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Abstract

Motivated by the empirical evidence of high-frequency lead-lag effects and cross-asset linkages, we

introduce a multi-asset price formation model which generalizes standard univariate microstructure mod-

els of lagged price adjustment. Econometric inference on such model provides: (i) a unified statistical

test for the presence of lead-lag correlations in the latent price process and for the existence of a multi-

asset price formation mechanism; (ii) separate estimation of contemporaneous and lagged dependencies;

(iii) an unbiased estimator of the integrated covariance of the efficient martingale price process that is

robust to microstructure noise, asynchronous trading and lead-lag dependencies. Through an extensive

simulation study, we compare the proposed estimator to alternative approaches and show its advantages

in recovering the true lead-lag structure of the latent price process. Our application to a set of NYSE

stocks provides empirical evidence for the existence of a multi-asset price formation mechanism and

sheds light on its market microstructure determinants.

JEL codes: C32; C58; G14;

Keywords: Cross-asset trading; Price discovery; Microstructure noise; Asynchronous trading; Granger

causality

∗We are particularly grateful for suggestions we have received from Tim Bollerslev, Giacomo Bormetti, Fabrizio Lillo,
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1 Introduction

The dynamics of high-frequency asset prices are known to be characterized by “lead-lag effects”:

some assets (the laggers) tend to follow the movements of other assets (the leaders). This phe-

nomenon is of fundamental interest in market microstructure research and in high-frequency finan-

cial econometrics. However, while it has received some attention in the empirical finance literature

(Chan 1992, de Jong and Nijman 1997, Chiao et al. 2004, Huth and Abergel 2014, Dobrev and

Schaumburg 2017) and in the statistical literature (Hoffmann et al. 2013, Hayashi and Koike 2018,

Hayashi and Koike 2017), there is still a lack of econometric approaches aimed to describe lead-lag

effects from a market microstructure perspective. On the one hand, there is no well-established

microstructure theory explaining the existence of lead-lag effects. On the other hand, compared

to the case of low-frequency (e.g. daily) data, the estimation of both contemporaneous and lagged

correlations among assets traded at high-frequency is a more complex task. This is mainly due to

the presence of asynchronous trading, which prevents the use of traditional multivariate techniques.

Motivated by the empirical evidence of cross-asset trading (Hasbrouck and Seppi 2001, Bern-

hardt and Taub 2008, Pasquariello and Vega 2015), i.e. the fact that dealers may rely on the prices

of other securities when setting their quotes, we introduce a multi-asset price formation mechanism

which generalizes well-known univariate microstructure models of lagged price adjustment (see

Hasbrouck, 1996 for a review on lagged price adjustment models). The latter were originally intro-

duced in the market microstructure literature to account for the positive autocorrelation observed

empirically on univariate time-series of high-frequency returns. Our multivariate generalization,

that we name Multi-asset Lagged Adjustment (MLA), leads to a micro-founded model where cross-

autocorrelations among high-frequency returns naturally arise as a result of the multivariate nature

of the price formation process. Econometric inference on the MLA allows us to test for the presence

of lead-lag correlations in the latent price process or, equivalently, for the existence of a non-trivial

multi-asset price generation mechanism. Furthermore, by separating the estimation of lead-lag and

contemporaneous dependencies, we obtain an estimate of the integrated covariance of the efficient

martingale price process that is robust to microstructure noise, asynchronous trading and lead-

lag effects. In contrast, the current econometric literature on realized covariance estimation has

mainly considered microstructure noise and asynchronous trading, ignoring the existence of lead-lag

dependencies (cf. e.g. Hayashi and Yoshida 2005, Corsi et al. 2015 and Shephard and Xiu 2017).

Univariate lagged price adjustment models, also known as partial price adjustment models,
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were proposed, among others, by Hasbrouck and Ho (1987), Amihud and Mendelson (1987) and

Damodaran (1993). The theoretical concept underlying these models is that prices do not instanta-

neously adjust when new information arrives. Instead, the adjustment process is delayed because of

several market frictions, such as lagged dissemination of information and price smoothing by market

dealers. We extend this idea to a multivariate framework by viewing the price formation mechanism

as a multi-asset process where the information related to one asset can affect the price discovery of

another asset, thus leading to a lag in their dynamics. By doing so, we establish a link between the

market microstructure literature on lagged price adjustment and that on cross-asset trading. The

concept of cross-asset trading (also known as cross-asset pricing or cross-asset learning) has been

extensively exploited by researchers since the seminal work of Caballé and Krishnan (1994), who

developed a model of insider trading based on the informational assumption that market makers

can learn about one security from observing all order flows in the market. Based on cross-asset

learning, Cespa and Focault (2011) developed a transmission mechanism of liquidity shocks among

many stocks, the so-called “liquidity spillovers”. Pasquariello and Vega (2015) described the re-

lation between cross-price impact and informed multi-asset trading by assuming that dealers in

one security can condition on prices of all other securities. Common factors in the price discovery

process have been investigated by Hasbrouck and Seppi (2001), Harford and Kaul (2005), Andrade

et al. (2008) and Tookes (2008).

Econometric inference on the MLA can be conveniently carried out by casting the model into

a state-space representation. The transition equation is a VAR process for the returns of the “ad-

justed” price, whereas the observation equation incorporates microstructure effects as an additive

noise term. Estimation is performed through a Kalman-EM algorithm, which easily handles miss-

ing observations. Asynchronous trading can thus be treated as a typical missing value problem, in

a similar fashion to Corsi et al. (2015), Peluso et al. (2015) and Shephard and Xiu (2017). This

approach allows us to estimate the parameters using all the available prices and avoids the use

of standard synchronization schemes. The latter may introduce spurious lead-lag correlations or

destroy true short-term lead-lag effects (cf. e.g. Huth and Abergel 2014).

We also contribute to the literature on price discovery. The MLA encompasses a rather in-

teresting case, the one of arbitrage-linked securities. In this particular framework, there are d

observed prices pertaining the same security, rather than d different securities. For instance, one

can observe the price of the same security in d different exchanges. To guarantee that the dynamics

of these securities are cointegrated, the system matrices of the state-space representation assume a

3



particular structure. Under the cointegration restrictions, the MLA can be employed to investigate

in which exchange price discovery occurs. One of the main differences with respect to traditional

methods (e.g. the VECM approach of Hasbrouck 1995) is that the recovered lead-lag structure is

not affected by differences in the level of trading activity among different exchanges.

In the MLA, there is a one-to-one correspondence between the VAR matrix of lead-lag coeffi-

cients and the speed of adjustment matrix in the lagged price adjustment process. The presence of

statistically significant lead-lag correlations can thus be interpreted as an evidence of the existence

of a multi-asset price formation mechanism. Furthermore, the assets which lead the dynamics of

other assets can be regarded as the ones which are faster in incorporating the information. Due

to the underlying VAR structure, the MLA can detect “latent” Granger causality, i.e. Granger

causality relationships among data recorded asynchronously and with noise. In particular, it allows

to disentangle lead-lag correlations arising from nonzero non-diagonal coefficients in the VAR ma-

trix from trivial lead-lag dependencies due to combination of autocorrelation and contemporaneous

correlation effects. The latter are not associated to cross-asset pricing in our framework.

