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Abstract. Tabular data to Knowledge Graph matching is the process
of assigning semantic tags from knowledge graphs (e.g., Wikidata or DB-
pedia) to the elements of a table. This task is a challenging problem for
various reasons, including the lack of metadata (e.g., table and column
names), the noisiness, heterogeneity, incompleteness and ambiguity in the
data. The results of this task provide significant insights about poten-
tially highly valuable tabular data, as recent works have shown, enabling
a new family of data analytics and data science applications. Despite
significant amount of work on various flavors of this problem, there is
a lack of a common framework to conduct a systematic evaluation of
state-of-the-art systems. The creation of the Semantic Web Challenge
on Tabular Data to Knowledge Graph Matching (SemTab) aims at filling
this gap. In this paper, we report about the datasets, infrastructure and
lessons learned from the first edition of the SemTab challenge.

Keywords: Tabular data · Knowledge Graphs · Matching.

1 Introduction

Tabular data in the form of CSV files is the common input format in a data an-
alytics pipeline. However, a lack of understanding of the semantic structure and
meaning of the content may hinder the data analytics process. Thus, gaining this
semantic understanding will be very valuable for data integration, data clean-
ing, data mining, machine learning and knowledge discovery tasks. For example,
understanding what the data is can help assess what sorts of transformation are
appropriate on the data. Tables on the Web may also be the source of highly
valuable data. The addition of semantic information to Web tables may enhance
a wide range of applications, such as web search, question answering, and knowl-
edge base construction.

Tabular data to Knowledge Graph (KG) matching is the process of assigning
semantic tags from KGs (e.g., Wikidata or DBpedia) to the elements of the
table. This task however is often difficult in practice due to metadata (e.g.,
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table and column names) being missing, noisy, incomplete or ambiguous. There
exist several systems that address the tabular data to KG matching problem
(e.g., [26, 8, 5]) and use state-of-the-art datasets with ground truths (e.g., [20,
19, 8]) or custom datasets. However, there does not exist a common framework
to conduct a systematic evaluation of these systems, which leads to experimental
results that are not easy to compare as they use different notions for true/false
positives and performance measures. Furthermore, available datasets are either
small in size (e.g., [20, 19]) or low in quality and messy (e.g., [8]). The creation
of the Semantic Web Challenge on Tabular Data to Knowledge Graph Matching
(SemTab) [12] aims at filling this gap.

The main contributions of this paper are summarized as follows:

(i) We introduce an automated method for generating benchmark datasets for
tabular data to KG matching.

(ii) We release 4 generated benchmark datasets (see Zenodo repository [13]),
and the code for evaluating the systems results (see GitHub repository [3]).

(iii) We report and analyze the results of the systems that participated in the
first edition of the SemTab challenge, using our 4 benchmark datasets.

The rest of the paper is organized as follows. Section 2 introduces the match-
ing problems and its challenges. In Section 3, we discuss related initiatives. The
automatic dataset generator is described in Section 4. Section 5 presents the
SemTab evaluation. Finally, Section 6 provides the lessons learned and experi-
ences from the SemTab challenge and points to future lines.

2 Background

In this section, we provide some basic definitions about KGs and tabular data.
We also introduce the selected matching tasks and their associated challenges.

Knowledge Graph (KG). We consider RDF-based KGs which are represented
as a set of RDF triples 〈s, p, o〉, where s represents a subject (a class or an
instance), p represents a predicate (a property) and o represents an object (a
class, an instance or a data value, e.g., text, date and number). RDF entities (i.e.,
classes, properties and instances) are represented by Uniform Resource Identifiers
(URIs). A KG consists of a terminological component (TBox) and an assertion
component (ABox). The TBox is often composed of RDF Schema constructs like
class subsumption (e.g., dbo:Scientist rdfs:subClassOf dbo:Person) and
property domains (e.g., dbo:doctoralAdvisor rdfs:domain dbo:Scientist).
The ABox contains relationships among entities and semantic type definitions
(e.g., dbr:Albert Einstein rdf:type dbo:Scientist). An OWL 2 ontology
associated to the KG may provide more expressive constructors without a direct
translation into triples, which will contribute to the inference of new triples via
logical reasoning. A KG can typically be accessed via a SPARQL endpoint1 and
via fuzzy matching based on an index of the lexical information associated to

1 For example, DBpedia Endpoint: http://dbpedia.org/sparql
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Table 1: Excerpts of (a) a Web table about countries and capitals, (b) a real
CSV file about broadband data, and (c) a custom table with start-ups from
Oxford and their foundation year.

