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ABSTRACT

When long-term savers plan for retirement they need to know their investment prospects

in terms of real income (Merton, 2014). While inflation has traditionally been considered as

a complication in financial analysis and financial practice, we obtain enhanced predictability

and model fit if the real returns are targeted in conjunction with earnings-by-price minus

inflation as predictor. For this latter case, we propose an investment strategy of updating

the simple classical Merton proportion as we go along. This simple strategy is very close to

the complicated theoretically optimal solution but has comparably much lower parameter

uncertainty.
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1 Introduction

Recent scientific developments provide a long list of innovations for long term pension prod-

ucts, when the underlying econometric investment assumptions are stable, see e.g. Donnelly,

Guillen, Nielsen, and Pérez-Maŕın (2018); Zhu, Hardy, and Saunders (2018); van Bilsen

and Bovenberg (2018); Mei (2019); van Bilsen and Linders (2019); Bernhardt and Donnelly

(2019). The purpose of this paper is to provide econometric investment dynamics for long

term real income pension products to provide the long term saver with an optimal, or close

to optimal, investment strategy in a dynamic market. In this paper the prefix real denotes

net of inflation.

It has long been accepted in the financial academic literature that predictability of the

stock returns can be exploited by the short-term as well as the long-term investor. One of

the more recent examples is Golez and Koudijs (2018), who find a 2% to 10% out-of-sample

R-squared (ROOS) when exploiting the predictive power of dividends. Another strand of

research exploits this type of predictive power to provide optimal long-term investment

strategies. For example Barberis (2000) uses dividends to drive future investments according

to a discrete econometric version of the financial optimization methodology of Kim and

Omberg (1996). The latter work provides a dynamic optimal investment structure taking into

account the time-varying nature of expected returns. The empirical part in Barberis (2000)

is conducted with the following three ad-hoc choices: monthly data, targeting returns in
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excess of short term interest and dividends as predictor. These three seemingly little choices

have a rather big impact with respect to model fit, returns predictability and investment

performance. With regards to the first choice, a long-term econometric model with time

steps of one year seems more appropriate when the target is for example a pension half

a lifetime into the future. One year steps may eliminate correlations arising from small

movements noting that model parameters are very sensitive to the time-steps considered;

see Harrison and Zhang (1999); Engsted and Tanggaard (2002); Kim and In (2005) among

many others. With regards to the second choice, we argue that one should target returns in

excess of inflation when considering long-term investments. Targeting returns in the excess of

inflation ensures real-income protection by maximizing the purchasing power of our terminal

investment value (Merton, 2014). Appropriate benchmarking via inflation additionally aids

communication with the pension saver; see Merton (2014); Gerrard, Hiabu, Kyriakou, and

Nielsen (2018, 2019). With regards to the third choice, Scholz, Nielsen, and Sperlich (2015);

Kyriakou, Mousavi, Nielsen, and Scholz (2019a,b); Mammen, Nielsen, Scholz, and Sperlich

(2019) employ a machine learning approach to validating long-term nonparametric smoothing

of returns. They consider dividends, earnings and a number of other macro financial key

drivers of the stock market and find that the long-term investor interested in real income,

that is, returns in excess of inflation, should focus on real earnings, that is, earnings minus

inflation. When targeting real returns, nominal earnings-by-price as such has no value as a

predictor with a validated-R-squared (RV) (RV is an alternative to ROOS, see (Nielsen and
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Sperlich, 2003; Bergmeir, Hyndman, and Koo, 2018)) of only -1.5%. However, real earnings-

by-price is a powerful predictor for the long-term investor with a RV value of 12.2% (Nominal

and real dividends have an RV value of -0.2% and 10.4%, respectively), see Kyriakou et al.

(2019a,b).

When calibrating our model on S&P 500 data from 1873 to 2018 and changing those

three choices, that is, when employing real earnings as the predictor for the real returns by

utilizing yearly data, then we find that there is virtually no correlation between the market

price of risk – measured in the real terms – and the real returns.

Such a lack of correlation simplifies considerably the complex optimal investment struc-

ture provided in Kim and Omberg (1996). Zero correlation turns the complicated optimal

investment structure into a simple regular update of the well known deterministic optimal

investment structure provided by Merton (1969) and Merton (1975). We call this simple

regular update dynamic Merton strategy and the main conclusion of our paper is that the

long-term investor should use dynamic Merton based on real earnings while planning for

their retirement.

In Section 2 we define the optimal dynamic financial investment policy, which is non-

myopic. Section 3 and Section 4 find that a financial optimal investment policy adds one

extra term – the intertemporal hedging demand – to the dynamic Merton rule. After fitting

the model in an econometric setting using S&P 500 data from 1873 to 1988 in Section 5,

the intertemporal hedging demand turns out to be of marginal interest when considering
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long-term real investment strategies. This is fortunate because the extra term comes with

a significant extra number of parameters to be estimated. The extra instability from the

added parameter uncertainty – the main focus of Barberis (2000) – could alone lead to an

advocacy for the dynamic Merton strategy. When the major customer-selected adjustment

of the long-term hedging policy as advocated in Merton (2014) and Gerrard et al. (2019)

is added to this equation, then there is a strong argument that the extra trouble of imple-

menting the theoretically optimal but complicated nonmyopic strategy might not be worth

it for the long-term real investor. In Sections 5 and 6 of this paper we take a historical look

at the S&P 500 Index and how the classical Merton approach of Merton (1969) and Merton

(1975) compares to our simple suggested dynamic Merton approach and the complicated but

theoretically optimal nonmyopic strategy. For the last 30 years, utilizing real earnings as pre-

dictor we derive ratios of geometric mean return to average stock exposure of 5.46%, 7.84%

7.86% for classical Merton, dynamic Merton and optimal nonmyopic, respectively. Hence,

while a dynamic strategy seems necessary for real long-term investments, the simplicity of

the dynamic Merton approach with little parameter uncertainty makes us recommend it as

the dynamic investment strategy when optimizing for real long-term investments. In the ap-

pendix we derive the necessary financial mathematics to understand the theoretical details

behind the myopic and nonmyopic discussion in this paper. The results are a special case of

the more general results of Kim and Omberg (1996).
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2 From the classical Merton model to a dynamic model

2.1 Starting from the classical Merton world

We start with a financial market based on simple Brownian motions and deterministic

parameters µ, �, r > 0:

dS(t) = µS(t) dt+ �S(t) dW (t),

dX(t) = rX(t) dt+ (✓ dt+ dW (t)) �⇡(t),

where ✓ = (µ� r)/� is the market price of risk and ⇡(t) is the amount of the current wealth

X(t) invested in the risky asset with the remainder X(t) � ⇡(t) in the risk-free asset. The

customer’s wealth is governed by a standard Brownian motion W defined on a complete

probability space (⌦,F ,P). The filtration available to the customer is represented by the

filtration F(t) = �{W (s), s 2 [0, t] _N (P) , t 2 [0, T ]}, where N (P) denotes the collection

of all P-null sets so that the filtration obeys the usual conditions.

This simple deterministic model is not appropriate for the long-term investor. It is not

realistic that parameters stay the same over the half-century or more that could represent

many long-term investors’ time horizon. Therefore we define a more general financial market

incorporating a more general class of parameters providing a more realistic model framework

for the long-term investor. Instead of the deterministic opportunity set of parameters (µ,
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�) we consider its stochastic counterpart. This is done by replacing the time-independent

parameters (µ, �) with time-dependent stochastic parameters (µ(t), �(t)). We do restrict the

space of admissible stochastic processes for (µ(t), �(t)) to predictable functions. Therefore

we assume, that while parameters can vary stochastically, the correct value of the parameters

are known at any point in time and do not depend on future events. Formally, we therefore

assume that (µ(t), �(t)) are predictable with respect to filtration F(t) according to which

all considered Brownian motions of our financial market are measurable.