The state-space approach to high-frequency covariance estimation was first developed by Corsi

et al. (2015), Peluso et al. (2015) and Shephard and Xiu (2017). By modelling microstructure

effects as an additive noise term and treating asynchronicity as a missing value problem, they pro-

vided a consistent estimator of the quadratic covariation of a Brownian semimartingale observed

asynchronously and with noise. The MLA differs in that it introduces a mechanism of price gener-

ation that is more realistic than the simple random walk plus noise model. Indeed, while the latter

describes the strong negative first-order autocorrelation that is observed in high-frequency returns,

the MLA can additionally capture cross-autocorrelations at higher orders.

An extensive simulation study is performed to investigate the statistical properties of the MLA.

Our state-space representation assumes that the instantaneous covariance of the efficient price

process is constant over time. We show that the MLA is robust under a misspecified DGP with

time-varying covariances. This result is similar to that of Shephard and Xiu (2017), who provided

the asymptotic theory of the QMLE estimator of the integrated covariance matrix of a Brownian

semimartingale observed with noise. We then show that, in contrast to alternative estimators, the

MLA is not affected by “spurious” correlations, i.e. nonzero lead-lag correlations arising as a result

of asynchronous trading and which are not associated to cross-asset trading. A similar result is

found in the case of arbitrage-linked securities.

The MLA is tested on a cross-section of NYSE tick data. We provide empirical evidence for

4



the existence of a multi-asset price formation mechanism. This is done by recovering the lagged

adjustment matrix from the estimated lead-lag correlations and showing that it contains statistical

significant non-diagonal elements. The likelihood ratio test shows that the null hypothesis of

a random walk plus noise model, along the lines of Corsi et al. (2015) and Shephard and Xiu

(2017), is not able to capture some relevant features of the dynamics of high-frequency prices.

In particular, deviations from the null assumption of a random walk are more pronounced in

periods of large volatility. In a similar fashion to Dobrev and Schaumburg (2017), this empirical

finding can be interpreted in light of high-frequency trading: volatility can create short-living cross-

autocorrelations that are exploited by short-term, high-frequency trading strategies. A positive

relation between volatility and high-frequency trading was found by Zhang (2010), amongst others.

We examine in detail the cross-autocorrelation structure of the market and find that, in contrast

to what is typically recovered by alternative, non-robust estimators, assets characterized by lower

trading activities can be highly informative and can lead the dynamics of more liquid assets. The

robustness of the these results is tested with respect to the choice of the assets and to the inclusion

of an ETF which is heavily traded in the NYSE.

The rest of the paper is organized as follows: In Section (2) we introduce the model and discuss

the estimation strategy based on the EM algorithm; in Section (3) we make a comparison with other

estimators and perform extensive Monte-Carlo simulations under a misspecified DGP; in Section

(4) we test the MLA on real transaction data and discuss the results; Section (5) concludes. We

collect the details of the estimation of the model, the proofs and part of the robustness checks in

an online appendix.

2 Theoretical framework

2.1 The Multi-asset Lagged Adjustment model

A significant portion of the empirical research on market microstructure has been devoted to un-

derstanding the autocorrelation structure of univariate and multivariate high-frequency returns.

There is well-established evidence of three key empirical properties: (i) strong negative first-order

autocorrelation, (ii) existence of positive autocorrelation at lags larger than one, (iii) existence

of lead-lag correlations. Simple bid-ask models such as the model of Roll (1984) reproduce the

negative first-order autocorrelation observed in return series. Univariate bid-ask models were later

generalized to capture correlations at orders larger than one through the introduction of lagged
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price adjustments (Hasbrouck, 1996). Here, we introduce a multi-asset version of the price ad-

justment model of Hasbrouck and Ho (1987) which generates lead-lag correlations among different

assets.

We assume that the efficient log-price Pt is a d-dimensional vector that evolves as a Brownian

semimartingale defined on some filtered probability space (Ω,F , {Ft}t∈[0,T ],P):

Pt =

∫ t

0
µsds+

∫ t

0
σdWs, Σ = σσ′ (1)

where t ∈ [0, T ], µs is a vector of predictable locally bounded drifts, σ is a volatility matrix and Ws

is a vector of independent Brownian motions. The interval [0, T ] can be thought of as representing

the trading day.

Let 0 ≤ t1, . . . , tn ≤ T denote n equally-spaced observation times. Opposed to Pt, we consider

the d-dimensional observed log-price process Yti . The difference τ = ti+1 − ti between consecutive

observation times is assumed to be a very short time interval (e.g. τ = 1 second in our empirical

application). Note that, because of asynchronous trading, only the components of Yti corresponding

to traded assets are observed at each time ti, whereas the observations of the remaining assets are

missing. For simplicity, we assume that the drift term in Eq. (1) is zero1. We can write:

Pti+1 = Pti + uti , uti ∼ NID(0, τΣ) (2)

These are the prices that, abstracting from microstructure effects, would be observed in a perfect

market, i.e. one in which prices instantaneously react to new information. In real markets, dealers

do not instantaneously adjust their quotes to new information. The adjustment process is gradual

and reflects lagged dissemination of information and several market imperfections, such as trading

costs, discreteness and price smoothing by market makers. In addition, due to cross-asset trading

(Hasbrouck and Seppi 2001, Bernhardt and Taub 2008, Pasquariello and Vega 2015), dealers tend

to look at more informative securities before setting their quotes. In order to capture lagged

dissemination of information across stocks, we start from the simple univariate lagged adjustment

mechanism proposed by Hasbrouck and Ho (1987) and adapt it to a multi-asset framework.

Let Xti , i = 1, . . . , n denote a d-dimensional vector of “adjusted” prices reflecting the imper-

fections of the trading process. We assume that Xti is related to the efficient log-price process Pti

by:

Xti+1 = Xti + Ψ(Pti+1 −Xti) (3)

1This assumption is not restrictive, since we are considering ultra-high-frequency returns for which drift effects

are negligible.
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where Ψ is a d×d matrix characterizing the speed of adjustment of Xti to the true efficient log-price

Pti . If Ψ = Id, then Xti = Pti and the adjustment process is instantaneous. Instead, if Ψ 6= Id

the adjustment process is gradual and, as a result, there is a delay between Xti and Pti . Note

that the matrix Ψ may be non-diagonal. This implies that the adjustment process of one asset is

affected by the adjustment process of other assets, and the strength of this effect is quantified by

the non-diagonal elements of Ψ.