China Beijing
Indonesia Jakarta
Congo Kinshasa
Brazil
Congo Brazzaville

(a) Web table

Virgin 60 London
BT 60 East
BT 40 Scotland
Virgen 40 Wales
Orange 30 West Midlands

(b) CSV file

OST 2017
DeepReason.ai 2018
Oxstem 2011
Oxbotica 2014
DeepMind 2010

(c) Custom table

the KG entities. The latter is often referred to as KG lookup (e.g., Spotlight for
DBpedia [21] and OpenTapioca for Wikidata [7]).

Tabular Data. Tabular data can be seen as a set of columns C = {c1, . . . , cm},
a set of rows R = {r1, . . . , rn}, or a matrix of cells T = {t1,1, . . . , tn,m}, where a
column ck = {t1,k, . . . , tn,k} and a row rk = {tk,1, . . . , tk,m} are tuples of cells.
We assume that all columns and rows have the same size, with possibly cells
with empty values. In arbitrary tabular data, unlike in relational tables, column
names and row identifiers (i.e., primary keys) may be missing. In Web tables and
relational tables, rows typically characterize an entity, while in arbitrary tabular
data (e.g., typical CSV files in data science) there may not be a leading entity
in each row (see for example Table 1b).

Matching Tasks. We have selected the following tasks for the semantic annotation
of tabular data: (i) Column-Type Annotation (CTA), (ii) Cell-Entity Annotation
(CEA), and (iii) Columns-Property Annotation (CPA). These matching tasks
can be seen as subtasks that can serve the larger purpose of matching an entire
table to a class, or matching a row of a table to an entity. The CTA task expects
the prediction of the semantic types (i.e., KG classes) for every given table
column ck in a table T , i.e., CTA(T, ck,KG) = {st1, . . . , sta}.2 The CEA task
requires the prediction of the entity or entities (i.e., instances) that a cell ti,j ∈ T
represents, i.e., CEA(T, ti,j ,KG) = {e1, . . . , eb}. Finally, the CPA task expects
as output a set of KG properties that represent the relationship between the
elements of the input columns ck and cl, i.e., CPA(T, ck, cl,KG) = {p1, . . . , pc}.
Note that CTA (resp. CEA) task focuses on categorical columns (resp. cells) that
can be represented with a KG class (resp. KG entity). Some numerical values
may also represent entities if they play a foreign key role, but this would involve
a different data wrangling task not considered in this work.

Challenges. The above matching tasks are challenging for various reasons includ-
ing but not limited to: (i) Lack of metadata or uninformative table and column
names, a typical scenario in Web tables and real-world tabular data. (ii) Noisi-
ness in the data (e.g., “Virgen” in Table 1b). (iii) Knowledge gap, cells without

2 Note that one could annotate with more than one KG and merge the results.
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a correspondence to the KG (e.g., Oxford start-ups in Table 1c). (iv) Ambigu-
ous cells pointing to more than one possible entity (e.g., “Congo” in Table 1a
or “Virgin” and “Orange” in Table 1b). (v) Missing data (i.e., cells without a
value) increasing the effect of the knowledge gap (e.g., capital of “Brazil” in
Table 1a). (vi) Short labels or acronyms, which typically bring more ambiguity
to KG matching (e.g., “BT” in Table 1b).

3 Related Work

Several benchmarks have been proposed for semantic table annotation.

T2Dv2 [19] includes common tables drawn from the Web.3 It contains 779 tables,
with around 400 entity columns covering contents about place, work, organiza-
tion, person, species, etc., around 26, 000 DBpedia entity matches, and around
420 DBpedia property matches.

Limaye et al. [20] proposed a benchmark containing tables from Wikipedia
pages.4 It has 428 entity columns, each of which has 23 cells in average, and
around 5, 600 DBpedia entity matches.

Efthymiou et al. [8] created a benchmark containing 485, 000 Wikipedia page
tables. It has around 485, 000 tables, with around 4, 500, 000 DBpedia entity
matches. 620 of its entity columns are annotated with DBpedia classes by [4].

IMDB and Musicbrainz are other popular benchmarks. IMDB contains over
7, 000 tables from IMDB movie web pages, and Musicbrainz contains some 1, 400
tables from MusicBrainz web pages [29]. The entity mention cells are annotated
with Freebase topics.

