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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

The combination of viable heuristic attributes with statistical measurements presents significant challenges in industrial maintenance for complex 
assets under through-life service contracts. Techniques to obtain and process heuristic attributes raise numerous uncertainties which often go 
undefined and unmitigated. A holistic view of these uncertainties may improve decision-making capabilities and reduce maintenance costs and 
turnaround time. It is therefore necessary to identify and rank factors that influence uncertainties originating from challenges in the above context. 
This, along with an identification of who contributes to such challenges and current practice to handle them, sets the focus for this study. 
The influence of 32 categorised factors on uncertainty is assessed through a questionnaire completed by nine experienced maintenance managers 
from a leading defence company. The pedigree approach is applied to score validity of respondents’ answers according to their experience and 
job role to normalise scores. Results are discussed in interviews with respondents along with current practice in and ways to improve uncertainty 
assessment. Scores are weighted through the Analytical Hierarchy Process (AHP) in order to identify the most influential factors on uncertainty 
in maintenance. The analysis revealed that these include: intellectual property rights (IPR), maintainer performance, quality of information, 
resistance to change, stakeholder communication and technology integration. These are verified with 40 practitioners from various industrial 
backgrounds. From the interviews, it is deemed that a holistic view of heuristic and statistical attributes ultimately allows for more accomplished 
decision-making but requires trade-offs between quality and cost over the asset’s life cycle. 
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1. Introduction 

Decision-making in industrial maintenance today is 
typically based on two broad factors: recorded data and 
subjective expert opinions. The prior presents hard facts, 
subject to a degree of uncertainty which can be quantified 
statistically by standard deviation of the dataset. The latter 
attributes qualitative uncertainty by what traits qualify them as 
an expert and the basis of their view to establish its validity. 
Data recording methods, accuracy of equipment used, or 
maintainer performance are rarely considered as an attribute to 

overall uncertainty. A combination of the hard facts and 
subjective opinion needs to be considered to make informed 
and effective decisions leading to prosperous outcomes in 
maintenance. Some cases require more expertise; some require 
more data. The question here is whether a holistic view of these 
uncertainties can improve decision-making capabilities and 
reduce through-life costs as well as unforeseen challenges. 

This paper presents a survey questionnaire to rank 
prominent factors that influence uncertainty in maintenance 
based on literature and input from industry experts. Respondent 
qualities are attributed in a pedigree assessment. Results are 
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attributes qualitative uncertainty by what traits qualify them as 
an expert and the basis of their view to establish its validity. 
Data recording methods, accuracy of equipment used, or 
maintainer performance are rarely considered as an attribute to 

overall uncertainty. A combination of the hard facts and 
subjective opinion needs to be considered to make informed 
and effective decisions leading to prosperous outcomes in 
maintenance. Some cases require more expertise; some require 
more data. The question here is whether a holistic view of these 
uncertainties can improve decision-making capabilities and 
reduce through-life costs as well as unforeseen challenges. 

This paper presents a survey questionnaire to rank 
prominent factors that influence uncertainty in maintenance 
based on literature and input from industry experts. Respondent 
qualities are attributed in a pedigree assessment. Results are 
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reviewed and discussed in a series of interviews and validated 
with wider industrial practitioners before producing a refined 
survey and pedigree criteria. Results are ranked using the well-
established Analytical Hierarchy Process (AHP) to determine 
areas facing the most significant challenges and uncertainties. 

2. Research background 

 What is uncertainty?  

Uncertainty is defined as the difference between the 
information required and that already possessed [1,2]. Risk is 
the effect of uncertainty on specific objectives [3,4]. 
Uncertainty is influenced by multiple factors. Some are highly 
significant, some are negligible – having a positive, neutral or 
negative effect on system performance. 

There are two key types of uncertainty, namely: Type A 
(quantitative, consisting of recorded statistical data); and Type 
B (qualitative, consisting of heuristic estimates obtained from 
expert opinion, manufacturer specifications and equipment 
accuracy) [2]. The quantification of Type A is well documented 
– it is essentially the standard deviation of a given dataset. 
However, Type B are often overlooked in practice [5]. 

Uncertainty is further defined as epistemic and aleatory. The 
former originates from model or data accuracy, influenced by 
the level of knowledge available, and can therefore be 
mitigated or optimised. The latter represents statistical 
variables that constantly fluctuate and therefore cannot be 
reduced [6–9]. 

