiménez, 2004, Perry et al.,

1969), is a wall-offset that keeps into account the increased friction due to rough-
ness. Figure 4.4 shows that the roughness function increases monotonically with
the value of λ (or, equivalently, with h/H). This behaviour is related with the
previously discussed saturation of the location of the virtual origin for increasing
λ values that, in turns, determines the roughness solidity seen by the outer flow,
i.e. λeff = d (h − yvo)/∆S2. Apart from the roughness function ∆U+, the effect
of the roughness on the mean flow can be measured by other, interchangeable
quantities (Jiménez, 2004) such as the effective sand roughness ks (Nikuradse,
1933) defined via the modified log-law,

U+
out = κ−1 log

(
y − h
ks

)
+ 8.5. (4.7)

From (4.6) and (4.7), we can express the roughness function ∆U+
out as a function

of ks, i.e.

∆U+
out = κ−1 log

(
y − yvo
y − h

k+
s

)
− 3. (4.8)

By assuming that the outer turbulent flow sees the canopy as a rough wall, the
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Figure 4.5: Equivalent sand roughness ks/k seen by the outer flows of the canopy
versus the effective solidity λeff. As in Jiménez (2004, p.179, Figure 1a), ks/k has
been corrected with the drag coefficients CD computed at the stem mid location
where the local flow is unaffected by the ends. Symbols as in Table 4.1.The dash
line represents a theoretical case for which ks/k ∝ λeff.

portion of the canopy that goes from the virtual origin to the canopy tip can be
interpreted as a surface covered by cylindrical obstacles characterised by height,

k+ =
kuτ,out
ν

=
(h− yvo)uτ,out

ν
. (4.9)

All the cases that we have considered are characterised by a value of k+ � 1,
a situation in which the elements drag dominates on the viscous one, i.e. k-
type roughness (Jiménez, 2004). This type of roughness is characterised by two
regimes defined by the functional relationship between the ratio ks/k and the
solidity λeff (Schlichting, 1936). For values of λeff . 0.15, ks/k linearly increases
with λeff, while for λeff & 0.15, ks/k decreases with λ because the elements start
shielding one another (Jiménez, 2004) (in particular ks/k ∝ λ−peff , with p ∈ [2, 5]).
Figure 4.5 shows the ratio ks/k as a function of λeff for the four cases considered
in this work. Note that the ratio ks/k has been corrected with a drag coefficient
(here computed as a wall-normal average of CD(y) in the middle of the canopy
region, obtained from the quadratic law of the drag). See also Figure 4.6 as
reference, directly adapted from Figure 1 (a) of Jiménez (2004).

All the considered cases appear to belong to the sparse–k-type regime with
the values corresponding to h/H = 0.25 and h/H = 0.40 in the range of the
sparse-dense transition. Also note that, when yvo saturates, h − yvo ' h and
λeff ' λ, thus, although the definition of dense and sparse canopies differs from
the one used for the rough surface seen by the outer flow, when approaching the
dense regime for the outer flow the separation value between rough regimes can
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Figure 4.6: Equivalent sand roughness for various k-surfaces versus the solidity
λeff, corrected with empirical drag coefficients CD. Image adapted from Jiménez
(2004, p.179, Figure 1 a). See Jiménez (2004) for further details on the symbols
and CD adopted.

be inferred using indifferently λ ' 0.15 or λeff ' 0.15.
Next, we turn our attention to the comparison of the Reynolds stresses for the

four canopies that we have considered. Before presenting the obtained distribu-
tions, we need to define velocity and length scales enabling a direct comparison
between all the considered canopies. Concerning the selection of a velocity scale,
we will use a local friction velocity, defined as

uτ,l(y) =

√
µ dy〈u〉 − ρ 〈u′v′〉
ρ (1− y/H)

