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DECOMPOSITION NUMBERS FOR BRAUER ALGEBRAS OF

TYPE G(m, p, n) IN CHARACTERISTIC ZERO

CHRISTOPHER BOWMAN AND ANTON COX

Abstract. We introduce Brauer algebras associated to complex reflection
groups of type G(m, p, n), and study their representation theory via Clifford
theory. In particular, we determine the decomposition numbers of these
algebras in characteristic zero.

Introduction

The symmetric and general linear groups satisfy a double centraliser property
over tensor space. This relationship is known as Schur–Weyl duality and allows
one to pass information between the representation theories of these algebras.
The Brauer algebra was defined to play the role of the symmetric group algebra
in a Schur–Weyl duality with the orthogonal (or symplectic) group.

The original definition of the Brauer algebra has been generalised in many
directions (see for example [BW89, HO01, CFW09, CLY12, Tur89, Koi89]). In
this paper we regard the classical Brauer algebra, Bn(δ), as an enlargement of
the symmetric group algebra; in other words it corresponds to an enlargement
of a complex reflection group of type G(1, 1, n). By considering analogous en-
largements of other complex reflection groups, we arrive at the Brauer algebras
of type G(m, p, n).

The type G(m, 1, n) case was studied in [BCD13], where the decomposition
numbers for these algebras are calculated by a reduction to the type G(1, 1, n)
case. In this paper we study the Brauer algebras of type G(m, p, n). Using
a combination of diagram algebra techniques, Clifford theory, and Brauer–
Humphreys reciprocity, we calculate the decomposition numbers of these al-
gebras.

We begin in Section 1 by defining the Brauer algebras, Bm,p,n, of type
G(m, p, n) and realise the algebra of type G(m, 1, n) as a skew group algebra.
This will allow us to apply the methods of Clifford theory. We then review the
basic representation theory of complex reflection groups which is both required
for and motivates the results that follow.

In Section 3 we begin to study the representation theory of the Brauer alge-
bras of type G(m, p, n). We deduce when the algebra is quasi-hereditary and
give explicit constructions of the standard modules. We then apply Clifford
theory to deduce restriction rules for standard, simple, and projective mod-
ules. We briefly consider restriction to the underlying group algebra using
Littlewood–Richardson theory.
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2 CHRISTOPHER BOWMAN AND ANTON COX

Using Clifford theory and the fact that Hom-spaces for Bm,1,n have nice rota-
tional symmetries, we are able to decompose Hom-spaces for Bm,p,n. Combining
these results and Brauer–Humphreys’ reciprocity, we conclude by determining
the decomposition numbers of Bm,p,n in terms of those for the classical Brauer
algebra (which have been given in terms of Kazhdan–Lusztig polynomials by
[Mar]).

1. Brauer algebras of type G(m, p, n)

We fix k, an algebraically closed field. Let m, p, n ∈ N be such that pd = m
for some d ∈ N. In this section we will define the Brauer algebras, Bm,p,n, of
type G(m, p, n). We shall show that the Brauer algebra of type G(m, p, n) is a
subalgebra of that of type G(m, 1, n) introduced in [BCD13, Appendix] (where
it was called the unoriented cyclotomic Brauer algebra).

1.1. Definitions. Given n ∈ N and δ = (δ0, δp, δ2p, . . . , δ(d−1)p) ∈ kd, the
Brauer algebra of type G(m, p, n), denoted by Bm,p,n, is a finite dimensional
associative k-algebra generated by certain Brauer diagrams. A diagram con-
sists of a frame with n distinguished points on the northern and southern
boundaries, which we call nodes. Each node is joined to precisely one other
by a strand; strands connecting the northern and southern edge will be called
through-strands and the remainder (northern or southern) arcs. There may
also be closed loops inside the frame, those diagrams without closed loops are
called reduced diagrams.

Each strand is labelled by an element of the cyclic group Z/mZ; we require
the additional restriction that the total sum over the labels is a multiple of p.
When drawing diagrams we will adopt the convention that unlabelled arcs have
label 0. Two diagrams are equivalent if the strands connect the same pairs of
nodes and have the same labels. As a vector space, Bm,p,n is the k-span of the
reduced diagrams. Figure 1 gives an example of two such elements in B(6, 3, 6).

x =
4

1

2
1

1
y =

1 1

51
1

3

Figure 1. Two elements in B6,3,6(δ)

Given x, y ∈ Bm,p,n, we define the product x · y to be the diagram obtained
by concatenation of x above y, where we identify the southern nodes of x with
the northern nodes of y and then ignore the section of the frame common to
both diagrams.

