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Scheduling reentrant jobs on parallel machines with a
remote server

K. Chakhlevitch∗ and C.A. Glass
Cass Business School, City University London, 106 Bunhill Row, EC1Y 8TZ, UK
Konstantin.Chakhlevitch.1@city.ac.uk, C.A.Glass@city.ac.uk

Abstract

This paper explores a specific combinatorial problem relating to re-entrant jobs
on parallel primary machines, with a remote server machine. A middle operation is
required by each job on the server before it returns to its primary processing machine.
The problem is inspired by the logistics of a semi-automated micro-biology laboratory.
The testing programme in the laboratory corresponds roughly to a hybrid flowshop,
whose bottleneck stage is the subject of study. We demonstrate the NP-hard nature
of the problem, and provide various structural features. A heuristic is developed and
tested on randomly generated benchmark data. Results indicate solutions reliably
within 1.5% of optimum. We also provide a greedy 2-approximation algorithm. Test
on real-life data from the microbiology laboratory indicate a 20% saving relative to
current practice, which is more than can be achieved currently with 3 instead of 2
people staffing the primary machines.
Keywords: scheduling, parallel identical machines, remote server, reentrant jobs

1 Introduction

The scheduling problem considered in this paper arises from the technological process ob-
served in a microbiological laboratory. The laboratory performs microbiological testing
on samples of processed foods prior to release to retailers. Each food sample undergoes a
suite of tests, which is specified in advance. Each test suite consists of a number of micro-
biological tests, carried out by scientists with the aid of semi-automated equipment. The
samples proceed through a number of consecutive processes, which include weighing, pipet-
ting out onto test plates and a period of incubation. According to their test suite, samples
require different dilutions, and tests on the samples require different types of media and in-
cubation times for bacterial development, among other things. The laboratory is equipped
with a fully integrated Laboratory Information Management System (LIMS) which controls
individual tests for each sample. Pathogen tests are carried out in a separate laboratory.
Thus, all samples in the main laboratory may be processed without risk of contamination.
The logistics of testing in the microbiology laboratory may be viewed as a type of hybrid
flowshop, with sets of parallel machines, performing similar functions, at various stages.
However, one of the stages, namely the pipetting stage, appears as the bottleneck stage in
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the whole testing process. The test samples are pipetted onto test plates which must be
assembled and labelled ready for the purpose. The test plates are prepared by a dedicated
machine, which serves several pipetting stations. The interaction between the single plate
labelling machine and the pipetters working in parallel, gives rise to an unusual scheduling
problem which is the subject of this paper.

The problem may be formulated in terms of a set of m parallel primary machines,
M1,M2,M3, . . . ,Mm (the pipetters) and a single server machine S (the plate labelling
machine). Jobs have three operations, the first and last of which are performed by the
same pipetter, Mi say, with a middle operation on the server, S. The issue is not one of
sequencing operations, as the order of jobs and of each of their operations is predetermined
in our context. The challenge is that of assigning jobs to the primary machines. We
restrict attention to the case of identical machines. We refer to this as the Initialization-
Setup-Processing, ISP, problem. To the best of our knowledge, the ISP problem has not
been studied before.

The scenario described above can be modelled using a parallel machines with a common
server environment. A range of problems thus classified has been considered in the litera-
ture. Complexity results for problems with identical parallel machines with a single server
and different objective functions were obtained by Hall et al. [1], Brucker et al. [2] and
Kravchenko and Werner [3]. Abdekhodaee and Wirth [4] studied some solvable cases of the
makespan minimization problem. Several heuristics for a general case were developed by
Abdekhodaee et al. in [5]. Glass et al. [6] analyzed scheduling problems in the environment
with parallel dedicated machines and a single server. Note that all these papers deal with
the problems where a server visits the machine to perform a setup operation for each job,
thus making the machine unavailable for processing any job until the setup operation is
completed. In our scenario, the setup operations for jobs are performed on a remote or
external server, i.e. no machine is tied up by setup operation of a particular job and each
machine is available at any time for processing another job for which setup has been com-
pleted earlier. Similar problems are briefly discussed in [7]; however, no solution method is
presented.

An important distinguishing feature of our model is the presence of initialization oper-
ation for each job, prior to its setup operation, which leads to different rules for assigning
jobs to the machines. This feature makes our problem relevant to the class of reentrant
shop scheduling problems namely chain-reentrant shop problems studied by Wang et al.
in [8]. In a chain-reentrant shop with m machines, each job is first processed on the pri-
mary machine M1, then on secondary machines in the order M2,M3, ...,Mm and returns
to M1 for its final operation. Finding a sequence of jobs which minimizes makespan in a
chain-reentrant shop is shown to be NP-hard problem even for m = 2 (see [8]).

This paper studies the ISP problem. We establish its complexity, as NP-hard, and its
relationship with the reentrant chain problem. The essence of the ISP problem is contained
in the case of 2 primary machines, which is the subject of the remainder of the paper. We
offer bounds and an heuristic algorithm for this case. The effectiveness of our approach is
demonstrated in two different ways. We present results for the real-world laboratory data,
which show a 20% potential improvement from using our heuristic. In addition, systematic
tests on randomly generated data, illustrate the impact of the heuristic on a broader range
of instances. Solutions are shown to be always within 2% of optimum. However, the
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relative impact, compared with the default scheduling strategy, of our heuristic approach
varies with the nature of the problem instance. Further insights are provided by analysis
of the computational results.

The rest of the paper is organized as follows. In Section 2 we describe the problem in
more detail. The specific context of pipetting in the micro-biology laboratory is described
more fully, and the derivation of the consequent mathematical formulation given. In Section
3, we prove that the ISP problem is NP-hard in the ordinary sense, and then consider various
structural properties of an optimal solution. In particular, we relate the ISP problem more
precisely to the chain re-entrant problem in the literature. We also explore the impact
of the various restrictions of this very specific problem to put it in a broader context. In
section 4 we present our proposed heuristic algorithm. We also describe a branch and
bound algorithm which we use to compute an optimal solutions and a default scheduling
algorithm currently used in the laboratory at the pipetting stage. These algorithms are
used for performance assessment of our proposed heuristic. Computational experiments are
reported and analyzed in section 5 where we study the application of our heuristic to the
real-world version of the problem as well as analyse the performance of the heuristic for
the broad range of randomly generated data. Finally, Section 6 contains some concluding
remarks.

2 Problem Description

2.1 Microbiology laboratory context

The re-sequencing of the samples is possible only in advance or at the earliest stages due
to technological constraints imposed by the process. Moreover, each test sample must
pass through the pipetting stage in a good time to ensure the validity of tests. For this
reason, test samples are initialized in the order of their arrival at the pipetting stage. The
laboratory is interested in increasing the number of samples processed during the day.
Therefore, effective scheduling of the operations at the pipetting stage is required in order
to provide their fast completion and to avoid unnecessary delays and idle times on the
machines.

Pipetting involves inoculating small portions of test samples into test plates contain-
ing microbiological media, and some auxiliary operations. There are several identically
equipped pipetting stations in the laboratory, working in parallel. The diluted test samples
arrive to the pipetting stage in plastic bags with barcode labels. The barcode contains
essential information about the test suite of a test sample. The request for test plates
for a test sample is initiated on one of the pipetting stations by means of scanning the
barcode label on the test sample bag. Such a request is automatically transmitted to the
plate labelling machine connected to all the pipetting stations. The labelling operation is
fully automated. Specifically, it collects from the plate storage desk the required number of
test plates of different types in accordance with the test suite of a sample, puts a barcode
label containing information about individual test onto each plate, and delivers a stack
of labelled plates to the pipetting station which has initiated the request for plates. The
pipetting operation may then commence on the corresponding pipetting station.

