IT City Research Online
UNIVEREIST%(]OggLfNDON

City, University of London Institutional Repository

Citation: Li, W., Mitchell, C. J. & Chen, T. (2018). Your Code Is My Code: Exploiting a
Common Weakness in OAuth 2.0 Implementations. In: Security Protocols XXVI. Security
Protocols 2018. (pp. 24-41). Cham, Switzerland: Springer. ISBN 9783030032500 doi:
10.1007/978-3-030-03251-7_3

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/23862/

Link to published version: https://doi.org/10.1007/978-3-030-03251-7_3

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Your Code Is My Code: Exploiting
a Common Weakness in OAuth 2.0
Implementations

Wanpeng Li'®) | Chris J. Mitchell?, and Thomas Chen'

! Department of Electrical and Electronic Engineering, City,
University of London, London, UK
{Wanpeng.Li,Tom.Chen.1}@city.ac.uk
2 Information Security Group, Royal Holloway,
University of London, Egham, UK
me@chrismitchell.net

Abstract. Many millions of users routinely use their Google, Facebook
and Microsoft accounts to log in to websites supporting OAuth 2.0-based
single sign on. The security of OAuth 2.0 is therefore of critical impor-
tance, and it has been widely examined both in theory and in practice.
In this paper we disclose a new class of practical attacks on OAuth 2.0
implementations, which we call Partial Redirection URI Manipulation
Attacks. An attack of this type can be used by an attacker to gain a
victim user’s OAuth 2.0 code (a token representing a right to access
user data) without the user’s knowledge; this code can then be used to
impersonate the user to the relevant relying party website. We examined
27 leading OAuth 2.0 identity providers, and found that 19 of them are
vulnerable to these attacks.

1 Introduction

Since the OAuth 2.0 authorisation framework was published at the end of 2012
[8], it has been adopted by a large number of websites worldwide as a means of
providing single sign-on (SSO) services. By using OAuth 2.0, websites can reduce
the burden of password management for their users, as well as saving users
the inconvenience of re-entering attributes that are instead stored by identity
providers and provided to relying parties as required.

There is a correspondingly rich infrastructure of identity providers (IdPs)
providing identity services using OAuth 2.0. This is demonstrated by the fact
that some Relying Parties (RPs), such as the website USATODAY?, support as
many as six different IdPs—see Fig. 1.

As discussed in Sect. 4, the security of OAuth 2.0 has been analysed both
theoretically, e.g. using formal methods, and practically, involving looking at
implementations of OAuth 2.0. The research methodology used in most of this

! https://login.usatoday.com /USAT-GUP /authenticate/?.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03251-7_3&domain=pdf
https://login.usatoday.com/USAT-GUP/authenticate/?
https://doi.org/10.1007/978-3-030-03251-7_3
Tom Chen

Tom Chen

& login.usatoday.com

e
L
DT
DT
DR

Fig. 1. The OAuth 2.0 IdPs supported by USATODAY.

work involves treating RPs and IdPs as black boxes; because of the inherent
limitations of this approach, it is likely that potential implementation flaws and
attack vectors exist that have yet to be found. Hlustrating this, in this paper we
disclose a new class of practical attacks on OAuth 2.0 implementations, which
we call Partial Redirection URI Manipulation (PRURIM) attacks, that affect
many leading real-world IdPs. These attacks either allow an attacker to log in to
the RP as the victim user or enable compromise of potentially sensitive user
information. We examined 27 leading OAuth 2.0 identity providers, and found
that 19 of them are vulnerable to PRURIM attacks.

OAuth 2.0 is used to protect many millions of user accounts and sensitive
user information stored at IdPs (e.g. Facebook, Google and Microsoft) and RP
servers around the world. It is therefore vitally important that the issues we
have identified are addressed urgently, and that IdPs take actions to mitigate
the threats from PRURIM attacks. We have therefore notified the IdPs we have
found to be vulnerable to these attacks.

To summarise, we make the following contributions:

— We describe a new class of practical attacks, PRURIM attacks, on OAuth 2.0
implementations. These attacks can be used to gain a victim user’s OAuth
2.0 code without the user’s knowledge.

— We examined the security of 27 leading OAuth 2.0 identity providers, and
found that 19 of them are vulnerable to PRURIM attacks.

— We propose practical improvements which can be adopted by OAuth 2.0 RPs
and IdPs that address the identified problems.

Tom Chen

— We reported our findings to the affected IdPs and helped them fix the prob-
lems we identified.

The remainder of this paper is structured as follows. Section 2 provides back-
ground on OAuth 2.0. In Sect. 3 we describe implementation strategies that RPs
use to support multiple IdPs. Section4 summarises previous work analysing
the security of real world OAuth 2.0 implementations. Section5 describes the
PRURIM attacks, which are a threat to RPs that support multiple IdPs. In
Sect. 6, we report our findings and discuss why PRURIM attacks are possible.
In Sect. 7, we propose possible mitigations for these attacks. Section 8 describes
the disclosures made to affected IdPs, and the responses we received from them.
Section 9 concludes the paper.

2 Background

2.1 OAuth 2.0

The OAuth 2.0 specification [8] describes a system that allows an application to
access resources (typically personal information) protected by a resource server
on behalf of the resource owner, through the consumption of an access token
issued by an authorization server. In support of this system, the OAuth 2.0
architecture involves the following four roles (see Fig. 2).

1. The Resource Owner is typically an end user.

2. The Resource Server is a server which stores the protected resources and
consumes access tokens provided by an authorization server.

3. The Client is an application running on a server, which makes requests on
behalf of the resource owner (the Client is the RP when OAuth 2.0 is used
for SSO).

4. The Authorization Server generates access tokens for the client, after authen-
ticating the resource owner and obtaining its authorization (the Resource
Server and Authorization Server together constitute the IdP when OAuth
2.0 is used for SSO).