Viznet [15] contains 31 million datasets mined from open data repositories and
visualization data repositories. Although Viznet was initially derived for use in
visualizations, it has been used in the context of column-to-type matching (CTA
task) of tables in a system called SHERLOCK [16]. SHERLOCK provides a total
of 11,700 crowdsourced annotations from 390 human participants. However the
annotations are not publicly available yet.

NumDB [18] is a dataset of 389 tables generated from DBpedia where the pri-
mary emphasis is on creating tables for identifying numerical columns. It allows
the varying of the size of the table, as well as injection of different degrees of
noise in the data, particularly in the textual data that can be used to match
‘key’ columns to test the robustness of any numerical matching approach.

Although these benchmarks are widely used in recent studies, they still suffer
from a few shortcomings: (i) some benchmarks like Limaye and T2Dv2 are quite
small, with only limited contents; (ii) those large benchmarks like Efthymiou
are often in short of high quality ground truths, especially when all the three
tasks need to be evaluated at the same time; (iii) large benchmarks often have
a large number of rows but simple relations and contents (classes); (iv) most

3 http://webdatacommons.org/webtables/goldstandardV2.htm
4 There have been different versions of this dataset. The one by [8] is described here.
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ProfilingSPARQL
Endpoint

Raw Table 
Generation Refinement

… … … … 
Table Collection 

+ Ground Truth Mappings

Fig. 1: Steps for automatic dataset generation.

benchmarks have ground truth annotations from only one KG.5 Meanwhile,
using a fixed benchmark limits the evaluation of some special cases, such as the
big knowledge gap when a large part of cells have no entity correspondences,
while a system for generating benchmarks with an ad-hoc configuration enables
researchers to evaluate the performance in face of these special cases. Our efforts
target this lacuna in benchmarks.

Benchmarks have been also developed for the related task of ontology match-
ing, which is a well studied problem [11, 10]. Our benchmarking effort was in-
spired by the yearly Ontology Alignment Evaluation Initiative (OAEI).6 The
main difference between our benchmarks and the OAEI benchmarks is the level
of heterogeneity involved in the two data sources to be matched. Instead of two
semantically rich ontologies, as those in the OAEI benchmarks, we consider one
rich ontology corresponding to the KG, and one typically shallow table in terms
of semantics. This heterogeneity creates an additional challenge, which ontology
matching tools were not originally designed to cope with, but we believe that
those tools can also benefit from our benchmarks. Therefore, we also provide our
benchmark data in RDF format and experiment with publicly available ontology
matching tools (e.g., LogMap [17]), to better evaluate their potential strengths
and weaknesses from a different perspective than OAEI (cf. Section 4.4).

4 Benchmark Data Generation

To overcome the limitations of the existing benchmark datasets, and to create
new benchmark datasets for each round of the challenge without extensive hu-
man annotation, we designed an automated data generator that creates tabular
data given a SPARQL endpoint. The idea is to create tabular data similar to
tables found on the Web, but ensure a reasonable diversity in terms of size and
coverage of classes and properties from various domains. Figure 1 shows the
overall pipeline for data generation. In what follows, we describe each of the
steps in data generation.

4.1 Profiling

Although we used the English DBpedia as our source for this edition of the
challenge, given that most state-of-the-art systems and the most widely used

5 To ease participation SemTab 2019 only used DBpedia as the target KG; however,
as described in Section 4, the data generator can be fed with other KGs.

6 http://oaei.ontologymatching.org
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benchmarks use DBpedia mappings, our goal was to design a generic method of
creating benchmark data that can go beyond DBpedia annotations. This way,
DBpedia can be replaced with e.g. Wikidata, or a domain-specific KG. We can
also switch to other languages or create a multilingual collection. Given this goal,
the first step in data generation is a profiling step in which the list of classes,
properties, and some basic statistics are extracted. The output of the profiling
step is: 1) a list of classes along with the number of instances per class; 2) a list
of properties for each class along with: (i) the number of instances that have a
value for the property; (ii) the datatype for datatype properties and the range
class for object properties. This information will be used in the next step to
construct SPARQL queries.

Although our current profiling is simple, performing the necessary SPARQL
queries over existing RDF stores could still be slow, and so a raw processing of
RDF dumps may be required. Another option is to use a profiling tool such as
Loupe [22]. For table generation with numeric columns, refer to [18].