, (4.10)

that incorporates the effect of the mean drag exerted by the canopy on the flow
(we also define an associated Reynolds number, Reτ,l(y) = uτ,l(y)H/ν). The use
of (4.10) to make the total stress nondimensional allows the latter to recover a
linear distribution (Monti et al., 2019). The appropriateness of using a local fric-
tion velocity as a scaling factor has been previously appraised by Jiménez and
co-workers for both smooth and manipulated walls (Jiménez, 2013, Tuerke and
Jiménez, 2013). The well behaved scaling properties of (4.10) is also confirmed
by the present results. In particular, Figure 4.7 shows a comparison between the
diagonal Reynolds stresses normalised with the external friction velocity uτ,out ob-
tained using the total stress at the virtual origin (4.4), as opposed to the ones ob-
tained non-dimensionalising with the local friction velocity defined in (4.10). The
panels on the left column of Figure 4.7 clearly show that the diagonal Reynolds
stresses obtained for different values of λ do not collapse within the canopy with
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Figure 4.7: Diagonal Reynolds stresses distributions versus the wall normal, ex-
ternal coordinate y/H: panels (a) and (b): streamwise component; panels (c)
and (d): wall-normal component; panels (e) and (f): spanwise component. The
distributions on the left panels are made non-dimensional with the friction ve-
locity computed at the virtual origin, uτ,out, whilst the distributions in the right
panels are rescaled with the local friction velocity uτ,l (4.10). Symbols as in Table
4.1; line styles are: u′rms; v′rms and w′rms.
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the value of the maxima that clearly decreases monotonically as the density of the
canopy is increased. The alternative scaling (4.10), used in the panels of the right
column shows how the systematic decrease of the peak values of the stresses was
basically due to the mean drag contribution. In fact, when the latter is kept into
account using the local friction velocity (4.10), the distribution of the diagonal
Reynolds stresses show a quite different behaviour: the distribution of the two
sparser cases almost collapse for all three components, the peak of the streamwise
component increases in the two denser case, the maximum of the wall-normal fluc-
tuations increases in the two denser cases while the spanwise fluctuations show
a different behaviour decreasing in the denser cases. Concerning the choice of
the length scale, we have considered an outer and an inner scaling. The former
uses the external length scale (in our case, the depth of the open channel H),
the latter employs an inner scale in the order of the viscous length δν = ν/uτ .
The appropriateness of H as a length scale for the outer flow is clearly visible in
Figure 4.7 that shows a collapse of all the diagonal stresses distributions for y/H
coordinates moving away from the canopy, independently of the choice of the ve-
locity scale. A detailed comparison of the distribution of the velocity fluctuations
is shown in Figure 4.8, where reference data from the plane channel flow (smooth
walls) of Hoyas and Jiménez (2008) at Reτ = 950 have also been included (note
that the curves do not match when y/H → 1 since we are comparing an open
channel flow with half of the domain of full plane channel flows). The marginal
difference in the distribution of the diagonal Reynolds stresses far from the wall
between a rough and a smooth wall was also highlighted by Scotti (2006), that
analysed the flow over a set of transitional, k-rough surfaces. Concerning the most
relevant internal length scale, the choice is between several possibilities since the
filamentous layer covering the bed introduces several geometrical and physical
scales, e.g. the height, h, and the diameter of the stems, d, the average sepa-
ration between them, ∆S, the location of the mean velocity profile’s inflection
points and the location of the virtual origin for the outer flow, yvo. In an attempt
to find a length scale delivering a unified behaviour, we introduce a scaled viscous
unit, y+

α , defined using the localised friction velocity (4.10) and a stretching factor
α:

y+
α =

1

α

uτ,ly

ν
. (4.11)

The role of α in the above definition is to adapt the scaling to conditions that
depend on the sparsity of the canopy (i.e. on the eventual saturation of length
scales that depend on the value of the solidity λ). Figure 4.9(a) reveals that in
denser canopies the stretching factor should be set to the nondimensional canopy
height, h/H, meaning that the nondimensional wall-normal location should read
as

y+
h =

uτ,ly

ν

H

h
=
y

h
Reτ,l. (4.12)
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Figure 4.8: Wall-normal distribution of the diagonal Reynolds stresses in the
outer region (i.e. above the canopy) made dimensionless with the outer friction
velocity uτ,out as a function of the wall-normal coordinate y/H. Line styles as in
Figure 4.7 and open symbols as in Table 4.1. The green lines refer to the diagonal
Reynolds stresses of a channel flow over a smooth wall at Reτ = 950 (Hoyas and
Jiménez, 2008).