Figure 2 provides an overview of the operation of the OAuth 2.0 protocol. The
client initiates the process by sending (1) an authorization request to the resource
owner. In response, the resource owner generates an authorization grant (or
authorization response) in the form of a code, and sends it (2) to the client. After
receiving the authorization grant, the client initiates an access token request by
authenticating itself to the authorization server and presenting the authorization
grant, i.e. the code issued by the resource owner (3). The authorization server
issues (4) an access token to the client after successfully authenticating the client
and validating the authorization grant. The client makes a protected source
request by presenting the access token to the resource server (5). Finally, the
resource server sends (6) the protected resources to the client after validating
the access token.

Tom Chen

1: Authorization Request

—
o

Resource

2: Authorization Grant Owner (User)

<
-

3: Authorization Grant

Authorisation

Client (RP)

4: Access Token

-

5: Access Token

Resource

6: Protected Resources

<
-

Fig. 2. OAuth 2.0 protocol flow.

2.2 OAuth 2.0 Used for SSO

In order to use OAuth 2.0 as the basis of an SSO system, the following role
mapping is used:

— the resource server and authorization server together play the IdP role;
— the client plays the role of the RP;
— the resource owner corresponds to the user.

OAuth 2.0 SSO systems build on user agent (UA) redirections, where a user
(U) wishes to access services protected by the RP which consumes the access
token generated by the IdP. The UA is typically a web browser. The IdP provides
ways to authenticate the user, asks the user to grant permission for the RP to
access the user’s attributes, and generates an access token on behalf of the user.
After receiving the access token, the RP can access the user’s attributes using
the API provided by the IdP.

The OAuth 2.0 framework defines four ways for RPs to obtain access tokens,
namely Authorization Code Grant, Implicit Grant, Resource Owner Password,
and Client Credentials Grant. In this paper we are only concerned with the
Authorization Code Grant and Implicit Grant protocol flows. Note that, in the
descriptions below, protocol parameters given in bold font are defined as required
(i.e. mandatory) in the OAuth 2.0 Authorization Framework [8].

RP Registration. The RP must register with the IdP before it can use OAuth
2.0. During registration, the IdP gathers security-critical information about the
RP, including the RP’s redirect URI, i.e. redirect_uri, the URI to which the
user agent is redirected after the IdP has generated the authorization response
and sent it to the RP via the UA. As part of registration, the IdP issues the RP

Tom Chen

with a unique identifier (client_id) and, optionally, a secret (client_secret). If
defined, client_secret is used by the IdP to authenticate the RP when using the
Authorization Code Grant flow.

Authorization Code Grant. We next briefly review the operation of OAuth
2.0 Authorization Code Grant. This flow relies on certain information having
been established during the registration process, as described in Sect.2.2. An
instance of use of the protocol proceeds as follows.

1.

10.

U — RP: The user clicks a login button on the RP website, as displayed by
the UA, which causes the UA to send an HTTP request to the RP.

. RP — UA: The RP produces an OAuth 2.0 authorization request and

sends it back to the UA. The authorization request includes client_id,
the identifier for the client which the RP registered with the IdP previ-
ously; response_type=code, indicating that the Authorization Code Grant
method is requested; redirect_uri, the URI to which the IdP will redirect the
UA after access has been granted; state, an opaque value used by the RP
to maintain state between the request and the callback (step 6 below); and
scope, the scope of the requested permission.

. UA — IdP: The UA redirects the request which it received in step 2 to the

1dP.

. IdP — UA: The IdP first compares the value of redirect_uri it received in

step 3 (embedded in the authorization request) with the registered value
(how redirect_uri is compared is described in Sect.3.1); if the comparison
fails, the process terminates. If the user has already been authenticated by
the IdP, then the next step is skipped. If not, the IdP returns a login form
which is used to collect the user authentication information.

. U — UA — IdP: The user completes the login form and grants permission

for the RP to access the attributes stored by the IdP.

. IdP — UA — RP: After (if necessary) using the information provided in

the login form to authenticate the user, the IdP generates an authorization
response and redirects the UA back to the RP. The authorization response
contains code, the authorization code (representing the authorization grant)
generated by the IdP; and state, the value sent in step 2.

RP — IdP: The RP produces an access token request and sends it to the
IdP token endpoint directly (i.e. not via the UA). The request includes
grant_type=authorization_code, client_id, client_secret (if the RP has
been issued one), code (generated in step 6), and the redirect_uri.

. IdP — RP: The IdP checks client_id, client_secret (if present), code

and redirect_uri and, if the checks succeed, responds to the RP with
access_token.

. RP — IdP: The RP passes access_token to the IdP via a defined API to

request the user attributes.

IdP — RP: The IdP checks access_token (how this works is not specified
in the OAuth 2.0 specification) and, if satisfied, sends the requested user
attributes to the RP.

Tom Chen

Implicit Grant. The Implicit Grant protocol flow has a similar sequence of
steps to Authorization Code Grant. We specify below only those steps where
the Implicit Grant flow differs from the Authorization Code Grant flow.

2. RP — UA: The RP produces an OAuth 2.0 authorization request and
sends it back to the UA. The authorization request includes client_id, the
identifier for the client which the RP registered with the IdP previously;
response_type=token, indicating that the Implicit Grant is requested; redi-
rect_uri, the URI to which the IdP will redirect the UA after access has been
granted; state, an opaque value used by the RP to maintain state between the
request and the callback (step 6 below); and scope, the scope of the requested
permission.

6. IdP — UA — RP: After (if necessary) using the information provided in the
login form to authenticate the user, the IdP generates an access token and
redirects the UA back to the RP using the value of redirect_uri provided in
step 2. The access token is appended to redirect_uri as a URI fragment (i.e.
as a suffix to the URI following a # symbol).