The plate labelling machine processes incoming requests on the first-come-first-served
basis. Therefore, if a pipetter wishes to get on with the testing allocated to her, she will
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scan several bags at a time. This practice may, however, delay the work of other pipetters,
and is therefore disapproved of. The recommended working practice is for each pipetter to
scan one bag at a time. The next bag can be scanned by a pipetter only after the pipetting
operation for the previous bag is completed.

To summarize, we note that the pipetting process consists of three consecutive opera-
tions, namely initialization, plate labelling and pipetting. The first and third operations
are performed on the same pipetting station and the second operation is carried out on the
plate labelling machine. The sequence in which jobs commence at the pipetting stage is
given, and cannot be changed.

2.2 Mathematical formulation

There are m parallel identical machines Mi, for i = 1, . . . ,m which we refer to as primary
machines. In addition, a single machine S serves the primary machines. Each job j from
the set N = {1, 2, . . . , n} consists of three operations: initialization, that can be done by any
primary machine Mi and requires a small amount of time δ; setup operation, performed by
machine S during sj time units; and the main processing operation, with processing time
pj and completed by the same machine which has initialized the job. The main processing
operation of a job can start only after its initialization and setup operations are completed.
Each machine and server S can handle at most one job at a time and each job can be
assigned to at most one machine. Each job requires the server between its initialization
and processing operations.

Throughout the paper we assume that initialization time is always smaller than any
setup time and any processing time, i.e.,

δ ≤ min
j∈N

{sj} ,

δ ≤ min
j∈N

{pj} .

For 2-machine case, i.e. when m = 2, it is convenient to refer to machine M1 and M2

as A and B, respectively. Due to the technological restrictions, initialization and setup
operations must be performed in a given, prescribed order, which we will label (1, 2, . . . , n).
Thus, for any pair of jobs j and k, j < k, job j is initialized before job k and the setup
operation of j is performed before the setup operation of k.

Note that it is possible to initialize several jobs in succession from the same primary
machine thus forming a batch of jobs. The setup operations of the jobs from a batch
are performed consecutively on machine S in the order of their initialization. A batch is
consistent if no operation of a job from another batch is performed on the primary machine
in between the initialization operations and the main processing operations of the jobs
from the batch. In other words, consistent batching means that a machine cannot start
another job or a batch of jobs before all operations of the currently processed batch are fully
completed. Consistent batching reflects the operational requirements in the microbiology
laboratory, therefore we shall only consider the class of schedules with consistent batches
throughout the rest of the paper. Inconsistent batching is briefly discussed in Appendix A.

An example of a feasible schedule with 9 jobs and 4 batches is given in Fig. 1. To
distinguish between the jobs initialized by different machines, we shade the jobs initialized
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Figure 1: An example of a feasible schedule with 9 jobs

on B. Initialization operations are shown as oval shapes to distinguish them from the main
processing operations within rectangular boxes.

The throughput considerations discussed above are encapsulated in the objective of
minimizing makespan. The makespan, Cmax, is determined as the latest completion time
of any job:

Cmax = max
1≤j≤n

{Cj} ,

where Cj is the completion time time of job j. Observe that the makespan is not necessarily
delivered by job n.

A schedule can be specified either by the start times or the completion times of each
operation, and we adopt the following notation. Initialization of job j starts at time IMi

j if
machineMi is selected for processing; starting and competition times of the setup operation
for job j are denoted by TS

j , C
S
j and those of the main operation by TMi

j , CMi
j = Cj , if

machine Mi initializes job j.

3 The computational nature of the ISP problem

In this section, we explore the computational structure of our ISP problem. We first estab-
lish that the problem is NP-complete in the ordinary sense, even for 2 primary machines.
It is therefore sensible to tackle the problem with a heuristic approach. Before developing
such an approach in the following sections, we examine the structure of the problem in more
depth. In subsection 3.2 we establish the relationship of our problem to the reentrant chain
scheduling problem. With 1 primary machine in the ISP problem, the setting is the same
as that of the 2-machine chain-reentrant shop problem. The machine assignment aspect is
trivial, leaving only the sequencing of jobs, which is the central issue for reentrant chains.
Thus, the 2 primary machine case is the smallest of interest, and is itself hard without any
consideration of sequencing. We then explore differences and similarities with variants of
the problem, and in doing so establish some structural properties of an optimal solution.
We demonstrate that splitting the jobs into batches assigned to alternative machines at the
initialization stage, determines the structure of an optimal schedule at the next two stages,
namely setup and main processing. The remainder of the paper then focuses on a heuristic
for the 2 primary machine case of the ISP problem, informed by the structure of an optimal
solution.
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3.1 NP-hardness

Theorem 1 Problem ISP is NP -hard in the ordinary sense.

Proof. We construct a reduction from the PARTITION problem which is known to

be NP -complete: given z different positive integers e1, . . . , ez and E = 1/2
zP

i=1
ei, do there

exist two disjoint subsets N1 and N2 such that
P

i∈N1 ei =
P

i∈N2 ei = E? The reduction
is based on the following instance of the decision version of problem ISP with m = 2, and
n = z jobs and processing times

δ = ε, sj = ε, pj = ej , j = 1, . . . , z.

In such an instance, the initialization and setup times for all operations are the same and
equal to a small constant ε. We assume that

ε <
1

20n
.

We show that there exists a schedule σ∗ with

Cmax (σ
∗) ≤ E + 0.1 (1)

if and only if the PARTITION problem has a solution.
Suppose PARTITION problem has a solution. Due to the choice of ε, in any feasible

schedule, if job j is the first one in a batch initialized on machine A, then

IAj + ε = TS
j and TS

j + ε ≤ TA
j .

Similar conditions can be formulated for each first job initialized on machine B.
Let a subset of jobs N1 ⊂ N be initialized on A, and the remaining jobs N2 = N\N1

initialized on B. Then the completion times of the last jobs on A and B satisfy the relations:

α ≤
X
i∈N1

pi + 2 |N1| ε <
X
i∈N1

pi + 2nε

and
β ≤

X
i∈N2

pi + 2 |N2| ε <
X
i∈N2

pi + 2nε,

see Fig. 2.
Due to the choice of ε,

Cmax = max {α, β} < max

⎧⎨⎩X
i∈N1

pi,
X
i∈N2

pi

⎫⎬⎭+ 2nε = E + 0.1.

Suppose now that PARTITION problem does not have a solution. Then for any splitting
of the set N into two sets N1 and N2,

max

⎧⎨⎩X
i∈N1

pi,
X
i∈N2

pi

⎫⎬⎭ ≥ E + 1.
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Figure 2: A schedule with Cmax ≤ E + 2nε

It follows that

Cmax = max {α, β} > max

⎧⎨⎩X
i∈N1

pi,
X
i∈N2

pi

⎫⎬⎭ ≥ E + 1,

i.e., no schedule σ∗ which satisfies (1) exists.

3.2 Reentrant aspect of the problem

Wang et al. [8] and Drobouchevitch and Strusevich [9] considered chain-reentrant shop
problem with two machines (i.e. one primary machine and one secondary machine) and
provided heuristic algorithms with a worst-case performance guarantee of 3/2 and 4/3,
respectively. The problem structure for ISP when m = 1 is the same as the 2-machine
chain-reentrant shop problem. In this restricted case, it is always best to schedule all the
first operations before all of the third operations on the single, primary, machine, M, if
makespan is to be minimized. In addition, the permutation schedule, in which the first and
third operations on M both appear in the same order as the operations on the secondary
machine, S in our notation, is always best. Thus, there is no batching or assignment
decision to make, and ISP is trivial, while the sequencing problem is not. On the other
hand, for our model with two primary machines, two tasks can be considered. Apart
from conventional task of determining the sequence of jobs which minimizes makespan,
the problem of allocating jobs to primary machines for a given sequence of jobs deserves
separate investigation. We will concentrate on its analysis in this paper.

