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1. Introduction

Corporate finance textbooks (e.g., Webster 2003, Chapter 12) recommend that a com-
pany invest in a project if and only if the project’s internal rate of return exceeds the
cost of capital. If companies operated this way, their investment decisions would be in-
dependent across projects within the company, conditional on the projects’ cash flows
being independent. In practice, such conditional independence is the exception rather
than the rule (Ozbas and Scharfstein 2010).

Investment decisions on projects with independent cash flows can be dependent for
two reasons: projects may be mutually exclusive or the internal capital used to finance
these projects may be scarce. We use the term “internal capital market” to describe a
project-selection mechanism that deals with either situation. We are interested in the
design of an optimal internal capital market for environments with independent cash
flows.

We focus on the problem in which project values are initially unknown but can be
learned over time. Before deciding which project to finance, a company performs due
diligence on each project. The Universal Music Group faced such a situation in 2011.
Universal was considering two alternative projects: the purchase of EMI Music or the
purchase of Warner Music Group.1 Purchasing both was infeasible, if only because of
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antitrust concerns. Assessing the profitability of each purchase required costly due dili-

gence by teams of lawyers, consultants, and accountants, who evaluated music catalogs,

potential synergies, and antitrust risks.

Universal has two divisions: in London and in New York. Since EMI is based in Lon-

don and Warner Music in New York, Universal could have charged the London division

with performing due diligence on the purchase of EMI and the New York division with

performing due diligence on Warner Music. We ask how Universal should have orches-

trated its divisions’ due diligence to maximize its expected cash flow.

We study Universal’s problem in an auction-like environment in which HQ (the

headquarters) allocates an item (the requisite funds to pursue an acquisition) to one

of two divisions, denoted by D1 and D2. The value of each division’s project (the prof-

itability of the acquisition) is either 0 or 1, and is distributed independently across the

two divisions. Initially, each division has a belief about its project’s value and revises this

belief as it learns (performs due diligence). At each instant, each division can learn at

a cost. Learning affects the arrival intensity of “good news,” which reveals the project’s

value to be 1. The alternative, “no news,” means that the project’s value can be either 0

or 1 and causes the division to revise its value estimate downward.

HQ maximizes the expected cash flow, defined as the expected value of the win-

ning project net of both divisions’ expected cumulative costs of learning. HQ can di-

rectly control each division’s learning, observe learning outcomes, and select the win-

ning project. Thus, HQ’s problem is a stochastic-control optimal-stopping problem.

This problem’s solution—an optimal policy—is this paper’s contribution.

Figure 1 summarizes the optimal policy we identify (we claim no uniqueness) when

learning is cheap, which is the most interesting case. This policy is stationary and pre-

scribes, for every pair (x1�x2) of the two projects’ expected values, whether either di-

vision wins immediately and, if not, which division learns. Normalizing x2 ≥ x1, four

prescriptions are possible:

1. Division 2 wins immediately. D2 wins immediately whenever x1 and x2 are either

both close to 0 or both close to 1. In this case, since there is little uncertainty about

each project’s value (probably the same), learning is not worth the cost. D2 also

wins immediately whenever x2 is substantially larger than x1. In this case, since

there is little uncertainty about the fact that project 2’s value exceeds project 1’s

value, learning is unlikely to affect the decision regarding which project to select.

2. Division 2 learns. D2 learns alone when x1 �= x2, when x1 and x2 are close to each

other (so that it is highly uncertain which project is more valuable), and when both

x1 and x2 are far away from 0 and 1 (so that each project’s value is highly uncertain).

Under these conditions, the need for information is so great that it is worthwhile to

ask D2 to learn first and to plan to ask D1 to learn later if D2 does not observe good

news. (Asking D2 to learn without ever planning to ask D1 is suboptimal, for such

learning, while costly, would not affect the optimal allocation.)
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Figure 1. The optimal policy’s prescription for each pair (x1�x2) of the project’s expected val-
ues. The arrows indicate the direction in which the type profile is revised if the division that
learns observes no good news.

3. Both divisions learn. Both divisions learn simultaneously when x1 = x2 (i.e., both
projects appear equally valuable), when x1 and x2 are sufficiently large (i.e., learn-
ing by either division is informative), and when x1 and x2 are bounded away from
0 and 1 (i.e., each project’s value is sufficiently uncertain).

4. Division 1 learns. D1 learns alone when the values of x1 and x2 are complementary
to those described in cases 1–3. Then, by asking D1 to learn, HQ bets on having D1

observe the good news. HQ is “insured” by D2, which does not learn and whose
project can be selected if D1 observes no good news for a sufficiently long time.

The rest of the paper is structured as follows. This section concludes with a literature
review. Section 2 sets up the problem. Section 3 solves for the optimal policy. Sec-
tion 4 introduces and maps the bad-news technology case into the analyzed good-news
technology case, thereby establishing that the derived results immediately apply to the
former case as well. Section 5 shows numerically that the effect of exponential discount-
ing is similar to that of costly learning, and that the introduction of discounting does not
qualitatively change the optimal policy for the undiscounted case. Section 6 concludes.
Auxiliary technical lemmas are provided in the Appendix, available in a supplementary
file on the journal website, http://econtheory.org/supp/2379/supplement.pdf.

Related literature. Our paper contributes to two literatures: the corporate finance
literature on internal capital markets and the economic theory literature on irreversible
project selection in the presence of uncertainty. The assumptions underlying our model

http://econtheory.org/supp/2379/supplement.pdf
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of the internal capital market are motivated by the vision described by Stein (1997).2

In particular, because internal capital is scarce (e.g., because of informational frictions
associated with raising outside capital), not all profitable projects can be financed and,
so, HQ must ration. At the same time, even unprofitable projects may end up being fi-
nanced (e.g., because of HQ’s empire-building tendencies); thus, HQ invests all available
internal capital. Accordingly, we assume that HQ selects exactly one project.

The existing literature on internal capital markets is predominantly positive. In ad-
dition to Stein (1997), it includes Harris and Raviv (1996), Rajan et al. (2000), Scharfstein
and Stein (2000), de Motta (2003), and Inderst and Laux (2005). The only normative dy-
namic model of an internal capital market that we are aware of is that of Malenko (2012).
While we focus on learning about, and selecting between, two given projects, Malenko
(2012) studies selection from dynamically arriving projects and does not model learning.

The economic theory literature on irreversible project selection can be interpreted as
modeling internal capital markets. The real-option approach, exemplified by the work
of Dixit and Pindyck (1994), assumes that the values of projects evolve exogenously. We
extend their approach to situations in which these values evolve endogenously, as a re-
sult of learning.

Learning is the focus of multi-armed bandit problems (Bolton and Harris 1999,
Keller et al. 2005, Klein and Rady 2011, Forand 2015), which model reversible project
selection.3 A solution to a bandit problem is typically an index policy that always selects
the arm with the greatest value of the Gittins index. In particular, in an exponential-
bandit problem with two risky arms, the optimal policy prescribes selecting myopically
the project with the highest expected value.4 The analogous policy of always learning
about the project with the highest expected value is suboptimal in our setting.

Our problem is related to sequential hypothesis testing, first formulated by Wald
(1973). Shiryaev (2008, Chapter 4), Peskir and Shiryaev (2006, Section 23), and Presman
and Sonin (1990) provide modern textbook accounts. Our problem shares two critical
features with these testing problems. First, in our model, learning (the analogue of test-
ing) has an explicit flow cost. Second, this cost is no longer incurred as soon as—at some
optimally chosen time—one of the two projects is chosen.5,6

2. Model

Time is continuous and indexed by t ≥ 0. The time horizon is infinite.