4.2 Raw Table Generation

In this step, we go through the list of classes from the output of the profiling, and
generate a set of SPARQL queries for each class. This way, each table will have
one class as the main topic with each row containing values from the properties
of an instance of the class (or its subclasses, if any). In order to pick a set of
properties for each class to turn into a set of columns in the output table, we
use a simple randomized method. We use the gathered statistics only to avoid
properties with very few instance values that could in turn result in SPARQL
queries with empty or very small result set. For each class, we randomly select
a number of properties within a predefined range. For the tables generated for
the challenge, we select a minimum of 3 and a maximum of 7 columns for each
table. We then create a query to retrieve the (primary) label of the instance
along with labels of object properties and values of data type properties. When
multiple values are present, we only select a single value for the corresponding
cell. We also ensure in the query that the type of the object property matches
the expected range in the ontology (if any) since, particularly in DBpedia, there
might be objects of various types as property values of the same property.

Finally, we need to ensure a diversity of classes in the output and a balanced
collection in terms of table size so that we avoid very small tables, and larger
classes (e.g. Person in DBpedia) do not end up dominating the collection. For
small query result sets (less than 5 rows for this edition), we drop the query and
try selecting a new random subset and repeat the process until all properties
are included or no new tables can be generated. To deal with larger classes, we
break larger query results into randomly sized subsets, and ensure that we do
not have more than a fixed number (5 for this edition) of tables for the same
query, and no more than a fixed number (2,000 for this edition) of rows across
the collection for a given class.

The final outcome is a collection of SPARQL queries, each resulting in tabular
data with (i) columns that can be annotated with the expected type (class for
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the case of object properties), (ii) cell values that can be annotated with instance
URIs, and (iii) pairs of columns that can be annotated with a property.

4.3 Refinement

The outcome of the previous step is a collection of tables with all their con-
tents completely based on values in the source (English DBpedia for this edi-
tion) which is somewhat unrealistic as real tables often have noise as well as
columns/rows/values that cannot be matched with our knowledge source. For
this edition, we implemented only a few simple refinement strategies to make the
tables more realistic and so the matching task more difficult. We plan to signifi-
cantly improve this refinement step to create more realistic collections and also
collections geared towards particular features, e.g., the ability to handle certain
kinds noise or the so-called “NIL detection”.

The first simple refinement step includes adjusting some label values in a
rule-based approach. For this edition, we do this only for Person entities, by ab-
breviating first names. It is possible to do this string value manipulation based
on introducing errors (e.g. typos, using the method used in the UIS data gener-
ator [14]) or using sources of synonym terms and alternative labels.

To further make the matching tasks more challenging, we have used another
refinement process which is applied over a number of automatically generated
collections (which differ due to the random creation of SPARQL queries de-
scribed above). The goal of this refinement is to retain only a subset of bench-
mark tables from the generated collections, after discarding fairly easy matching
cases. This process can be further divided into three sub-processes: (i) identify-
ing tables in which the matching tasks is more challenging, (ii) identifying rows
in a challenging table that are still fairly easy to match (CEA task), and (iii)
adapting the benchmark tables and the ground truths accordingly.

For sub-process (i), we use the so-called refined lookup approach [8] to iden-
tify more challenging tables. In summary, this two-step approach first looks up
the contents of each table cell in a KB index, and for each top-ranked result, it
stores its rdf:type. In the second step, it performs the same lookup operation, but
this time, it restricts the results to only those belonging to the 5 most frequent
types per column, as retrieved from the first step. Despite its simplicity, this
approach provided decent effectiveness results compared to more sophisticated
methods. We set an empirical threshold for F1-score (0.4), and we report all the
tables for which the simple lookup method returns an F1-score lower than the
threshold. The tables in the final benchmark dataset will only consist of tables
that are reported in this step, i.e., easier tables are ignored.

For sub-process (ii), we scan in depth the error logs of the previous sub-
process, in which we report how many wrong results were reported per row and
per column in a table. We remove the rows for which the simple baseline method
provided only correct results (0 errors), as long as the pruned table has more
than 3 rows. Finally, for sub-process (iii), we adapt the ground truth files to
reflect the refinement step. We first remove all the information about tables
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that were entirely discarded, and for the remaining tables, we adapt the row
numbering to reflect the changes made in sub-process (ii).

