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Abstract 15 

Mechanical energy storage systems are among the most efficient and sustainable energy 16 

storage systems. There are three main types of mechanical energy storage systems; 17 

flywheel, pumped hydro and compressed air. This paper discusses the recent advances of 18 

mechanical energy storage systems coupled with wind and solar energies in terms of their 19 

utilization. It also discusses the advances and evolution in each type and compares them 20 

in terms of performance, capacity, response and utilizations. The reviewed studies exhibit 21 

all parameters that affect the performance of each storage type in which the configuration 22 

of the system has the major effective role. Choosing the suitable mechanical storage type 23 

depends on the requirements of each application such as using the flywheel for short 24 

duration applications. If long duration is needed, then it is preferred to use either pumped 25 

hydro or compressed air storage systems, knowing that the former has higher efficiency 26 

while the latter provides a faster start up. For the sake of the environment, it is 27 



2 

 

recommended to use the adiabatic or isothermal compressed air storage. In all cases that 28 

combine MESSs with solar or wind energy, the series connection is preferred in order to 29 

provide stability and better control strategy. 30 

Keywords: Energy storage, mechanical energy storage, renewable energy, solar energy, 31 

wind energy. 32 

Nomenclature 

ACAES adiabatic compressed air energy storage 

BWES buoyancy work energy storage 

CAES compressed air energy storage 

CI-CAES closed isothermal compressed air energy storage 

CVaR conditional value at risk 

DRP demand response program 

DSTATCOM distribution static synchronous compensator 

ESS energy storage system 

FESS flywheel energy storage system 

HT  hydraulic turbine 

HVDC high voltage direct current 

I-CAES Isothermal compressed air energy storage 

IM induction machine 

IWPS isolated wind power system 

LCOE levelized cost of energy 

MESS mechanical energy storage system 

NPV net present value 

OI-CAES Open isothermal compressed air energy storage 

PHES pumped hydro energy storage 

PV photo-voltaic 

SG synchronous generator 

SM synchronous machine 

SNG synthetic natural gas 

SP stochastic programming 

SRM switched reluctance machine 

SST solid state transformer 

TC thermochemical 

UGCAES underground compressed air energy storage 

UWCAES underwater compressed air energy storage 

VC-ACAES variable configuration adiabatic air energy storage 
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WTG wind turbine generator 

 33 

1. Introduction 34 

In the last few decades, energy consumption, particularly electricity usage are found to be 35 

significantly increasing due to rising world population and living standards. The fastest 36 

jump of energy consumption growth in this decade was recorded in 2018 as 2.13% [1]. 37 

Additional energy supplies must be provided in order to balance the increasing demand. 38 

The critical issue is which different sources and techniques can be adopted to cover this 39 

energy demand. Fossil fuels cannot be considered a solution for satisfying energy 40 

demands due to their critical negative effects on the environment and must be phased out 41 

[2]. Nuclear energy seems to be a solution because of its low CO2 emissions, but it is too 42 

expensive and suffers from other drawbacks such as security risks. For this reason, there 43 

is need to rely on renewable sources and energy waste recovery systems to prevent the 44 

environmental damage from air pollution leading to global warming. Renewable energies 45 

offer the best approach for provision of energy due to their sustainable nature and broad 46 

utilizations because of their diverse presence such as wind, solar, geothermal, bioenergy 47 

and hydropower.  On the other hand, renewable sources usually cannot standalone in a 48 

power plant because of their intermittent nature and significant fluctuations especially 49 

when considering wind and solar energies [3]. This fact imposes on the researchers to 50 

find an alternative solution or to perform efficient combinations; where they find that 51 

energy storage systems (ESSs) can solve the stated problem when coupled with the 52 

renewable energy resources [4].  53 

 54 
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Advantages of Energy Storage Systems 55 

In addition to the ESSs main advantage which is to store the excess of energy, they offer 56 

many other benefits: 57 

• Increasing renewable energy penetration and decreasing its curtailment because a 58 

power plant cannot depend only on a renewable energy source without an ESS. As a 59 

matter of fact, fuel consumption and CO2 emissions will decrease [5]. 60 

• Balancing between the energy supply and demand while smoothing renewable energy 61 

fluctuations due to its intermittent nature [6]. This will also mitigate the problems in 62 

electrical systems of power generation. 63 

• Shaving the peak energy loads which will indeed decrease the risk of load shedding 64 

especially when large capacity of storage is considered. 65 

• Improving the overall efficiency of a power plant and consequently reducing the 66 

operating cost at the long run [7]. 67 

• The flexibility of ESSs provides the convenience and suitability to cover remote areas 68 

which generally suffer from lack of electricity [8]. 69 

1.1  Energy Storage Systems Classifications 70 

ESS provides flexibility to the system in order to cope with the fluctuations and 71 

intermittent nature of renewable sources, it can also accommodate the energy demand 72 

fluctuations. In other words, ESSs mitigate the imbalance between the supply and 73 

demand. Storage systems can improve grid stability and system’s performance, increase 74 

penetration of renewable energy sources, and reduce fossil fuel energy resources 75 

utilizations and consequently their environmental impacts. Due to the multiple 76 
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utilizations of energy and different types of applications, ESSs have always been 77 

undergoing development and different storage systems are established. ESSs are mainly 78 

classified into three main categories as presented in Figure 1 [9-11]. Table 1 presents the 79 

environmental impacts of some ESSs. 80 

 81 

Figure 1: Energy storage systems Classifications; the orange marked types are the most 82 

commonly used mechanical energy storage systems 83 

Mechanical energy storage systems can be found either as pure mechanical (MESS) or 84 

combined with electrical (EMESS). The main difference is in the utilization of stored 85 

energy if it is directly used or transmitted via an electric motor-generator. Usually 86 