The label of each strand, s, in the concatenated diagram, is then the sum
of the labels of the strands from which it is composed. The product of two
diagrams may contain a closed loop: if this loop is labelled by ip ∈ Z/mZ then
the diagram is set equal to δip times the same diagram with the loop removed;
if the label is not divisible by p, we set the product to be zero.
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Example 1.1.1. The product x · y of the elements in Figure 1 is given in Figure
2. The product y2 = 0 as it results in the removal of a closed loop labelled by
2 (when reduced mod 6), which is not divisible by 3.

4

1

2
1

1

1 1

51
1

3

= δ3
14

4 1 1

1

Figure 2. The product x · y

We will need to speak of certain elements of the algebra with great frequency.
The elements si,j , t

k
i , s
∗
i,j , and ei,j (for i, j ≤ n) are indicated in Figure 3, where

the nodes are numbered in increasing order from left to right by 1 up to n on
the northern edge, and 1̄ up to n̄ on the southern edge.

si,j =

j

j

i

i

tki =

i

i

k

s∗1,2 =
1

m-1

eij =

j

j

i

i

Figure 3. The elements si,j , t
k
i , and s∗i,j and ei,j

Remark 1.1.2. The p = 1 case was first studied in the Appendix to [BCD13].
There it is christened the un-oriented cyclotomic Brauer algebra; this alge-
bra is not the (oriented) cyclotomic Brauer algebra studied (for example) in
[HO01, AMR06, GH09, RX07, RY04, Yu07]. Both the oriented and un-oriented
cyclotomic Brauer algebras are specialisations of the BMW algebra. However,
it is only the un-oriented algebra which has a family of subalgebras which can
be studied by analogy with the complex reflection groups of type G(m, p, n).

1.2. Clifford theory I. Consider the algebra Bm,1,n, as defined above. Let
p|m and specialise the parameter δ ∈ km so that δi is zero for any index i that
is not congruent to zero modulo p, i.e. take

δ = (δ0, . . . , 0, δp, 0, . . . , 0, δ2p, 0, . . . , 0, δp(d−1), 0, . . . , 0) ∈ km.



4 CHRISTOPHER BOWMAN AND ANTON COX

Take the subspace of Bm,1,n (with parameter as above) spanned by all dia-
grams whose labels sum to a multiple of p. Multiplication is inherited from that
in Bm,1,n; our choice of parameter ensures that any closed loops removed are
labelled by a multiple of p (otherwise the product is zero) and therefore the di-
agram obtained by their removal still lies in the same subspace. Therefore this
subspace is in fact a subalgebra, and is clearly isomorphic to Bm,p,n. Through-
out this paper, we shall only consider Bm,1,n for the parameter as above.

Let Z/pZ act via the k-algebra automorphism of Bm,1,n given by conjugation

by td1. This maps Bm,p,n onto Bm,p,n. We have the following theorem.

Theorem 1.2.1. The algebra Bm,1,n (with parameter δ as above) is the skew
group algebra

Bm,1,n = Bm,p,n o Z/pZ =

 ∑
z∈Z/pZ

dzz : d ∈ Bm,p,n


with linear multiplication given by the concatenation action: zd = (zdz−1)z.

Proof. This is similar to the the group algebra case. The natural diagram
basis of Bm,1,n can be partitioned into p distinct sets, B0, B1, . . . ,Bp−1, (of
equal cardinality) each consisting of the diagrams whose sum over the labels is
congruent to 0, 1, . . . p− 1 modulo p respectively. The algebra Bm,p,n has basis
given by B0, as seen above.

Left and right multiplication by t1 both define bijections from Bi to Bi+1.

Using this to rewrite diagrams as ti1d
′ or as d′′tj1 for some d′, d′′ ∈ B0, one can

check that the multiplication onBm,p,noZ/pZ is equivalent to the multiplication
on Bm,1,n (with δ as above). �

This result means that we will later be able to apply methods from Clifford
theory (see [RR85, Section 1]).

