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Abstract 

This paper considers a supply chain consisting of a retailer for short life cycle products facing stochastic 

customer demand and a manufacturer that initiates production upon receipt of retail orders. Departing 

from the common view of the newsvendor problem, we assume that the delivery lead time is not fixed, 

but that both the retailer and the manufacturer have the option to shorten it. Shorter lead times enable 

the retailer to place orders closer to the start of the selling season where additional information on 

customer preferences has become available, reducing demand uncertainty. In the work at hand, lead 

time is assumed to depend on the order quantity, on the supplier’s production capacity, and a fixed 

transportation delay. This paper proposes a model for determining the optimal order quantity and 

production capacity in centralized and decentralized settings. For the uncoordinated case, we show that 

if the retailer’s ability to gather and analyze additional demand information is revealed to the 

manufacturer, the arising information asymmetry between the two parties can aggravate the double 

marginalization effect and, in turn, erode supply chain efficiency. In a coordinated supply chain, 

however, both parties have an incentive to align both order quantity and investments in lead time 

reduction. To coordinate the decentralized supply chain, we propose a buy-back contract that helps to 

leverage supply chain profitability. We conclude with an outlook on future research opportunities. 
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1. Introduction 

Lead times are considered an important factor in global competition (e.g., Tersine and Hummingbird, 

1995; de Treville et al., 2004; Nguyen and Wright, 2015; Ghaderi et al., 2016). In the apparel industry, 

for example, lead times play an especially critical role due to short selling seasons that often allow 

retailers to place orders only once before the start of the selling season. In such a situation, long lead 

times oblige the retailer to order long before the start of the selling season where accurate information 

on future customer demand is often not available. This imposes a significant risk of ordering an over- 

or undersized quantity on the retailer. The international fashion retailer H&M, for example, has recently 

been reported to suffer from excess inventory that forced the company to reduce prices massively to 

clear out unsold goods. Long order lead times and a misassessment of customer preferences have been 

identified as the main causes of this development (Chaudhuri, 2018; Paton, 2018). Shorter lead times, 

however, would enable the retailer to place orders closer to the actual realization of customer demand, 

where more information on customer demand is available and where future requirements can be 

forecasted more accurately. As a consequence, companies have made various efforts to reduce 

information lead times and supply lead times, with examples including the use of electronic data 

interchange, the rationalization of logistics processes, or improved manufacturing methods (see, e.g., 

Fisher and Raman, 1996; de Treville et al., 2004). 

The work at hand studies the influence of controllable lead times on the production, pricing and ordering 

decision of a retailer and its supplier for a fashionable product. Acknowledging that the lead time of a 

product usually consists of a variety of components in practice, such as setup time, processing time, or 

queuing time (cf. Tersine and Hummingbird, 1995), we investigate the case where the delivery lead time 

depends both on the order quantity of the retailer and on the production capacity of the manufacturer 

(supplier) of the product, as well as on a fixed transportation delay. Thus, both, the retailer and the 

manufacturer are able to reduce lead times by either adjusting the retailer’s order quantity or the 

manufacturer’s production capacity. While shorter lead times enable the retailer to collect additional 

information about customer demand before placing the order, we take account of the fact that a reduction 

in demand uncertainty presupposes adequate information collection and processing capabilities at the 

retailer as well. By comparing a centrally coordinated supply chain to the decentralized case with the 

manufacturer acting as the Stackelberg leader, we gain insights into the manufacturer’s and the retailer’s 

incentives to reduce lead times and the coordination mechanisms required to attain supply chain supply 

chain efficiency. Prior research has shown that the manufacturer may have strong disincentives to reduce 

lead times as this could reduce demand uncertainty faced by the retailer which, in turn, may lead to 

lower order quantities at the retail level and reduced profit for the manufacturer (e.g., Kraiselburd et al., 

2010). In this paper, we investigate the interdependencies that exist between the retailer’s and the 

manufacturer’s decisions and propose a contract that coordinates the system and that ensures that the 

supply chain reaches its maximum expected profit.  
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The objectives of the paper are threefold: 

I. Develop an inventory control framework that models the linkage between order quantity and 

timing decisions in supply chains. This framework integrates possible investments into the 

manufacturer’s production capacity and the retailer’s ability to gather and analyze demand 

information. 

II. Highlight the potential benefits from reducing lead times and delaying the ordering decision 

that enables the retailer to collect and analyze additional demand information and to assess 

demand more accurately. 

III. Illustrate how collecting additional demand information impacts on the expected profit of 

manufacturer and retailer in order to investigate each parties’ incentives to cooperate as well as 

the efficiency of buy-back contracts in coordinating the supply chain. 

In order to address these objectives, we introduce three distinct scenarios. In the centralized scenario, 

we highlight the benefits of delaying the ordering decision. We show that an optimal investment level, 

both for the production capacity and the information processing capability, exists that maximizes the 

payoff from reducing lead times. In the decentralized uncoordinated scenario, we show that the two 

supply chain actors may have conflicting positions depending on the level of information sharing as well 

as the investments into the production capacity and demand learning capability. This conflict of interest 

could lead to a situation in which the retailer decides not to disclose demand information to the 

manufacturer, who, in turn, would not invest in additional production capacity. This causes long lead 

times and a reduction of the supply chain profitability. In the decentralized coordinated scenario, we 

propose a buy back mechanism that results in a win-win situation for both players in which the order 

quantity as well as the investments are jointly coordinated. 

The remainder of the paper is organized as follows: Section 2 reviews the related literature and 

differentiates the work at hand from earlier publications. Section 3 outlines the assumptions and 

definitions that will be used in the remaining parts of the paper, and Section 4 then introduces models 

for the centralized and decentralized supply chains. Section 5 concludes the paper and provides 

managerial insights as well as suggestions for future research. 

 

2. Literature review 

This section reviews a selection of earlier publications that are related to the models proposed in this 

paper, and pays particular attention to newsvendor models that consider multiple ordering opportunities 

associated with alternative lead times, inventory control models that consider variable lead times, and 

coordination in single-period models that take account of investment decisions. 

It has been recognized early that gathering additional demand information prior to the selling season 

facilitated by shortened order lead times provides a valuable opportunity for retailers to reduce 
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uncertainty while increasing expected profits. In the literature, quick response systems (QRS) that allow 

the retailer to order more than once before the start of a selling season or to update orders once they 

have been placed have attracted some attention. Fisher and Raman (1996), for example, studied a QRS 

with two selling periods. In this case, the retailer places an initial order before the start of the first selling 

period, then observes demand in the first selling season, and then orders for the second period. A 

comparison of the QRS to the classical newsvendor model showed that two ordering opportunities may 

significantly reduce expected total cost. Donohue (2000) studied a two-stage supply chain with a 

newsvendor-type retailer and a manufacturer having access to two production modes, one providing 

short and the other one providing long lead times. The quick response production mode was assumed 

more expensive than the slow one. The author proposed a model that supports the retailer in finding 

optimal order quantities for both production modes under the assumption that the demand forecast is 

more accurate for the fast production mode that allows the retailer some additional time to collect further 

demand information. The author also proposed a contract to coordinate the channel. Similarly, Choi et 

al. (2004) and Wang et al. (2012) investigated situations where a retailer faces multiple ordering 

opportunities, each associated with an ordering cost that decreases in the lead time. Placing the order 

late would enable the retailer to collect further demand information and to use this information for 

updating the demand distribution of the product, albeit at the expense of higher ordering costs. Wang et 

al. (2014) investigated the case of two ordering opportunities for two competing retailers that sell a 

substitutable product. Both ordering opportunities were assumed to result in the same cost. The first one, 

however, enables both retailers to make a credible early commitment. The analysis revealed that an early 

commitment is especially beneficial in case demand uncertainty is low or competition intense. Serel 

(2009) studied another QRS with two ordering opportunities. After the initial order has been placed, the 

retailer collects additional market information to update the demand forecast before placing the second 

order. In addition, the author assumed that the selling price of the second order is unknown, such that 

the decision maker has to balance the advantage of late orders with the risk of a price increase. In a 

second version of the model, the author assumed that the first order may be cancelled partially or 

completely after updating the demand forecast. Kraiselburd et al. (2010) studied the case of a two-stage 

supply chain where a supplier has the opportunity to reduce lead times to zero free of cost, and where 

the retailer, in turn, has the option to increase demand at an investment. Reducing lead times to zero 

would enable the retailer to observe the realization of the uncertain demand before ordering and 

receiving the products, which would imply that all uncertainty is removed at the time the retailer decides 

on the order quantity. The authors investigated under which conditions the supplier should reduce lead 

times, and showed that in some cases, the supplier prefers not to shorten lead time to set an incentive to 

the retailer to stimulate demand and to increase its order quantity due to the presence of some 

uncertainty. More recently, Yang et al. (2015) explored the impact of QRS for various supply chain 

structures with strategic customer behavior. In this setting, the retailer places an initial order for a given 

wholesale price before the start of the selling season. Until the beginning of the selling season when 
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more demand information is gathered, the retailer with quick response capability observes the accurate 

demand and has the option to submit a second order at an increased wholesale price. It was shown that 

the value of QRS is higher in centralized systems if the extra cost of quick response is relatively low, 

and that it is higher in decentralized systems if the extra cost of quick response is high.  

Another stream of research that is relevant to this paper considers periodic or continuous inventory 

control models and assumes that manufacturing and transportation lead times can be shortened. Lower 

lead times enable the buying company to reduce safety stocks that have to be kept in the system, and 

hence the system’s expected total cost. Some authors also assumed that lead time influences the 

customer’s buying decision, such that shorter lead times result in an increase in customer demand (e.g., 

Nguyen and Wright, 2015; Modak and Kelle, 2019). One of the first papers that studied lead time 

reduction in an inventory control model is the one of Liao and Shyu (1991), who used a piecewise linear 

crashing cost function to model the relationship between lead time crashing cost and lead time length. 

For a given lot size and normally distributed demand, they calculated an optimal lead time and showed 

that reducing lead time may result in lower expected total costs. This paper was extended by Ben-Daya 

and Raouf (1994), who treated both lead time and order quantity as decision variables, and by Chandra 

and Grabis (2008), who assumed a lead time-dependent procurement cost. Other works in this area are 

those of Hoque (2007), Jha and Shanker (2009), and Srinivas and Rao (2010). Some authors also 

considered the case where the lead time length varies with the order quantity. Kim and Benton (1995), 

for instance, assumed that the production lead time is a linear function of the lot size, and that a queuing 

factor has to be considered to account for the time a lot spends in queues or materials handling processes. 