Thus, overall, for dense canopies (e.g. cases MD and DE), the normal coordinates
should be made dimensionless considering two decoupled regions as the intra-
canopy and outer flows asymptotically converge towards two independent wall
flows bounded by surfaces located at the bed and at yvo, respectively. Eventually,
the two flows share a small overlapping region of thickness h − yvo where they
interact. For sparser canopies, e.g. cases MS and TR, Figure 4.9(b) suggests that
an appropriate value for the stretching factor α could be the average stem-to-stem
spacing ∆S/H. With this choice, the dimensionless wall-normal coordinates read
as

y+
∆S =

uτ,ly

ν

H

∆S
=

y

∆S
Reτ,l. (4.13)

Although in this work we did not consider the effects of the variations of in-plane
density (i.e. ∆S), in view of the previously exposed conceptual model and previ-
ous works on k-type roughness (Leonardi et al., 2007), it seems physically sound to
assume that it is the ratio ∆S/h that sets the size of the eddies that can penetrate
the canopy in sparse regimes. Figure 4.9 also shows that the intermediate case
MD, where h/H = 0.25, exhibits a consistent profile independently of the chosen
α factor, possibly because of the transitional nature of this specific case. As a
further confirmation of the validity of the proposed scalings, in Figure 4.9(c) we
present the wall-normal distribution of the viscous and Reynolds shear stresses
(made dimensionless with ρu2

τ,l) versus the nondimensional coordinate y+
α defined

in (4.11). Choosing the values of α defined above for the denser and sparser cases,
we obtain a good collapse for all the distributions.
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Figure 4.9: (a) and (b). Wall-normal distributions of the diagonal Reynolds
stresses within the intra-canopy region. The stresses are made dimensionless
using the local friction velocity uτ,l, defined in (4.10). In (a) only the dense
cases MD and DE are represented using as a wall-normal coordinate the non-
dimensional variable y+

h , defined in (4.12). In (b) the distributions are shown
for the sparse cases (MS and TR) and for the marginally dense case MD using
as a wall-normal coordinate the dimensionless variable y+

∆S defined in (4.13).
(c) Wall-normal distributions of the viscous and of the Reynolds shear
stresses . made dimensionless with the local shear ρu2

τ,l. The wall-normal
coordinate corresponds to the non-dimensional variable y+

α , as in (4.11), with
α = h/H for the denser cases MD and DE, and α = ∆S/H for the sparser
cases MS and TR. For all panels, symbols as in Table 4.1 and line-styles as in
Figure 4.7.
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We close the discussion on the mean behaviour of the considered canopy flows
by providing a brief, comparative analysis of the distribution of the velocity fluc-
tuations. Further analysis of the contribution of the flow structures on the genesis
of the fluctuations will be provided in the next section. Figure 4.9 shows that the
maxima of the streamwise velocity fluctuations decrease as the canopy sparsity
is increased and that the most sparse case MS is characterised by an iso-valued
distribution spanning almost all the canopy. This behaviour is consistent with
the alternating presence of the stems that locally decelerate the flow driven by
the imposed pressure gradient. Clearly, the value of λ determines the intensity of
the stems blockage effect that becomes weaker for sparser conditions. Concerning
the wall-normal component of the Reynolds stresses, it is observed that the two
denser cases DE and MD present a wall-normal distribution that substantially
does not differ from the one of a standard channel flow (see for example Hoyas
and Jiménez, 2008). This behaviour is easily understood by noticing that denser
canopies can be regarded as porous media with a high wall-normal permeability
that does not hinder sweeps and ejections from and towards the outer flow to take
place in a medium bounded by a distant, impermeable bed. The sparser cases
show a different behaviour with the wall-normal velocity fluctuations decreasing
when the solidity is decreased and the impermeability condition becoming more
influential for the outer flow. Concerning the spanwise velocity fluctuations, a
nonmonotonic behaviour when the value of λ is decreased is noticed. In partic-
ular, we notice an overall increase in 〈w′w′〉 when moving from the DE to the
MD case, an almost unchanged distribution for the transitional cases MD and
TR, and a final decrease in the MS case. The increase in the spanwise velocity
fluctuations observed in the transitional cases, MD and TR, have been explained
by Monti et al. (2019) in terms of spanwise deviations of the intra-canopy flow
that preferentially penetrates the layer through wall-normal sweeps and ejections
generated by the dynamics of the outer, logarithmic layer structures.

