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Large-scale Quality Control of 
Cardiac Imaging in Population 
Studies: Application to UK Biobank
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���•���Ž�ƒ�”�‰�‡���’�‘�’�—�Ž�ƒ�–�‹�‘�•���•�–�—�†�‹�‡�•���•�—�…�Š���ƒ�•���–�Š�‡�����������‹�‘�„�ƒ�•�•���������������á���“�—�ƒ�Ž�‹�–�›���…�‘�•�–�”�‘�Ž���‘�ˆ���–�Š�‡���ƒ�…�“�—�‹�”�‡�†���‹�•�ƒ�‰�‡�•���„�›��
�˜�‹�•�—�ƒ�Ž���ƒ�•�•�‡�•�•�•�‡�•�–���‹�•���—�•�ˆ�‡�ƒ�•�‹�„�Ž�‡�ä�����•���–�Š�‹�•���’�ƒ�’�‡�”�á���™�‡���ƒ�’�’�Ž�›���ƒ���”�‡�…�‡�•�–�Ž�›���†�‡�˜�‡�Ž�‘�’�‡�†���ˆ�—�Ž�Ž�›�æ�ƒ�—�–�‘�•�ƒ�–�‡�†���“�—�ƒ�Ž�‹�–�›��
�…�‘�•�–�”�‘�Ž���’�‹�’�‡�Ž�‹�•�‡���ˆ�‘�”���…�ƒ�”�†�‹�ƒ�…���������������������‹�•�ƒ�‰�‡�•���–�‘���–�Š�‡���¤�”�•�–���w�•�á�x�|�{���•�Š�‘�”�–�æ�ƒ�š�‹�•�������������…�‹�•�‡���•�–�ƒ�…�•�•���ˆ�”�‘�•���–�Š�‡��
���������ä�����‡���’�”�‡�•�‡�•�–���–�Š�‡���”�‡�•�—�Ž�–�•���ˆ�‘�”���–�Š�‡���–�Š�”�‡�‡���‡�•�–�‹�•�ƒ�–�‡�†���“�—�ƒ�Ž�‹�–�›���•�‡�–�”�‹�…�•�����Š�‡�ƒ�”�–���…�‘�˜�‡�”�ƒ�‰�‡�á���‹�•�–�‡�”�æ�•�Ž�‹�…�‡���•�‘�–�‹�‘�•��
and image contrast in the cardiac region) as well as their potential associations with factors including 
�ƒ�…�“�—�‹�•�‹�–�‹�‘�•���†�‡�–�ƒ�‹�Ž�•���ƒ�•�†���•�—�„�Œ�‡�…�–�æ�”�‡�Ž�ƒ�–�‡�†���’�Š�‡�•�‘�–�›�’�‡�•�ä�����’���–�‘���w�z�ä�x�¬���‘�ˆ���–�Š�‡���ƒ�•�ƒ�Ž�›�•�‡�†���������•�–�ƒ�…�•�•���Š�ƒ�†���•�—�„�æ
�‘�’�–�‹�•�ƒ�Ž���…�‘�˜�‡�”�ƒ�‰�‡�����‹�ä�‡�ä���•�‹�•�•�‹�•�‰���„�ƒ�•�ƒ�Ž���ƒ�•�†���‘�”���ƒ�’�‹�…�ƒ�Ž���•�Ž�‹�…�‡�•���á���Š�‘�™�‡�˜�‡�”���•�‘�•�–���‘�ˆ���–�Š�‡�•���™�‡�”�‡���Ž�‹�•�‹�–�‡�†���–�‘���–�Š�‡���¤�”�•�–��
�›�‡�ƒ�”���‘�ˆ���ƒ�…�“�—�‹�•�‹�–�‹�‘�•�ä�����’���–�‘���w�|�¬���‘�ˆ���–�Š�‡���•�–�ƒ�…�•�•���™�‡�”�‡���ƒ�¡�‡�…�–�‡�†���„�›���•�‘�–�‹�…�‡�ƒ�„�Ž�‡���‹�•�–�‡�”�æ�•�Ž�‹�…�‡���•�‘�–�‹�‘�•�����‹�ä�‡�ä���ƒ�˜�‡�”�ƒ�‰�‡��
�‹�•�–�‡�”�æ�•�Ž�‹�…�‡���•�‹�•�ƒ�Ž�‹�‰�•�•�‡�•�–���‰�”�‡�ƒ�–�‡�”���–�Š�ƒ�•���y�ä�z���•�•���ä�����•�–�‡�”�æ�•�Ž�‹�…�‡���•�‘�–�‹�‘�•���™�ƒ�•���’�‘�•�‹�–�‹�˜�‡�Ž�›���…�‘�”�”�‡�Ž�ƒ�–�‡�†���™�‹�–�Š���™�‡�‹�‰�Š�–��
�ƒ�•�†���„�‘�†�›���•�—�”�ˆ�ƒ�…�‡���ƒ�”�‡�ƒ�ä�����•�Ž�›���x�ä�w�¬���‘�ˆ���–�Š�‡���•�–�ƒ�…�•�•���Š�ƒ�†���ƒ�•���ƒ�˜�‡�”�ƒ�‰�‡���‡�•�†�æ�†�‹�ƒ�•�–�‘�Ž�‹�…���…�ƒ�”�†�‹�ƒ�…���‹�•�ƒ�‰�‡���…�‘�•�–�”�ƒ�•�–��
�„�‡�Ž�‘�™���y�v�¬���‘�ˆ���–�Š�‡���†�›�•�ƒ�•�‹�…���”�ƒ�•�‰�‡�ä�����Š�‡�•�‡���¤�•�†�‹�•�‰�•���™�‹�Ž�Ž���„�‡���Š�‹�‰�Š�Ž�›���˜�ƒ�Ž�—�ƒ�„�Ž�‡���ˆ�‘�”���„�‘�–�Š���–�Š�‡���•�…�‹�‡�•�–�‹�•�–�•���‹�•�˜�‘�Ž�˜�‡�†��
�‹�•���������������������ƒ�…�“�—�‹�•�‹�–�‹�‘�•���ƒ�•�†���ˆ�‘�”���–�Š�‡���‘�•�‡�•���™�Š�‘���—�•�‡���–�Š�‡���†�ƒ�–�ƒ�•�‡�–���ˆ�‘�”���”�‡�•�‡�ƒ�”�…�Š���’�—�”�’�‘�•�‡�•�ä