Below in Subsection 2.2 we firstly define our general dynamic market framework for

the real life-cycle investor. In Subsection 2.3 the pension saver is accumulating wealth via

a wealth process and a savings function g. This savings ratio g is itself assumed to be a

predictable function that cannot assume any knowledge of the future. Notice that the savings

function g can be positive as well as negative. When g is positive the pension saver is in the

so called accumulation phase saving for the retirement; when g is negative the pension saver

has started the pay-out phase. In Subsection 2.4 we state the unconstrained optimization

problem and the Hamilton–Jacobi–Bellman equation.

2.2 The long-term saver in the dynamic market

We consider a real long-term investor who manages investments in a continuous-time

market model over a target date horizon [0, T ], where T > 0 refers to the terminal time

when retirement occurs. The pension fund is built in a market with a constant risk-free
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rate asset, called a bond, which pays interest at constant rate r, and one risky asset (or

“security”), called a stock, whose price S(t) is governed by an one-dimensional, standard

Brownian motion W = {W (t),F(t); t 2 [0, T ]} defined on a complete probability space

described by a triplet (⌦,F(t),P). The price S(t) evolves according to the linear stochastic

di↵erential equation

dS(t) = µ(t)S(t) dt+ �(t)S(t) dW (t), (1)

where µ = {µ(t),F(t); t 2 [0, T ]} and positive � = {�(t),F(t); t 2 [0, T ]} are adapted

and measurable one-dimensional Itô processes of the mean rate of returns and standard

deviation respectively. Both stochastic processes are fulfilling conditions of P
h R t

0 | µ(s) |

ds < 1 for all t � 0
i
= 1, P

h R t

0 �(s)
2 ds < 1 for all t � 0

i
= 1. Taking into account

market timing we define a stochastic market price of risk ✓ = {✓(t),F(t); t 2 [0, T ]} as the

Sharpe ratio

✓(t) :=
µ(t)� r

�(t)
. (2)

The information available is represented by the filtration F(t) := �{W (s), s 2 [0, t]} _

N (t,P), 8t 2 [0, T ], where N (t,P) is an increasing family of ��algebras of subsets of ⌦

and denotes the collection of all P�null events in the probability space (⌦,F(t),P). Since

µ(t), �(t) and ✓(t) are all related by the single equation (2), we choose ✓ and � as the main

quantities that vary over time.
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2.3 The contribution plan and the wealth process

The long-term saver starts with a fixed non-random initial wealth x̃(0) > 0. Future

contributions in the form of deterministic cash flows are given by dC(t). Let us assume that

the saver knows at time 0 how much money they will save towards their retirement. We

define a contribution plan g as a mapping of the discounted sum of their planned savings

from [0, T ] to [0,1)

g(t) :=

Z T

t

e�r(s�t) dC(s), 8t 2 [0, T ]. (3)

A portfolio process ⇡ = {⇡(t, x, ✓,�); t 2 [0, T ]} is a real-valued, square-integrable and F(t)-

progressively measurable process for which
R T

0 E[⇡2(t)] dt < 1 a.s. The process describes

a time-varying investing strategy, called a policy, which is giving us information about the

choice to allocate financial resources in the stock at time t. Let A be the collection of such

portfolio processes. The saver allows for a dynamic self-financed strategy and invests at

each instant t 2 [0, T ] an amount ⇡(t) in the stock. Use X̃⇡ = {X̃⇡(t); t 2 [0, T ]} to denote

an F(t)-adapted wealth process representing the trajectory of X̃(t) if the policy ⇡ and the

saving plan g is applied. The wealth equation, with its initial value, reads as

dX̃⇡(t) = rX̃⇡(t) dt+ (µ(t)� r) ⇡(t) dt+ �(t)⇡(t) dW (t) + dC(t), X̃⇡(0) = x̃(0) a.s.
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If we write X⇡(t) = X̃⇡(t) + g(t), then we have

dX⇡(t) = rX⇡(t) dt+ �(t)⇡(t)(✓(t) dt+ dW (t)), X⇡(0) = x(0) a.s. (4)

We define the set of admissible trading portfolios at time t for the saver’s initial endowment

A(t) := {⇡(t) 2 A : ⌦⇥ [0, T ] ! R : X⇡(0) = x(0)}, (5)

and we say that a portfolio process ⇡ at time t is admissible if ⇡(t) 2 A(t). We define the

wealth process Y (t)

Y ⇡(t) = er(T�t)X⇡(t), (6)

in order to remove dependence on the risk-free rate r. We describe a financial market as in

Chapter 1 of Karatzas and Shreve (1998) – see Definition 1.3 and Remark 1.4 – using state

processes driven by stochastic di↵erential equations of the form

dY ⇡(t) = �(t)⇡(t)er(T�t)
�
✓(t) dt+ dW (t)

�
, (7)

d✓(t) = �(✓)(t, ✓(t)) dt+ ⌧ (✓)(t, ✓(t)) dW✓(t), (8)

d�(t) = �(�)(t, �(t)) dt+ ⌧ (�)(t, �(t)) dW�(t). (9)
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�(✓)(t, ✓(t)) and �(�)(t, �(t)) represent the mean rates of returns for both state processes,

⌧ (✓)(t, ✓(t)) and ⌧ (�)(t, �(t)) are di↵usion coe�cients. Note that for dependent Brownian

motions we have

E[W (t)W✓(t)] = ⇢y✓t, E[W (t)W�(t)] = ⇢y�t and E[W✓(t)W�(t)] = ⇢✓�t,

and the fixed coe�cients ⇢y✓, ⇢y� and ⇢✓� are the correlations between W , W✓ and W�

respectively. We first investigate the general framework above. In Section 4, we will simplify

the model by imposing more structure. We will follow Kim and Omberg (1996) and impose

mean reversion of the risk premium and we will follow Mammen et al. (2019) and proceed

with a constant return volatility.

2.4 The financial optimization problem of the long-term saver

Within the stochastic control formulation setup in the previous Subsection 2.2 and Sub-

section 2.3, we focus on the following optimization problem:

Problem 1. Unconstrained problem. The long-term saver seeks to maximize the ex-

pected utility of their terminal reward U
�
X⇡(T )

�
or, equivalently, U

�
Y ⇡(T )

�
. The saver

needs to find the optimal control ⇡?
2 A to allocate their monetary resources such that for

t 2 [0, T ]

Et

h
U
�
Y ⇡?

(T )
�i

= sup
⇡2A

n
Et

⇥
U
�
Y ⇡(T )

�⇤ o
,
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subject to the initial wealth Y (0), where the dynamics of Y ⇡(t) are defined in (7).

The notation U typically stands for the utility function and its desirable properties are

formulated in following remark:

Remark 1. Utility function. We consider only strictly concave and C2 utility functions

U : (0,1) ! R with limits U(0) = limy!0 U(y) � �1, U 0(1) = limy!1 U 0(y) = 0 and

allowing the possibility U 0(0) = limy!0 U 0(y) = 1.

To derive the optimal controls of Problem 1, the technique of dynamic programming

is used. Alternative approaches are to operate with the general martingale method (Björk,

2009, Chapter 20) or the simplified utility gradient method (Du�e and Skiadas, 1994; Du�e,

2010, Chapter 9H). We denote the supremum over all admissible controls at time t by

V ⇡(t, y, ✓, �) = sup
⇡2A(t)

n
Et

⇥
U
�
Y ⇡(T )

�
| Y (t) = y, ✓(t) = ✓, �(t) = �

⇤o

as the optimal value function. Et is the conditional expectation operator. We assume that

the value function admits infinite utility, V ⇡(t, y, ✓, �) = �1, if there is no admissible control

given to initial state variables y, � and ✓. We solve the nonlinear partial di↵erential equation
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of second order called the Hamilton–Jacobi–Bellman equation at time t:

0 = sup
⇡2A(t)

n
Vt + �⇡✓er(T�t)Vy + �(✓)V✓ + �(�)V� +

1

2
�2⇡2e2r(T�t)Vyy +

1

2

�
⌧ (✓)
�2

V✓✓

+
1

2

�
⌧ (�)
�2

V�� + �⇡er(T�t)⇢✓y⌧
(✓)V✓y + �⇡er(T�t)⇢�y⌧

(�)V�y + ⌧ (✓)⌧ (�)⇢✓�V✓�

o

(10)

with respect to the set of admissible trading portfolios defined in (5). We seek a solution in

a separable form

V (t, y, ✓, �) = U(y)eb(t,✓,�) (11)

with the boundary condition b(T, ✓, �) = 0 for all states of ✓ and �. One may think of V (t, ·)

as the life-cycle saver’s indirect utility function for their wealth at time t. Obtaining the

candidate for the optimal policy ⇡?, and proving that the candidate does indeed verify the

PDE is not in itself su�cient: the HJB method relies on the so-called verification theorem

to accomplish the proof.