4.2.3 The structures of the canopy flows

Further insight on the emergence and on the organisation of the large coher-
ent structures that characterise the various flow regimes when different solidities
are considered can be obtained by looking at the spectral energy content of the
fluctuations of the velocity components.

We start by considering Figure 4.10 that shows the magnitude of the one-
dimensional premultiplied cospectra of the Reynolds shear stress, |κxΦu′v′/u

2
τ,l|

(or |κzΦu′v′/u
2
τ,l|, where uτ,l(y) is the local friction velocity defined in (4.10)), as

a function of the distance from the bed and of the streamwise (top row) and the
spanwise (bottom row) wavelengths. Each row incorporates four panels corre-
sponding to the cospectra that have been obtained by increasing the λ values.
In this figure and in the premultiplied spectra of the velocity fluctuations (to
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Figure 4.10: Magnitude of the premultiplied cospectra of the streamwise and
spanwise velocity fluctuations u′ and v′ as a function of the wall-normal coordi-
nates in outer units. Panels (a) to (d) refer to the dependence form the streamwise
wavelengths (in outer units) for increasing values of λ (i.e., λ = 0.07, 0.14, 0.35
and 0.56); contour levels range in the interval [0, 0.4] with an increment of 0.02.
Panels (e) to (h) refer to the spanwise wavelengths for the same increasing set
of λ values; contours extracted in the [0, 0.5] range with an increment of 0.05.
Vertical solid lines: red is h/H, green is ∆S/H. Horizontal dashed lines: yellow
is the location of the inner inflection point, red is the canopy height (outer inflec-
tion point), cyan is the location of the virtual origin; the green dotted line is the
location of maximum curvature of the mean velocity profile.
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be presented later), the wavelengths and wall-normal distances have been made
nondimensional with the open channel height, H. Both the cospectra and premul-
tiplied spectra have been plotted using log-log axes to facilitate the interpretation
of the results within the intra-canopy region.

Observing the cospectra of Figure 4.10 obtained for different solidities, we
notice that all of them present at least two distinct peaks whose locations move
towards the y coordinates of the two inflection points of the mean velocity pro-
file (yellow and red horizontal, dashed lines in every subfigure) as λ is increased.
More precisely, the outer peak approaches asymptotically the tip of the canopy
for increasingly dense conditions with the associated streamwise and spanwise
wavelengths of sizes O(H). Since 〈u′v′〉 is a good indicator of spanwise-oriented
coherent structures, the outer peak suggests the presence of a set of rollers centred
at the canopy tip. Their presence is confirmed by visual inspection of the stream-
lines plotted on the x–y side of the computational boxes of the four considered
cases in Figure 4.11 (streamlines obtained by spanwise averaging an instantaneous
realisation of the u′ and v′ velocity components). The appearance of spanwise ori-
ented rollers is a ubiquitous feature of many flow fields over textured surfaces that
induce an inflection point in the mean velocity profile, e.g. flow over canopies, see
Nepf (2012a) or Finnigan et al. (2009), or porous and ribbleted walls, see Jiménez
et al. (2001) and Garćıa-Mayoral and Jiménez (2011). In our case, the outer in-
flection point is generated by the discontinuous drag imposed by the canopy on
the mean flow at its tip. As observed by other authors, the resulting scenario
resembles the one of a plane mixing-layer (Finnigan, 2000, Nepf, 2012a, Raupach
et al., 1996) sharing with it also the appearance of a system of spanwise rollers
that form as a consequence of a Kelvin-Helmholtz instability. The streamwise
wavelength Λx associated with these rollers in dense canopy flows (i.e. λ� 0.1)
has been found to be within the range 7 < Λx/Ls < 10 (Raupach et al., 1996),
where Ls is a measure of the vorticity thickness above the canopy tip,

Ls =
〈u〉tip
∂y〈u〉tip

=
1

2
δω. (4.14)

Raupach et al. (1996), after analysing data from several experiments on dense
canopy flows, provided a sharper estimate as Λx = 8.1Ls. In Figure 4.12, we
compare this last estimate of Λx with the one computed in our canopy flows
associated with the outer peaks of Figure 4.10, as a function of the shear length,
Ls. Clearly, the estimate provided by Raupach et al. (1996) holds only for the two
denser scenarios while for the two sparser canopies MS and TR the correlation
is not verified showing a linear relation Λx = 19.5Ls − 4. A possible explanation
for this inconsistency can be attributed to the fact that the mean velocity in the
inner canopy region can no more be neglected and that (4.14) is no more a valid
estimate of the vorticity thickness above the canopy.
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(a) (b)