�e UK Biobank (UKBB) is a population-based prospective study established to allow detailed investigations 
of the genetic and environmental determinants of the diseases of middle and old age1. Its cohort consists of 
500,000 voluntary participants, with ages ranging between 40 and 69 years, that were recruited between 2006 
and 2010 across the UK. �e baseline assessment included collection of blood, urine and saliva samples (allow-
ing genetic phenotyping), physical and functional measurements and answers to a questionnaire on health and 
lifestyle. Follow-up will be then conducted both through repetition of the baseline assessment on a cohort subset 
and through linkages to routinely available national datasets. �is wealth of data will foster the discovery and 
the understanding of unknown underlying links between clinical conditions and lifestyle, environmental and 
genomic factors across the population of the UK. Starting from 2014, 100,000 volunteers from the whole cohort 
were also enrolled for multi-modal imaging, including MR of the brain, the heart and the full body1. Acquisitions 
are performed in a multi-centre setting using standardised protocols. As far as cardiac MR (CMR) is concerned, 
the acquisition protocol includes long- and short-axis cine, aortic distensibility cine, tagging, coronal le� ven-
tricular out�ow tract (LVOT) cine, aortic valve �ow phase contrast sequence and T1 mapping2. At the time of 
the present study the acquisition is ongoing, with more than 20,000 participants already scanned. For its size, the 
consistency in the acquisition details and the amount of accompanying data, the CMR dataset from the UKBB has 
already become a reference dataset, adopted in many research studies with both methodological3,4 and clinical5–7 
focuses, and this trend is likely to increase in the future.

�e quality of a CMR scan depends on the ability of the operator to correctly select the acquisition param-
eters (mainly relative to slice planning) in relation to the subject being scanned8 as well as on the occurrence of 
potential imaging artefacts (caused for instance by respiratory and cardiac motion, blood �ow and magnetic �eld 
inhomogeneities)9. As a consequence, a quality control step is required to guarantee the usability of the acquired 
images. In clinical practice, this step is directly performed through visual inspection by the operator right a�er 
the acquisition. Besides being strongly subjective, visual quality control is a highly time-consuming task, and 
thus it does not �t into high-throughput acquisition protocols like the one of the UKBB. At the same time, the 
identi�cation of sub-optimal or unusable scans is necessary to ensure the reliability of the results of subsequent 
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analyses performed on the dataset. Accordingly, there is strong need for techniques for automated quality assess-
ment of CMR images. Previous research e�orts towards automated quality assessment of MR images have mostly 
focused on the estimation of noise levels10,11. However, most aspects relative to the quality of a scan are inherently 
modality-speci�c. Regarding CMR, very few attempts have been made towards the development of comprehen-
sive quality control pipelines12. Most recent research studies have focused on automated heart coverage estima-
tion for cine short-axis stacks, in order to identify whether the slices in a given stack cover the whole le� ventricle 
(LV) or not13–15. Of note, these studies have been developed and tested on the UKBB, further demonstrating the 
importance of this assessment. Another highly investigated issue is respiratory motion16, whose main impact 
on cine stacks is in the form of inter-slice misalignments caused by di�erences in the breath-holding positions 
maintained during image acquisition17. Finally, another study on quality control for the CMR scans has been 
presented and tested on the UKBB4, but it focused on quality assessment of the segmentations obtained with an 
automated method rather than of the images themselves. An automated pipeline for image processing and quality 
control of the brain scans of the UKBB has been recently presented18: the quality control portion uses handcra�ed 
features (e.g. volume, symmetry and intensity distributions of automatically segmented brain structures) to iden-
tify problematic scans. �e authors applied the pipeline to 10,098 brain scans of the UKBB, and reported issues 
in 174 of them. However, their quality control technique targets the output of their image processing pipeline 
(which includes for instance image registration steps), and thus the reported metrics cannot be used to directly 
infer the quality of the raw brain scans. To the best of our knowledge, no extensive quality control assessment 
has been carried out on the currently available UKBB CMR scans. We have recently developed a learning-based, 
fully-automated quality control pipeline for short-axis (SA) cine stacks (Fig.�1) that estimates (1) heart coverage 
(de�ned as the percentage of LV long-axis actually covered by the SA stack), (2) inter-slice motion (de�ned as 
the average in-plane misalignment in mm of the SA slices) and (3) image contrast in the cardiac region (de�ned 
as the percentage of the dynamic range used to represent the di�erence in intensity between LV cavity and LV 
myocardium)19. �e technique is based on hybrid random forests and was validated on up to 3000 scans from the 
UKBB against manual annotations and visual inspections performed by experienced interpreters.