A job can be initiated by the machine at any time when the machine is idle and the
initialization time is small, so it is possible to initiate a number of jobs in succession
from the same machine, thus creating a batch of jobs to be processed on the machine. A
detailed review of scheduling problems with batching can be found in Potts and Kovalyov
[10]. However, we use the term “batch” in a different context from classical problems with
batching.
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3.3 Structure of an optimal solution

Property 1 There is always an optimal schedule for the 2-machine ISP problem with the
following properties:

(i) the batches are initialized by alternative machines, so that if jobs in the h batch, Bh,
are initialized on A, then the h+ 1 batch, Bh+1, is initialized on B or vice versa;

(ii) for each batch, initialization, setup and main processing operations of jobs are se-
quenced in the same order.

Proof. To prove property (i), consider an optimal schedule in which the same machine
(say, machine A) initializes two consecutive batches, Bh and Bh+1 say. It is sufficient to
prove that moving initialization operations of Bh+1 immediately after the initialization of Bh
does not postpone the completion time of the last operation of Bh+1 on the corresponding
primary machine A, nor of the completion time of the last operation of Bh+1 on the server.
Observe that the server is idle between batches Bh and Bh+1 for at least the processing
time of the last job of batch h and the initialization of batch h+ 1. Merging initialization
operations of Bh and Bh+1 eliminates the idle interval on the setup machine S caused by
batch Bh+1, i.e. the setup operation of the first job in batch Bh+1 is performed immediately
after the setup operation of the last job in Bh. Moreover, completion of the two sets of
initialization operations, and processing of Bh, on machine A is not delayed. Thus, the
revised schedule is also optimal. By repeating this process we arrive at an optimal schedule
which satisfies property (i).

We now prove property (ii) for a fixed batch Bh initialized on machine A; the case of
the alternative machine B is similar. Recall that the sequence in which jobs are initialized
is given and we index the jobs in that order. In addition, setup operations are performed in
the same order. Consider the last two stages of processing the subset of jobs Bh, setup and
main processing. Machine A processes the jobs from Bh after all initialization operations of
these jobs are completed on A and before the next batch Bh+2 is initialized on that machine.
The subproblem of scheduling the jobs from Bh on the main processing machine A after
the setup operation is done on machine S, therefore reduces to the two machine flow-shop
scheduling problem with machines S and A and the fixed order of jobs on machine S. Since
for the two-machine flow-shop problem there always exists an optimal permutation schedule
with the same order of jobs on S and A [11], we conclude that the jobs from Bh should be
sequenced on the main processing machine in index order.

To illustrate property (i) consider the example of the schedule given in Fig. 3(a). The
earlier batches B1 = (1, 2, 3), B2 = (4, 5), B3 = (6), B4 = (7), B5 = (8, 9) are initialized by
alternative machines A,B,A,B,A, respectively, while the last batch B6 = (10) is initialized
by the same machine A, as is the previous batch B5. Fig. 3(b) demonstrates that moving
initialization operation of job 10 from B6 to immediately after the initialization operations
of B5 = (8, 9) reduces the completion time of the main processing operation of job 10.

It is instructive to observe that the quality assurance constraint of consistent batches
on each primary machine may be detrimental to makespan, as illustrated in Appendix A.

8



1 2 3

A

B

1 2 3

4 5

4 5

6 7

6

8 9

7

8 9

10

10

S

1 2 3

4 5

6

7

8 9 10

1 2 3

A

B

1 2 3

4 5

4 5

6 7

6

8 9

7

8 9

10

10

S

1 2 3

4 5

6

7

8 9 10

(a)

(b)

Figure 3: An example of the effect of merging batches: the last three jobs on machine A
processed (a) as consecutive batches B5 = (8, 9) and B6 = (10) and (b) as a merged batch
B5 = (8, 9, 10)

3.4 An implicit representation of an optimal schedule

The structural properties of an optimal solution, highlighted in Property 1, enable us to
provide a very succinct representation of an optimal solution. This representation, and its
realization as a schedule, are both described below.

An optimal solution is thus defined by an assignment of jobs, or more precisely of
batches, to primary machines. The subset, J1, of jobs which are processed on a different
machine from its predecessor, thus identifies a solution. The corresponding schedule is
defined by the starting times of initialization and processing of jobs on machine A and
B. We now show how the starting times of all operations of a batch can be calculated.
Since the two primary machines, A and B, are identical, solutions arise in pairs with the
same job completion times. We restrict attention to schedules in which job 1 is assigned to
machine A. Now consider a batch consisting of jobs j, j+1, . . . , j0− 1, where j0 ∈ J1 and is
processed on machine B. Let machines A,B and S complete processing the preceding jobs
1, 2, . . . , j − 1 at the time instances α, β and γ, respectively. Start with α = β = γ = 0.
Then the starting times of the three operations of the first job j of a batch are given by
the formulae:

IA1 = 0, (2)

IAj = max
©
IBj−1 + δ, α

ª
, j ∈ J1, (3)

TS
j = max

©
IAj + δ, γ

ª
, (4)

TA
j = max

©
TS
j + sj , I

A
j +

¡
j0 − j

¢
δ
ª
, (5)
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where j0 is the next job after j in J1, and hence (j0−j)δ corresponds to the total initialization
time of the jobs of the current batch.

For the remaining jobs c of the batch, j + 1 ≤ c ≤ j0 − 1, their starting times can be
determined as follows:

IAc = IAj + (c− j)δ, (6)

TS
c = max

©
IAc + δ, TS

c−1 + sc−1
ª
, (7)

TA
c = max

©
TS
c + sc, T

A
c−1 + pc−1

ª
. (8)

Observe that completion times are given by

CA
j = TA

j + pj , (9)

CS
j = TS

j + sj . (10)

Similar formulae hold if batch {j, j+1, . . . , j0−1} is processed on machine B, except for
batch 2, which is the first batch on machine B. The starting time of initialization operation
of the first job in this batch, j, which is the second element in J1, is given by

IBj = (j − 1)δ, (11)

since the initialization operations are carried out in sequential order, independent of the
primary machine.

4 Algorithms

In this section we describe our proposed heuristic algorithm, CS, for solving the ISP prob-
lem, along with the algorithms which we use for benchmarking purposes. The no-batching
algorithm, NB, which is used in practice, is outlined in section 4.3. This provides a good
practical comparator, to illustrate the improvement made by introducing our heuristic, CS.
While a Branch and Bound optimisation method, described in section 4.4, provides a theo-
retical best case. We start by describing the greedy heuristic, Basic, which lies at the heart
of our heuristic.

4.1 Basic batching strategy, Basic(i)

The algorithm described below constructs a schedule which does not have idle time on the
labeling machine S. It aims at balancing the workloads of the main processing machines A
and B by coordinating completion times of jobs on these two machines as much as possible.
Balancing of machines A and B in our algorithm is achieved by splitting the jobs into
batches which are small enough for no idle time to incur on machine S. The schedule is
constructed by adding jobs one by one to the partial schedule and batching decisions are
based on times α, β and γ when the last job on machines A,B and S in the partial schedule,
respectively, is completed.