1.3. Generators for subalgebras. Just as for the Brauer algebra, it follows
from the definitions that Bm,1,n is generated by si,i+1, t1 and e1,2. The group
algebra of type G(m, p, n) can be identified with the subalgebra of Bm,1,n gener-
ated by s∗1,2, si,i+1 and tp1; for n > 2 the subalgebra Bm,p,n of Bm,1,n is generated

by s∗1,2, si,i+1, t
p
1 and e1,2 for 1 ≤ i ≤ n− 1.

1.4. Cyclotomic parameters. We have defined the algebra Bm,p,n in terms

of δ = (δ0, δp, . . . , δ(d−1)p) ∈ kd. It is shown in [BCD13] that the following
cyclotomic functions of these parameters govern the representation theory of
the algebra Bm,1,n under the assumption that m is invertible in k.

Definition 1.4.1. For each 0 ≤ r ≤ d−1 we define the rth cyclotomic parameter
to be

δr =
1

m

d−1∑
i=0

ξiprδip.

where ξ ∈ k× is a primitive mth root of unity
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2. Reflection groups of type G(m, p, n)

We have already assumed that k is an algebraically closed field. Henceforth
we shall also assume that k is of characteristic zero and we shall fix ξ ∈ k×, a
primitive mth root of unity. The group algebra of the complex reflection group,
G(m, 1, n), is the skew group algebra

G(m, 1, n) = G(m, p, n) o Z/pZ,

this comes from taking the semidirect product of the two groups. We shall
study G(m, p, n) via Clifford theory. The results in this section can be found
in [MM10, Section 2.3].

2.1. Type G(m, 1, n) combinatorics. A partition is a finite weakly-decreasing
sequence of non-negative integers. An m-partition of n is an m-tuple of par-
titions λ = (λ0, . . . , λm−1) such that

∑m−1
i=0 |λi| = n (where |λi| denotes the

sum of the parts of the partition λi). We let Λ(m, 1, n) denote the set of all
m-partitions of n − 2l for l ≤ n/2; we let Λ0(m, 1, n) denote the subset where
l = 0.

Let λ be an m-partition of n. A λ-tableau is a bijection t : λ → {1, 2..., n},
which we consider as an m-tuple t = (t0, . . . , tm−1) of labelled tableaux where
ts is a λs-tableau for each s; the tableaux ts are the components of t. We say a
tableau, t, is standard if the entries in the component tableaux are increasing
along the rows and columns. We let Tλ denote the set of standard λ-tableaux.

For t a tableau, we set t(i) = s if the integer i appears in ts. Let 1 ≤ i < j ≤ n,
we define the axial distance, a(i, j), as follows: if t(i) 6= t(j) then a(i, j) = ∞
(so that 1/a(i, j) = 0); if t(i) = t(j) and i occurs in row i0 and column i1 and
j occurs in row j0 and column j1, then a(i, j) = (i0 − i1)− (j0 − j1).

If t is a λ-tableau and w ∈ Σn let wt be the tableau obtained from t by
replacing each entry in t by its image under w. Let t ∈ Tλ, we set ti↔i+1 equal
to si,i+1t if this is still a standard λ-tableau, and 0 otherwise.

Proposition 2.1.1. The algebra kG(m, 1, n) has simple modules indexed by the

poset Λ0(m, 1, n). For a given m-partition λ of n, the simple module S(λ) has
a basis given by the set of standard λ-tableaux. With respect to this basis the
generators act as follows

ρλ(t1)t = ξt(1)t, ρλ(si,i+1)t =
1

a(i, i+ 1)
t +

(
1 +

1

a(i, i+ 1)

)
ti↔i+1

2.2. Type G(m, p, n) combinatorics. Let pd = m and let σ be a distinguished
generator of Z/pZ. There is a natural action of the cyclic group Z/pZ on the
poset Λ(m, 1, n) given by permutation of the indices. This extends to an action
on tableaux by setting

σ : (t0, t1, . . . , tm−1) 7→ (tm−d, t1−d, . . . , tm−1−d)

We denote σ(t) = tσ.
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For λ ∈ Λ(m, 1, n) let Stab(λ) denote the stabiliser of λ under the permuta-
tion action. We have StabZ/pZ(λ) = 〈σt〉 and 0 ≤ r < p/t. We let Λ(m, p, n) de-
note the set of pairs consisting of a representative of a Z/pZ-orbit on Λ(m, 1, n)
and an integer 0 ≤ r < p/t. We let Λ0(m, p, n) denote the subset where l = 0.