2For a textbook introduction to internal capital markets, see Tirole (2006, Section 10.5).
3In bandit problems, the irreversibility of selecting an arm—but only a safe arm—is explored by Murto

and Välimäki (2011) and Rosenberg et al. (2007).
4Banks and Sundaram (1992) show that myopic strategies are uniquely optimal in the class of bandit

problems in which each of the independent arms generates rewards according to one of two reward distri-
butions (same for both arms). By contrast, Forand (2015) studies a bandit-like problem with maintenance
costs and finds, just as we do, that a decision maker may sometimes optimally pull a less auspicious arm.

5This switching off of the learning costs upon selecting a project also prevents us from mapping our
problem into a multi-armed bandit problem.

6Che and Mierendorff (2017) study a sequential Wald testing problem in a Poisson environment that
resembles ours but assumes perfectly negatively correlated projects.
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Valuations. HQ holds an indivisible item and values it at zero. HQ allocates this
item to one of two divisions, indexed by i ∈ N ≡ {1�2} and denoted by Di. Di’s valuation,
vi ∈ {0�1}, is a random variable with Pr{vi = 1} =Xi(0) for some prior beliefXi(0) ∈ [0�1].
Valuations v1 and v2 are independent.

Learning. Each Di can acquire information about vi, that is, can learn.7 At each
time t, HQ allocates a unit of learning intensity between the divisions. Di’s learning in-
tensity is denoted by ai(t) ∈ [0�1], with a1(t)+a2(t)= 1. The cumulative cost of learning
incurred by Di up to time t is c

∫ t
0 e

−rsai(s)ds, for some cost parameter c > 0 and discount
rate r ≥ 0.

Di’s learning process {ai(t) | t ≥ 0}, denoted by ai, controls the arrival-intensity pro-
cess {ai(t)vi | t ≥ 0} of a Poisson process {Nai

i (t) | t ≥ 0}, Nai
i (0)= 0.8 Processes Na1

1 and
N
a2
2 are independent. The public event when Nai

i (t) is incremented is called good news
(about vi). The event when Nai

i (t) is not incremented is called no news. Because event
N
ai
i (t) > 0 can occur only if vi = 1, the good news reveals vi = 1.

Define Xai
i (t), Di’s time-t type, or belief, to be the expectation of vi conditional on

the information revealed up to time t under some learning process ai:

X
ai
i (t)≡ E

[
vi |

{
N
ai
i (s) | 0 ≤ s ≤ t}]�

For any learning-process profile a≡ (a1� a2), the tupleXa(t)≡ (Xa1
1 (t)�X

a2
2 (t)) is a time-

t type profile. By the law of iterated expectations,Xa is a martingale.
For any dates t and t ′ > t, Di’s type Xai

i (t
′) is derived from X

ai
i (t) by application of

Bayes rule. By Bayes rule,Nai
i (t

′) > 0 impliesXai
i (t

′)= 1, whereasNai
i (t

′)= 0 implies

X
ai
i

(
t ′
)

1 −Xai
i

(
t ′
) = X

ai
i (t)

1 −Xai
i (t)

e−
∫ t′
t ai(s)ds� (1)

An optimal policy. The environment is stationary, so no generality is lost by focusing
on stationary policies. A (stationary) policy is a tuple (α�τ), where a learning policy α≡
(α1�α2) maps a type profile x ≡ (x1�x2) into learning decisions (α1(x)�α2(x)) ∈ [0�1]2

with α1(x) + α2(x) = 1, and where τ is a stopping time that designates when the item
is allocated, always to the higher-type division. A policy (α�τ) induces the type process
denoted by {Xα�τ(t) | t ≥ 0}.

A policy (α�τ) is admissible if the learning process {α(X(t)) | t ≥ 0}, induced by the
learning policy α, is predictable and integrable, and if, for every i ∈ N and every Xi(0) ∈
[0�1], the appropriately defined stochastic differential equation for the evolution of the
type process has a unique strong solution.

A policy (α�τ) and an initial type profile x induce HQ’s expected discounted cash
flow,

Jr(x�α�τ)≡ E

[
−c

∫ τ

0
e−rs ds+ e−rτ max

i∈N
{
Xα�τ
i (τ)

} ∣∣∣Xα�τ(0)= x
]
�

7Here and throughout, the Italic typeface highlights a definition.
8Henceforth, superscript ai indicates that the superscripted process is conditional on learning pro-

cess ai.
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where the expectation is with respect to the induced type process {Xα�τ(t) | t ≥ 0}. For
any initial type profile x, the value function is defined by

φr(x)≡ sup
α�τ
Jr(x�α�τ)� (2)

where the maximization is over all admissible policies. An optimal policy (αr∗� τr∗) is
defined to satisfy φr(x) = J(x�αr∗� τr∗) for all x. In the undiscounted case, we drop the
subscripts, so that φ≡φ0 and (α∗� τ∗)≡ (α0∗� τ0∗).

3. An optimal policy

The optimal policy is characterized in Propositions 1, 2, and 3, depending on the cost
of learning. Proposition 3 describes the case with the richest learning dynamics—the
case that prevails when the cost of learning is small. The optimal policy is inferred from
the value function, which solves an HJBQVI (Hamilton–Jacobi–Bellman (HJB) quasi-
variational-inequality) equation. Because, in our case, the value function is nondiffer-
entiable, the appropriate solution concept imposes restrictions both where the function
is differentiable and where it is nondifferentiable, or has kinks.

3.1 The HJBQVI equation

HJBQVI is the continuous-time counterpart of the Bellman equation for discrete-time
settings and, just like the Bellman equation, it relies on the dynamic programming prin-
ciple.

Lemma 1. For any type profile x ∈ [0�1]2 and any finite stopping time τ′, the value func-
tion φr , defined in (2), satisfies the recursive relationship that encompasses the dynamic
programming principle (DPP):9

φr(x) = sup
α�τ

E

[
1{τ≥τ′}e−rτ

′
φr

(
Xα�τ

(
τ′)) + 1{τ<τ′}e−rτ max

i∈N
{
Xα�τ
i (τ)

}

− c
∫ τ′∧τ

0
e−rs ds

∣∣∣Xα�τ(0)= x
]
�

Proof. The lemma’s conclusion follows from the DPP in Proposition 3.1 of Pham
(1998). A handful of inconsequential differences between Pham’s setup and ours are
worth highlighting.

Pham’s focus on the finite-horizon problem is not restrictive for us because HQ’s
maximal feasible surplus is 1; hence, the value function of the infinite-horizon prob-
lem can be shown to be the limit of a sequence of the value functions of finite-horizon
problems.

9Operator ∧ is the binary min operator.
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Pham assumes that the intensity of the Poisson jump process is independent of the
state. By contrast, in our problem, the jump intensity, aX , depends on the state pro-
cess, X . Nevertheless, stochastic integration with respect to this more general jump
process is well defined—which is all that matters for Pham’s argument.10

The argument does not require positive discounting; r = 0 is admissible. �

The DPP says that HQ’s value today equals HQ’s expected discounted continuation value
at an arbitrary future stopping time τ′ plus the expected discounted payoffs enjoyed un-
til that time. These intervening flow payoffs and the eventual continuation value depend
on the intervening controls, chosen to maximize HQ’s value today.

Relying on the DDP, one can characterize the value function φr as a solution to
HJBQVI. Here, we informally derive HJBQVI, which disciplines φr at the points of dif-
ferentiability, and a sufficient condition for φr not to contradict optimality at kinks (i.e.,
whenever the function is nondifferentiable). This sufficient condition is that all kinks be
convex. A convex kink of φr at x admits a smooth function that passes through x and
lies weakly below φr .11

In discrete time, with a period length �> 0, the value functionφr is characterized by
the Bellman equation12

φr(x)= x1 ∨x2 ∨max
q

{
−�c+e−r�

[
φr

(
xq�

)+(
1−φr(xq�))(

1−
∏
i∈N

(
1−xi

(
1−e−qi�)))]}

�

where q ≡ (q1� q2) ∈ [0�1]2, subject to q1 + q2 = 1, is the allocation of the learning ef-

fort for the duration of a period, and where xq� ≡ (x
q1�
1 �x

q2�
2 ), with xqi�i being the type

revised down from xi according to (1). When � is small, the display above requires

rφr(x)≥ −c+ max
q

{
φr

(
xq�

) −φr(x)
�

+
∑
i∈N

qixi
(
1 −φr(x))

}
� (3)

where the inequality is understood to be approximate, in the sense that the terms of
order � and smaller are omitted.