In this paper, we present the results of the application of our automated quality control pipeline19 to the �rst 
batch of nearly 20,000 CMR scans from the UKBB. �e aims of the present study are essentially three: �rst, to 
assess the reliability of the UKBB CMR scans; second, to identify potential trends relative to changes in image 
quality over time for the UKBB; third, to identify potential correlations between image quality and other factors 
such as acquisition details and non-imaging phenotypes of the subjects, including lifestyle variables and previous 

Figure 1. Overview of the automated quality control pipeline19. �e pipeline estimates for each SA stack (1) 
heart coverage, (2) inter-slice motion, (3) cardiac image contrast. Coverage is de�ned as the percentage of 
the LV long axis which is covered by the SA stack; in addition, the potential gaps between the stack and the 
anatomical landmarks (i.e. mitral valve and apex for basal and apical regions, respectively) are also estimated. 
Inter-slice motion is de�ned as the average in-plane misalignment of the slices; the same quantity is also 
estimated separately for the basal, mid-ventricular and apical regions. Cardiac image contrast is de�ned as the 
average percentage of the dynamic range used in the slices to represent the di�erence in intensity between LV 
cavity and LV myocardium; regional quantities are similarly also estimated.

https://doi.org/10.1038/s41598-020-58212-2
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clinical assessments. We believe the obtained results are highly informative both for the UKBB scientists involved 
in the ongoing acquisition process as well as for the researchers who will use the dataset in the future for their 
research projects.

Results
Out of the available 19,265 cases, the mentioned three quality control checks were performed on the 19,249 that 
contained all the expected images. �e images missing from the 16 incomplete scans were, in total, 5 SA stacks, 11 
LA 2-chamber views, 7 LA 3-chamber views and 8 LA 4-chamber views. �e obtained results are here reported, 
while some examples are displayed in Fig.�2.

���‡�ƒ�”�–���…�‘�˜�‡�”�ƒ�‰�‡���‡�•�–�‹�•�ƒ�–�‹�‘�•�ä�� �e �rst check was performed on 19,129 cases: 120 cases (0.6% of the total) 
were excluded due to failing the sanity check implemented in the pipeline (please refer to the Methods for details). 
�e results for heart coverage (Fig.�3, le�) showed that while the majority of SA stacks were covering the whole 
LV or more (16412 cases, 85.8%, with coverage equal or greater than 100%), a non-negligible portion of them 
had sub-optimal coverage (2717 cases, 14.2%, below 100%; 390 cases, 2.0%, below 90%). �e results for apical 
and basal gaps (Fig.�3, right) indicate that the two types of gaps were very similarly distributed (Wilcoxon rank 
sum test between apical and basal gaps: p �  0.0438, 95% con�dence interval of the di�erence between medians 
CI �  [� 0.28, 0.00] mm): this suggests that they essentially occurred with equal probability and were of compa-
rable entity. �e associations between heart coverage and acquisition details such as site and date of acquisition 
were then assessed. Relatively to the acquisition site (Fig.�4, le�, and Table�1), it appears that the stacks acquired at 
the UKBB facility located in Cheadle, UK, were more likely to be a�ected by coverage issues than those acquired 
in Newcastle, UK. �e percentage of scans with coverage lower than 100% was 15.9% in Cheadle, but only 2.8% 
in Newcastle. Di�erences in acquisition date also were associated with di�erences in coverage (Fig.�4, right, and 
Table�1): the scans acquired in the �rst year of MR imaging had substantially lower coverage in comparison to the 
later ones. �e correlation between heart coverage and physical measurements was also assessed: no correlation 
was found either with weight or with body surface area (BSA, see Table�1).

