

City, University of London Institutional Repository

Citation: Petroulakis, N. E. (2019). A pattern-based framework for the design of secure

and dependable SDN/NFV-enabled networks. (Unpublished Doctoral thesis, City, University
of London)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/24065/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

A Pattern-Based Framework for the
Design of Secure and Dependable

SDN/NFV-Enabled Networks

Nikolaos E. Petroulakis

Department of Computer Science
School of Mathematics, Computer Science and Engineering

City, University of London

Supervisor Prof. George Spanoudakis

Thesis for the degree of Doctor of Philosophy

City, University of London November 2019

To my beloved children

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text.

Nikolaos E. Petroulakis
November 2019

Acknowledgements

This PhD is the result of a hard but satisfying work with many challenging but valuable
experiences that it would not have been possible without the support and guidance of many
people to who I would like to express my sincere appreciation.

First of all, I would like to express my gratitude to my supervisor Prof. George
Spanoudakis for giving me the opportunity to work with him on pursuing this PhD. His
expertise and his consistent guidance together with his vision helped me to complete this
research. Under his supervision, I had the opportunity to investigate and acquire further
knowledge in new research topics and directions. Without his support and constant feedback,
this PhD would not have been realised.

Besides my advisor, I would like to thank my second supervisor, Dr. Christos Kloukinas,
for all his insightful comments and his valuable support during the whole period of my
research.

I would also like to express my sincere appreciation to my external supervisor Dr. Ioannis
Askoxylakis for his mentoring and guidance from the beginning of this PhD until the end of
my research. Sharing with me his knowledge and technical know how were precious for the
accomplishment of this work.

My sincere thanks to my closest friends for their unconditional support and patience.
After the completion of this PhD, we will have more spare time to spend together as this was
not so often possible during the writing period.

My deepest gratitude to my family. More specifically, I would like to thank my parents
who have always been there for me. I would also like to express my thanks to my sister for
standing by me not only as a sister but also as a friend.

Last but not least, I would like to thank my wife , my inspiration, for her practical
and emotional support and for her patience and humour. She has always been a devoted
co-traveller in this journey.

Abstract

As the world becomes an interconnected network where objects and humans interact, cyber
and physical networks appear to play an important role in smart ecosystems due to their
increasing use on critical infrastructure and smart cities. Software Defined Networking (SDN)
and Network Function Virtualisation (NFV) are a promising combination for programmable
connectivity, rapid service provisioning and service chaining as they offer the necessary
end-to-end optimisations. However, with the actual exponential growth of connected devices,
future networks, such as SDN and NFV, require open architectures, facilitated by standards
and a strong ecosystem.In this thesis, a model-based approach is proposed to support the
design and verification of secure and dependable SDN/NFV-enabled networks. The model
is based on the development of a pattern-based approach to design executable patterns as
solutions for reusable designs and interactions of objects, encoded in a rule-based reasoning
system, able to guarantee security and dependability (S&D) properties in SDN/NFV-enabled
networks. To execute S&D patterns, a pattern-based framework is implemented for the
insertion of patterns at design and at runtime level. The developed pattern framework
highlights also the benefit of leveraging the flexibility of SDN/NFV-enabled networks to
deploy enhanced reactive security mechanisms for the protection of the industrial network
via the use of service function chaining (SFC). To prove the importance of this approach and
the functionality of the pattern framework, different pattern instances are implemented to
guarantee S&D in network infrastructures. The developed design patterns are able to design
network topologies, guarantee network properties and offer security service provisioning
and chaining. Finally, in order to evaluate the developed patterns in the pattern framework,
three different use cases are described, where a number of usage scenarios are deployed and
evaluated experimentally.