The algorithm starts with scheduling first job on machine A. Then in each iteration
of the algorithm a new job is added to the constructed partial schedule either at the end
of the previous batch or as the first job of a new batch. Scheduling at the end of a batch

10
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Figure 4: An example of a schedule constructed by Algorithm Basic(1)

never leads to an idle time on S while initializing a new batch may lead to an idle time
on machine S if the machine that initializes a new batch becomes free later than machine
S. In order to make the batches as small as possible, preference is given to initiating a
new batch at an earliest opportunity when no idle time on S is created. Observe that the
decision to complete a batch and change primary machine depends only upon the relative
completion times of the previous batch on the other machine and the last job of the current
batch on the server. The timing of processing operations of jobs may therefore be delayed
and done for all jobs in the batch after the batch is completed.

We present a pseudocode of algorithm Basic(1) and show that its runtime is linear
in the number of jobs, n, in Appendix B. An example of a schedule constructed by algo-
rithm Basic(1) is illustrated in Fig 4.

Despite its simplicity, algorithm Basic(1) can provide considerable improvement over
the default approach of single job alternating batches (algorithm NB, described in Subsec-
tion 4.3). In fact, Basic(1) can be shown to provide a relatively good solution under all
circumstances. To be more precise, its solutions are guaranteed to be within a factor of 2
of the optimal makespan as we prove in Appendix C.

A drawback of algorithm Basic(1) is that it constructs a schedule in which the first
batch containing only one job. However, scheduling a single job in the first batch is not
necessarily the best option. A larger first batch is better for many instances of the problem.
We, therefore, modify algorithm Basic(1) to accommodate different sizes of the first batch.
We refer to the modified version of the algorithm as Basic(i), where i denotes the number
of jobs in the first batch, i ∈ {1, 2, . . . , n− 1}. Algorithm Basic(i) uses the same batching
strategy as algorithm Basic(1) for jobs i+1 onwards. We denote the resulting schedule and
its makespan as σ(i) and Cmax

¡
σ(i)

¢
, respectively. A pseudocode for algorithm Basic(i)

can be found in Appendix B.

4.2 Proposed heuristic algorithm, CS

The heuristic which we propose, CS, is based upon the greedy algorithm Basic described in
the previous subsection. Note that algorithm Basic(i) takes the number of jobs in the first
batch as an input. However, it is difficult to determine analytically the size of the first batch
in an optimal schedule. We therefore incorporate a search over the solution space involving
all possible sizes of the first batch in our heuristic algorithm. Algorithm CS presented below
returns the best schedule σCS obtained after running algorithm Basic(i) and applying a
repair operation to the schedule obtained for each value of i, i = 1, 2, . . . , n− 1. The repair
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operation is associated with the end of a schedule and is motivated and described below.

Algorithm CS (Coordinated Scheduling)

1. Set CCS =M , where M is a large integer.

2. For i = 1 to n− 1

2.1. Apply algorithm Basic(i) to construct schedule σ(i) with i jobs in the first batch.

2.2. Apply algorithm Repair to schedule σ(i) to obtain schedule σ[i].

2.3. If Cmax
¡
σ[i]
¢
< CCS , set CCS = Cmax

¡
σ[i]
¢
, σCS := σ[i].

EndFor

3. Return σCS , CCS .

The example of a schedule produced by algorithm Basic(1) (see Fig. 5, schedule (a))
shows that avoiding idle time on machine S may lead to unbalanced workloads on machines
A and B. Similar examples can be presented for other values of i in algorithm Basic(i).
Such a situation is likely to arise when processing times pj dominate setup times sj . Observe
that the balance in workloads is actually broken in the tail of the schedule, when the last
batch on one of the machines is completed significantly later than the last batch on another
machine. For that reason, we introduce another modification of Basic(i), a repair operation,
whose goal is to improve such a balance by creating a single idle interval on server S and
rearranging the jobs from the last one or two batches between machines A and B.

The tail of a schedule obtained by algorithm Basic(i) can be reconstructed as follows.
We define the critical batch as the batch whose last job completes at Cmax in the schedule
constructed by algorithm Basic(i). Let job j

(i)
cr be the first job in a critical batch. Denote

by σ(i)cr the partial schedule in which jobs 1, 2, . . . , j
(i)
cr are scheduled by algorithm Basic(i).

In order to achieve a better balance of workload between machines A and B and improve
upon the performance of algorithm Basic(i), we reschedule jobs j(i)cr +1, . . . , n by “breaking”
a critical batch in a certain point. Specifically, we schedule a job c, j

(i)
cr < c < n, from

a critical batch as the first job of a new batch processed on the alternative machine, thus
creating idle time on server S before the setup operation of job c is started. Then we continue
to construct the schedule σ[i] by applying the strategy described in algorithm Basic(1). A
description and time complexity of algorithm Repair which performs the search for schedule
σ[i] with a minimum makespan, by breaking the critical batch in different points, are given
in Appendix B.

To demonstrate the performance of algorithm Repair, consider the instance of the
problem with n = 10, δ = 1, s = (sj) = (3, 4, 2, 3, 2, 1, 2, 2, 2, 4) and p = (pj) =
(5, 8, 5, 7, 6, 4, 6, 5, 5, 7). Fig. 5 shows the schedule constructed by algorithm Basic(1) with
Cmax = 48 (see schedule (a)) and the schedule with Cmax = 41 produced by applying the
repair operation (schedule (b)).The critical batch of the original schedule σ(1) contains six
jobs 4, 5, 6, 7, 8 and 9 processed on machine A. This batch is broken after job 5 in schedule
(b). This creates idle time on machine S between the completion of setup operation for
job 5 and the start of setup operation for job 6 in schedule (b). On the other hand, the
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Figure 5: (a) Schedule constructed by algorithm Basic(1) and (b) improved schedule ob-
tained by algorithm Repair

workloads of machines A and B are better balanced in schedule (b) than in schedule (a),
which leads to an improved makespan value.

The time complexity of algorithm CS is O(n3) since algorithm Repair is called n − 1
times at step 2 and itself has complexity O(n2) as shown in Appendix B.

4.3 Default, no batching, algorithm

In order to show the efficiency of the batching strategy of algorithm CS, we need to compare
it to a simple “no-batching” procedure which is currently used in practice. The “no-
batching” strategy assumes that a new job can not be initialized on a machine until the
previous job assigned to that machine has been completely processed. Each consecutive
job is initialized and then processed on the machine which becomes available first. The
resulting schedule is denoted by σNB.

Algorithm NB (No Batching)

1. Initialization: α = β = 0.

2. Schedule three operations of job 1 on machinesA, S andA, respectively. Set γ = δ+s1,
α = CA

1 .

3. For j = 2 to n

If α > β then

Schedule three operations of job j on machines B, S and B, respectively.
Set γ = CS

j = max{β + δ, γ}+ sj , β = CB
j = CS

j + pj .

else

Schedule three operations of job j on machines A, S and A, respectively.
Set γ = CS

j = max{α+ δ, γ}+ sj , α = CA
j = CS

j + pj .

13
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Figure 6: A branching tree for a set of 4 jobs

EndFor

4. Return σNB, Cmax(σ
NB) = max{α, β}.

Note that the no batching procedure described above can also be interpreted as a
sequential batching strategy with a constant batch size of 1. This strategy shares the
feature of algorithm CS of taking the first available machine for each batch assignment.
Observe that there is an even simpler strategy, in which jobs are assigned to alternative
machines. Such a strategy can never do better than NB, and when processing times vary
is likely to do considerably worse.