3 General solution to the financial optimization prob-

lem of the long-term saver

In the previous Section 2 we have formulated the general financial market model described

by (7)-(9). The solution of the Problem 1 is attained by solving (10). In this section, Theorem

1 provides the optimal nonmyopic investment policy for the long-term saver in the case of
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the general financial market model.

Theorem 1. Optimal nonmyopic solution. An optimal investment strategy for the

Problem 1 is to invest at every time t the amount

⇡⇤(t, y, ✓, �) := �
e�r(T�t)

�(t)Vyy

h
✓(t)Vy + ⇢✓y⌧

(✓) (✓)V✓y + ⇢�y⌧
(�) (�)V�y

i
, (12)

in the risky asset. Vy, V✓y and V�y are the corresponding partial derivatives of the value func-

tion. Both intertemporal hedging demands are given by sensitivities of our customer’s value

function of anticipated portfolio wealth gains due to the market price of risk ⇢✓y⌧ (✓) (✓)V✓y

and anticipated portfolio gains due to the stock returns ⇢�y⌧ (�) (�)V�y.

Proof. See Appendix A.

Theorem 1 becomes more comprehensible when we write it as analytical representations

of the partial derivatives of the value function. Corollary 1 follows intuitively from Theorem

1.

Corollary 1. Simplified optimal nonmyopic solution. Suppose that of the market

price of risk ✓ in (2) is independent of the evolution of the volatility of returns, i.e., ⇢�✓ = 0.

If the partial di↵erential equation

bt + �(✓)b✓ +
1

2

�
⌧ (✓)
�2 �

b✓✓ + b2✓
�
= �

1

2
⌘
�
✓ + ⇢✓y⌧

(✓)b✓
�2

, b(T, ✓) = 0 for all ✓.
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has a solution b which is bounded for 0  t  T , an optimal investment strategy for Problem

1 is to invest at every time t the amount

⇡⇤(t, y, ✓, �) := �
U 0(y)

�(t)U 00(y)
e�r(T�t)

⇥
✓(t) + ⇢✓y⌧

(✓)(✓)b✓(t, ✓)
⇤

(13)

in the risky stock. If we use the optimal policy (13) and the power utility function, i.e.,

U(y) :=
1

�
y� for y > 0, � 2 (�1, 1) \ {0},

with a constant relative risk aversion, then the trajectory {Y (t), 0  t  T} of the saver’s

optimal wealth is governed by an Itô process.

Y ⇤(T ) = Y ⇤(t) exp

"Z T

t

✓
Q(u)

1� �
✓(u)�

1

2(1� �)2
Q(u)2

◆
du+

Z T

t

Q(u)

1� �
dW (u)

#
. (14)

where the function Q(t) is given by

Q(t) ⌘ ✓(t) + ⇢✓y⌧
(✓) (✓) b✓ (t, ✓(t)) . (15)

Proof. See Appendix A.

We now consider the case when the Brownian motion, W✓, the driver of the risk premium

of the stock, is independent of the Brownian motion, W , which is driving the process of the
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stock returns. We call the resulting strategy Dynamic Merton (DM).

Corollary 2 follows also intuitively from Theorem 1.

Corollary 2. Dynamic Merton proportion. If the evolution of the market price of risk

(2), is independent of the evolution of asset price (1), i.e., if ⇢y✓ = 0, an optimal investment

strategy for Problem 1 is to invest at every time t the monetary amount

⇡⇤(t, y, ✓, �) := �
U 0(y)

�(t)U 00(y)
e�r(T�t)✓(t), (16)

in the risky asset.

Proof. See Appendix A.

Note that the logarithmic, exponential and power utility functions are all consistent with

Remark 1. In the setting of Corollary 2, the optimal investment strategy has the same form

as the Merton proportion in the original work Merton (1969), with the acknowledgement

that ✓ is now allowed to vary over time t.

Remark 2. Intertemporal hedging demand. The key di↵erence between the optimal

nonmyopic strategy in (13) and the dynamic Merton proportion in (16) is the time-varying

quantity

⇢✓y⌧
(✓)(✓)b✓(t, ✓). (17)

The correction term is also known as the intertemporal hedging demand.
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4 Kim and Omberg model

In this section we specify further the general market model given in Section 2. Our

objective is to get closer to the observed dynamics of the econometric data considered in

Section 5 and also to be able to provide closed-form solutions to the general dynamic Merton

hedge and the simplified dynamic Merton hedge derived in Section 3. For that we need to

derive a closed form solution for b✓. Until now we have retained the possibility that ⌧ (✓) is

an arbitrary function of ✓. Let us now instead assume that

⌧ (✓)(✓) = ⌧,

a constant, and for simplicity we write ⇢ instead of ⇢✓y. The assumption of constant

volatility is supported by the recent findings of Mammen et al. (2019) who conclude a

non-predictability of the volatility when real returns are targeted by real earnings as predic-

tor. We simplify the financial model (7)-(9) in Section 2 and we model ✓ as a non-central

Ornstein-Uhlenbeck process

d✓(t) = �(✓(t)� µ✓) + ⌧ dW✓(t). (18)
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The solution b(t, ✓,�) must satisfy the following partial di↵erential equation resulting from

(10)

0 = bt + (µ✓ � ✓)b✓ +
1

2
⌧ 2(b✓✓ + b2✓) +

⌘

2
(✓ + ⇢✓y⌧b✓)

2 , (19)

where ⌘ = �U 0(y)2/{U 00(y)U(y)}. There is no canonical method for solving the Hamilton–

Jacobi–Bellman equation in general, so we guess the form of the solution and then provide

a proof that our solution satisfies (19). By nature (19) is a parabolic nonlinear second

order di↵erential equation and we explore a solution of the form quadratic in ✓, that is, we

assume that the function b (t, ✓) appearing in the value function, V (t, y, ✓, �) = U(y)eb(t,✓),

is a quadratic polynomial in ✓:

b(t, ✓) = b0(T � t) + b1(T � t)✓(t) + b2(T � t)✓(t)2; (20)

see also Kim and Omberg (1996). The assumptions in this section, that is, to model the

stochastic risk premium as a mean-reverting process with the mean-reversion speed  and

volatility ⌧ in (18), is the specific extension of the Black-Scholes model considered in Kim and

Omberg (1996). The authors place particular emphasis on solving the mathematical forms

of the portfolio strategies and identifying the badly-behaved or nirvana solution regions. In

Proposition 1 below we highlight the only solution that is admissible. The Riccati di↵erential
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equation for b2 is

db2(s)

ds
= 2⌧ 2Bb22(s)� 2⌧Ab2(s) +

⌘

2
, A = ⇠ � ⌘⇢, B = 1 + ⌘⇢2, ⇠ =



⌧
. (21)

A central role is played by whether the discriminant

� = 4⌧ 2A2
� 4⌘⌧ 2B = 4⌧ 2

�
⇠2 � ⌘ (1 + 2⇢⇠)

�
,

takes a positive value, a negative value, or the value 0. The corresponding equation for b1,

db1(s)

ds
= 2⌧ 2Bb1(s)b2(s)� 2⌧Ab1(s) + 2µ✓b2(s)

can be solved straightforwardly once b2 is known.

Proposition 1. Admissible optimal nonmyopic solution under mean-reverting

assumption and constant volatility. Assume that the discriminant � is positive. Let

us consider the market in which the stochastic mean-reverting market price of risk in (18)

is traded continuously.The functions b1 and b2 from the intertemporal hedging term in (20),

admit the following hyperbolic representations

b1(s) =
⇠µ✓⌘

2⌧ 2Rp(1 + ⌘⇢2)
·
eRp⌧s � 2 + e�Rp⌧s

�1eRp⌧s � �2e�Rp⌧s
,

b2(s) =
⌘

4⌧ 2(1 + ⌘⇢2)
·

eRp⌧s � e�Rp⌧s

�1eRp⌧s � �2e�Rp⌧s
,

(22)
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where �1,�2 =
A±Rp

2⌧B , Rp =
p
⇠2 � ⌘(1 + 2⇢⇠), s = T � t.

