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1 Outline of the article

The ability to learn abstractions and generalise is seen as the essence of human
intelligence.7 Since 1950s, there have been efforts to build systems that learn
and think like humans.16 It is observed that humans including infants tend to
have good generalisation power when compared to the machine learning models
in which hypothesis is usually approximated and may be prone to errors.

The examples proposed by Marcus19,18,17 such as the failure to generalise
equality, distinguish between even to odd numbers or the recognition of ABA
or ABB patterns of syllables have attracted a significant amount of attention in
psychology, particularly in the study of human language learning, but they have
not been addressed systematically as problems of machine learning and neural
networks.

In this article, the problem of learning abstract rules using neural networks
is explained and a solution called ‘Relation Based Patterns’ (RBP) which
model abstract relationships based on equality is proposed. RBP creates an
inductive bias in the neural networks that leads to the learning of generalisable
solutions. It is observed that integration of RBP leads to almost perfect general-
isation in abstract rule learning tasks with synthetic data and to improvements
in neural language modelling on real-world data.

The outline of the article is as follows : introduction to the problem is briefly
described followed by a section on what is abstract pattern (rule) learning, the
need for inductive bias and various ways of adding inductive bias into neural
networks. The RBP method and its integration along with the experiments on
the tasks of abstract rule learning, character prediction and melody prediction
are summarized followed by conclusions and future work.

2 Introduction

Despite the successes achieved with deep neural networks over recent years,
there has been an increasing awareness that there are tasks that still elude
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neural network learning, specifically the generalisation from patterns to rules.
Generally, humans are very effective at extracting abstract relations (eg: as in
Figure 1) from sensory input, often after very brief exposure. In rule based
grammar learning tasks, participants are asked to classify the input or predict
the next letter after getting exposed to input stimuli generated from a random
alphabet.13,9

Figure 1: How do humans perceive grammatical rules?

In a famous study, Marcus et al.19 showed that 7-month old infants learnt to
recognize patterns defined by simple grammatical rules, specifically sequences
of the structure ABA or ABB. They learnt the sequences from a small number
of examples in just two minutes of familiarization which is evidence for the
hypothesis that humans have innate understanding of identity rules. When
tried to reproduce the same experiment using neural networks, the networks
failed to significantly identify these abstract patterns. More specifically, it is
found that feed-forward and recurrent neural networks (RNN) and their gated
variants (LSTM and GRU) in standard set-ups clearly fail to learn general
identity rules when presented as classification and prediction tasks. Therefore,
in this work, the problem of learning abstract rules in neural networks is tackled
by introducing Relation Based Patterns (RBP) as an inductive bias to model
equality relationships of patterns based on grammatical rules.

RBP model has been designed as a set of additional neurons with a rectified
difference activation and fixed-weight connections that connect them to standard
networks. The main idea is to model equality relations and abstract patterns
as a foundation for more complex logic and systematicity, e.g. the application
of grammar in natural language processing.15,20 It is observed experimentally
that on synthetic data, neural networks with suitable RBP structures learn the
relevant rules and generalise with perfect classification (for abstract rule learning
task) and prediction (for language modelling tasks). There are different ways
of modelling relational inductive biases within the neural network architectures
and here one such way is described.
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The primary focus of the article is on the following aspects :

• Why can’t standard neural networks learn grammatical patterns for ex-
ample say based on equality?

• How can we make the neural networks learn these grammatical abstrac-
tions?

• What does it mean to other real world tasks like language modelling where
there are higher level of abstractions in data?

3 What is abstract pattern (rule) learning?

In general, abstract pattern learning task comes under the popular paradigm
of study within cognitive science and linguistics called as artificial grammar
learning. In artificial grammar learning, the key idea is to understand human
language learning by testing the ability of humans in learning artificial grammar
patterns. There are two phases in the task, one is the training stage where
the patterns are made familiar to the subjects and the ability to identify and
generalise this new knowledge is tested in the second stage ie. testing phase.
The testing phase typically comprises of symbols or sounds used in the training
phase or transfer of the patterns to another set of symbols.