���•�–�‡�”�æ�•�Ž�‹�…�‡���•�‘�–�‹�‘�•���‡�•�–�‹�•�ƒ�–�‹�‘�•�ä�� �e second check was performed on 18,598 cases: 651 cases (3.4%) were 
excluded due to failing the sanity check implemented in the pipeline (please refer to the “Methods” for details). 
Inter-slice misalignment (Fig.�5, le�) had a median value of 2.29 mm and an interquantile range (IQR) of 1.17 mm. 
�e average regional misalignments (Fig.�5, right) suggest that the apical and basal regions were slightly more 
a�ected by motion than the mid one (average misalignment in the apical region: median � �2 48 mm, IQR � �1 65 
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Figure 2. Examples of results obtained for the three quality checks in both high quality (top row) and low 
quality (bottom row) SA stacks. For the �rst two checks, the SA stacks (in red) are superimposed to the 
respective LA 2-chamber views for reference, while for the third one slice-based results are shown with the 
automatically extracted contours used to perform the estimation. For heart coverage, while in the top row both 
the landmarks (mitral valve and apex) are covered by the SA stack, in the bottom one they are both slightly 
outside, thus indicating a sub-optimal coverage. For inter-slice motion, in the top row the LV is well-aligned 
throughout the slices, whereas in the bottom one some slices are clearly misaligned (red dotted lines). For 
image cardiac image contrast, the top row exhibits well-de�ned contours, while the bottom one shows barely 
intelligible ones. Importantly, in all cases, di�erences in quality are well represented by the estimated metrics.
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mm; mid region: median �  �1 86 mm, IQR �  �1 21 mm; basal region: median �  �2 56 mm, IQR �  �1 79 mm. Results of 
the rank sum tests reported in Table�2). In terms of the associations between average misalignment and acquisition 
details (Fig.�6 and Table�2), it seems that neither acquisition site nor acquisition date were associated with relevant 
changes in average misalignment. �e correlation between average misalignment and physical measurements as well 
as anagraphic data was also assessed (Table�2). Weight (Fig.�7, le�) was found to be mildly correlated with average 
misalignment, and stacks acquired in subjects with lower weight were less likely to be a�ected by high misalignments 
(Fig.�7, right). Almost identical results were found for the correlation between average misalignment and BSA. No 
correlation was found with age or blood pressure. Among lifestyle variables (Table�2), neither physical activity nor 
alcohol intake frequency seem to be related to inter-slice motion. However, smoking habits (Supplementary Fig.�S1) 
were associated with a very small increase in average misalignment. Finally, the associations between average 

Coverage (%)

0 20 40 60 80 100 120 140
0

1000

2000

3000

4000

5000

6000

7000
Apical & Basal Gaps (mm)

0 2 4 6 8 10 12 14 16 18 20
0

100

200

300

400

500
Apical Gap

0 2 4 6 8 10 12 14 16 18 20
0

100

200

300

400

500
Basal Gap

# 
ca

se
s

# 
ca

se
s

# 
ca

se
s

Figure 3. Coverage estimation - Overall results. Heart coverage (le�) and apical/basal gaps (right) in the whole 
dataset. A non-negligible portion of the SA stacks has sub-optimal coverage (14.2% of the stacks are below 100% 
coverage).
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Figure 4. Coverage estimation - Association with acquisition details. Di�erences in heart coverage based 
on acquisition site (le�) and acquisition date (right). Stacks acquired in Cheadle were apparently a�ected by 
more coverage issues than those acquired in Newcastle. Moreover, the scans acquired in the �rst year had 
substantially lower coverage than later ones.

Coverage

p 95% CI (%) � B

Cheadle vs Newcastle�10 �169 [�7.5, �6.5]

First year vs last 
year (�) �10 �270 [�18.4, �17.4]

Weight (kg) 0.12 0.01

BSA (m2) 0.02 0.01

Table 1. Results of the statistical analyses for coverage. �e rows with two contrasting groups show the results 
of a Wilcoxon rank sum test between them for coverage, whereas the rows with a single variable show the 
results of Kendall’s Tau-b rank correlation between that variable and coverage (more details can be found in 
the Statistical Analysis). (�): “�rst year” actually indicates the “Apr ‘14 – Sep ‘15” acquisition period, while “last 
year” indicates the “Aug ‘17 – Feb ‘18” period.
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misalignment and the presence of self-reported cardiovascular and respiratory diseases were evaluated 
(Supplementary Fig.�S2 and Table�S1). �e conditions that seemed to have the strongest association with average 
misalignment were myocardial infarction, angina and chronic obstructive pulmonary disease (COPD).

���ƒ�”�†�‹�ƒ�…���‹�•�ƒ�‰�‡���…�‘�•�–�”�ƒ�•�–���‡�•�–�‹�•�ƒ�–�‹�‘�•�ä���e third check was performed at end-diastole on 18,467 cases: 782 
cases (4.1%) were excluded due to failing the sanity check implemented in the pipeline (please refer to the 
“Methods” for details). �e results for average contrast (Fig.�8, le�) were narrowly distributed around the median 
(median average contrast �  39%, IQR �  6%). Very few SA stacks had low average contrast (393 cases, 2.1%, with 
average contrast below 30%; 10 cases, 0.1%, below 20%). �e regional assessments (Fig.�8, right) suggest that 
apical and basal slices had lower contrast in the cardiac region than mid ones (median average contrast in the 
apical region: median �  37%, IQR �  9%; mid region: median �  41%, IQR �  7%; basal region: median �  36%, 
IQR �  7%. Results of the rank sum tests reported in Table�3). Relatively to the association with acquisition site 
(Supplementary Fig.�S3, le�, and Table�3), it appears that the stacks acquired in Cheadle and those acquired in 
Newcastle had the same distribution for average contrast. Also acquisition date (Supplementary Fig.�S3, right, and 
Table�3) seemed to have a negligible association with di�erences in contrast.