4.4 Optimization, Branch and Bound, algorithm

To assess the performance of algorithm CS, we develop the branch-and-bound algorithm
which implicitly enumerates all possible schedules for a given instance of the problem ISP
and finds a solution with a minimum makespan. The branching tree represents a binary
tree where each node at level j of the branching tree, for j = 0, 1, 2, . . . , n− 1, corresponds
to a partial schedule of processing the subset of jobs {1, 2, . . . , j + 1}. Figure 6 shows the
branching tree for problem ISP with 4 jobs. The left descendant of each parent corresponds
to assigning the next job to machine A, the right descendant relates to scheduling on
machine B. Each set of job numbers in parentheses represents a separate batch. For
example, node (12)(3)(4) corresponds to the schedule containing 3 batches: jobs 1 and 2
are assigned to machine A in one batch, jobs 3 and 4 form two separate batches on machines
B and A, respectively.

The upper bound in the root node of the tree is set to the value of makespan obtained
by running algorithm CS. This value is compared to the following two conventional lower
bounds in order to check the solution of algorithm CS for optimality:

LB1 = δ +
nX

j=1

sj + pn,

LB2 =
1

2

nX
j=1

(pj + δ).
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LB1 takes into account the total load of server S and LB2 is based on equal workloads of
machines A and B.

For all other nodes of the tree, we calculate two lower bounds in the following way.
Let αjk, βjk and γjk be the completion times of the last jobs on machines A, B and S,
respectively, in a partial schedule for the first j + 1 jobs in node k at level j of the tree,
k = 1, 2, . . . , 2j . The values αjk, βjk and γjk can be calculated using recursive equations (3)-
(8) given in subsection 3.4. The first node related lower bound, LB3jk, is calculated using
the assumption that setup operations of all remaining n−j−1 jobs are performed on server
S without delays, i.e.

LB3jk = γjk +
nX

i=j+2

si + pn.

The second node specific lower bound, LB4jk, provides the earliest possible completion
times of the main processing operations of the remaining jobs on machines A and B by
distributing the total remaining workload between the two machines:

LB4jk = max
©
αjk, βjk

ª
+
1

2

⎛⎝ nX
i=j+2

(pi + δ)− |αjk − βjk|

⎞⎠ .

The maximum value among LB3jk and LB4jk is selected as a lower bound associated with
the node. A node is discarded without further expansion if its lower bound is no less than
the current upper bound. The upper bound is updated if a leaf node of the tree is reached
and its makespan value is lower than the current upper bound value.

We use a min heap data structure to maintain the list of the nodes which are not
discarded in the process of their generation. Min heap ensures that the node with a smallest
value of the lower bound, i.e. the node potentially leading to an optimal solution, will be
taken out from the list for further expansion at each step of the branch and bound algorithm.
The algorithm stops when the list of nodes for expansion becomes empty. The final upper
bound value corresponds to the optimal makespan.

5 Computational experiments

In this section we evaluate the performance of algorithm CS on a broad range of problem
instances. We will show that the batching strategy of our algorithm is significantly more
efficient that a simple “no-batching” procedure described in Subsection 4.3 which is cur-
rently used in practice. In addition, we evaluate the absolute quality of our algorithm by
comparison with an optimal solution provided by a branch and bound algorithm discussed
in Subsection 4.4. We test algorithm CS on different patterns of randomly generated data
described in Subsection 5.1 and analyze the results. We first present the initial experi-
ments which we carried out to establish the dimensionality of the problem, in Subsection
5.2. Later, in Section 5.4, we will demonstrate the advantage of our approach for the
microbiology laboratory which inspired our research.
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5.1 Experimental design

We created a benchmark dataset of problem instances upon which to test out our algorithm.
To do so we considered a wide range of values for parameters which are likely to be significant
for scheduling strategies. The relative sizes of the three processing times of a sample, for
initialization, setup and processing, are obviously relevant, as is the distribution of times
between samples. The number of jobs is yet another dimension.

Before proceeding to a full set of computational experiments, we investigated two aspects
of the problem instances in order to identify their significance. The first one relates to the
times of setup operations on the server and of main processing operations on a primary
machine. The second aspect concerns short initialization time on the primary machine.
These initial experiments described below indicate which parameters are significant for the
full set of computational experiments and hence how best to group problem instances.

For our main experiments, we consider instances of the problem ISP with n = 10, 25
and 50 jobs. For each value of n, 9 separate patterns of data are tested. For each pattern,
we generate 50 problem instances using different random seeds. We choose the ranges from
which values of sj and pj are generated in such a way as to ensure that the average ratio
between workloads on the server and processing machines over 50 instances approaches
the corresponding value of R. Initialization time δ is standardized at value 1. The initial
experiments indicate that no further dimensionality is required. Table 1 presents a summary
of input test data.

Pattern R sj range pj range
1 0.25 [5,35] [120,200]
2 0.5 [5,35] [60,100]
3 0.75 [5,35] [36,70]
4 1 [5,35] [20,60]
5 1.25 [5,35] [17,47]
6 1.5 [5,35] [11,41]
7 1.75 [5,35] [8,38]
8 2 [5,35] [5,35]
9 2.5 [5,35] [5,27]

Table 1: Summary of generated data

Note that different patterns in Table 1 define different correlations between values of sj
and pj for individual jobs. For the first 3 patterns with lower values of R, we can observe
a clear dominance of processing operations over setup operations for all jobs which makes
the processing stage a bottleneck in the system. As R increases, the number of jobs for
which sj > pj grows, and the server becomes a bottleneck. Patterns with R ≥ 1 represent
mixes of jobs with different proportions of dominating setup and processing operations.

All three algorithms tested, namely NB, CS and branch and bound, are programmed
on C++ language and tested on 3GHz PC with 512 MB RAM running under Microsoft
Windows XP.
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Figure 7: Effect of changing δ on the performance of algorithm CS

5.2 Initial experiments

Our initial computational experiments to identify the significance of parameters are de-
scribed below. We focus upon two aspects of problem instances: the relative times of setup
and processing of samples, and the significance of initialization time. The experimental
results and conclusions are outlined for each below. All initial experiments were conducted
upon the full range of setup and processing times and number of jobs employed in the final
benchmark dataset.

We generated datasets in which setup times sj and processing times pj are taken from
different ranges. Two sets of scenarios were created in which either the setup operations
or the main processing operations of jobs were dominant. We also considered a range of
“mixed”datasets with different proportions of jobs with dominating setup component and
jobs for which main processing operations were longer than their setup operations. The
analysis of the problem structure indicated that the relative workload between the primary
parallel machines and the setup machine was probably a key factor in determining the
potential gain from batching jobs. Our initial computational experiments confirmed this.
We therefore selected patterns of data characterized by the value of the ratio R between
the total load WS of server S and average load WP of processing machines A and B, i.e.

R =
WS

WP
,

where

WS =
nX

j=1

sj and WP =
1

2

nX
j=1

(pj + δ).

In our initial experiments for 10 jobs and different values of R, we tested the procedure
with no batching (algorithm NB) and algorithm CS for δ = 0, 1, 2 and 5, keeping setup
and processing times of jobs unchanged. The ranges for sj and pj were selected in such
a way as to ensure that min

j
{sj} ≥ 5 and min

j
{pj} ≥ 5. We observed that changing δ

does not have a significant impact on the performance of either algorithms NB or CS.
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Figure 7 shows the average performance of algorithm CS for 10 jobs, different values of δ
and R = 0.5 and 1.5. We can notice that algorithm CS produces high quality schedules for
all tested values of δ. In fact, increasing δ by a certain amount ∆ leads to the increase of the
makespan values produced by algorithm NB by n∆/2 for most instances of the problem.
For both algorithm CS and branch and bound the magnitude of makespan increase usually
lies in the range [∆, 2∆]. Moreover, increasing δ does not change the structure of schedules
(i.e. the allocation of jobs to the machines and their partition into batches) constructed
by algorithm CS and branch and bound. The reason for this is that δ is small relative to
the lengths of setup and processing operations of jobs. Therefore, in what follows we will
discuss only the results for δ = 1.