4.4 RDF data

In order to allow ontology matching tools to use our benchmark datasets, we also
provide our datasets in RDF format, as described by a simple OWL ontology
that we generate automatically from the tables [9]. Note that this process is
currently only applicable when column headers are available in a table.

In summary, we assume that each table corresponds to an OWL Class, with
each row being an instance of this class. The table columns correspond to either
data type or object properties, which have as domain the class corresponding
to the table. We detect a special label column (using heuristics, as in [8, 26]),
which we use as the rdfs:label property. Based on the values of each column
we define the range of each data property (e.g., xsd:integer, xsd:date, xsd:string)
and object property. In the case of object properties, the range class is defined as
a new class, named after the header of the corresponding column. This way, the
values for the columns that describe object properties are treated as instances
of the OWL class, which is the range of this column.

In the example of Table 1a, assume that we have an additional row at the
beginning, with the values: “Country”, “Capital”. In that example, we would
create an OWL ontology with the classes Country and Capital, and the object
property hasCapital. The OWL class describing the table would be Country,
and this class would also be the domain of all the properties (in this case only
hasCapital). The range of hasCapital would be the class Capital. Finally, each
row in the table corresponds to an instance of a Country, with the rdfs:label
of each instance defined from the value of the Country column (which is de-
termined as the label column). For example, the RDF triples generated for the
first row would be: :China rdf:type :Country, :China rdfs:label “China”,
:China :hasCapital :Beijing, and :Beijing rdf:type :Capital.

5 Benchmarking Systems

The 2019 edition of the SemTab challenge was collocated with the 18th Inter-
national Semantic Web Conference as a Semantic Web Challenge and with the
14th Ontology Matching workshop as a special OAEI evaluation track.

5.1 Evaluation Methodology

The SemTab challenge started in mid April and closed in mid October 2019. It
was organised into four evaluation rounds where we aimed at testing different
datasets with increasing difficulty.

Evaluation framework. We relied on AIcrowd7 as the platform to manage the
SemTab challenge tasks: CTA, CEA and CPA. AIcrowd provides a number of

7 https://www.aicrowd.com/
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Table 2: Statistics of the datasets in each SemTab round.
Round 1 Round 2 Round 3 Round 4

Tables # 64 11,924 2,161 817
Avg. Rows # (± Std Dev) 142 ± 139 25 ± 52 71 ± 58 63 ± 52
Avg. Columns # (± Std Dev) 5 ± 2 5 ± 3 5 ± 1 4 ± 1
Avg. Cells # (± Std Dev) 696 ± 715 124 ± 281 313 ± 262 268 ± 223
Target Cells # (CEA) 8,418 463,796 406,827 107,352
Target Columns # (CTA) 120 14,780 5,752 1,732
Target Column Pairs # (CPA) 116 6,762 7,575 2,747

useful functionalities such as challenge presentation, participant registration,
automatic evaluation, ranking, submission limitation, and so on. For the (au-
tomatic) evaluation, an AIcrowd Python code template was provided, according
to which the SemTab evaluation interface and metrics were implemented and
deployed [3].

Datasets and rounds. Table 2 provides a summary of the statistics of the datasets.
For example, Round 3 dataset was composed of 2, 161 tables; there were 406, 827
target cells in CEA, 5, 752 target columns in CTA, and 7, 575 target column
pairs in CPA. Round 1 was based on the T2Dv2 dataset [19] and served as
sandbox for the participating systems. As T2Dv2 provides only class annota-
tions at table level, for CTA, we extended the annotation of types for the other
(entity) columns. We also manually revised the original and the new column
types. Round 2 dataset was composed of (i) 10,000 relatively clean tables from
the Wikipedia tables presented in [8] (i.e., not including tables with multiple
column/row span, and large textual cell contents as in [8]) , and (ii) an auto-
matically generated dataset of 1,924 tables as described in Section 4. Rounds
3 and 4 were composed of an automatically generated dataset with enhanced
characteristics and a focus on non-trivial annotations. The ground truth for all
four rounds was based on DBpedia. In this edition of the challenge, the ground
truth was blind during the competition; but the target cells, columns and column
pairs were provided to the participants.

