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Abstract 
Research into decision making has enabled us to appreciate that the notion of correctness is 
multifaceted. Different normative framework for correctness can lead to different insights about 
correct behaviour. We illustrate the shifts for correctness insights with two tasks, the Wason 
selection task and the conjunction fallacy task; these tasks have had key roles in the development of 
logical reasoning and decision making research respectively. The Wason selection task arguably has 
played an important part in the transition from understanding correctness using classical logic to 
classical probability theory (and information theory). The conjunction fallacy has enabled a similar 
shift from baseline classical probability theory to quantum probability. The focus of this overview is 
the latter, as it represents a novel way for understanding probabilistic inference in psychology. We 
conclude with some of the current challenges concerning the application of quantum probability 
theory in psychology in general and specifically for the problem of understanding correctness in 
decision making.  
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1. Introduction  
 
Psychological research is arguably unique in the sense that it is not sufficient to identify descriptive 
models, we are also concerned with normative models. In other words, we are not just interested in 
providing models which can adequately describe a set of behaviours, we would also like to know 
what behaviours can be considered normative, in a certain situation. For many other sciences, 
inquiry is restricted to descriptive frameworks. For example, in physics no one is asking what the 
apple ‘should’ be doing once it is detached from a tree branch. In psychology, there are situations 
where the ‘should’ of which decisions are appropriate/ best can be even more important than the 
actual description of these behaviours. For example, in medical diagnosis (cf. Bergus et al., 1998) or 
legal decision making (McKenzie, Lee, & Chen, 2002; Trueblood & Busemeyer, 2011), we might be 
less concerned with typical or spontaneous decisions, rather we would want to be assured that the 
decisions reached in any one case are the best possible ones.  
 The notion of normative decision making in psychology can have a number of different 
facets and it is not always straightforward to disentangle them. At the very least, normative must 
imply ‘correct’, at least according to some framework. But normative is also typically taken to imply 
rational, to mean appropriate in some fundamental sense. Note, lay definitions of rationality 
typically involve statements along the lines ‘having reason or understanding’ or ‘relating to, based 
on, or agreeable to reason’ (these definitions were obtained from the Merriam-Webster online 
dictionary). However, in decision theory, rational behaviour goes beyond what is essentially 
reasonable to imply behaviours which can be justified in some objective, unassailable sense. Note, as 
introduced here, rational behaviour is somewhat narrow and does not, for example, include 
considerations about moral norms. It is a curious aspect of the history of decision making research 
that the long and influential discussions into the foundations of human rationality and the 
foundations of moral choice have been largely separate (we do not further consider moral choice in 
this work, but we provide some recent references which illustrate the relevant debates,  Gamez-
Djokic & Molden, 2016; Kahane & Shackel, 2010; Valdesolo & DeSteno, 2006). 
 The process of developing a descriptive model of decision making is fairly straightforward. 
The starting point is some behavioural results, for which a model is developed. The model is 
assessed against these results and ideally can be used to generate new empirical predictions, which 
constitute the critical tests of the model. An iterative process of collecting new data, refitting / 
refining the model, and proposing new empirical tests can continue indefinitely. By contrast, there is 
no analogous process for normative models. The origins of the development of a normative model 
are usually some mathematical framework that we consider as embodying an absolute standard of 
correctness for decision making. But how this mathematical framework is identified or justified is 
less clear and has led to inconsistent arguments in the history of decision making, that we will briefly 
introduce in the remainder of the paper.  
 We will cover two influential approaches to correctness in decision making and introduce a 
third more recent one. Classical logic and classical probability theory will be considered in the 
context of the Wason selection task (Wason, 1968; Wason & Johnson-Laird, 1972). Baseline classical 
probability theory and quantum probability theory will be assessed with the conjunction fallacy 
(Moro, 2009; Tversky & Kahneman, 1983). Of course, the intention is that all three frameworks have 
a scope which by far exceeds these particular tasks. Nevertheless, these tasks have had an important 
role in the development of the corresponding debate. Our focus will be quantum probability theory, 
because this represents a novel approach to decision making and indeed because quantum 
probability theory enables a shift into our intuitions regarding correctness that is both radical and 
has potentially far reaching implications.  
 