If φr is differentiable at x, taking the limit �→ 0 in (3) while using dxqi�/d�|�=0 =
−qixi(1 − xi) (implied by Bayes rule in (1)) yields the HJB equation13

0 ≥ max
q

{
−rφr(x)− c+

∑
i∈N

qixi
(
1 − (1 − xi)φri (x)−φr(x))

}
� (4)

10ProcessX is a finite-variation process. Hence, the stochastic integral with respect toX is well defined,
as a path-by-path Riemann–Stieltjes integral (see, e.g., Protter 1990, Chapter I.6).

11Formally, the solution concept for HJBQVI that characterizes the value function is the viscosity solu-
tion, which disciplines the kinks. (The theory of viscosity solutions that encompasses our setting is cov-
ered by Bardi and Capuzzo-Dolcetta 1997, and Oksendal and Sulem 2005.) The argument presented here
amounts to showing that, for convex-kinked functions, the viscosity solution reduces to the satisfaction of
HJBQVI only at the points of differentiability. In this paper, we work only with convex-kinked functions, so
we do not need to invoke the full-fledged theory of viscosity solutions.

12Operator ∨ is the binary max operator. For notational parsimony, we abuse the notation and do not
index φr by �.

13Subscripts denote partial derivatives: φri (x)≡ ∂φr(x)/∂xi . Simple derivatives are denoted by primes.
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Furthermore, because the maximand in (4) is linear in q, HJB in (4) is equivalent to

0 ≥ max
i∈N

{−rφr(x)− c− xi(1 − xi)φri (x)+ xi
(
1 −φr(x))}� (5)

If φr is not differentiable at x, then, before setting �→ 0, we use a workaround so as
not to lose any implication of optimality inherent in the Bellman equation, due to the
nonexistence of the limit. Assume that, at x, φr has a convex kink. In this case, for the
workaround, take an arbitrary smooth function ψ—called a test function—that satisfies
ψ≤φr and, at the kink x, satisfiesψ(x)=φr(x). The inequality in (3) is reinforced if one
replaces the first two appearances of φr with ψ:

rφr(x)≥ −c+ max
q

{
ψ

(
xq�

) −ψ(x)
�

+
∑
i∈N

qixi
(
1 −φr(x))

}
�

Taking the limit �→ 0 and noting that the resulting maximand is linear in q gives14

rφr(x)≥ −c+ max
i∈N

{−xi(1 − xi)ψi(x)+ xi
(
1 −φr(x))}� (6)

The convexity of the kink at x implies that φri−(x) ≤ ψi(x) ≤ φri+(x).
15 As a result, in-

equality (6) at x is implied by (5) near x, where φr is differentiable.
To summarize the requirements for optimality, if every kink of a candidate value

function is known to be convex (or if there are no kinks), then it suffices to verify that
the function solves HJBQVI at the points of differentiability. No implication of optimal-
ity is lost. That is how the analysis proceeds in this paper. We guess a value function
whose kinks are all convex and verify that, whenever differentiable, the guess solves the
HJBQVI equation

0 = (
x1 −φr(x))∨ (

x2 −φr(x))∨ max
i∈N

{−rφr(x)− c−xi(1 −xi)φri (x)+xi
(
1 −φr(x))} (7)

on 
≡ (0�1)2, subject to the boundary condition

φr(x)= x1 ∨ x2� x ∈ ∂
�

where ∂
 is the boundary of 
.

3.2 Maintained parameter restrictions and conventions

For tractability, we neglect discounting: r = 0. Section 5 remarks on the case of r > 0.
The analysis focuses on the economically nontrivial case in which learning is suffi-

ciently cheap to be optimal for at least some type profiles:

c ∈ (0� c̄)� where c̄ ≡ 0�25�

14When φr is differentiable at x, (6) reduces to (5).
15By convention, φri− and φri+ denote, respectively, the left and right derivatives with respect to xi .
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The case with the richest learning dynamics is when the cost of learning is smaller still:16

c ∈ (0� c)� where ln
(1 − √

c)2

c
= 2

1 − √
c

=⇒ c ≈ 0�047� (8)

By the problem’s symmetry, the optimal policy is also symmetric and, so, without
loss of generality, the formal arguments focus on the hyperplane defined by x2 ≥ x1.

3.3 Learning is prohibitively costly

Proposition 1 shows that a sufficiently high c makes learning prohibitively costly. In-
tuitively, learning at a sufficiently high cost must be suboptimal because the gain from
allocating optimally—and, hence, from learning—is bounded.

Proposition 1. Suppose that learning is prohibitively costly, meaning that c ≥ c̄. Then
the higher-type division wins immediately. The induced value function is φ(x) = x1 ∨
x2 = x2.

Proof. To verify that φ is, indeed, the value function, first note that the kinks of φ, all
at x1 = x2, are convex. Hence, it suffices to verify that φ satisfies HJBQVI at the points of
differentiability. For this, substitute φ(x)= x1 ∨ x2 = x2 into (7).

The quasi-variational inequality (QVI) φ(x)≥ x1 ∨ x2 holds by construction.
The HJB that corresponds to D2’s learning is −c ≤ 0, which obviously holds.
The HJB that corresponds to D1’s learning is

−c+ x1(1 − x2)≤ 0�

which holds for all x with x2 > x1 if and only if c ≥ c̄. Indeed, the inequality’s left-hand
side is maximized at x1 = x2 = 1/2 and attains the value 1/4 − c, which is nonpositive if
and only if c ≥ c̄. �

3.4 Learning is moderately costly

Assume that learning is moderately costly, meaning that c ∈ [c� c̄). Then Proposition 2
shows (and Figure 2 illustrates) that if x is such that there is sufficient uncertainty about
the efficient allocation, then the lower-type division learns; otherwise, the higher-type
division wins immediately. Intuitively, asking the lower-type division to learn amounts
to betting that this division will observe good news. This bet is insured by HQ’s option
to allocate to the higher-type division if no good news arrives.

Now, we illustrate in some detail the arguments used in the more complex case of
cheap learning. Toward Proposition 2, guess that, for some threshold function b, x1 ≤
b(x2) implies that D2 wins immediately, whereas x1 > b(x2) implies that D1 learns until

16To see that the solution of (8) is unique, note that the left-hand side of (8) is strictly decreasing in c and
maps (0� c̄) onto R+, whereas the right-hand side is strictly increasing in c and maps (0� c̄) onto (2�4), a
subset of R+.
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(a) ĉ = 0�1. (b) ĉ = 0�05.

Figure 2. The optimal policy’s prescription for each type profile when the learning cost is mod-
erate; c1 ≤ ĉ < c2. Within the lens-shaped region, one of the divisions learns. The arrows indicate
the direction in which the type profile is revised if the division that learns observes no news.
Outside the lens-shaped region, no division learns and the highest-type division wins.

either good news arrives or its revised type drops down to b(x2).17 The idea is that when
x1 > b(x2), x1 and x2 are close to each other, the uncertainty about the identity of the
higher-value division is substantial, and, as a result, the return to learning is high.

