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Abstract

Two reduced-form versions of New Keynesian wage Phillips curves based on either sticky nominal wages or

real-wage rigidity using monthly US state-level data for the period 1982-2016 are examined, taking account

of the endogeneity of unemployment by instrumentation and the use of common correlated effects (CCE) and

mean group (MG) methods. This is the first time that this methodology has been applied in this context.

These are important issues, as ignoring them may lead to substantial biases. The results show that while the

aggregate data do not provide estimates that are consistent with either of the theoretical models examined,

the panel methods do. Moreover, use of an appropriate MG CCE estimator leads to economically significant

changes in parameters (primarily a steeper Phillips curve) relative to those from inappropriate but widely

used panel methods, and in the real-wage rigidity case is required to deliver results that have a theoretically

admissible interpretation.

JEL Codes: E24, E31, E32.

Keywords: Wage Phillips curves, state-level data, panel estimation, CCE.

1 Introduction

Phillips (1958) uncovered an empirical relationship between (UK) wage inflation and unemployment, spanning

the period between 1861 and 1957. The eponymous curve has subsequently remained firmly at the heart of

macroeconomics in both wage and price inflation space. Phillip’s original exercise was purely empirical, but

theoretical interpretations with a simple excess-demand mechanism followed. Since then theory has changed,

with expectations and various forms of nominal or real rigidity playing crucial roles in the current New Keynesian

incarnations, which lie at the heart of modern DSGE models. The curve is uniquely important in the conduct

of monetary policy, as without it prices are flexible and monetary policy has no role. The parameters and

specification of the Phillips curve are therefore of huge interest, not only from a purely academic view but

also from the perspective of optimal policy. Most estimates are undertaken using aggregate data, and where

disaggregated data have been used, the specifications tend not to have a modern structural interpretation. As is

explained in more detail below, this may be highly important. Estimated aggregate specifications where there are

heterogeneous disaggregate dynamic relationships are subject to aggregation bias. Moreover, no disaggregated
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†Essex Business School, Wivenhoe Park, Colchester, UK CO4 3SQ. Email: sgprice@essex.ac.uk.
‡Email: menelaos.tasiou@port.ac.uk.
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studies address all the relevant econometric issues (including heteroegeneity of parameters, common correlated

effects and endogeneity of regressors). Our paper addresses these deficiencies.

In the remainder of this introduction, we relate our work to the Phillips curve literature, briefly allude to the

econometric issues and cite some related work, none of which take the comprehensive approach we adopt in this

study.

1.1 Phillips curves

Although now more usually associated with price inflation, the original Phillips curve explained wage inflation.

Phillips fitted his eponymous curve with a bespoke method suggesting that a non-linear relationship between

nominal wage inflation and the level (but also the change) of unemployment existed in the UK. He presented it

as a type of regularity, rather than as a theoretical relationship. Lipsey (1960) used more conventional methods

to estimate the relationship and introduced price inflation as an explanatory variable. In these versions driven

by a market excess-demand adjustment mechanism, it was odd that the specification was one of rates of change

in wages, when the underlying idea was one of adjustment to an equilibrium wage, a tension that still remained

in the Phelps (1967) and Friedman (1968) notion of the expectations augmented Phillips curve. Some later

specifications in this tradition, such as the NAIRU interpretation exposited at length in Layard et al. (1991),

were based on wage and price setting where unemployment, productivity and other factors determine the long-

run real wage.

The Phillips curve in its modern New Keynesian configuration (the NKPC) is by contrast the forward-looking

relationship between price inflation and marginal costs, the latter often proxied by real unit labour costs, or a

capacity measure such as the output gap or unemployment, presumed to be correlated with marginal costs. In

this interpretation, the driver is not excess demand but marginal cost, and the specification may be seen as either

price/wage setting, demand for labour or supply of output: all are derived from the same maximisation problem.

Marginal cost may be measured directly or by some assumed related proxy for excess demand (the output gap

or unemployment). The specification exploits the recursive nature of the dynamic problem to generate a

specification that looks similar to a traditional Phillips curve,1 although the interpretation is different. The

relationship is so well-known as to hardly require a reference, but Woodford (2003) is a common citation for

an exposition. Interest has been maintained by policymakers as the relationship between activity, wages and

prices is a key part of the inflationary process. Similarly, the wage Phillips curve in macro models is typically

also modelled as a forward-looking process with staggered wage setting or other rigidities, and has the same

interpretation. At the heart of the relationship is a relative price, the real wage or real labour costs. As Gaĺı

(2011) notes, there has been less empirical attention to the wage setting process than to prices, which he hoped

to partially rectify by specifying and estimating a New Keynesian Wage Phillips Curve (NKWPC), and it is

this approach that we follow.