Ben-Daya and Hariga (2004) studied the case of a supply chain consisting of a single supplier and a 

single buyer and assumed that lead time varies linearly with the lot size and that demand during lead 

time is stochastic and normally distributed. The authors showed that under lot size-dependent lead times, 

order quantities are usually smaller than in case of the classical (𝑅, 𝑞) inventory model. The work of 

Ben-Daya and Hariga (2004) was extended by Glock (2012), who took account of different measures 

for reducing lead times, namely increasing the production rate, reducing the order quantity, or crashing 

the queuing factor. Extensions of these works that took account of different types of stockout cost, raw 

material procurement or other demand distributions are those of AlDurgham et al. (2017), Hossain et al. 

(2017) and Braglia et al. (2018), for example. 

Works that studied production capacity decisions at the newsvendor or the newsvendor’s supplier often 

assumed that the production capacity introduces a constraint into the model that limits the newsvendor’s 

order quantity to some value. Chen et al. (2010), for example, studied a supplier-retailer supply chain 

where the supplier decides on the production capacity in the first step, and where the retailer places the 

order after a demand update in the second step. The authors proposed a risk and profit sharing contract 

to coordinate the channel. Serel (2014) studied a multi-item newsvendor model where the production 

capacity at the supplier is uncertain. To avoid supply shortages, the newsvendor can reserve a certain 

amount of capacity in a first step at a fixed cost per unit capacity reserved. The reservation guarantees 
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that the capacity is available afterwards when the newsvendor has to decide on its order quantity. The 

capacity beyond the reserved amount would still be uncertain, though. Mohammadivojdan and Geunes 

(2018) investigated a newsvendor facing multiple capacity-constrained suppliers each offering an 

individual discount scheme to the newsvendor. In this case, the challenge for the newsvendor is to select 

the right set of suppliers and to benefit from the discount schemes without increasing the overstock risk 

too much. Bicer and Seifert (2017) studied a newsvendor model with multiple ordering opportunities 

and a capacity constraint. For each ordering opportunity, the newsvendor can update the demand 

forecast, which leads to a lower demand uncertainty as the selling season approaches. The forecast 

update thus sets an incentive to postpone the ordering decision, while the capacity constraint induces 

the newsvendor to order early to avoid that the constraint interferes with the ordering decision in a later 

sub-period. The authors showed that especially in cases where lead times are long, the newsvendor can 

increase its expected profit by increasing the production capacity. 

The work at hand extends the literature on the coordination of two-echelon supply chains in two respects. 

First, it assumes that the delivery lead time depends on the order quantity, such that higher order 

quantities force the retailer to place the order earlier. As in prior research, we assume that shortening 

lead time reduces demand uncertainty (see, e.g., Özer et al., 2007; Wang et al., 2012). In contrast to 

earlier works that assumed that the retailer faces a finite set of ordering opportunities, this paper 

considers the case where the lead time is a continuous function of the retailer’s order quantity (see, for 

the latter assumption, also Kim and Benton (1995) and Ben-Daya and Hariga (2004)). The order quantity 

decision, therefore, directly impacts the lead time and the chance to collect additional demand 

information closer to the start of the selling season. We also assume that the retailer may improve its 

capability to assess future customer demand, for example by initiating some marketing-type expenditure 

or by investing in data processing facilities. The higher the retailer’s information collection and 

processing capability, the better is he/she able to assess future demand variability. The proposed 

approach also takes account of the fact that in a make-to-order environment, the order processing time 

at the manufacturer usually directly depends on the production quantity, such that processing a smaller 

lot enables the manufacturer to initiate the shipment earlier. Secondly, this paper assumes that the 

manufacturer may adjust its production capacity to speed up or slow down the production process. 

Controllable production capacities have frequently been investigated in the context of different 

inventory control problems (e.g., Khouja, 1995; Glock, 2011), but they have not attracted much attention 

in a newsvendor setting yet, and earlier works in this area were subject to quite restrictive assumptions 

(e.g., varying the production capacity is free of cost, or there are only two possible capacity levels). In 

the setting analyzed in this paper, we assume that the manufacturer controls the production capacity, 

while the retailer decides on how much to order at the manufacturer. The scenario investigated here 

enables us to analyze the incentives of the two parties to shorten lead times and to reduce demand 

uncertainty. In addition, a contract is proposed that coordinates the supply chain to maximize the 

expected total profit. 
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3. Supply chain setting and assumptions 

This paper considers a two-echelon supply chain consisting of a retailer of a short life cycle product that 

faces a stochastic consumer demand and a manufacturer that initiates production upon the receipt of 

retail orders. Supply lead times between the manufacturer and the retailer depend on the retailer’s order 

quantity, the manufacturer’s production capacity (production rate) and a transportation delay. In such a 

make-to-order scenario, reducing order quantities and transportation delays or providing higher 

production capacities evidently reduces supply lead times. This, in turn, enables the retailer to observe 

additional demand information prior to the upcoming selling season, for example, by analyzing pre-

season sales of related products or fashion trends in social media, which would improve the quality of 

consumer demand forecasts and reduce uncertainty. In case the retailer’s ability to gather and analyze 

additional demand information is not revealed to the manufacturer, the arising information asymmetry 

between the two parties aggravates the double marginalization effect in uncoordinated supply chains 

and, in turn, erodes supply chain efficiency. In a coordinated supply chain, however, both parties not 

only have an incentive to align quantity decisions, but also investments into the production capacity and 

the capability to process pre-season demand information. The focus of the paper is thus on examining 

supply chain coordination in the presence of strategic investments for reducing demand uncertainty 

controlled by the manufacturer and the retailer subject to asymmetric information about the outcome of 

such investments. 

The notation used throughout this paper is summarized as follows: 

𝛼 variable cost for one unit of production capacity 

𝛽 variable cost for the ability to gather and process additional demand information 

𝐵𝑖 buyback price per unit offered by the manufacturer in scenario 𝑖 

𝐶 production cost per unit for the manufacturer 

𝑘 scaling parameter for the ability to gather and process additional demand information with 𝑘 >

0 

𝐿(𝑄) quantity-dependent manufacturing and transportation lead time 

𝜇 mean demand 

𝑅 retail price per unit charged to consumers 

𝑝 production capacity (or production rate) of the manufacturer in units per unit of time 

𝑄𝑖 retailer’s order quantity placed at the manufacturer in scenario 𝑖 

𝜎 standard deviation of customer demand 



8 

 

𝜏 fixed transportation component of the lead time 

𝑉 salvage value per unit after the selling season 

𝑊𝑖 wholesale price per unit charged to the retailer in scenario 𝑖 

𝑥 random demand in the selling period with 𝑓𝑥(∙), 𝐹𝑥(∙) as pdf and cdf of x 

We use the hat operator, ̂ , to denote estimated values. Further, the indices C, DU and DC refer to the 

centralized (C), the decentralized uncoordinated (DU) and the decentralized coordinated (DC) scenarios. 

Additional nomenclature will be introduced where required. 

 

The manufacturer is assumed the Stackelberg leader in this setting who anticipates the reaction of the 

retailer to the wholesale price and who initiates production at the capacity level p upon receipt of the 

order. Providing a capacity level p causes a variable unit capacity cost α at the manufacturer. Given the 

manufacturer’s pricing decision, the retailer places a single order prior to the start of the selling period 

and is not able to release additional orders or cancel the existing order before or during the selling period. 

The order can be placed 𝐿𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 days before the start of the selling season at the earliest, or be delayed 

and placed 𝐿(𝑄) days prior to the start of the selling season to improve the retailer’s knowledge about 

the demand distribution (note that 𝐿𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 corresponds to the earliest point in time at which the retailer 

can commit to order quantities). In the fashion industry, for example, retailers can commonly place 

initial orders following big trade shows between 3 to 6 months prior to the selling season depending on 

the manufacturer’s capacities (cf. Sen, 2008). Once production has been completed, the order is shipped 

to the retailer causing a fixed transportation delay of 𝜏 days. The effective lead time 𝐿(𝑄) ≤ 𝐿𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 

can hence be described as a function of the capacity level 𝑝, the order quantity 𝑄, and the fixed 

transportation duration 𝜏 (for a more detailed discussion, please be referred to Kim and Benton (1995) 

or Ben-Daya and Hariga (2004)): 

𝐿(𝑄) = 𝑄 𝑝⁄ + 𝜏  (1) 

During the selling season, a normally distributed demand with average 𝜇 and standard deviation 𝜎 

occurs. For items sold during the selling season, the retailer earns a unit revenue 𝑅, and the remaining 

items can be sold at a discount price 𝑉 at the end of the season or returned to the manufacturer at a price 

of 𝑉 + 𝐵𝑖 in case a buyback contract exists. 

If the ordering decision is made 𝐿(𝑄) ≤ 𝐿𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 days before the start of the selling season, 

presupposing higher production capacities and/or lower order quantities, the retailer is able to gather 

and analyze additional information about the future consumer demand in order to revise his/her 

forecasts. The evolution of forecasts over time can be considered as a special case of the martingale 

method of forecast evolution (MMFE) according to which successive forecasts of the demand are 

supposed to form a Martingale process (cf. Hausman, 1969; Heath and Jackson, 1994; Graves et al., 
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1998). Given that the consumer demand is a random variable and realized at the start of the selling 

season, we can assume that market signals gradually unveiled during the lead time will improve the 

demand forecast. This forecast process can be modelled as an additive or a multiplicative MMFE. For 

the additive model, the forecast adjustments at time 𝑡 ∈ {1,… , 𝑇} given as 𝜀𝑡 = 𝑥𝑡 − 𝑥𝑡−1 , where 𝑥𝑡 is 

the demand in period 𝑡, are independent and normally distributed with mean 0 and variance 𝜎𝑡
2, whereas 

for the multiplicative model, the forecast adjustments at time 𝑡 ∈ {1,… , 𝑇} is given as 𝜀𝑡 = 𝑙𝑜𝑔(𝑥𝑡) −

𝑙𝑜𝑔(𝑥𝑡−1), again normally distributed with mean −𝜎𝑡
2/2 and variance 𝜎𝑡

2 (Heath and Jackson, 1994). 

Let 𝑦𝑛 be the (mean-adjusted) cumulative forecast adjustment, then the estimated demand after 

observing 𝑦𝑛 under additive (multiplicative) MMFE is normal (log-normal) with parameters 

(𝜇 + 𝑦𝑛, �̂�𝑛
2) and �̂�𝑛

2 = ∑ 𝜎𝑡
2𝑇

𝑡=𝑛+1  representing the residual uncertainty after time 𝑛. Hence, �̂�𝑛
2 

decreases in time, which captures one of the core characteristics of the demand forecasting process 

stating that forecasts become more accurate with shortening forecast horizon. In addition, due to the 

relationship between �̂�𝑛
2 and 𝑡, uncertainty diminishes linearly over time (Graves et al., 1998). This 

linear reduction in uncertainty under the additive (multiplicative) MMFE is equivalent to a demand 

forecast evolving according to a Brownian (geometric Brownian) motion. 