Then x1 ≤ b(x2) implies that φ(x)= x1 ∨ x2 = x2. When x1 > b(x2), the value func-
tion φ—denoted by V on this set of type profiles—solves the HJB equation

0 = −c− x1(1 − x1)V1(x)+ x1
(
1 − V (x))� (9)

which picks out the component of HJBQVI that corresponds to D1’s learning. The HJB
equation (9) is solved subject to the boundary condition V (b(x2)�x2)= x2. The bound-
ary condition captures the assumption that, once D1’s type has dropped down to b(x2)

(because no good news has arrived), no further learning occurs and the higher-type di-
vision wins. The solution is

V (x)= 1 − c+ (1 − x1)

(
c ln

b(x2)(1 − x1)(
1 − b(x2)

)
x1

− 1 − x2 − c
1 − b(x2)

)
� (10)

To determine b(x2) in (10), we solve the V-auxiliary problem: choose b(x2) in [0�x2]
to maximize V (x) in (10). Then, if interior on the interval [0�x2], an optimal b(x2) satis-
fies the first-order condition

b(x2)= c

1 − x2
� (11)

17Recall that we assume that x2 ≥ x1.
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Threshold b in (11) is, indeed, interior if x2 ∈ (x� x̄), where

x≡ 1 −
√

1 − 4c
2

and x̄≡ 1 +
√

1 − 4c
2

�

By c < c̄, interval (x� x̄) is nonempty.
We now show that the kinks of the constructed value function are convex. All kinks

are on the diagonal (i.e., the 45-degree line that passes through the origin). Off the diag-
onal, kinks could potentially occur only at type profiles x= (b(x2)�x2) (indexed by x2),
where x1 ∨ x2 meets V (x). Differentiation ascertains, however, that segments x1 ∨ x2
and V (x) paste together smoothly:

φ1−(x)=φ1+(x) ⇐⇒ ∂(x1 ∨ x2)

∂x1
= V1(x)�

φ2−(x)=φ2+(x) ⇐⇒ V2(x)= ∂(x1 ∨ x2)

∂x2
�

The smooth pasting is a corollary to the optimality of b—an envelope-theorem result
(Milgrom and Segal 2002, Corollary 6).

By contrast, on the diagonal, each point is a kink. Among these, each kink x with
x1 = x2 ∈ [0�x) ∪ (x̄�1] prescribes immediate allocation. Since, in its neighborhood, the
value function is x1 ∨ x2, all these kinks are convex, as in the case of prohibitively costly
learning.

A kink x with x1 = x2 ∈ (x� x̄) need not be convex in general, but is convex when

φ1−(x)≤φ2+(x) ⇐⇒ c ≥ c�
as we now proceed to show. To see that φ1−(x) ≤ φ2+(x) captures convexity, note that,
graphically, the convexity of a kink at x requires that, as one passes through x in the
direction of any vector v = (v1� v2) that traverses the diagonal from above (i.e., has a
slope between −3π/4 and π/4 radians), the corresponding directional derivative of the
value function experiences a jump upward (if at all):

v1φ1−(x)+ v2φ2+(x)≤ v1φ1+(x)+ v2φ2−(x)�

Further, by the symmetry of φ with respect to the diagonal, φ1+(x) = φ2+(x) and
φ2−(x)=φ1−(x). As a result, the inequality in the display above becomes

(v1 − v2)
(
φ1−(x)−φ2+(x)

) ≤ 0 ⇐⇒ φ1−(x)≤φ2+(x)�

where the equivalence follows from v1 > v2, which is dictated by the orientation of v. The
equivalence betweenφ1−(x)≤φ2+(x) and c ≥ c follows from straightforward, if tedious,
algebraic manipulations (detailed in Lemma 2).

Lemma 2. The following statements are equivalent:

(i) For all xwith x1 = x2 ∈ [x� x̄], φ1−(x)≤φ2+(x).

(ii) We have c ≥ c.
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Proof. First, note that, at x with x1 = x2 ∈ [x� x̄], φ1−(x) = V1(x) and φ2+(x) = V2(x).
Define D(z)≡ V2(z� z)−V1(z� z). We must show that D(z)≥ 0 for all z ∈ [x� x̄] if and only
if c ≥ c. Substituting the functional forms gives

D(z)= c
(

1
z

+ 1 − z
1 − c− z + ln

c(1 − z)
z(1 − c− z)

)
�

Then D(x)= D(x̄)= 1. Any critical point of D in (x� x̄) is characterized by the first-order
condition dD(z)/dz = 0, whose solutions are z∗ = 1 − √

c and z∗∗ = √
1 − c. Of these,

only z∗ is in (x� x̄). Thus, D is nonnegative on [x� x̄] if and only if it is nonnegative at z∗.
From

D
(
z∗) = c

(
2

1 − √
c

− ln
(1 − √

c)2

c

)
�

conclude that

D
(
z∗) ≥ 0 ⇐⇒ 2

1 − √
c

≥ ln
(1 − √

c)2

c
⇐⇒ c ≥ c� �

To recap, we have conjectured the optimal policy and the associated value function,
which has been verified to be convex-kinked. To validate the conjecture, it remains to
verify that φ satisfies HJBQVI. The verification is split into two cases: x1 ≤ b(x2) and
x1 > b(x2).

• When x1 ≤ b(x2), φ(x) = x1 ∨ x2 = x2, which, by construction, satisfies the QVI
φ(x)≥ x1 ∨ x2.

The HJB that corresponds to D1’s learning is −c+x1(1−x2)≤ 0, which is implied
by x1 ≤ b(x2).

The HJB that corresponds to D2’s learning is −c ≤ 0, which obviously holds.

• When x1 > b(x2), φ = V , which, by construction, satisfies the HJB that corre-
sponds to D1’s learning.

QVI V (x)≥ x2 holds by the optimality of b.
QVI V (x)≥ x1 is implied by V (x)≥ x2 and (by convention) x2 ≥ x1.
The HJB that corresponds to D2’s learning requires that

−c− x2(1 − x2)V2(x)+ x2
(
1 − V (x)) ≤ 0�

By the envelope theorem applied to (10), V2(x) = (1 − x1)/(1 − b(x2)). Substitut-
ing V2(x) and V (x) into the display above and dividing by −c(1 − x2) gives the
equivalent inequality

�A(x� c)≡ 1 − c− x1x2

1 − c− x2
+ x2

1 − x1

1 − x2
ln

c(1 − x1)

x1(1 − c− x2)
≥ 0� (12)

By part (iii) of Lemma A.1 in the Appendix, (12) holds if and only if c ≥ c.

Because φ is convex-kinked and satisfies HJBQVI, Proposition 2 follows.
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Proposition 2. Suppose that learning is moderately costly, meaning that c ∈ [c� c̄).
Then, if x1 > b(x2), the lower-type division, D1, learns and, if it observes good news, wins.
If x1 ≤ b(x2), D2 wins immediately.

The economic content of condition c ≥ c in Proposition 2 is the suboptimality of learn-
ing by D2, the higher-type division. What �A(x� c) ≥ 0 in (12) expresses and c ≥ c guar-
antees is that a one-off (literally, infinitesimal) deviation toward learning by D2 is un-
profitable.

3.5 Learning is cheap

Assume that c < c. Then Proposition 3 shows that it may also be optimal for D2, the
higher-type division, to learn. Intuitively, it is suboptimal to ask D2 to learn when the
intended period of learning is insufficiently long to flip the ranking of the divisions’ re-
vised types; such learning would not affect the allocation decision, but would entail a
wasteful learning cost. Lengthy learning is only ever justified, however, if it is sufficiently
cheap—which, here, means that c < c—and if the gains from learning are sufficiently
large. These gains are large when x1 and x2 are close to each other (so that the iden-
tity of the more valuable project is highly uncertain), when both x1 and x2 are far away
from 0 and 1 (so that each project’s value is highly uncertain), and when x1 and x2 are
rather large (so that learning is rather informative; the good news arrives with a high
probability, and if it does not arrive, then the type is revised downward fast).

Figure 3 illustrates the optimal policy. For the type profiles in the heart-shaped re-
gion, the higher-type division learns. Elsewhere in the lens-shaped region, the lower-
type division learns. On the diagonal that traverses the heart-shaped region, both divi-
sions learn simultaneously.18 If neither division learns, the higher-type division wins im-
mediately. The boundary of the lens-shaped region is demarcated by b defined in (11).
The boundary of the heart-shaped region is derived in the remainder of this section.