5.3 Results for benchmark datasets

For each pattern of data and each number of jobs, we compare the schedules constructed
by the algorithm NB to those produced by algorithm CS. In addition, we calculate the
optimum makespan obtained by branch and bound algorithm described in subsection 4.4.
The comparative performance of the algorithms is summarized in Table 2. We use the
following notation in the table:

Dav(H) — average percentage deviation (over 50 runs) of makespan values produced by
algorithm H from the optimal makespans, for H = NB or CS;

Nopt(CS) — number of runs (out of 50) when the optimal solutions (or a surrogate in
exceptional cases) were found by algorithm CS.

The CPU times required for a single run of algorithm CS are well under 1 second, while
branch and bound algorithm may take long hours for certain runs especially when n = 50
and the ratio R is high. Note that the running time of the branch and bound algorithm
was therefore restricted to 6 hours. For n = 50 and R > 1, branch and bound was often
unable to finish in such a time limit and the best solutions found in 6 hours were recorded
instead of the optimal ones. Therefore, two values, separated by slash, are given in column
Nopt(CS) in cells corresponding to n = 50 and R > 1. The first value represents the number
of optimal solutions found by algorithm CS (either by reaching the lower bound or proven
by branch and bound algorithm) while the second one shows the number of runs when
branch and bound has not improved solutions found by algorithm CS within 6 hours time
limit.

Our main observations are the following.

1. The advantages of batching. The figures in Table 2 suggest that processing jobs in
batches is significantly more efficient than simply assigning a single job to the machine
after the completion of the previous job on that machine. Algorithm CS produces
schedules with makespans which are within the optimal value on average by around
1.0-1.5% for lower values of R and approaching optimal values as the ratio R grows,
as indicated by values of Dav(CS). On the other hand, “no batching” strategy leads
to multiple idle times on all machines, thus completing the processing of given sets of
jobs much later than the strategy with coordinated batching used in algorithm CS.
Schedules obtained by applying algorithm NB are 8.5-45.2% worse on average than
the optimal schedules with batching (see figures for Dav(NB)).
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Pattern R n Dav(NB)(%) Dav(CS)(%) Nopt(CS)

1 0.25 10 12.03 0.69 27
25 13.47 1.06 2
50 14.00 0.49 2

2 0.5 10 20.85 1.41 25
25 24.93 1.41 6
50 25.83 0.86 0

3 0.75 10 26.61 1.27 22
25 33.87 1.67 8
50 38.72 1.34 2

4 1 10 29.00 0.80 35
25 39.03 1.35 15
50 45.22 1.33 1

5 1.25 10 25.31 0.53 38
25 35.65 0.70 25
50 39.26∗∗ 0.33∗∗ 17/12∗

6 1.5 10 19.63 0.19 47
25 25.80 0.22 40
50 28.74∗∗ 0.00∗∗ 28/20∗

7 1.75 10 16.89 0.14 46
25 21.50 0.08 45
50 23.24∗∗ 0.02∗∗ 32/16∗

8 2 10 14.65 0.06 46
25 15.51 0.01 48
50 17.78∗∗ 0.02∗∗ 40/9∗

9 2.5 10 8.56 0.01 49
25 10.21 0.05 46
50 11.68∗∗ 0.00∗∗ 44/6∗

∗ Number of runs when branch and bound did not improve heuristic solution
within 6 hours

∗∗ The figure is based on complete and terminated runs of branch and bound

Table 2: Summary of the performance of heuristic CS for the benchmark datasets
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Figure 8: Performance of algorithm CS in relation to relative server workload, for 25 jobs

2. Effects of the relative workload between server and primary machines, R. Figure 8
summarizes our analysis and shows the dynamics in results produced by the algorithm
as the ratio R raises, for problem instances with 25 jobs. Similar patterns can be
observed for 10 and 50 jobs. Note that the “hardest” instances for the algorithm are
those corresponding to R = 0.75. It appears that if the bottleneck is at the processing
stage, algorithm CS performs better for problems with the greater difference between
the processing and setup times of jobs (i.e. problems with lower R).

For R < 1, machines A and B are the bottleneck machines. Therefore balancing
workloads and avoiding idle intervals as much as possible are the key factors for
constructing a good schedule and uninterrupted load of server S is less important.
Figures for Nopt in Table 2 show that algorithm CS finds optimal solutions only
occasionally for instances with a greater number of jobs. This is also much the case
for instances with R = 1 where there is no clear bottleneck stage and values of
LB1 and LB2 are very close to each other. Our investigation showed that optimal
schedules found by branch and bound algorithm often contain a few idle intervals on
machine S. On the other hand, algorithm CS only produces schedules with either
no idle time or with a single idle interval on machine S at the end of the schedule.
Therefore, a schedule constructed by algorithm CS can be potentially improved by
splitting large batches and redistributing the jobs between machines A and B which
synchronizes completion times of the last jobs on both machines.

As the ratio R grows beyond 1, the bottleneck moves to machine S and avoiding
delays on the server becomes critical. Algorithm CS is designed to fulfil this task
in the first instance, therefore the algorithm frequently finds optimal schedules with
makespans equal to the corresponding values of lower bound LB1. Even when LB1 is
not reached by our heuristic, branch and bound is often unable to produce a schedule
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with a better makespan, which provides extra evidence of the strong performance of
algorithm CS.

3. Effects of increasing the number of jobs. Increasing the number of jobs makes the
problem ISP more difficult to tackle. Comparing the number of optimal solutions
Nopt(CS) found by algorithm CS for n = 10, 25 and 50 for each value of R, we can
observe that Nopt(CS) decreases as the value of n is growing.

5.4 Experiments with laboratory data

In this section, we illustrate the advantage of our approach in a real-world setting. We report
the results of computational experiments on data provided by the microbiology laboratory.
The current practice which predominates at the pipetting stations in the laboratory is
that of initializing one sample at a time. This practice is replicated by the “no batching”
algorithm, NB. We therefore compare the behaviour of our algorithm CS on the given data,
to that of algorithm NB. The laboratory is equipped with three identical pipetting stations,
although generally only two of them are in operation. We therefore run our experiments
both for two and three parallel machines.

Historical data reflecting daily demand for testing were provided by the laboratory for
5 different days. A short summary showing the nature of the data is given in Table 3.
Since the real sequences in which samples enter the testing process were not recorded by
the laboratory, we generated 10 random sequences for each dataset.

Day Number Total number Workload
of test suites of test samples, n ratio, R

1 21 573 1.45
2 22 441 1.65
3 31 570 1.58
4 19 502 1.45
5 29 556 1.56

Table 3: Summary of the laboratory data

Each test sample (considered as a job in our problem formulation) arriving to the
pipetting stage has to undergo a certain number of microbiological tests which form its test
suite. The jobs associated with a given test suite require the same labelling and pipetting
times (i.e. setup and processing times, respectively) while these times usually differ between
test suites. There are a number of “standard” test suites which are assigned to the majority
of test samples entering the process each day. On the other hand, test samples with certain
test suites may be absent in some days. Table 3 shows the variety in the number of test
suites and in the total number of test samples, n, for 5 days.