Example 2.2.1. We have that Λ(2, 1, 2) = {(∅, ∅), (∅, 2), (∅, 12), (2, ∅), (12, ∅)}.
There is a unique element, (∅, ∅), with non-trivial stabiliser 〈σ1〉 = Z/2Z.
Therefore Λ(2, 2, 2) has four elements and (picking a set of orbit representa-
tives) is equal to the set {(∅, ∅)0, (∅, ∅)1, (2, ∅), (12, ∅)}.

2.3. Simple modules for G(m, p, n). We now give the construction, via Clif-
ford theory, of the simple modules for G(m, p, n). We do not go into much
detail here, and instead refer to [MM10].

Simple modules for G(m, p, n) are labelled by a representation of Stab(λ) ≤
Z/pZ (given by an integer 0 ≤ r < p/t) and a representation of G(m, 1, n)
(given by an m-partition). Recall that Stab(λ) = 〈σt〉 ≤ Z/pZ. By Clifford

theory, we have that S(λ)↓= ⊕0≤r<p/tS(λr), where

S(λr) = ker(σt − ξdtr)S(λ)

for 0 ≤ r < p/t. We let

pr =
t

p

∑
0≤i<p/t

ξ−idtrσit

denote the projection onto this subspace.

Take as representatives of the 〈σt〉-orbits the t ∈ T 0
λ where T 0

λ is the set of
standard λ-tableaux with t(1) < td. Take the subspace spanned by tableaux
in T 0

λ and apply the projection pr, this provides a basis of S(λr) (in the case
that r = 0 this is the average of the 〈σt〉-orbit). Setting tr = pr(t), we then
get formulae for the action of the generators of G(m, p, n) on S(λr) as follows:
ρλ(t)pr = pr+1ρλ(t), and so

ρλ,r(t
p)tr = ξprt(1)tr, ρλ,r(s

∗
1)t

r = ξr(t(1)−t(2))ρλ,r(s1)t
r,

ρλ,r(si)t
r =

1

a(i, i+ 1)
tr +

(
1 +

1

a(i, i+ 1)

)
tri↔i+1.

3. Brauer algebras of type G(m, p, n)

Unless otherwise stated, let k denote an algebraically closed field of charac-
teristic zero. Fix ξ to be a primitive mth root of unity. In this section we study
Bm,p,n via Clifford theory. By verifying the first two conditions of a tower of
recollement, we deduce conditions under which the algebra is quasi-hereditary;
we leave it as an exercise for the reader to check that the algebra is a tower of
recollement (in the sense of [CMPX06]) by checking that it obeys the remaining
conditions.
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3.1. Highest weight theory. Let n ≥ 2. Suppose first that δ 6= 0 ∈ kd and
fix a δip 6= 0 for some 0 ≤ i < d. We then define the idempotent en−2 =
1
δip
tipn−1en−1,n as illustrated in Figure 4. Note that it is a scalar multiple of a

diagram with n− 2 through-strands. If δ = 0 and n ≥ 3 then we define en−2 to
be the idempotent en−1,nen−2,n−1, as illustrated in Figure 4.

1

δip

ip

Figure 4. The idempotent en−2 (for n = 6) in the cases that
δ 6= 0, δ = 0 respectively.

A tower of recollement was defined in [CMPX06] to be a family of algebras
(with idempotents) satisfying six conditions (A1–6). It is easy to see that

(3.1.1) en−2Bm,p,nen−2 ∼= Bm,p,n−2

and that

(3.1.2) Bm,p,n/Bm,p,nen−2Bm,p,n ∼= kG(m, p, n).

For the latter isomorphism, note that the lefthand-side has a basis consisting
of the diagrams with no arcs. Therefore we have the following

Theorem 3.1.1. Let k be a field of characteristic cha(k) ≥ 0. Let m,n ∈ N,
and δ ∈ km. If n is even suppose δ 6= 0 ∈ km. The algebra Bm,p,n(δ) is
quasi-hereditary if and only if cha(k) > n and cha(k)6 |m, or cha(k) = 0.

We leave it to the reader to verify the remaining tower conditions using
classical tower arguments (see [CDDM08], [CDM09]) and Clifford theory.