(c) (d)

Figure 4.11: Instantaneous isosurfaces of streamwise velocity fluctuations. The
streamlines drawn on the lateral sides have been obtained by averaging the in-
stantaneous velocity fluctuations along the normal to the considered faces: the
spanwise direction (〈u〉z, 〈v〉z) for the left lateral side and the streamwise direc-
tion (〈v〉x, 〈w〉x) for the frontal face. (a), (b), (c) and (d) correspond to the
cases MS, TR, MD and DE respectively. The plane indicated with the red lines
corresponds to the tip of the canopy, while the blue line indicates the plane at a
distance yvo from the bed.
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Figure 4.12: Streamwise wavelength Λx of the large coherent motions triggered
by the Kelvin-Helmholtz instability versus the shear length Ls. The solid line
represents Λx = 8.1Ls (Raupach et al., 1996), whilst the dashed line represents
Λx = 19.5Ls − 4. Symbols as in Table 4.1.

Concerning the inner peak of the 〈u′v′〉 cospectra, it is noticed that its wall-
normal location matches the position of the inner inflection point for all the
considered λ values and that for increasing values of the canopy solidity the
interior maxima correspond to modes with λx/H ' h/H and λz/H ' ∆S/H.
From Figure 4.13 showing the mean velocity profile inside the canopy, it is also
noticed that the Fjørtoft’s criterion (i.e. a necessary condition for an inviscid flow
instability), given by

∂yy〈u〉(y)
[
〈u〉(y)− 〈u〉(ys)

]
< 0, (4.15)

for any point y in the neighbourhood of the inflection point ys, is satisfied at the
interior inflection point (see panel (b) of Figure 4.13) of the mean velocity profile
(Drazin and Reid, 1981), thus leading to the conjecture that the inner peak in
the cospectra of 〈u′v′〉 is related to a shear instability inside the canopy.

A series of snapshots offering a visual clue on the structure of the velocity
field inside the canopy is provided in Figure 4.14. Although these snapshots only
concern x− z planes for case DE, it clearly appears that the velocity fluctuations
at the location of the inner inflection point do not seem to inherit the same
organised pattern visible in planes that are further away from the wall suggesting
that a different mechanism is operating in this region.

To clarify the general structure of the velocity fields and its variations when
different solidity values are considered, next we turn our attention to the pre-
multiplied spectra of the velocity fluctuations. In particular, in Figure 4.15 we
present the spectra associated with the fluctuations of the three velocity com-
ponents as a function of the streamwise wavelength and the distance from the
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Figure 4.13: Mean velocity profiles for the four cases normalised with the bulk
velocity in panel (a) and the local friction velocity in panel (b), as functions of
the distance from the wall normalised with the canopy height h. The red markers
indicate the locations of the inflection point closer to the solid wall, while the red
dashed line indicates the location of the canopy edge. Symbols as in Table 4.1.

bed. Figure 4.16 shows the spectra as a function of the spanwise wavelength
instead. These two figures are organised as a 4×3 matrix of panels in which each
panel (i, j) represents the spectra of the fluctuations associated to the jth velocity
component and the ith solidity value (i.e. λi=1,··· ,4 = [0.07, 0.14, 0.35, 0.56]).

All the spectra of Figures 4.15 and 4.16 share the presence of a peak located
outside the canopy. In particular, the streamwise velocity fluctuations show a
clear external peak above the canopy tip characterised by a very long streamwise
wavelength associated with a large scale modulation in the spanwise direction.
These outer, large scale, streamwise velocity structures take on the shape of elon-
gated velocity streaks typical of the logarithmic region of wall-bounded flows
(Jiménez, 2018). The u′ premultiplied spectra, obtained for different λ values,
clearly indicate that the coherence length of these streaks scales in outer units.
The presence of these large velocity streaks is also visually confirmed by the
streamwise isosurfaces of the snapshots of Figure 4.11. By looking at the y–z
sides of the computational boxes of the snapshots of the four considered cases in
Figure 4.11 (streamlines obtained by streamwise averaging an instantaneous real-
isation of the v′ and w′ velocity components), we notice that the outer streamwise
velocity streaks are flanked by a set of large streamwise vortices that occupy all
the wall-normal portion of the flow outside the canopy. The presence of these
streamwise oriented vortices is confirmed by the outer peaks of the premultiplied
peaks of v′ and w′ in Figures 4.15 and 4.16.