Table of contents

List of figures xv

List of tables xix

Notations xxi

1 Introduction 1
1.1 Overview . 1
1.2 Motivation and Research Challenges . 7
1.3 Research Aims and Objectives . 12
1.4 Research Assumption and Hypothesis . 13
1.5 Research Contributions . 13

1.5.1 Pattern Schema . 14
1.5.2 Pattern Instances . 14
1.5.3 Pattern Framework . 15
1.5.4 Reactive Security Leveraging SFC 15
1.5.5 Network Simulator . 16
1.5.6 Evaluation of the Pattern Framework 16

1.6 Publications . 16
1.7 Outline of Thesis . 20

2 Background and Literature Review 23
2.1 Overview . 23
2.2 Security and Dependability Attributes . 23
2.3 Security and Dependability Threats . 25

2.3.1 Generic Threats . 26
2.3.2 Radio Access Threats . 28
2.3.3 SDN/NFV Threats . 29

2.4 Security and Dependability Countermeasures 30

xii Table of contents

2.4.1 Generic Countermeasures . 31
2.4.2 Radio Access Countermeasures 35
2.4.3 SDN/NFV Countermeasures . 36

2.5 Service Provisioning and Chaining . 41
2.5.1 Security Service Functions . 42
2.5.2 Service Function Chaining . 44
2.5.3 SFC Related Research . 45

2.6 Design Patterns . 46
2.7 Open Issues Addressed by this Work . 48
2.8 Summary . 49

3 Definition of the Pattern Schema and Language 51
3.1 Overview . 51
3.2 Pattern Definition . 51
3.3 Pattern Topology . 53
3.4 Pattern Requirements and Properties of Compositions 54

3.4.1 Composition Properties . 54
3.4.2 Functional Requirements . 56
3.4.3 Non-Functional Requirements . 56

3.5 Pattern Specification . 57
3.6 Pattern Composition and Reasoning . 58

3.6.1 Forward Chaining . 58
3.6.2 Backward Chaining . 60

3.7 Pattern Components . 60
3.7.1 Network Graphs . 60
3.7.2 Network Components . 64
3.7.3 SFC Terms and Components . 64
3.7.4 Data Flows and Policies . 66

3.8 Pattern Language . 69
3.9 Summary . 72

4 Secure and Dependable Design Patterns 75
4.1 Overview . 75
4.2 Topology Patterns . 75

4.2.1 Physical Topology Patterns . 75
4.2.2 Logical Topology Patterns . 86

4.3 Path Discovery Pattern . 90

Table of contents xiii

4.4 Reliability Patterns . 93
4.4.1 Reliability in Compositions . 93
4.4.2 Serial and Parallel Reliability Pattern 96
4.4.3 Serial-Parallel Reliability Pattern 99

4.5 Fault Tolerance, Detection and Restoration Patterns 101
4.5.1 Fault Tolerance Pattern . 102
4.5.2 Fault Detection and Restoration Pattern 103

4.6 Security Patterns . 105
4.6.1 Link Encryption Pattern . 105
4.6.2 End-to-End Encryption Pattern . 109

4.7 Service Function Chaining Patterns . 113
4.7.1 VNF Instantiation Pattern . 114
4.7.2 SFC Path Finding Pattern . 119

4.8 Summary . 122

5 Implementation of the Pattern Framework 123
5.1 Overview . 123
5.2 Pattern Framework . 124

5.2.1 Pattern Schema and Requirements 124
5.2.2 Pattern Engine in the Application Layer 126
5.2.3 Pattern Engine in the SDN Controller 127

5.3 SFC Reactive Security . 130
5.3.1 Virtual Network Functions . 132
5.3.2 SFC Manager . 135
5.3.3 SFC GUI . 136
5.3.4 SFC in the NFV MANO . 137
5.3.5 Dynamic SFC instantiation . 138

5.4 Network Simulator . 139
5.5 Testing and Evaluation Environment . 143

5.5.1 Emulated Infrastructure . 143
5.5.2 Virtual Infrastructure . 143
5.5.3 Software Setup . 145

5.6 Summary . 145

6 Evaluation of Design Patterns in the Pattern Framework 147
6.1 Overview . 147
6.2 Design Network Topologies . 147

xiv Table of contents

6.2.1 End-to-End Connected Network Topologies 148
6.2.2 Maximum Coverage and Redundancy in Network Topologies . . . 150
6.2.3 Scalable Network Design . 151