The labelling times take values between 23 and 102 seconds, while pipetting times are in
the range from 10 to 140 seconds, depending on the test suite. The initialization operation
takes 4 seconds. We have calculated the ratios between workloads of the labelling machine
and the pipetting stations (assuming that two pipetting stations are used) for each dataset
to have a better idea about the nature of the data. In fact, there is a good “mix” of jobs
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Total Makespan (h:mm) Savings from
Day labelling with no batching with batching (CS) batching jobs (%)

time average max average max min average max
1 5:56 7:47 7:50 5:57 5:58 23.2 23.5 24.1
2 3:47 4:41 4:42 3:47 3:48 18.2 18.9 19.5
3 4:42 5:56 5:57 4:43 4:44 20.3 20.6 20.8
4 5:48 7:46 7:49 5:49 5:50 24.7 25.1 25.6
5 4:40 5:56 5:57 4:41 4:42 20.5 20.9 21.2
Overall 18.2 21.8 25.6

Table 4: Performance of algorithms for two pipetting stations

with labelling times exceeding pipetting times and vice versa in each dataset. Figures from
the last column of Table 3 suggest that the labelling machine is a bottleneck. Therefore,
we can expect very strong outcomes from algorithm CS for such a scenario (see results and
discussion in the previous section).

The results of running algorithms NB and CS for laboratory data and two pipetting
stations are summarized in Table 4. All minimum, maximum and average figures in the
tables are taken over 10 runs of each algorithm. Due to the large number of jobs in each
dataset, running the branch and bound algorithm is impractical. We therefore use lower
bounds to assess the quality of schedules. Since labelling machine is a bottleneck, lower
bound LB1 is most appropriate. The main component of LB1 is the total labelling time,
which is given in the second column of Table 4.

The advantage of coordinated scheduling strategy with batching lying behind algorithm
CS over “no batching” strategy is evident from Table 4. The savings for two pipetting
stations are in between 1 and 2 hours, averaging 22%. The minimum time savings from
using batching recorded in our experiments is about 18% while the maximum savings exceed
25%. Comparing the results of algorithm CS with the total labelling time, it can be seen
that the difference is just 1 or 2 minutes over a day. This difference is largely accounted for
by the pipetting time of the last job. Therefore, the performance of algorithm CS cannot,
in this context, be improved upon.

The effect of the sequence in which test samples are presented, is indicated by the range
of outcomes for the 10 randomly generated sequences within each day’s dataset. The data
from the laboratory indicate that such a difference is usually under 2 minutes, which is
not significant relative to the magnitude of the makespans. Thus, the results suggest that
sequencing test samples is not an important issue for the micro-biology laboratory.

Since the labelling machine is a bottleneck, the total labelling time is a crucial factor
in determining a good makespan. Our batching strategy gets as near to this makespan
as is possible by prioritizing occupancy of the labelling while the conventional no-batching
strategy does not. In contrast, the strategy with no batching frequently creates idle times
on the labelling machine which leads to significantly longer times required to complete
all jobs when 2 pipetting stations are used (see Table 4). Thus this strategy artificially
creates a bottleneck at the pipetting stations while the real bottleneck facility remains the
labelling machine. The only way of reducing makespan with a no-batching strategy is to
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deploy an additional pipetter. We therefore also tested NB for 3 pipetting stations, against
the generalized versions of the CS algorithm for completeness. However, algorithm CS
with 2 pipetters still outperforms algorithm NB even with 3 pipetters for all instances of
the problem. Indeed, the average time saving is about 3.5% in makespan in addition to the
saving of 1 member of staff at the pipetting stations. Note that a single run of algorithm
CS on real data takes less than a second for two pipetting stations and does not exceed 1.5
seconds when 3 pipetting stations are used.

The above results illustrate the benefits of the batching strategy of algorithm CS. It
creates the potential for raising the productivity of the laboratory by over 20%, by accom-
modating an increased number of test samples processed in the laboratory during a day.
Moreover, in current circumstances, the batching strategy should lead to savings in running
costs of the laboratory, by eliminating the requirement for a third pipetter at any time.

6 Conclusions

The scheduling problem ISP studied in this paper has been identified at a particular stage
of a complex technological process of food testing in the microbiological laboratory. The
problem is of a very specific nature. It can be considered as a chain-reentrant two-stage
hybrid flowshop with parallel primary machines at the first stage and a single machine at the
second stage with the additional requirement that the first and the last operations of each
job should be performed by the same primary machine. To the best of our knowledge, hybrid
reentrant shop problems have not been studied in the literature before. The closest problems
in the literature, which share some common features are the problems of scheduling in
a reentrant shop [8] and of scheduling on parallel machines with a common server [1].
We showed that the ISP problem is NP-hard even if the sequence of jobs is fixed. We
developed a heuristic algorithm based on a simple strategy of initializing jobs in batches
on the primary machines. Our heuristic avoids unnecessary idle times on the machine at
the second stage (server) and provides balanced workloads on primary machines. These
two features make our algorithm able to find optimal or near optimal schedules in different
production scenarios, both when the primary machines and when the server create the
bottleneck in the system. We also show that our batching strategy is much more efficient
than the strategy with no batching currently used in the laboratory. Adopting batching
of jobs in practice may increase productivity of the production line and provide savings in
the running costs of the company. Estimates are put at a saving of 1 member of staff or at
22% potential increase in productivity.
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Appendices

A Consistent and inconsistent batching

Consistent batching on a primary machine means that a new batch can not be initialised on
a primary machine before all jobs from the previous batch are processed on that machine.
A requirement for batch consistency is imposed by the company for quality assurance
purposes. In this paper, we consider only the class of schedules with consistent batches.

However, inconsitent batching allows initialized jobs to form a new batch at any time
when the primary machine becomes available, e.g. between the processing operations of two
consecutive jobs of the previous batch on that machine or before the processing operation
of the first job of the previous batch.
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Figure 9: Optimal schedules: a) for the class with consistent batches; b),c) when inconsis-
tent batching is allowed

Consider the instance of the problem with n = 5, δ = 1, s = (sj) = (2, 2, 2, 2, 2) and
p = (pj) = (2, 3, 3, 6, 3). Figure 9 shows the optimal schedule for the class of schedules with
only consistent batching (Figure 9a) and two examples of optimal schedules for a wider class
of schedules where inconsistent batching is allowed (Figures 9b and 9c).In schedule b) job 5
is initialised as the first job of a new batch in between processing operations of jobs 2 and
3 from the previous batch. In schedule c) all initialisation operations for two consecutive
batches on each machine are performed before the start of the processing operation of the
first job from the first batch on that machine. Observe that both schedules with inconsistent
batching have better makespans than the schedule with consistent batching. However, this
is not necessarily the case for other instances of the problem. For example, adding job 6
with s6 = p6 = 2 to the last batch on machine A in schedule a) does not increase the
makespan for the new schedule with 6 jobs, and this schedule can not be improved by using
inconsistent batching. It would be interesting to determine the conditions which make
inconsistent batching advantageous. We leave this question for future research.

B Pseudocodes of algorithm Basic(1) and its modifications

In this appendix, we itemize the steps required to implement the basic batching strategy
Basic(1) and its modifications, Basic(i) and Repair, described in Section 4. The analysis
of time complexity of the algorithms is also presented.