Figure 2: Empirical data used in the Abstract Grammar Learning Experiment
by Marcus et al19

In abstract pattern learning, series of abstract patterns be it grammar like
rules or sequences of data like music or language are used. One of the earliest
work on abstract pattern learning was by19,18 where the abstract grammar like
rules in Figure 2 are shown to six month old infants and their task was to
distinguish the grammatical rules. The infants were exposed to sequences of one
of the forms ABA or ABB, e.g. ‘le di le’ or ‘le di di’, for a few minutes in the
familiarisation phase. In the test phase the infants were exposed to sequences
with a different vocabulary (e.g. ‘ba po ba’ and ‘ba po po’) and the results
from the experiments was that the infants were able to learn the grammatical
patterns within minutes of habituation. The same task when reproduced using
a recurrent neural network, failed to distinguish the grammar patterns.
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The work by11,22,8,23 focused on using distributed representation of the in-
puts where the network was not able to learn the patterns as expected. Other
works used localist representation2,3,1,10 which suggests that an additional con-
text or prior experience is necessary for the network to learn these identity rules.
This has raised questions on whether the existing statistical and neural network
models can generalize these abstract patterns or not.

An effective way of solving this problem is to introduce an inductive bias
within the network structure to achieve better generalisation from fewer samples
of training data. However, the question then arises about the type of inductive
bias needed to improve the overall generalisation performance. To achieve better
generalisation, the neural network should be able to learn the required knowl-
edge and apply that to unseen circumstances or extend it beyond the scope of
the actual problem.

4 Need for inductive bias?

The issues related to the lack of generalisation beyond the space covered by
the input data can be addressed by adding an inductive bias in the learning
system, but there is no general agreement about the nature or implementation
of inductive biases for neural networks, e.g..12,4 In recent years, there was a trend
to remove human designed features from neural networks, and leave everything
to be learned from the data.6

More recently, the problem of data efficiency has motivated a new look at
inductive biases. Recent work has shown that designing specific biases into the
structure of the learning process can address these problems, e.g. by choosing
appropriate data organisation and filters in convolutional networks, as was show
by,20 or by adding suitable pre-defined connections as described in this article
(full paper link of this work described in this article25). Although solutions like
these are sometimes criticised as being ‘hard-coded’, there are good reasons for
investigating them:

• Necessity for problem solving: both25,20 show that the problem cannot
be solved by standard architectures. Although there were some claims
that the problem posed by19 was solvable, it turned out that these claims
could not be verified, or used very specific non-standard architectures and
success was defined as showing significantly different reaction to the one
class or patterns vs the other, while humans can easily learn and recognise
them.

• No restriction to general learning: A criticism towards ‘hard-coded’ so-
lutions is that they may be too specific and thus not generalise to other
tasks than they were designed for. Our results in25 show that this is not
the case for ‘concrete’ vs ‘abstract’ patterns, as described by.18

• Effectiveness in real-world tasks: The experiments by25 and20 show that
in standard tasks on language and music (word/note prediction, natural
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language inference) there are improvements when biases are added to the
networks.

The last item above is evidence, that this is not just a theoretical prob-
lem, but that addressing the structures underlying these problems does address
fundamental and relevant problems in neural network learning.

In many application domains, large amounts of reliable data are very difficult
to obtain for ethical, practical or financial reasons. However, most applications
of rules depends on the ability to recognise identity or similarity according to
some criterion, and if that cannot be learned for new items, then the generali-
sation and applicability of the learning is severely limited. In the next section,
various ways of adding inductive bias in standard neural networks is explained.

5 Ways of adding inductive biases

There are a number of ways in which inductive biases can be added to the
model. An inductive bias would allow a learning algorithm to prioritize one
solution over the other, independent of the observed data.5

First and foremost way, is adding bias with a pre-defined network structure.
In this, a type of representation in the form of circuits or abstract structure is
added to the standard network models, either combining with the input layer,
hidden layer or the output layer as described in this work.

Another way is a Bayesian approach where bias can be added based on the
prior distribution of various input features. Inductive bias can also be added as
a regularization term or encoded into the network architecture, as shown by.5

Inductive bias can also be expressed as a part of the data generating process
or within the network space of the solution. In fact, priors can be derived from
the type of data and the constraints can be set on the model being used. This
is adapting bias as an optimisation problem and solving the model based on the
constraints.

There are also ways of approximating functions and errors of the network
models as a form of having an inductive bias in the network model which has
close connections with the data pre-processing step. Infact, the type of network
structure can lead to different forms of inductive biases. For example, the type of
bias for a recurrent network can be different from that of a convolution network.

There are a number of ways by which one can model the bias in the network
models. Depending on the task and the domain, the following characteristics
can be crucial in effective neural network learning. One such way of creating
inductive bias for abstract pattern learning is RBP which is described below.