The (rather technical) intuition for the heart-shaped region in Figure 3 can be
gleaned from studying the set of type profiles on which c < c causes the verification
of the conjectured value function in Proposition 2 to fail by causing some kinks to be
nonconvex. That is, we are interested in the failure set

F ≡ {
x |�A(x� c) < 0

}
�

on which the HJB component that corresponds to D2’s learning fails in Proposition 2
when c < c. Figure 4(a) illustrates F (and, by the problem’s symmetry, its reflection
about the diagonal), which is heart-shaped. On F , infinitesimal learning by D2 followed
by D1’s learning is a profitable deviation from the policy in which only D1 learns, as in
Proposition 2. Proposition 3 “patches” the failure set F by making the higher-type divi-
sion learn on a heart-shaped region that covers F . The region on which the higher-type
division learns according to Proposition 3 exceeds F (see Figure 4(b)) because one can
chain together infinitesimal deviations to obtain a deviation that is profitable even at a
type profile at which a single infinitesimal deviation is unprofitable.

18This simultaneous learning is not nongeneric.
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(a) c = 0�035. (b) c = 0�015.

Figure 3. The optimal policy’s prescription for each type profile when learning is cheap: c < c.
Within the lens-shaped region (which encompasses the heart-shaped region), at least one of the
divisions learns. Each arrow indicates the direction in which the type profile is revised if the
division that learns observes no news. Outside the lens-shaped region, no division learns and
the higher-type division wins immediately.

(a) On F , instead of asking the lower-type division
to learn (as Proposition 2 would have it), HQ can

achieve a higher payoff by momentarily asking the
higher-type division to learn and then reverting to

asking the lower-type division to learn.

(b) The heart-shaped region on which
Proposition 3 prescribes that the higher-type

division learns exceeds F .

Figure 4. The policy prescribed by Proposition 2 is no longer optimal when c < c.
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Figure 5. Each of the sets I , V , A, B, and C collects the type profiles at which the optimal policy
makes identical prescriptions. Set A is bounded by curve u above and by curve d below. Set B is
bounded by curve w above and by the diagonal below. Set V is bounded by curve b above and to
the left. D2 learns on A and B. Both divisions learn on C. D1 learns on V . D2 wins immediately
on I .

The optimal policy is formally described in terms of five type-profile sets, or regions:

A, B, C, I , and V . These regions are depicted in Figure 5. Region I is the region on

which D2 wins immediately in Proposition 2. Region V is the region on which D1 leans

in Proposition 2 less A, B, and C. To characterize A, B, and C, we consider three auxiliary

stopping problems: A auxiliary, B auxiliary, and C auxiliary.

The C-auxiliary problem is defined on the subset

Ĉ ≡ {
(x1�x2) ∈ [0�1]2 | x≤ x1 = x2 ≤ x̄}

of the diagonal. In the C-auxiliary problem, both divisions learn until either one ob-

serves the good news or until both revised types drop down to some optimally cho-

sen threshold, denoted by a—whichever happens first. At a, the strategy described in

Proposition 2 is followed: D1 learns. Let C denote the value function of the C-auxiliary

problem.

While both divisions learn, along the diagonal (z� z) indexed by z, the value function

satisfies the HJB equation

0 = −c− z(1 − z)C
′(z)
2

+ z(1 −C(z))� z ∈ [x� x̄]�
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subject to C(a) = V (a�a). To find the optimal a, first solve the differential equation in
the display above for an arbitrary a: C(a)= V (a�a). The solution is

C(z)= 1 + (1 − z)2
(

2cσ(a)− 1 − V (a�a)
(1 − a)2︸ ︷︷ ︸

≡MC(a)

− 2cσ(z)
)
� (13)

where V is defined in (10) and

σ(s)≡ 2s
1 − s + 1

2

(
s

1 − s
)2

+ ln
s

1 − s � s ∈ (0�1)�

The threshold amaximizes C over a and satisfies the first-order condition dMC(a)/da=
0, whereMC is defined in (13). Equivalently, by

dMC(a)

da
= c�C(a� c)

a(1 − a)2 � where�C(a� c)≡�A(a�a� c)� (14)

the threshold a satisfies �C(a� c)= 0.
Lemma 3 characterizes the solution of the C-auxiliary problem in terms of the

thresholds

a≡ min
{
a ∈ [x� x̄] |�C(a� c)= 0

}
� (15)

ā= max
{
a ∈ [a� x̄] |MC(a)=MC(a)

}
� (16)

and the type subset

C ≡ {
(z� z) ∈ Ĉ | z ∈ (a� ā)}�

Lemma 3. On C, D1 and D2 both learn; C is given by (13) with a= a. On Ĉ\C, D1 learns
as in Proposition 2; C coincides with V .

Proof. To solve maxa∈[θ�z]MC(a), let us examine the shape of MC on [x� x̄]; Figure 6
previewsMC .

By (14), the sign of dMC(a)/da coincides with the sign of �C(a� c). By Lemma A.1
in Appendix, �C(·� c) is positive at first, then intersects zero at a point, then is negative,
then intersects zero at a point, and then is positive again. As a result,MC is wave-shaped,
with local maxima at a, where a is the smallest of the two roots of �C(·� c)= 0, and at x̄.
Furthermore, by Lemma A.2 in the Appendix, x̄ is the unique global maximum: MC(x̄) >

MC(a).
Lemma A.2 and the wave shape ofMC imply the existence of a unique ā ∈ (a� x̄) such

thatMC(ā)=MC(a), as defined in (16).
The described properties of MC have the following implications for the C-auxiliary

problem. When z /∈ (a� ā), arg maxa∈[x�z]MC(a) = {z} and, so, C(z) = V (z� z); D1 learns.
When z ∈ (a� ā), arg maxa∈[x�z]MC(a) = {a} and, so, C(z) > V (z� z); D1 and D2 learn si-
multaneously until either division observes the good news or until both divisions’ types
fall to a, whereupon (say) D1 learns. �
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Figure 6. The maximand, MC , in the C-auxiliary problem. The sign of dMC/da coincides with
the sign of �C(·� c).

To characterize set A, we formulate the A-auxiliary problem on the set

Â ≡ {
(x1�x2) ∈ (a∗� a] × [0�1] | x2 ≥ x1

}
�

In this problem, either D1 learns as in Proposition 2, or D2 learns until either it ob-
serves good news or its revised type reaches some optimally chosen threshold, denoted
by d(x1). At that threshold, the strategy described in Proposition 2 is followed: D1 learns.
LetA denote the value function of theA-auxiliary problem.

While D2 learns, the associated value function satisfies the HJB equation

0 = −c− x2(1 − x2)A2(x)+ x2
(
1 −A(x))� x ∈ Â� (17)

subject to A(x1� d(x1)) = V (x1� d(x1)). To find the optimal d(x1), first let us solve the
differential equation in the display above for an arbitrary a: A(x1� a) = V (x1� a). The
solution is

A(x1�x2)≡ 1 + (1 − x2)

(
cη(a)− 1 − V (x1� a)

1 − a︸ ︷︷ ︸
≡MA(x1�a)

− cη(x2)

)
� (18)

where

η(s)≡ s

1 − s + ln
s

1 − s � s ∈ (0�1)�
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For each x1, d(x1) maximizes A over a and satisfies the first-order condition MA
2 (x1�

d(x1))= 0, whereMA is defined in (18). Equivalently, by

MA
2 (x1�x2)= c�A(x� c)

x2(1 − x2)
�

d(x1) satisfies �A(x1� d(x1)� c)= 0.
Lemma 4 characterizes the solution to the A-auxiliary problem in terms of the type

subset

A ≡ {
x ∈ (a∗� a] × [0�1] | x2 ∈ (

d(x1)�u(x1)
)}
�

where

a∗ ≡ min
{
x1 ∈ [0�1] | ∃x2 ∈ [x1�1] s.t. �A(x1�x2� c)= 0

}
d(x1)≡ min

{
a ∈ [x1�1] |�A(x1� a� c)= 0

}
� x1 ∈ (

a∗� ā
)
� (19)

and, letting b−1 denote the inverse of b in (11),

u(x1)≡ max
{
a ∈ [

x1� b
−1(x1)

] |MA(x1� a)=MA
(
x1� d(x1)

)}
� x1 ∈ (

a∗� ā
)
� (20)

Lemma 4. On A, D2 learns; A is given by (18) with a = d(x1). On Â\A, D1 learns as
in Proposition 2; A coincides with V . Moreover, on A, A ≥ V , F ∩ Â ⊂ A, and, for x1 ∈
(a∗� a), u(x1) < b

−1(x1).