B.1 Algorithm Basic(1)

Algorithm Basic(1)

1. Initialization.

1.1. Set α := 0, β := 0, γ := 0. {set machine availability times to zero}

1.2. Set j := 1. {select the first job for scheduling}
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1.3. Assign job j to machine A by scheduling the first two operations of job j (keeping
the last operation unscheduled until a batch is completed):

IAj := α, α := α+ δ,

TS
j := max {α, γ} , CS

j := TS
j + sj , γ := CS

j .
(12)

1.4. Set jF irst := 1. {store the index of the first job in a batch}

2. While j < n {consider each unscheduled job}

j := j + 1.

2.1. If job j − 1 was assigned to A and γ < β + δ, then

Add j to the last batch on machine A by scheduling the first two operations of
job j in accordance with (12) (keeping the last operation unscheduled until a
batch is completed).

2.2. If job j − 1 was assigned to A and γ ≥ β + δ, then

2.2.1. {complete the current batch on A by scheduling its last operations}
For c = jF irst to j − 1

TA
c := max

©
α,CS

c

ª
, α := TA

c + pc.

EndFor
2.2.2. Assign j as the first job of a new batch on machine B by scheduling the
first two operations of that job (keeping the last operation unscheduled until
a batch is completed):

IBj := β, β := β + δ,

TS
j := max {β, γ} , CS

j := TS
j + sj , γ := CS

j .

2.2.3. Set jF irst := j.

2.3. If job j − 1 is completed on B and γ < α+ δ, then

Add j to the last batch on machine B as for 2.1.

2.4. If job j − 1 is completed on B and γ ≥ α+ δ, then

Complete previous batch on machine B and start a new batch on machine A
with job j (without incurring an idle time on machine S) as for 2.2.

EndWhile

3. Complete the last batch by scheduling its main processing operations on machine A
or B as for 2.2.1.

4. Return resulting schedule σ(1), Cmax
¡
σ(1)

¢
= max {α, β} .

The initialization step of algorithm Basic(1) consists of a few simple operations and
thus requires O (1) time. Within step 2 simple comparisons determine which of the four
substeps is invoked at each of n − 1 iterations. Between steps 2 and 3 each of the n jobs
is scheduled. This involves, for each job j, setting IAj , C

S
j and TA

j or IBj , C
S
j and TB

j and
resetting at most two of α, β, γ. The setting of each variable involves a simple addition or
comparison. Thus overall time complexity of scheduling n jobs is O (n).
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B.2 Algorithm Basic(i)

Algorithm Basic(i)

1. Initialization.

1.1. Set α := 0, β := 0, γ := 0. {set machine availability times to zero}

1.2. {assign the first i jobs to machine A}.

For j = 1 to i

Assign job j to machine A as in step 1.3 of Basic(1).

EndFor

1.3. Set jF irst := 1. {store the index of the first job in a batch}

2-3. The same as steps 2 and 3 of algorithm Basic(1).

4. Return schedule σ(i), Cmax
¡
σ(i)

¢
= max {α, β} .

Similar to Basic(1), algorithm Basic(i) has a linear time complexity and worst case
performance ratio of 2.

B.3 Algorithm Repair

Algorithm Repair
Input: schedule σ(i) constructed by algorithm Basic(i)

1. If Cmax
¡
σ(i)

¢
= δ +

Pn
j=1 sj + pn, then STOP (as schedule σ(i) is optimal).

2. Set C [i] := Cmax
¡
σ(i)

¢
, σ[i] := σ(i).

Find the critical batch in schedule σ(i).

Let jcr be the first job in that batch and q be the size of the critical batch.

3. For k = 0 to q − 2

3.1. Start to construct schedule σ with the partial schedule of σ(i) consisting of jobs
1, 2, . . . , jcr.

Schedule the next k jobs jcr + 1, . . . , jcr + k in the same batch as job jcr.

3.2. Schedule job jcr+k+1 on the alternative machine, starting a new batch on that
machine.

3.3. Construct the remainder of schedule σ by assigning remaining jobs
jcr + k + 2, . . . , n to the machines A and B using the strategy described
in steps 2-3 of algorithm Basic(1).

3.4. If Cmax (σ) < C [i] then
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Set C [i] := Cmax (σ) , σ
[i] := σ.

EndFor

4. Return σ[i], C [i].

Steps 1-2 of algorithm Repair require O (n) time. Since the last batch contains q ≤ n−1
jobs, Step 3 is performed no more than n−2 times. In each iteration theO (n)-time algorithm
Basic is called. Thus the overall time complexity of algorithm Repair is O(n2).

C Approximation bound

Theorem 2 For problem ISP , algorithm Basic(1) has a tight worst case bound of 2.

Proof. We show that for schedule σ(1) constructed by algorithm Basic(1) the following
inequality holds:

Cmax
¡
σ(1)

¢
Cmax (σ∗)

≤ 2,

where Cmax (σ∗) is the makespan of an optimal schedule.
In any schedule there always exists at least one job, called critical, which starts on

the main processing machine exactly at the time its labeling operation is completed and
is scheduled on a machine which achieves the makespan and has no idle time after this
critical job. Let k be the latest job in sequence among all critical jobs in the schedule σ(1)

and let N 0 be the set of jobs which includes job k and all other jobs scheduled after job
k on the same machine. Observe that there can be several batches after the critical job
and completion time of some job n0 ∈ N 0, n0 ≤ n determines the makespan. Note that
algorithm Basic(1) produces a schedule in which machine S processes the jobs without idle
time. It follows that

Cmax

³
σ(1)

´
≤ δ +

kX
j=1

sj +
X
j∈N 0

pj +
¯̄
N 0¯̄ δ, (13)

where the first term δ corresponds to an idle time on machine S caused by the initialization
time of the first job and the last term |N 0| δ is the combined length of the initialization
operations of the jobs from N 0.

We use the following two lower bounds for the makespan of an optimal schedule:

Cmax (σ
∗) ≥ LB0 =

1

2

⎛⎝ nX
j=1

pj + nδ

⎞⎠ ,

Cmax (σ
∗) ≥ LBk = δ +

kX
j=1

sj +
1

2

⎛⎝ nX
j=k

pj + (n− k + 1)δ

⎞⎠ ,
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where the first inequality is based on the average load of machines A and B, while the
second one uses the fact that in any schedule jobs k, . . . , n cannot start on machines A
or B earlier than the time δ +

Pk
j=1 sj and will occupy machine A or B for at least

1
2

³Pn
j=k pj + (n− k + 1)δ

´
. Since N 0 ⊂ {k, . . . , n}, LB0 + LBk is no greater than the

right hand side of (13) and hence

Cmax

³
σ(1)

´
≤ 2Cmax (σ∗) .

Therefore Basic(1) is a 2-approximation algorithm.
To show that this bound is tight consider the following instance with n = 3 jobs: δ = ε,

s1 = s2 = s3 = ε, p1 = 1, p2 = T + 1, p3 = T. Algorithm Basic(1) produces the schedule
shown in Fig. 10 of length

Cmax

³
σ(1)

´
= 3ε+ 2T + 1,

where 3ε corresponds to initialization operation of job 1 and two setup operations of jobs
1 and 2. However, the schedule σ∗ illustrated in Fig. 11 has makespan

Cmax (σ
∗) = 4ε+ T + 1.

1 2 3

A

B

1

S

2 32 3

1

T+1 T

Figure 10: A worst-case instance for algorithm Basic(1)
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Figure 11: An optimal schedule for the worst-case instance

Schedule σ∗ is optimal since for small value of ε and large T both machine A and B

have equal workload. The ratio
Cmax(σ(1))
Cmax(σ∗)

is 2 when T → ∞ and ε → 0. Therefore, the
worst case bound of 2 is tight.
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