2. Classical logic 
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The proposal that classical logic is the appropriate foundation for rationality in decision making 
essentially goes back to antiquity. Operationally, the way classical logic can be used to build a 
psychological model (for rational decision making) typically involves an assumption of a mental logic, 
that is a set of logical rules represented in the mind, such that any new problem can be cast into a 
form that can be resolved using some combination of these logical rules (e.g., Braine et al., 1995). 
For example, consider the Wason selection task (Wason, 1968). Participants are presented with four 
cards, for example, A, B, 1, 2. They are given this rule “If there is a vowel on one side of a card, there 
has to be an even number on the other side.” They are told that it is not known whether the rule is 
correct or not and that their job is to attempt to test the rule, by flipping cards and examining the 
information on the other side of each card. Note, participants know that all cards with a letter will 
have a number on the other side and vice versa. For example, in flipping the A card, there may be a 1 
or 2 on the other side, the former being inconsistent with the rule and the latter consistent with the 
rule. According to a mental logic account of reasoning, the problem will be translated into a suitable 
abstract form (e.g., an “if, then” rule with abstract premises) and then various heuristic principles 
will dictate how the available cards can be utilized for testing the rule.  
 There have been several variations of the Wason selection task (e.g., Evans, 1991; Evans et 
al., 1991), but the typical pattern of results is this: most participants select the A card; many 
participants select the 2 card, hardly any participants select the B card, and likewise for the 1 card. 
The selection of the A card is clearly appropriate, since on observing a 2 on the other side we have 
some confirmation of the rule, but on seeing a 1 the rule is definitely refuted. The 2 card has 
potential to confirm the rule if, on flipping it, we observe an A on the other side. But if instead we 
see a B, then there is not much we can say about the rule, since the rule tells us nothing about 
situations for which there is B on the card. The B card is clearly not very helpful, as the rule does not 
apply when we have a B card. However, the selection of the 1 card would make sense: if on flipping 
the 1 card we see an A, then (again) we have definite evidence that the rule is false. The non-
selection of the 1 card is the key result from the Wason selection task; it is the result which 
challenged the assumption that humans are rational (if rationality is understood in terms of classical 
logic), at the time. Eventually this result has led to decision theorists abandoning the view that 
classical logic is an appropriate foundation for human rationality (with a degree of self-interest, we 
could note that this is clearly preferable to a conclusion that humans are irrational).  
 Why is the non-selection of the 1 card so problematic? Because the 1 (and A) cards are the 
only ones which offer the potential of definite falsification of the Wason rule and so, according to 
classical logic (plus a principle that definite conclusions are the most desirable ones), the only 
rational choices. Note, here there is a slight conflation between classical logic as a rational standard 
for human decision making and a prerogative to reach definite conclusions, but this is less 
problematic than it may look, since an approach to human reasoning based on classical logic is 
essentially one of deductive inference.  
  The results of the Wason selection task do not necessarily reveal an inconsistency with 
classical logic, either as a normative or a descriptive framework for human reasoning. From a 
descriptive point of view, it is possible that the mind embodies a rational, logical module, but that 
this module operates on representations which are heuristically derived and so may contain 
inaccurate information (cf. Evans et al., 1991). Or it is possible that reasoning behaviour arises from 
the operation of multiple processes, such as a normative, logical one and one based on heuristics 
and biases. It is possible that the latter process is engaged more readily under conditions of time 
pressure, concurrent cognitive loads, or plain lack of interest – all of these conditions potentially 
apply in the case of participants taking part in a Wason selection task experiment. Such so-called 
dual (or multiple) route models of human reasoning and decision making have been popular, 
exemplifying a general intuition of a more intuitive vs. a more analytic mode to thought (Evans et al., 
2007; Elqayam & Evans, 2013; Sloman, 1996; Kahneman, 2001).  

Despite these potential ways in which a view of human rationality and behaviour based on 
classical logic could be salvaged, the overall verdict on classical logic has been diminishing interest. In 
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modern discussions of reasoning and decision making, classical logic tends not to be considered as a 
viable proposal (though note there are instances of employing logic in other ways in cognitive 
explanation, e.g., to measure complexity of composite concepts, Feldman, 2000). Note, one further 
reason for this diminishing interest regarding classical logic is the growing realization that deductive 
rules, as exemplified in classical logic, are not suitable for human everyday inference (Chater & 
Oaksford, 1993). In other words, it seems that it is rarely the case that we can derive monotonic, 
non-defeasible conclusions in everyday life reasoning situations, as we would be required to do 
following classical logic.  

It is worth briefly mentioning an interesting theoretical variant of mental logic, involving so-
called pragmatic reasoning schemas (Cheng & Holyoak, 1985). According to this view, there is no 
abstract mental logic regardless of content. Rather, there are privileged (how? Because of their 
importance in our lives) contexts, which benefit from context-specific (logical) rules. So, in this 
account, logical reasoning would be guided by e.g. obligation or permission schemas, corresponding 
to obligation or permission reasoning problems. We illustrate a permission schema with one of 
Cheng and Holyoak’s (1985) demonstrations. Consider a postal system such that letters can be 
posted either sealed or unsealed, but the former have to carry a more expensive stamp than the 
latter. The given rationale for this rule is that sealed letters are often personal letters and therefore 
requiring higher postage for such letters would increase corresponding profit. Participants were 
presented with four stimuli, corresponding to letters, such that for two letters the front was shown 
(and so it could be determined whether the letter was sealed or not sealed) and for two other letters 
the back was shown (and so participants could see whether the cheaper or more expensive stamp 
was used). Participants were then asked whether the rule “if a letter is sealed, it needs to carry the 
more expensive stamp” was being followed by checking (turning over) some of the envelopes. Note, 
this is a permission situation because it concerns the circumstances under which one is permitted to 
use the cheaper stamp. Cheng and Holyoak’s (1985) experiment is clearly analogous to the Wason 
selection task. However, unlike for the Wason selection task, results in this experiment showed close 
consistency with the prescription from classical logic (when the rationale for the postal rule was 
included, but not without the rationale; the result was replicated with different materials and rules). 
However, even when considering these pragmatic reasoning schemas, the assumed normative 
standard is classical logic. How can the correct selections in the Wason selection task be anything 
other the ones recommended by classical logic?  
 
3. Classical probability theory and information theory 
Anderson (1990, 1991a, 1991b) advocated an influential view of rationality, according to which 
rationality is tantamount to optimal adaptation to one’s environment. The idea of optimal 
adaptation is appealing, but one might be concerned that, without further constraints, such a view 
of rationality might encompass perhaps trivial examples of optimal adaptation. For example, even 
very basic organisms might be considered as optimally adapted to a restricted environment (for a 
more recent perspective on optimization, adaption, and rationality, see Asano et al., 2018).  

The application of these ideas to the Wason selection task might lead us to approach the 
reasoning problems as one of identifying the card selections which maximally reduce uncertainty 
regarding the problem at hand. Specifically, in the Wason selection task we have two hypotheses, 
concerning whether the provided rule is correct or not correct. Initially, we would have some 
uncertainty regarding these hypotheses, influenced by our prior assumptions before engaging with 
the task. We are then faced with a choice of different card selections and the problem of which card 
selections would reduce our uncertainty the most.  