1.2 Econometric issues

What is missing, however, is a recognition that labour markets are local. From the beginning, some of the

literature on Phillips curves considered the relationship to be a consequence of aggregation over specific markets

in varying excess demand (Hansen (1970); Evans (1985)), but recently, it has only infrequently been considered.

This is important, because despite the fact that it is often ignored, in general aggregation has a large impact

on the dynamics of aggregate relationships in the presence of heterogeneity at the disaggregate level, typically

leading to more persistence. Robertson and Symons (1992) spell out why there is distortion of the dynamics

from aggregation; Imbs et al. (2005) is an example of an application to the real exchange rate where the

consequences of ignoring aggregation are profound. In another highly pertinent paper, Imbs et al. (2007)

1In its ‘expectations-augmented’ form, e.g. Phelps (1967).
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explores the implications of ignoring heterogeneity on aggregate dynamics in the context of French industry

level data.

In this paper, we seek to address this issue, as well as estimating theoretically well-motivated models, specifically

Augmented New Keynesian Wage Phillips Curves due to Gaĺı (2011) and Orlandi et al. (2017). We use US

state-level data to estimate the average dynamic process, more relevant in structural models than likely biased

estimates derived from aggregate data. As we spell out in more detail below, we also take account of the existence

of common correlated effects, which are known to be important empirically in panels of the type we examine,2

and allow for endogeneity among the regressors. This, often neglected endogeneity arises straightforwardly from

the simultaneity of wages and (un)employment.3

1.3 Previous studies

As noted above, previous panel and sectoral estimates exist indeed, yet this specific and important exercise has

not been conducted before on any set of panel data. M J Luengo-Prado and Sheremirov (2017) examine US

sectoral inflation. Leduc and Wilson (2017) examine city-level relationships. Smith (2014) examines the effect

of labour market slack on wages at state level. More closely related, the model in Kumar and Orrenius (2014)

is based on the traditional Phillips curve approach, with an emphasis on non-linearity, and focuses on pooled

estimates. A rare example of a panel approach to the NKPC (not the NKWPC) is that of Byrne et al. (2013).

They use an MG panel approach to the NKPC using data for 14 geographically and economically dispersed

countries4 accounting for cross-sectional heterogeneity to a limited extent, but not endogeneity. They look at

a group of countries whose aggregate has no special meaning, whereas US states are connected via trade, free

movement of labour, geographical contiguity, culture and a common monetary and fiscal framework. Finally,

Aaronson and Sullivan (2000) use similar data to ours, but perform simple pooled regressions.

1.4 Our aims

Briefly, we estimate reduced-form versions of New Keynesian Wage Phillips curves using state-level data and

appropriate techniques allowing for endogeneity, heterogeneity and common correlated effects; an exercise which

has not been previously undertaken. Moreover, we estimate relationships that are firmly rooted in the modern

macroeconomic theory of price and wage adjustment, the New Keynesian Phillips Curve. State-level data offers

a rich data set that may make it possible to improve our understanding relative to aggregate data, even if it is

solely the aggregate relationship which we are interested in. This is potentially important, as it is well-known

that aggregation can seriously distort estimates of dynamic processes such as wage adjustment and may thus

lead to misleading inferences that affect how macroeconomic policymakers (e.g. the FRB) respond to shocks.

There has been previous research on state-level labour markets and wage determination, but none of these take

into account the econometric problems arising from heterogeneous dynamics, endogeneity between wages and

labour market excess demand and from common correlated disturbances.5 We find that when we use appropriate

techniques, the results are substantially different from those obtained using conventional methods. The results

on balance favour a forward-looking New Keynesian specification with nominal rigidities put forward by Gaĺı

(2011).

The next section sets out two specifications for the Augmented NKWPC. We describe the econometric method-

ology in Section 3, and provide a summary of our data and a description of our results in Section 4. Section 5

concludes.