Consequently, it is assumed in the following that perfect knowledge of the consumer demand variance 

as faced by the retailer, 𝜎2, can only be achieved just at the start of the selling season (i.e., for a perfect 

just-in-time case obtained if 𝑝 tends to infinity and 𝜏 is equal to zero). With increasing temporal distance 

to the selling season, the estimated variance of consumer demand, �̂�2, is assumed to deviate from the 

actual value of 𝜎2 by the factor 𝑘𝐿(𝑄) following a linear relationship: 

�̂�2(𝑄) = 𝑘𝐿(𝑄) + 𝜎2  (2)  

where 𝑘 > 0 is a scaling parameter measuring the retailer’s ability to gather and analyze additional 

information about the demand variance over time. A lower value of 𝑘 corresponds to enhanced abilities 

in assessing the actual demand variance over time. In practice, 𝑘 could be decreased by investing in 

marketing analytics or social media investigations, wherefore it is assumed in the following that the 

retailer faces a unit cost 𝛽 linear in 
1

𝑘
 to capture this investment opportunity. 

Consequently, at the time an order is placed, the retailer is not accurately aware of the actual moments 

of the demand distribution 𝑁 with mean 𝜇 and standard deviation 𝜎, and instead considers an estimated 

normally distributed demand �̂�(𝑄) with mean �̂� = 𝜇 and standard deviation �̂�(𝑄) = √𝑘𝐿(𝑄) + 𝜎2 . In 

the following, 𝑓(𝑥, 𝑄) and �̂�(𝑥, 𝑄) refer to the PDF and CDF associated with �̂�(𝑄) given as: 

𝑓(𝑥, 𝑄) =
1

�̂�(𝑄)√2𝜋
𝑒
−
1

2
[
𝑥−𝜇

�̂�(𝑄)
]
2

 (3)  

�̂�(𝑦, 𝑄) = ∫ 𝑓(𝑥, 𝑄)𝑑𝑥
𝑦

−∞
 (4) 
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When an ordering decision is made 𝐿𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 units of time prior to the start of the selling season, the 

retailer is subject to the worst information about the demand variability and has to rely on an estimation 

of the demand distribution �̂�𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 with average �̂� = 𝜇 and standard deviation �̂� = √𝑘𝐿𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 + 𝜎2.  

By delaying the ordering decision, and hence ordering 𝐿(𝑄) days before the start of the selling season 

instead of 𝐿𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 days before the start of the selling season with 𝐿(𝑄) < 𝐿𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 , the retailer improves 

his/her knowledge about the moments of the demand distribution and consequently decreases the 

estimated variance until facing the actual distribution at the start of the selling season. The imparted 

bounds on the lead time 𝜏 ≤ 𝐿(𝑄) ≤ 𝐿𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 limit the values the estimated standard deviation of 

demand may adopt, i.e. √𝑘𝜏 + 𝜎2 < �̂�(𝑄) ≤ √𝑘𝐿𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 + 𝜎2. The definition of an upper bound on 

𝐿(𝑄) is also equivalent to specifying a lower bound on the production capacity 𝑝 for a given order 

quantity. If an order is placed 𝐿𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 units of time prior to the start of the selling season, which would 

be associated with the maximum value of the estimated standard deviation �̂�𝑚𝑎𝑥 = √𝑘𝐿𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 + 𝜎2, 

the optimal order quantity, 𝑄𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡, is nothing else than the classical newsvendor order quantity solving 

�̂�𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡(𝑄𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡) =
𝑅−𝐶

𝑅−𝑉
  obtained for the estimated demand distribution �̂�𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡. Such an order 

quantity needs a minimum production capacity 𝑝𝑚𝑖𝑛 =
𝑄𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 

𝐿𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 −𝜏
 in order to be delivered to the retailer 

at the start of the selling season. 

 

4. Model development 

4.1. Centralized supply chain 

First, we consider the benchmark scenario of a centralized supply chain that aims on maximizing the 

supply chain’s expected total profit. The expected total profit function in this case is the same as in the 

classical newsvendor model with two notable exceptions. The standard deviation of the consumer 

demand is a function of the order quantity 𝑄 which determines the point in time when the ordering 

decision is made and thus the uncertainty faced. Furthermore, investment costs for the manufacturer’s 

production capacity and the retailer’s demand analysis capability are considered. In the centralized case, 

if both parties know the accurate value of the demand distribution 𝑁 as revealed at the beginning of the 

selling season, the actual expected profit as a function of the order quantity 𝑄 can be written as: 

𝜋𝐶(𝑄) = (𝑅 − 𝐶)𝜇 − (𝑅 − 𝐶)∫ (𝑥 − 𝑄)𝑓(𝑥)𝑑𝑥
+∞

𝑥=𝑄
− (𝐶 − 𝑉)∫ (𝑄 − 𝑥)𝑓(𝑥)𝑑𝑥

𝑄

𝑥=0
− 𝛼𝑝 −

𝛽

𝑘
 (5) 

The first part of 𝜋𝐶(𝑄) equals the well-known newsvendor expected profit function considering 

expected revenues reduced by expected overage and underage costs, which is complemented by the 

investment for providing the production rate, 𝛼𝑝, and the investment required to enhance the retailer’s 

capability to gather and analyze additional information, 
𝛽

𝑘
. In the case of perfect knowledge of the 

consumer demand distribution, both parties would agree on ordering the quantity 𝑄∗ that maximizes the 
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expected profit for the actual distribution 𝑁. Such a quantity is nothing else than the classical 

newsvendor order quantity associated with the distribution 𝑁 and solving 𝐹(𝑄∗) =
𝑅−𝐶

𝑅−𝑉
. However, since 

the ordering and production decision is made 𝐿(𝑄) days before the start of the selling season, the actual 

demand variance is unknown at that time and has to be estimated as �̂�2(𝑄), wherefore the relevant 

expected profit function for the supply chain becomes: 

�̂�𝐶(𝑄) = (𝑅 − 𝐶)𝜇 − (𝑅 − 𝐶)∫ (𝑥 − 𝑄)𝑓(𝑥, 𝑄)𝑑𝑥
+∞

𝑥=𝑄
− (𝐶 − 𝑉)∫ (𝑄 − 𝑥)𝑓(𝑥, 𝑄)𝑑𝑥

𝑄

𝑥=0
− 𝛼𝑝 −

𝛽

𝑘
 (6) 

In this case, both parties would agree on ordering the quantity 𝑄𝐶
∗  that maximizes the expected profit 

based on the estimated demand distribution at the time the decision is made, �̂�(𝑄). The actual expected 

profit realized by the supply chain is consequently given as: 

𝜋𝐶
∗ = 𝜋𝐶(𝑄𝐶

∗)   (7) 

Thus, the relative benefit of shortening the lead time from  𝐿𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 to 𝐿(𝑄𝐶
∗) can be calculated as: 

𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝐶
𝐿 =

𝜋𝐶(𝑄𝐶
∗)−𝜋𝐶(𝑄

𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡)

𝜋𝐶(𝑄
𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡)

  (8) 

 

The following proposition enables finding the optimal order quantity for the centralized case. 

Proposition 1. 

For a given manufacturing capacity 𝑝, the optimal order quantity in the centralized case solves the first 

derivative condition satisfying: 

(𝑅 − 𝑉) [�̂�(𝑄𝐶
∗ , 𝑄𝐶

∗) + �̂�(𝑄𝐶
∗)

𝜕�̂�(𝑄)

𝜕𝑄
(𝑄𝐶

∗)𝑓(𝑄𝐶
∗ , 𝑄𝐶

∗)] = (𝑅 − 𝐶)  (9) 

• If  𝑘 − 4𝜎2𝑝2 − 4𝑘𝑝(𝜇 + 𝑝𝜏) < 0, the expected profit function �̂�𝐶(𝑄) is concave and the first 

derivative condition has one unique solution. 

• If  𝑘 − 4𝜎2𝑝2 − 4𝑘𝑝(𝜇 + 𝑝𝜏) ≥ 0, the expected profit function �̂�𝐶(𝑄) is not concave. The first 

derivative condition, however, has at minimum one solution and at maximum two solutions. For the 

latter case, the choice of the optimal order quantity depends on the sign of 

(𝑅 − 𝑉) [�̂�(0,0) + �̂�(0)
𝜕�̂�(𝑄)

𝜕𝑄
(0)𝑓(0,0)] − (𝑅 − 𝐶): 

o If the sign is positive, the smallest solution maximizes the expected profit. 

o Otherwise, the largest solution maximizes the expected profit. 

The proof of Proposition 1 is provided in Appendix A. 

 

Given this result, it is worth mentioning that in case the standard deviation of demand is independent of 

the order quantity 𝑄, i.e., 
𝜕�̂�(𝑄)

𝜕𝑄
= 0, the optimal order quantity obtained by Proposition 1 corresponds 
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to the classical newsvendor solution. Even if we assume a linear relationship between the variance  of 

demand and 𝐿(𝑄) (i.e., �̂�(𝑄) = √𝑘𝐿(𝑄) + 𝜎2 with 𝐿(𝑄) =
𝑄

𝑝
+ 𝜏), the optimal order quantity obtained 

by Proposition 1 remains valid for each convex function �̂�(𝑄). As mentioned earlier, the optimal 

solution obtained by Proposition 1 is valid under the condition that negative demands can be neglected 

as a result of the parameter configuration. By setting a value for 𝐿𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡, the standard deviation  �̂�(𝑄) 

is bounded by an upper value of 𝜎𝑚𝑎𝑥 = √𝑘𝐿𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 + 𝜎2. 

 

In the following, we consider a numerical example of a normally distributed consumer demand with 

mean 𝜇 = 100 and an actual standard deviation 𝜎 = 5. An ordering decision could be made no earlier 

than 182 days (6 months) before the start of the selling season (see Sen, 2008). We set the fixed 

transportation duration to 𝜏 = 30 days (see Arikan et al., 2014), successively increase the production 

capacity from 𝑝𝑚𝑖𝑛 = 𝑄𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡  (𝐿𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡  − 𝜏)⁄  to 10 units/day and consider two values for the 

retailer’s information processing capability before the selling season, namely 𝑘 = {5,10}. We set the 

unit selling price to 𝑅 = 50 and the unit discount price to 𝑉 = 5 and consider two possible values of the 

production cost  𝐶 = {10,45}. The former (latter) value models a high (low) margin product where 

underage costs are more (less) important than overage costs. We also consider three possible values of 

the unit cost associated with providing the production rate 𝛼 = {0,1,5} and three possible values for the 

capability investment cost 𝛽 = {0,100,300}. 

Figure 1 illustrates the evolution of the optimal order quantity for an increasing production capacity 𝑝 

and for the different values of 𝑘, and Figure 2 illustrates the associated production and transportation 

lead time. The behavior of 𝑄𝐶
∗  can be explained as follows. As in the classical newsvendor problem, the 

order quantity increases (decreases) with the standard deviation of demand for high (low) margin 

products as underage (overage) cost is more important than overage (underage) cost. As shown in Figure 

2, an increase in 𝑝 leads to a reduction in lead time and the estimated standard deviation of demand 

which, in turn, leads to a decreasing (increasing) optimal order quantity for a high (low) margin product. 