Oaksford and Chater (1994) formalized these intuitions with information theory. The well-
known definition of entropy or uncertainty is 𝐼(𝐻𝑖) = − ∑ 𝑃𝑟𝑜𝑏(𝐻𝑖)𝑙𝑜𝑔2

𝑛
𝑖=1 𝑃𝑟𝑜𝑏(𝐻𝑖), where 𝐻𝑖  are 

the hypotheses we are trying to discriminate between. We can interpret this quantity in different, 
equivalent ways. For example, we can interpret this quantity as the average codelength needed per 
symbol (in this case a symbol is one of the different hypotheses), if are to identify the shortest code 
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for representing all symbols in our alphabet. Or it can be seen as the average number of binary 
questions required to identify any of the hypotheses in the set of available hypotheses. Entropy is 
higher when there are more equiprobable hypotheses and lower when there are few high 
probability ones; entropy can be seen as the quantification of uncertainty in a probability 
distribution. In the context of the Wason selection task, our problem is to identify the correct 
hypothesis (is the rule correct or is the rule wrong), employing the potential sources of data 
available.  

Let us call 𝐼′(𝐻𝑖 ) the entropy regarding the available hypotheses, once data D has been 
observed. Then, 𝐼′(𝐻𝑖) = − ∑ 𝑃𝑟𝑜𝑏(𝐻𝑖|𝐷)𝑙𝑜𝑔2

𝑛
𝑖=1 𝑃𝑟𝑜𝑏(𝐻𝑖 |𝐷), where marginal probabilities have 

been replaced with conditional probabilities, depending on data D. So, we can specify a quantity of 
information gain, from observing data D, as 𝐼𝑔 = 𝐼(𝐻𝑖|𝐷) − 𝐼(𝐻𝑖 ). However, participants would not 

know in advance what kind of data they will obtain, following different card selections. Let us further 
assume that different card selections are associated with different probabilities. In the most general 
case, suppose that data D has m possibilities. Then, the expected information gain from inquiring 
about data D would be 𝐸(𝐼𝑔) = [∑ 𝑃𝑟𝑜𝑏(𝐷𝑘)𝑚

𝑘=1 𝐼(𝐻𝑖|𝐷𝑘)] − 𝐼(𝐻𝑖 ), where the posterior entropy is 

now weighted by the probabilities of different pieces of data. This expression is simply an average of 
expected information gain if we ‘inquire’ about data D, where the average is computed across all 
possible outcomes of this inquiry.   

In order to derive predictions from Oaksford and Chater’s (1994) model for the Wason 
selection task, some assumptions are needed regarding the probability of different card outcomes. 
Based on such assumptions, the formalism allows quite a different perspective on which cards 
should be selected. As with classical logic, the A card is recommended for selection. But instead of 
the 1 card, under most circumstances, the card next most recommended for selection turns out to 
be the 2 card – just like participants do. The information-theoretic intuition behind these selections 
is straightforward. Let us recast the Wason selection task in terms of a problem along the lines “if a 
plate falls there will be a bang”. To test whether this rule is true or not, if we see a plate falling, we 
would want to listen out for a bang, as long as there are not bangs all the time. Conversely, if we 
hear a bang, it would make sense to see whether a plate has fallen, as long as both the probability of 
bangs and of plates falling are reasonably small. This last statement is a telling conclusion from this 
discussion. Is it not obvious that the card selections recommended by the information-theoretic 
analysis should be the A and 2 ones, as Oaksford and Chater’s (1994) analysis illustrates?  

To sum up so far, we had seen that from the perspective of classical logic, the correct (and 
normative – so far we have been conflating the two) selection in the Wason selection task concerns 
the A and 1 cards, because these are the only cards with potential to provide definite conclusions 
regarding the falsity of the rule. From the perspective of uncertainty reduction, the correct 
selections are the A and 2 ones, since these are the ones with the potential to provide the most 
information about whether the hypothesis of interest (the Wason selection rule) is true or not. 
Arguably this is one of the most significant contributions of decision research, that it has enabled an 
appreciation that different formal frameworks can lead to alternative notions of correctness, for 
exactly the same task.  

More generally, the assumption that parts of cognition may reflect a prerogative to minimize 
uncertainty or information complexity has proved very influential and extends the scope of decision 
making (e.g., see Garner, 1974; Miller, 1958). But note that the modern debate regarding the 
foundations of decision making has shifted from information reduction to classical probability 
theory.  

Classical (or Bayesian) probability theory concerns the standard rules for probabilistic 
assignment. In fact, the basic classical probability axioms are so simple that we can state them here. 
First, the probability of any event is a non-negative number. Second, the probability of something 
which is definitely true is one. Third, for mutually exclusive events, 𝑃𝑟𝑜𝑏(𝐴&𝐵) = 𝑃𝑟𝑜𝑏(𝐴) +

𝑃𝑟𝑜𝑏(𝐵). Finally, conditional probabilities are defined through Bayes rule, 𝑃𝑟𝑜𝑏(𝐴|𝐷) =
𝑃𝑟𝑜𝑏(𝐴&𝐷)

𝑃𝑟𝑜𝑏(𝐷)
. 

More rigorous formalizations of classical probability theory axioms essentially follow the same 
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pattern (e.g., Kolmogorov, 1933). Note in this work we consider what one might call baseline 
classical probability theory, that is a straightforward application of classical probability theory rules, 
without any elaboration e.g. from sampling considerations or pragmatics (cf. Goodman et al., 2105; 
Griffiths et al., 2015).  

A key observation regarding classical probability theory is that its axioms are very intuitive. 
For example, a favourite quote is from Laplace (1816, cited in Perfors et al., 2011), who noted that 
“… [CPT] is nothing but common sense reduced to calculation.” Employing a formal framework 
which is intuitive for the purposes of modelling human intuition (in decision making) appears an 
appropriate approach. Another key observation is that the justification for the putative rational 
status of classical probability theory has proceeded in a formal way. In psychology, a key argument 
concerns the Dutch Book Theorem, according to which assigning probabilities in a way consistent 
with the axioms of classical probability theory protects a decision maker from a sure loss (a Dutch 
Book; de Finetti et al., 1993; a good introductory discussion is Howson & Urbach, 1993). We can thus 
see that there is a major difference between the proposal of classical logic vs. classical probability 
theory, as potential normative frameworks: for the latter, there are formal results supporting a 
normative status, so that the meaning of rationality becomes more operational (in terms of 
vulnerability to a sure loss; see also Oaksford, & Chater, 2009).  