Proof. See Appendix B.

Remark 3. Hyperbolic tangent form. Proposition 1 allows us to write the derivative

of the optimal solution with respect to the market price of risk in (20) using the hyperbolic

tangent

b✓(t, ✓(t)) = b2(T � t)

 
2⇠µ✓

Rp
tanh

⇣Rp⌧(T � t)

2

⌘
+ 2✓(t)

!
. (23)

By the boundary condition on b, the hedging demand vanishes as we approach maturity.

See Appendix B for the limiting behaviour of the correction term.

Remark 4. A nirvana solution for the long-term saver. Assume the same market

setting from Proposition 1. If we restrict � to take only positive values, i.e., � 2 (0, 1) and

if � < 0 then the functions b1, b2 admit following trigonometric representations

b1(s) =
2µ✓⌘

⌧ 2Rm
·

sin2
�
1
2Rm⌧s

�

(⇠ � ⌘⇢) sin(Rm⌧s) +Rm cos(Rm⌧s)
,

b2(s) =
⌘

2⌧
·

sin(Rm⌧s)

(⇠ � ⌘⇢) sin(Rm⌧s) +Rm cos(Rm⌧s)
,

(24)

where Rm =
p
(1 + 2⇢⇠)⌘ � ⇠2, ⇠ = 

⌧ , s = T � t. The denominators of b1 and b2 become

infinite periodically and lead us to a strategy which is not admissible ⇡(t) 62 A, see the

acceptable set defined by (5).
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Remark 5. Optimal solution for mean-reverting Kim and Omberg model with

uncorrelated Brownian motions. Assume the same market setting from Proposition 1.

If the evolution of the mean-reverting market price of risk is independent of the evolution

of the asset price then the intertemporal hedging demand is zero and the dynamic Merton

investment strategy applies, see Corollary 2.

5 Real market data illustration

In this section we construct an econometric setting to derive parameter estimates guiding

our investment strategy developed in the previous sections. A similar analysis has been

conducted by Campbell and Viceira (1999) and Barberis (2000). Three important points

are di↵erent in our analysis. We will verify later in the next section that these di↵erences

have a significant e↵ect both on the predictability of the mean equity returns and also on

the correlation, ⇢, between returns and the market price of risk. The latter determines the

size of the hedging demand, i.e., how much the nonmyopic strategy di↵ers from the simple

dynamic Merton strategy via (13).

Firstly, the correlation between the state variable(s) and the returns tends to be sensitive

to the length of the parameter forecasting horizon considered; see Harrison and Zhang (1999);

Engsted and Tanggaard (2002); Kim and In (2005) among many others. Our interest lies

in investing for retirement, i.e., we are concerned with the long-term view. We will look at

yearly data; we expect that this will eliminate correlations arising from small movements
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with comparably high noise. This is a distinction between our work and that of Campbell

and Viceira (1999) and Barberis (2000) who look at a shorter time interval.

Secondly, we will benchmark all returns with respect to inflation. Most financial literature

– and also Barberis (2000) and Campbell and Viceira (1999) – aims to predict returns in

excess of short-term interest rate. However, we believe that for long-term investing one

should instead consider the annual returns in excess of inflation. This ensures that the right

thing is hedged, i.e., we maximize the purchasing power of our terminal investment value.

Appropriate benchmarking via inflation also aids communication with the pension saver; see

Gerrard et al. (2018, 2019). This amounts to setting the short interest r equal to zero and

consider all derivations in real terms. From a strict financial mathematical point of view

this is only fully correct if one can buy a fund returning exactly zero in real terms. In other

words, a fund returning exactly the inflation.

Thirdly and lastly, we utilize a recent and extensive analysis of the predictive power of

various state variables conducted by Kyriakou et al. (2019a,b). The analysis in (Kyriakou

et al., 2019a,b) is di↵erent from the analysis in Welch and Goyal (2007) and Golez and

Koudijs (2018). The latter two only look at returns in excess of short-term interest when

analyzing the predictive strength of their state variables. The first part of (Kyriakou et al.,

2019a,b) confirm the finding of Welch and Goyal (2007): returns in excess of short term

interest are di�cult to predict. However, when we are predicting real returns via state-

variables benchmarked for inflation then higher predictive power can be attained. Hence,

22



conveniently, the object of greater interest for long-term investments – returns in excess of

inflation – is actually also simpler to predict.

5.1 Data source and our predictor

The basis of the following illustration is data from the U.S. stock market, the S&P 500

Index. We use the dataset provided by Robert Shiller, which can be found online2. We select

the annual series of the nominal composite stock price index, P , the nominal dividends paid

during the year, D, and inflation as measured by the consumer price index, CPI, all observed

between the years 1871 and 2018. In our long-term prediction exercise we investigate the

historical performance for the last 30 years, from 1989 to 2018.

Definition 1. Real returns process. We define the returns process as the one-year excess

stock returns process inclusive of dividends

r(n) = log

✓
P (n) +D(n)

P (n� 1)

◆
� log

✓
1 +

CPI(n� 1)

CPI(n� 2)

◆
for n = 1873, . . . , 2018. (25)

Kyriakou et al. (2019a,b) look at a variety of lagged variables, i.e., observations at n� 1,

in order to predict the stock returns, r(n), of the coming year. Candidates considered were

(i) the dividend-by-price ratio, (ii) the earnings-by-price ratio, (iii) the short-term interest

rate, (iv) the long-term interest rate, (v) inflation, (vi) the term spread and (vi) the lagged

2http://www.econ.yale.edu/~shiller/
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excess stock returns; as well as the two-dimensional and the three-dimensional interactions

between them. In that comparison the earnings-by-price ratio adjusted by inflation as a

single predictor turned out to be a very strong candidate, performing 12.2% better than

using the historical mean returns as the predictor and beating most other ones as well as the

multi-dimensional candidates as well. Additionally, while the approach was non-parametric,

i.e., non-linear relationships were considered, the best relationship between the annual stock

returns and the earnings-by-price ratio turned out to be linear. This is is why we choose the

earnings-by-price ratio as our predictor.

Definition 2. Real earnings-by-price. The real earnings-by-price time series is defined

as

e(n) =

✓
1 +

E(n)

P (n)

◆
CPI(n� 2)

CPI(n� 1)
� 1 for n = 1873, . . . , 2018, (26)

where E are 12-month moving sums of the earnings on the S&P 500 Index.

By combining the definition of the real returns in (25) with our financial model in (1) we

obtain the following representation

r(n) = log

✓
Sn

Sn�1

◆
= �

Z n

n�1

✓(t) dt�
1

2
�2 + �

�
W (n)�W (n� 1)

�
, (27)

noting that we have set r = 0 aiding the communication in real terms. We denote the
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conditional expectation given ✓ of this quantity by

"(n) = �

Z n+1

n

✓(t) dt�
1

2
�2. (28)

Motivated by Kyriakou et al. (2019b) who observe a linear relationship between real earnings

and real returns we run an ordinary least squares linear regression

"(n) = E [r(n+ 1)| e(n)] = �0 + �1e(n) for n = 1873, . . . , 2018,

and derive

"̂(n) = 0.004874652 + 1.119331917e(n), for n = 1873, . . . , 2018, (29)

We call " the transformed earnings process. Note that "(n � 1) is observed at the end of

year n � 1 while r(n) are the returns in the following year n. From Fig. 1 we see that the

historical transformed earnings process "(n � 1) looks like a shrunk version of the return

process r(n) – hinting at the predictive power of "(n�1). In the last 30 years we observe the

minimum value around 0.49%, the maximum value 6.24% and the average value is around

2.92%. The mean over the full range of 147 years is 6.36% with a range from �12% to 34%.