2See Phillips and Sul (2003).
3There is a second source of endogeneity from forward-looking expectations but there is no need to be addressed here as our

reduced-form substitutes out future expectations.
4Austria, Belgium, Denmark, France, Germany, Greece, Ireland, Italy, The Netherlands, Portugal, Spain, Sweden, the UK and

the USA.
5This is equally problematic from the point of view of those wishing to understand local labour markets.
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2 The New Keynesian Wage Phillips Curve

The standard New Keynesian Phillips Curve (NKPC) is a forward-looking approach to price setting that exploits

the recursive nature of the dynamic problem to generate a specification that looks similar to a traditional Phillips

curve, although the interpretation is quite different. Similarly, there are forward-looking models of staggered

wage setting that have similar properties. Gaĺı (2011) set out an analytical structure for what he termed a New

Keynesian Wage Phillips Curve (NKWPC). Using his notation, his Equation (13) is

∆wt = βEt{∆wt+1} − λwϕût + εt (2.1)

where wt is the (log) nominal wage, ut is unemployment, un the natural rate and ût = ut − un is the deviation

from the natural rate.6 ϕ determines the marginal disutility of work and β is the rate of time discount. With

wage indexation, the ANKWPC is

∆wt = α+ γ∆pt−1 + βEt{∆wt+1 − γ∆pt} − λwϕut + εt (2.2)

(his Equation (14)), where pt is a measure used for price indexation. λw = (1−θw)(1−βθw)
θw(1+εwϕ)

> 0 where εw is

the wage elasticity of demand for labour (that determines the wage mark-up) and (1 − θw) is the Calvo-style

probability that wages are reset each period. α = (1− β))((1− γ)πp + g) where πp is steady state inflation, g

is the steady state rate of growth of productivity and γ is the weight of steady state inflation in the indexation

formula. Not all of these structural parameters can be recovered from the NKWPC or ANKWPC without other

equations but their plausibility can be assessed using calibration. β and γ are identified.

2.1 Backward specifications

Gaĺı (2011) shows that if we assume (the deviation of) unemployment (from the natural rate) follows an AR(2)

such that

ut = φ1ut−1 + φ2ut−2 + εt (2.3)

then the reduced-form wage equation corresponding to (2.2) is

∆wt = α+ γ∆pt−1 + ψ0ut + ψ0ut−1 + εt. (2.4)

The underlying parameters are not all uniquely identified, but

ψ0 ≡ −
λϕ

1− β(φ1 + βφ2)
, (2.5)

ψ0 ≡ −
λϕβφ2

1− β(φ1 + βφ2)
. (2.6)

Orlandi et al. (2017) present a related model with real wage rigidities (RNKWC). Here

∆wpgt = α+ βγ∆wpgt+1 + (1− γ)∆wpgt−1 − λwϕut + εt (2.7)

where ∆wpgt = ∆wt −∆pt − gt and gt is the growth in trend productivity. The backward version is similar to

Gaĺı’s:

∆wpgt = α+ β0∆wpgt−1 − ψ0ut − ψ1ut−1 + εt. (2.8)

Here β0 = β

1+
(θ−1)φ
γ(1−phi)

, where β is the discount factor (assumed close to and less than one), θ is the elasticity

of substitution of labour, γ is a wage adjustment parameter and φ is the degree of real-wage inertia that lies

6Here and in the empirical work we assume as Gal̀ı does that un is constant. See Section 4.2 for some more discussion.
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between 0 and 1. As in Gaĺı (2011) and Orlandi et al. (2017), it is these backward specifications we estimate.

3 Estimation methodology

Panels conventionally have dimensions T and N in time and the cross-section. Traditionally, panel techniques

were developed for cases where T is short - often very short - and N large, so that pooling of parameters is

essential for estimation. Nickell (1981) pointed out that this led to biases in dynamic panels deriving from the

initial conditions that are severe for short T . The response, following Anderson and Hsiao (1982) and developed

in Arellano and Bond (1991) and subsequent papers was to introduce GMM methods. By contrast, in panels

(such as ours) where T and N are of of similar magnitudes and where T is long enough the Nickell bias is

negligible. However, as Pesaran and Smith (1995) pointed out, if there is heterogeneity in the parameters across

units, there is another bias that is also potentially large. This is because if there is heterogeneity pooling the

parameters of interest (say βi on the variable zit) introduces an error into the residual which is composed of

the product of the difference between the true and pooled parameter and each of the variables (in this case

(βi−β)it where β is the pooled parameter), immediately introducing endogeneity. This cannot be instrumented

using lagged variables due to the dynamic process. Their simple proposal, the mean-group (MG) estimator

of the average effect that simply takes the mean of individual unit estimates. The MG estimator is unbiased,

but may not be the most efficient. Pesaran et al. (1999) subsequently proposed the pooled-mean-group (PMG)

estimator for cases where some or all of the parameters may efficiently be pooled.7