Format of solutions. Participants executed the matching tasks as defined in
Section 2 for each of the given target table elements. The solutions for the
CEA task were expected in a file with lines having these fields: “Table ID”,
“Column ID”, “Row ID” and “DBpedia entity (only one)” (e.g., “table1”,“0”,
“121”,“dbr:Norway”). Similarly, CPA solutions had the following fields per line:
“Table ID”, “Head Column ID”, “Tail Column ID” and “DBpedia property
(only one)” (e.g., “table1”,“0”, “1”,“dbo:releaseDate”). For CTA, more than one
type annotations, separated by a space, were accepted: ‘Table ID”, “Column
ID” and “DBpedia classes (1 or more)” (e.g., “table1”,“0”, “1”,“dbo:Country
dbo:Place”). Note that those annotations outside the targets were ignored. Mul-
tiple annotations to one target cell or column pair, and multiple lines associated
to the same target element returned an error.
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Table 3: Schedule of submissions in each round.
Round 1 Round 2 Round 3 Round 4

Opening April 15 July 17 Sept. 23 Oct. 15
Closing June 30 Sept. 22 Oct. 14 Oct. 20

Submission and schedule. Participants had to submit their solutions for the three
matching tasks via the AIcrowd platform. The performance scores were automat-
ically computed and systems were publicly ranked in the AIcrowd webpages.8 In
Rounds 1 and 2, the number of submissions was unlimited so that participants
could fine-tune their systems. The number of submissions per day was limited
in Rounds 3 and 4 to avoid the effect of over-tuning. Table 3 shows the opening
and closing dates for each round. The objective of Round 4 and the limited time
also aimed at identifying potential over-tuning in the participating systems.

Evaluation metrics for CEA and CPA. For CEA and CPA, we compute Precision
P , Recall R and F1 Score (primary score) as follows:

P =
|Correct Annotations|
|System Annotations|

R =
|Correct Annotations|
|Target Annotations|

F1 =
2× P ×R

P + R
(1)

where target annotations refer to the target cells for CEA and the target col-
umn pairs for CPA. Note that it is possible that one target cell or column pair
has multiple ground truths, as modern KGs often have duplicate components.
One example is the wiki page redirected entities in DBpedia. An annotation is
regarded as true if it is equal to one of the ground truths. The comparison for
equality is case insensitive. Recall that at most one annotation was submitted
for each target cell or column pair.

Evaluation metrics for CTA. For CTA we used a different set of metrics to take
into account the taxonomy (hierarchy) of classes in the KG, namely Average
Hierarchical Score (AH) and Average Perfect Score (AP ):

AH =
|P |+ 0.5× |O| − |W |

|T |
AP =

|P |
|P |+ |O|+ |W |

(2)

T denotes all the columns for annotation. We refer as perfect annotations (P )
the most fine-grained classes in the (ontology) hierarchy that also appear in
the ground truth, while annotations involving the super-classes (excluding very
generic top classes like owl:Thing) of perfect classes are referred to as okay
annotations (O). Other annotations not in the ground truths are considered as
wrong (W ). AH gives a full score to the perfect annotation, a half score to the
okay annotations, and a negative score to wrong class annotation. AH is used as
the primary score as it considers both correct and wrong annotations, while AP
is used as secondary score as it only considers the rate of perfect annotations.

8 E.g., CEA leaderboard: https://www.aicrowd.com/challenges/iswc-2019-cell-entity-
annotation-cea-challenge/leaderboards
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Table 4: Participation in the SemTab challenge.
Round 1 Round 2 Round 3 Round 4

Overall 17 11 9 8
CEA task 11 10 8 8
CTA Task 13 9 8 7
CPA task 5 7 7 7

5.2 Challenge Participation

Table 4 shows the participation per round. We had a total of 17 systems partic-
ipating in Round 1. Round 2 had a reduction of participating systems (from 17
to 11), which helped us identify the core systems and groups actively working in
tabular data to KG matching. Round 3 and Round 4 preserved the 7 core partici-
pants across rounds and all three tasks. It is worth mentioning that LogMap [17],
a pure ontology alignment system, participated in Round 2. LogMap was given
as input (i) the tabular data in RDF format as described in Section 4.4, and (ii)
a relevant portion of the DBpedia KG. The obtained results were reasonable, but
far from the specialised system in the challenge. This is expected as systems like
LogMap rely on the semantics of the input ontologies or KGs, which is missing
in the input tabular data.

Next, we provide a brief description of the core participants, who also sub-
mitted a system paper to the challenge.