 Decision-making techniques 

Saaty’s [10] AHP has been extensively implemented and 
validated to prioritise alternative options via a set of evaluation 
criteria. Pairwise comparisons are applied to each criterion in a 
set of matrices to generate weighted scores, which are then 
aggregated to give a global indication of the best or most 
popular option [11–14].  

Other multi-criteria decision making (MCDM) methods 
such as TOPSIS and PROMETHEE can be applied in tandem 
with AHP to compare complex parameters such as algorithms 
through fuzzy theory [15–18]. Other qualitative approaches 
such as SWOT (strengths, weaknesses, opportunities, threats) 
analysis can be used to quickly identify risks and factors 
influencing uncertainties in a group setting, but may result in a 
plethora of factors that can’t be accurately summarised in a 
quantitative manor with resources available [6,13,19]. AHP is 
therefore adopted in this study to identify the most significant 
challenges with a high level of accuracy. 

3. Survey questionnaire – core challenges influencing 
uncertainty 

A survey questionnaire is composed to rank prominent 
factors that influence uncertainty in maintenance based on 
literature and input from industry experts to gather heuristic 
data on challenges in industrial maintenance and the underlying 
uncertainty propagation. Nine responses were obtained from a 
leading defence company. Respondents scored 32 factors 

according to their influence on uncertainty on eight-point 
Likert scales (0-7) from “no influence” to “high influence” to 
avoid the neutral middle point, with a ‘0’ option for ‘no effect’ 
[4,20]. These were refined and adapted by respondents and the 
author from a list defined by Erkoyuncu et al. [21], divided into 
5 categories: commercial, affordability, maintainer 
performance, operational and engineering – illustrated in Fig. 
1. Respondents were each assigned a random ID to protect their 
anonymity. Respondent years of experience in current and 
relevant previous roles is illustrated in Fig. 2. 

 

Fig. 1. Survey – Influential factors for uncertainty in industrial maintenance 

 

Fig. 2. Survey – respondent years of experience 

 Pedigree assessment 

The pedigree matrix scores qualitative, expert opinion 
against predefined criteria to permit quantitative reliability 
assessment [22,23]. These criteria are defined according to the 
contextual application of the study [23–25]. The criteria were 
scored according to: (1) years of experience in current role, (2) 
years of relevant experience prior to current role and (3.1-5) 
years of experience working on 5 select ship classes. Each 
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criterion adhered to the same 1 to 5 scale: 1 = <5 years, 2 = 5-
9 years, 3 = 10-14 years, 4 = 15-20 years, 5 = >20 years. 
Explicit roles were not included here to uphold anonymity. 

An example of pedigree scores for two respondents is shown 
in Table 1. The weighted mean of these scores were used as a 
scaling factor to attribute proportionate scoring to their survey 
answers. These are compared with the mean scores in Fig. 3. 
The weights of each criterion were defined by the author and 
are in themselves inherently subjective. 

Table 1. Example pedigree scores for two respondents 

ID (1) (2) (3.1) (3.2) (3.3) (3.4) (3.5) (3.6) Mean  W. mean 

R1 5 5 - 2 2 4 2 5 3.57 3.85 

R2 5 2 - - 5 - - 1 4.00 2.54 

 

Fig. 3. Mean and weighted mean comparison of pedigree scores for all 
respondent attributes 

The mean and range for each influencing factor and category 
were evaluated in MS Excel. This is represented for all factors 
in Fig. 4, numbered in the x-axis corresponding to Fig. 1. 
Agreement between respondents is represented by the range, 
where a high range reflects high disagreement. These can be 
influenced by a specific project and not necessarily reflect their 
overall view. Factors that showed contrasting levels of 
agreement between the respondents are summarised below.  

 High influence on uncertainty, high levels of agreement: 
Ability to screen candidates in training (12); Quality of 
information from OEM (18); Data reliability & quality (29) 

 High influence, high disagreement: Customer ability to 
spend (9); Availability of resources to support maintenance 
(19); Supply chain logistics (24) 

 Low influence, high disagreement: Labour efficiency (1); 
KPI specs (3); MTBF data (23) 

 AHP implementation 

AHP estimates relative magnitudes of inputs through 
pairwise comparisons [10]. These were represented in a 
positive reciprocal matrix adopting an algorithm defined by 
Erkoyuncu [24] for each of the 5 categories. The resulting 
weights highlighted the most prominent factors in each 
category, which were elaborated on in the interviews. 