Classical probability theory remains the basis for many decision models (but in practice note 
that technical elaborations are employed, e.g., to deal with the complexity of classical probability 
distributions, e.g., Tenenbaum et al., 2011; Lake et al., 2015). However, there have also been 
compelling demonstrations of inconsistencies between human behaviour and (baseline) classical 
probability theory principles (note, henceforth we will not include the qualification ‘baseline’, but it 
is implied in all mentions of classical probability theory). Such inconsistencies have been the 
motivation for exploring yet an alternative notion of correctness, that we will consider next.  

 
4. Quantum probability theory  
Tversky, Kahneman, Shafir and others initiated an extremely influential research programme 
challenging the descriptive adequacy of classical probability theory in cognition (e.g., Tversky & 
Kahneman, 1983; Kahneman et al., 1982; Shafir & Tversky, 1992), to advocate instead a view of 
human competence in decision making based on heuristics and biases. We restrict the discussion in 
this section on the conjunction fallacy (see shortly), as this is arguably the most famous empirical 
result (superficially) inconsistent with classical probability theory. This restriction does not limit our 
conclusions, however.  
 We follow an example based on the task employed by Tentori et al. (2004; Wedell & Moro, 
2007), as this example makes it easier to consider the extent to which the conjunction fallacy is 
paradoxical from a classical perspective. Participants were presented with a brief vignette about 
how common it is in the Scandinavian peninsula to come across people with both blond hair and 
blue eyes. They were asked to imagine that a person from the peninsula is selected at random. They 
were then told to consider ‘the most probable’ between the following three statements: the 
individual has blond hair; the individual has blond hair and blue eyes; the individual has blond hair 
and does not have blue eyes. The conjunctive statement ‘the individual has blond hair and blue eyes’ 
was preferred to the marginal. Ignoring for the moment formal considerations, we can consider 
whether such a result seems intuitive or not: is it not reasonable that a randomly picked 
Scandinavian person would have blond hair and blue eyes?  
 Probabilistic computation in classical probability theory involves a sample space of all 
possible events, with particular questions corresponding to subsets in this sample space. Let us 
consider a sample space of Scandinavian people, that is, a set of all Scandinavian people we can 
imagine. Suppose we have seven individuals. However, many there are with blue eyes and blonde 
hair, this number can never be higher than the ones with just blond hair. The conjunctive statement 
blue eyes and blond hair is an intersection of individuals across two sets, the set of individuals with 
blue eyes and the set of individuals with blond hair. At worst, we would have that the number of 
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individuals with blond hair and blue eyes is the same as the number of individuals with just blond 
hair (which would occur if there are no individuals with blond hair without also blue eyes). However, 
the intersection cannot have higher cardinality than either of the constituent statements (Figure 1).   
 
 
--------------FIGURE 1 ABOUT HERE----------------- 
 
 Part of the reason why the conjunction fallacy has been so influential is that, even after the 
relevant classical probability picture is explained, there is a ‘feeling’ that the statement ‘the 
individual has blond hair and blue eyes’ seems more correct that the statement ‘the individual has 
blond hair’. It is this persistence that has often been considered the hallmark of probabilistic 
paradoxes (Gilboa, 2000).  
 In the case of the Scandinavian person, the application of classical probability theory is very 
direct (because of the set-theoretic nature of the problem). In the original demonstration Tversky 
and Kahneman (1983) reported, the constraint may appear superficially less strong. In one of their 
experiments, a hypothetical person, Linda, was described very much like a feminist and not at all like 
a bank teller. Participants were asked to rank order according to relative probability a series of 
statements about Linda, including the statements that she is just a bank teller (considered unlikely 
given the description) and that she is a bank teller and a feminist (the feminist property by itself 
would be seen as very likely). Many participants (well over 50%) ranked the conjunction as more 
likely than the individual premise. One might think that, as in this case there is no obvious sample 
space, the conjunction constraint may apply more loosely. But this is incorrect. All inferences 
according to classical probability theory require a sample space and in this case the relevant one 
consists of all possible Linda’s we can imagine, following the initial description.  
 Classical probability theory cannot allow e.g. 𝑃𝑟𝑜𝑏(𝐹&𝐵𝑇) > 𝑃𝑟𝑜𝑏(𝐵𝑇), where F=feminist, 
BT=bank teller in the Linda problem, that is, a conjunction can never be more likely than the 
marginal. A straightforward application of classical probability theory in the case of the conjunction 
fallacy would assume that the evaluation participants are making exactly corresponds to a 
comparison of 𝑃𝑟𝑜𝑏(𝐹&𝐵𝑇) with 𝑃𝑟𝑜𝑏(𝐵𝑇). So, if participants consider the former as more likely 
than the latter, then they are incorrect. However, what if instead participants mentally compute 
probabilities in a different way? Notably, suppose that when they compute the conjunction they 
make one set of assumptions about Linda and when they compute the marginal a different set of 
assumptions. Call these different sets of assumptions A1 and A2. Then, participants would be 
comparing 𝑃𝑟𝑜𝑏(𝐹&𝐵𝑇|𝐴1) with 𝑃𝑟𝑜𝑏(𝐵𝑇|𝐴2), and (fairly trivially) observe that the 
conditionalizations are now on different variables. Under such circumstances, depending on exactly 
how A1 and A2 affect the corresponding inferences for the conjunction and the marginal, we can 
have any of 𝑃𝑟𝑜𝑏(𝐹&𝐵𝑇|𝐴1) > 𝑃𝑟𝑜𝑏(𝐵𝑇|𝐴2), 𝑃𝑟𝑜𝑏(𝐹&𝐵𝑇|𝐴1) = 𝑃𝑟𝑜𝑏(𝐵𝑇|𝐴2), 
𝑃𝑟𝑜𝑏(𝐹&𝐵𝑇|𝐴1) < 𝑃𝑟𝑜𝑏(𝐵𝑇|𝐴2), and there is no longer a conjunction fallacy! However, decision 
theorists rarely consider such models, because there are no prior grounds for assuming differences 
in e.g. assumptions for considering each probability term, as above. 