Another general source of bias is the presence of unobserved common processes across the units, or cross-sectional

dependence (CSD), surveyed in Chudik and Pesaran (2015). It is possible - in fact likely - that these exist; that

is that there are common factors, possibly unobserved, that affect all units in a panel, so that the covariance

of the errors is unlikely to be zero. A further problem then is that the cross-sectional dependence arising from

e.g. an unobserved common shock, may be correlated with regressors. Phillips and Sul (2003) discuss the

consequences of this and conclude they are likely to be profound, so that pooling offers only marginal benefits in

efficiency, and parameter estimates may be subject to large biases. Although recognised and modelled in spatial

econometrics, this was not considered in conventional panel techniques until relatively recently. A natural

way to deal with this is to assume a common factor structure and then estimate those factors, for example

using principal components (PC), but this raises the issues of identifying correctly and estimating the number

of factors, and is problematic if factors are correlated with the explanatory variables. Coakley et al. (2006)

examined a range of estimators, and as Chudik and Pesaran (2015) observe, PC-estimated factor models are

subject to problems.

However, Pesaran (2006) introduced the common correlated effects (CCE) methodology for the estimation of

large-T panels, which is simple to apply, has good properties and is not subject to mis-specification of the

number or weights of the factors. Kapetanios et al. (2011) show that it is appropriate with multiple I(0) or I(1)

factors which may be correlated with regressors and in the presence of autocorrelated errors. It is therefore this

approach that we adopt.

In particular, we consider the general model

yit = β0i + β1iyi,t−1 + β′2ixit + β′3izit + uit (3.1)

uit = λ′if t + εit

xit = πi + Πizit + Λif t + vit

7They proposed a Hausman-type test for poolability. The null is best thought of as the PMG estimator being an efficient and
unbiased estimator, rather than that the βi = β.
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where the yit are endogenous variables to be explained, xit are other potentially endogenous explanatory vari-

ables, zit are exogenous and f t are unobserved interactive effect variables.

We assume that εit and vit are correlated for given i, but uncorrelated across i, and are martingale difference

processes over time as is uit. Chudik and Pesaran (2015) discuss the use of cross-sectional average proxies to

augment (3.1) and estimate its coefficients. In particular, due to the presence of the lagged dependent variable in

(3.1), they suggest that the cross-sectional averages8 ȳt, x̄t and z̄t and their lags be used to augment (3.1), and

then either pooled or mean-group panel estimation may be carried out. If εit and vit are correlated one needs

further to instrument xit by some appropriate instumentwit as discussed in Harding and Lamarche (2011). Note

that since εit and vit are uncorrelated across i the endogeneity does not affect the cross-sectional average proxies.

In particular, letting Ri = (yi,Xi,Zi), W i = (yi,−1,W i,Zi), yi = (yi,2, ..., yi,T )′, yi,−1 = (yi,1, ..., yi,T−1)′

Xi = (x1, ...,xmx)′ xi = (xi2, ...,xiT )′, Zi = (z1, ...,zmz )
′ zi = (zi2, ...,ziT )′, W i = (w1, ...,wmw)′ wi =

(wi2, ...,wiT )′ and M = I − P (P
′
P )
−1
P ′ where P contains the cross-sectional proxies and a constant, the

pooled estimator is given by β̂1i

β̂2i

β̂3i

 =

(
N∑
i=1

[
R′iMW i

(
W ′

iMW i

)−1
W ′

iMRi

])−1( N∑
i=1

[
R′iMW i

(
W ′

iMW i

)−1
W ′

iMyi

])
.

It is this methodology that we apply.

4 Data description & Results

In this section, we give a description of the data and its sources (Subsection 4.1), and report the results of

estimating our two New Keynesian Wage Phillips Curve specifications with aggregate (Subsection 4.2) and

disaggregate (Subsection 4.3) data.

4.1 Data description

We use multiple sources of United States BLS9 data to estimate the Phillips curve. Since a time-series of state-

level CPI data is not available, we calculate price inflation by using CPI-U10 data by Census region. In particular,

we use the four-Census regions as described by BLS and mapped all states to the four-Census accordingly. The

data are available on a monthly basis. The monthly state unemployment rates are calculated from the monthly

Current Population Survey (CPS or household survey). Data on state level wages are constructed using average

hourly nominal wages from the CEPR11 database, employing CEPR uniform extracts of CPS-ORG12 data.

Unlike some other studies, we do not use short-term and long-term unemployment measures due to significant

measurement changes at the BLS database, and because the models we examine do not call for the distinction.

Productivity data are also from BLS. We use business sector productivity, available on a monthly basis at

national level. Where we employ a Hodrick-Prescott filter to obtain trend labour productivity growth we use

the conventional value for the smoothing parameter with monthly data (14400). Table 1 abridges the sources

of the variables we use.