Due to the presence of market microstructure effects (e.g. bid-ask bounces), the observed log-

price process Yti deviates from the lagged price Xti . Therefore, we assume that Xti is observed

under additive noise:

Yti = Xti + εti , εti ∼ NID(0, H) (4)

where εti is a normal white noise term summarizing microstructure effects. In line with Corsi et al.

(2015) and Shephard and Xiu (2017), the noise covariance matrix H is assumed to be diagonal.

Denoting by ∆Xti+1 = Xti+1 −Xti the log-returns of the lagged price, Eq. (2) and (3) imply:

∆Xti+1 = (Id −Ψ)∆Xti + Ψuti (5)

that is, a first order vector autoregressive VAR(1) process. If Ψ is non-diagonal, the knowledge at

time ti of the return of one asset is useful for forecasting the return of another asset at time ti+1.

In this multi-asset framework, lead-lag correlations naturally arise as a consequence of cross-asset

trading and of the mutual influence between adjustment processes of different assets. In particular,

if one asset leads the dynamics of the other assets, it can be regarded as the one which incorporates

the information with highest speed.

Let us assume, without loss of generality, that τ = 1 and re-write Eq. (4) and (5) as:

Yt = Xt + εt, εt ∼ NID(0, H) (6)

∆Xt+1 = F∆Xt + ηt, ηt ∼ NID(0, Q) (7)

where F = Id − Ψ and Q = ΨΣΨ′. Eq. (6) is a measurement equation expressing the fact that

observations of latent prices are affected by noise. Eq. (7) is instead a transition equation describing

the dynamics of latent returns. We name the model described by Eq. (6), (7) “Multi-Asset Lagged

Adjustment” (MLA) model. As discussed in Section (2.2) of the online appendix, the MLA has a

linear-Gaussian state-space representation and can conveniently be estimated through a standard

Kalman-EM algorithm.
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The assumption of a constant instantaneous covariance matrix Σ in the efficient log-price process

may be regarded as too restrictive, since there is well-established evidence that both volatilities

and correlations exhibit strong intraday variation (cf. e.g Andersen and Bollerslev, 1997, Tsay,

2005, Bibinger et al., 2014, Buccheri et al., 2019a). However, by performing extensive Monte-Carlo

simulations on a misspecified DGP with a time-varying covariance matrix, we show in Section (3.2)

that two relevant properties hold. First, the maximum-likelihood estimate F̂ of the VAR(1) matrix

of lead-lag coefficients remains unbiased even in the presence of time-varying covariances. Second,

denoting by Ψ̂ and Q̂ the two maximum-likelihood estimates of Ψ and Q, the matrix Σ̂ = Ψ̂−1Q̂Ψ̂′−1

is an unbiased estimator of 1
TQV , the quadratic covariation of the efficient log-price process:

QV =

∫ T

0
Σsds (8)

This result is similar to that obtained by Shephard and Xiu (2017), who derived the asymptotic

theory of the QMLE of the integrated covariance of a Brownian semimartingale process observed

with noise. Thus, the MLA provides, as a byproduct, a robust estimator of the quadratic covariation

of a Brownian semimartingale process in the presence of lead-lag dependencies.

We finally note that statistical inference on the MLA can be regarded as testing for one-lag

Granger causality in the latent return process ∆Xt. Testing for higher order lags would result in

additional d×d lead-lag matrices to be estimated, thus increasing considerably the dimensionality of

the parameter space. In practice, a less efficient but more feasible solution is to consider observations

sampled at a smaller frequency, which avoids estimating complex higher order VAR(p) models.

A particularly interesting case is when all or some of the assets are linked by non-arbitrage

relationships. For instance, one can observe the price of the same security in different exchanges,

or the price of a stock and that of a call option on the same stock. These securities are driven

by the same efficient martingale process and are therefore cointegrated. The system matrices in

the MLA can be constrained in such a way to guarantee cointegration among the arbitrage-linked

securities. In particular, the covariance matrix Q turns out to have a rank equal to the number

of efficient martingale processes. For instance, if there are d observed prices pertaining the same

security, the rank of Q is one, regardless the value of d. The latter case was discussed by Buccheri

et al. (2019b). In the online appendix we provide the details of the model and generalize to the

case of k securities, each one observed in di markets, with i = 1, . . . , k. One of the main advantages

of using the MLA in this setting is that parameter estimates are not affected by differences in the

level of trading activity among different markets. For instance, the MLA can detect that a market
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is more informative even if its trading activity is lower than in other markets. We illustrate several

examples in the online appendix.

2.2 Estimation

The MLA can be conveniently estimated by writing Eq. (6), (7) in a linear Gaussian state-space

representation. This is possible if one introduces the 2d-dimensional state vector Zt = [X ′t, X
′
t−1]′

and re-writes the two equations as:

Yt = MZt + εt, εt ∼ NID(0, H) (9)

Zt = ΦZt−1 + ξt, ξt ∼ NID(0,W ) (10)

where:

Φ =

 Id + F −F

Id 0d

 , W =

 Q 0d

0d 0d

 (11)

with M = [Id, 0d] being a matrix that selects the first d components of Zt and 0d denoting a d× d

matrix of zeros.

Model (9), (10) is a linear Gaussian state-space representation for which the Kalman filter can

be applied and the log-likelihood function can be written down in the form of the prediction error

decomposition (cf. e.g. Durbin and Koopman 2012 and Shumway and Stoffer 2015). In particular,

we use the EM algorithm of A. P. Dempster (1977) to maximize the log-likelihood. All the details

of the estimation procedure are reported in the online appendix. Here, we only report the update

formulas for the system matrices in the EM algorithm. Let:

A =
n∑
t=1

(Pnt−1 + Znt−1Z
n′
t−1) (12)

B =

n∑
t=1

(Pnt,t−1 + Znt Z
n′
t−1) (13)

C =

n∑
t=1

(Pnt + Znt Z
n′
t ). (14)

where Znt , Pnt−1, Pnt,t−1 are smoothed conditional mean and covariances of the latent state. Let us

write the matrices A and B in the following form:

A =

A11 A12

A21 A22

 , B =

B11 B12

B21 B22

 (15)
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where Aij and Bij , i = 1, 2 are d × d submatrices of A and B. In the online appendix, we prove

the following result:

Proposition 1. At the r-th step of the EM algorithm, the update formula for F is given by:

F̂r = ΓΘ−1 (16)

where Γ = B11 −B12 −A11 +A12 and Θ = A11 +A22 −A12 −A21. The update formula for Q and

H are instead given by:

Q̂r =
Υ̂

n
, Ĥr =

diag(Λ)

n
(17)

where Υ̂ = M(C −BΦ̂′r − Φ̂rB
′ + Φ̂rAΦ̂′r)M

′, Λ =
∑n

t=1[(Yt −MZnt )(Yt −MZnt )′ +MPnt M
′] and

Φ̂r is constructed using F̂r.