Note that the conjunction fallacy has been extensively replicated. There has been a 
consideration of a large number of possible confounds, including relating to conversational 
implicatures (cf. Dulany & Hinton, 1991; Grice, 1975), possible misunderstanding on the meaning of 
the conjunction etc. (Moro, 2009, provides a review of these issues). The overall conclusion is that, 
even when all corrective procedures are employed, there is a residual conjunction fallacy.  
 Even though the conjunction fallacy is a judgment inconsistent with the rules of classical 
probability theory, this does not preclude that there is an alternative system for probabilistic 
assignment which might allow probabilities as 𝑃𝑟𝑜𝑏(𝐹&𝐵𝑇) > 𝑃𝑟𝑜𝑏(𝐵𝑇). Our main focus is 
quantum probability theory, the rules for how to assign probabilities to events from quantum 
mechanics, without any of the physics. Quantum mechanics is of course a theory of physics, but the 
pioneering scientists who developed quantum mechanics also had to invent a new theory of 



9  correctness 
 

probability, as classical probability theory is inconsistent with many of the processes assumed by 
quantum mechanics. Quantum probability theory has had a fruitful history of application in cognitive 
science (e.g., Asano et al., 2012; Busemeyer & Bruza, 2011; Haven & Khrennikov, 2013; Khrennikov, 
2010; Pothos & Busemeyer, 2013) and additionally there have been some fairly precise proposals for 
how quantum-like representations can emerge from neuronal interactions (e.g., Khrennikov et al., in 
press).  
 Quantum probability theory approaches probabilistic assignment in a radically different way, 
compared to classical probability theory. In classical probability theory, the basis for probabilistic 
assignment is subsets of sample spaces. In quantum probability theory, instead question outcomes 
correspons to subspaces in a multidimensional vector space, and probabilistic assignment concerns 
the overlap between subspaces and a so-called state vector, which represents the system of 
interest. Many of these concepts might be unfamiliar to readers, so we proceed with a brief 
introduction to quantum theory, eschewing most technical detail and technical elaborations (for a 
more rigorous introduction for psychologists see e.g. Yearsley & Busemeyer, 2016).  
 In quantum theory question outcomes are represented as subspaces in a large vector space 
(this vector space has some additional properties, which we need not consider here). In most 
introductory illustrations of quantum theory, such subspaces are one-dimensional (in which case 
they can be called rays). For example, in Figure 2, we are representing a binary question B with two 
rays, one corresponding to an affirmative response for B (which we denote as B, slightly abusing 
notation) and one corresponding to a negative response for B (denoted as ~B). Subspaces can be of 
any dimensionality and there is an expectation that more complex concepts would be represented 
with subspaces of higher dimensionality (Pothos et al., 2013). Probabilistic inference in quantum 
theory depends on the state vector, mentioned above, which is a normalised vector. The state 
vector is a representation of all the information we know about the relevant system, whether this is 
a physical system (in the original applications of quantum theory in physics) or a psychological 
system, e.g., the mental state of a participant just before answering some questions relevant to an 
experiment. In Figure 2, the state vector is represented by the vector labelled S. With subspaces and 
the state vector, we can compute probabilities as the squared length of the projection of the state 
vector onto the relevant subspace (this way to associate probabilities to subspaces is a fundamental 
aspect of quantum theory called Born’s rule). Projection is an operation of taking a vector and ‘laying 
it down’ onto a relevant subspace. For example, in Figure 2, if we are interested in the probability 
that a participant with mental state S responds affirmatively to the B question, then we have to 
measure the square of the projection of S along the B ray.  
 Let us introduce some notation. Suppose we are interested in computing probabilities 
relevant to the Linda version of the conjunction fallacy. Then, envisage two subspaces, one 
corresponding to the question outcome that she is a BT and one that she is a F. Each subspace is 
associated with a projector operator, a linear operator which can project the state vector onto the 
relevant subspace. For the F and BT question outcomes, the projectors can be denoted as 𝑃𝐵𝑇 and 
𝑃𝐹. Then, the projection of the state vector onto e.g. the BT subspace is denoted as 𝑃𝐵𝑇|𝑆⟩ and the 
squared length of the projection as |𝑃𝐵𝑇|𝑆⟩|2, that is, 𝑃𝑟𝑜𝑏(𝐵𝑇) = |𝑃𝐵𝑇|𝑆⟩|2. Note, we employ here 
Dirac’s bracket notation, with |𝑆⟩ corresponding to a column vector and ⟨𝑆| to the complex 
conjugate transpose of a |𝑆⟩ (and so a row vector).  
 The most important distinguishing aspect of quantum probability theory relative to classical 
probability theory that is presently relevant is that in the former there are two types of questions, 
compatible and incompatible, while in the latter there are only compatible questions. Incompatible 
questions are ones for which it is impossible to provide a joint probability distribution. The 
paradigmatic case of incompatible questions in physics concerns the momentum and position of a 
microscopic particle. The quantum mechanics implication is that it is impossible to simultaneously 
know both the position and momentum of such a particle. In psychology, we can think of 
incompatible questions as ones such that resolving one question creates a different context or 
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perspective for another. The issue of incompatibility in cognition deserves additional remarks that 
we will further consider shortly. 
 Let us reiterate the key point that probability is computed through projection (specifically, as 
the squared length of the projection of the state vector onto the relevant subspace). This should 
make it clear that certainty, i.e.,  𝑃𝑟𝑜𝑏(𝑝𝑟𝑒𝑚𝑖𝑠𝑒) = 1, corresponds to having the state vector 
‘contained’ within the relevant subspace. In Figure 2, for example, if the state vector is aligned with 
the A subspace, then we would have that 𝑃𝑟𝑜𝑏(𝐴) = 1. We are thus led to a simple operational 
approach to what incompatibility is about, namely, it concerns questions such that the relevant 
subspaces are at oblique angles, so that certainty for one question outcome implies non-zero 
probability for the outcomes of an alternative question. For example, in Figure 2, we consider two 
questions, A and B. Question outcome A appears likely given the mental state, represented here as 
S, since clearly 𝑃𝐴|𝑆⟩ would be quite long (this projection is not shown in the figure). By contrast, 
question outcome B would be less likely, as 𝑃𝐵|𝑆⟩ short. In Figure 2, incompatibility between 
questions A, B simply means that a state vector aligned with question A has non-zero projections to 
both B and ~B and vice versa – it is impossible to find a state vector such that we are simultaneously 
certain about A or ~A and B or ~B; the two questions cannot be simultaneously resolved.  
 The crucial point is what happens when we want to assess the conjunction A and then B. 
Because the two questions are assumed to be incompatible, it is not possible to employ the notion 
of conjunction from classical probability theory (we cannot resolve both A and B simultaneously). 
Instead, the closest analogue is sequential conjunction, that is, a process of resolving the first 
conjunct and then the second, 𝑃𝑟𝑜𝑏(𝐴& 𝑡ℎ𝑒𝑛 𝐵). This definition is appropriate because it 
decomposes into the product of a marginal and a conditional, exactly as we would expect from a 
classical conjunction, that is, 𝑃𝑟𝑜𝑏(𝐴& 𝑡ℎ𝑒𝑛 𝐵) = 𝑃𝑟𝑜𝑏(𝐴)𝑃𝑟𝑜𝑏(𝐵|𝐴). The sequential conjunction 
corresponds to a sequential projection, in a way analogous to how the probability for a single 
question outcome corresponds to a single projection. Specifically, 𝑃𝑟𝑜𝑏(𝐴& 𝑡ℎ𝑒𝑛 𝐵) = |𝑃𝐵𝑃𝐴|𝑆⟩|2. 
This operation involves projecting the state vector first onto the A subspace, which is 𝑃𝐴|𝑆⟩, and 
then taking the 𝑃𝐴|𝑆⟩ vector and projecting it onto the B subspace, exactly as shown in Figure 2. But, 
it can be immediately seen in Figure 2 that |𝑃𝐵𝑃𝐴|𝑆⟩|2 > |𝑃𝐵|𝑆⟩|2. We have produced an example in 
quantum theory which shows 𝑃𝑟𝑜𝑏(𝐴& 𝑡ℎ𝑒𝑛 𝐵) > 𝑃𝑟𝑜𝑏(𝐵).  
 Let us illustrate how this can be done numerically. Let us introduce angle s, corresponding to 
the angle between state vector S and question outcome ~BT and angle t, corresponding to the angle 
between state vector S and question outcome A. We also note projectors for one-dimensional 
subspaces can be computed in a simple way as, e.g.,  𝑃𝐵 = |𝐵⟩⟨𝐵|. Recall that |𝐵⟩ is a column vector 