The relative benefit resulting from shortened lead times is illustrated in Figure 3 (Figure 4) for the high 

(low) margin product. 
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Figure 2 further shows that a higher information processing capability (lower values of 𝑘) leads to 

slightly increasing lead times. Obviously, if the retailer is able to process demand information well even 

though the lead time is long, there is less pressure to shorten lead times than in a scenario where 𝑘 adopts 

high values. This also leads to higher order quantities for lower 𝑘-values, as there is less pressure on the 

retailer to shorten lead time by ordering less. Reducing lead times and thus enabling the retailer to gather 

additional demand information is clearly beneficial for the centralized supply chain as illustrated in 

Figures 3 and 4; this is especially the case in situations where the information processing capability of 

the retailer is low (high values of 𝑘), as the only way to improve demand information sufficiently are 

shorter lead times in this case. If the production capacity is set to 𝑝𝑚𝑖𝑛, there is still a benefit due to the 

adjustment of the information processing capability in the centralized scenario. The influence of 𝑘 on 

the relative benefit of shortening lead times again depends on the product margin (high- vs. low-margin 

product). It is worthwhile to notice that the benefits that result from postponing the ordering decision 

and gathering additional demand information are higher for the low-margin product than for the high-

margin setting (compare Figures 3 and 4). For the low-margin product, the cost of overstocking are 

 

Figure 1: Optimal order quantity for alternative p-values 

 

 

Figure 2: Optimal order lead time for alternative p-values 

  

Figure 3: Benefit of postponing the order decision for perfect 

demand knowledge: C=10 (high-margin setting) 

  

Figure 4:Benefit of postponing the order decision for perfect 

demand knowledge: C=45 (low-margin setting) 
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higher than the cost of understocking; the decreased risk of overstocking that results from postponing 

the order therefore benefits the low-margin product more than the high-margin product. 

 

 

The expected profit estimated when ordering, �̂�𝐶(𝑄𝐶
∗), as well as the actual expected profit achieved in 

case of perfect knowledge of the demand variance, 𝜋𝐶(𝑄𝐶
∗), are illustrated in Figures 5 (for the high-

margin setting) and 6 (for the low-margin setting), and the evolution of �̂�∗ and 𝑝∗with increasing values 

of 𝛼 is illustrated in Figures 7 and 8 for the high- and low-margin setting. It is interesting to note that 

the estimated expected profit underestimates the actual expected profit. The result is that the 

manufacturer tends to select a production capacity that is larger than the one s/he would select if the 

standard deviation of demand was accurately known. The incentive to invest in higher production 

capacities when demand uncertainty is overestimated can be explained by the higher marginal value of 

the investment at a higher perceived level of uncertainty. As similar effect can be observed in the 

electronics industry in which OEMs have an incentive not to share true forecasts of the demand 

variability in order to shift risks to contract manufacturers that will have to build higher capacities in 

 

Figure 5: Optimal estimated (dashed) and actual (solid) expected 

profit: C=10, k=5, 𝛽 = 0 (high-margin setting) 

 

Figure 6:Optimal estimated (dashed) and actual (solid) expected 

profit: C=45, k=5, 𝛽 = 0 (low-margin setting) 

 

Figure 7: Optimal estimated (dashed) and actual (solid) 

production rate : C=10, k=5, 𝛽 = 0 (high-margin setting) 

 

Figure 8:Optimal estimated (dashed) and actual (solid) production 

rate: C=45, k=5, 𝛽 = 0 (low-margin setting) 
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advance to receiving the actual orders. This effect is also illustrated in Figures 7 and 8, which leads to a 

loss in expected profit. Both estimated and actual expected profit increase for higher values of the 

production capacity 𝑝 if increasing 𝑝 is free of cost (𝛼 = 0). In the case where 𝛼 > 0, an increasing 

manufacturing capacity provides more flexibility to take advantage of lead time reductions by 

postponing the ordering decision, but it entails investment cost for the supply chain. For this reason, 

when 𝛼 > 0, there is an optimal value of the production capacity, calculated �̂�∗ and actual 𝑝∗, that 

optimizes the trade-off between the positive effect of lead time reductions and the cost associated with 

increasing capacities. As can be seen, higher values of 𝛼 induce a lower production capacity to avoid 

high investment cost. 

 

4.2. Decentralized uncoordinated supply chain 

In the following, we analyze the decentralized uncoordinated scenario and assume that the manufacturer 

and the retailer are two independently owned and managed firms. Both parties aim to maximize their 

own expected profit and do not coordinate their decisions. In this case, the manufacturer decides on the 

unit wholesale price 𝑊𝐷𝑈 and the production capacity 𝑝 and, after observing both values, the retailer 

decides on his/her order quantity 𝑄𝐷𝑈 and his/her scaling parameter 𝑘. The retailer's objective function 

is the same as the one in the centralized scenario with the exception that the retailer now pays a wholesale 

price 𝑊𝐷𝑈 to the manufacturer, whose unit production cost is still 𝐶. The cost for the capacity investment 

is carried by the manufacturer. The estimated expected profit for the retailer in this case becomes: 

�̂�𝐷𝑈
𝑅 (𝑄) = (𝑅 −𝑊𝐷𝑈)𝜇 − (𝑅 −𝑊𝐷𝑈) ∫ (𝑥 − 𝑄)𝑓(𝑥, 𝑄)𝑑𝑥

+∞

𝑥=𝑄
− (𝑊𝐷𝑈 − 𝑉)∫ (𝑄 −

𝑄

𝑥=0

𝑥)𝑓(𝑥, 𝑄)𝑑𝑥 − 
𝛽

𝑘
  (10) 

The actual expected profit is again calculated based on the actual demand distribution as in the 

centralized case: 

𝜋𝐷𝑈
𝑅 (𝑄) = (𝑅 −𝑊𝐷𝑈)𝜇 − (𝑅 −𝑊𝐷𝑈) ∫ (𝑥 − 𝑄)𝑓(𝑥)𝑑𝑥

+∞

𝑥=𝑄
− (𝑊𝐷𝑈 − 𝑉)∫ (𝑄 − 𝑥)𝑓(𝑥)𝑑𝑥

𝑄

𝑥=0
− 

𝛽

𝑘

  (11) 

The manufacturer, who is assumed the Stackelberg leader in this setting, anticipates the reaction of the 

retailer to his/her decision on the wholesale price 𝑊𝐷𝑈 and the production capacity 𝑝 and considers this 

reaction in optimizing his/her decision variables. For the manufacturer, there are two possible ways to 

link 𝑊𝐷𝑈 to 𝑄𝐷𝑈 depending on his/her awareness of the retailer’s ordering strategy: 

• Perfect Information (PI) case: The manufacturer is fully aware of the retailer’s strategy and has 

perfect information about the information processing capability parameter 𝑘 as well as the 

relationship between lead time 𝐿(𝑄) and the standard deviation of consumer demand. 
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• No Information (NI) case: There is asymmetric information about the estimated demand 

variance. The manufacturer has to make his/her decision 𝐿𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 days before the start of the 

selling season, and consequently assumes the worst estimation of the demand distribution 

�̂�𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 with mean 𝜇 and standard deviation �̂�𝑚𝑎𝑥.  We assume in the following that 𝜇, �̂�𝑚𝑎𝑥 

as well as the retail and discount prices are known to the manufacturer, and that the manufacturer 

only lacks information on the improved estimate of the demand variance when the retailer delays 

the order from 𝐿𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 to 𝐿(𝑄). 

The perfect information case can be found in practice when the retailer either deliberately shares 

obtained demand information with the manufacturer or the manufacturer estimates the demand 

parameter accurately over time based on other information available. Under the Collaborative Planning, 

Forecasting and Replenishment (CPFR) standards established by the Voluntary Interindustry Commerce 

Solutions (VICS) Association, for example, several global retailers and their suppliers have realized 

substantial benefits from integrating their inventory planning, forecasting and replenishment processes 

and from sharing information, developing joint forecasts and jointly crafting replenishment plans. 

Although CPFR implementations have turned out to be quite complex in practice due to the exchange 

of large amounts of forecasting-related data, the integration of different functional areas from multiple 

firms and the consideration of various other factors such as promotions, substantial benefits of sharing 

information with the supply chain have been reported (see Yao et al., 2013). In contrast, the no 

information scenario refers to the case where no information about demand is shared between the retailer 

and the manufacturer. Thus, the manufacturer has only poor information about the actual demand and 

assumes the worst estimation of the demand distribution. This scenario can also be frequently observed 

in practice. 

As was shown in the analysis of the centralized scenario, the estimated expected profit is maximized for 

an optimal order quantity solving (note that we use the results of the centralized scenario by replacing 

𝐶 by 𝑊𝐷𝑈): 

(𝑅 − 𝑉) [�̂�(𝑄𝐷𝑈
∗ , 𝑄𝐷𝑈

∗ ) + �̂�(𝑄𝐷𝑈
∗ )

𝜕�̂�(𝑄)

𝜕𝑄
(𝑄𝐷𝑈

∗ )𝑓(𝑄𝐷𝑈
∗ , 𝑄𝐷𝑈

∗ )] = (𝑅 −𝑊𝐷𝑈)  (12) 

Under the PI scenario, the function linking the order quantity to the wholesale price is deterministic as 

far as the manufacturer is concerned: 

𝑊𝐷𝑈
𝑃𝐼 = 𝑅 − (𝑅 − 𝑉) [�̂�(𝑄𝐷𝑈 , 𝑄𝐷𝑈) + �̂�(𝑄𝐷𝑈)

𝜕�̂�(𝑄)

𝜕𝑄
(𝑄𝐷𝑈)𝑓(𝑄𝐷𝑈, 𝑄𝐷𝑈)]  (13) 

The NI scenario can be seen as a special case of the PI scenario considering the �̂�𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 demand 

distribution and ignoring the linkage between �̂� and 𝑄𝐷𝑈: 

𝑊𝐷𝑈
𝑁𝐼 = 𝑅 − (𝑅 − 𝑉)[�̂�𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡(𝑄𝐷𝑈)]  (14) 
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The manufacturer’s decision in this case is to choose the wholesale price 𝑊𝐷𝑈
𝑗
 (𝑗 = 𝑃𝐼, 𝑁𝐼) that 

maximizes its own expected profit 𝜋𝐷𝑈
𝑀,𝑗(𝑄𝐷𝑈): 

𝜋𝐷𝑈
𝑀,𝑗(𝑄𝐷𝑈) = (𝑊𝐷𝑈

𝑗
− 𝐶)𝑄𝐷𝑈 − 𝛼𝑝  (15) 

 

Proposition 2. 