Discussion
�e UKBB is a population-wide study with di�erent acquisition facilities and a lifespan of more than a decade, 
dealing with both healthy subjects and prospective patients in a high-throughput setting: under these condi-
tions, ensuring quality consistency of the acquired data is important yet extremely challenging. While the entire 
study has been designed keeping this goal in mind, perfect standardisation is clearly impossible to achieve. For 
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Figure 5. Motion estimation - Overall results. Average (le�) and regional average (right) misalignments in the 
whole dataset. Apical and basal regions appeared slightly more a�ected by motion than the mid one (please refer 
to the Discussion for more insights on this aspect).

Average Misalignment

p 95% CI (mm) � B

Mid vs apical � �10 270 [�0.57, �0.53]

Mid vs basal � �10 270 [�0.64, �0.60]

Cheadle vs Newcastle 0.08

First year vs last year (�) � �10 8 [�0.15, �0.07]

Weight (kg) � �10 270 �0 21

Low weight vs high weight (��) � �10 270 [�0.77, �0.69]

BSA (m2) � �10 270 �0 20

Age � �10 9 �0 03

Systolic blood pressure (mmHg) � �10 31 �0 06

Diastolic blood pressure (mmHg) � �10 39 �0 07

Days/week with 10 � mins of walking � �10 5 �0.03

Days/week with 10 � mins of vigorous 
physical act. �0 13 �0.01

Alcohol intake frequency �0 0015 �0.02

Never smoked vs currently smoking � �10 10 [�0.28, �0.16]

Table 2. Results of the statistical analyses for average misalignment. �e same description of Table�1 applies. 
(��): “low weight” indicates “weight �63.2 kg” (�rst quintile), while “high weight” indicates “weight �87.9 kg” 
(last quintile).
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what entails CMR imaging, several factors can have a negative impact on image quality. First of all, di�erent 
operators can have di�erent opinions on what constitutes an optimal scan, leading to di�erent choices for the 
acquisition parameters (e.g. the number of acquired SA slices) and consequently to di�erent images. In addi-
tion, subject preparation plays a crucial role in CMR imaging (especially in order to reduce bulk and respiratory 
motion artefacts), and some subjects can be less cooperative. Finally, there are some factors that are essentially 
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Figure 6. Motion estimation - Association with acquisition details. Di�erences in average misalignment based 
on acquisition site (le�) and acquisition date (right). Neither site nor date seemed associated with relevant 
changes in average misalignment.

20 40 60 80 100 120 140 160 180
0

2

4

6

8

10

12

14
Average Misalignment (mm) vs weight (kg) Average Misalignment (mm) for different weight groups

0 1 2 3 4 5 6 7 8 9 10
0

400

800

1200 Weight < 63.2 kg

0 1 2 3 4 5 6 7 8 9 10
0

200

400

600

800 Weight > 87.9 kg

Weight (k g)

A
v

g
M

is
al

ig
nm

en
t 

(m
m

)

# 
ca

se
s

# 
ca

se
s

Figure 7. Motion estimation - Association with weight. Linear regression analysis between average 
misalignment and weight (le�) and histograms representing average misalignment in the �rst and last quintile 
for weight, respectively (right). Weight was mildly correlated to average misalignment.
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Figure 8. Contrast estimation - Overall results. Average (le�) and regional average (right) contrasts in the 
whole dataset. Apical and basal regions appeared to have slightly lower contrast than the mid one (please refer 
to the Discussion for more insights on this aspect).
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out of the control of both the operator and the patient (like the presence of arrhythmias, which can lead to poor 
electrocardiogram triggering)9.

In this study, a series of experiments were performed to quantify image quality for the whole dataset and to 
assess potential associations between quality and factors relative to acquisition details and non-imaging pheno-
types. While in an ideal dataset quality would be completely independent from these factors, some associations 
were identi�ed.

���‡�ƒ�”�–���…�‘�˜�‡�”�ƒ�‰�‡�ä�� Results show that 14.2% of the stacks did not achieve full coverage. Although this could 
seem very high, our results show that coverage issues were essentially limited to the �rst year of CMR imaging, 
when the acquisitions were all performed in the facility in Cheadle: in the following years, coverage values have 
substantially improved, and the recently introduced facility in Newcastle does not seem to be a�ected by the issue, 
potentially also thanks to the lower daily throughput requested during its initial phase. Of note, direct conversa-
tions with the imaging advisory board of UKBB have highlighted that the coverage issue in Cheadle was known 
and that steps had already been taken to solve it, which is con�rmed by our results. No correlation was found 
between coverage and weight or BSA (despite the known correlation with heart size20), suggesting that the issues 
relative to coverage were essentially associated with the acquisition procedure and not to the characteristics of 
subject being scanned.