and in a real space ⟨𝐵| would be the corresponding transpose. For example, if |𝐵⟩ = (
𝑎
𝑏

), then 

|𝐵⟩⟨𝐵| = (
𝑎
𝑏

) (𝑎 𝑏) = (𝑎2 𝑎𝑏
𝑎𝑏 𝑏2

). Note that ⟨𝐵|𝐵⟩ = (𝑎 𝑏) (
𝑎
𝑏

) = 𝑎2 + 𝑏2, i.e., this is a scalar 

product. In general, in a real space, for two normalized vectors x, y, the scalar product is ⟨𝑥|𝑦⟩ =
cos 𝜃, where 𝜃 is the angle between the two vectors. Accordingly, we have 𝑃𝑟𝑜𝑏(𝐵) = |𝑃𝐵|𝑆⟩|2 =
|𝐵⟩⟨𝐵|𝑆⟩|2 = |⟨𝐵|𝑆⟩|2 = cos2(𝜋/2 − 𝑠) = sin2(𝑠). Note that in |𝐵⟩⟨𝐵|𝑆⟩|2 we basically have a 
vector, |𝐵⟩, and a scalar product, and the length of the former is one – hence, |𝐵⟩⟨𝐵|𝑆⟩|2 = |⟨𝐵|𝑆⟩|2 
Regarding the sequential conjunction, 𝑃𝑟𝑜𝑏(𝐴& 𝑡ℎ𝑒𝑛 𝐵) =  |𝑃𝐵𝑃𝐴|𝑆⟩|2 = |𝐵⟩⟨𝐵|𝐴⟩⟨𝐴|𝑆⟩|2 =
|⟨𝐵|𝐴⟩⟨𝐴|𝑆⟩|2 = sin2(𝑠 + 𝑡) cos2(𝑡). So, if one measures the rate of conjunction fallacy as 
𝑃𝑟𝑜𝑏(𝐴& 𝑡ℎ𝑒𝑛 𝐵) − 𝑃𝑟𝑜𝑏(𝐵), then this simple computation would allow a conjunction fallacy as 
long as sin2(𝑠 + 𝑡) cos2(𝑡) > sin2(𝑠). There are several combinations of s, t which allow a 
conjunction fallacy.  
 