In the Perfect Information (PI used as superscript) scenario: 

1. The optimal order quantity of the retailer has to satisfy: 

[�̂�(𝑄𝐷𝑈
𝑃𝐼∗, 𝑄𝐷𝑈

𝑃𝐼∗) + �̂�(𝑄𝐷𝑈
𝑃𝐼∗)

𝜕�̂�(𝑄)

𝜕𝑄
(𝑄𝐷𝑈

𝑃𝐼∗)𝑓(𝑄𝐷𝑈
𝑃𝐼∗, 𝑄𝐷𝑈

𝑃𝐼∗) + [{1 −
𝜕�̂�(𝑄)

𝜕𝑄
(𝑄𝐷𝑈

𝑃𝐼∗)
𝑄𝑃𝐼𝐷𝑈

∗ −𝜇

𝜎(𝑄𝐷𝑈
𝑃𝐼∗)

}
2

−

{
𝜕�̂�(𝑄)

𝜕𝑄
(𝑄𝐷𝑈

𝑃𝐼∗)}
2
] 𝑄𝐷𝑈

𝑃𝐼∗𝑓(𝑄𝐷𝑈
𝑃𝐼∗, 𝑄𝐷𝑈

𝑃𝐼∗)] =
𝑅−𝐶

𝑅−𝑉
  (16) 

2. The corresponding optimal wholesale price is: 

𝑊𝐷𝑈
𝑃𝐼∗ = 𝐶 + (𝑅 − 𝑉) {1 −

𝜕�̂�(𝑄)

𝜕𝑄
(𝑄𝐷𝑈

𝑃𝐼∗)
𝑄𝐷𝑈
𝑃𝐼∗−𝜇

�̂�(𝑄𝐷𝑈
∗ )

}
2

𝑄𝐷𝑈
𝑃𝐼∗𝑓(𝑄𝐷𝑈

𝑃𝐼∗, 𝑄𝐷𝑈
𝑃𝐼∗)  (17) 

3. The optimal expected profit for the manufacturer is: 

𝜋𝐷𝑈
𝑀,𝑃𝐼∗ = (𝑅 − 𝑉) {1 −

𝜕�̂�(𝑄)

𝜕𝑄
(𝑄𝐷𝑈

𝑃𝐼∗)
𝑄𝐷𝑈
𝑃𝐼∗−𝜇

�̂�(𝑄𝐷𝑈
𝑃𝐼∗)

}
2

𝑄𝐷𝑈
𝑃𝐼∗2𝑓(𝑄𝐷𝑈

𝑃𝐼∗, 𝑄𝐷𝑈
𝑃𝐼∗) (18) 

4. The optimal actual expected profit for the retailer is: 

𝜋𝐷𝑈
𝑅,𝑃𝐼∗ = 𝜋𝐷𝑈

𝑅 (𝑄𝐷𝑈
𝑃𝐼,∗) (19) 

The No Information scenario (NI used as subscript) is obtained from the above by replacing in the last 

four results �̂�(𝑄𝐷𝑈
𝑃𝐼∗, 𝑄𝐷𝑈

𝑃𝐼∗) by 𝐹𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡(𝑄𝐷𝑈
𝑁𝐼∗),  𝑓(𝑄𝐷𝑈

𝑃𝐼∗, 𝑄𝐷𝑈
𝑃𝐼∗) by 𝑓𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡(𝑄𝐷𝑈

𝑁𝐼∗) and by setting 

𝜕�̂�(𝑄)

𝜕𝑄
(. ) = 0. 

The proof of Proposition 2 is provided in Appendix B. 

 

In the following, we consider the same numerical example as in the centralized scenario (i.e., 𝜇 =

100, 𝜎 = 5, 𝑘 = {5,10} , 𝐶 = 10, 𝑅 = 50, and 𝑉 = 5). Figures 9 and 10 illustrate the relationship 

between the optimal order quantity and the unit wholesale price for two different levels of information 

processing capabilities 𝑘 = 5 and 𝑘 = 10. The connection between the order quantity and the wholesale 

price reveals the reaction of the retailer to a given wholesale price set by the manufacturer. It can be 

observed that the obtained results are quite sensitive to changes in the retailer’s information processing 

capability as compared to changes in the manufacturer’s production capacity. As illustrated in Figures 

9 and 10, the order of the three curves (NI and PI with 𝑝 = 2 and 𝑝 = 10) changes if the retailer’s 
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information processing capability improves (i.e., 𝑘 decreases from 𝑘 = 10 (Figure 10) to 𝑘 = 5 (Figure 

9)). This shows that in the PI case, if the retailer improves its information processing capability, the 

manufacturer takes advantage by increasing its wholesale price, rendering this setting less attractive to 

the retailer. 

 

As a result, the attractiveness of the NI and the PI scenarios to both the retailer and the manufacturer is 

strongly linked to the two variables 𝑘 and 𝑝. Given that 𝑘 is determined by the retailer and 𝑝 is chosen 

by the manufacturer, it is necessary to investigate in which scenario of information sharing both supply 

chain parties are better off.  

Acting as the Stackelberg leader, the manufacturer proposes a unit wholesale price closer to 𝑅 than to 

𝑉, which makes the overage cost more important than the underage cost for the retailer  (this entails that 

the ratio of underage cost to the sum of overage and underage costs is less than 0.5). The optimal order 

quantity is lower than the demand average, and its behavior with increasing 𝑝 is similar to the low 

margin setting discussed in the centralized scenario (cf. Figure 12). Under the No Information case, the 

manufacturer proposes a fixed unit wholesale price (independent of 𝑝 and 𝑘), where the calculation of 

the wholesale price is identical to the classical wholesale contract problem with �̂�𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 as the demand 

distribution (cf. Figure 13).  

It is worthwhile to notice that �̂�𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 depends directedly on the maximum value of the estimated 

standard deviation �̂�𝑚𝑎𝑥 = √𝑘𝐿𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 + 𝜎2.  Under the NI case, the retailer does not share any 

obtained demand information with the manufacturer. The latter proposes a wholesale price 𝑊𝐷𝑈
𝑁𝐼∗ based 

on his/her own estimate of �̂�𝑚𝑎𝑥 under the NI scenario. A mismatch between the manufacturer’s �̂�𝑚𝑎𝑥 

estimate and the retailer’s demand processing capability can lead to a conflicting choice of the decision 

variables or to a mutual agreement on whether or not to reduce the lead time. Based on these 

observations, we can define four regions based on the manufacturer’s estimate of �̂�𝑚𝑎𝑥 and the retailer’s 

information processing capability k. 

  

Figure 9: Link between the wholesale price and the order 

quantity for the DU scenario, k=5 

 

Figure 10: Link between the wholesale price and the order 

quantity for the DU scenario, k=10 

𝑄𝐷𝑈
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𝑊𝐷𝑈
𝑃𝐼 , 𝑝 = 2

𝑊𝐷𝑈
𝑁𝐼

𝑊𝐷𝑈
𝑃𝐼 𝑝

𝑄𝐷𝑈
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Figure 11: The supply chain actors’ preference for the PI and the NI scenario depending on k and �̂�𝑚𝑎𝑥 

Assuming an actual demand standard deviation 𝜎 = 5, Figures 12 to 17 illustrate four different situations 

where the manufacturer sets the NI wholesale price based on two estimates of  �̂�𝑚𝑎𝑥 (�̂�𝑚𝑎𝑥 = 30 for 

situations A and B and �̂�𝑚𝑎𝑥 = 15 for situations C and D), whereas the retailer sets the information 

processing capability to 𝑘 = 1 in situations A and D and to 𝑘 = 5 in situations B and C. Given these 

values of 𝑘, the retailer is able to estimate  �̂�𝑚𝑎𝑥 = √𝑘𝐿𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 + 𝜎2  as 14.40 for 𝑘 = 1 (and as 30.60 

for 𝑘 = 5, respectively) based on an 𝐿𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 equal to six months. As a result, the manufacturer’s and 

the retailer’s estimates of �̂�𝑚𝑎𝑥 are close in situations B and D and (oppositely) different in situations 

A and C (�̂�𝑚𝑎𝑥 is overestimated by the manufacturer in situation A and underestimated in situation C 

and vice versa for the retailer). Note that under the NI scenario, the manufacturer has no incentive to 

invest in the production capacity and sets its production capacity to its minimum value 𝑝𝑚𝑖𝑛 =

𝑄𝐷𝑈
𝑁𝐼∗ 

𝐿𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 −𝜏
. For this reason, the NI illustrations in Figures 12 to 17 are represented by a point marker at 

𝑝𝑚𝑖𝑛. 

In situations A and B, the manufacturer overestimates �̂�𝑚𝑎𝑥 and consequently proposes a low 𝑊𝐷𝑈
𝑁𝐼∗ in 

the NI scenario (Figure 13). The retailers takes advantage of such a proposal and would prefer the NI 

scenario if the manufacturer overestimated �̂�𝑚𝑎𝑥. Not sharing obtained demand information with the 

manufacturer (NI) and investing in 𝑘 (a low 𝑘 as in situation A) would be the best strategy for the retailer 

in this case. The retailer could then take advantage of both the lower wholesale price and the reduced 

demand uncertainty. Even if additional demand information is not shared with him/her, the manufacturer 

would still prefer the retailer to invest in his/her demand processing capabilities (c.f.   𝜋𝐷𝑈
𝑀,𝑁𝐼∗

, situation 

A, and  𝜋𝐷𝑈
𝑀,𝑁𝐼∗

, situation B, in Figure 14). This can be explained by the higher order quantity of the 

retailer in situation A compared to situation B as illustrated in Figure 12 (please recall the explanation 

we provided in Figure 1 on the rationale behind a higher order quantity for a lower 𝑘). As a result, 

Situation A Situation B

Situation D Situation C

Manufacturer’s
estimate of �̂�𝑚𝑎𝑥

in the NI scenario

Retailer’s information 
processing capability (k)

High

Low

Low High

The retailer prefers NI to take advantage of the manufacturer’s lower wholesale 
price

The retailer prefers NI or PI depending on the value of k

The retailer prefers PI for 
high values of k

The retailer prefers NI for 
low values of k

Both the manufacturer and the 
retailer could be better off in PI 

depending on 𝛼 and 𝛽
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delaying the order to acquire additional demand information is beneficial for both firms even when the 

manufacturer overestimates �̂�𝑚𝑎𝑥  and the retailer decides to not share any obtained information (the 

NI scenario). 