6.3 Design and Verification of S&D Networks 152
6.3.1 Reliable Network Designs . 153
6.3.2 Fault Tolerance, Detection and Restoration in SDN 158
6.3.3 Secure Transmission in SDN-enabled Networks 162

6.4 Design Secure Industrial Networks Leveraging Service Function Chaining . 167
6.4.1 Virtual Functions Instantiation based on SFC Requests 169
6.4.2 SFC Path Finding and Traffic Classification 172

6.5 Summary . 178

7 Conclusion 181
7.1 Overview . 181
7.2 Summary of the Research . 181
7.3 Contributions . 182
7.4 Limitations . 184
7.5 Future Work . 186

References 189

Appendix A Developed Java Classes 203

Appendix B Service Function Chaining Files 231

List of figures

1.1 Evolution of Industry . 2
1.2 SDN Architecture . 4
1.3 SDN Mapping in NFV architecture . 7

2.1 Relation Between non-Functional and Functional Attributes 26
2.2 SDN Threats . 29
2.3 IPsec Framework . 34

3.1 Stepwise Decomposition . 56
3.2 Forward Chaining Schema . 59
3.3 Class Diagram of the Network Components in Graphs 62
3.4 Class Diagram of the Network Components in Service Function Chaining . 66
3.5 Class Diagram of Packet Components . 67
3.6 OpenFlow Rule Example . 68
3.7 Class Diagram of Network Components 71

4.1 Physical Network Topologies . 76
4.2 Network Pattern Compositions (i) Line (ii) Tree (iii) Mesh (v) Full-Mesh . 77
4.3 Distance and Position of Nodes . 79
4.4 Line Composition . 80
4.5 Line Decomposition . 81
4.6 Stepwise Decomposition . 85
4.7 Basic Logical Topologies: (a) Sequence (b) Parallel-split-join (c) Multi-

choice-join (d) Exclusive-choice-join . 87
4.8 Class Diagram of the Workflow Patterns 88
4.9 Path Decomposition . 91
4.10 Non-reducible Split of Fully Mesh Pattern 95
4.11 Activity Diagram of Reliability Pattern . 97
4.12 Reliability Serial-Parallel Pattern Decomposition 100

xvi List of figures

4.13 Fault Tolerance Pattern . 102
4.14 Fault Detection and Restoration Pattern 104
4.15 Activity Diagram of the E2E Security Procedure 111
4.16 Service Functions (i) on Same Service Node, (ii) on Same Switch (iii) on

Same Domain (iv) on Different Domains 115
4.17 VNF Instantiation based on SFC Request 117
4.18 Conceptual, Simple and Extensive Service Function Chaining Example . . 120

(a) Conceptual service function chain architecture 120
(b) Simple Service Function Chain . 120
(c) Extensive Service Function Chain 120

5.1 Architecture of the Pattern Framework . 124
5.2 Drools Patterns . 126
5.3 Network Design within the Pattern Framework 127
5.4 Network Verification and Adaptation within the Pattern Framework 129
5.5 OpenDaylight SDN Pattern Framework GUI 130
5.6 Security Functions in NFV Architecture 132
5.7 Reactive Security SFC GUI . 137
5.8 Expanded, NFV-O Managed and ETSI-aligned, Framework Architecture . . 138
5.9 SFC Requests in the Pattern Framework 139
5.10 Network Topology Json Example . 141
5.11 Implemented Network Simulator . 142
5.12 Network Simulator and Pattern Framework Interaction 142
5.13 Hypervisors . 144