4. Interviews with industry 

Survey results were analysed and discussed in a series of 
semi-structured interviews with respondents to obtain 
subjective views across maintenance departments. This 
structure allowed discussion of relevant topics while permitting 
respondents to provide further detail on their viewpoint from 
the survey [13,21,26]. Strategies and examples from literature 
[20,26–28] were used to structure and phrase the questions to 
obtain relevant information that can then be put forward to 
compose a framework capable of predicting the level of 
subsequent uncertainty influenced by challenges raised. 
Respondents were assured that responses would be handled 
confidentially and would not be linked to individuals. 

Industrial maintenance today is generally carried out under 
through-life product-service system (PSS) contracts, where the 
client makes use of a product in their possession but does not 
take ownership [29]. This ownership resides with the primary 
contractor, who coordinates and manages maintenance for the 
product over its lifetime or the contract duration. Each 
maintenance manager is responsible for a different class of 
ship, which present their own challenges. 

5. Core challenges summary 

Core challenges that influence uncertainty prediction in 
maintenance, as highlighted from the questionnaire and 
interviews, can be summarised in six factors as follows:  

 Intellectual property rights (IPR), where modern systems 
are comprised of a vast number of components, many of 
which can only be maintained by the OEM due to IPR. This 
yields a degree of information asymmetry leading to 
uncertainty around the accuracy and availability of technical 
data; validated by the ‘OEM logistics’ factor having the 
single greatest influence on uncertainty in the survey.  

 

Fig. 4. Survey results – Mean score for influence on uncertainty for all factors with level of disagreement 
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If a specialist maintainer cannot be sent out to fix the 
component, significant delays could be ensued.  

 Maintainer performance, where levels of knowledge and 
experience can have a significant impact on maintenance 
quality and material state awareness. Additional time 
pressures and individual attitudes impact effort put into 
completing a task. Naval ships are deployed for several 
months at a time, whereas platforms such as aircraft are 
flown for a matter of hours and undergo rigorous 
maintenance checks between sorties. Over time, each ship 
on deployment naturally develops its own ‘crew culture’. 
This has a core influence on maintainer attitude and affects 
the quality to which they conduct and record maintenance 
activities. Dockside maintainers would then not hold 
accurate data on the material state of a given part. If a 
problem was found the part would have to be replaced, 
accumulating unplanned costs and delays. 

 Quality of information, where documentation on 
maintenance procedures from OEMs is not well maintained. 
Books of Reference (BoR) are reviewed every 5 years, yet 
some date back to 1995. This can influence KPI 
specifications for a given platform, further raising 
uncertainty in maintenance procedures. In ship support, Job 
Instruction Cards (JICs), customer instructions and OEM 
documentation often lack detail. This exaggerates issues in 
data application for industrial and managerial support. 
Maintenance scheduling can then be affected, so parts may 
be maintained on a reactive basis rather than preventive. 
Materials and parts are not always available on the shelf 
when they should be and a robust system to purchase these 
materials is not in place. A range of data management 
systems are used for different ship platforms. For some, data 
is not necessarily recorded by the required party. Managers 
only get half the picture. 

 Resistance to change, where what is expected by the 
customer goes against what is or can be provided by the 
primary contractor. A number of maintenance tasks need to 

be sub-contracted to a third-party OEM, who the primary 
contractor has no control over. That OEM could be 
operating under a one-off contract to maintain a specific part 
or system. Significant uncertainties are raised here for the 
primary contractor as the time schedule and cost incurred 
from the third-party OEM cannot be finalised until the 
contract is completed, which may have knock-on effects for 
interconnected systems. 

 Stakeholder communication, where subcontractors may 
be fully qualified to sign off work done but cannot due to 
conflicts of interest, so the same task is repeated, resulting 
in unnecessary time and cost losses. An example was given 
in the interviews where two maintainers who have not 
conversed did not know the current material state or planned 
maintenance schedule of systems that connect at a platform 
level. The asset, maintained by the OEM, was rendered 
obsolete by ship staff while on deployment. It therefore 
missed a planned maintenance period when in dock, 
meaning the ship could not carry out its tasked duties. 

 Technology integration, where the exponential 
progression of technology means that training may not have 
kept up and software required to interrogate a system for 
diagnostic checks is not held by maintainers. New builds 
often have maintenance procedures locked in the design 
phase. Older platforms experience multiple upgrades over 
their lifetime which can result in examples such as seven 
different types of ship under one platform grouped into a 
maintenance procedure, even though procedures for each 
type are different. Customer requirements may also change 
through design and upgrade programmes, which induce 
substantial costs and schedule delays. 

A summary of the core factors that influence uncertainty in 
industrial maintenance for PSS and current approaches to 
maintenance is represented by Fig. 5 in a broad sense between 
the OEM, provider and client. 