-----------------FIGURE 2 ABOUT HERE ---------------------- 
 
 There are several points to make. First, this shows how the result 𝑃𝑟𝑜𝑏(𝐴& 𝑡ℎ𝑒𝑛 𝐵) >
𝑃𝑟𝑜𝑏(𝐵) can be correct when using quantum probability theory. So, we have two different 
perspectives on correctness regarding the conjunction fallacy, from classical probability theory (not 
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allowed under any circumstances, unless of course someone introduces conditionalizing variables, as 
discussed) and quantum probability theory (can be allowed, depending on the precise arrangement 
of subspaces and the mental spate). Second, the Figure 2 illustration is extremely restricted. All 
subspaces are one dimensional subspaces; in general they could have higher dimensionalities. All 
rays are coplanar, in general they do not have to be. Third, the result 𝑃𝑟𝑜𝑏(𝐴& 𝑡ℎ𝑒𝑛 𝐵) > 𝑃𝑟𝑜𝑏(𝐵) 
can be produced only if we project to the A subspace first and then the B one; with this approach, 
we cannot have a conjunction fallacy in a different order. However, we think it is a desirable feature 
of this approach that not all arrangements of mental states and subspaces can produce a 
conjunction fallacy. Finally, and most importantly, the fact that quantum probability theory allows 
the conjunction fallacy as a correct conclusion does not mean that we have an adequate 
psychological model of what happens in the corresponding empirical situations.  
 Let us consider first the case of the conjunction fallacies in Tversky and Kahneman (1983), as 
exemplified by the Linda problem. The mental state vector can be reasonably said to be close to the 
ray for feminism (=A in Figure 2) and away from the ray for bank teller (=B in Figure 2). Then, 
computing the conjunction in the order of feminism first and then bank teller, we have 
|𝑃𝐵𝑇𝑃𝐹|𝑆⟩|2 > |𝑃𝐵𝑇|𝑆⟩|2, as required. Busemeyer et al. (2011; Asano et al., 2013) essentially 
modelled the conjunction fallacy and related fallacies with a quantum probability model along these 
lines (but not restricted to one dimensional subspaces or a two dimensional overall vector space). 
Psychologically, we require the assumptions that the questions of feminism and bank teller are 
incompatible and that the feminism question is evaluated before the bank teller one. The former 
assumption appears fairly natural for the Linda problem, for example, perhaps accepting that Linda 
is a feminist can lead to a perspective or context that makes us re-evaluate the possibility that she is 
a bank teller. The latter assumption is perhaps benign as well, since there are various psychological 
views according to which more likely premises benefit from a degree of primacy (e.g., Gigerenzer & 
Goldstein, 1996).  
 Let us consider next how quantum probability theory could accommodate the conjunction 
fallacy in Tentori et al. (2004). In this case, the application of quantum theory would have to involve 
a computation like |𝑃𝐵𝐸𝑃𝐵𝐻|𝑆⟩|2 > |𝑃𝐵𝐸|𝑆⟩|2 (we can reassure ourselves that there would be some 
arrangement along the lines of Figure 2 that would reproduce the conjunction fallacy, that is, by 
having rays for the question outcomes BE and BH analogous to the rays for A and B). In this case, 
however, the intuition from classical probability theory is extremely strong. In other words, 
understanding the question of whether a Scandinavian person is likely to have blue eyes vs. blonde 
hair and blue eyes evokes a picture of probabilities as subsets of an overall sample space: there is a 
subset of Scandinavian individuals with blonde hair, a subset with blue eyes etc. With such a 
(classical) picture of probabilities it is very difficult to see how the intersection (i.e., conjunction) 
could ever be more probable than either marginal (cf. Figure 1). The application of quantum theory 
in this case, requires a rethinking of how questions can be interpreted within a quantum cognitive 
model.  
 To address this conundrum we need to recognize the semantics of what it means in 
quantum probability theory to resolve sequences of incompatible questions. Resolving a question 
implies a unique perspective for other incompatible questions. Therefore, the same question A 
resolved from a baseline perspective vs. the perspective following the resolution of an incompatible 
question B should be considered as separate questions. In classical terms, we must separate out the 
sample spaces. We have one for the baseline perspective of A and a different sample space for each 
version of A following resolution of each different question incompatible with A. That is, if a series of 
questions is incompatible, every time we respond to a question, this creates a different perspective 
for the probabilities relevant to subsequent questions. In more psychological terms, resolving a 
question creates a unique context for subsequent incompatible questions, so that these subsequent 
questions have to be understood as different, compared to version answered either in isolation or 
prior to other incompatible questions.  
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 Given these ideas, if we want to apply quantum probability theory to Tentori et al. (2004) 
example, we have to recast our notion of sample space as in Figure 3. First of all, assume that the 
questions ‘does a person have blue eyes’ and ‘does a person have blonde hair’ are mentally 
represented as incompatible (we discuss shortly whether representing the two questions as 
incompatible can be justified in this case). Following from the ideas in the previous paragraph, 
resolving one question after the other vs. in isolation should correspond to slightly different versions 
of the question. Let us consider the question ‘does a person have blue eyes’ and assume that in 
isolation the meaning of the question is exactly as stated. The sample space in the top of Figure 3 
corresponds to asking the question ‘does a person have blue eyes’ in isolation and so we can easily 
compute that 𝑃𝑟𝑜𝑏(𝑏𝑙𝑢𝑒 𝑒𝑦𝑒𝑠) = 1/3. If we now ask ‘does a person have blonde hair and (then 
does a person have) blue eyes’, then incompatibility means that the blue eyes question has to be 
interpreted somewhat differently, compared to isolation. What would be this different 
interpretation? Without a more detailed model it is impossible to know. But, for the purposes of 
illustration, we can make some assumption, for example, let us suppose that the different meaning 
is ‘blond eye lashes’ (perhaps our participant is confused when seeing the blonde hair question and, 
by association, instead of understanding the blue eyes question as intended, he confuses it with one 
about blonde eye lashes). In Figure 3, calculation is now based on the sample space in the bottom, 
so that 𝑃𝑟𝑜𝑏(𝑏𝑙𝑜𝑛𝑑 ℎ𝑎𝑖𝑟 &𝑡ℎ𝑒𝑛 𝑏𝑙𝑢𝑒 𝑒𝑦𝑒𝑠𝑏𝑙𝑜𝑛𝑑 ℎ𝑎𝑖𝑟) = 4/5. To reiterate the key point, 
𝑏𝑙𝑢𝑒 𝑒𝑦𝑒𝑠𝑏𝑙𝑜𝑛𝑑 ℎ𝑎𝑖𝑟 = ‘blond eye lashes’. Crucially, there is no fallacy any more, since we can have 
𝑃𝑟𝑜𝑏(𝑏𝑙𝑜𝑛𝑑 ℎ𝑎𝑖𝑟 &𝑡ℎ𝑒𝑛 𝑏𝑙𝑢𝑒 𝑒𝑦𝑒𝑠𝑏𝑙𝑜𝑛𝑑 ℎ𝑎𝑖𝑟) > 𝑃𝑟𝑜𝑏(𝑏𝑙𝑢𝑒 𝑒𝑦𝑒𝑠). The marginal is taken from one 
sample space and the (sequential) conjunction from a different sample space. Because these 
probabilities are taken from different sample spaces, they no longer have to be consistent with each 
other, as required by classical probability theory, and the conjunction can appear as higher than the 
marginal (for a more detailed exposition of these ideas see Pothos et al., 2017).  
 