As URI fragments are not sent in HT'TP requests, the access token is not
immediately transferred when the UA is redirected to the RP. Instead, the RP
returns a web page (typically an HTML document with an embedded script)
capable of accessing the full redirection URI, including the fragment retained by
the UA, and extracting the access token (and other parameters) contained in
the fragment; the retrieved access token is returned to the RP. The RP can now
use this access token to retrieve data stored at the IdP.

3 Supporting Multiple IdPs

As described in Sect. 1, many RPs support more than one IdP. This recognises the
fact that users will have trust relationships with varying sets of IdPs — for exam-
ple, one user may prefer to trust Facebook, whereas another may prefer Google.

In this section we describe two ways in which this is achieved in practice. The
first approach (using redirect URISs) gives rise to the new class of attacks which
we describe in Sect.5. The second approach (explicit user intention tracking)
gives rise to the IdP mix-up attacks described by Fett et al. [7].

3.1 Using Redirect URIs

One way in which an RP can support multiple IdPs is to register a different
redirect_uri with each IdP, and to set up a sign-in endpoint for each. It can then
use the endpoint on which it receives an authorization response to recognise
which IdP sent it. For example, AddThis? has registered the URIs

— https://www.addthis.com/darkseid /account/register-facebook-return as its
redirect_uri for Facebook, and

2 http://www.addthis.com/.

https://www.addthis.com/darkseid/account/register-facebook-return
http://www.addthis.com/
Tom Chen

— https://www.addthis.com/darkseid /account/register-google-return as its
redirect_uri for Google.

If AddThis receives an authorization response at the endpoint https://www.
addthis.com/darkseid /account /register-facebook-return?code=[code_generated -
by _Facebook], (in step 7 of Sect.2.2), it assumes that this response was gener-
ated by Facebook, and thus sends the authorization code to the Facebook server
(step 8 of Sect.2.2) to request an access_token.

The redirect_uri in OAuth 2.0. As described in Sect. 2.2, an RP must register
with an IdP before it can use OAuth 2.0. The OAuth 2.0 Authorization Frame-
work [8] defines the following two ways in which an IdP can register redirect_uri
for an RP.

1. The IdP should require the RP to provide the complete redirection URI.

2. If requiring the registration of the complete redirection URI is not possible,
the IdP should require the registration of the URI scheme, authority, and
path. This allows the RP to dynamically vary only the query component of
the redirection URI when requesting authorization.

As described in §3.1.2 of the OAuth 2.0 Authorization Framework [§8], the
redirection endpoint URI must be an absolute URI. The framework requires
the authorization server to match the received redirect_uri value against the
redirection URIs registered by the RP when a redirection URI is included in an
authorization request. Also, if the redirect_uri registered by the RP includes the
full redirection URI, the IdP must compare the two URIs using a simple string
comparison [15].

Real-World Implementations of redirect_uri Checks. As noted above, the
OAuth 2.0 Authorization Framework [8] requires the IdP to check the two URIs
using a simple string comparison if the registered redirect_uri value includes
the full redirection URI; however, this is not always done. In practice, we have
identified three approaches used by real-world IdPs to check the redirect_uri.

— Checking only the origin of redirect_uri. Many IdPs, including Face-
book?, Yahoo* and Microsoft®, only check the origin part of redirect_uri.
For example, suppose an RP registers https://www.RP.com/facebook-return
as its redirect_uri with Facebook. When Facebook receives an authorization
request generated by this RP, it only checks whether the origin part of redi-
rect_uri in the authorization request matches https://www.RP.com, i.e. it
ignores /facebook-return.

— Checking redirect_ur: using a simple string comparison. Some IdPs,
such as Google® and Amazon’, execute a simple string comparison when per-
forming a redirect_uri check (as required in [8]) on the authorization request.

3 https://developers.facebook.com/docs/facebook-login /web.
4 https://developer.yahoo.com/oauth2/guide/.

® https://msdn.microsoft.com/en-us/library /hh243647.aspx.

5 https://developers.google.com/identity /protocols/OAuth2.
" http:/ /login.amazon.com /website.

https://www.addthis.com/darkseid/account/register-google-return
https://www.addthis.com/darkseid/account/register-facebook-return?code=[code_generated_by_Facebook]
https://www.addthis.com/darkseid/account/register-facebook-return?code=[code_generated_by_Facebook]
https://www.addthis.com/darkseid/account/register-facebook-return?code=[code_generated_by_Facebook]
https://www.RP.com/facebook-return
https://www.RP.com
https://developers.facebook.com/docs/facebook-login/web
https://developer.yahoo.com/oauth2/guide/
https://msdn.microsoft.com/en-us/library/hh243647.aspx
https://developers.google.com/identity/protocols/OAuth2
http://login.amazon.com/website
Tom Chen

Other IdPs, such as OK® and Yandex?, perform a redirect_uri check by exe-
cuting a simple string comparison only when generating the authorization
response, i.e. they accept an unauthorised OAuth 2.0 request as described in
Listing 1.1, but refuse to generate an OAuth 2.0 response for such a request.
— Issuing an IdP-generated value for redirect_uri. Some IdPs, such
as ebay'®, issue a redirect_uri value (e.g.Jerry Smith-JerrySmi-TestOA-
pkvmjju) to the RP when the RP registers with the IdP. When the IdP
receives an authorization request generated by this RP, it first compares the
redirect_uri (i.e. Jerry_Smith-JerrySmi-TestOA-pkvmjju in this example)
in the authorization request with the value it has stored in its database. If
the two values agree, it generates an authorization response and sends it
to the redirect URI that the IdP retrieved using the redirect_uri value (i.e.
Jerry_Smith-JerrySmi-TestOA-pkvmjju in this example).