���•�–�‡�”�æ�•�Ž�‹�…�‡���•�‘�–�‹�‘�•�ä���e results for motion estimation are less straightforward to interpret. To better assess 
the entity of the estimated average inter-slice misalignment, it is useful to keep in mind the in-plane spatial reso-
lution for SA slices, which is 1.8 �  1.8 mm. Moreover, while validating our pipeline, an average misalignment of 
3.4 mm or more was found to provide the highest accuracy in classifying stacks with “noticeable motion corrup-
tion”, identi�ed as such by an experienced interpreter through visual assessment19. If this threshold is accepted, 
the number of motion corrupted stacks is 2977 (16.0%). �is suggests that inter-slice misalignment is indeed an 
issue with relatively high incidence in the UKBB study. However, inter-slice motion does not have any negative 
e�ect on subsequent 2D analyses, limiting its impact. If analyses with 3D techniques are instead planned, it is 
important to remember that several motion correction techniques for CMR stacks have been developed in the 
past7,21–23 and could be applied to perform slice realignment in post-processing. At the same time, these tech-
niques are able to perform only in-plane motion correction, while di�erences in breath-holding positions can 
cause complex roto-translations of the heart in all three dimensions24: as a consequence, caution must be exer-
cised in performing motion compensation, and stacks with high average misalignment should be simply excluded 
from subsequent analyses.

As far as regional assessments are concerned, it seems that both the apical and basal region are statistically 
more a�ected by motion than the mid one, but this could be partially explained by the fact that the motion 
detection technique in these two regions is likely to be slightly less accurate and to overestimate the actual mis-
alignment. Di�erently from coverage, acquisition site and date did not seem to be associated with variations in 
respiratory motion. On the other hand, weight and BSA were both positively correlated with average misalign-
ment. �is could be explained by the fact that people with higher BSA have bigger diaphragms25, and thus might 
be capable of producing bigger displacements of the heart with respiration26. Smoking habits were associated with 
an increased average misalignment, but the entity of the measured e�ects suggests that their impact is negligible.

Relatively to the associations with cardiovascular and respiratory pathologies, no strong correlations were 
identi�ed. �e condition with the strongest overall association with average misalignment seemed to be COPD, 
which can be explained with the typical symptoms associated with this pathology (e.g. shortness of breath). �is 
suggests that additional care during patient preparation could be advisable when performing imaging on subjects 
a�ected by respiratory diseases to ensure the quality of the scan. Regarding this analysis, however, it is worth 
keeping in mind that the the presence of previously diagnosed conditions was provided in the UKBB by the sub-
jects themselves through self-assessment (performed using an electronic questionnaire with the assistance of a 
trained nurse) and thus the obtained results in this regard should be interpreted with caution.

���ƒ�”�†�‹�ƒ�…���‹�•�ƒ�‰�‡���…�‘�•�–�”�ƒ�•�–�ä���e results relative to contrast estimation at end diastole seemed to be very pos-
itive. To decide on a minimum threshold for average contrast below which the usability of the scan would be 
compromised is a di�cult task, highly dependent on the subsequent analyses: however, the obtained results sug-
gest that contrast is generally acceptable in the vast majority of UKBB stacks. Regional assessments suggest that 
mid slices generally have higher contrast than basal and apical ones, however this also could be partially due to a 
slightly lower accuracy of the contrast estimation technique in these regions. Finally, factors such as acquisition 
site and date seem to have no relevant associations with variations in average contrast.

The present study is affected by some limitations. First, the adopted automated quality control pipeline is 
obviously subject to error: however, its previously reported validation on UKBB (e.g. sensitivity and speci�city 

Average Contrast

p 95% CI (%)

Mid vs apical � �10 270 [5, 5]

Mid vs basal � �10 270 [5, 5]

Cheadle vs Newcastle 0.65

First year vs last year (�) � �10 42 [1, 2]

Table 3. Results of the statistical analyses for average contrast. �e same description of Table�1 applies.
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respectively 88% and 99% in the classi�cation of stacks with coverage issues, 85% and 95% for stacks with motion 
corruption, Pearson’s correlation coe�cient up to 0.95 for estimated contrast values vs reference measurements) indi-
cate its high levels of accuracy19, thus making the considerations presented in this study likely to be realistic and relia-
ble. Second, the pipeline is optimised for end-diastolic frames, and thus not applied to entire image sequences. While 
this is not a limitation for the �rst two quality checks (coverage needs to be assessed when the heart is fully dilated 
and inter-slice motion in breath-holding acquisitions is independent from the cardiac cycle), it limits the scope of 
contrast estimation. However, our pipeline speci�cally targets the overall appearance of the acquired sequences, and 
not transient image artefacts that can potentially appear during the cardiac cycle (e.g. in-slice motion corruption and 
�ow artefacts), which should be assessed with di�erent techniques and go beyond the scope of our analysis.

In summary, in this study we presented the results of the application of a recently developed automated quality 
control pipeline19 to the CMR images of the UKBB. Speci�cally, the pipeline is able to estimate heart coverage, 
inter-slice motion and cardiac image contrast for each SA cine stack. Potential correlations and associations between 
the estimated quality metrics and other factors (acquisition details and subject-related non-imaging phenotypes 
such as lifestyle variables and previous clinical assessments) have been evaluated: the results show that while quality 
metrics are generally high throughout the whole UKBB dataset, some small di�erences in quality were associated 
with a few factors (e.g. acquisition site and date for heart coverage, and weight and BSA of the subject being scanned 
for inter-slice motion). �ese results could be bene�cial both to the scientists involved in data acquisition for large 
population studies like the UKBB as well as for those who use this valuable dataset for research purposes:

�t�� Regarding acquisition, ensuring that coverage is properly addressed in the standard operating procedures 
across the di�erent imaging centres, and that extra care is spent during patient preparation for overweight 
subjects, could contribute to maximise quality;

�t�� Regarding the use of the dataset, it is advisable to double-check the scans acquired during the �rst year at 
Cheadle to identify stacks with sub-optimal coverage, and to perform inter-slice motion correction before 
running 3D analyses.