On the other hand the historical range of the real returns process is from a minimum value

of �45% to a maximal value of 42% with total average value 6.52% and average real returns
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in the last 30 years is 7.6%.
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Figure 1. The black solid line represents the real returns r(n) (33) with historical mean
r̄ = 6.51% and standard deviation 16.98%. The red dashed line represents the transformed
earnings "̂(n� 1) with historical mean 6.36% and standard deviation 6.66%.
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5.2 Parameter estimation

Combining (28) with the solution of (18) implies the following expansion of the trans-

formed earnings

"(n) = �µ✓ �
�




µ✓ + (✓0 � µ✓)e

�(n+1) + ⌧e�(n+1)

Z n+1

0

es dW✓(s)

�

+
�




µ✓ + (✓0 � µ✓)e

�n + ⌧e�n

Z n

0

es dW✓(s)

�
+

⌧�



�
W✓(n+ 1)�W✓(n)

�

�
1

2
�2. (30)

We use this expansion for an estimation procedure described in Appendix C. We arrive

at the parameter estimates summarized in Table 1. Interestingly, the point estimate of the

Table 1 Estimated parameters for the Kim and Omberg model with transformed earnings
as the state variable, based on annual data from the S&P 500 Index 1871–1988. � is the
volatility parameter of the price process; µ✓ is the mean of the Ornstein—Uhlenbeck process
describing the market price of risk;  is the mean-reversion speed of the market price of
the risk process; ⌧ is the volatility parameter of the market price of risk process; ⇢ is the
correlation between market price of risk process and price process.

�̂ µ̂✓ ̂ ⌧̂ ⇢̂

0.17 0.44 2.89 1.51 0.03

correlation coe�cient, ⇢̂, is considerably smaller than the results seen in the work of Barberis

(2000) or Campbell and Viceira (1999). Note, again, that the di↵erence in our research is

that (a) we use yearly data instead of half-yearly data, (b) we predict the inflation-adjusted

returns instead of the short-term interest rate adjusted returns, and lastly (c) we use the
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inflation-adjusted earnings-by-price ratio instead of the dividends as the predictor.

5.3 Historical performance analysis

In our historical performance analysis starting with "̂, we use estimates of the parameters,

{�̂, µ̂✓, ̂, ⌧̂ , ⇢̂✓y}, derived in the previous two sections by using annual data only until 1988.

We use these estimates to compare three strategies for investing over the period 1989�2018.

Classical Merton: We invest according to the classical Merton proportion. In particular

✓(t) is considered to be constant in time, yielding the optimal nonmyopic strategy

⇡⇤(n) = �
U 0(y)

�U 00(y)

r̄hist

ŝd(rhist)
, for n = 1988, . . . , 2018,

where r̄hist, ŝd(rhist) are the sample mean and sample standard deviation of rhist = r(1873), . . . , r(1988).

Dynamic Merton: The nonmyopic strategy without the intertemporal hedging term (16)

is executed on a yearly basis, i.e.,

⇡⇤(n) = �
U 0(y)

�U 00(y)

✓
"̂(n) + 1

2 �̂
2

�̂

◆
, for n = 1988, . . . , 2018.
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Figure 2. Real earnings targeting real returns. Fig. 2(a) illustrates the behaviour of
the functions b1 (red solid line) and b2 (blue dashed line) in the last 3 years of the long-
term saver’s contribution planning. Fig. 2(b) compares optimal allocations in the risky
stock following di↵erent strategies: classical Merton (black solid line), dynamic Merton (blue
dashed line) and optimal nonmyopic (red dotdash line). Fig. 2(c) compares the wealth size
performances: classical Merton (black solid line), dynamic Merton (blue dashed line) and
optimal nonmyopic (red dotdash line). The initial wealth is Y (0) =USD 10,000. The saver
is assumed to obey a power utility with risk appetite parameter � = �1 and the investment
horizon is T = 30 years from 1988 to 2018. Fig. 2(d) is giving insight into the multiplicative
sensitivity of the investment ratio of the optimal nonmyopic strategy to the dynamic Merton
when the correlation is close to 1, when the correlation is close to �1, and when in addition
the volatility of market price of risk is high.
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Optimal Nonmyopic Strategy: The optimal nonmyopic strategy includes also the in-

tertemporal hedging demand, see (13), so that

⇡⇤(n) = �
U 0(y)

�U 00(y)

⇣
✓̂(n) + ⌧̂ ⇢̂✓y b̂✓(n, ✓̂(n))

⌘
, for n = 1988, . . . , 2018,

✓̂(n) =

✓
"̂(n) + 1

2 �̂
2

�̂

◆
,

where b̂✓ is derived from b✓ in (23) by replacing the unknown quantities by their estimates

from Subsection 5.2. For all three strategies we only report the results for the power utility

with risk appetite parameter � = �1. We note that changing the parameter value did not

alter any conclusion. Figure 2 shows the result of our investigation. Fig. 2(a) visualizes how

the intertemporal hedging demand vanishes when we are moving closer to the end of the

investment horizon. Fig. 2(b) and Fig. 2(c) deliver the main message of our paper: in contrast

to Barberis (2000) and Campbell and Viceira (1999), the correlation ⇢ turns out to be very

small (⇢̂ = 0.03). For that reason the dynamic Merton and the optimal nonmyopic strategy

are practically indistinguishable. Running a simulation with 1,000 repetitions suggests that

the estimator of ⇢ has a standard deviation of 0.14. This means that the null hypothesis

of the dynamic Merton being optimal (which is the case for ⇢ = 0) cannot be rejected.

Finally, Fig. 2(d) shows that if the correlation coe�cient, ⇢, takes higher values, close to

one, the investment strategies, the optimal nonmyopic and the dynamic Merton, behave

quite di↵erently. In such a market setting one cannot hedge with the dynamic Merton
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instead of the optimal nonmyopic investment strategy. The small correlation encountered in

our investigation is favourable. As pointed out in Barberis (2000), the parameters involved

in the intertemporal hedging demand can only be estimated with considerable parameter

uncertainty, making it hard to obtain the actual optimal nonmyopic strategy with enough

certainty. In our long-term perspective, however, the dynamic Merton is very close to the

optimal. The dynamic Merton has a much easier structure by not including the intertemporal

hedging demand and can hence be estimated with comparably much higher accuracy and

can easily be implemented and communicated to the pensioner.

6 Comparison to di↵erent predictors and di↵erent tar-

get

In this section we perform two comparisons. Firstly, we look at the dividends as an

alternative for the earnings as the long-term predictor. Secondly, we change the object of

interest: returns in excess of short-term interest rate instead of the returns in excess of

inflation.

6.1 Dividends as an alternative for earnings?

We define the dividends-by-price and the dividends-by-price adjusted by inflation.
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Definition 3. Nominal dividends. We define the nominal dividends-by-price ratio as

dN(n) =
D(n)

P (n)
for n = 1873, . . . , 2018. (31)

Definition 4. Real dividends. We define the real dividends-by-price ratio as

dR(n) =
D(n)

P (n)

CPI(n� 2)

CPI(n� 1)
for n = 1873, . . . , 2018. (32)

We follow closely the estimation procedure described in Section 5.1 and 5.2, replacing

in each step e(n) with dN(n) and then with dR(n). New parameter estimates are given

in Table 2. Quite interestingly, the parameter estimates di↵er substantially when using

Table 2 Estimated parameters for the Kim and Omberg model with transformed earnings,
transformed dividends (real and nominal) as state variables, based on yearly data from the
S&P 500 Index 1871–1988. � is the volatility parameter of the price process; µ✓ is the mean of
the Ornstein—Uhlenbeck process describing the market price of risk;  is the mean-reverting
speed of the market price of the risk process; ⌧ is the volatility parameter of the market price
of risk process; ⇢ is the correlation between market price of risk process and price process.