3.2 Explicit User Intention Tracking

Registering a different redirection URI for each IdP is not the only approach
that could be used by an RP to support multiple IdPs. An RP can instead keep
a record of the IdP each user wishes to use to authenticate (e.g. it could save
the identity of the user’s selected IdP to a cookie).

In this case, when a authorization response is received by the RP, the RP can
retrieve the identity of the IdP from the cookie and then send the code to this
IdP. This method is typically used by RPs that allow for dynamic registration,
where using the same URI is an obvious implementation choice [7].

4 Security Properties of OAuth 2.0

OAuth 2.0 has been analysed using formal methods [1-4,7,17,20]. Pai et al.
[17] confirmed a security issue described in the OAuth 2.0 Thread Model [14]
using the Alloy Framework [9]. Chari et al. analysed OAuth 2.0 in the Universal
Composability Security framework [4] and showed that OAuth 2.0 is secure if all
the communications links are SSL-protected. Frostig and Slack [20] discovered a
cross site request forgery attack in the Implicit Grant flow of OAuth 2.0, using
the Murphi framework [6]. Bansal et al. [1] analysed the security of OAuth 2.0
using the WebSpi [2] and ProVerif models [3]. However, all this work is based on
abstract models, and so delicate implementation details are ignored.

The security properties of real-world OAuth 2.0 implementations have also
been examined by a number of authors [5,10,11,13,18,21,22,24]. Wang et al.
[22] examined deployed SSO systems, focussing on a logic flaw present in many
such systems, including OpenID. In parallel, Sun and Beznosov [21] also studied
deployed OAuth 2.0 systems. Later, Li and Mitchell [10] examined the security

8 https://apiok.ru/ext/oauth/.
9 https://tech.yandex.com/oauth/.
19 https://developer.ebay.com/Devzone/merchant-products/account-management /
HowTo/oauth.html.

https://apiok.ru/ext/oauth/
https://tech.yandex.com/oauth/
https://developer.ebay.com/Devzone/merchant-products/account-management/HowTo/oauth.html
https://developer.ebay.com/Devzone/merchant-products/account-management/HowTo/oauth.html
Tom Chen

of deployed OAuth 2.0 systems providing services in Chinese. In parallel, Zhou
and Evans [24] conducted a large scale study of the security of Facebook’s OAuth
2.0 implementation. Chen et al. [5], and Shehab and Mohsen [18] have looked
at the security of OAuth 2.0 implementations on mobile platforms. Finally, Li
and Mitchell [11] conducted an empirical study of the security of the OpenID
Connect-based SSO service provided by Google.

We conclude this review by mentioning prior art that has a close relationship
to the PRURIM attacks described below.

— The cross social-network request forgery attack was described by
Bansal, Bhargavan and Maffeis [1]. It applies to RPs using third party
libraries, such as JanRain or GigYa, to manage their IdPs, as these RPs
use the same login endpoint for all IdPs.

— A similar attack, the Redirection URI Manipulation Attack, is defined
in §10.6 of the OAuth 2.0 Authorization Framework; in this attack, the
attacker sets the redirect_uri in the authorization request to that of the
attacker’s own website (e.g. https://www.attacker.com).

— Another attack with a similar outcome, the IdP mix-up attack due to Fett
et al. [7], works in the context of RPs using explicit user intention tracking
to support multiple IdPs, as described in Sect. 3.2. For it to work, a network
attack is needed to modify the http or https messages generated by the RP
in step 1 (see Sect.2.2). Li and Mitchell [12] argued that this attack would
not be a genuine threat to the security of OAuth 2.0 if IdP implementations
strictly follow the standard.

5 A New Class of Attacks

We now introduce PRURIM attacks, which can be used by a malicious party to
collect a code belonging to a victim user without the user being aware. These
attacks exploit the fact that many IdPs only check the origin part of the redi-
rect_uri (as discussed in Sect. 3.1). In Sects. 5.2 and 5.3 we describe two variants
of the attack with differing assumptions about the capabilities of the attacker.

5.1 Adversary Model

We suppose that the adversary has the capabilities of a web attacker, i.e. it
can share malicious links or post comments which contain malicious content (e.g.
stylesheets or images) on a benign website, and/or can exploit vulnerabilities in
an RP website. The malicious content might trigger the web browser to send
an HTTP/HTTPS request to an RP and IdP using either the GET or POST
methods, or execute JavaScript scripts crafted by the attacker.

In addition, in the first of the two variants of the PRURIM attack described
in Sect. 5.2, we suppose that the adversary can set up a server which acts as
an OAuth 2.0 IdP; we refer to this as a Malicious IdP (MIdP). In the second
PRURIM variant (see Sect. 5.3) we assume instead that the RP website contains
a Cross-site scripting (XSS) vulnerability.

https://www.attacker.com
Tom Chen

5.2 Using a MIdP

We divide our discussion of the first PRURIM attack variant into three parts.
We first describe the core of the attack, in which the attacker is able to obtain
a victim user’s code. We then describe two ways in which knowledge of this code
can be used to perform unauthorised actions.

This attack applies to both the authorization code grant and implicit grant
flows. For simplicity we only present the attack for the authorization code grant
flow. We describe real-world examples of these attacks in Sect. 6.

Obtaining the Code. As described in Sect.3.1, many IdPs only check the
origin of the redirect_uri. If the redirect_uri is not fully checked, an attacker can
change part of it without the change being detected by the IdP. This observation
underlies the following attack.

Suppose an attacker can, in some way, cause a victim user’s browser to gener-
ate (unknown to the user) an unauthorised authorization request for the target
IdP (TIdP) of the form given in Listing 1.1. This might, for example, be achieved
by inserting the request in an iframe or img in an apparently innocent web page,
which the victim user is persuaded to visit. When it receives this request, the
TIdP will assume that it is a normal authorization request generated by the
RP, as it only checks the origin part of the redirect_uri. It then authenticates the
victim user, if necessary (see step 4 in Sect. 2.2), and then generates an authoriza-
tion response. This response is sent to the URL https://RP.com/MIdP-return?
code=[code_generated_by_TIdP].