We next consider the spectra within the canopy region, starting with the dens-



4.2 Results 109

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.14: Case DE. Instantaneous contours of velocity fluctuations on planes
parallel to the wall. Panels (a), (d), (g) and (j): u′/uτ,l; Panels (b), (e), (h)
and (k): v′/uτ,l; Panels (c), (f), (i) and (l): w′/uτ,l. The planes are located at:
y/H = 0.059 (location of the lower inflection point), first row; y/H = 0.275
(location of the virtual origin), second row; y/H = 0.40 (location of the upper
inflection point, i.e. the canopy edge), third row; y/H = 0.50 (outer region),
fourth row.
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est case DE for which the last rows of Figures 4.15 and 4.16 show the presence
of two distinct, interior peaks in the energy content of the three velocity fluctu-
ations components. The leftmost peaks in the spectra of u′ and w′ (panels (j)
and (l) of Figure 4.16) are associated with a spanwise length λz ' ∆S and are
therefore imputable to the internal meandering motion imposed by the presence
of the stems (also visible by the fine spanwise textures of the velocity isocontours
(a-d) and (c-f) of the planar snapshots of Figure 4.14). The leftmost peaks of
u′ and w′ in the bottom row of Figure 4.16 show that the associated streamwise
wavelength takes on a value between h and ∆S which is probably related to the
coherence length of the wakes formed around the stems.

For sparser conditions, the leftmost peak of u′ and w′ is still observable in Fig-
ure 4.16 (i.e. spanwise structures) just below the location of maximum curvature
of the mean velocity profile. Differently, Figure 4.15 (i.e. streamwise structures)
shows a trend of the leftmost peak in merging with the rightmost peak when the
value of λ is decreased. It is also noticed that the leftmost peaks associated with
the v′ fluctuations in Figures 4.15 and 4.16 are located in the same locations as
the ones of the cospectra of 〈u′v′〉 shown in Figure 4.10.

The rightmost peaks inside the canopy of the premultiplied spectra of u′ and w′

are associated with larger space scales and thus generated by a different physical
mechanism. Focusing on the dense case DE (panels (j) and (l) of both premulti-
plied spectra of u′ and w′) and looking at panels (a) and (c) of Figure 4.14, we
realise that a new set of structures is introduced, with the u′ and w′ fluctuations
organised in stripes that are highly coherent in the spanwise direction in the u′

case and along a diagonal direction for the w′ case. This organization explains
why the spectra of u′ do not have a clear second peak in panel (j) of Figure 4.16
while w′ does in panel (l) of the same figure. Considering again Figure 4.14 and
comparing panels (a) and (c) (corresponding to planes located by the wall normal
position of the rightmost peak in the spectra of u′ and w′) with panels extracted
further away from the wall, it becomes quite evident that the flow structure is
very different. This observation leads to the conclusion that the region close to
the bed is almost decoupled from the regions of the canopy closer to its tip, at
least in the denser cases.

The spectra of Figure 4.16 show that the rightmost peaks of u′ and w′ share the
same wavelengths as the rightmost peak of v′ (in the outer flow, or by the canopy
tip) although located at different distances from the wall. This correlation is also
visually evident from the snapshots of Figure 4.11 showing a large penetration of
the outer quasi-streamwise vortices into the canopy in the wall-normal direction.
Since the canopy acts as a porous medium with a y permeability much larger
than the in-plane x− z ones, the flow that reaches the bottom wall must deviate
its momentum to preserve the wall impermeability and the solenoidal condition
generating new scales for the u′ and w′ components.