8E.g. ȳt =
∑N

i=1 yiT where N is the number of cross-sectional units.
9Bureau of Labour Statistics.

10Consumer Price Index for All Urban Consumers.
11Centre for Economic Policy Research.
12The Outgoing Rotation Group.
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Description Source Notes

w
Average hourly nominal

wage rates
CEPR uniform extract

of CPS-ORG data

Usual hourly earnings for hourly
and non-hourly workers. We have

constructed those variables manually.
Monthly state data.

u
The state unemployment rates /

Unemployment levels /
Employment levels

CPS Monthly state data

p CPI-U
BLS series by
Census Region

We use the 4 Census regions as described in
BLS and mapped all states to these

Census regions accordingly. Monthly data.

∆wpg ∆wpgi,t = ∆wi,t −∆pi,t − gt Authors’ elaboration
Monthly productivity (country level).

Business sector productivity BLS

Table 1: Data notes

Due to the panel nature of our data, Table 2 shows two variations of descriptive statistics to illustrate distribution

over states and time for the unemployment variable ut. The upper part of the table shows the minimum (min),

maximum (max), mean and standard deviation (SD) of mean state level unemployment, whereas the bottom

part of the table shows the means of the summary statistics over time.

Distribution over States

Descriptive Statistic Value
Min [u1,t, . . . ,u51,t] 1.238
Mean [u1,t, . . . ,u51,t] 1.730
Max [u1,t, . . . ,u51,t] 2.053
SD [u1,t, . . . ,u51,t] 0.198

Distribution over Time

Descriptive Statistic Value
Mean [Min u1,t, . . . ,Min u51,t] 1.1804
Mean [Max u1,t, . . . ,Max u51,t] 2.3289

Mean [SD u1,t, . . . ,SD u51,t] 0.2791

Table 2: Descriptive statistics for unemployment

To better portray the distribution abridged in Table 2, Figure 1 presents the data for each state in the sample.13

We do not present a figure of our wage rate variables, as being a monthly rate of change variable the data are

noisy and hard to disentangle.

4.2 Aggregate data

Gaĺı (2011) reports that on aggregate quarterly US data an AR(2)

ut = 0.22∗∗ + 1.66∗∗ut−1 − 0.70∗∗ut−2 + εt,

where ∗∗ indicates 5% significance (∗ 10%) is a good model for the period from 1948Q1 to 2009Q3. Our data14

are monthly and cover 1982M1 to 2016M12. Figure 2 shows the aggregate monthly data over the sample we

use, together with the average of our state-level data.15 In contrast to (e.g.) the European data where there are

evident trends and mean shifts, it is more plausible that the data are stationary. More formally, unit root tests

13For an interacting version of the figure illustrating time and cross-section points of choice, see the online version of the paper.
14Defined as in Gaĺı (2011): earnings-based measure.
15 The unweighted state-level data average to a lower value than the aggregate and are smoother, but follow a similar trend.

7



Figure 1: Disaggregate unemployment per State: 1982 - 2016

reject the null of non-stationarity (e.g. ADF(6) = -3.22, p-value 0.019) and cannot reject stationarity (KPSS

with Newey-West bandwidth 16 = 0.34, 5% critical value 0.46).

The natural rate un could in principle be modelled by a band-pass filter or a univariate state-space model as

an unobservable variable as in Orlandi et al. (2017), by a structural state-space model, or by using natural rate

drivers. All present problems and moreover in each case are impracticable to construct at state level. Band-

pass filters are particularly arbitrary and suffer from end-point biases, as do univariate state-space models, and

state-level estimates are likely to be very poorly determined. More structural state-space models assume the

relationship we are trying to estimate, as they back out un as an unobservable in the Phillips curve. Structural

models as in Layard et al. (1991) have not been seriously estimated since the 1980s, essentially because the

empirical programme to estimate a structural model of un was a failure.16 And state-level drivers would in any

case be hard to find, notwithstanding the empirical difficulty of satisfactorily estimating such models. So given

the evidence for stationarity, we are content to follow Gaĺı, to assume the natural rate is constant and work

with the log level.

Figure 2: Average and aggregate unemployment: 1982 - 2016

Corresponding to Gaĺı’s specification, over these two periods a monthly AR(6) exhibit some autocorrelation at

annual frequencies but have similar properties to his quarterly results.17 A simplified version for our 1982 to

16Jackman (1998) discusses some aspect of this.
17We also adopt this dynamic specification for the disaggregated data
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2016 sample is

ut = 0.02∗∗∗ + 1.097∗∗∗ut−1 − 0.111∗∗∗ut−6 + εt.