EMESSs are used to supply the grid with electricity. On the other hand, MESSs are able 87 

to provide mechanical work such as smoothing the rotation of a rotating mass which is 88 

the case of flywheel. The orange marked types in Figure 1 are the most commonly used 89 

mechanical energy storage systems. 90 
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Table 1: Environmental impacts of the commonly used energy storage systems 91 

Energy Storage System Environmental Impact 

Synthetic natural gas (SNG) Haze pollution and greenhouse gases [12] 

Biofuel Biodiversity, water quantity and quality problems [13] 

Biogas Hazardous alkanes such as methane [14] 

Thermochemical (TC) Depends on the reactants and products 

Batteries Consumption of resources and heavy metal pollution [15]; ex: 

lithium ion degrades and not recyclable 

Super capacitors Carbonization [16] 

Thermal  Depends on the material (ex: organic vapour is carcinogenic) [17] 

Mechanical energy storage Relatively low 

 92 

1.2 Mechanical Energy Storage  93 

Mechanical energy storage systems (MESSs) are highly attractive because they offer 94 

several advantages compared to other ESSs and especially in terms of environmental 95 

impact, cost and sustainability. There are three main types of MESSs, as shown in Figure 96 

1; flywheel energy storage system (FESS) [18], pumped hydro energy storage (PHES) 97 

[19] and compressed air energy storage (CAES) [20].  MESSs can be found in some other 98 

different forms such as liquid-piston, gravity and mechanical springs. The crucial issue in 99 

choosing the appropriate system among these depending on the source of energy, load 100 

nature and available space. It is also necessary to mention that there are some common 101 

advantages between the different types of MESSs such as the relative fast response and 102 

nil environmental effects. These types of ESSs produce less contaminants in both 103 

operational and construction levels, which is indeed an important factor to improve air 104 

quality in order to avoid human health diseases. 105 

https://www.sciencedirect.com/topics/engineering/heavy-metal
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The aim of this paper is to review all applications involving MESSs combined with solar 106 

and wind energies in order to present the parameters that affect the performance of each 107 

system. The characteristics of all systems will be discussed in addition to their advantages 108 

and disadvantages. A detailed comparison will be presented depending on the different 109 

storage systems and configurations. This will be accompanied by presenting the recent 110 

investigations on the different mechanical energy storage systems in addition to the 111 

development of each domain. 112 

2. Flywheel Energy Storage System 113 

Flywheel energy storage system (FESS) [21] is based on storing energy for the short-term 114 

by using a rotating mass in the form of kinetic energy [22] as shown in equation (1). In 115 

terms of fast response, flywheels are the most effective ESSs while taking the economical 116 

aspect into consideration [23]. There are different applications where FESS can be used: 117 

hybrid vehicle, railway, wind power system, marine and space [24]. One of most studied 118 

applications on FESS is the regeneration of braking power in locomotives, trains and cars 119 

[25]. These studies focused on storing the braking energy lost in order to give power 120 

again for acceleration. This aims to save energy [26], decrease the peak power [27], 121 

improve the efficiency, reduce emissions and fuel consumption [28]. Flywheels can be 122 

found in four different shapes; disc of Laval, solid disk, thick ring and thin ring (see 123 

Figure 2) [29]. Each flywheel is characterized by a shape factor (K) representing the 124 

utilization of material. The specific energy stored per unit of mass is proportional to K 125 

which is presented in equation (2). These equations show the effects of inertia, speed and 126 

shape on the energy stored by the flywheel. 127 
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𝐸 =
1

2
𝐼𝑤2 (1) 128 

𝐸

𝑚
= 𝐾

𝜎𝑚𝑎𝑥

𝜌
 (2) 129 

where E is the stored energy, I is the moment of inertia, w is the rotational speed, m is the 130 

mass, 𝜎𝑚𝑎𝑥 is the maximum stress and 𝜌 is the density of the flywheel. 131 

 132 

Figure 2: Different flywheel shapes, K is the shape factor 133 

 134 

The main components of FESS are as shown in Figure 3; bearings, rotating mass, motor-135 

generator and a frequency inverter. The overall efficiency depends on the design of each 136 

component, and one of the main objectives is the reduction of power transmission losses 137 

which is affected by the type of bearing; it was found that magnetic bearings are the best 138 

choice [30]. There are also three different types of electric machines that could be 139 

coupled to the FESS; synchronous machine (SM), induction machine (IM) and switched 140 

reluctance machine (SRM). SRM is the less commonly used type due to the high current 141 

ripples and control complexity. Usually, SM and IM are used for high speed and high-142 
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power applications respectively. In terms of performance, SM is better than IM because it 143 

has lower inrush at the start [31]. Beside the usage of flywheel for energy storage, it is 144 

used to increase the life time of batteries [32] when coupled with renewable sources due 145 

the intermittency nature. 146 

 147 

Figure 3: The main components of the FESS 148 

 149 
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2.1 Wind Energy Coupled with Flywheel Storage 150 