MTab [24]. MTab is a system that can jointly deal with the three tasks CTA,
CEA and CPA. It is based on the joint probability distribution of multiple
table to KG matching, following the probabilistic graph model by [20]. However,
the team improves the matching by using multiple services including DBpedia
Lookup, DBpedia endpoint, Wikipedia and Wikidata, as well as a cross-lingual
matching strategy.

IDLab [27]. The IDLab team developed an iterative matching procedure named
CSV2KG with the following steps: (i) gets crude entity matching with cells;
(ii) determines the column types and column relations with these entities; (iii)
corrects the cell to entity matching with the column types and column relations;
(iv) corrects the remaining cells with the head cells; and (v) calculates the column
type again with all the corrected cell to entity matching.

Tabularisi [28]. The team developed a system with two steps: candidate genera-
tion and selection. The former uses the Wikidata API and a search index based
on DBpedia labels to obtain a list of entities for each cell, while the later scores
the candidates with lexical features which are based on lexical similarity metrics,
and semantic features which capture the cell coherence of each column.

ADOG [25]. This systems utilizes a NoSQL database named ArangoDB9 to load
DBpedia and index its components. ADOG then matches tabular data with the
entities of DBpedia using Levenshtein distance, a string similarity metric.

9 https://www.arangodb.com
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DAGOBAH [2]. This participant system proposes an embedding approach which
assumes that entities in the same column should be closed in the embedding
space. It gets candidate entities by KG lookup, and uses pre-trained Wikidata
embeddings for entity clustering and cluster type scoring. The challenge of this
method lies in the setting of hyper parameters such as the cluster number.

Team sti [6]. This team developed a tool named MantisTable that can automat-
ically annotate, manage and make the semantics of tables accessible to humans
and machines. The tool has some built in functions for the three matching tasks,
including a SPARQL query for entity matching, a relation annotator based on
maximum frequency and a class annotator based on voting by entities. Note that
this system also provides a web interface for manual annotation.

LOD4ALL [23]. This system implements a pipeline for the three tasks with
five steps: (i) extracts ranked candidate entities of cells with direct search by
ASK SPARQL queries and keywords; (ii) gets the type of each entity; (iii)
determines the type of each column with a weighted combination of ratio score
and a normalized class score; (iv) determines the entity of each cell with the
type constraint; and (v) extracts the relation of entities in each row and select
the inter-column relation by frequency.

5.3 Challenge Evaluation

In this section, we report the results of the challenge Rounds 2-4 for the systems
participating in at least two rounds, which include the above core participants
and a system called saggu that only participated in CEA. Complete evaluation
results are available from the challenge website [12].

The results for all three matching tasks are presented in Figure 2. MTab
and IDLab were the clear dominants in all three tasks. Tabularisi was in a clear
overall 3rd position in CTA and CPA. The overall 3rd position in CEA was
shared among Tabularisi and ADOG. Special mention requires Team sti which
had an outstanding performance in Round 4 of CEA.

In terms of average scores, Round 2 was the most challenging one, although
it is not comparable to Rounds 3 and 4 as it includes a different source dataset.
Rounds 3 and 4 completely rely on the dataset generator. Round 4 aimed at
being more challenging than Round 3 by only including non-trivial cases. This
was partially achieved for CEA, with the exception of MTab and Team sti. The
relative performance of systems across rounds is similar in CEA and CTA with
the exception of Team sti in CEA, where there is an important improvement in
Round 4, and LOD4ALL that decreased performance in Round 4 of CTA.

According to the results, complementing DBpedia with additional resources
like Wikidata (e.g., MTab and Tabularisi) brings an important value. In general,
the use of elaborated lexical techniques seems to be the key for a good perfor-
mance. Other approaches based on more sophisticated methods like semantic
embeddings (e.g., DAGOBAH) do not seem to bring the expected value to the
final performance, but they may suffer a lighter impact with respect to changes
in the datasets and the KG. Another factor that may impact their performance
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IDLab 2.3 2.0 2.0
Tabularisi 4.3 3.0 3.0
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Team sti 6.0 4.0 5.9
LOD4ALL 6.0 5.3 5.0
DAGOBAH 7.3 6.7 6.0
saggu 4.7 - -

(d) Average ranking per task

Fig. 2: Results of systems competing in challenge Rounds 2, 3 and 4.

is the long time spent for learning or fine tuning the embeddings of a large KG
like Wikidata and DBpedia.