�is paper was also a successful case study relative to the application of our automated quality control pipeline, 
which was proven useful in the o�-line classi�cation of sub-optimal scans and in the identi�cation of suspected 
longitudinal trends in quality. Importantly, the pipeline could also be deployed at the acquisition site, allowing 
the on-line assessment of scan quality in the background: upon the detection of a sub-optimal scan, the opera-
tor could be alerted, allowing the modi�cation of the acquisition settings (relatively for instance to acquisition 
parameters or patient preparation) and the triggering of a new acquisition. �is would enable the improvement of 
the overall quality of the obtained scans, without the excessive costs demanded by visual assessment.

���‡�–�Š�‘�†�•
���ƒ�–�ƒ���ƒ�…�“�—�‹�•�‹�–�‹�‘�•�ä���e dataset used in this study consists of long- and short-axis cine CMR images of 19,265 
subjects (61.7 �  7.0 years, 52% female) extracted from the UKBB1. CMR imaging was performed using a 1.5 T 
Siemens MAGNETOM Aera system with a 18 channels anterior body surface coil (45 mT/m and 200 T/m/s gra-
dient system). 2D cine balanced steady-state free precession (b-SSFP) short-axis (SA) image stacks were acquired 
with in-plane spatial resolution 1.8 �  1.8 mm, slice thickness 8 mm, slice gap 2 mm, image size 198 �  208 and 
average number of 10 slices. 3 standard 2D cine b-SSFP long-axis (LA) images (2-, 3- and 4-chamber views) 
were acquired for each subject with in-plane spatial resolution 1.8 � 1.8 mm, slice thickness 8 mm and image size 
162 � 208. All of the reported details were consistent among the di�erent UKBB acquisition sites (further details 
can be found in the literature2). Images were then converted from DICOM to NIFTI using the dcm2niix tool27.

To identify potential associations between image quality and other factors, additional data were downloaded 
for each subject from the relative data showcase (http://biobank.ctsu.ox.ac.uk/crystal/label.cgi). �e selected var-
iables are the following ones, reported with the UKBB �eld ID in brackets: sex (31), age (21003), date of imaging 
examination (53), site of imaging examination (54), weight (21002), body mass index (21001), body surface area 
(derived from weight and body mass index using the Mosteller formula), days/week with 10� minutes of walking 
(864), days/week with 10� minutes of vigorous physical activity (904), smoking status (20116), alcohol intake 
frequency (1558), systolic blood pressure (4080), diastolic blood pressure (4079), self-reported cardiovascular 
conditions diagnosed by a doctor (6150), non-cancer self-reported conditions (20002). Most of these variables 
have been collected multiple times throughout the acquisition of the UKBB: given the aim of the present study, 
we decided to use the values collected in conjunction with the follow-up visit for the imaging study (labelled as 
“2.0” in the relative spreadsheets) with the exception of the two variables relative to self-reported conditions (6150 
and 20002), for which all of the multiple records were combined aiming for a more robust assessment. �ese two 
variables were used for the assessment of associations between average misalignment and presence of pathology. 
In particular, the “healthy” control group was created by using the �rst variable (6150) to select subjects who 
answered “none of the above” when asked about previously diagnosed infarction, angina, stroke or high blood 
pressure. �e second variable (20002) was instead used to identify subjects that reported the following condi-
tions: angina (illness code: 1074), infarction (1075), arrhythmia (1077), cardiomyopathy (1079), asthma (1111), 
chronic obstructive pulmonary disease (1112), emphysema (1113) and bronchiectasis (1114). �ese conditions 
were selected because of their potential impact on the cardiovascular and respiratory systems and thus on the 
capability of the subjects to successfully undergo breath-holding image acquisition.

���—�–�‘�•�ƒ�–�‡�†���“�—�ƒ�Ž�‹�–�›���…�‘�•�–�”�‘�Ž�ä��Our automated quality control pipeline19 takes as input the SA stack and the 
three LA images acquired for each subject, and uses them to perform three quality checks: (1) heart coverage 
estimation, (2) inter-slice motion estimation and (3) cardiac image contrast estimation (Fig.�1).
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Heart coverage estimation produces as output the coverage of the LV de�ned as the (percent) portion of the 
space between apex and mitral valve (i.e. the extrema of the LV, ideally marking the beginning and the end of the 
acquired volume) which is actually covered by the SA stack. Of note, coverage computation takes into account 
over-abundant stacks (which cover more space than the minimum required), producing a value greater than 
100%. For cases of sub-optimal coverage, the quality check estimates also the distances in mm along the z-axis 
between the most basal slice and the mitral valve (referred to as “basal gap”) and/or between the most apical one 
and the LV apex (“apical gap”). �e estimation is performed on the end-diastolic frame in order assess coverage 
when the heart is fully dilated. Finally, it is worth noting that the estimation is insensitive to potentially miss-
ing mid-ventricular slices: however, due to the speci�cs of the acquisition protocol of UKBB, this eventuality is 
extremely unlikely and was never encountered in our dataset.