Wind-FESS is a system that is taking lot of interest nowadays. Wind energy is one of the 151 

most favorable sources used for generating electricity, while there is always a common 152 

problem faced which is the mismatching between supply and demand. This is due to the 153 

variations in both wind and available load which can cause problems in the network. This 154 

requires a fast response energy storage which makes the use of FESS more favorable. 155 

This ESS can be used to smooth the wind power [33] and to supply energy to the users 156 

with different demands for achieving better power quality [34]. The coupling between 157 

wind and FESS is also known as isolated wind power system (IWPS) [29] which is 158 

usually formed from a wind turbine generator (WTG), consumer load, SM and a 159 

flywheel. FESS is almost used in medium to high power (kW to MW) applications for 160 

short-time periods (seconds/minutes).  Gadelrab et al. [35] introduced FESS to enhance 161 

the wind farms-fed high voltage direct current (HVDC) transmission system via a two-162 

stage solid state transformer (SST). Several control strategies [36] were investigated to 163 

reserve and smooth wind turbine power by using FESS, and the proposed methods were 164 

found to be applicable for all wind speeds. One of the most effective control strategies is 165 

the classical squirrel-cage induction machine using cascade rectifier filter inverter [37] 166 

which was modeled and simulated in order to overcome the stochastic nature of wind. 167 

Electric system problems are in fact one of the major problems in the Wind-FESS.  168 

Suvire and Mercado [38] found that mitigating these electric problems can be performed 169 

by using a Distribution Static Synchronous Compensator (DSTATCOM). This 170 

compensator maintains the active power approximately constant and equals to the 171 

average power that would be produced otherwise. 172 
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A comparative study was simulated in [39] between a variable and constant speed 173 

flywheels in order to study the effect of hydrostatic transmission (see Figure 4). The 174 

authors deduced that this kind of transmission between the flywheel and the synchronous 175 

generator (SG) can decrease the frequency deviation and energy losses. Mansour et al. 176 

[40] investigated the variable speed wind generator to find the optimal methods for 177 

regulation. Two controllers were examined; the proportional integral and the fuzzy 178 

controller. It is concluded that the permanent magnet synchronous generator can offer the 179 

suitable regulation path to smooth the power flowing to the grid. 180 

 181 

Figure 4: FESS with hydrostatic transmission 182 

 183 

3. Pumped Hydro Energy Storage 184 

Pumped hydro energy storage (PHES) is a MESS which is characterized by its long-life 185 

cycle, flexibility and low maintenance cost. It is formed of three major components; 186 

pumping system, hydro turbine (HT) and upper reservoir [41]. Figure 5 shows an 187 

example of the PHES. Water is pumped from the lower reservoir to the upper one when 188 
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there is an excess of energy, so it can be used again when needed. This system depends 189 

on the potential gravitational energy such that the upper container is able to provide 190 

positive pressure difference with respect to the lower one and consequently to produce 191 

power by the help of the HT. Advanced PHES relies on replacing the turbomachines by a 192 

reversible pump-turbine in order to enhance the performance of the storage system and 193 

response time as well as increasing its flexibility [42]. 194 

 195 

Figure 5: The flow of energy in the PHES plant 196 

 197 

3.1 Solar Energy Coupled with Pumped Hydro Storage 198 

Solar-PHES is an efficient strategy for mitigating the photo-voltaic (PV) power 199 

fluctuations. It is necessary to support this system with an accurate forecasting of Solar-200 

PHES power generation and demand response, followed by a smart grid energy 201 

management [43] for achieving the optimal operation. In [44], Solar-PHES was used to 202 
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minimize grid power cost for irrigation in the presence of boreholes for water supply. 203 

Figure 6 represents the working process of the system during 24 hours (day and night). 204 

The day configuration shows how the solar energy is able to store water in the upper 205 

reservoir by using the pump. At night, in the absence of sunlight, the water will flow back 206 

to the lower reservoir passing through the motor-generator which is connected to the 207 

control center responsible for supplying power. 208 

  

(a) (b) 

Figure 6: Solar coupled with PHES (a) storing and (b) supplying power 209 

 210 

Usually the optimization of Solar-PHES is used to decrease the overall operating cost of 211 