As in Gaĺı (2011), this process is persistent but stationary. The impulse responses to a shock are similar to

Gaĺı’s when adjusted for the frequency. Informed by this estimated AR process, we estimate (4.1) and (4.2),

∆wt = α1 + γ∆pt−1 + ψ1,0ut + ψ1,1ut−5 + εt, (4.1)

∆wpgt = α2 + β∆wpgt−1 + ψ1,0ut + ψ2,1ut−5 + εt, (4.2)

where in both cases we expect ψi,0 < 0 and ψi,1 > 0. Gaĺı used two alternative definitions for the indexation

variable, quarterly inflation and year-on-year inflation, which in our monthly case is pt − pt−12 (∆12pt), lagged

one month. His preferred quarterly specification (2.4) estimated with quarterly data over 1964Q1 to 2007Q4

for average hourly earnings of production and non-supervisory employees with the level of unemployment and

the former inflation series returned estimates of

∆wt = α+ 0.503∗∗∆pt−1 − 0.334∗∗ut + 0.294∗∗ut−1.

Re-estimated with monthly data over the same sample, but taking account of the estimated AR process and

using ln(U) we obtain

∆wt = α+ 0.0296∗∗∗∆pt−1 − 0.000ut − 0.000ut−5.

Estimated over the sample of this study (19824M1 to 2016M12) using ln(u) we obtain

∆wt = α+ 0.052∆pt−1 − 0.026ut + 0.025ut−5.

So the aggregate monthly data do not support this specification. However, Gaĺı obtains

∆wt = α+ 0.687∗∗∆p12t−1 − 0.552∗∗ut + 0.453∗∗ut−1

using year-on-year annual price inflation, and for Gaĺı’s sample we obtain

∆wt = α+ 0.635∆p12t−1 − 0.0064∗∗∗ut + 0.0047∗∗∗ut−5,

which is more consistent, although the estimates of the unemployment are small. For our sample, however, the

estimates are yet smaller and entirely insignificant.

∆wt = α+ 0.280∗∗∗12∆p12t−1 − 0.000ut + 0.001ut−5.

For the real-wage specification with the same lag structure for unemployment we obtain

∆wpgt = α+ 0.739∗∆wpgt−1 + 0.002ut − 0.004ut−5,

where the unemployment terms are again small and insignificant.

Essentially, it does not appear that the aggregate monthly data support this reduced-form specification over

the more recent sample available to us at a disaggregated level.

4.3 Panel results

By contrast, we are able to obtain results consistent with the theory using the disaggregated data. For reference,

we plot the average of the state level price inflation, the log-level of the wage and the productivity-adjusted

9



‘real-wage’ inflation rates together with the aggrgegate data in Figures 3, 4 and 5. The price inflation data

differ but are closely aligned. The wage data however are much more volatile at the average state-level than the

aggregate, as can be seen in the chart of the level. There is also an average level difference (scaled away in the

chart) and an average growth difference for the period up to 1990. The productivity-adjusted real wage wpg is

constructed using aggregate productivity data as state-level data on output (or productivity) are unavailable

at a monthly frequency, and also may be taken to more closely represent the underlying trend. These data are

reported as inflation rates, which emphasises the volatility relative to the aggregate following from the wage

measure.

Figure 3: Average and aggregate inflation rate: 1982 - 2016

Figure 4: Average log(wage): 1982 - 2016

Figure 5: Average real-wage inflation rate: 1982 - 2016

As with the aggregate data we estimate (4.1) and (4.2). We use year-on-year inflation for the indexation series.

We begin by testing for cross-sectional dependence using the CSD test developed in Pesaran (2004). This is

based on the set of seemingly unrelated regressions given in (3.1) and repeated here without the assumption of

the factor structure in the errors.

yit = β0i + β1iyi,t−1 + β′2ixit + β′3izit + uit.
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The CSD test is constructed

CSD =

√
2T

N(N − 1)

N−1∑
i=1

N∑
j=i+1

ρ̂ij

 ,

and distributed N(0, 1), where

ρ̂ij

∑T
t=1 ûitûjt(∑T

t=1 û
2
it

)1/2 (∑T
t=1 û

2
jt

)1/2
are the sample estimates of the pairwise correlations of the residuals. Applying this to (4.1) and (4.2) we

strongly reject18 the null hypothesis of no cross-sectional dependence.

We then estimate the model using four methods, in each case instrumenting ut with four instruments sets, using

up to four lags of ut. For reference, we report results using simple pooled OLS, a standard fixed effects model

(FE) and a standard mean-group specification (MG),19 as well as our preferred efficient CCE estimator (CCE).