Inter-slice motion estimation produces as output the average of the (absolute) in-plane slice misalignments 
in mm with respect to the reference position obtained from the three LA images. If the subject is able to perform 
subsequent breath-holds with his diaphragm always at the same position throughout the acquisition, then the 
shape of the LV in the slices of the SA stack will be realistic and consistent with the one in LA images. Otherwise, 
the LV will appear shi�ed in one or more slices: for each of them, the in-plane translation required to perform 
an approximate realignment is then estimated by the technique, and its magnitude in mm used as a measure of 
slice misalignment. �e pipeline is able to restrict the assessment to the slices positioned between the apex and 
the mitral valve, and the �nal output is the average misalignment computed over them. In addition, regional 
assessments are also performed: apical, basal and mid average misalignments are estimated computing the aver-
age misalignment respectively of the �rst 2, last 2 and remaining slices of each stack. �e estimation is performed 
on the end-diastolic frame without loss of generality, since inter-slice motion in breath-holding acquisitions is 
independent from the cardiac cycle. Finally, while strong respiratory motion can also have an out-of-plane com-
ponent, it is of much lesser entity than the in-plane one24, which can thus be used as a proxy for global motion.

Cardiac image contrast estimation produces as output the (percent) di�erence at end diastole between the 
average intensity of the LV blood pool and that of the LV myocardium normalised by the dynamic range of the 
image, and then averaged over all the slices between the apex and the mitral valve. If only a small portion of the 
dynamic range is used to di�erentiate the blood pool from the myocardium, then the boundaries between these 
two structures are likely to be poorly de�ned, potentially hindering subsequent analyses. Similarly to motion 
estimation, regional assessments (apical, basal and mid average contrast) are also performed. �is estimation is 
limited to the end-diastolic frame: the goal of this check is in fact to perform an assessment of the overall appear-
ance of the sequence and not to identify potential transient image artefacts over the cardiac cycle.

�ese three checks are performed leveraging information that the quality control pipeline is able to extract 
from the SA stack and the LA images, speci�cally landmark positions for the mitral valve and the apex, and prob-
abilistic segmentation maps for the LV blood pool and LV myocardium. Both landmark positions and probabil-
istic segmentation maps are extracted at once using hybrid decision forests, which extend the standard decision 
forest model to composite labels. Importantly, a series of sanity checks have been implemented to identify unre-
alistic or unreliable landmarks or segmentation maps and thus to exclude the relative scans from the automated 
quality assessment. For coverage estimation, the sanity check is considered failed if the landmarks from all three 
LA images are at unrealistic distances between each other. For motion and contrast estimation, the sanity checks 
are considered failed if the segmentation maps are deemed unreliable for the speci�c task or if less than 6 slices are 
estimated between the apex and the mitral valve. Of note, images that fail the sanity checks are likely to be a�ected 
by some sort of abnormality, and should thus be checked visually. For further details relative to the functioning 
of the pipeline (including training procedure, implementation of the sanity checks and limitations), please refer 
to the methodological paper19.

�e learning-based portion of the pipeline was trained using 2 Intel Xeon CPU E5-2650 v2 @ 2.60 GHz with 
220 GB of memory, which took approximately 5 days of computing time. �e pipeline was then applied to the �rst 
19,265 CMR scans of the UKBB, and the results of the three quality checks stored. Roughly 20 s were required to 
check one SA stack at a time (simulating an on-line application scenario) using an Intel Xeon CPU E5-1650 v3 @ 
3.50 GHz with 64 GB of memory.

���–�ƒ�–�‹�•�–�‹�…�ƒ�Ž���ƒ�•�ƒ�Ž�›�•�‹�•�ä��Normality tests were performed independently for each of the three quality metrics 
using the Anderson-Darling test. Since the null hypothesis of normality was rejected for each of the three cases, 
non-parametric tests were selected for the statistical analyses, and median and interquantile range (IQR) were 
preferred to mean and standard deviation. A range of comparisons was performed to identify potential associa-
tions between quality metrics and variables extracted from the UKBB. �e variables selected for these analyses 
were chosen heuristically based on their suspected in�uence on each speci�c quality metric (also as determined 
during conversations with the imaging advisory board of UKBB). �e results of all the performed comparisons 
are either reported in the paper or in the supplementary material. To study the association between quality met-
rics and categorical variables (e.g. acquisition site), histograms and Wilcoxon rank sum tests (estimating also the 
95% con�dence intervals of the di�erence between medians) were used, while Kendall’s Tau-b rank correlation 
and linear regression analyses were performed to compare quality metrics with continuous variables (e.g. weight). 
For all of the mentioned statistical tests, the signi�cance level was set to � � 0.05. Given the relatively small num-
ber of tests performed for both heart coverage estimation and cardiac image contrast estimation respectively, no 
correction for multiple comparisons was deemed necessary. On the other hand, the number of tests performed 
relatively to motion estimation were 19 (8 of which to assess associations with pathology): therefore, we corrected 
our analyses for multiple testing by means of the Bonferroni correction, yielding a threshold for signi�cance 
pcorr � 0.0026.
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