We remark that we implicitly assume the constancy of the elements of Ψ within the period

analyzed. Therefore, the user of the proposed method should be aware of the potential source of

distortion in case the coefficients of Ψ vary over time (e.g. due to changes in market volatility

and liquidity conditions). In Section (3.3) in the online appendix we estimate the MLA in several

sub-periods of the trading day and show that the estimates of Ψ in these sub-periods do not differ

substantially from that obtained in the entire day. Thus, as long as the MLA is re-estimated on a

daily basis, the assumption of constancy of Ψ is not restrictive.

The choice of the sample frequency has an impact on the memory and computational power

requirements for the estimation of the MLA. This choice depends on the specific nature of the

market under study, in particular by market liquidity and information delay. Very liquid markets

suggest the adoption of a higher frequency at the cost of a heavier computation burden. This

higher cost can be mitigated reducing the within-day window of transactions or quotes analyzed.

On the other hand, more illiquid markets lead to lower frequencies, since there is no additional

information coming from a higher resolution of prices. Also, increasing the frequency in illiquid

markets causes an increase in the proportion of missing values: even if the MLA can deal with

very high proportions of missing values, still this is a factor to be accounted for, since it renders

the estimation process more difficult and therefore expects a higher number of iterations before

convergence. Finally, markets where information spread faster across assets need a higher frequency

of observations, since all delays that are exhausted at the rate higher than the observed frequency

cannot be captured by the model. For further details on the choice of the sampling frequency we

refer the reader to Section (3.2) in the online appendix.
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3 Simulation study

3.1 Comparison with other estimators

As underlined in the introduction, non-synchronous trading can have deep consequences when

analyzing multivariate high-frequency tick-by-tick data. One example is given by the Epps effect,

i.e. the bias towards zero of sample correlations observed when shrinking the sampling frequency

to zero (cf. e.g. Epps, 1979 and Hayashi and Yoshida, 2005).

Non-synchronous trading is responsible for two main types of “spurious” lead-lag correlations

when employing standard estimators. First, some assets seem to lead other assets because they are

traded more frequently. This effect is due to differences in the level of trading activity and is not

necessarily related to cross-asset pricing. For instance, if we set Ψ = I and assume that one asset is

traded more frequently than the others, based on standard sample correlations we would conclude

that the more frequently traded asset is the most informative. In contrast, the MLA would indicate

that the level of informativeness of all the assets is the same. Second, as we will show below, even

in the presence of similar levels of trading activities (and irregularly spaced observations), one

can find spurious nonzero lead-lag correlations that are not related to true lead-lag dependencies.

Another source of spurious lead-lag correlations can simply arise as a result of the combination of

autocorrelation and contemporaneous correlations. Neither these cross-autocorrelations are related

to nonzero non-diagonal elements in the matrix Ψ.

A detailed analysis of the impact of asynchronicity on lead-lag correlations was performed by

Huth and Abergel (2014), who considered the standard previous-tick correlation estimator (Griffin

and Oomen, 2011) and the estimator proposed by Hoffmann et al. (2013). The latter is computed

on bivariate time-series by applying the Hayashi-Yoshida (HY) estimator (Hayashi and Yoshida,

2005) after shifting the timestamps of one of the two time-series. In their simulation study, Huth

and Abergel generated two (contemporaneously) correlated Brownian motions with different times-

tamps. Compared to the previous-tick correlation estimator, the HY estimator is not affected by

differences in the levels of trading activity, meaning that the cross-autocorrelation function remains

symmetric even if the two processes are characterized by different average durations. However,

as a consequence of asynchronicity, it has a bias at nonzero leads and lags that implies nonzero

correlations in absence of true lead-lag dependencies.

The MLA is robust to all these effects. The reason is that asynchronicity is handled as result-

ing from missing observations, which are incorporated in the EM algorithm without jeopardizing
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Figure 1: Left: cross-correlogram of two simulated Brownian motions with correlation ρ = 0.4 observed

asynchronously over T = 10000 timestamps. The red line is obtained by averaging across HY estimates,

while the blue line is obtained by averaging MLA estimates over N = 250 independent realizations. Right:

as before but HY and MLA are estimated over a time-series obtained by shifting one of the two simulated

Brownian motions.

the statistical inference of the model parameters. In order to show this property, we sample two

Brownian motions over a time grid of T = 10000 equally spaced points. The correlation between

the two Brownian motions is ρ = 0.4. Asynchronicity is reproduced by censoring the simulated

observations through Poisson sampling. The probability of missing values is set equal to Λ1 = 0.3

for the first time-series and Λ2 = 0.5 for the second time-series. We repeat the experiment 250 times

and, for each realization, we compute the lead-lag correlations using both the MLA and the HY

estimator. Figure (1) shows on the left the cross-autocorrelation function obtained by averaging

the lead-lag correlations over all the simulations. We note that both correlograms are symmet-

ric, meaning that both estimators are not affected by differences in the level of trading activity.

However, the HY estimator provides nonzero correlations at nonzero lags. As shown by Huth and

Abergel (2014) (appendix B), this is due to observations not being synchronized. In contrast, the

MLA is not affected by asynchronicity and correctly reproduces the cross-autocorrelation of the

simulated data.

Our definition of lead-lag effects is formally different from that of Hoffmann et al. In the MLA

lead-lag effects arise as a consequence of nonzero non-diagonal coefficients in the lagged adjustment

matrix Ψ. In their work, Hoffman et al. considered a continuous-time bivariate process (Xt, Yt)

and focused on the estimation of the time shift θ such that the shifted process (Xt, Yt+θ) is a

12



avg×100 stDev×100 p-value avg×100 stDev×100 p-value avg×100 stDev×100 p-value

δ = 0.5 δ = 1 δ = 2

Λ = 0

F11 0.1832 2.6183 0.0182 0.0733 3.0965 0.4578 0.4132 3.3118 0.5325

F12 −0.2249 2.5799 0.0041 −0.0844 3.2785 0.4026 −0.0618 3.4438 0.5712

F21 0.0827 2.2626 0.2592 0.0156 2.8687 0.8222 0.0004 3.2345 0.9989

F22 −0.1723 2.9102 0.0602 −0.1245 3.6656 0.2887 0.0080 3.8451 0.9682

Σ11 −0.0022 0.0862 0.0549 −0.0010 0.0836 0.4872 −0.0037 0.0886 0.1293

Σ12 −0.0039 0.0422 0.0011 −0.0038 0.0523 0.0052 −0.0041 0.0510 0.0673

Σ22 0.0077 0.1375 0.0527 −0.0023 0.1429 0.4230 −0.0051 0.1311 0.2840

Λ = 0.5

F11 −0.1693 3.3167 0.0934 0.2427 3.7529 0.0451 0.1361 3.2374 0.1790

F12 0.0187 3.4766 0.8621 −0.3028 3.8709 0.0155 −0.2104 3.3821 0.0434

F21 −0.9021 5.2328 0.0006 −0.4025 3.9742 0.0083 −0.2758 3.3078 0.0125

F22 0.8625 5.7758 0.0002 0.1711 4.7587 0.2589 0.1922 3.9597 0.1225

Σ11 0.0052 0.0968 0.0246 −0.0011 0.0938 0.6278 0.0014 0.0932 0.6685

Σ12 0.0011 0.0659 0.1822 0.0009 0.0642 0.5866 −0.0004 0.0556 0.8048

Σ22 −0.0052 0.1460 0.1702 0.0021 0.1556 0.5512 9.75e-6 0.1470 0.9989

Table 1: We report the sample averages and standard deviations of all the elements of the pivotal matrices