Sponsorship and awards. SIRIUS10 and IBM Research11 sponsored the prizes for
the challenge. This sponsorship was important not only for the challenge awards,
but also because it shows a strong interest from industry. Figure 2d shows the
average ranking of the participating systems in each task. MTab, IDLab and
Tabularisi obtained the 1st, 2nd and 3rd prize, respectively, across the three
matching task. ADOG shared the 3rd prize in CEA with Tabularisi. Finally,
Team sti obtained the Outstanding Improvement prize in CEA.

6 Lessons Learned and Future Work

In this paper, we have presented the datasets and the results of the first edition
of the SemTab challenge. The experience has been successful and has served
to start creating a community interested in the semantic enrichment of tabular

10 SIRIUS: Norwegian Centre for Research-driven Innovation: https://sirius-labs.no
11 https://www.research.ibm.com/
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data. Both from the organization side and the participation side, we aim at
preparing a new edition of the SemTab challenge in 2020. Next, we summarize
the issues we encountered during the different evaluation rounds, the lessons
learned, and some ideas for the future editions of the challenge.

Importance of the challenge. We received very positive feedback from the par-
ticipants with respect to the necessity of a challenge like SemTab to conduct a
systematic evaluation of their systems. Our challenge was also well-received from
industry via the sponsorship of IBM Research and SIRIUS.

Minor issues. We faced a few minor issues during the evaluation rounds, which
will help us improve the future editions of the challenge. Next, we summarise
some of them: (i) explicit reference to the version of the KG used; (ii) incompat-
ible encodings when merging different datasets; (iii) low quality of the DBpedia
wikiredirects; (iv) Wikipedia disambiguation pages as annotations; (v) property
hierarchy was not considered; (vi) the average Hierarchical Score (AH) was not
easy to interpret for participants as, in the way it is currently defined, it does
not have a clear upper bound. Nevertheless, we believe these issues affected all
participants in a similar way and they did not have an important impact in the
relative comparison among systems.

Evaluation platform. On the one hand, the AIcrowd platform makes the man-
agement of submissions, evaluation and ranking very easy. On the other hand,
it has no interface for automatic deployment of the evaluation codes and data,
which makes it inconvenient to deal with online errors or changes, as challenge
organisers depend on the AIcrowd team. It was also hard to communicate with
participants not using the AIcrowd discussion forum. For next editions, we may
consider alternative solutions.

Number of submissions. The limitation of number of submission per day was not
welcomed by all participants. However, we find that unlimited submissions may
lead to over-tuning the matching model that will have limited generalization
performance. In future editions, we will try to better split the datasets for fine-
tuning from the ones for testing.

Instance matching. We produced an RDF version of the dataset in Round 2,
but we did not attract the expected attention in the OAEI community and
the participation of (ontology) instance matching or link discovery systems was
limited to LogMap. In future editions of the challenge, we aim at facilitating the
participation of OAEI systems.

Real-world datasets. Several participants highlighted the necessity of more real-
istic datasets, however manually annotated datasets are limited in quantity and
size. A possible solution is to create a consensual ground truth by combining
the output of several systems. This solution has already been used in several
evaluation tracks of the OAEI campaign [1].

Reproducibility. As SemTab 2019 was the first edition of the challenge, our prior-
ity was to facilitate participation and allow participants to directly submit their
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solutions for each matching task. This plays a negative role in terms of repro-
ducibility of the results. In future editions, we are considering to require from
participants (i) the submission of a running system as in the OAEI campaign,
or (ii) the publication of their system as a (Web) service.

Matching targets. In SemTab 2019 we advocated to provide this information to
the users to make the matching and the evaluation easier. In future editions
we may hide this information to the participants. Participants will have less
guidance which will especially be reflected in the CPA task. Evaluation will also
be more challenging as incompleteness of the ground truth should not penalize
potentially correct predictions.

Improved data generator. As outlined in Section 4, there are a number of ways to
improve our data generator to create more realistic datasets. In particular, much
work needs to be done in creating tables that are more challenging to match,
and contain more variety of representations and contents that cannot be matched
to the source KG. Also, our data generator has a number of parameters which
can be adjusted to create different benchmarks each suitable for a different use
case. We intend to work on these extensions, create more diverse and realistic
collections, and make our data generator publicly available which will allow us
to seek contributions from the community.

Acknowledgements. We would like to thank the challenge participants, the
ISWC & OM organisers, the AIcrowd team, and our sponsors (SIRIUS and IBM
Research) that played a key role in the success of SemTab. This work was also
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