As there is no lagged dependent variable, the OLS and FE estimates do not suffer from the bias identified by

Pesaran and Smith (1995), but do potentially lead to misleading inference and inconsistency.20 We instrument

the endogenous variables with a prior regression as in Harding and Lamarche (2011). The results are reported

in Table 3.

Instruments: lag 1 Instruments: lags 2, 3
OLS FE MG CCE OLS FE MG CCE

ut -0.076*** -0.084*** -0.092*** -0.156*** -0.075*** -0.083*** -0.096*** -0.157***
ut−5 0.049*** 0.044*** 0.049*** 0.063*** 0.048*** 0.043*** 0.054*** 0.064***

∆12pt−1 0.3492*** 0.3288*** 0.3132*** 0.5604* 0.3492*** 0.3288*** 0.3096*** 0.5064
Instruments: lags 1-3 Instruments: lags 1-4

OLS FE MG CCE OLS FE MG CCE
ut -0.073*** -0.081*** -0.094*** -0.166*** -0.072*** -0.080*** -0.092*** -0.164***
ut−5 0.046** 0.042* 0.051* 0.072** 0.045* 0.040* 0.050* 0.071**

∆12pt−1 0.3492*** 0.3288*** 0.3132*** 0.5268 0.3492*** 0.3288*** 0.3132*** 0.5352*

OLS indicates pooled estimates, FE fixed effects, MG mean group, CCE common correlated effects.
∗∗∗, ∗∗ and ∗ indicate 1%, 5% and 10% significance respectively.

Table 3: A backward looking specification for a (nominal) Augmented New Keynesian Wage Phillips Curve

The results are largely invariant to the instrument set. The OLS, FE and MG estimates are all similar. However,

the preferred CCE estimates differ, with an impact from unemployment that is roughly double the size than

in the other cases, implying an economically significantly steeper Phillips curve (wages are roughly twice as

responsive to unemployment). Moreover, the price indexation term is around two thirds higher than the less

efficient results, albeit only marginally significant in two cases. The data are scaled to make them comparable

to those in Gaĺı. Although estimated with a different data set, frequency and sample, the CCE results are in

fact broadly comparable to Gaĺı’s. The main difference is that the net impact of unemployment is larger using

the disaggregated data, while the inflation indexation term is very similar. As we have established that the

aggregate results are not roubust to the sample period, so this is particularly useful.

Table 4 reports the results from the Orlandi et al. (2017) real-wage rigidity specification using actual (aggregate)

productivity.21 In this case (following their notation), the coefficient on the lagged productivity adjusted real-

wage growth term is given by β0 = β

1+
(θ−1)φ
γ(1−phi)

. If the parameter determining real-wage inertia φ = 0, implying

no real-wage rigidity, then β0 will be close to but less than one. In this case the dynamic bias due to Pesaran

and Smith (1995) does hold, in addition to any issues flowing from common correlated errors. As above, the

results are largely invariant to the instrument set. The results for OLS, FE and MG (the latter not subject to

18p-values of 0.000 in all cases.
19Pesaran and Smith (1995).
20Pesaran (2006).
21The results using HP filtered productivity using the conventional monthly smoothing parameter of 14400 are very similar and

are not reported.

11



dynamic bias) are similar, although the estimate of the coefficient on the lagged dependent variable are very

different from the CCE estimates. But crucially, the OLS, FE and MG results are each grossly inconsistent

with the theory as the estimated parameter β̂0 < 0, which can only be the case if the discount factor β̂ is itself

negative, which is obviously inadmissible.

By contrast, in the CCE case, the coefficient is close to unity. We cannot reject a value such as 0.98 on a

two-sided test, so the results are consistent with even quite substantial values of the discount factor22 and no

real-wage rigidity. The implication is that we cannot reject the hypothesis that the discount factor is close to

unity and real wages are fully flexible. So our CCE estimator is necessary in order to produce meaningful results

that have a sensible economic interpretation.

Instruments: lag 1 Instruments: lags 2, 3
OLS FE MG CCE OLS FE MG CCE

ut -0.130*** -0.138*** -0.152*** -0.162*** -0.128*** -0.136*** -0.152*** -0.163***
ut−5 0.092*** 0.084*** 0.094** 0.099*** 0.089*** 0.082** 0.094*** 0.099***
wpgt−1 -0.496*** -0.496*** -0.492*** 1.002*** -0.496*** -0.496*** -0.492*** 1.002***

Instruments: lags 1-3 Instruments: lags 1-4
OLS FE MG CCE OLS FE MG CCE

ut−1 -0.126*** -0.134*** -0.151*** -0.169*** -0.124*** -0.132*** -0.150*** -0.167***
ut−5 0.088*** 0.080*** 0.094** 0.105*** 0.086*** 0.078** 0.092** 0.104***
wpgt−1 -0.496*** -0.496*** -0.492*** 1.002*** -0.496*** -0.496*** -0.492*** 1.002***

Notes as Table 3.