PHES and that of the PV. This system has been adopted to operate in remote areas or 212 

islands without any grid supply in order to decrease the levelized cost of energy (LCOE) 213 

and increase power supply reliability [45]. As presented in Figure 6, the solar PV is able 214 

to either generate electricity directly or pump the water to the upper reservoir. Bahadur et 215 

al. [46] suggested that the solar power must only be used to pump water. By this way, the 216 

system will be simpler and no need for control systems because it is automatically 217 
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controlled. The PHES will remain receiving power from the wind turbine and supplying 218 

the grid via the hydraulic turbine. In [47], floating PV was integrated with PHES in order 219 

to avoid the need for reserving specific land sources and to provide the required amount 220 

of water. 221 

3.2 Wind Energy Coupled with Pumped Hydro Storage 222 

Wind-PHES is a combination usually used in islands where interconnection grids can be 223 

found in which wind energy represents the main energy source. It aims to increase 224 

renewable energy penetration [48] as well as to decrease the LCOE [49], total power 225 

shortage [50] and the amount of energy produced by conventional power plants [51]. In a 226 

Wind-PHES system, the wind turbine is directly connected to the pump which is 227 

responsible for driving the water for the upper tank. In order to estimate the economic 228 

and environmental impacts of the Wind-PHES, it is necessary to study the main 229 

uncertainties that are wind speed and electricity load. The mixed-integer nonlinear 230 

programming is a stochastic programming that allows to investigate the effect of these 231 

uncertainties appropriately [52]. 232 

PHES could be used to smooth the offshore wind power variations [53], balance between 233 

power supply and demand [54], decrease the imbalance cost [55] and wind power 234 

uncertainties. It also provokes a decrease in the start-up effect of peaking units [56] and 235 

the risk of load shedding [57]. The wind turbine could be connected mechanically to the 236 

pump via gearbox or electrically by transferring the wind power to electric energy. Both 237 

types have special characteristics, however, the electrical form is more commonly known 238 

and used. This is due to the high-power loss and fluctuations that may occur 239 
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mechanically. Kapsali et al. [58] found that the HT is better to operate 24 hrs, and the 240 

upper reservoir volume should be designed in a way to provide the HT the whole 241 

operational time (day-night). Al Zohbi et al. [59] investigated a new method to store the 242 

surplus of wind energy in dams, and compared between two dams in Lebanon (Chabrouh 243 

and Quaraoun) in order to choose the best one. In [60], an optimization study was carried 244 

out aiming to use Wind-PHES for desalination and minimizing wind power curtailment 245 

[61], and consequently to decrease the power cost, water production cost and CO2 246 

emissions (see Figure 7). In a conventional Wind-PHES system, part of the excess power 247 

released by the wind turbine is released and the rest is curtailed. Therefore, it will be very 248 

helpful to use this curtailed power for desalination. This could fit the Wind-PHES 249 

extremely knowing that water is a major component in the storage and desalination 250 

systems. As a matter of fact, the need for fossil fuels will decrease in water production 251 

systems. 252 

 253 

Figure 7: The principle of desalination based on wind energy coupled with PHES  254 
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 255 

The optimization of the system is not only considered at the design level and 256 

components’ sizing [62], but it also depends on optimal operations and scheduling [63] 257 

such as the initial stored water [64] in the upper reservoir which is better to be as high as 258 

possible. One of the drawbacks of Wind-PHES is its high capital cost [65], thus, Foley et 259 

al. [66] encouraged the use of this system while making it commercially viable by 260 

decreasing its capital cost and penalizing fossil fuel with high carbon taxes. Intelligent 261 

energy management can be performed in agricultural micro grids to benefit from the 262 

Wind-PHES and support irrigation systems [67]. Another way to make the system 263 

economically feasible is to increase the penetration of wind [68]. This will raise the profit 264 

of PHES and thus its payback period. With this in mind, it is necessary to always recheck 265 

if the system is working on its optimal operation, because each operation must be specific 266 

for a limited amount of power. Canales et al. [69] compared between Wind-PHES and the 267 

conventional reservoir. The authors deduced that Wind-PHES is much better even though 268 

it has a higher initial cost but it has lower operating cost, environmental impact and 269 

flooded area [70]. The capital cost of the system depends highly on the wind energy 270 

availability and plant construction area [71]. In [72], variable speed pumps were 271 

investigated to provide fast dynamic response that was also found to be a profitable 272 

solution [73]. Endegnanew et al. [74] discussed three different types of controllers that 273 

could be used in the Wind-PHES; storm, HVDC and load following controller. In [75], it 274 

was found that using double penstock instead of one will decrease the wind energy 275 

rejected annually from 18.96 % to 4.67 %. Bahadur et al. [76] proposed an optimal way 276 

to smooth the wind power by connecting the wind turbine in series with PHES. In other 277 
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words, the wind turbine is not connected to the generator directly. The water in the upper 278 

reservoir is always responsible for generating electricity. 279 

4. Compressed Air Energy Storage 280 

Compressed air energy storage (CAES) is based on storing the excess of energy 281 

underground in the form of compressed air (see Figure 8). The compressed air will be 282 

subjected to heat addition before it enters the expander for generating electricity. Part of 283 

the compressed air will pass through a natural gas turbine that produce electricity and the 284 

rest will be used for heating the compressed air flow before expansion. CAES is an eco-285 

friendly ESS which does not require high maintenance. There are different types of 286 

underground air storage; porous rock, mired hard rock storage facility and leached out 287 