All the aforementioned structures, i.e. the ones triggered by the two inflection
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Figure 4.15: Premultiplied spectra of the velocity components as a function of the
streamwise wavelength and the wall-normal coordinates in wall units. Panels (a),
(d), (g) and (j): κxΦu′u′/u

2
τ,l with grey levels range in [0, 0.8] with a 0.1 increment;

Panels (b), (e), (h) and (k): κxΦv′v′/u
2
τ,l with grey levels range in [0, 0.3] with a

0.03 increment; Panels (c), (f), (i) and (l): κxΦw′w′/u2
τ,l with grey levels range

in [0, 0.5] with a 0.05 increment. The first row (panels a, b and c) refers to the
MS case; the second row (panels d, e, and f) refers to the TR case; the third row
(panels g, h, and i)refers to the MD case; the fourth row (panels j, k, and l)refers
to the DE case. Colour lines have the same meaning as in Figure 4.10.
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Figure 4.16: Premultiplied spectra of the velocity components as a function of
the spanwise wavelength and the wall-normal coordinates in wall units. Panels
(a), (d), (g) and (j): κzΦu′u′/u

2
τ,l with grey levels range in [0, 1.05] with a 0.15

increment; Panels (b), (e), (h) and (k): κzΦv′v′/u
2
τ,l with grey levels range in

[0, 0.3] with a 0.05 increment; Panels (c), (f), (i) and (l): κzΦw′w′/u2
τ,l with grey

levels range in [0, 0.5] with a 0.05 increment. Rows ordering, as in Figure 4.15
and colour lines have the same meaning as in Figure 4.10.
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points as well as the ones driven by the outer coherent large scale motions are
in continuous interaction. However, this interaction is almost limited to the wall
normal direction due to the high y permeability of the canopy. This high normal
permeability fixes the location of the interior inflection point in a situation that
resembles the one of a set of radial jets of cross-section ∆S − d striking normally
into the bed (Banyassady and Piomelli, 2015). The wall normal permeability
also establishes the momentum exchange between large scale structures within
and outside the canopy.

4.3 Conclusions

In this chapter, we have undertaken a parametric study based on the variations
of the thickness of the baseline canopy studied in Chapter 3. The key objective of
the analysis was to characterise the different flow regimes that emerge as a result
of the variations of the λ value and to establish a sound physical criterion enabling
an a-priori prediction of the inner and outer canopy flow features. We found that
the wall-normal location of the three points that characterise the mean velocity
profile inside the canopy, i.e. the two inflection points and the location of the
virtual origin of the outer flow, plays a key role in determining the establishment
of a particular regime. Specifically, the passage from the transitional towards
the dense scenario is regulated by the relative location of the inner inflection
point and the virtual origin. These locations define two natural boundaries for
the inner and outer flows. When the two flows are separated (i.e. the virtual
origin stands above the inner inflection point) the canopy can be considered to
be hydrodynamically dense. While Poggi et al. (2004) identified the lower bound
for the solidity value λ for nonsparse canopies, we have identified a sharp threshold
separating the transitional and dense regimes, i.e. λ ≈ 0.15. This specific value,
defined through the crossing condition between the virtual origin and the inner
inflection point, marks the establishment of different canopy flow regimes.

The parametric study also allowed us to define a length scale that guarantees
the collapse of the Reynolds stresses curves independently of the sparsity of the
canopy under consideration. Specifically, while the structure of the outer flow is
regulated by the distance between the origin of the outer flow (i.e. the virtual
origin) and the open channel height, the size of the most energetic eddies popu-
lating the intra-canopy flow is determined by local viscous length scale weighted
with a parameter that depends on the density of the canopy.

The chapter ends with a detailed analysis of the flow structures that emerge in
the various regimes. Their classification has been carried out through a spectral
analysis of the energy content of the velocity fluctuations. We have noticed that
the increasing canopy solidity leads to a separation of peaks in the premultiplied
spectra of the velocity components. For the densest scenario, we found two sets of
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large coherent structures (one inside and one outside the canopy) fed by the two
unstable inflection points of the mean velocity profile. The momentum transfer
between the two clusters of coherent structures takes place through the wall-
normal direction which is characterised by a large permeability.