Proof. To solve maxa∈[x1�x̄]MA(x1� a), let us examine the shape ofMA.
By (12), the sign ofMA

2 (x) coincides with the sign of�A(x� c). By part (iv) of Lemma
A.1 in the Appendix, �A(x1� ·� c) is quasi-convex; thus, MA(x1� ·) is wave-shaped, as de-
picted in Figure 7.

Because �A(x1� ·� c) is quasi-convex, it intersects zero at most twice, in which case
the first intersection is a local maximum ofMA. We denote this local maximum by d(x1),
defined in (19). This local maximum is not global; Lemma A.3 in the Appendix implies
thatMA(x1� d(x1)) <M

A(x1� b
−1(x1)).

The wave shape of MA(x1� ·) implies the existence of a unique u(x1) ∈ (d(x1)�

b−1(x1)) such thatMA(x1�u(x1))=MA(x1� d(x1)), as in (20).
The derived properties of MA have the following implications for the maximization

problem maxa∈[x1�x2]MA(x1� a). When x2 /∈ (d(x1)�u(x1)), MA(x1� ·) is maximized on
[x1�x2] at x2 and A(x) = V (x). When x2 ∈ (d(x1)�u(x1)), MA(x1� ·) is uniquely maxi-
mized on [x1�x2] at d(x1) andA(x) > V (x). Thus, on A,A≥ V , as claimed in the “more-
over” part of the lemma.

To complete the “moreover” part of the lemma, note that, because the slope of
MA(x1� ·) coincides with the sign of �A(x1� ·� c), the shape of MA(x1� ·), summarized
in Figure 7, implies that F ∩ Â ⊂ A.

Finally, by Lemma A.3, arg maxa∈[x1�b−1(x1)]M
A(x1� a) = {b−1(x1)}, which, together

with the wave shape ofMA(x1� ·), implies that u(x1) < b
−1(x1). �
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Figure 7. The maximand, MA, in the A-auxiliary problem. The sign of MA
2 (x1� ·) coincides

with the sign of �A(x1� ·� c).

To characterize set B, we formulate the B-auxiliary problem, defined on the set

B̂ ≡ {
(x1�x2) ∈ (a� ā)× [

0� b−1(x1)
] | x2 ≥ x1

}
�

In the B-auxiliary problem, either D1 immediately learns, as in Proposition 2, or D2
learns until it observes good news or until its revised type reaches x1, whereupon both
divisions learn as prescribed by the C-auxiliary problem. Let B denote the value func-
tion of the B-auxiliary problem.

When only D2 learns, the associated value function satisfies the HJB equation

0 = −c− x2(1 − x2)B2(x)+ x2
(
1 −B(x)) (21)

subject to B(z� z)= C(z) for each z ∈ [a� ā]. The solution is

B(x)≡ 1 − (1 − x2)

(
1 −C(x1)

1 − x1
+ cη(x2)− cη(x1)

)
� (22)

Because the threshold at which D2 stops learning is assumed to be x1, it remains only
to identify the threshold, denoted by w(x1), such that D2 does not learn if x2 ≥ w(x1).
This threshold is

w(x1)≡ min
{
a ∈ [

x1� b
−1(x1)

] | V (x1� a)= B(x1� a)
}
� x1 ∈ (a� ā)� (23)

Lemma 5 summarizes the solution to the B-auxiliary problem in terms of the type
subset

B ≡ {
(x1�x2) ∈ (a� ā)× [0�1] | x2 ∈ (

x1�w(x1)
)}
�

where a, ā, and w are defined in (15), (16), and (23), respectively.
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Lemma 5. On B, D2 learns, B is given by (22) and satisfies B > V , and w(x1) < b
−1(x1).

On B̂\B, D1 learns as in Proposition 2; B coincides with V .

Proof. The proof is in the text above, except for the claim that w(x1) < b
−1(x1), which

is Lemma A.4 in the Appendix. �

We can now assemble the pieces to form the conjectured value function when learning
is cheap:

φ(x)= 1{x∈A}A(x)+ 1{x∈B}B(x)+ 1{x∈C}C(x)+ 1{x∈V}V (x)+ 1{x∈I}x2� (24)

Function φ is extended to the hyperplane x2 < x1 by the symmetry about the 45-degree
line.19 Function φ has kinks where sets A and V meet at curve u, where sets B and V
meet at curve w, and on the 45-degree line outside the heart-shaped region in Figure 5.
The kinks at these boundaries comply with the rule of thumb of Peskir and Shiryaev
(2006, Chapter IV.9): whenever the type process is certain to move away from a bound-
ary, the value function at the boundary is liable to be nondifferentiable. Alternatively,
here, all the kinks of φ are at the boundaries that have not been explicitly determined
as solutions to optimal stopping; thus, at those boundaries, the envelope theorem does
not guarantee smooth pasting.

To verify the conjecture in (24), we must perform the same two-step procedure that
leads to Proposition 2: verify that φ’s kinks are convex and verify that φ solves HJBQVI.
The requisite steps are contained in the proof of Proposition 3.

Proposition 3. Suppose that learning is cheap, meaning that c < c. Then, on A and B,
the higher-type division, D2, learns and, if it observes good news, wins. On V , D1 learns
and, if it observes good news, wins. On I ,D2 wins immediately.

Proof. The the proof proceeds in steps collected into three groups. Step 1 is concerned
with the convexity of kinks. Step 2 is concerned with the satisfaction of the QVIs. Step 3
is concerned with the satisfaction of the HJB equations.

Step 1.1. By the argument leading up to Proposition 2, there are no kinks at the
boundary of I and V .

Step 1.2. We show that there are no kinks where A and V meet along d. Indeed,

A2
(
x1� d(x1)

) = 1 − x1 − c(1 − x1)

1 − d(x1)
ln

c(1 − x1)

x1
(
1 − c− d(x1)

) − c

d(x1)

=
(
1 − d(x1)

)
(1 − x1)

1 − c− d(x1)
= V2

(
x1� d(x1)

)
�

where the first equality follows by differentiating A, the second equality uses �A(x1�

d(x1)� c) = 0 (from the definition of d) to substitute out the logarithmic term, and the
third equality follows by differentiating V . Furthermore, direct differentiation (without

19The value function in (24) also describes the intermediate-cost case, in which A, B, and C are empty,
and the prohibitive-cost case, in which V is empty as well.
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using the condition for d) establishes that A1(x) = V1(x), including at x = (x1� d(x1)).
Thus, there are no kinks where A and V meet along d.

Step 1.3. We show that there are no kinks where A and B meet, a vertical boundary.
We shall ascertain thatA1(x)= B1(x) along that boundary. Indeed,

A1(x)= 1 − x2

1 − d(x1)
V1

(
x1� d(x1)

)

=
x1→a

1 − x2

1 − a V1(a�a)

= 1 − x2

1 − a
(

1 − a− c

a
− c ln

c(1 − a)
a(1 − c− a)

)
�

where the first equality follows by the envelope theorem (d(x1) has been chosen opti-
mally), the second equality uses limx1→a d(x1)= a, and the last equality is by differenti-
ation and rearranging.