salt dome. Underground air storage is only used for large scale applications, because it 288 

will not be effectively operating otherwise. Thus, for small scales, it is recommended to 289 

use aboveground storage formed of wire wound pressure vessels [77].  Amir et al. [78] 290 

aimed to increase the feasibility of RES and CAES. It was deduced that the proposed 291 

system has the ability to provide combined heat and power. This will indeed raise the 292 

benefit of this system and decrease its payback period to become less than 3 years. This 293 

could be achieved by replacing the combustion chamber with a thermal storage tank in 294 

order to take advantage of the stored heat. The latest generation of CAES is the 295 

isothermal version (I-CAES). It uses water to compress and expand the stored air via 296 

pump/turbine. This allows a reduction in the electric consumption of the compressor, 297 

elimination of the need for thermal input completely and an increase the overall 298 

efficiency of the storage system. It depends on two different mediums; air as a storage 299 

medium and water for controlling the pressure of the stored air. This system could be 300 
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found as open (OI-CAES) or closed system (CI-CAES). The closed type is the 301 

conventional one such that it consists of only one storage tank combining air and water. 302 

However, the OI-CAES uses two working cylinders connected to each other with a 303 

reversible valve in order to increase the energy storage density which is expected to be 304 

double than that of CI-CAES [79]. 305 

 306 

Figure 8: Schematic diagram of a conventional CAES 307 

 308 

4.1  Solar Energy Coupled with Compressed Air Storage 309 

Same as the previous mentioned ESSs, Solar-CAES aims to decrease fuel consumption 310 

and CO2 emissions. In Brazil [80], the annual average exergy and energy efficiencies of 311 

the plant was measured to be 17.9 % and 16.2 % respectively. According to [81], Solar-312 

CAES has been investigated as an effective system in a PV farm under transient 313 

operational conditions, which consequently enhances the stability of the output power of 314 

the PV-plant and increases the net revenue. In [82], CAES sizing was performed in a PV-315 

farm case study to provide electricity where the ESS is used to increase the efficiency of 316 
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the PV-plant. Cazzaniga et al. [83] established a new integration between CAES and 317 

floating PV-plant. The pontoons of the floating PV are used as reservoirs, and steel 318 

cylinders instead of polyethylene pipes. This system can be implemented in water basins 319 

in which the buoyancy of the modular raft structure must be pre-studied. 320 

4.2 Wind Energy Coupled with Compressed Air Storage 321 

In these days, Wind-CAES is frequently used for energy storage in offshore wind energy 322 

farms which is environmentally friendly [84]. Indeed, using such coupling, the power can 323 

be shifted to peak hours for increasing the gross revenue [85]. On the other hand, 324 

electrical stability of the system can be achieved by an optimal scheduling [86] and by 325 

taking into consideration the load distribution and peak times [87]. Jin et al. [88] 326 

investigated a small-scale Wind-CAES with a wind turbine rated power of 2 MW. The 327 

storage capacity used was 1.32 MWH. It was noticed that the proposed system is able to 328 

stabilize the output power while having a CAES rated power of 0.44 MW. In a case 329 

studied in Egypt [89], the net present value (NPV) was increased from $207m to $306m 330 

by using the CAES compared to the stand alone wind turbine after 25 years of operation. 331 

According to [90], Wind-CAES has CO2 emissions 93% lower than the pulverized coal 332 

and 71% than the natural gas cycle. Abbaspour et al. [91] compared between Wind-333 

CAES and the gas-fired generation plant, in which the results showed that the Wind-334 

CAES could increase the profit by 43% and decrease the costs by 6.7%. Abdul Hai Alami 335 

[92] compared between CAES and Buoyancy work energy storage (BWES) in wind farm 336 

and find that the efficiency of CAES (84.8 %) is much higher than that of the BWES (36 337 

%). In [93], a thermo-economic study was performed in which the authors mentioned that 338 

CAES is a cost-effective solution for solving local wind power grid imbalances. 339 
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Table 2: Difference between Wind-CAES, Wind-NGCC and Conventional Coal Systems 340 

Systems 
Carbon Dioxide Emissions 

(g CO2/kWh) 

Fuel Consumption 

(MJ/kWh) 

Wind-CAES 61 1.03 

Wind-NGCC 216 4.22 

Conventional Coal 876 9.71 

 341 

Usually optimization studies [94] are performed in Wind-CAES to support the main 342 

objectives of the system such as decreasing the LCOE [95] while increasing the CAES 343 

capacity and rated power requirements for the compressor. This can be achieved by an 344 

optimal utilization of wind power and operation profitability [96] that vary according to 345 

the schedule of wind generation [97]. The main components affected by the change of 346 

wind speed are the wind turbine and compressor; in which the highest efficiency could be 347 

achieved at stable and medium wind speeds [98]. In [99], it was concluded that a variable 348 

shaft speed could serve in decreasing the LCOE when compared with that of the constant 349 

speed. Saadat et al. [100] modelled a dual chamber liquid-compressed air storage vessel 350 