However, the results are entirely different when the manufacturer underestimates �̂�𝑚𝑎𝑥 (situations C 

and D). The wholesale price 𝑊𝐷𝑈
𝑁𝐼∗ proposed in the NI scenario could be lower or higher than his/her 

proposal of 𝑊𝐷𝑈
𝑃𝐼∗ in the PI scenario depending on the value of 𝑘 set by the retailer. If 𝛽 = 0 (Figures 12 

to 17 are drawn for 𝛽 = 0 and 𝛼 = 10), the retailer would prefer the PI scenario over the NI scenario 

as he/she would be better off by investing less into information processing capabilities (i.e., by selecting 

a high 𝑘-value) in order to profit from a lower wholesale price (𝑊𝐷𝑈
𝑃𝐼∗ under situation C is lower than the 

one offered under situation D). The manufacturer is, in contrast, is better off in  situation D if the retailer 

decides to share demand information (Figure 14) as he/she can benefit from the most accurate level of 

demand information (i.e., low value of k) which is shared by the retailer. This obvious conflict of interest 

is also influenced by the cost of capacity investments 𝛼 as the manufacturer moves from the lowest 

production rate 𝑝𝑚𝑖𝑛 (under the NI scenario) to a higher production rate (under the PI scenario) which 

could be optimized as illustrated in Figure 14 for the PI curves (i.e., there is a best value of 𝑝∗ which 

maximizes the manufacturer’s profit). In addition, the decision of the retailer to move or not to move 

from the NI scenario to the PI scenario strongly depends on the value of 𝑘 as shown in Figure 15. In 

situation D, the retailer should rather stay in the NI scenario and move to the PI scenario under situation 

C. By moving to the PI scenario, he/she can benefit or loose from acquiring additional demand 

information depending on the level of capacity 𝑝∗ set by the manufacturer. The profit of the retailer in 

the PI scenario in situation C decreases with 𝑝 and can drop below his/her profit in the NI scenario 

depending on the problem parameters. 

For all situations, it is worthwhile to notice that the expected supply chain profit (i.e., the sum of the 

retailer’s and the manufacturer’s expected profits) is higher when the market insights are shared (see 

Figure 16). To assess the performance of the supply chain under the decentralized uncoordinated (DU) 

scenario, we define the supply chain efficiency as the expected profit of the supply chain in the DU 

scenario divided by the expected profit under the centralized (C) scenario (𝐸𝑓𝑓𝑗 =
  𝜋𝐷𝑈

𝑅,𝑗
+  𝜋𝐷𝑈

𝑀,𝑗

𝜋𝐶(𝑄𝐶
∗)

, 𝑗 =

𝑃𝐼, 𝑁𝐼). As illustrated in Figure 16, there is a significant difference between the expected supply chain 

profit under the NI and PI scenarios. Contradictorily, the supply chain efficiency is better in the NI 

scenario (cf. Figure 17) except for situation C. This is due to the double marginalization effect which is 

stronger if the manufacturer is aware of the retailer’s ability to collect and analyze additional 

information. In this case, the manufacturer increases the wholesale price, which leads to a lower order 

quantity on the retailer’s side and consequently a higher double marginalization effect (see also Figure 

12). 
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We note that the somewhat counterintuitive result that lead times are not shortened by increasing the 

production capacity in the uncoordinated case is caused by the fact that the manufacturer is assumed the 

Stackelberg leader in our model. The manufacturer would only be willing to shorten lead time if he/she 

is aware of the impact of shorter lead times on the retailer’s order behavior. As the manufacturer would, 

at the same time, extract profit from the retailer by increasing the wholesale price, the retailer is better 

off by not sharing any information, inducing the manufacturer to select the lowest possible production 

capacity. 

 

 

Figure 12: Optimal order quantity for the DU scenario,  

𝛼=5, 𝛽 = 0 

 

Figure 13: Optimal wholesale price for the DU 

scenario, 𝛼=5, 𝛽 = 0 

 

Figure 14: Optimal expected profit for the manufacturer, 

𝛼=10 

 

Figure 15: Optimal expected profit for the retailer, 𝛼=10 

 

Figure 16: Optimal expected profit for the supply chain, 

k=10, 𝛼=10 

 

Figure 17: Supply chain efficiency for k=5 and k=10 
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As mentioned earlier, the retailer would be better off for lower values of 𝑘 under the NI case. In such a 

situation, the best solution for the manufacturer is not to invest in 𝑝 and to only offer 𝑝𝑚𝑖𝑛 as a 

production capacity. However, an increase in the information processing capability (i.e., lower values 

of k) comes at the expense of additional investments cost. For different values of 𝛽, Figure 18 illustrates 

the existence of a best value of 𝑘 trading off the benefit of reduced demand uncertainty and the 

investment needed to lower 𝑘 under the NI case. As discussed in the centralized scenario, the retailer 

optimizes his/her decisions based on the estimated expected profit function. However, his/her actual 

performance is measured by the actual expected profit function involving the actual expected demand 

distribution. Consequently, the best 𝑘 chosen by the retailer under the NI case is suboptimal compared 

to the case where the ordering decision is postponed until the start of the selling season.  

 

Figure 18: Best k for the retailer - NI case 

 

Figure 19: Best k for the retailer - PI case 

 

If the retailer is offered the lowest production capacity 𝑝𝑚𝑖𝑛 in the PI scenario, s/he is, in contrast, better 

off with the highest value of 𝑘 that helps to take advantage of the lower wholesale price offered by the 

manufacturer in such a situation (cf. Figure 19). In the PI scenario, the cost of adjusting the production 

capacity paid by the manufacturer and the cost of the investment information processing capabilities 

paid by the retailer lead to conflicting best values for these two variables as shown in Figures 20 and 21. 

The supply chain would choose a best tuple (𝑝, 𝑘) minimizing the double marginalization effect (cf. 

Figure 22). Figure 23 shows that the supply chain efficiency would suffer from the choices made by 

both supply chain players individually. Despite the conflicting decisions concerning 𝑝 and 𝑘, 

coordinating the supply chain aims to tackle the double marginalization effect and to arrive at a win-win 

situation for both the manufacturer and the retailer. The next section will propose a coordination 

mechanism aiming to bring back the expected supply chain profit to the value realized in the centralized 

scenario.   
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Figure 20: Optimal expected profit of the supplier as a 

function of p and k, 𝛼 = 10 𝑎𝑛𝑑  𝛽 = 100 

 

 

Figure 21: Optimal expected profit of the retailer as a function 

of p and k, 𝛼 = 10 𝑎𝑛𝑑  𝛽 = 100 

 

 

Figure 22: Optimal  expected profit of the supply chain 

as a function of p and k, 𝛼 = 10 𝑎𝑛𝑑  𝛽 = 100 

 

Figure 23: Supply chain efficiency as a function of p and k, 𝛼 =

10 𝑎𝑛𝑑  𝛽 = 100 

 

4.3. Decentralized coordinated supply chain 

For the two-stage newsvendor problem, different contracts have been proposed to improve the 

performance of the supply chain. In a classical buy-back contract, the retailer pays a wholesale price 

𝑊𝐷𝐶 per unit ordered, but can return the excess order quantity at a partial refund 𝐵𝐷𝐶 at the end of the 

selling season (Pasternack, 1985). The refund cost is modeled as an extra unit margin for each discounted 

product to avoid returning it back to the supplier and paying extra reverse logistics costs. The retailer’s 

estimated expected profit function in the decentralized coordinated case is similar to the decentralized 

uncoordinated scenario except that the unit salvage cost, 𝑉, is replaced by  𝑉 + 𝐵𝐷𝐶: 

𝜋𝐷𝐶
𝑅 (𝑄𝐷𝐶) = (𝑅 −𝑊𝐷𝐶)𝜇 − (𝑅 −𝑊𝐷𝐶) ∫ (𝑥 − 𝑄𝐷𝐶)𝑓(𝑥, 𝑄𝐷𝐶)𝑑𝑥

+∞

𝑥=𝑄𝐷𝐶
− (𝑊𝐷𝐶 − 𝑉 −

𝐵𝐷𝐶) ∫ (𝑄𝐷𝐶 − 𝑥)𝑓(𝑥, 𝑄𝐷𝐶)𝑑𝑥
𝑄𝐷𝐶
𝑥=0

− 
𝛽

𝑘
  (20) 
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For a given tuple (𝑊𝐷𝐶 , 𝐵𝐷𝐶), the optimal order quantity maximizing the retailer’s expected profit is 

given by: 

(𝑅 − 𝑉 − 𝐵𝐷𝐶) [�̂�(𝑄𝐷𝐶 , 𝑄𝐷𝐶) + 𝜎(𝑄𝐷𝐶)
𝜕𝜎(𝑄)

𝜕𝑄
(𝑄𝐷𝐶)𝑓(𝑄𝐷𝐶 , 𝑄𝐷𝐶)] = (𝑅 −𝑊𝐷𝐶)  (21) 

For each unsold item, the manufacturer now compensates the retailer with the unit buyback cost, 

wherefore the manufacturer’s estimated expected profit becomes: 

𝜋𝐷𝐶
𝑀 (𝑄𝐷𝐶) = (𝑊𝐷𝐶 − 𝐶)𝑄𝐷𝐶 − 𝐵𝐷𝐶 ∫ (𝑄𝐷𝐶 − 𝑥)𝑓(𝑥, 𝑄𝐷𝐶)𝑑𝑥

𝑄𝐷𝐶
𝑥=0

− 𝛼𝑝 (22) 

The manufacturer’s problem in this case is to find the best tuple (𝑊𝐷𝐶 , 𝐵𝐷𝐶) and the associated order 

quantity 𝑄𝐷𝐶 maximizing his/her expected profit and coordinating the supply chain. We first assume 

that 𝐵𝐷𝐶 is fixed, and derive the value of 𝑊𝐷𝐶
∗  that indicates the optimal order quantity for the 

manufacturer (resulting from the optimization of 𝜋𝐷𝐶
𝑀 (𝑄𝐷𝐶)) that is equal to the retailer’s (maximizing 

𝜋𝐷𝐶
𝑅 (𝑄𝐷𝐶)). 

 

Proposition 3. 

The supply chain is coordinated by the tuple (𝐵𝐷𝐶
∗ ,𝑊𝐷𝐶

∗ ) solving the following: 

𝑊𝐷𝐶
∗ = 𝐶 + 𝐵𝐷𝐶

∗ ∗ [�̂�(𝑄𝐷𝐶
∗ , 𝑄𝐷𝐶

∗ ) + �̂�(𝑄𝐷𝐶
∗ )

𝜕�̂�

𝜕𝑄
(𝑄𝐷𝐶

∗ )𝑓(𝑄𝐷𝐶
∗ , 𝑄𝐷𝐶

∗ )]    (23) 

Where: 𝑄𝐷𝐶
∗  verifies: 

(𝑅 − 𝑉) [�̂�(𝑄𝐷𝐶
∗ , 𝑄𝐷𝐶

∗ ) + �̂�(𝑄𝐷𝐶
∗ )

𝜕�̂�(𝑄)

𝜕𝑄
(𝑄𝐷𝐶

∗ )𝑓(𝑄𝐷𝐶
∗ , 𝑄𝐷𝐶

∗ )] = (𝑅 − 𝐶)    (24) 

Proof. 