Further,

B1(x)= (1 − x2)

(
C ′(x1)

1 − x1
− 1 −C(x1)

(1 − x1)
2 + cη′(x1)

)

= (1 − x2)
(
1 −C(x1)− c/x1

)
(1 − x1)

2

=
x1→a

1 − x2

1 − a
(

1 − a− c

a
− c ln

c(1 − a)
a(1 − c− a)

)
�

where the first equality is by differentiation, the second equality is by η′(x1)= 1/(x1(1 −
x1)

2) and by

C ′(z)= 2
(
1 −C(z)− c/z)

1 − z �

and the final equality follows by substituting C. As a result, A1(a�x2) = B1(a�x2) for
x2 ∈ (a�b−1(a)).

Step 1.4. We show that there are no kinks where B meets its reflection about the
diagonal, on C. Indeed,

B1(z� z)= 1 −C(z)− c/z
1 − z = B2(z� z)�

where the first equality follows by the computations in Step 1.2 and the second equality
follows by differentiation.

Step 1.5. We show that the kinks where V meets its reflection about the 45-degree
line, on Ĉ\C, are convex. By Lemma 2, we show that V1(z� z)≤ V2(z� z) for (z� z) ∈ Ĉ\C:

V1(z� z)= 1 − z− c

z
− c ln

c(1 − z)
z(1 − c− z)�

V2(z� z)= − (1 − z)2
1 − c− z �
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Rearranging implies that V1(z� z) ≤ V2(z� z) is equivalent to �C(z� c) ≥ 0, which is im-
plied by Lemma A.1.

Step 1.6. We argue that the kinks where V meets A along u are convex. Indeed,
the surfaces constructed in the A-auxiliary and the V -auxiliary problems, character-
ized by A and V , are both smooth. As x2 increases, the A-induced surface cuts
into the V -induced surface from above, by construction, and because u(x1) < b

−1(x1)

(Lemma A.3). Thus, the kinks along u are convex.
Step 1.7. We argued that the kinks where V meets B along w are convex. Indeed, the

surfaces constructed in theB-auxiliary and the V -auxiliary problems, characterized byB
and V , are both smooth. As x2 increases, the B-induced surface cuts into the V -induced
surface from above, by construction, and because w(x1) < b

−1(x1) (Lemma A.4). Thus,
the kinks along w are convex.

Step 2.1. On I and V , the QVIs follow by the arguments leading up to the proof of
Proposition 2 because the specification ofφ on I ∪V is the same here and in that propo-
sition.

Step 2.2. On A, the QVI requires that A(x) ≥ x1 ∨ x2 = x2. Inequality A(x) ≥ V (x)

follows by the optimality of stopping—or, as we say, by revealed preference (of the
maximizer)—in theA-auxiliary problem. InequalityA(x)≥ x2 follows by revealed pref-
erence in the V -auxiliary problem. Combining the preceding two inequalities gives
A(x)≥ x2.

Step 2.3. On B, the QVI requires that B(x) ≥ x2. To verify the inequality, first, ex-
tend theA-auxiliary problem (originally defined on A) to B. Using the same arguments
as in Lemma 4, this problem’s solution can be verified to imply that, on B, D2 learns
until either he observes the good news or his belief drops down to x1, at which point
the prescription of the V -auxiliary problem is followed and delivers continuation value
V (x1�x1). By revealed preference, on B, A(x) ≥ V (x) (where A is the value function of
the A-auxiliary problem extended to B). Moreover, on B, the B-auxiliary problem has
the same threshold (x1, by assumption) as the A-auxiliary problem extended to B (x1,
now as a result). But once this threshold has been reached, it delivers a higher con-
tinuation value, C(x1), which satisfies C(x1) ≥ V (x1�x1) by revealed preference in the
C-auxiliary problem. So, on B, B(x) ≥A(x), which, combined with A(x) ≥ V (x) ≥ x2,
gives B(x)≥ x2, as desired.

Step 2.4. On C, the QVI requires thatC(z)≥ z. InequalityC(z)≥ V (z� z) follows by re-
vealed preference in the C-auxiliary problem. Inequality V (z� z)≥ z follows by revealed
preference in the V -auxiliary problem. Combining the preceding two inequalities gives
C(z)≥ z.

Step 3.1. On I , the HJBs for D1 and for D2 hold by the argument in the proof of
Proposition 2.

Step 3.2. On V , the HJB for D1, (9), holds by construction.
HJB for D2 holds if and only if �A(x� c) ≥ 0, as was established in the discussion

preceding (12). Recall that �A(x� c) < 0 ⇐⇒ x ∈ F . Because F ⊂ A ∪ B (on Â, F ⊂ A
by Lemma A.3; on B̂, F ⊂ B by Lemma A.4) and V ∩ (A∪ B)= ∅ (by the definition of V),
x ∈ V implies that x /∈F . As a result, �A(x� c)≥ 0 for all x ∈ V , as desired.

Step 3.3. On A, the HJB for D2, (17), holds by construction.
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The HJB for D1 is

−c− x1(1 − x1)A1(x)+ x1
(
1 −A(x)) ≤ 0� (25)

By the envelope theorem applied toA in (18),

A1(x)= (1 − x2)V1
(
x1� d(x1)

)
1 − d(x1)

�

Substituting the display above and the definition ofA in (18) into (25) and dividing by c
yields

x1(1 − x2)
(
η(x2)−η(

d(x1)
))

+ x1(1 − x2)

c
(
1 − d(x1)

) [
1 − V (

x1� d(x1)
) − (1 − x1)V1

(
x1� d(x1)

)] ≤ 1�

which further simplifies by substituting V from (10) and V1 from (9), and by dividing
both sides by 1 − x2:

1
1 − x2

≥ x1
(
η(x2)−η(

d(x1)
)) + 1

1 − d(x1)
� (26)

If x2 = d(x1), then (26) holds trivially, as equality. To show that (26) also holds for
x2 > d(x1), it suffices to show that its left-hand side increases in x2 faster than its right-
hand side does. Indeed, by x1 < x2, the left-hand side’s derivative, 1/(1 − x2)

2, exceeds
the right-hand side’s derivative, x1/(x2(1 − x2)

2). Thus, (26) is verified.
Step 3.4. On B, the HJB for D2, (21), holds by construction.
The HJB for D2 is

−c− x1(1 − x1)B1(x)+ x1
(
1 −B(x)) ≤ 0� (27)

Differentiating B in (22) and using the expression for C ′(x1) gives

B1(x)= 1 − x2

(1 − x1)
2

(
1 −C(x1)− c

x1

)
�

Substituting the display above and the definition of B in (22) into (27) leads to inequality
(26) with d(x1) replaced by x1; that inequality was verified in the preceding step (for any
d(x1), including d(x1)= x1).

Because, by Steps 1, 2, and 3, φ is convex-kinked and satisfies HJBQVI, the conclu-
sion of the proposition follows. �

4. Alternative learning technologies

So far, we have assumed that both divisions operate the good-news technology (GNT),
which, when vi = 1, sometimes reveals the good news that vi = 1 but never reveals vi = 0.
Both from the conceptual standpoint and motivated by applications, one may wonder
about HQ’s optimal policy when both divisions operate the bad-news technology (BNT),
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(a) D1 and D2 each operates the bad-news
technology (BNT).

(b) D1 operates the good-news technology (GNT);
D2 operates the bad-news technology (BNT).

Figure 8. Optimal policies for bad-news and hybrid (good-news–bad-news) technologies;
c = 0�035. Each arrow indicates the direction in which the type profile is revised if the division
that learns observes no news. The region in which some agent learns is the same for good-news
(not shown), bad-news, and hybrid learning technologies.

which, when vi = 0, sometimes reveals the bad news that vi = 0 but never reveals vi = 1.
Examples of the BNT are a clinical drug trial whose goal is to determine whether a drug
has serious side effects, a press investigation whose goal is to discover a political candi-
date’s disqualifying trait, and a company’s due diligence about whether the Department
of Justice will block a merger.