Predictor �̂ µ̂✓ ̂ ⌧̂ ⇢̂

real earnings (i.e. inflation-adjusted) 0.17 0.44 2.89 1.51 0.03
nominal dividends 0.18 0.36 0.67 0.11 0.09

real dividends (i.e. inflation-adjusted) 0.18 0.377 0.70 0.18 0.15

di↵erent predictors. The greater value for  (2.89 compared to 0.67 and 0.70) is a hint that

earnings have a better fit to the mean-reverting assumption. In Figure 3 we have plotted the

historical performance of dividends as predictor. In both cases, the dynamic Merton and the

optimal nonmyopic strategy are practically identical. This is because the factor ⌧̂ ⇢̂ is small
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in all cases. The optimal nonmyopic strategy, while theoretical optimal, is hard to follow

because the model complexity is making the parameter estimates very noisy. The Dynamic

Merton on the other hand is much simpler to calibrate. Finally, the comparably smaller

predictive power of divididens (real or nominal) compared to real earnings, as hinted at in

Kyriakou et al. (2019a), and Mammen et al. (2019) manifests in more volatile returns and

lower performance.

6.2 Predicting returns in excess of short-term interest rate

It is returns in excess of inflation that should be targeted when considering long-term

investments. However, most of the financial literature aims to predict returns in excess of

short-term interest rate. We now investigate what happens if one performs an investment

strategy optimised for returns adjusted with the short-term interest rate. For this we will

use, as is done in most financial literature, nominal state variables: earnings and dividends.

We introduce the following definitions:

Definition 5. Returns in excess of the short-term interest rate. We define the

returns process in excess of the short-term interest rate as

rR(n) = log

✓
P (n) +D(n)

P (n� 1)

◆
� log

✓
R(n� 1)

100
+ 1

◆
for n = 1873, . . . , 2018, (33)

where R is the short-term interest rate.
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(c) Real dividends targeting real returns

1990 1995 2000 2005 2010 201510
00

0
30

00
0

50
00

0

10000

13707
15225

26773

32959

28185

32554

24864

30594

38241

48488

Fu
nd

 s
ize

 in
 re

al
 te

rm
s 

in
 U

SD

Year

Historical performance
Classical Merton
Dynamic Merton
Optimal Nonmyopic

(d) Nominal dividends targeting real returns

Figure 3. Fig. 3(a) and 3(c) use real dividends and Fig. 3(b) and 3(d) nominal dividends;
both cases target real returns. Fig. 3(a) and 3(b) compare optimal allocations using di↵erent
strategies: classical Merton (black solid line), dynamic Merton (blue dashed line) and optimal
nonmyopic (red dotdash line). Fig. 3(c) and 3(d) compare the wealth size performances
with classical Merton (black solid line), dynamic Merton (blue dashed line) and optimal
nonmyopic (red dotdash line). The initial wealth is Y (0) =USD 10,000. The saver is
assumed to obey a power utility with risk appetite parameter � = �1 and the investment
horizon is of T = 30 years from 1988 to 2018.
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Definition 6. Nominal earnings-by-price. The nominal earnings-by-price time series

is defined as

eN(n) =
E(n)

P (n)
for n = 1873, . . . , 2018, (34)

where E are 12-month moving sums of earnings on the S&P 500 Index.

Again, we follow closely the estimation procedure described in Section 5.1 and 5.2 replac-

ing in each step r(n) by rR(n) as well as e(n) first with eN(n) and then with dN(n). New

parameter estimates are given in Table 3. Compared to Table 1, i.e. real earnings predict-

ing real returns, we again derive much smaller  values (0.58 and 0.67 compared to 2.89) –

hinting at an inferior model fit. In Figure 4 we visualize the historical investment strategy

and performance resulting from our parameter estimates. The overall conclusion is clear.

The nominal earnings and dividends predicting stock returns in excess of short-term interest

give inferior model suitability, poorer performance as measured by both, the volatility of the

stock returns and also terminal performance.

Table 3 Estimated parameters for the Kim and Omberg model with transformed earnings
(nominal), transformed dividends (nominal) as state variables predicting returns in excess of
short-term interest rate, based on yearly data from the S&P 500 Index from 1871 to 1988. �
is the volatility parameter of the price process; µ✓ is the mean of the Ornstein—Uhlenbeck
process describing the market price of risk;  is the mean-reverting speed of the market price
of the risk process; ⌧ is the volatility parameter of the market price of risk process; ⇢ is the
correlation between market price of risk process and price process.

Predictor Target �̂ µ̂✓ ̂ ⌧̂ ⇢̂

nominal earnings returns in excess of short-term interest 0.17 0.28 0.58 0.10 0.09
nominal dividends returns in excess of short-term interest 0.17 0.29 0.67 0.06 0.11
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(c) Nominal dividends targeting returns in ex-
cess of single short-term interest. Fund size is
inflation corrected.
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(d) Nominal earnings targeting returns in ex-
cess of single short-term interest. Fund size is
inflation corrected.

Figure 4. Optimal investment strategies for stock returns in excess of the short-term interest
rate. Fig. 4(a) and 4(c) use nominal dividends and Fig. 4(b) and 4(d) nominal earnings as
predictor. Fig. 4(a) and 4(b) compare optimal allocations in the risky stock following di↵erent
strategies: classical Merton (black solid line), dynamic Merton (blue dashed line) and optimal
nonmyopic (red dotdash line). Fig. 4(c) and 4(d) compare wealth size performances between
the classical Merton (black solid line), dynamic Merton (blue dashed line) and optimal
nonmyopic (red dotdash line). The initial wealth is Y (0)=USD 10,000. The saver is assumed
to obey a power utility with risk appetite parameter � = �1 and the investment horizon is
of T = 30 years from 1988 to 2018.
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6.3 Comparison

Table 4 presents the results of applying the three strategies under investigation to his-

torical data of the S&P 500. Parameters were estimated on the basis of observations up to

1988. Di↵erent sections of the table consider di↵erent predictors and di↵erent targets while

within each section the three di↵erent strategies are considered. In all cases real returns

are considered, i.e., in excess of inflation. On this data set, we observe two key points.

Firstly, the classical Merton strategy, which does not depend on the choice of a predictor, is

outperformed by the other two dynamic strategies in all cases, when considering the ratio

of mean return and average exposure or the ratio of mean return and standard deviation

of returns. Secondly, in the real earnings targeting real return case the optimal nonmyopic

strategy is practically indistinguishable from the dynamic Merton strategy and these two

strategies also outperform all other strategies. when considering the ratio of mean return

and average exposure or the ratio of mean return and standard deviation of returns. We

note that changing the risk appetite parameter does not change any conclusion. For example

a value of � = �2 lead to around 33% more exposure in the stock market and around 1%

higher ratio of average return per exposure, uniformly for all strategies.
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7 Concluding Remarks

This paper has taken advantage of very recent insights regarding long-term predictions of

stock returns – see Scholz et al. (2015); Kyriakou et al. (2019a,b) and it concludes that real

earnings is an excellent driver for optimizing future investments for the long-term income.

Using S&P 500 data from 1873 to 2018, we draw the conclusion that the optimal investment

strategy is a simple one that we call the dynamic Merton, involving a simple regular update,

according to the market conditions, of the classical investment strategy as given in Merton

(1969) and Merton (1975), which is optimal when parameters are deterministic. We also

note that recent research into the design of long-term products tailored to circumvent the

pension crisis as defined in Merton (2014), Gerrard et al. (2018) and Gerrard et al. (2019)

show that, if an optimal investment strategy is combined with easy-to-explain upper and

lower bounds designed in Merton (2014), then the exact details of the optimal nonmyopic

strategy are not very important, as long as the optimal nonmyopic strategy has su�cient risk

appetite. The reason is that, when the long-term saver hedges in order to stay within the

upper and lower financial bounds, he or she ends up with the correct risk appetite because

the risky starting point is stabilized according to the financial hedging.

Future research should concentrate on incorporating this kind of dynamic strategies into

modern approaches to pension products, see for example Gerrard et al. (2018, 2019). One

challenge will be to find ways to incorporate non-gaussian properties into to asset-allocation
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strategies. Here a recent study by van Bilsen and Linders (2019) could serve as inspiration.