3.2. The standard modules of Bm,1,n. Recall our assumption on the pa-
rameter δ ∈ km from Section 1.2. By [BCD13, Theorem 3.1.2], the algebra
Bm,1,n is an iterated inflation of the group algebras G(m, 1, n− 2l) along vector
spaces Vl spanned by all possible (m,n, l)-tangles. An (m,n, l)-tangle has l arcs
denoted by (ip, jp) (for p = 1, . . . , l) where ip (resp. jp) is the left (resp. right)
vertex of the arc, and n−2l free lines. Each arc has a label given by an element
r ∈ Z/mZ. For example a (5, 7, 2)-tangle is depicted in Figure 5.

1 3

Figure 5. A (5, 7, 2)-dangle

We therefore have the following theorem:

Theorem 3.2.1. The algebra Bm,1,n has standard modules indexed by Λ(m, 1, n).
For a given m-partition, λ, of n− 2l, we have the standard module

∆(λ) ∼= Vl ⊗k S(λ).
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The action of a diagramX ∈ Bm,1,n on v⊗x ∈ ∆(λ) is given as follows. Apply
the diagram X to the (m,n, l)-tangle v. If we obtain more than l arcs, or a
closed loop labelled by an integer not divisible by p, this element is sent to zero.
Otherwise, we obtain another (m,n, l)-tangle Xv and a signed permutation
σ ∈ G(m, 1, n− 2l) on the n−2l free vertices of Xv, we then define X(v⊗x) =
(Xv)⊗ σx.

3.3. Standard modules for Bm,p,n. By (3.1.1) and (3.1.2), we have that the
standard modules for Bm,p,n are of the form

∆n(λr) = (Bm,p,n/(Bm,p,nen−2l−2Bm,p,n))en−2l ⊗Bm,p,n−2l
S(λr).

This module is spanned by the elements d⊗Bm,p,n−2l
tr where tr ∈ S(λr) and

d ∈ Bm,p,n with precisely (n−2l) through-lines. By taking elements of Bm,p,n−2l
across the tensor product we can just consider diagrams d with (a) no crossing
through-lines (b) only the leftmost through-line has a non-zero label, (c) this
label, q, is strictly less than p (as any diagram d′ ∈ Bm,p,n can be written as
a product d′ = dσ for σ ∈ G(m, p, n) and d of the required form). Of course,
these diagrams must still be elements of Bm,p,n and so the northern arcs of
the diagram must have labels totalling p − q modulo p. Figure 6 contains an
example for type G(6, 3, 7).

5

1

3

Figure 6. A diagram of type G(6, 3, 7) satisfying condition (a),
(b), and (c), above.

One can then pass the decoration on the left-most strand through the tensor

product by noting that t1t
r = tr+1 and that t

p/t
1 tr = tr, by construction. Define

Vl(q, p/t) ⊂ Vl to be the subspace of dangles whose label sum is congruent to
−q modulo p/t.

Theorem 3.3.1. The algebra Bm,p,n has standard modules labelled by Λ(m, p, n).
For λr ∈ Λ(m, p, n), we have that

∆n(λr) ∼= {v ⊗ x : v ∈ Vl(q, p/t), x ∈ S(λq+r), 0 ≤ q < p/t}

Example 3.3.2. The modules ∆((1, 0, 1, 0)0) and ∆((1, 0, 1, 0)1) for B4,4,4 are
both 24-dimensional. Let t denote the unique element of T 0

(1,0,1,0) and let v

be the dangle with a single undecorated arc (1p, 2p). Some typical elements of
∆((1, 0, 1, 0)0) are

v ⊗ t0, t21v ⊗ t0, t1v ⊗ t1, t31v ⊗ t1,

and some typical elements of ∆((1, 0, 1, 0)1) are

v ⊗ t1, t21v ⊗ t1, t1v ⊗ t0, t31v ⊗ t0.

In fact, the bases of both modules can be obtained by applying undecorated
elements of G(4, 4, 2) to the elements above (i.e. by permuting the nodes of the
dangles).
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3.4. Clifford theory II. We will use Clifford theory techniques to give the
decomposition of the restriction of a standard, simple, or projective module
from Bm,1,n to Bm,p,n.

3.4.1. Standard modules. Let (ip, jp) and (iq, jq) be two arcs in v with annota-
tions l and k, respectively. We let εl,ip denote the Kronecker delta which is 1
or 0 if l = ip for some 0 ≤ i < d, or not, respectively. We write i 6∈ v if i labels
a free line in v. Finally, note that there are n nodes on the top of a dangle and
n− 2l on the bottom of a dangle. If the ith node on the top of the diagram is a
free node, we let i denote the corresponding node on the bottom of the dangle.