6 RBP method

To address the inability of neural networks to generalise rules in neural network
learning, Relation Based Pattern (RBP) model is developed as a constructive
solution, where the comparisons between input neurons and between tokens and
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the mappings to outputs are added as a predefined structure to the network.
The purpose of this structure is to enable standard neural networks to learn
abstract patterns based on the identity rules over tokens while retaining other
learning abilities. The RBP model is based on an input that consists of multiple
items, where each can be represented by a vector of input neurons. In the RBP
model there are two major steps.

The first step is defining comparison units for detecting abstract patterns,
called DR units, and the second step is adding the DR units to the neural
network. DR units are used to compare corresponding neurons in different
vectors. For the comparison we introduce differentiator-rectifier (DR) units,
which calculate the absolute difference of two inputs: f(x, y) = |x−y|. One DR
unit for every pair of corresponding input unit is created with the weights from
the inputs to the DR units fixed at 1. There are three ways of adding RBP into
the standard neural networks : Early Fusion, Mid Fusion and Late Fusion.

Comparing neurons : The input is a one-hot encoded vector of the current
token along with the n−1 previous vectors for a given context length n. Different
representations other than one-hot encoding are tested but in this article, the
experiments are performed with inputs which are one-hot encoded.

The first level of DR units are DRn units that are applied to every pair
of corresponding input neurons (representing the same value) within a token
representation, as shown in Figure 3.

Figure 3: DRn units comparing related inputs with an absolute of difference
activation function. In one-hot encoding there are k DRn units for every pair
of input tokens, where k is the vocabulary size.

Comparing tokens : The next level of DR units are the DRp units that
sum the activations of the DRn values that belong to one pair of tokens. Based
on the sequence length n and vocabulary size a we create k = a ∗ n(n − 1)/2
DRn units for all the possible pairs of tokens i.e. in the classification example,
for a sequence of 3 tokens and a vocabulary size of 12, 12 ∗ 3(3− 1)/2 = 36 ∗ 3
DRn units are considered. All the DRn units for a pair of tokens are then
summed in a DRp unit using connections with a fixed weight of +1. E.g. there
are 5 ∗ (5 − 1)/2 = 10 DRp units for a context of length 5. Figure 4(a) below
shows the network structure with DRn and DRp units.
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(a) The DRp and DRn units
that are used in the RBP struc-
tures with 3×k DRn and 3 DRp

units for a vocabulary size k and
sequence length 3.

(b) The DRout structure for detecting
relation between input and target. The
DRpout values are calculated at training
time and a model is trained to predict
them conditional on DRpin.

Figure 4: DRn and DRp units of RBP for classifcation and prediction tasks.

For the prediction case, the same approach is used to represent the difference
between each input token and the next token (i.e., the target network output).
In this case, n DRp out units are created that calculate the difference between
each input in the given context and the next token. There are k ∗ n DRn out
units that compare the corresponding neurons for each pair of input/output
tokens, in the same way as for the pairs of input tokens. The overall network
structure is shown in Figure 4(b).

Figure 5: Overview of the RBP Early Fusion.
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7 RBP Neural Network Integration

Early Fusion : In this approach, DRn or DRp units are added as additional
inputs to the network, concatenated with the normal input. In Figure 5, the
RBPn/RBPp structure is depicted. Early fusion is used in both the prediction
and classification tasks.

Figure 6: Overview of the RBP Mid Fusion

Mid Fusion : The DRp units are added to the hidden layer. Figure 6 shows
the mid fusion structure for the feed-forward network and recurrent network
respectively. Mid Fusion approach is used for classification and prediction tasks.

Figure 7: Overview of the RBP Late Fusion

Late Fusion : In this approach, the same structure of RBP as described
above is used, in addition the probability of identity relations between the input
and the output, i.e., that the token in the current context is repeated as the
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next token is estimated. A structure called DRp out is used for this, and from
there the output offsets are projected back to the vocabulary, to generate a
probability offset for the tokens appearing in the context. Figure 7 gives an
overview of the RBP late fusion scheme and for a detailed explanation of the
process please refer to our paper.25 Late fusion is only used for the prediction
task.

8 Experiments and results

8.1 Learning Abstract Rules

In this task, triples of the forms ABA, ABB, ABC, AAB and BAB are given
to the network as a supervised formulation of19 with some variants as a classi-
fication task. A 75/25 train/test split with separate vocabulary between them
is used. The results of the experiments are given in Table 1. It is observed
that without RBP, neural networks never improve above chance level (50%),
and with RBP it leads to significant improvement with almost perfect results
observed for RBP in Mid Fusion.