When the RP receives this code, it first constructs an access token request
which includes the code, and then sends it to the MIdP. The attacker (MIdP)
now has the user’s code; this code can now be used for a range of malicious
purposes. We describe below two examples of how this value might be used.

1| // a normal authorization request generated by the RP supporting
for target IdP (TIdP)

2| https://TIdP.com/auth2?

3l client_id=[client_id_generated_by_TIdPl&

1| redirect_uri=https://RP.com/TIdP-return&

response_type=code

7| // an unauthorised authorization request crafted by the attacker
(MIdP)

¢l https://TIdP.com/auth2?

ol client_id=[client_id_generated_by_TIdP]&

10| redirect _uri=https://RP.com/MIdP-return&

11| response_type=code

Listing 1.1. The partial redirect URI manipulate attack

An Impersonation Attack. An attacker with access to a victim user’s code
for a particular TIdP can use it to impersonate this user in the following way.
The attacker first initiates a new login process at an RP using the attacker’s
own browser (we suppose this RP supports SSO using the TIdP). The attacker

https://RP.com/MIdP-return?code=[code_generated_by_TIdP]
https://RP.com/MIdP-return?code=[code_generated_by_TIdP]
Tom Chen

chooses the TIdP as the IdP for this login process, and the attacker’s browser is
accordingly redirected to the TIdP. The attacker provides his/her own account
information to the TIdP. After authenticating the attacker, the TIdP generates
an authorization response containing a code and tries to redirect the attacker’s
browser back to the RP website (step 6 in Sect. 2.2).

The attacker intercepts this redirection, replacing the TIdP-supplied code
in the authorization response with the stolen code for the victim user. It now
forwards the modified response to the RP.

The RP next uses the supplied (stolen) code to retrieve an access token from
the TIdP. The retrieved access token is then used to retrieve the victim user’s id.
The RP now believes that the attacker is the owner of the victim user’s account,
and issues a session cookie for this account to the attacker. The attacker is now
logged in to the RP as the victim user and can access the victim user’s protected
resources stored at the RP.

Accessing User Data Stored by the TIdP. Suppose an attacker has the
code for a particular victim user at the TIdP, and suppose also that the TIdP
did not issue a client_secret to the RP (this is possible because client_secret is an
optional parameter in the OAuth 2.0 Authorization Framework). In this case,
the attacker uses the code to construct an access token request (see step 8 in
Sect. 2.2) and sends it to the TIdP. The TIdP, in return, sends an access token
for the victim user to the attacker. The attacker can now use this access token
to access the victim user’s protected resources stored at the TIdP.

5.3 Using an XSS Vulnerability at the RP

This second variant of the PRURIM attack again applies to both the authoriza-
tion code grant and implicit grant flows. As above, we only present the attack
for the authorization code grant flow.

According to the OWASP Top 10 — 2013 report [16], XSS attacks are ranked
as the third most critical web application security risk. That implies that it is
likely that at least some RP websites contain an XSS vulnerability.

2| https:

;) client_id=[client_id_generated_by_TIdP]&
4| redirect _uri=https:

5| response_type=code

7| <script>
gl var code = document.URL.replace("?7", "&");
ol var src = "http://www.attack.com?RP=" + code;

document .createElement ("img") ;
11| img.src src;

12| document . appendChild (img) ;

13| </script>

10| var img

Listing 1.2. The redirect URI manipulate attack

Tom Chen

For the purposes of describing this attack we assume that the RP has a
XSS vulnerability at https://RP.com/XXSVul which is under the control of the
attacker. The attacker first (by some means) causes a victim user to generate
an unauthorised authorization request for the target IdP (TIdP) of the form
given in Listing 1.2. When it receives this request, the TIdP assumes that it is a
normal authorization request generated by the RP, as it only checks the origin
part of the redirect_uri. It then authenticates the victim user, if necessary (see
step 4 in Sect. 2.2), and then generates an authorization response. This response
is sent to the URL https://RP.com/XXSVul?code=[code_generated_by_TIdP].

The script (see Listing 1.2) crafted by the attacker at XXSVul is assumed to
be able to extract the value of https://RP.com/XXSVul?code=[code_generated_
by_TIdP]; once it has done this it sends it back to the attacker. The attacker
now has the user’s code, which can now be used to conduct an impersonation
attack and/or access user data stored at TIdP, as described in Sects. 5.2 and 5.2.

5.4 Discussion

As noted above, the attack variants described in Sects. 5.2 and 5.3 also apply to
the implicit grant flow. Depending on the precise type of attack (and assumptions
about the capabilities of the attacker), an attacker is able to obtain varying sets
of sensitive values—see Table 1.

The no state in the table means that the attack only works if the RP fails to
implement CSRF countermeasures at its MIdP sign-in endpoint. This might be
made more likely if the MIdP provides sample code without the state parameter
in the OAuth 2.0 authorization request, or configures the MIdP to not include
the state in the authorization response before it is sent to the RP.

Table 1. Redirect URI manipulate attacks.

Authorization code grant Implicit grant
PRURIM Using MIdP Using XSS Using MIdP Using XSS
attacks
Attack MIdP, web XSS vul at RP, | MIdP, web XSS vul at RP,
Assumption attacker, no web attacker attacker, no web attacker
state state
Attackers can access-token, code | access_token, access-token access-token
get code

5.5 Relationship to the Prior Art

We conclude this section by describing how the PRURIM attack differs from
three somewhat similar attacks described in Sect. 4.