Table 4: A backward looking specification for a real New Keynesian Wage Phillips Curve (actual productivity)

In Section 3 we proposed our method on econometric grounds, and have established that it makes a material

difference to estimates and in the real-wage rigidity case is necessary for economically interpretable results to

emerge. But next we apply a further diagnostic with the augmented weighted-CSD test of Juodis and Reese

(2018), in order to avoid divergence of the Pesaran (2004) CSD test statistic as length of the time dimension of

the sample grows and thus avoid mistakenly rejecting the null of no cross-sectional dependence. In particular,

as Juodis and Reese (2018) suggest, the weighted CSD test statistic is estimated as

CSDW =

(
1

NT

N∑
i=1

T∑
t=1

û2itw
2
i

)−1√ 2

TN(N − 1)

T∑
t=1

N∑
i=2

i−1∑
j=1

wiûitwj ûjt

 ,

and distributed N(0, 1), with w = [w1, w2, . . . , wn] being a vector of weights, with wi corresponding to State

i ∈ I = {1, 2, . . . , 51}, j ∈ I, j 6= i, obtained from a Rademacher distribution. Following the suggestions of

Juodis and Reese (2018, see Remark 6, p.21), 30 weight vectors were randomly generated, and the distribution

of test statistics can be approximated with a single statistic as

CSDW =
1√
G

G∑
g=1

CSD
(g)
W .

According to the results, the four models tested in this study (OLS, FE, MG, CCE) had statistics of 1.772,

1.548, 1.537 and 0.842 for eq. (4.1) and 1.998, 1.994, 1.791 and 0.114 for eq. (4.2). Given the use of CSD tests

applied as ex-post diagnostic tools as means of validating the use of models (see, e.g., among others, the studies

of Holly et al., 2010; Everaert and Pozzi, 2014; Bailey et al., 2016), based on the obtained statistics, the validity

of CCE is still confirmed over the other three candidate models in both specifications.

Thus, we find that two alternative specifications for a NKPC may be estimated using panel data, in contrast

to the aggregate data. The standard inefficient and potentially inconsistent methods produce similar results

that are economically different from those produced by the CCE method. Somewhat remarkably, the CCE

22Recall that we are using monthly data.
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results are close to those produced by Gaĺı (2011) using entirely different data sets and samples. In the case of

the real-wage rigidity specification, only the CCE estimates are theoretically admissible, and point to full price

flexibility.

5 Conclusions

The Phillips curve remains at the centre of New Keynesian DSGE models of the type widely used as macroeco-

nomic benchmarks and for policy purposes. The precise specification of the wage adjustment process is crucial

for welfare-based policy evaluation. If there is heterogeneity in dynamics at the level of aggregation (the State

in our case), aggregation may lead to substantial bias in dynamics. Thus, it may be useful to examine disag-

gregated data sets, in order to unpick the average parameters. In addition, unemployment and wages are likely

to be simultaneously determined, which creates endogeneity, and there are likely to be be common correlated

errors, both further sources of potential large biases.

We therefore examine two alternative non-nested reduced-form versions of a New Keynesian wage Phillips curve

using monthly US state-level data for the period 1982-2016, taking account of the heterogeneity in dynamics

by mean-group estimation, endogeneity of unemployment by instrumentation, and the presence of common

correlated effects (CCE). This is an exercise that has not previously been undertaken. One New Keynesian

Wage Phillips Curve embodying nominal rigidity is augmented by inflation, and another operates with real-wage

rigidity. In the former case, the theoretically superior CCE estimator provides estimates that are economically

and statistically significant from the results using the conventional methods (all accounting for endogeneity)

with a steeper Phillips curve (wages being more responsive to unemployment) and higher levels of indexation.

In the latter, only the specification estimated using the CCE estimator is theoretically admissible, but implies

complete real-wage flexibility. Although we tentatively conclude that on economic grounds the specification with

nominal wage rigidity is preferred, our primary aim in this paper is not to choose between these two or other

models, a task we leave to others or future research, but to demonstrate that ignoring cross-sectional dependence

and endogeneity are serious and material omissions. We have applied this in an important context (the Phillips

curve), but hope that other researchers in similar econometric environments will follow our methodological lead.
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