 

Fig. 5. Core factors influencing uncertainty in industrial maintenance
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6. Wider industrial input 

A live survey was carried out with industry practitioners and 
cost estimators at a workshop on modelling risk and 
uncertainty. The six core challenges identified were presented 
using Mentimeter live voting software. Respondents were 
asked if they considered a combination of statistical (Type A) 
and heuristic (Type B) uncertainty in their work and to identify 
their background, achieving 58 responses. 

Segmentation of respondents according to their answer to 
the first two questions is illustrated in Fig. 6 (unknown means 
the first question was unanswered). 41% of respondents were 
from the defence sector, 16% from aerospace and 24% cost 
analysists. A near 50:50 division of backgrounds was found 
and was relatively equal across each sector. Finally, 
respondents ranked the six challenges according to their 
influence on uncertainty, which gained 40 responses. The 
weighted mean score of each factor is show in Fig. 7, with an 
area plot response distribution on the Likert scales. 

 

Fig. 6. Live survey - Respondent background according to whether they 
consider combined uncertainty 

 

Fig. 7. Subjective opinions on the core factors influencing uncertainty 

Quality of information showed the greatest influence on 
uncertainty, with a weighted mean score of 6.3. This is 
followed by technology integration, with a weighted mean 
score of 5. Maintainer performance, resistance to change and 
stakeholder communication were found to have a relatively 
wide spread, indicating disagreement between respondents. 
However, maintainer performance shows a higher distribution 
towards ‘high influence’. As before, disagreement can be due 
to respondents’ own comparative experiences in their industry 
in general or on a specific project they are working on. IPR 
showed the lowest influence, with a weighted mean of 3.1. 

7. Discussion and conclusions 

The aim of this paper was to identify and rank core factors 
that influence uncertainties originating from challenges in the 
maintenance of complex assets under PSS. Maintenance 
managers from a leading defence company completed a survey 
questionnaire identifying these factors. An assessment of the 
validity of their responses was made through defined pedigree 
criteria, the results of which were applied to each respondent to 
normalise their answers. Results were discussed and developed 
in a series of semi-structured interviews. Mean scores for each 
factor were weighted using AHP to identify the most influential 
factors. Core challenges were discussed in Section 5. 

The derivation of pedigree criteria is inherently subjective. 
The criteria selected for this study (Section 3.1) were deemed, 
through the interviews and academic input, most applicable to 
score a level of expertise to respondents. Ranking more 
detailed qualifications against each other adds levels of 
complexity deemed out of scope for this study. 

The AHP allowed factors to be weighed against each other 
within the survey categories. From this, the six core challenges 
were determined.  
These were validated through wider industrial input in a live 
survey, where quality of information was deemed the most 
influential factor on uncertainty. 

There are approximately 300 different data repositories in 
use across the studied company, the majority of which are not 
linked and consist of numerous duplicate entries [30]. This 
includes DRACAS (Data Reporting, Analysis and Corrective 
Action System) and UMMS (Unit Maintenance Management 
System), where data may not be recorded in a useable fashion.  

A shared understanding of material state across all 
departments is required to fill gaps in the supply chain, improve 
communication between stakeholders, overall decision-making 
and cost effectiveness of ship support. A common support 
model (CSM) is being developed to tackle this challenge, 
featuring five management disciplines for through-life ship 
support: enterprise, class, design, maintenance and equipment 
[30]. These are endorsed by a complex web of information and 
knowledge management that is historically subject to a degree 
of asymmetry. This was made apparent in the interviews and 
previous studies across industrial sectors [31–33].  

A combined understanding of the impact of qualitative and 
quantitative uncertainty on system performance will provide a 
holistic picture allowing for more informed and effective 
decisions leading to prosperous outcomes in maintenance, but 
this comes at a cost. Budgets can be set for this with the ‘spend 
to save’ approach or set aside lump sums for unforeseen 
circumstances. Ultimately, a trade-off is required. 

This study can be extended in several ways for further 
research. First, a broader framework can be developed to 
identify contributing factors in a given system, define them as 
statistical or heuristic, identify acceptable uncertainty 
parameters for each element and combine the total subsystem 
uncertainties to gain a more holistic, quantitative picture. 
Second, the interrelationship between criteria can be 
incorporated and modelled through other quantitative and 
qualitative techniques such as the Analytic Network Process 
(ANP) [14] and PROMETHEE. Third is to develop analytical 
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frameworks in order to better understand potential impacts of 
uncertainty and the ability to manage them should they arise.  
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