By using the equation linking 𝐵𝐷𝐶
∗  and 𝑊𝐷𝐶

∗ , the optimal order quantity maximizing the manufacturer’s 

expected profit coincides with the optimal order quantity of the centralized case. ◼ 

 

Continuing the numerical example (for 𝛼 = 10 and  𝛽 = 100), the supply chain is better off with a 

production capacity of 𝑝 = 3.60 and an information processing capability of 𝑘 = 4.60. For this set of 𝑝 

and 𝑘, the supply chain profit under the centralized scenario is equal to 3726 as illustrated in Figure 25. 

Without coordination, under the decentralized uncoordinated scenario and given these values of 𝑝 and 

𝑘, the retailer realizes an expected profit of 286.97 and the manufacturer of 2744.98. As a result, the 

total supply chain profit without coordination equals 3031.95. The coordination mechanism permits the 

supply chain to attain the highest possible expected profit of 3726 (as realized under the centralized 

case). The refund 𝐵𝐷𝐶 controls how much the two parties benefit from the cooperation. For higher values 

of 𝐵𝐷𝐶, the manufacturer receives a higher share of the profit due to an increase in the wholesale price 

(cf. Figure 24). For lower values of 𝐵𝐷𝐶, the manufacturer selects a lower wholesale price and hence 
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transfers a larger share of the supply chain profit to the retailer. Based on the chosen tuple (𝐵𝐷𝐶
∗ ,𝑊𝐷𝐶

∗ ), 

the two supply chain actors consequently share the whole supply chain profit. As illustrated in Figure 

25 and based on the expected profits that the two supply chain parties make in the case of no 

coordination, there exists a range of tuples (BDC
∗ ,WDC

∗ ) that benefit manufacturer and retailer and enable 

both of them to improve their respective positions thanks to the coordination mechanism.  

 

 

Figure 24: Tuple (𝐵𝐷𝐶
∗ ,𝑊𝐷𝐶

∗ ) coordinating the supply 

chain, 𝛼 = 10 𝑎𝑛𝑑  𝛽 = 100 

 

Figure 25: Supply chain, retailer and manufacturer expected 

profits as a  function of  𝐵𝐷𝐶
∗ , 𝛼 = 10 𝑎𝑛𝑑  𝛽 = 100 

 

5. Conclusion 

In this paper, we modelled a decentralized supply chain with an order quantity and investment-

dependent lead time. The lead time can be shortened by i) a supply-side investment enabling a higher 

production capacity, and/or ii) a reduction in the order quantity. We further considered a demand-side 

investment enabling a higher capability to collect information about future demand inducing a decrease 

in demand variability.  

We first considered a centralized scenario and demonstrated the positive benefit of postponing the 

ordering decision. Our results indicate that from a supply chain point of view, shorter lead times always 

improve the expected supply chain profit. We thus confirm earlier research on continuous inventory 

models (e.g., Hoque, 2007; Ben-Daya and Hariga, 2004; Glock, 2012) that showed that supply chains 

usually benefit from shorter lead times, with the extent of the lead time reduction depending on the 

supply chain actors’ cost and performance parameters. We also showed that optimal investment levels 

into both the production capacity and the demand information processing capability exist that maximize 

the benefit of delaying the order. In addition, our results revealed a trade-off between the investment 

into the demand information processing capability and the effort made to shorten the lead time. If the 

supply chain can easily improve its capability to process demand information, it is beneficial to accept 

longer lead times and to invest into demand information processing (and vice versa). This substitution 

effect between the ability to gather and process demand information and the efforts made in reduced 

𝐵𝐷𝐶
∗

𝑊𝐷𝐶
∗

𝜋𝑅
∗

𝜋 𝐶
∗

𝐵𝐷𝐶
∗

𝜋𝑀
∗

« Win » threshold for the retailer

« Win » threshold for the manufacturer 

« Win-
Win » range 
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and 
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rer

P 𝑜𝑓𝑖𝑡
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lead times that enable a generally lower level of demand uncertainty has not been studied in the literature 

so far. In fact, increased forecasting abilities due to improved knowledge or technological progress can 

enable retailers to benefit from off-shoring with necessarily being affected by the increase in demand 

uncertainty due to increased lead times. 

For the decentralized uncoordinated supply chain, we showed that the two supply chain actors may not 

always be interested in shorter lead times; their interest in a postponement of the order depends on the 

level of information sharing and the levels of investments into the production capacity and the demand 

information processing capability. If the retailer’s information processing capability is high or 

inexpensive to improve, he/she has no incentive to share improved demand information with the 

manufacturer to avoid that the manufacturer increases the wholesale price. The manufacturer, in this 

case, has no incentive to shorten lead times, and consequently selects the lowest possible production 

capacity. If the retailer shares the improved demand information in contrast, then the manufacturer has 

an incentive to shorten lead time as well. The retailer generally benefits from shorter lead times, but is 

not always willing to accept the higher wholesale price that the manufacturer charges when shortening 

lead time. The best strategy for each actor was detailed, and we showed that the supply chain efficiency 

suffers from these potentially conflicting strategies. The decision about whether or not to shorten lead 

time was found to be very sensitive to the investment costs as well as the unit overage and unit underage 

penalties. Controlling these costs is hence of high importance in a practical application. This paper 

complements the work of Kraiselburd et al. (2010), who had shown that the manufacturer may not be 

interested in shorter lead times if higher demand uncertainty induces the retailer to order more. We 

extended their work by considering more than two lead time options, lead time reduction cost, and a 

demand information processing capability. 

To coordinate the supply chain and to avoid a loss in supply chain profit resulting from the 

manufacturer’s and the retailer’s conflict of interest, a buyback contract was proposed. In addition to 

solving the double marginalization problem that has frequently been associated with these kinds of 

contracts, we showed that the contract also leads to an optimal investment into the production capacity 

and the demand information processing capability.  

Our framework contributes to the literature by assuming a continuous relationship between lead time 

and order quantity. This relationship was motivated by the martingale method of forecast evolution, and 

it led to a simple formulation that we integrated in a mathematically tractable manner into the 

decentralized newsvendor problem. The developed framework permits to link the logistics and 

marketing interfaces by trading off the logistics cost, the production capacity and the marketing-type 

expenditure to improve the forecasting exercise. The framework is applicable in many practical 

situations in the fashion/high tech sector where social media and marketing surveys are solicited before 

the launch of new products to improve the quality of consumer demand forecasts and to reduce 

uncertainty. Postponing the ordering decision, if the supplier’s production capacity permits it, enables 
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to collect more information about the demand and to improve supply chain performance considerably. 

The paper provided managerial insights into the strategy for each supply chain actor and their 

implications on the ordering as well as the investment decisions.  

A natural extension of the developed models would be to consider investments in transportation lead 

time reductions. Today, companies can often choose between alternative transportation modes and 

transport service providers and may hence trade off shorter transportation time against higher 

transportation cost. Depending on the sourcing strategy, transportation lead times can account for a 

significant fraction of the overall lead times, and selecting the best mode of transportation may enable 

the retailer to reduce transportation-related delays as well. Air shipments, for example, usually have a 

short and rather predictable lead time as compared to sea freight, but at the expense of higher 

transportation cost (cf. Arikan et al, 2014). As the proposed models revealed a trade-off between profit 

maximization and uncertainty reduction, it would also be interesting to consider different risk 

perceptions of the retailer in this setting by including risk aversion or other behavioral aspects (cf. Arikan 

and Fichtinger, 2017). 

 

Appendix A: Proof of Proposition 1 

Making use of the Leibniz rule, the first derivative of the expected profit function (6) can be written as: 

𝜕�̂�𝐶(𝑄)

𝜕𝑄
= −(𝑅 − 𝐶)∫ [−𝑓(𝑥, 𝑄) + (𝑥 − 𝑄)

𝜕�̂�(𝑥,𝑄)

𝜕𝑄
] 𝑑𝑥

+∞

𝑥=𝑄
− (𝐶 − 𝑉)∫ [𝑓(𝑥, 𝑄) + (𝑄 −

𝑄

𝑥=0

𝑥)
𝜕�̂�(𝑥,𝑄)

𝜕𝑄
] 𝑑𝑥  (A-1) 

In addition, the first derivative of the pdf with respect to 𝑄 leads to: 

𝜕�̂�(𝑥,𝑄)

𝜕𝑄
= −

𝜕�̂�(𝑄)

𝜕𝑄

1

�̂�(𝑄)
[1 − (

𝑥−𝜇

�̂�(𝑄)
)
2
] 𝑓(𝑥, 𝑄)  (A-2) 

Using the fact that the second derivative of the pdf with respect to 𝑥 is given as: 

𝜕2�̂�(𝑥,𝑄)

𝜕2𝑥
= −

1

�̂�(𝑄)2
[1 − (

𝑥−𝜇

�̂�(𝑄)
)
2
] 𝑓(𝑥, 𝑄)  (A-3) 

The first derivative of the pdf with respect to 𝑄 can be rewritten as follows: 

𝜕�̂�(𝑥,𝑄)

𝜕𝑄
=

𝜕�̂�(𝑄)

𝜕𝑄
�̂�(𝑄)

𝜕2�̂�(𝑥,𝑄)

𝜕2𝑥
  (A-4) 

Applying this expression to Eq. (A-1), the first derivative of the expected profit can be written as: 

𝜕�̂�𝐶(𝑄)

𝜕𝑄
= (𝑅 − 𝐶)[1 − �̂�(𝑄, 𝑄)] − (𝐶 − 𝑉)[�̂�(𝑄, 𝑄) − �̂�(0,𝑄)] + (𝑅 − 𝐶)

𝜕�̂�(𝑄)

𝜕𝑄
�̂�(𝑄) ∫ [(𝑥 −

+∞

𝑥=𝑄

𝑄)
𝜕2�̂�(𝑥,𝑄)

𝜕2𝑥
] 𝑑𝑥 + (𝐶 − 𝑉)

𝜕�̂�(𝑄)

𝜕𝑄
�̂�(𝑄) ∫ [(𝑄 − 𝑥)

𝜕2�̂�(𝑥,𝑄)

𝜕2𝑥
] 𝑑𝑥

𝑄

𝑥=0
  (A-

5) 



28 

 

We now use the integration by part theorem and the fact that the first derivative of the pdf with respect 

to 𝑥 is given as follows: 

𝜕�̂�(𝑥,𝑄)

𝜕𝑥
= −[

𝑥−𝜇

�̂�(𝑄)2
] 𝑓(𝑥, 𝑄)  (A-6) 

The first derivative of the expected profit function can be summarized as: 

𝜕�̂�𝐶(𝑄)

𝜕𝑄
= (𝑅 − 𝐶) − (𝑅 − 𝑉) [�̂�(𝑄, 𝑄) +

𝜕�̂�(𝑄)

𝜕𝑄
�̂�(𝑄, 𝑝)𝑓(𝑄, 𝑄)] + (𝐶 − 𝑉) [𝐹(0, 𝑄) +

𝜕�̂�(𝑄)

𝜕𝑄
�̂�(𝑄)𝑓(0,𝑄) {1 + 𝑄

𝜇

�̂�(𝑄)2
}]  (A-

7) 

By observing that lim
𝑄→0

𝜕�̂�𝐶(𝑄)

𝜕𝑄
= 𝑅 − 𝐶 and lim

𝑄→+∞

𝜕�̂�𝐶(𝑄)

𝜕𝑄
= −

𝐶−𝑉

2
, the existence of at least one solution 

maximizing the expected profit is straightforward. 