Chapter 5

Conclusions and future works

This doctoral dissertation is centred on the resolved numerical simulation of rigid
filamentous canopies. The simulations were used as a tool to unravel the domi-
nant physical mechanisms that determine the character of the different flows that
emerge from the interaction of an external turbulent shear flow with canopies
of different solidities. In particular we have considered an open channel flow at
bulk Reynolds number Reb = 6000 bounded by a filamentous layer whose con-
figuration encompasses various nominal canopy flow regimes: sparse, transitional
and dense. One of the most important outcomes of the thesis is of methodolog-
ical nature as a novel method has been put forward for the resolved simulation
of the canopy flows. The numerical approach is based on a modification of an
existing immersed boundary method that has been formulated and validated on
both a model case and versus experimental data. By taking advantage of the
numerical efficiency and accuracy of the developed numerical technique, to the
authors’ knowledge, this is the first time that a canopy-flow simulation in which
the physical boundary values are imposed stem-by-stem has been reported in the
literature.

Having assessed the validity of the numerical approach, we have turned our
attention to the physical mechanisms that govern the behaviour of canopy flows.
To this end, we have conducted a parametric study to unravel the mechanisms
that determine the development and the transition between canopy flow regimes,
from sparse to dense. Specifically, the parametric analysis has been carried out
by varying the canopy height, keeping constant the average spacing among the
filament, ∆S, the diameter of the filaments, d, the open channel depth, H, and
the bulk velocity Ub, i.e. we kept constant the bulk Reynolds number, Reb =
Ub H/ν. The canopies implemented were all made of rigid filaments vertically
mounted on an impermeable wall. It is found that the first and second-order
statistics of the flow are sufficient to provide an exact classification of the actual
regime of the canopy flow. The classification is based on the location of three
characteristic points on the mean velocity profile, i.e. the two inflection points
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and the location of the virtual wall for the outer flow. We have shown that
the interplay between these points determines the occurrence of the transition
between regimes. This approach allows the improving of the transition criterion
based on the canopy solidity found in the literature (Nepf, 2012a, Poggi et al.,
2004). We have characterised the structures that dominate the different regions
in an open channel flow over a canopy in all the regimes. In particular, for
the dense case scenario, we have clarified the mechanisms of interaction between
the large clusters of structures found inside and outside the canopy region. We
found that both inflection points are unstable and trigger the presence of large
coherent structures inside and outside the canopy layer. This is an absolutely new
observation as the instability of the inner inflection point at the genesis of new
coherent structures triggered by its nonlinear evolution has never been reported
in the literature before.

Despite the modest exploration of the parametric space, this thesis opens a
new research strand on the analysis of canopy flows. The full understanding of the
physics of these flows and its consequent exploitation will bring bio-inspired tech-
nological innovations. The hydrological management of rivers, energy harvesting
and wings covered with filaments for flow control purpose are just few examples
of the potential applications of technologies based on a smart exploitation of this
type of distributed fluid-structure interaction.

One of the major tasks in the continuation of the present research concerns
the enlargement of the parametric space that influences the global behaviour of
canopy flows. In particular, the effect of the average filaments distance, ∆S,
on the solidity, λ, should be studied. Changing the size of the tile where each
filament is mounted on is expected to lead to a different flow behaviour as the
action of the outer streamwise and spanwise momenta can also influence the intra-
canopy flow. Indeed, as mentioned in the introduction (Chapter 1), modifying λ
using either ∆S or h might bring to two very different limiting behaviours, i.e.
a porous media or an emergent canopy, respectively, if λ is increased, or a flow
around a few cylinders and a flow over a smooth wall when λ is decreased. Hence,
a parametric study similar to what seen in Chapter 4, possibly keeping the same
solidity values used in this work, should be undertaken as a continuation of this
research.

Another interesting configuration to be considered before tackling the case
of flexible canopies is the one of a canopy built with inclined filaments. This is
useful to understand the effect of the solid volume fraction. In fact, according
to Nepf (2012a), when the filaments are bent, the effective frontal area, i.e the
projection of the frontal area on the wall-normal planes, plays an important role
in determining the features of the resulting flow structure. It is also noticed
that a canopy made of stems inclined along the streamwise direction is also a
simplified model of a very soft canopy deformed by the mean drag. The inclined
canopy case would also allow studying dense cases that could be related to porous
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media characterised by a complex permeability tensor. Research on these two
aforementioned configurations are ongoing and the results will be soon diffused
via publication in peer-reviewed journals.

Finally, after having well understood the importance of these extra parame-
ters on rigid canopies, one could incorporate flexible filaments whose structural
properties will enlarge the parametric study even more, thus opening more op-
portunities for engineering canopies that can deliver technological advantages.
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