(hydraulics and pneumatics) in order to downsize the electrical system, increase profit 351 

and match between grid and load.  Hasan et al. [101] concluded that a parallel CAES 352 

system combined with wind turbine is better than the series connection which consumes 353 

less amount of power during compression and also can deal more with wind fluctuations. 354 

Figure 9 shows the difference between the series and parallel connections of the Wind-355 

CAES.  Wang et al. [102] compared between the Underwater CAES (UWCAES) [103] 356 

and Underground CAES (UGCAES). The authors found that UWCAES has a higher 357 

efficiency in an offshore wind farm application. In [104], UWCAES was also studied, it 358 
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was reported that the total operating cost of the system is decreased by 3.36%. 359 

Underwater storage is provided by the help of two vessels; one is seabed and connected 360 

to the second which is responsible for floating the wind turbine. The system will stay 361 

balanced and floating by the support of the lower pressure vessel. The compressed air is 362 

also used to feed the grid when needed. In this floating offshore spar type wind turbine 363 

[105], a hydraulic pump based on liquid-piston is used to compress the air while 364 

providing low compression ratios to reduce losses and hence increasing the overall 365 

efficiency. 366 

 

 

(a) 

 

(b) 

Figure 9: Wind coupled with CAES (a) Parallel and (b) Series connections 367 

 368 

Adiabatic CAES (ACAES) [106-108] is a modern type of ESS which is introduced to 369 

many wind power applications to eliminate heat addition in order to get rid of gas 370 

turbines [109] (see Figure 10). It is a gas free system; the released thermal energy during 371 

compression is stored to be then reused before expansion. Therefore, the ACAES is 372 
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mainly dependent on the thermal energy storage used [110].  Zhang et al. [111] proposed 373 

a variable configuration of the ACAES (VC-ACAES) to reduce power fluctuations using 374 

multi-stage compressor and multi-stage expander to operate under variable modes and to 375 

increase the wind power connected to the grid from 26.29 % to 70.62 %. According to 376 

the economic aspect, the centralized CAES in wind power applications is found to be a 377 

better choice than the decentralized one [112].  Sun et al. [113] modelled mathematically 378 

the scroll expander to be used as an air-machinery energy converter in order to transmit 379 

additional driving power from the stored compressed-air to the turbine shaft for 380 

smoothing the wind power. The co-location of wind and CAES is found to be attractive 381 

to decrease the transmission costs and to increase the wind penetration. 382 

 383 

Figure 10: ACAES schematic representation 384 

 385 

In the presence of demand congestion, it is essential to adopt programs for management 386 

issues and operational strategies [114] in order to deal with scheduling problems. 387 

Currently, the most important programs used are the demand response program (DRP) 388 

[115] and stochastic programming (SP) [116]. These are used as feedback methods to get 389 

rid from intermittency, decrease the operational cost, reduce wind curtailment and 390 
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provide better frequency security [117]. One of the main studies that must be carried out 391 

using these programs is the conditional value at risk (CVaR) [118]. 392 

5. Mechanical Energy Storage Coupled to Hybrid Systems 393 

Hybrid systems are used to increase the utilizations of renewable energy as well as to 394 

combine the advantages of the different types of MESSs. They also allow to decrease the 395 

negative effects of fuel power cycles and to combine between different sources of energy. 396 

Table 3 shows the different combinations of MESSs and energy sources. The 397 

combinations can be found in two different ways; either by energy sources or by ESSs. 398 

Typical hybridizations of energy sources can be the Solar-Wind, Solar-Diesel, Wind-399 

Diesel, etc., while that of ESS can be such as FESS-CAES, CAES-Thermal ESS, etc. One 400 

of the main benefits of using hybrid systems is to adopt standalone renewable energy 401 

systems. This could be achieved by coupling an energy storage system to wind and solar 402 

energy. Therefore, in [119], the ACAES was chosen as a storage system in order to avoid 403 

any other thermal input. The results showed that the probability of losing the power 404 

supply is very low such that it will not exceed 1%. The capital cost is the main concern 405 

when talking about hybrid systems, however, if the operating cost is significantly 406 

reduced, then the capital cost issue could be skipped. These systems are mostly adopted 407 

in remote areas where the grid has not been extended. For instance, Solar-Wind-PHES 408 

[120] can decrease the levelized cost of electricity by 32.8% and 45% compared to Solar-409 

PHES and Wind-PHES respectively [121]. 410 

 411 
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Table 3: Hybrid systems based on mechanical energy storage 412 

Hybrid System References 

Solar-Diesel-FESS [122] 

Solar-Diesel-PHES-Batteries [123] 

Solar-Gas Turbine-CAES [124] 

Solar-Organic Rankine Cycle-CAES [125, 126] 

Solar-Wind-CAES [127, 128] 

Solar-Wind-FESS [129] 

Solar-Wind-PHES [130-135] 

Wind-Diesel-CAES [136] 

Wind-Diesel-FESS [137, 138] 

Wind-Diesel-PHES [139] 

Wind-Electric Boiler-PHES [140] 

Wind-FESS-CAES [141] 

Wind-Gas Turbine-PHES [142] 