— The cross social-network request forgery attack, due to Bansal et al. [1],
applies to RPs that use third party libraries, as these RPs use the same login
endpoint for all IdPs. By contrast, the PRURIM attack works in situations

https://RP.com/XXSVul
https://RP.com/XXSVul?code=[code_generated_by_TIdP]
https://RP.com/XXSVul?code=[code_generated_by_TIdP]
https://RP.com/XXSVul?code=[code_generated_by_TIdP]
Tom Chen

where IdPs only check the origin of the redirect_uri. While the Bansal et al.
attack only works for a special category of RPs, PRURIM attacks apply to all
IdPs not strictly checking the redirect_uri, and to all RPs using these IdPs.

— In the Redirection URI Manipulation Attack, the attacker sets the redi-
rect_uri in the authorization request to that of the attacker’s own website (e.g.
https://www.attacker.com). The key difference between this attack and the
PRURIM attacks is that, in a PRURIM attack, the attacker is not required
to change the origin of the redirect_uri, making it a much greater threat in
practice.

— The IdP mix-up attack due to Fett et al. [7] works in the context of RPs
using explicit user intention tracking to support multiple IdPs; for it to work,
a network attack is needed to modify the http or https messages generated
by the RP. PRURIM attacks, by contrast, apply to RPs using different redi-
rect_uri values to support multiple IdPs. IdP mix-up attacks need a net-
work attacker and a MIdP to operate; PRURIM attacks only need a web
attacker and a MIdP to work, making them a much greater threat in prac-
tice.

6 Our Findings

6.1 Summary

We examined the implementations of 27 popular OAuth 2.0 IdPs providing ser-
vices in English, Russian and Chinese (see Table2)!!'. Unfortunately, our study
revealed that 19 of them (70%) are vulnerable to PRURIM attacks (see Fig. 3).
Among the 19 affected IdPs, one is Russian-language, namely mail.ru; four pro-
vide services in English, namely Facebook, Microsoft, Instagram and Yahoo; and
as many as 14 IdPs are providing services in Chinese, meaning that 88% of the
IdPs in China in our study are vulnerable to PRURIM attacks.

6.2 Implications

As described in 3.1, in order to allow the RP to dynamically vary only the query
component of the redirection URI when requesting authorization, many IdPs
only require an RP to register the URI scheme, authority, and path. For exam-
ple, iQiyi'? registers http://passport.iqiyi.com /apis/thirdparty /ncallback.action
(together with a varying query component) with every IdP it supports, and it
uses the query component in the redirect_uri to determine the IdP used (e.g.

11 Most of the English and Russian language IdPs were chosen from the login page of
https://badoo.com/ and https://usatoday.com/. Most of the Chinese-language IdPs
were chosen from the login page of http://youku.com, http://www.iqiyi.com and
http://ctrip.com.

2 http://www.iqiyi.com/.

https://www.attacker.com
http://passport.iqiyi.com/apis/thirdparty/ncallback.action
https://badoo.com/
https://usatoday.com/
http://youku.com
http://www.iqiyi.com
http://ctrip.com
http://www.iqiyi.com/
Tom Chen

16 A I IdPs implemented OAuth 2.0
[IdPs Vulnerable to PRURIM Attack

IdPs in China IdPs providing services in English IdPs in Russia

Fig. 3. IdP vulnerabilities by language of site.

http://passport.iqiyi.com/apis/thirdparty /ncallback.action?from=2 is the redi-
rect_uri registered with IdP Wangyi, http://passport.igiyi.com/apis/thirdparty/
ncallback.action?from=30 is the redirect_uri registered with IdP Xiaomi). This
reduces the effort for the RP to manage redirect_uri values for multiple I1dPs,
and gives the RP the ability to customize its OAuth 2.0 sign-in endpoint.

It is interesting to speculate why the standard does not define a single manda-
tory approach for the IdP to register a redirect_uri value with an RP; it seems
plausible that this is to give maximum flexibility for RP implementations. As a
result, many IdPs allow RPs to register a range of types of redirect_uri, and in
many cases the IdP only checks the origin part of a redirect_uri in an authoriza-
tion request. This flexibility gives rise to the attacks we have described.

7 Mitigations for PRURIM Attacks

7.1 Impose Strict Redirect URI Checking

PRURIM attacks are made possible if an IdP only checks part of the redirect_ursi.
A simple mitigation for this attack is therefore for the IdP to always check
the complete redirect-uri using a simple string comparison [15]. However, this
can cause problems for those RPs that rely on the origin of the redirect_uri to
deliver an authorization response. In such cases, the OAuth 2.0 service would
stop working if a strict check is always performed.

http://passport.iqiyi.com/apis/thirdparty/ncallback.action?from=2
http://passport.iqiyi.com/apis/thirdparty/ncallback.action?from=30
http://passport.iqiyi.com/apis/thirdparty/ncallback.action?from=30
Tom Chen

Table 2. IdPs examined.

IdP Vulnerable to PRURIM

1 | Amazon No

2 | ebay No

3 | Facebook Yes
4 | Google No

5 | Microsoft Yes
6 |Instagram Yes
7 | Yahoo Yes
8 |mail.ru Yes
9 |OK No

10| VK No

11 | Yandex No

12 | Baidu Yes
13 | Douban No

14 | Jindong No

15 | Mi Yes
16 | QQ Yes
17| QQ Weibo Yes
18 | Sina Yes
19 | Taobao Yes
20 | Wangyi Yes
21 | Wechat Yes
22 | anonymised-site-1 | Yes
23 | anonymised-site-2 | Yes
24 | anonymised-site-3 | Yes
25 | anonymised-site-4 | Yes
26 | anonymised-site-5 | Yes
27 | anonymised-site-6 | Yes

7.2 Implement CSRF Countermeasures

While the main reason that the MIdP-based PRURIM attack is possible is the
failure to strictly check the redirect_uri, to make the process work the attacker
also needs to use a CSRF attack to cause the victim user to visit the site serving
the malicious authorization request. This means that the implementation of
appropriate CSRF countermeasures by RPs (e.g. including a state value in the
authorization request) would help to mitigate the threat of the PRURIM attacks
described in Sect. 5.2.