θ̂F , θ̂Σ and the p-value of the one-sample t-test in all the simulated scenarios. The cases in which the null

hypothesis is not rejected at the 1% c.l. are denoted by bold numbers.

semi-martingale with respect to some filtration. In order to understand how the MLA behaves in

this different framework, we consider the bivariate time-series of the previous experiment and shift

by a lag θ = 1 all the timestamps of one of the two time-series. Figure (1) shows on the right

the correlogram of the new bivariate time-series and those estimated by the HY and MLA. The

HY estimator correctly estimates the lagged cross correlation but provides nonzero correlations at

other leads and lags. The MLA correctly captures the true cross-correlogram. Indeed, the shifted

time series can be written as a VAR(1) process with a nonzero non-diagonal element in F and

uncorrelated disturbances. In the case θ > 1, one can sample observations at a lower frequency and

still employ the MLA estimator.

As a final remark, we note that the MLA estimator is robust to measurement errors, since it

allows observations of the underlying process Xt to be contaminated by noise. Another relevant

advantage is that the proposed MLA estimator is not pairwise, i.e. it can be applied to a generic

multivariate time-series of dimension d ≥ 2.
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3.2 Robustness to stochastic volatility

In Eq. (1) the covariance matrix Σ of the efficient log-price is assumed to be constant over time.

This assumption is too restrictive, since real high-frequency data are characterized by significant

changes in their covariance structure during the day. In order to assess the properties of F̂ and Σ̂

in a more realistic scenario, we simulate realizations from a misspecified DGP with a time-varying

covariance matrix Σt. The latter is decomposed as:

Σt = DtRDt (18)

where R is a constant correlation matrix and Dt is a diagonal matrix of time-varying standard

deviations:

Dt =


σt,1 · · · 0

...
. . .

...

0 · · · σt,d

 (19)

The dynamic terms σt,i, i = 1, . . . , d are decomposed as:

σt,i = dtgt,i (20)

where dt is a common diurnal pattern given by:

dt = C +Ae−at +Be−b(1−t) (21)

and gt,i evolve through the following stochastic volatility model:

dg2
t,i = ki(vi − g2

t,i)dt+ wigt,idBt,i i = 1, . . . , d (22)

where Bt,i are independent Wiener processes and E[dBt,idWt,j ] = ρijdt. Note that the diurnal

pattern is the same as in Bollerslev et al. (2016) and the parameters A = 0.75, B = 0.25, C =

0.88929198 are set in such a way that 1/T (
∫ T

0 d2
tdt) = 1.

We report the results obtained in the bivariate case (d = 2). The length of the trading day

is assumed to be T = 6.5 hours and thus we consider n = 23400 timestamps of one second. The

stochastic volatility process is discretized in the Euler scheme. The parameters in Eq. (22) are set

as: v1 = 0.01, v2 = 0.02, w1 = w2 = 0.1, k1 = 10, k2 = 7. We adopt the following choices for the

matrix F of lead-lag coefficients and the leverage matrix ρ:

F =

0.1 0.5

0.3 0.1

 , ρ =

0.05 0

0 0.1

 (23)
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Figure 2: Kernel density estimates of the elements of the matrix θ̂F standardized by their sample standard

deviations in the two scenarios δ = 1,Λ = 0 (a), δ = 1,Λ = 0.5 (b) over N = 1000 independent realizations.

The red line is the standard normal density.

The diagonal elements of the variance matrix H, that we denote as hii, i = 1, 2, are computed

based on the average signal-to-noise ratio, that is defined as δi = vi/hii.

For simplicity, we assume δ1 = δ2. In order to mimic realistic noise scenarios, we set δi = 0.5, 1, 2.

Indeed, as shown in Table (2), these values are close to those estimated on real data. We consider

both the case where observations are synchronized and the case where there are missing values. In

the latter case, the simulated observations are censored using Poisson sampling. The probability

of missing values is set equal to Λ = 0.5 for both series.

We estimate the MLA for N = 1000 independent realizations and consider the pivotal statistics

θ̂iF = F̂ i − F and θ̂iΣ = Σ̂i − 1
TQV , for i = 1, . . . , N . The term QV is the quadratic covariation

defined in Eq. (8). The three scenarios δ = 0.5, 1, 2 are combined to the two scenarios Λ = 0, 0.5,

obtaining a total of 6 scenarios. In Table (1) we show the sample mean and standard deviations of

each entries of two matrices θ̂iΣ and θ̂iF . A one sample t-test is performed in order to test the null

assumption that the mean is zero. The p-values are reported in Table (1). The distribution of θ̂Σ

and θ̂F is always centered in zero. This implies that, even in case of time-varying covariances, F̂ is

an unbiased estimator of the true matrix F of lead-lag coefficients, and Σ̂ is an unbiased estimator
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of the quadratic covariation of the efficient martingale process. This result is similar to that of

Shephard and Xiu (2017), who proved the consistency of the QMLE estimator for the quadratic

covariation of a Brownian semimartingale observed with noise.

In Figures (2), (3) the two scenarios δ = 1,Λ = 0 and δ = 1,Λ = 0.5 are considered. We

plot kernel density estimates of each element of θ̂Σ and θ̂F after normalizing by their sample

standard deviations. In the first scenario there are no missing values and the densities are perfectly

compatible with a standard normal. In the second scenario the density is still centered in zero but,

as a consequence of data reduction, we observe slight deviations from the normal.

In order to assess the effect of lead-lag correlations on commonly used realized covariance

estimators, we plot in Figure (4) the kernel density estimates obtained using the HY estimator.

We set δ = 103 to exclude the potential bias due to measurement errors. As can be seen, the HY

estimator is largely biased in case lead-lag correlations are present. A similar bias2 is observed when

using other estimators of the quadratic covariation, e.g. the pairwise estimator of Aı̈t-Sahalia et al.

(2010), the multivariate realized kernel of Barndorff-Nielsen et al. (2011), and the QML estimator

of Shephard and Xiu (2017). Other properties of the MLA, including its behavior in the presence

of arbitrage-linked securities are examined in the online appendix.