The authors provide a similar idea as in the Time Pension product of Guillén, Jørgensen, and

Nielsen (2006), where investment shocks are smoothly adjusted to future pension payment

output in such a way that the pension income becomes remarkable stable, see also Jørgensen

and Linnemann (2012) and Linnemann, Bruhn, and Ste↵ensen (2015). The approach of van

Bilsen and Linders (2019) is, however, more general allowing for more general distributions

of stock returns including skewness and other higher order moments and postponing mech-

anism of financial shocks. We believe that future approaches to pensions should incorporate

advanced econometric models as in van Bilsen and Linders (2019), that include communica-

tive simplicity of pension outcomes as advocated for in Gerrard et al. (2018, 2019) without

losing the financial advantages of financial dynamics as advocated for in this paper.

Appendices

A Proof of Theorem 1 and Corollaries 1 and 2

The format of the HJB equation (10) arises from expanding the di↵erential of the value

function dV (t) using Itô’s lemma

0 = sup
⇡̂(t)2A(t)

n
Et

⇥
dV (t) | F(t); ⇡(t) = ⇡̂(t)

⇤o
. (35)
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If V ⇡ is a function of t, y, ✓ and � then

dV ⇡ = V ⇡
t dt+ V ⇡

y dY (t) + V ⇡
✓ d✓(t) + V ⇡

� d�(t)

+
1

2

�
V ⇡
yydhY, Y it + V ⇡

✓✓dh✓, ✓it + V ⇡
��dh�, �it

�

+V ⇡
y✓dhY, ✓it + V ⇡

y�dhY, �it + V ⇡
✓�dh✓, �it

�

= V ⇡
t dt+ �(t)⇡(t)er(T�t)(✓(t)dt+ dW (t))V ⇡

y

+
�
�(✓)dt+ ⌧ (✓)dW✓(t)

�
V ⇡
✓ +

�
�(�)dt+ ⌧ (�)dW�(t)

�
V ⇡
��dt

�

+
1

2

⇣
�(t)2⇡(t)2e2r(T�t)V ⇡

yydt+
�
⌧ (✓)
�2

V ⇡
✓✓dt+

�
⌧ (�)
�2

V ⇡
��dt

⌘

+ �(t)⇡(t)er(T�t)
⇥
⌧ (✓)⇢y✓V

⇡
y✓ + ⌧ (�)⇢y�V

⇡
y�

⇤
dt+ ⌧ (✓)⌧ (�)⇢✓�V

⇡
✓�dt.

The dW terms all have expectation 0 and the remainder, when divided by dt, gives (10).

We now maximize over ⇡ and assume that Vyy < 0. Note that if Vyy were positive we

would find that the optimal asset allocation was to put either +1 or �1 in the risky asset,

making the process inadmissible. We get

�(t)✓(t)er(T�t)Vy + �2(t)⇡(t)e2r(T�t)Vyy + �(t)er(T�t)⇢✓y⌧
(✓)V✓y + �(t)er(T�t)⇢�y⌧

(�)V�y = 0

implying that

⇡⇤ = �
e�r(T�t)

�(t)Vyy

�
✓(t)Vy + ⇢✓y⌧

(✓)V✓y + ⇢�y⌧
(�)V�y

�
. (36)

This completes the proof of Theorem 1.

41



Plugging this back into the HJB equation (10) gives

0 = Vt + �(✓)V✓ + �(�)V� +
1

2

�
⌧ (✓)
�2

V✓✓ +
1

2

�
⌧ (�)
�2

V�� + ⌧ (✓)⌧ (�)⇢✓�V✓�

�
1

2Vyy

�
✓Vy + ⇢✓y⌧

(✓)V✓y + ⇢�y⌧
(�)V�y

�2
.

We need the solution to this equation which satisfies the terminal reward condition V (T, y, ✓, �) =

U(y). We seek solutions of the form

V (t, y, ✓, �) = U(y)eb(t,✓,�),

where b(T, ✓, �) = 0 for all ✓, �. Taking partial derivatives of the solution form (11) we have

the HJB equation

0 = U(y)
h
bt + �(✓)b✓ + �(�)b� +

1

2

�
⌧ (✓)
�2 �

b✓✓ + b2✓
�
+

1

2

�
⌧ (�)
�2 �

b�� + b2�
�
+ ⌧ (✓)⌧ (�)⇢✓�

�
b✓� + b✓b�

�i

�
U 0(y)2

2U 00(y)

�
✓ + ⇢✓y⌧

(✓)b✓ + ⇢�y⌧
(�)b�

�2
, (37)

with the customer’s terminal reward

b(T, ✓, �) = 0.
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For the power utility function the negative inverse Arrow Pratt measure is

U 0
p(y)

2

U 00
p (y)Up(y)

= �
�

1� �
,

whereas for the exponential utility this is simply equal to 1. Therefore we define ⌘ = �/(1��)

for the power law utility, or ⌘ = �1 in the case of the exponential utility, so that (37) reduces

to

0 = bt + �(✓)b✓ + �(�)b� +
1

2

�
⌧ (✓)
�2

(b✓✓ + b2✓) +
1

2

�
⌧ (�)
�2

(b�� + b2�) + ⌧ (✓)⌧ (�)⇢✓�(b✓� + b✓b�)

+
1

2
⌘
�
✓ + ⇢✓y⌧

(✓)b✓ + ⇢�y⌧
(�)b�

�2
.

We observe that there is no direct dependence on � in the HJB equation, nor in the boundary

condition. It is our hypothesis, therefore, that b has no dependence on �. This reduces the

PDE still further to

bt + �(✓)b✓ +
1

2

�
⌧ (✓)
�2 �

b✓✓ + b2✓
�
= �

1

2
⌘
�
✓ + ⇢✓y⌧

(✓)b✓
�2

. (38)

If (38) has a solution b which is bounded on the range 0  t  T for each value of ✓, then the

policy ⇡⇤ given by (13) is admissible and the function V (t, y, ✓) = U(y)eb(t,✓) solves the HJB

equation. The Verification Theorem allows us to conclude that ⇡⇤ is the optimal investment

strategy and that V is the optimal value function.
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As a consequence of this, (7) implies that the optimal trajectory satisfies

dY ⇤(t) = �
U 0�Y ⇤(t)

�

U 00
�
Y ⇤(t)

�
⇥
✓(t) + ⇢✓y⌧

(✓)(✓(t))b✓
�
t, ✓(t)

�⇤
(✓(t) dt+ dW✓(t)) .

In the case of the power-law utility, �U 0�Y ⇤(t)
�
/U 00�Y ⇤(t)

�
= (1 � �)�1Y ⇤(t), and the

equation becomes

dY ⇤(t)

Y ⇤(t)
=

1

1� �
Q
�
t, ✓(t)

�
(✓(t) dt+ dW✓(t)) ,

where

Q(t) = ✓(t) + ⇢✓y⌧
(✓)(✓(t))b✓

�
t, ✓(t)

�
.

Equation (14) follows from this, and the proof of Corollary 1 is complete.

If it happens that the evolution of the market price of risk occurs independently of the

evolution of asset prices, in other words, if ⇢✓y = 0, then (13) becomes (16), which is all

that is required to prove Corollary 2. This leaves us with the problem of finding whether a

suitable solution b(t, ✓, �) exists.
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B Proof of Proposition 1

On substituting the quadratic expression (20) into the di↵erential equation (19) we obtain

the parabolic equation

0 = �b00�b01✓�b02✓
2+

⌘✓2

2
+
1

2
⌧ 2(1+⌘⇢2)(b1+2b2✓)

2+(µ✓ + (�+ ⌘⇢⌧)✓) (b1+2b2✓)+⌧ 2b2,

where b0, b1, b2 : [0, T ] ! R satisfy the boundary conditions b0(0) = b1(0) = b2(0) = 0 and

where 0 represents di↵erentiation with respect to s. We solve parabolic equation by isolating

powers of ✓, and making the substitution ⇠ = /⌧ . This leads to three simultaneous equations

b00 =
1

2
⌧ 2(1 + ⌘⇢2)b21 + µ✓b1 + ⌧ 2b2,

b01 = 2⌧ 2(1 + ⌘⇢2)b1b2 + 2µ✓b2 + ⌧(⌘⇢� ⇠)b1,

b02 =
⌘

2
+ 2⌧ 2(1 + ⌘⇢2)b22 + 2⌧(⌘⇢� ⇠)b2.