Tom Chen

However, in practice, RPs do not always implement CSRF countermeasures
in the recommended way. A study conducted by Shernan et al. [19] in 2015 found
that 25% of websites in the Alexa Top 10,000 domains using Facebook’s OAuth
2.0 service appear vulnerable to CSRF attacks. Further, a 2016 study conducted
by Yang et al. [23] revealed that 61% of 405 websites using OAuth 2.0 (chosen
from the 500 top-ranked US and Chinese websites) did not implement CSRF
countermeasures.

While it is up to the RP to implement CSRF countermeasures, a MIdP can
make it less likely that this will happen, e.g. by not including a state variable in
its sample code, or by not including a state value in an authorization response
even if it is included in the authorization request.

8 Responsible Disclosure

We reported our findings to all the affected 1dPs that provide services in English
or Russian. However, reporting our finding to the affected Chinese IdPs was a
little more difficult; since 20th July, 2016, China’s biggest bug report platform
Wooyun'? has been closed. We reported the problem to the eight IdPs that have
set up a security response centre in China; for the other six IdPs affected by the
PRURIM attacks, for which we had no obvious way to report our findings, we
have simply chosen not to disclose their identities in this paper.

We received positive responses from Yahoo, Microsoft, mail.ru, Sina and
Wangyi. These IdPs all stated that they are working on a fix to the PRURIM
attack. Facebook also acknowledged our report, but did not commit to mak-
ing any changes. However, Tencent (the largest Chinese IdP, including QQ IdP,
Wechat IdP and QQWeibo IdP) and Baidu both stated that the attack is caused
by the RP redirection configuration and do not propose to take any action. Sim-
ilarly, the response from Xiaomi IdP was “Xiaomi’s responsibility of its OAuth
2.0 system is only to authorize user, it is the RP’s responsibility to protect the
authorization”, and thus it seems reasonable to assume that it will not take any
action to address the problem. Finally, Taobao IdP (owned by Alibaba) stated
that the attacker cannot get the user’s code, and hence they do not propose to
take any action.

9 Conclusion

In this paper, we described the PRURIM attacks, a new class of attacks against
OAuth 2.0. These attacks work against RPs supporting multiple OAuth 2.0 IdPs.
We examined 27 IdPs providing services in English, Russian and Chinese. Given
the fact that OAuth 2.0 has been widely adopted by IdPs around the world, our
study only covers the tip of the iceberg of real-world OAuth 2.0 implementations
that are potentially vulnerable to PRURIM attacks.

We have also proposed mitigations for this new attack which can be adopted
by IdPs and RPs.

13 http://www.wooyun.org.

http://www.wooyun.org
Tom Chen

References

11.

12.

13.

14.

15.

16.

17.

. Bansal, C., Bhargavan, K., Delignat-Lavaud, A., Maffeis, S.: Discovering concrete

attacks on website authorization by formal analysis. J. Comput. Secur. 22(4), 601—
657 (2014). https://doi.org/10.3233/JCS-140503

Bansal, C., Bhargavan, K., Maffeis, S.: WebSpi and web application models (2011).
http://prosecco.gforge.inria.fr/webspi/CSF/

Blanchet, B., Smyth, B.: ProVerif: cryptographic protocol verifier in the formal
model. http://prosecco.gforge.inria.fr/personal /bblanche/proverif/

. Chari, S., Jutla, C.S., Roy, A.: Universally composable security analysis of OAuth

v2.0. IACR Cryptology ePrint Archive 2011, 526 (2011)

Chen, E.Y., Pei, Y., Chen, S., Tian, Y., Kotcher, R., Tague, P.: OAuth demystified
for mobile application developers. In: Ahn, G., Yung, M., Li, N. (eds.) Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Communications Security,
3—7 November 2014, Scottsdale, AZ, USA, pp. 892-903. ACM (2014). https://doi.
org/10.1145/2660267.2660323

Dill, D.L.: The murphi verification system. In: Alur, R., Henzinger, T.A. (eds.)
Computer Aided Verification. LNCS, pp. 390-393. Springer, Heidelberg (1996).
https://doi.org/10.1007/3-540-61474-5

Fett, D., Kiisters, R., Schmitz, G.: A comprehensive formal security analysis of
OAuth 2.0. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi,
S. (eds.) Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, 24-28 October 2016, Vienna, Austria, pp. 1204-1215.
ACM (2016). https://doi.org/10.1145/2976749.2978385

Hardt, D. (ed.): RFC 6749: the OAuth 2.0 authorization framework, October 2012.
http://tools.ietf.org/html/rfc6749

Jackson, D.: Alloy 4.1 (2010). http://alloy.mit.edu/community/

. Li, W., Mitchell, C.J.: Security issues in OAuth 2.0 SSO implementations. In:

Chow, S.S.M., Camenisch, J., Hui, L.C.K., Yiu, S.M. (eds.) ISC 2014. LNCS,
vol. 8783, pp. 529-541. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
13257-0_-34

Li, W., Mitchell, C.J.: Analysing the security of Google’s implementation of
OpenlID connect. In: Caballero, J., Zurutuza, U., Rodriguez, R.J. (eds.) DIMVA
2016. LNCS, vol. 9721, pp. 357-376. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-40667-1_18

Li, W., Mitchell, C.J.: Does the IdP mix-up attack really work? (2016). https://
infsec.uni-trier.de/download /oauth-workshop-2016/OSW2016_paper_1.pdf