4 Empirical evidence

4.1 Dataset

In this empirical application we use two different datasets. The first dataset is provided by Thomson

Reuters and includes intraday transaction data of 10 among the most frequently traded NYSE assets

in the period between 03-01-2006 and 31-12-2014, a total of 2250 business days. The timestamp

precision is the second. We use the procedure described by Barndorff-Nielsen et al. (2009) to clean

the data. In particular: (i) we consider trades in the time window from 9:30 to 16:00; (ii) we

aggregate high-frequency prices at the one second frequency by taking the median of trades within

the same second. Table (2) shows the 10 assets together with several summary statistics related to

their trading activity in the period 2006-2014. Note that the probability of missing values Λ ranges

from 70% to 80%, indicating that even liquid assets are characterized by large levels of sparsity.

We also report the market betas and the average signal-to-noise ratio estimated by the MLA. The

latter is defined, for the i-th asset, as the ratio Qii/Hii. Note that five of the selected assets, namely

2Results are available upon request to the authors.
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Figure 3: Kernel density estimates of the elements of the matrix θ̂Σ standardized by their sample standard

deviations in the two scenarios δ = 1,Λ = 0 (a), δ = 1,Λ = 0.5 (b) over N = 1000 independent realizations.

The red line is the standard normal density.
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Figure 4: Kernel density estimates of the elements of the matrix θ̂Σ standardized by their sample standard

deviations and computed using the HY estimator in the scenario δ = 103,Λ = 0 over N = 1000 independent

realizations. The red line is the standard normal density.
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Stock Symbol Λ ∆t n nmax nmin δ β RV

Exxon XOM 0.704 3.378 6908 16896 1760 1.178 1.05 1.965

JPMorgan JPM 0.737 3.802 6142 18248 1324 0.999 1.17 5.233

Citigroup C 0.753 4.048 5764 17988 1148 1.246 1.84 9.636

Schlumberger SLB 0.761 4.184 5590 15161 355 0.613 1.66 4.656

Chevron CVX 0.773 4.405 5308 12782 1281 0.850 0.75 2.258

Bank of America BAC 0.778 4.504 5193 18839 570 0.328 1.56 7.889

General Electric GE 0.798 4.950 4698 17717 1028 0.641 0.92 3.287

ConocoPhillips COP 0.799 4.975 4953 14560 935 0.494 0.66 2.836

Goldman Sachs GS 0.803 5.076 4598 17120 551 0.630 1.22 4.945

Morgan Stanley MS 0.808 5.208 4481 14965 611 0.741 1.15 11.106

S&P 500 ETF SPY 0.275 1.382 16956 20949 10304 2.458 − 0.3759

Table 2: For each asset we show the probability of missing values Λ, the average duration ∆t in seconds

between consecutive observations, the average (n̄), maximum (nmax) and minimum (nmin) number of ob-

servations per day. We also report the average signal-to-noise ratio δ estimated by the MLA, the market

betas and the average (percentage) realized variance. The summary statistics of the 10 NYSE assets are

referred to the period from 03-01-2006 to 31-12-2014 whereas those of the SPY are refereed to the period

from 03-01-2012 to 28-12-2012.

18



{C, JPM, BAC, MS, GS} belong to the banking sector, whereas the remaining five, namely {XOM,

CVX, SLB, COP, GE} belong to the oil and energy sectors. We name the two sets of assets as

“Group I” and “Group II”, respectively.

The second dataset includes transaction data of SPDR S&P 500 ETF (SPY) from 03-01-2012 to

28-12-2012. The timestamp precision is the second and thus we employ the same cleaning procedure

adopted for the NYSE dataset. The SPY is traded in the NYSE Arca but is much more liquid than

individual stocks, as shown by the summary statistics in Table (2). We use SPY data in Section

(4.3) to assess the effect of the inclusion of such heavily traded security in the MLA.

All the analyses in the following sections are performed by estimating the MLA at the sampling

frequency of one second. As the resolution decreases, lead-lag cross-autocorrelations tend to die

out, as it is shown in Section (3.2) of the online appendix. We thus exploit the largest information

set available in our dataset to gain better insights on the nature of cross-asset trading.

4.2 Lead-lag effects and cross-asset trading

Our primary goal is to assess the statistical significance of the multi-asset lagged adjustment mech-

anism introduced in Section (2.1). To this end, we compare the MLA to a standard random walk

plus noise model, also known as local level (LL) model (cf. e.g. Durbin and Koopman 2012). The

LL is nested into the MLA since it is obtained by setting to zero the VAR matrix F in Eq. (7).

The resulting model can be estimated through the EM algorithm with missing observations, as

described by Corsi et al. (2015) and Shephard and Xiu (2017).

In order to compare the two models, for the 10 NYSE assets considered in Table (2) we estimate

the LL and the MLA on each day of the sample and compute the likelihood ratio λ = LLL

LMLA . Figure

(5) reports the test statistic −2 log(λ), which is distributed according to a χ2 with a number of

degrees of freedom equal to d2, coinciding with the difference between the number of parameters in

the MLA and that in the LL model. The null hypothesis that the matrix of lead-lag coefficients F

is zero is strongly rejected in most of the days of the sample. This indicates that the standard LL

specification is not sufficient to capture some relevant features of the dynamics of high-frequency

prices. In particular, the fact that F is nonzero implies that the lagged adjustment matrix Ψ = Id−F

differs from the identity and that the price adjustment process is delayed as a result of lagged

dissemination of information across stocks.

The deviation of the MLA specification from the null assumption of a simple random walk

process is larger in periods of high volatility. Figure (6) shows the logarithm of RVavg. For each
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Figure 5: We show the test statistic −2 log(λ) computed for each day of the sample and the upper bound

of the 95% confidence interval evaluated using a χ2 distribution with a number of degrees of freedom equal

to d2.
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Figure 6: For each day of the sample, we show the logarithm of RVavg. The latter is computed as the

average realized variance of the 11 assets considered in Table (2).
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Figure 7: Scatter plot of −2 log(λ) versus log(RVavg), where RVavg is computed as the average realized

variance of the assets. The correlation is ρ = 0.4296. We also show the result of the OLS regression of

−2 log(λ) on log(RVavg)

day of the sample, the latter is computed as the average realized variance of the 10 assets considered

in Table (2). Large values of−2 log(λ) correspond to bursts in volatility. This is confirmed by Figure

(7), which shows a scatter plot of the two quantities and the line obtained from the OLS regression.

The correlation between −2 log(λ) and log(RVavg) is 0.4296± 0.0871 and it turns out to be highly

significant.