Assuming that the parameters (particularly 𝐿𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡) exist in such a way that negative demands do not 

occur (�̂�(0, 𝑄) ≈ 0 for each 𝑄), the last component of the first derivative of the expected profit becomes 

negligible. The remaining part can therefore be simplified as: 

𝜕�̂�𝐶(𝑄)

𝜕𝑄
= (𝑅 − 𝐶) − (𝑅 − 𝑉) [�̂�(𝑄, 𝑄) +

𝜕�̂�(𝑄)

𝜕𝑄
�̂�(𝑄)𝑓(𝑄, 𝑄)]  (A-8) 

In order to verify the uniqueness of the solution, it is helpful to further analyze the second derivative of 

the expected profit function. The first derivative of 𝑓(𝑄, 𝑄) with respect to 𝑄 is given as: 

𝜕�̂�(𝑄,𝑄)

𝜕𝑄
= −[

𝜕�̂�(𝑄)

𝜕𝑄
{1 − (

𝑥−𝜇

�̂�(𝑄)
)
2
} +

𝑄−𝜇

�̂�(𝑄)
]
�̂�(𝑄,𝑄)

�̂�(𝑄)
  (A-9) 

Using the Leibniz rule, the first derivative of �̂�(𝑄, 𝑄) with respect to 𝑄 is given as: 

𝜕�̂�(𝑄,𝑄)

𝜕𝑄
= [1 −

𝜕�̂�(𝑄)

𝜕𝑄

𝑄−𝜇

�̂�(𝑄)
] 𝑓(𝑥, 𝑄)  (A-10) 

Applying Eqs. (A-9) and (A-10), the second derivative of the expected profit function becomes: 

𝜕2�̂�𝐶(𝑄)

𝜕2𝑄
= −(𝑅 − 𝑉) {[1 −

𝜕�̂�(𝑄)

𝜕𝑄

𝑄−𝜇

�̂�(𝑄)
]
2
+ �̂�(𝑄)

𝜕2�̂�(𝑄)

𝜕2𝑄
} 𝑓(𝑄, 𝑄)  (A-11) 

If �̂�(𝑄) is convex (which is not the case in our problem), the expected total profit function �̂�𝐶  𝑤ould be 

concave, and the optimal order quantity would be obtained by applying the first derivative condition. 

We now define 𝑆(𝑄) = [1 −
𝜕�̂�(𝑄)

𝜕𝑄

𝑄−𝜇

�̂�(𝑄)
]
2
+ �̂�(𝑄)

𝜕2�̂�(𝑄)

𝜕2𝑄
. The mathematical analysis of the function 

𝑆(𝑄) permits deriving the cases where the expected profit function is concave and developing an 

optimization procedure for the opposite case. 

If 𝑘 − 4𝜎2𝑝2 − 4𝑘𝑝(𝜇 + 𝑝𝜏) < 0, 𝑆(𝑄) continuously decreases from +∞ to 
1

4
 when 𝑄 converges from 

−
𝜎2+𝑘𝜏

𝑘
 to +∞. In such a case, 𝑆(𝑄) is always positive. Consequently, the expected profit function is 
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concave and the first derivative condition allows deriving the optimal order quantity. However, if 𝑘 −

4𝜎2𝑝2 − 4𝑘𝑝(𝜇 + 𝑝𝜏) ≥ 0, 𝑆(𝑄) is negative on the interval (𝑎, 𝑏) with 𝑎 = 𝑘2 − 4𝜎2𝑝2 −

𝑘[2𝑝(𝜇 + 2𝑝𝜏) + √𝑘 − 4𝜎2𝑝2 − 4𝑘𝑝(𝜇 + 𝑝𝜏)] and  

𝑏 = 𝑘2 − 4𝜎2𝑝2 + 𝑘[2𝑝(𝜇 + 2𝑝𝜏) + √𝑘 − 4𝜎2𝑝2 − 4𝑘𝑝(𝜇 + 𝑝𝜏)] as shown  in Figure A-1 before 

converging to 
1

4
 for 𝑄 → +∞. In this case, the expected profit function is not concave, and the first 

derivative condition may have two extreme points at maximum. In the latter case, the choice of the 

extreme point maximizing the expected profit depends on the sign of the first derivative of the expected 

profit function at 𝑄 = 0, which is equal to (𝑅 − 𝑉) [�̂�(0,0) + �̂�(0, p)
𝜕�̂�(𝑄,𝑝)

𝜕𝑄
(0)𝑓(0,0, p)] − (𝑅 − 𝐶). 

If this expression is positive, the smaller solution of the first derivative condition (a in the example in 

Figure A-1), maximizes the expected profit, otherwise, the larger solution (b in the example in Figure 

A-1), maximizes it. ∎ 

 

 

 

Appendix B: Proof of Proposition 2 

Proof. 

By applying some basic algebraic techniques, the first derivative of the manufacturer’s expected profit 

(15) can be calculated as follows: 

𝜕𝜋𝐷𝑈
𝑀,𝑃𝐼

𝜕𝑄𝐷𝑈
= (𝑅 − 𝐶) − (𝑅 − 𝑉) [�̂�(𝑄𝐷𝑈

𝑃𝐼 , 𝑄𝐷𝑈
𝑃𝐼 ) + 𝜎(𝑄𝐷𝑈

𝑃𝐼 )
𝜕𝜎(𝑄)

𝜕𝑄
(𝑄𝐷𝑈

𝑃𝐼 )𝑓(𝑄𝐷𝑈
𝑃𝐼 , 𝑄𝐷𝑈

𝑃𝐼 ) + [{1 −

𝜕𝜎(𝑄)

𝜕𝑄
(𝑄𝐷𝑈

𝑃𝐼 )
𝑄𝐷𝑈
𝑃𝐼 −𝜇

𝜎(𝑄𝐷𝑈
𝑃𝐼 )

}
2

− {
𝜕𝜎(𝑄)

𝜕𝑄
(𝑄𝐷𝑈

𝑃𝐼 )}
2
]𝑄𝐷𝑈

𝑃𝐼 𝑓(𝑄𝐷𝑈
𝑃𝐼 , 𝑄𝐷𝑈

𝑃𝐼 )]  (A-12) 

It is important to note that: 

 

Figure A-1: Behavior of the function S(Q) 
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lim
𝑄𝐷𝑈
𝑃𝐼 →0

𝜕𝜋𝐷𝑈
𝑀,𝑃𝐼

𝜕𝑄𝐷𝑈
𝑃𝐼 = (𝑅 − 𝐶) (A-13) 

lim
𝑄𝐷𝑈
𝑃𝐼 →+∞

𝜕𝜋𝐷𝑈
𝑀,𝑃𝐼

𝜕𝑄𝐷𝑈
𝑃𝐼 = −(𝐶 − 𝑉)  (A-14) 

Since (𝑅 − 𝐶) and (𝐶 − 𝑉) are both positive, we can deduce that the first derivative of the 

manufacturer’s expected profit function is equal to zero for at least one optimal order quantity. To prove 

the uniqueness of such a solution, we consider the second derivative of the manufacturer’s expected 

profit, which is given as follows: 

𝜕2𝜋𝐷𝑈
𝑀,𝑃𝐼(𝑄𝐷𝑈

𝑃𝐼 )

𝜕2𝑄𝐷𝑈
𝑃𝐼 = −(𝑅 − 𝑉)𝑓(𝑄𝐷𝑈

𝑃𝐼 , 𝑄𝐷𝑈
𝑃𝐼 )𝑍(𝑄𝐷𝑈

𝑃𝐼 ) (A-15) 

with 

𝑍(𝑄𝐷𝑈
𝑃𝐼 ) = [𝜎(𝑄𝐷𝑈

𝑃𝐼 )
𝜕𝜎(𝑄𝐷𝑈

𝑃𝐼 )

𝜕𝑄𝐷𝑈
𝑃𝐼 +𝑀(𝑄𝐷𝑈

𝑃𝐼 )2𝑄𝐷𝑈
𝑃𝐼 ] [

𝜕𝜎(𝑄𝐷𝑈
𝑃𝐼 )

𝜕𝑄𝐷𝑈
𝑃𝐼

1

𝜎(𝑄𝐷𝑈
𝑃𝐼 )

{1 − [
𝑄𝐷𝑈
𝑃𝐼 −𝜇

𝜎(𝑄𝐷𝑈
𝑃𝐼 )

]
2

} −
𝑄𝐷𝑈
𝑃𝐼 −𝜇

𝜎(𝑄𝐷𝑈
𝑃𝐼 )

2] +

[
𝜕𝜎(𝑄𝐷𝑈

𝑃𝐼 )

𝜕𝑄𝐷𝑈
𝑃𝐼 ]

2

− 2
𝜕𝜎(𝑄𝐷𝑈

𝑃𝐼 )

𝜕𝑄𝐷𝑈
𝑃𝐼

1

𝜎(𝑄𝐷𝑈
𝑃𝐼 )

𝑀(𝑄𝐷𝑈
𝑃𝐼 )2𝑄𝐷𝑈

𝑃𝐼 +𝑀(𝑄𝐷𝑈
𝑃𝐼 )2 +𝑀(𝑄𝐷𝑈

𝑃𝐼 ) (A-16) 

and 

𝑀(𝑄𝐷𝑈
𝑃𝐼 ) = 1 −

𝜕𝜎(𝑄𝐷𝑈
𝑃𝐼 )

𝜕𝑄𝐷𝑈
𝑃𝐼

𝑄𝐷𝑈
𝑃𝐼 −𝜇

𝜎(𝑄𝐷𝑈
𝑃𝐼 )

  (A-17) 

Observing that lim
𝑄𝐷𝑈
𝑃𝐼 →0

𝑍(𝑄𝐷𝑈
𝑃𝐼 ) = +∞ and lim

𝑄𝐷𝑈
𝑃𝐼 →+∞

𝑍(𝑄𝐷𝑈
𝑃𝐼 ) = 0−, it can be shown analytically and 

verified numerically that 𝑍(𝑄𝐷𝑈
𝑃𝐼 ) is not always positive. Consequently, proving concavity of the 

supplier’s expected profit function is not possible. However, we know that at least one solution exists. 

If more than one solution exists, the decision maker could choose the one maximizing his/her expected 

profit. Note that during the numerical tests we performed with the below problem parameters, we 

obtained one unique solution to the problem for all instances. ∎ 
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