It turns out that the BNT case is a corollary (Corollary 1) to the GNT case (of Propo-
sitions 1, 2, and 3). The key to the result is to observe that, by the symmetry of the
two technologies, the benefit from learning optimally relative to allocating immediately
with the GNT when {Pr{vi = 1} = yi}i=1�2 is the same as with the BNT when {Pr{vi = 0} =
yi}i=1�2 for any (y1� y2) ∈ [0�1]2. Formally, denoting by ω the value function for the BNT
case, the symmetry between the GNT and BNT cases is captured by20

φ(x)− max{x1�x2} ≡ω(1 − x)− max{1 − x1�1 − x2}� (28)

where, as before, xi = Pr{vi = 1}, i= 1�2. Roughly speaking, what matters for the relative
benefit of learning is how likely the states are that generate the news, not whether these
states correspond to high or low project values.

The observation in (28) implies that, graphically, the optimal-policy map for the BNT
is obtained from the optimal-policy map for the GNT (Figure 3(a)) by reversing the di-
rection of each axis and by swapping the two divisions’ areas for immediate allocation.
Figure 8(a) illustrates.

20See the proof of Corollary 1 for more on this symmetry.
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Corollary 1. Optimal policies for the BNT and the GNT are such that the following
statements hold:

(i) Di learns with the BNT at a type profile x if and only if it learns with the GNT at the
type profile 1 − x.

(ii) At any type profile x, Di wins with the BNT if and only if it wins with the GNT.

Remark 1. The corollary’s conclusion does not survive discounting. For a rough intu-
ition, suppose that r > 0 and that x is “large,” so that φ(x) > ω(1 − x). Then the oppor-
tunity cost of learning—and, thus, delaying allocation—is higher at xwith the GNT than
at 1 − x with the BNT.

Proof of Corollary 1. Let HJBQVI-GNT and HJBQVI-BNT stand for HJBQVI equa-
tions for good-news and bad-news technologies, respectively.

Let ω, given in (28), be a conjectured value function for the BNT case. Equivalently,
when x2 ≥ x1,

ω(x)≡φ(1 − x)+ x1 + x2 − 1� (29)

By inspection of (29), the kinks of ω inherit the properties of the corresponding kinks of
φ and, so, are convex.

It remains to verify thatω solves HJBQVI-BNT at the points of differentiability or that

0 = max
i∈N

{
xi −ω(x)�−c + xi(1 − xi)ωi(x)+ (1 − xi)

(
x−i −ω(x)

)}

holds. Substituting (29) into the display above and setting y = 1 − x gives

0 = max
i∈N

{
y−i −φ(y)�−c − yi(1 − yi)φi(y)+ yi

(
1 −φ(y))}�

which is HJBQVI-GNT, satisfied by φ.
The substitutions leading to the equivalence of HJBQVI-BNT and HJBQVI-GNT im-

ply that Di wins with the BNT at xwhenever it would win with the GNT at x, and that Di

learns with the BNT at x whenever it would learn with the GNT at 1 − x. �

Finally, one can conceive of a hybrid technology, with D1 operating the GNT and D2 op-
erating the BNT. An example is a drug trial in which D1 tests an existing drug, known to
be safe, for off-label efficacy, whereas D2 tests a new drug, known to be efficacious, for
side effects. Figure 8(b) illustrates the optimal policy. In this case, simultaneous learn-
ing occurs along the backward-bending diagonal segment. The region on which some
division learns is the same in all three learning technologies considered in the paper.

5. Discounting

So far, our analysis of the optimal policy has focused on the undiscounted problem. This
section suggests that the described results are robust to the introduction of discounting,
and that discounting affects the optimal policy in intuitive ways. The comprehensive
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(a) The undiscounted case. (b) The discounted case: r = 0�02.

Figure 9. The optimal policy’s prescription for each type profile when learning is cheap;
c = 0�035. Within the lens-shaped region, one of the divisions learns. Each arrow indicates the
direction in which the type profile is revised if the division that learns observes no news. Outside
the lens-shaped region, no division learns and the higher-type division wins.

analysis of the discounted case is conceptually no different from the undiscounted one,
but its execution is beyond both our ability to perform algebraic manipulations and this
paper’s scope. To illustrate the optimal policy with discounting, we resort to numerical
analysis. Figure 9 illustrates the broad lessons.

According to Figure 9, an increase in the discount factor is qualitatively similar to
an increase in the cost of learning. In particular, as r rises, the region on which some
division learns (i.e., the lens-shaped region) shrinks.21 Furthermore, as r rises, the region
on which the higher-type division learns (i.e., the heart-shaped region) also shrinks.

Discounting does not make simultaneous learning by both divisions more prevalent
than it is in the undiscounted problem. Formally, whenever it is differentiable at a type
profile x, the value function φr solves the HJB equation (4). Because the maximand in
the HJB is linear in q, the allocation of learning effort, an interior solution is never strictly
optimal.

Discounting would favor simultaneous learning if the model were changed so that
learning capacity were division-specific instead of being fixed in the aggregate and al-
located between the two divisions. In that case, HQ might tolerate the redundancy of
simultaneous learning so as to avoid the delay associated with sequential learning.

6. Conclusions

The paper solves the cash-flow maximization problem of a company that faces an irre-
versible project-selection decision with information acquisition about each project. In

21This lens-shaped region is nonempty if and only if c < (1 − r)2/4, which is the analogue of c < c̄ in
Proposition 1 and is derived analogously.
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practice, strategic decisions pertaining to project selection (e.g., a merger or an acqui-
sition) constitute sensitive information, which companies guard against outsiders. This
lack of observability limits the scope for testing the model’s predictions and makes the
paper’s focus largely normative.

Nevertheless, one can tentatively ask the positive questions of whether the actions
assumed to be available to HQ are observed in practice and whether HQ’s derived opti-
mal strategy can rationalize observed outcomes. As noted in the Introduction, in 2011,
Universal Music Group was choosing between two projects: buying EMI Music and buy-
ing Warner Music Group. Industry rumors suggest that, initially, Universal was learn-
ing about both projects simultaneously but quickly focused its efforts on learning about
EMI. Late in 2011, Universal announced that it would buy EMI; Universal’s consultants
must have gotten good news. Universal’s behavior is consistent with the model’s opti-
mal policy for the case when learning is cheap, so that simultaneous learning can be
optimal. Thus, the actions of taking time to learn about projects and of learning either
sequentially or simultaneously were available to Universal.

This paper derives the optimal policy by assuming that HQ both directly controls
divisions’ learning and observes divisions’ news, if any. What if HQ can do neither?
The optimal policy can still be implemented in a dynamic auction. This auction is a
special case of the Vickrey–Clarke–Groves (VCG) mechanism’s dynamic extensions (see
Athey and Segal 2013, and Bergemann and Välimäki 2010). Because of the good-news
nature of the learning technology, our special case requires much less communication
than a direct dynamic mechanism would suggest for a general learning technology. In
particular, the auction begins with indicative bidding, followed by self-enforcing opti-
mal learning by the divisions, and then firm bidding. Firm bidding occurs at a deadline
that HQ sets, given the indicative bids, or as soon as either division calls for early firm
bidding—whichever occurs first.22

A dynamic auction is a plausible implementation instrument in practice. Internal
auctions have been successfully deployed to predict sales (Hewlett–Packard), manage
manufacturing capacity (Intel), generate business ideas (General Electric), select mar-
keting campaigns (Starwood), and predict project completion (Microsoft) or external
events (Google).23 The efficacy of an internal auction relies on the company’s ability to
commit to refraining from subsequently undoing any payments received from its divi-
sions in the course of the auction. One would expect the requisite commitment to be
available to successful companies with a developed reputation for executing cash-flow-
maximizing decisions.
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