The relation between cross-asset effects and volatility can be ascribed to the impact of high-

frequency trading (HFT). HFT is typically based on short-term statistical dependencies among

assets. In periods of high uncertainty, volatility can create short-living cross-autocorrelations that

are exploited by high-frequency traders. A positive relationship between HFT and volatility, es-

pecially in periods of large market uncertainty, was found by Zhang (2010). A similar result was

recovered by Dobrev and Schaumburg (2017), who revealed a close relationship between volatil-

ity and lead-lag effects among different markets as a consequence of HFT surges in cross-market

activity.

A more detailed description of the relation between market volatility and cross-asset effects can

be obtained by looking at the estimated lead-lag correlations. Figure (8) shows the daily dynamics

of one second lead-lag correlations between Bank of America and Citigroup. Lead-lag correlations
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Figure 8: Dynamics of one second lead-lag correlations between Bank of America and Citigroup.
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Figure 9: Dynamics of one second lead-lag correlations between Chevron and Exxon.
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are computed from the MLA system matrices as described in the online appendix (Section 1.4).

Figure (9) shows the same result for Chevron and Exxon. In periods of high uncertainty the cross-

autocorrelation structure of the market is more stable, with lead-lag correlations being typically

above zero. This is particularly evident in the period of the 2007-2008 financial crisis, where lead-lag

correlations are positive for both couples of assets.

In periods of low volatility leag-lag correlations are generally more erratic. We thus focus on

subsamples in order to examine in more detail the cross-autocorrelation structure of the market

in these periods. We consider the last 250 days of the sample, i.e. the subsample coinciding with

trades in 2014. In Figures (10), (11) we plot the average of the cross-autocorrelations of each couple

of assets in Group I and Group II, respectively. Bars denote 95% confidence intervals. Nonzero

correlations at positive lags imply that the second asset leads the first, whereas correlations at

negative lags imply the opposite. As suggested by the previous analysis, we find strong evidences

of cross-asset effects in both groups. For instance, in Group I Goldman Sachs appears to be the more

informative asset since it leads all the other assets. In contrast, Bank of America is led by all the

other assets. From Table (2) we note that Goldman Sachs is one of the least traded asset of Group

I on average. Its lead role is therefore not due to differences in liquidities but to cross-asset effects

that emerge as a consequence of nonzero non-diagonal coefficients in the lagged adjustment matrix

Ψ. In Group II, we note that oil companies like Exxon, ConocoPhillips, Chevron, Schlumberger

lead the dynamics of energy companies like General Electric. We observe instead weaker lead-lag

correlations among the leaders (e.g. between Exxon and Chevron).

There is statistical evidence of lead-lag correlations between assets belonging to different groups.

These between-groups effects are in general weaker then within-group lead-lag effects. For instance,

in Figure (12) we show the estimated correlogram of GS-GE (12a) and that of MS-CVX (12b).

These are the two couples of assets belonging to different groups exhibiting the largest lead-lag

correlations. In other cases we observe smaller or even non-significant correlations.

Lead-lag correlations can arise even if the non-diagonal elements of Ψ are all zero, as a conse-

quence of combined autocorrelation and contemporaneous correlation effects. This is not the case

here, as the estimated matrix F̂ = Id−Ψ̂ has a lot of statistically significant non-diagonal elements.

Tables (3), (4) show the average, over the subsample considered above, of the two sub-matrices of F̂

corresponding to lead-lag coefficients of Group I and Group II, respectively. Non-diagonal elements

are nonzero, with high significance. This implies that the recovered cross-asset structure arises as

a direct consequence of the proposed multi-asset price formation mechanism. Such result can be
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Figure 10: Average cross-autocorrelations of all the couples of assets in Group I. Averages are computed

over all the business days of 2014. Error bars denote 95% confidence intervals. Correlations at positive lags

imply that the second asset displayed in the title leads the first asset and the other way around for negative

lags.
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Figure 11: Average cross-autocorrelations of all the couples of assets in Group II. Averages are computed

over all the business days of 2014. Error bars denote 95% confidence intervals. Correlations at positive lags

imply that the second asset displayed in the title leads the first asset and the other way around for negative

lags.
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interpreted in light of cross-asset trading: dealers tend to rely on the prices of more informative

securities in order to set their quotes and this translates into a lagged dissemination of information

across assets, as captured by the non-diagonal elements of the matrix Ψ̂.

Group I

Average Fij

C JPM BAC MS GS

C 0.0832∗∗∗∗ 0.0473∗∗∗∗ 0.0243∗ -0.0637∗∗∗∗ 0.1212∗∗∗∗

JPM 0.0311∗∗∗ 0.1029∗∗∗∗ 0.0102(ns) -0.0702∗∗∗∗ 0.1312∗∗∗∗

BAC 0.0501∗∗∗∗ 0.0661∗∗∗∗ 0.0869∗∗∗∗ 0.0222(ns) 0.1049∗∗∗∗

MS 0.0731∗∗∗∗ 0.0969∗∗∗∗ 0.0111(ns) 0.0199∗ 0.1551∗∗∗∗

GS 0.0331∗∗ 0.0019(ns) -0.0101∗ -0.0735∗∗∗∗ 0.1640∗∗∗∗

Table 3: We report the sample average, over the sub-sample of N = 252 days, of the elements of the

estimated matrices F̂ corresponding to assets belonging to Group I, together with significance levels obtained

based on the p-value of the one-sample t-test: ∗p ≤ 0.05, ∗∗p ≤ 0.01, ∗∗∗p ≤ 0.001, ∗∗∗∗p ≤ 0.0001,

(ns)p > 0.05.

Group II

Average Fij

XOM CVX SLB COP GE

XOM 0.0769∗∗∗∗ 0.0434∗∗∗ 0.0266∗∗∗∗ -0.0262(ns) -0.0418∗∗∗∗

CVX 0.0231∗ 0.0973∗∗∗∗ 0.0158∗ -0.0335∗ -0.0329∗∗∗

SLB 0.0141(ns) 0.0660∗∗∗ 0.0934∗∗∗∗ -0.0701∗∗∗∗ -0.0346∗

COP 0.0312∗∗ 0.0490∗∗∗ 0.0477∗∗∗∗ 0.0525∗∗∗∗ -0.0043(ns)

GE 0.0310∗ 0.0522∗∗∗ 0.0421∗∗∗∗ -0.0013(ns) 0.0533∗∗∗∗

Table 4: We report the sample average, over the sub-sample of N = 252 days, of the elements of the

estimated matrices F̂ corresponding to assets belonging to Group II, together with significance levels obtained

based on the p-value of the one-sample t-test: ∗p ≤ 0.05, ∗∗p ≤ 0.01, ∗∗∗p ≤ 0.001, ∗∗∗∗p ≤ 0.0001,

(ns)p > 0.05.