The third of these equations is the place to start. It is a Riccati equation with constant

coe�cients; as such the form of the solution depends on the sign of the discriminant � =

4⌧ 2 (⇠2 � ⌘(1 + 2⇢⇠)). The solutions of this set of equations are going to depend on the values

of the parameters. We distinguish between two cases

• Case I: ⇠2 � ⌘(1 + 2⇢⇠) < 0.
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• Case II: ⇠2 � ⌘(1 + 2⇢⇠) > 0.

In Case I, the solutions b1(s) and b2(s) are ratios of trigonometric functions for which

the denominator takes the value 0 periodically. Both b1(s) and b2(s) diverge to �1 as s

approaches such a point from above or to +1 as s approaches from above.

b1(T � t) = 0 for t = T �
2⇡n

Rm⌧
and t = T �

⇡(2n+ 1)

Rm⌧
,

b2(T � t) = 0 for t = T �
⇡n

Rm⌧
and t = T �

⇡(2n+ 1)

Rm⌧

with Rm⌧ 6= 0 and n 2 Z. Moreover the value function V ⇡(t, y, ✓, �) = 1
�y

�eb(t,✓,�) should be

a C12([0, T ]xR3) and bounded. The issue arises with the periodic denominator which obtains

zero values at time periods

t = T �

⇡n� tan�1
⇣

Rm
⇠�⌘⇢

⌘

Rm⌧
,

where
�
⇠� ⌘⇢

�2
+R2

m 6= 0, and correspondingly Rm⌧ 6= 0 and n 2 Z. Later b1 and b2 change

from �1 to +1 and consequently V changes from 0 to +1. Thus V is not a bounded

value function and it has no partial derivative with respect to time. Hence this solution

is not applicable to investigate further for the optimal investment strategy and the fund

management itself.
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In Case II, the solution expansions for large s are

b1(s) =
2⇠µ✓

Rp
�2

⇣
1� 2e�Rp⌧s +O(e�2Rp⌧s)

⌘
, (39)

b2(s) = �2

⇣
1�

�1 � �2

�1
e�2Rp⌧s +O(e�4Rp⌧s)

⌘
(40)

with its constant limits lims!1 b1(s) = 2⇠µ✓

Rp
�2 and lims!1 b2(s) = �2. The Verification

Theorem assists us to prove that this solution is indeed the correct solution which we should

investigate further. Both hyperbolic functions b1 and b2 have terminal cost zero and are

monotone decreasing. Because of the existence of finite limits, both functions are bounded.

The analytical expression of the solution for b0 is not particularly required to compute the

optimal nonmyopic strategy. Therefore the overall solution b and its exponential eb are

bounded. Similarly as in the previous case, we need to show that optimal value function is

su�ciently integrable.

C Parameter estimation

We have

"(n) = �

Z n+1

n

✓(t)dt�
1

2
�2, (41)
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and we may derive the moments of "(n), expanded in (30), as

E ["(n)] = �µ✓ +
�


e�n(1� e�)(✓(0)� µ✓)�

1

2
�2.

For m > 0

Cov("n, "n+m) =
�2⌧ 2

2
Cov

✓
e�n(1� e�)

Z n

0

es dW✓(s) +

Z n+1

n

(1� e�(n+1�s)) dW✓(s),

e�(n+m)(1� e�)

Z n+m

0

es dW✓(s) +

Z n+m+1

n+m

(1� e�(n+m+1�s)) dW✓(s)

◆

=
�2⌧ 2

2


e�(2n+m)(1� e�)2

Z n

0

e2s ds+ e�(n+m)(1� e�)

Z n+1

n

(es � e(2s�n�1)) ds

�

=
�2⌧ 2

2


e�m

2
(1� e�)2(1� e�2n) +

e�m


(1� e�)(e � 1)�

e�m

2
(1� e�)(e � e�)

�

=
�2⌧ 2

23
e�m(1� e�)2

⇥
1� e�2n + 2e � (e + 1)

⇤

=
�2⌧ 2

23
e�m(1� e�)2(e � e�2n), (42)

and for m = 0

Var("n) =
�2⌧ 2

2
Var

✓
e�n(1� e�)

Z n

0

es dW✓(s) +

Z n+1

n

(1� e�(n+1�s)) dW✓(s)

◆

=
�2⌧ 2

2


e�2n(1� e�)2

Z n

0

e2s ds+

Z n+1

n

(1� e�(n+1�s))2 ds

�

=
�2⌧ 2

2


1

2
(1� e�)2(1� e�2n) + 1�

2


(1� e�) +

1

2
(1� e�2)

�

=
�2⌧ 2

3


e�

� 1 + �
1

2
e�2n(1� e�)2

�
. (43)
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Since �2 = Var (r(n)� "(n� 1)), we estimate the parameter �, denoted by �̂, as the empir-

ical standard deviation of r(n)� "(n� 1). Next, we estimate kappa from the relationship

Cov("(n), e�"(n� 1))

Var("(n))
=

e�(1� e�)2(e � e�2n)

2
⇥
e� � 1 + �

1
2e

�2n(1� e�)2
⇤

by replacing the values on the right hand side by its empirical values and solving the resulting

equation numerically. Similarly we estimate µ✓ from

E
⇥
"(n)� e�"(n� 1)

⇤
=
�
1� e�

�✓
�µ✓ �

1

2
�2

◆
,

and solving for µ✓ after replacing the mean on the left hand side by its empirical value and

replacing  on the ride hand side by ̂ derived earlier. In order to remove dependence on

✓(0), we can again look at "(n)� e�"(n� 1)

"(n)� e�"(n� 1) =const +
⌧�


e�n

�
1� e�

� Z n

0

es dW✓(s) +
⌧�



Z n+1

n

�
1� e�(n+1�s)

�
dW✓(s)

� e�


⌧�


e�(n�1)

�
1� e�

� Z n�1

0

es dW✓(s) +
⌧�



Z n

n�1

�
1� e�(n�s)

�
dW✓(s)

�

= const +
⌧�



Z n

n�1

dW✓(s)
⇥
e�n

�
1� e�

�
es � e� + e�(n+1�s)

⇤

+
⌧�



Z n+1

n

�
1� e�(n+1�s)

�
dW✓(s)

= const +
⌧�



Z n

n�1

dW✓(s)
⇥
e�(n�s)

� e�
⇤
+

⌧�



Z n+1

n

�
1� e�(n+1�s)

�
dW✓(s).
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Therefore

Var
⇥
"(n)� e�"(n� 1)

⇤
=

⌧ 2�2

2

"Z n

n�1

�
e�2(n�s)

� 2e�(n+1�s) + e�2
�
ds

+

Z n+1

n

�
1� 2e�(n+1�s) + e�2(n+1�s)

�
ds

#

=
⌧ 2�2

2

"
1

2

�
1� e�2

�
�

2e�



�
1� e�

�
+ e�2 + 1

�
2



�
1� e�

�
+

1

2

�
1� e�2

�
#

=
⌧ 2�2

2

"
1 + e�2

�
1



�
1� e�2

� i
,

and by comparison of the theoretical variance with the variance of the residuals of the linear

regression we derive ⌧̂ as an estimate of ⌧ . In a similar fashion, we estimate the last parameter

⇢ by calculating the following covariance

Cov (r(n)� "(n� 1), "(n� 1)) = Cov

✓
� (W1(n)�W1(n� 1)) ,�

�⌧


e�n

Z n

0

es dW✓(s)

◆

+ Cov

✓
� (W1(n)�W1(n� 1)) ,

�⌧


e�(n�1)

Z n�1

0

es dW✓(s)

◆

+ Cov
⇣
� (W1(n)�W1(n� 1)) ,

�⌧


(W✓(n)�W✓(n� 1))

⌘

= ⇢✓y
�2⌧

2

�
�

�
1� e�

��
.

Then by comparing the sample covariance with the theoretical covariance in conjunction

with plug-in estimates for �̂, ̂, ⌧̂ , we get an estimate, ⇢̂✓y, of ⇢✓y.
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