From Theorem 3.2.1, we deduce that the action of the generators of Bm,1,n
(under our assumption on the parameter δ ∈ km from Section 1.2) on the

standard module ∆(λ) is as follows:

πλ(t1)(v ⊗ t) =

{
ξt(1)(v ⊗ t) if 1 6∈ v
(t1v)⊗ t if 1 = ip for some p

πλ(si,i+1)(v ⊗ t) =

{
1

a(i,i+1)(v ⊗ t) +
(

1 + 1
a(i,i+1)

)
(v ⊗ ti↔i+1) if i, i+ 1 6∈ v

(si,i+1v)⊗ t otherwise

πλ(e1,2)(v ⊗ t) =


0 if 1, 2 6∈ v
εl,ipδip((t

−l
1 v)⊗ t) if 1 = ip, 2 = jp

ξlt(1)πλ(s1,jp)((t
−lv)⊗ t) if 1 6∈ v, 2 = ip

πλ(s1,jp)((t
l
1t
−l
2 v)⊗ t) if 1 = iq, 2 = ip

The case of πλ(e1,2) is symmetric in the coordinates 1, 2 and so we have omitted
the details.

We recall that {tp1, s∗1, e1,2, si,i+1 : 0 ≤ q < r, 1 ≤ i ≤ n − 1} generate Bm,p,n
for n > 2, and that the quotient Bm,1,n/Bm,p,n is cyclic, generated by t. Let χ
be the generator of the group of linear characters of the quotient which maps
t to ξd. From the formulae for the action of t1, s

∗
1,2, e1,2, and the si,i+1 for

1 ≤ i ≤ n− 1, we see that the map

σ(v ⊗ t) = ξdqv ⊗ σ(t),

where q is the total label on v, induces an isomorphism χ⊗ πλ = πσ(λ).

It is easy to check that σt commutes with the action of ρλ(si,i+1), ρλ(s∗1) and

ρλ(e1,2), and that σt ◦ ρλ(t1) = ξdtρλ(t1) ◦ σt. It follows that σt commutes with
the action of Bm,p,n and that

∆n(λ)↓Bm,1,nBm,p,n
∼= ⊕0≤r<p/t ker(σt − ξdtr)∆n(λ),

(although these direct summands need not be indecomposable). For a given
0 ≤ r < p/t, we have that the projection onto ker(σt − ξdtr) is given by:

pr =
t

p

∑
0≤i<p/t

ξ−idtrσit.
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Theorem 3.4.1. The restriction of a standard module, ∆(λ), for Bm,1,n is a
direct sum of p/t standard modules for Bm,p,n. For λ ∈ Λ(m, 1, n), we have that

∆n(λr) ∼= ker((σt − ξdtr)∆n(λ)).

Proof. It suffices to show that pr∆(λ) is the standard module constructed in

the previous section. For a given x ∈ Vl ⊗ S(λ), we have that

σt(v ⊗ t) = ξdqtv ⊗ σt(t)
where q is the label total on v, and therefore

pr(v ⊗ t) = v ⊗

 t

p

∑
0≤i<p/t

ξ−idtr+dqtσitt

 = v ⊗ tq+r.

These elements form the basis of ∆(λr) given in Theorem 3.3.1, and the result
follows. �

3.4.2. Simple and projective modules. By Clifford theory [RR85, Theorems 1.1

and 1.3], we have that the simple Bm,1,n-module, L(λ), restricts to a direct sum
of simple Bm,p,n-modules. As each simple Bm,1,n-module appears as the head
of the unique standard module with the same label, we have that

L(λ)↓Bm,1,nBm,p,n
∼= ⊕0≤r<p/tL(λr),

by Frobenius reciprocity and Theorem 3.4.1. As L(λ) is a quotient of ∆(λ),
we can use the action of σt on the quotient to characterise L(λr) as ker(σt −
ξdtr)L(λ).

The algebra, Bm,1,n, is free as a Bm,p,n-module. Therefore the restriction of
a projective module is itself projective. By Frobenius reciprocity,

P (λ)↓Bm,1,nBm,p,n
∼= ⊕0≤r<p/tP (λr).