Type Standard FFNN Early Fusion Mid Fusion
1. ABA vs other 50 (1.86) 65 (1.26) 100 (0.00)
2. ABB vs other 50 (1.83) 65 (1.29) 100 (0.00)
3. ABA-BAB vs other 50 (1.73) 75 (1.22) 100 (0.05)
4. ABA vs ABB 50 (1.81) 55 (1.18) 100 (0.00)
5. ABC vs other 50 (1.68) 65 (1.04) 100 (0.00)

Table 1: Accuracy (in %) and standard deviation over 10 simulations (in brack-
ets) using different models for Abstract Pattern Learning (ABA vs other, ABB
vs other, ABA-BAB vs other, ABA vs ABB, ABC vs other).

8.2 Character and Melody Prediction

For character prediction, recurrent neural networks and their gated variants
(LSTM and GRU) are used on a subset of the Gutenberg electronic book collec-
tion1, consisting of 42252 words. The experiments are performed with 2 hidden
layers with 50 neurons each, an initial learning rate of 0.01 and the network
training converged after 30 epochs. A train/valid/test split of 50/25/25 was
used. The results using context size 5 are summarised in Table 2 for simple
network without RBP and with RBP in Early, Mid and Late Fusion for RNN,
GRU and LSTM respectively. It is observed that with RBP there is consis-
tent decrease in the overall cross entropy loss for all the models and the best
performance has been observed with RBP in Late Fusion using LSTM.

1https://www.gutenberg.org/
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Type RNN GRU LSTM
Simple Network 3.8281 3.8251 3.8211
Early Fusion 3.8254 3.8163 3.8162
Mid Fusion 3.8148 3.8134 3.8112
Late Fusion 3.8076 3.8053 3.8032

Table 2: Average Cross Entropy Loss per predicted character for Character
Prediction Task using context length 5.

In another experiment, RBP is tested on a pitch prediction task in melodies
using the Essen Folk Song Collection21 with recurrent neural networks and
their gated variants (LSTM and GRU). Pitch patterns of melody have a lot
of repetition cues and previous works on pitch prediction hasn’t explored this
aspect of modelling abstract repetition patterns in folk melodies as required.
Using RBP, the abstract repetition patterns in melodies are modelled here. For
the pitch prediction experiments, a grid search for hyper parameter tuning is
performed, with [10,30,50,100] as the size of the hidden layer and [30,50] epochs
with learning rate set to 0.01, with one hidden layer and context length of size 5.
The results in Table 3 summarize the results and shows a consistent reduction
in cross entropy with RBP in various forms of integrations. Similar to character
prediction, the best performance is observed with LSTM combined with RBP
in Late Fusion.

Type RNN GRU LSTM
Simple Network 2.6994 2.6714 2.6589
Early Fusion 2.6942 2.6702 2.6564
Mid Fusion 2.6837 2.6623 2.6483
Late Fusion 2.6713 2.6514 2.6386

Table 3: Average Cross Entropy Loss per note for Melody Prediction Task using
context length 5.

9 Key findings and Conclusions

Overall, through this study

• several neural network architectures like feed-forward networks and recur-
rent networks with their gated variants (LSTM and GRU) are evaluated
and it was confirmed that these neural networks do not learn abstract
grammar rules as expected.

• RBP (Relation Based Patterns) method as an inductive bias has been
proposed to enable the learning of abstract grammatical patterns within
the neural network structures.
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• RBP can be integrated into standard neural network architectures in early,
mid and late fusion settings.

• the networks with suitable RBP structure learned the abstract grammar
patterns with 100% accuracy.

• the integration of RBP to neural network models improved the perfor-
mance in neural language modelling tasks along with artificial grammar
learning tasks which proves that RBP can be expanded to other sequential
rule learning tasks as well.

RBP is one such method of adding inductive bias to the standard neural
networks. There are other experiments with variants of RBP and different hy-
perparameter configurations to evaluate and understand the effect of RBP as an
inductive bias within the standard neural network models which is beyond the
scope of this article. For more detailed description of the RBP approach and ex-
periment details including other extended works, please refer our papers.14,25,24

In future this work can be extended towards improving the performance of
neural networks in providing better abstractions and generalizations for other
forms of abstract relations on more complex tasks such as question answering
or perception-based reasoning and other relational learning tasks.
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