4.3 Inclusion of market portfolios

The 10 NYSE assets examined in Section (4.2) are homogeneous in terms of liquidity, as can be seen

from the summary statistics in Table (2). As done in the simulation study, it is thus interesting
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Figure 12: Cross autocorrelations between stocks belonging to different groups. Averages are computed

over all the business days of 2014. Error bars denote 95% confidence intervals. Correlations at positive lags

imply that the second asset displayed in the title leads the first asset and the other way around for negative

lags.

to assess the effect, on the estimated MLA parameters, of the inclusion of an asset with a very

different level of trading activity. To this aim, we augment the previous sample with the SPY data.

Compared to the 10 NYSE stocks, the SPY is a much more liquid security. The average duration

between consecutive trades is slightly above one second, and therefore it is significantly smaller

than that of the NYSE stocks, which is above three seconds.

The purpose of the following analysis is twofold. On the one hand, it serves as a robustness

check to verify that the recovered MLA cross-autocorrelations are not altered by the inclusion of

assets with different liquidities. On the other hand, it clarifies whether the well-known empirical

finding that heavily traded market portfolios (e.g. ETF’s and index futures) are “leaders” remains

valid when using our MLA estimator which is robust to asynchronous trading.

Since SPY data are available from 03-01-2012 to 28-12-2012, we perform the analysis in this

subsample. Specifically, we estimate the MLA on a daily basis in the dataset comprising the 10

NYSE stocks and the SPY. Figure (13) shows in red the average cross-autocorrelations of the

assets belonging to Group I, estimated after including the SPY in the subsample. For comparison,

we report in blue the average cross-autocorrelations estimated in absence of SPY data. We note

that the inclusion of the SPY does not change significantly the estimated lead-lag correlations. In

particular, our conclusions on which among two assets is the leader is the same in the two cases. A

similar result is obtained by looking at Figure (14), which shows the average cross-autocorrelations

of the assets belonging to Group II.

Figures (15a), (15b) show the average cross-autocorrelations between SPY and the 10 NYSE
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Figure 13: Average cross-autocorrelations of all the couples of assets in Group I. The cross-autocorrelations

in red are obtained by the including the SPY in the sample. Averages are computed over all the business

days of 2012. Error bars denote 95% confidence intervals. Correlations at positive lags imply that the second

asset displayed in the title leads the first asset and the other way around for negative lags.
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Figure 14: Average cross-autocorrelations of all the couples of assets in Group II. The cross-autocorrelations

in red are obtained by including the SPY in the sample. Averages are computed over all the business days of

2012. Error bars denote 95% confidence intervals. Correlations at positive lags imply that the second asset

displayed in the title leads the first asset and the other way around for negative lags.
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Figure 15: Average cross-autocorrelations between SPY and the stocks of Group I (a) and between SPY

and the stocks of Group II. Averages are computed over all the business days of 2012. Error bars denote 95%

confidence intervals. Correlations at positive lags imply that the second asset displayed in the title leads the

first asset and the other way around for negative lags

stocks. In six out of ten cases (C, JPM, BAC, MS, COP, GE), SPY has a larger lead correlation,

in agreement with the common empirical finding that liquid market portfolios lead other stocks.

In other two cases (XOM, SLB) there are no leaders, as the lead-lag correlations between SPY and

the other assets are similar. Finally, Goldman Sachs and Chevron, which have been proven to be

highly informative securities in the previous analysis, seem to lead SPY, although the differences

between lead and lag correlations are small. As in Section (4.2), this result can be interpreted in

light of the robustness of the MLA to asynchronous trading. In the MLA, the presence of lead-lag

correlations is not necessarily due to differences in the level of trading activities between assets. It

is rather a consequence of cross-asset pricing: traders tend to look at the prices of the securities

which are judged as the most representative of their economic sector before sending their orders,

and this in turn generates lead-lag correlations.
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5 Conclusions

In this paper we introduced the MLA, a multi-asset model of price generation that extends standard

univariate microstructure models of lagged price adjustment. Lead-lag effects naturally arise in this

framework as a consequence of nonzero non-diagonal coefficients in the lagged adjustment matrix

Ψ. Inspired by the literature on cross-asset pricing, the latter captures lagged dissemination of

information among different assets.

The MLA can be cast into a linear-Gaussian state-space representation where the transition

equation is a VAR process for the returns of the adjusted price, whereas the observation equation

incorporates microstructure effects as an additive noise term. Asynchronicity is treated as a missing

value problem, which is easily handled by the Kalman filter. The resulting estimator of lead-lag

correlations is robust to asynchronous trading and microstructure noise. As a byproduct, we obtain

an estimate of the integrated covariance of the efficient log-price process that takes into account

asynchronous trading, microstructure noise and lead-lag dependencies. A particularly interesting

case that is susceptible of treatment within the MLA is the one of assets linked by non-arbitrage

constraints. In this case the MLA can be used for price discovery analysis and has the main

advantage of not being affected by differences in trading activity among different markets.

Using extensive Monte-Carlo experiments, we showed that, as opposed to alternative estimators,

the MLA is not affected by spurious correlations arising from asynchronous trading. Furthermore,

we tested the performance of the estimator under different forms of misspecification for the un-

derlying DGP. When covariances are time-varying, we found that the estimated VAR matrix F̂ is

unbiased and the covariance matrix Σ̂ correctly estimates the integrated covariance of the efficient

log-price process. In the online appendix we assessed the advantages of the MLA in price discovery.

The MLA was tested on a cross-section of NYSE stocks. The analysis provides empirical

evidence for the existence of a multi-asset price formation mechanism. In particular, we observed

strong deviations from the null assumption of a standard random walk plus noise process. The

non-diagonal coefficients of the VAR matrix F are found to be significantly different from zero.

As such, the speed of adjustment matrix Ψ includes non-diagonal elements that are responsible

for the lagged dissemination of information across different assets. Cross-asset effects are more

pronounced in periods of high volatility. Such empirical evidence is explained by the behavior of

high-frequency trading strategies, which tend to exploit short living cross-autocorrelations that are

likely to appear in periods of high uncertainty. We tested the robustness of the recovered results
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with respect to the choice of the assets and the addition of market portfolios with much higher

liquidity. In this respect, we found that the common empirical finding that highly liquid market

portfolios are leaders is generally confirmed, though with some significant exceptions of highly

informative securities leading the market portfolio.

These results could be further robustified through subsamples taken at the same frequency with

different offsets (e.g. a first subsample starting at the first tenth of a second with a step of one

second, a second subsample starting at the second tenth of a second with a step of one second,

and so on). This could be particularly relevant for more recent periods and markets with multiple

transactions within each second, dominated by high-speed algorithmic trading. Ideally, the inferred

lead-lag effects across different subsamples should be in agreement and averaging the results across

subsamples could further reduce the estimation error.

Finally, due to the latent VAR structure, our methodology can be viewed as a test for ”latent”

Granger causality, i.e. a Granger causality test on multivariate time-series of noisy and asyn-

chronous observations. As such, it could be of potential interest for a broad spectrum of empirical

applications.
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