For λ ∈ Λ(m, 1, n), the projective module P (λ) appears as quotient (in fact,
a direct summand) of

B(λ) = Bm,1,nen−2l ⊗Bm,1,n−2l
S(λ).

We can therefore construct the projective modules as the eigenspaces of the
automorphism σt (by first extending the σt-action to the module B(λ) in the
obvious way).

3.4.3. Restriction to the group algebra. We now calculate the structure of the
projective, standard, and simple modules for Bm,p,n upon restriction to the
group algebra kG(m, p, n).

Proposition 3.4.2. Let λr, µq ∈ Λ(m, p, n), with StabZ/pZ(λ) = 〈σt〉 and
StabZ/pZ(µ) = 〈σu〉. We have for a simple, projective, or standard Bm,p,n-
module M(λr), that

[M(λr)↓kG(m,p,n): S(µq)] =

{∑
ρ∈T [M(λ) : S(µρ)] if r = q modulo hcf(pt ,

p
u)

0 otherwise
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where T is a set of cosets for 〈σhcf(t,u)〉 ≤ Z/pZ.

Proof. The multiplicities [M(λ) : S(µ)] are calculated in terms of Littlewood–
Richardson coefficients in [BCD13, Appendix]. From this result, it is immediate
that

[M(λ)↓G(m,1,n): S(µ)] = [M(λσ)↓G(m,1,n): S(µσ)].

We have that 〈σt〉 fixes M(λ) and 〈σu〉 fixes S(µ). Therefore

[M(λ)↓G(m,1,n): S(µ)] = [M(λ)↓G(m,1,n): S(µτ )]

for τ ∈ 〈σhcf(t,u)〉. Therefore, we want to calculate the (well-defined) multiplic-
ities

[M(λ)↓kG(m,p,n): (⊕τ∈〈σhcf(t,u)〉S(µτ ))↓kG(m,p,n)].

First, note that we can factorise the map (σt − ξdtr) as the product

(σt − ξdtr) =
∏

0≤i<t
(σ − ξd(r+ip/t)).

Now, consider the kernel of the map (σt − ξdtr) applied to the direct sum.
We have that

ker(σt − ξdtr)(⊕τ∈〈σhcf(t,u)〉S(µτ )) =
⊕
0≤i<t

ker(σ − ξd(r+ip/t))(⊕τ∈〈σhcf(t,u)〉S(µτ ))

=
⊕

r=q mod
hcf(p/t,p/u)

S(µq).

Summing over a set of coset representatives of (Z/pZ)/〈σhcf(t,u)〉 we obtain the
desired result. �

4. Homomorphisms between standard and projective modules

4.1. Identifying Hom-spaces. Let λ, µ ∈ Λ(m, 1, n) with StabZ/pZ(λ) = 〈σt〉
and StabZ/pZ(µ) = 〈σu〉. Let 0 ≤ r < p/t and 0 ≤ q < p/u. We let λr, µq ∈
Λ(m, p, n) denote the elements corresponding to the rth and qth orbits.

Lemma 4.1.1. Consider the algebra Bm,1,n with parameter δ ∈ km as in Sec-

tion 1.2. Let λ, µ ∈ Λ(m, 1, n) Let M(λ) be a standard or projective module

labelled by λ. Let N(µ) be a simple, standard, or projective module labelled by
µ. We have that

HomBm,1,n(M(λ), N(µ)) ∼= HomBm,1,n(M(λσ), N(µσ))

Proof. The condition on the parameter implies that

δk = δip+k

for all i and 0 ≤ k ≤ p − 1. Therefore, by the un-oriented version of [BCD13,
Corollary 5.5.2] outlined in the Appendix, we have that rotating both partitions
by ip places results in the required isomorphism. �

Remark 4.1.2. Note that the case that M(λ) is simple is excluded, as we may

only use [BCD13, Corollary 5.5.2] for modules M(λ) with a ∆-filtration.
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Lemma 4.1.3. Let M(λr) and N(µq) be simple, standard, or projective mod-
ules labelled by λr, µq ∈ Λ(m, p, n). We have the following isomorphism:

HomBm,p,n(M(λr), N(µq)) ∼= HomBm,p,n(M(λr+1), N(µq+1))

Proof. This follows by twisting both modules under conjugation by td1. �

We let εr,q denote the Kronecker delta of r and q modulo hcf(p/t, p/u).