Wind-Geothermal-CAES [143] 

Wind-Organic Rankine Cycle-CAES [144, 145] 

Wind-Thermal Unit-PHES [146] 

Wind-CAES-Thermal ESS [147] 

 413 

6. Discussion 414 

The current increase in the usage of renewable energy imposes also to increase in MESSs 415 

in order to obtain the needed performance. The evolution and development of MESSs 416 
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start to show up after 2010 as shown in Figure 11 based on the papers analyzed in this 417 

research. It is clearly observed that during the last four years, the number of articles of 418 

MESSs combined with solar and/or wind is in a dramatic growth which shows the 419 

importance of this topic nowadays. The results presented in the figures of this section are 420 

based on Elsevier journals as a sample study. 421 

 422 

Figure 11: The research development of MESSs coupled with solar and wind applications  423 

 424 

Comparison between mechanical energy storage systems 425 

Indeed, the evolution of MESSs domain varies significantly with respect to its different 426 

types according to global requirements which depend on the properties and advantages of 427 

each type.  Figure 12 presents the difference between the MESSs types combined with 428 

solar and/or wind energy applications regarding the number of studies and research 429 
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publications. This difference is directly affected by the performance of each type, storage 430 

capacity, operating duration, initial and operating cost and environmental effects. 431 

 432 

Figure 12: The difference between mechanical energy storage systems when coupled 433 

with wind and solar energies according to the number of studies and articles 434 

 435 

The nature of the energy source is a major factor that affects the MESS type selection. As 436 

a matter of fact, the characteristics of wind energy is more appropriate than solar to be 437 

coupled with MESSs. This is due to the type of component responsible for energy 438 

conversion in each system. Therefore, the mechanical power generated by the wind 439 

turbine could be easily transmitted to any type of MESSs. Figure 13 shows the difference 440 

between wind and solar energies according to the type of mechanical storage systems. It 441 

is very noticeable that wind is considerably more investigated than solar energy when 442 

coupled with all mentioned storage systems. The percentages of Wind-PHES and Solar-443 
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PHES applications are 78% and 22% while that of Wind-CAES and Solar-PHES are 85% 444 

and 15% respectively. FESS is only coupled with wind energy (100%) because this 445 

storage system could only be used to store mechanical power. 446 

 447 

Figure 13: The percentage difference between solar and wind energies with respect to 448 

their combinations with mechanical energy storage systems 449 

 450 

As shown in Figure 14, the applications involving wind/solar and MESS had passed 451 

through several jumps and drops. Recently, the highest investigated application is the 452 

Wind-CAES. It has been remarkably increasing; however, the other systems are either 453 

decreasing or remaining constant. Besides, the curves corresponding to solar energy are 454 

always below those of wind. This confirms that wind energy is more applicable with 455 

mechanical energy storage. 456 
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 457 

Figure 14: The number of researches that investigated the different applications 458 

combining wind/solar energy with MESSs with respect to time 459 

 460 

It is essential to study the difference between the various types of energy storage in order 461 

to choose the appropriate system to feed the needs in the case or application under study. 462 

There are also some special characteristics and differences between the different types of 463 

MESSs such as the very rapid discharging of power in FESS, high efficiency of PHES 464 

regardless of time and the stability of CAES. Table 4 shows a comparison between the 465 

different types of MESSs involving the advantages and disadvantages of each one. 466 

Table 4: Comparison between the types of MESSs 467 
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Advantages Disadvantages 
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• No pollution 

• Long lifetime 

• Discharging huge amount of power in 

few minutes 

• Limited charge/discharge 

• Cannot stand alone with a PV plant 
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• Low cost/kW 

P
H

E
S

 

• High efficiency 

• Stability 

• Low cost/kWh 

• Long discharge time 

• High capital cost 

• Low energy density 

• Occupying large areas 

• High capital cost 

C
A

E
S

 

• Flexibility 

• Long discharge time 

• Fast start-up 

• Low cost/kWh 

• Stability 

• Low efficiency 

• Usually natural gas is used to reheat the 

air before expansion leading to CO2 

emissions (if not using ACAES/I-CAES) 

 

 468 

Recommendations 469 

Due to the fundamental difference in terms of operational mode and characteristics, 470 

recommendations for using MESSs are very specific and adapted to the considered 471 

storage type. A pre-study should be performed relying on the geographic and economic 472 

conditions of the region in order to select the optimal type of MESSs. Since PHES 473 

requires a large amount of water, so it is not preferred to use this kind of energy storage 474 

in areas that have low available amount of water. This system could also take advantage 475 

of net power from rain in mountains. With this in mind, the temperature is also 476 

considered as a critical factor such that it must be moderate to avoid freezing and 477 
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evaporation at low and high temperatures respectively. Moreover, it is suggested to adopt 478 

such system in places characterized by huge differences in elevations because it allows to 479 

increase the effectiveness of PHES. To increase the profit of this system, a variable speed 480 

pump must be installed [72]. The series connection between the wind/solar power with 481 