Li, W., Mitchell, C.J., Chen, T.: Mitigating CSRF attacks on OAuth 2.0 and
OpenlID Connect. CoRR abs/1801.07983 (2018). https://arxiv.org/abs/1801.07983
Lodderstedt, T., McGloin, M., Hunt, P.: RFC 6819: OAuth 2.0 threat model and
security considerations (2013). http://tools.ietf.org/html/rfc6819

Masinter, L., Berners-Lee, T., Fielding, R.T.: RFC 3986: uniform resource identifier
(URI): Generic syntax (2005). https://www.ietf.org/rfc/rfc3986.txt

OWASP Foundation: Owasp top ten project (2013). https://www.owasp.org/
index.php/Topl0#OWASP _Top_10_for_2013

Pai, S., Sharma, Y., Kumar, S., Pai, R.M., Singh, S.: Formal verification of OAuth
2.0 using Alloy framework. In: Proceedings of the International Conference on
Communication Systems and Network Technologies, CSNT 2011, pp. 655-659.
IEEE (2011)

https://doi.org/10.3233/JCS-140503
http://prosecco.gforge.inria.fr/webspi/CSF/
http://prosecco.gforge.inria.fr/personal/bblanche/proverif/
https://doi.org/10.1145/2660267.2660323
https://doi.org/10.1145/2660267.2660323
https://doi.org/10.1007/3-540-61474-5
https://doi.org/10.1145/2976749.2978385
http://tools.ietf.org/html/rfc6749
http://alloy.mit.edu/community/
https://doi.org/10.1007/978-3-319-13257-0_34
https://doi.org/10.1007/978-3-319-13257-0_34
https://doi.org/10.1007/978-3-319-40667-1_18
https://doi.org/10.1007/978-3-319-40667-1_18
https://infsec.uni-trier.de/download/oauth-workshop-2016/OSW2016_paper_1.pdf
https://infsec.uni-trier.de/download/oauth-workshop-2016/OSW2016_paper_1.pdf
https://arxiv.org/abs/1801.07983
http://tools.ietf.org/html/rfc6819
https://www.ietf.org/rfc/rfc3986.txt
https://www.owasp.org/index.php/Top10#OWASP_Top_10_for_2013
https://www.owasp.org/index.php/Top10#OWASP_Top_10_for_2013
Tom Chen

18.

19.

20.

21.

22.

23.

24.

Shehab, M., Mohsen, F.: Securing OAuth implementations in smart phones. In:
Bertino, E., Sandhu, R.S., Park, J. (eds.) Fourth ACM Conference on Data
and Application Security and Privacy, CODASPY 2014, 03—05 March 2014, San
Antonio, TX, USA, pp. 167-170. ACM (2014). https://doi.org/10.1145/2557547.
2557588

Shernan, E., Carter, H., Tian, D., Traynor, P., Butler, K.: More guidelines than
rules: CSRF vulnerabilities from noncompliant OAuth 2.0 implementations. In:
Almgren, M., Gulisano, V., Maggi, F. (eds.) DIMVA 2015. LNCS, vol. 9148, pp.
239-260. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20550-2_13
Slack, Q., Frostig, R.: Murphi analysis of OAuth 2.0 implicit grant flow (2011).
http://www.stanford.edu/class/cs259/WWW11/

Sun, S.T., Beznosov, K.: The devil is in the (implementation) details: an empirical
analysis of OAuth SSO systems. In: Yu, T., Danezis, G., Gligor, V.D. (eds.) the
ACM Conference on Computer and Communications Security, CCS 2012, 16-18
October 2012, Raleigh, NC, USA, pp. 378-390. ACM (2012)

Wang, R., Chen, S., Wang, X.: Signing me onto your accounts through Facebook
and Google: a traffic-guided security study of commercially deployed single-sign-on
web services. In: IEEE Symposium on Security and Privacy, SP 2012, 21-23 May
2012, San Francisco, California, USA, pp. 365-379. IEEE Computer Society (2012)
Yang, R., Li, G., Lau, W.C., Zhang, K., Hu, P.: Model-based security testing: An
empirical study on OAuth 2.0 implementations. In: Chen, X., Wang, X., Huang,
X. (eds.) Proceedings of the 11th ACM Asia Conference on Computer and Com-
munications Security, ASTA CCS 2016, 30 May—3 June 2016, Xi’an, China, pp.
651-662. ACM (2016). https://doi.org/10.1145/2897845.2897874

Zhou, Y., Evans, D.: SSOScan: automated testing of web applications for
single sign-on vulnerabilities. In: Fu, K., Jung, J. (eds.) Proceedings of the
23rd USENIX Security Symposium, 20-22 August 2014, San Diego, CA, USA,
pp. 495-510. USENIX Association (2014). https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/zhou

https://doi.org/10.1145/2557547.2557588
https://doi.org/10.1145/2557547.2557588
https://doi.org/10.1007/978-3-319-20550-2_13
http://www.stanford.edu/class/cs259/WWW11/
https://doi.org/10.1145/2897845.2897874
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/zhou
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/zhou
Tom Chen

	Your Code Is My Code: Exploiting a Common Weakness in OAuth 2.0 Implementations
	1 Introduction
	2 Background
	2.1 OAuth 2.0
	2.2 OAuth 2.0 Used for SSO

	3 Supporting Multiple IdPs
	3.1 Using Redirect URIs
	3.2 Explicit User Intention Tracking

	4 Security Properties of OAuth 2.0
	5 A New Class of Attacks
	5.1 Adversary Model
	5.2 Using a MIdP
	5.3 Using an XSS Vulnerability at the RP
	5.4 Discussion
	5.5 Relationship to the Prior Art

	6 Our Findings
	6.1 Summary
	6.2 Implications

	7 Mitigations for PRURIM Attacks
	7.1 Impose Strict Redirect URI Checking
	7.2 Implement CSRF Countermeasures

	8 Responsible Disclosure
	9 Conclusion
	References