Theorem 4.1.4. Let λr, µq ∈ Λ(m, p, n). Let M(λr) be a standard or projective
module labelled by λr. Let N(µq) be a simple, standard, or projective module
labelled by µq. We have isomorphisms

HomBm,p,n(M(λr), N(µq)) ∼= εr,q HomBm,1,n(M(λ),⊕ρ∈(Z/pZ)/〈σu,σt〉N(µρ))

∼= εr,q HomBm,1,n(⊕ρ∈(Z/pZ)/〈σu,σt〉M(λρ), N(µ)).

Proof. We first focus on the righthand side. By Clifford theory, we have that

HomBm,p,n(⊕0≤i<p/tM(λi), N(µq)) ∼= HomBm,p,n(M(λ)↓, N(µq))

∼= HomBm,1,n(M(λ), N(µq)↑)
∼= HomBm,1,n(M(λ),⊕ρ∈(Z/pZ)/〈σu〉N(µρ)),

∼= ⊕ρ∈(Z/pZ)/〈σu〉HomBm,1,n(M(λ), N(µρ)).

Therefore by Lemma 4.1.1, we have that

HomBm,p,n(⊕0≤i<p/tM(λi), N(µq)) ∼=
⊕

ρ∈(Z/pZ)/
〈σu,σt〉

HomBm,1,n(M(λ), N(µρ))u/hcf(t,u).

We now focus on the lefthand side. Any Bm,p,n-homomorphism must restrict
to a G(m, p, n)-homomorphism, therefore

HomBm,p,n(⊕0≤i<p/tM(λi), N(µq)) ∼= HomBm,p,n(⊕r=q mod
hcf(p/t,p/u)

M(λr), N(µq))

as all the other hom-spaces are zero, by Proposition 3.4.2. By repeated appli-
cation of Lemma 4.1.3, we get that all the summands on the righthand side are
isomorphic, and so

HomBm,p,n(⊕0≤i<p/tM(λi), N(µq)) ∼= HomBm,p,n(M(λr), N(µq))u/hcf(t,u),

therefore the results follows. �

5. Decomposition numbers for Bm,p,n

We now use Theorem 4.1.4 and Brauer–Humphrey’s reciprocity to calculate
the decomposition numbers for the Brauer algebras of type G(m, p, n). For
m, p, n ∈ N, we let

dm,p,nλr,µq (δ) = [∆n(λr) : Ln(µq)]

denote the multiplicity of Ln(µq) in ∆n(λr) as a Bm,p,n-module. By Brauer–
Humphrey’s reciprocity

dm,p,nλr,µq (δ) = dimk(HomBm,p,n(Pn(µq),∆n(λr)).
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5.1. Reduction to the G(m, 1, n) case. In [Mar, CD11], the decomposition

numbers, d1,1,nλ,µ , for the classical Brauer algebra (i.e. the type G(1, 1, n) case)

are given by the corresponding parabolic Kazhdan–Lusztig polynomials of type
(Dn, An−1).

The type G(m, 1, n) is covered in [BCD13]. In [BCD13, Appendix] it is shown
that the decomposition numbers for the un-oriented cyclotomic Brauer algebras
are as follows:

dm,1,nλ,µ (δ) =
∏

0≤i<m
d1,1,nλi,µi

(δi).

By Theorem 4.1.4, Brauer–Humphrey’s reciprocity, and the above, we have
the following description of the decomposition numbers of Brauer algebras of
type G(m, p, n).

Theorem 5.1.1. The decomposition numbers, dm,p,nλr,µq (δ) for Bm,p,n over a field

of characteristic zero are as follows:

dm,p,nλr,µq (δ) = εr,q
∑

ρ∈(Z/pZ)/
〈σu,σt〉

dm,1,nλ,µρ (δ).

Remark 5.1.2. In [BCD13, Remark 5.5.3] it is noted that one can reduce the
calculation of certain higher extension groups for B(m, 1, n) to the case of the
classical Brauer algebra, as we did above for the decomposition numbers. In
these cases one can calculate the corresponding higher extension groups for
Bm,p,n in a similar fashion to the above.
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Institut de Mathématiques de Jussieu, 175 rue du chevaleret, 75013, Paris

E-mail address: A.G.Cox@city.ac.uk

Department of Mathematics, City University London, Northampton Square,
London, EC1V 0HB, England.