PHES is able to provide more stability [46, 76]. This is a kind of automatic control to 482 

avoid complexity since the HT will remain operating which is the only component 483 

connected to the generator. FESS is the most economic ESS when fast responses are 484 

required within a short operational time [23]. Magnetic bearings are responsible for 485 

decreasing the transmission losses [30]. The less commonly used electric machine is the 486 

SRM because it has complex control problems. Usually, SM and IM are used for high 487 

speed and high-power applications respectively [31]. It is very necessary to use 488 

compensators such as DSTATCOM to stabilize the output power in FESS when coupled 489 

with renewable energy [38]. Furthermore, hydrostatic transmission and SG could serve in 490 

decreasing frequency deviations [39]. It is recommended to replace conventional CAES 491 

by modern types such as ACAES [109] and I-CAES [79] in order to avoid using another 492 

heat source which will consequently increase the plant efficiency and reduce the CO2 493 

emissions. VC-ACAES [111] has showed a great potential for decreasing the power 494 

fluctuations which relies on multi-stage compressor and multi-stage turbine. Floating 495 

wind/solar [83, 105] systems coupled with CAES are also highly attractive because they 496 

are depending on underwater storage which has presented a better performance compared 497 

to the underground one [102]. In all MESSs, it is very necessary to adopt well organized 498 

operational strategies and feedback programs such as DRP [115] and SP [116]. The 499 

governmental sector should support projects involving MESSs. This can be performed by 500 
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providing the information needed for the studies as well as the lands required for the 501 

plants’ construction. 502 

Research gaps and future directions 503 

• Development of software that allows to choose the optimal energy storage system 504 

based on the available conditions, power supply and load. This will indeed help the 505 

users to select the most suitable storage system that could fit their applications.  506 

• Study advanced hybrid MESSs to improve the plant efficiency and get rid of the 507 

disadvantages of the different types of storage systems as much as possible. It will be 508 

easier to shave peak loads and increase the capacity of the whole plant. Hybrid 509 

MESSs is the optimal way to keep the system eco-friendly and meet the requirements 510 

needed in any type of application. 511 

• Perform modeling and preliminary studies on hybrid systems combining MESSs with 512 

other ESSs. This will help in studying the potential of these hybrid systems in order to 513 

find further optimization options. Even though, combining MESSs alone is the 514 

favorable choice of energy storage, however, in some special cases, they are not 515 

capable of meeting all requirements. Thus, coupling different energy storage 516 

categories is necessary, while, the most important issue is their management such that 517 

the MESSs are the primary systems and others are the auxiliary ones to reduce the 518 

environmental impact as much as possible.  519 

 520 

 521 

 522 

 523 
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7. Conclusion 524 

This review paper has investigated all research studies involving wind and/or solar 525 

applications coupled with MESSs. These types of RESs are the most ones that require 526 

energy storage such that they are characterized by significant intermittency. This domain 527 

has showed a dramatic development and evolution recently. The coupling could be found 528 

in two different ways; series and parallel. It was deduced that series connection is 529 

preferable such that it provides an automatic control in order to reduce the sudden drop or 530 

rise in solar or wind power. By this manner, power will be enforced to flow first through 531 

the MESS then to the load. This will ensure stability and safety of the devices that are 532 

connected to the system and simplify controlling issues. On the other hand, the parallel 533 

connection could save more amount of power such that the path of energy flow is shorter 534 

than that of series. The three main categories of mechanical energy storage systems are 535 

FESS, PHES and CAES. FESS is based on storing energy for short durations in the form 536 

of kinetic energy by using a rotating mass.  Indeed, it has the fastest response where it 537 

can discharge huge amount of power in few minutes however its capacity is very limited. 538 

It is the most economic ESS in terms of fast response (lowest cost/kW). There are two 539 

electric machines that are commonly used in flywheels; SM for high speed and IM for 540 

high power applications. In order to stabilize the electric power, it is essential to use a 541 

compensator such as DSTATCOM. In the presence of significant fluctuations, 542 

hydrostatic transmission and SG would be the most favorable solutions. PHES depends 543 

on storing water in an elevated reservoir, it can then be used as a stored potential energy. 544 

PHESs are optimal for regions where large spaces are available as well as sufficient 545 

amount of water. It has the highest efficiency, but it requires larger areas for installation. 546 
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Variable speed pumps are better than that of constant speed in terms of profit. The HT 547 

will stay operating the whole time providing the grid with the needed power. CAES, in its 548 

turn, relies on using a compressor to store air at high pressure, it can be then expanded 549 

when it is required in order to supply energy. It is very flexible and has a fast start-up 550 

while it operates at lower efficiencies compared to other MESSs. Therefore, using 551 

ACAES instead of the conventional CAES allows to avoid the need of a supplementary 552 

heat source by the help of a thermal storage tank. It is also more favorable to use VC-553 

ACAES to decrease power fluctuations and/or floating systems that are based on 554 

underwater storage to provide higher storage efficiencies compared to that of 555 

underground. The high-power consumption of the compressor could also be reduced by 556 

using the I-CAES because it is based on compressing air with a pump by the help of 557 

water as a working fluid. In addition, OI-CAES has a higher energy storage density 558 

compared to the closed type. 559 
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