--------------FIGURE 3 ABOUT HERE ------------- 
 
 Would participants be justified in employing two different versions of the blue eyes question 
in Tentori et al.’s (2004) experiment? No and so we have to conclude that the result of Tentori et al. 
(2004) does indeed reflect a fallacy, though possibly one of misrepresenting as incompatible 
questions which are in reality compatible. What about the Linda example (and its variants) in Tversky 
and Kahneman (1983)? In this case there are more grounds to expect that participants may interpret 
the question about whether Linda is a bank teller or not differently, depending on whether there is a 
prior question about feminism or not. In isolation, the question perhaps is interpreted as one 
corresponding to whether Linda is employed as a bank teller. After the feminism question, the bank 
teller one is perhaps interpreted as a question of whether being a bank teller is a typical profession 
for feminists (perhaps it is not the most likely profession for feminists, in the 80s, but it would not be 
entirely unlikely either). Either way, the point is that in order to reconcile correctness in probabilistic 
inference with quantum probability theory, we have to acknowledge that responding to sequences 
of incompatible questions generates different versions of the questions.  
 The issue of correctness is somewhat separate from the issue of rationality. Quantum 
probability theory is a formal framework for probabilistic inference and responding in a way that is 
consistent with the constraints from quantum probability theory is equivalent to a statement that 
responding is according to a coherent set of principles. But this falls short of a justification for the 
rational status of quantum probability theory. However, Pothos et al. (2017) argued that the 
requirements for the Dutch Book Theorem are fulfilled for quantum probability theory too. So, one 
of the major formal justifications for the rational status of classical probability theory applies to 
quantum probability too.  
 A final issue to address concerns the relevance of quantum probability theory to cognition. It 
seems there is no doubt that, in some cases at least, human decision makers employ incompatible 
representations, as is indicated by the several reports of behaviour inconsistent with classical 
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probability theory, but for which simple quantum cognitive models are possible (e.g., see the 
overviews in Bruza, Wang, & Busemeyer, 2015, Pothos & Busemeyer, 2013, or Wang et al., 2013).  
So, regardless of whether employing incompatible representations is justified or not, it appears that 
this occurs. But would there be situations when it is justified too? We think this would be the case, 
for example, when questions can have different meanings depending on context (which could be 
generated by other questions). That is, in the macroscopic world that concerns most of the decisions 
we are likely to have to make, incompatibility reflects some kind of contextuality, where the 
presence of questions can alter the meaning of other ones (note we are employing here the term 
contextuality in a fairly lay way, to imply dependence on context; in quantum theory there is a more 
specific sense of contextuality which is presently less relevant, e.g., Cervantes & Dzhafarov, 2018; 
Dzhafarov et al., 2016). Additionally, there will be situations when a decision alters the state that is 
relevant for responding to subsequent questions and, in such cases (where there is a possibility of 
so-called ‘disturbing measurements’) there will be potential for formal understanding employing the 
notion of incompatibility (Pothos et al., 2017; White et al., 2014).  
 
5. Concluding comments  
We have seen three frameworks for understanding correctness and rationality, classical logic, 
classical probability theory, and quantum probability theory. The relevance of classical logic could be 
discounted fairly easily, e.g., employing arguments concerning the general applicability of deductive 
rules in everyday decision making (cf. Chater & Oaksford, 1993). Note, there is an additional layer of 
subtlety here, in that the algebraic foundations of classical probability theory actually embody 
classical logic, but we will ignore this issue here.  
 Classical probability theory and quantum probability theory provide two strikingly different 
intuitions for probabilistic inference (and in fact challenge some convergence results in classical 
probability theory, e.g., Khrennikov & Basieva, 2014). Note that some of this dependence of context 
that is one hallmark of quantum incompatibility could be accommodated with classical probability 
theory too, e.g., through appropriate conditionalizations. But, while such conditionalizations are post 
hoc, we think it is unlikely that they be convincing to the scientific community. One origin of the 
radically different pictures for probabilistic inference embodied in these two theories is the reliance 
of one on sample spaces and set-theoretic operations and the other on vector spaces and the 
geometry of subspaces/ projections. 
 Classical and quantum probability theories hardly exhaust the possibilities for formal 
systems for probabilistic inference. It is possible to specify a hierarchy of probabilistic frameworks, 
organised in terms of the complexity of the probability rules which are employed (here, complexity 
has a specific meaning in terms of additional terms which arise in the law of total probability, Sorkin, 
1994). In such a hierarchy the very first element is classical probability theory and the next element 
quantum probability theory. Thus, it is entirely possible that future work will motivate alternative 
probability theories in psychology applications, which would themselves lead to alternative notions 
of correctness (perhaps invoking more elaborate versions of the idea that previous questions can 
affect the meaning of subsequent ones). Even though it seems unlikely that more elaborate 
probability theories will be relevant in the modelling of behaviour specifically, there may be 
applications in e.g. artificial intelligence. Either way, the development of decision theory in 
psychology has brought into sharp focus the idea that correctness in decision making is far from a 
singular notion and one has to consider carefully how different approaches compare and can be 
justified.  
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FIGURE CAPTIONS  
 
Figure 1. The impossibility of the conjunction fallacy.  
 
Figure 2. An illustration of how a conjunction fallacy can arise with quantum probability theory 
inference.  
 
Figure 3. How having different sample spaces can allow the conjunction fallacy.  
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