6.1 Evaluated Use Case and Scenarios . 148
6.2 End to End Connected Networks . 149
6.3 Line Pattern Output on Network Simulator 150
6.4 Mesh Networking in Rural and Urban Environments 150
6.5 Mesh Pattern Output on Network Simulator 152
6.6 Scalable Network Designs based on Tree Topologies 153
6.7 Network Simulator Outputs on Tree Pattern 154
6.8 Reliable Network Designs . 155
6.9 Design Phases of a Sensor Network with Reliability (a) 96% (b) 98% (c) 99.9%156
6.10 OpenDaylight SDN Infrastructure Topology 158
6.11 Network Simulator Outputs on Reliability Patterns 159

(a) Serial and Parallel Output . 159

List of figures xvii

(b) Serial-Parallel Output . 159
6.12 Fault Tolerance in SDN . 160
6.13 Experimental Results of Fault Detection and Restoration Pattern 161
6.14 End to End and Link Encryption Use Case 162
6.15 Link to Link Encryption in Network Topologies 164

(a) Network Topology . 164
(b) Network Topology Security . 164

6.16 End to End Encryption in Network Topologies 166
6.17 Evaluation of the End-to-End Security Pattern in the Network Simulator

(green: secure, red: insecure, orange: undefined) 168
(a) Partially Secure Traffic from n1 to n2 168
(b) Partially Secure Traffic from n1 to n3 168
(c) Multi-hop Partially Secure Traffic from n2 to n3 168
(d) Insecure Traffic from n2 to n3 . 168
(e) Partially Secure Traffic from n2 to n4 168
(f) Fully Secure Traffic from n1 to n4 168

6.18 Reactive Security - Implemented Service Chains 169
6.19 SFC - Per Traffic Type Classification Example 170

(a) Intra Domain . 170
(b) Inter Domain . 170

6.20 VNF Instantiation in OpenStack . 172
6.21 VNF Instantiation in Proxmox . 173
6.22 Service Functions Imported in the ODL 173
6.23 Service Node Imported in the ODL . 174
6.24 Service Function Chains Imported in the ODL 174
6.25 Service Function Forwarders Imported in the ODL 175
6.26 Access Control Lists Imported in the ODL 175
6.27 OpenFlow Rules Inside the Forwarders and the Classifiers 176
6.28 Demo Shell Script . 176
6.29 Reactive Security - Demo . 177
6.30 Real-time Traffic Flows on the Controller’s GUI 178

(a) Legitimate traffic . 178
(b) Legitimate traffic classified by DPI 178
(c) SCADA traffic . 178
(d) SCADA traffic classified by DPI . 178
(e) Malicious traffic . 178

xviii List of figures

(f) Malicious traffic classified by DPI 178

List of tables

2.1 SDN Fault Tolerance Mechanisms . 40
2.2 Examples of Network Security Service Functions 43
2.3 Security Properties and Functions . 44

3.1 Comparison Between Forward and Backward Chaining 61
3.2 Pattern Language Semantics . 72

4.1 Composition Metrics . 89
4.2 Reliability in Physical Network Topology Patterns 96

5.1 Abstract SFC Component Structure . 136

6.1 Experimental Results of the Line Pattern Execution 149
6.2 Experimental Results of the Mesh Pattern Execution 151
6.3 Experimental Results of the Tree Pattern Execution 151
6.4 Experimental Results of the Serial and Parallel Pattern Execution 157
6.5 Experimental Results of the Serial-Parallel Pattern Execution 157
6.6 Experimental Results of Fault Tolerance Pattern Flow Configurations 160
6.7 Link Encryption on a Network Topology 163
6.8 End to End Security on a Network Topology 166
6.9 Experimental Results of the SFC Reactive Security 177

Notations

Property Notations
C = {c1,c2, ...} Set of components c
A = {a1,a2, ...} Set of activities a
P(c) Property of component c
R(P(c)) Requirement of property P
P = {p1,p2, ...} Set of probability of components
R = {r1,r2, ...} Set of reliability of atomic components

Graph Notations
G = (V,E) Graph with V vertices and E edges
N = {n1,n2, ...} Set of physical nodes n
L = {l1,l2, ...} Set of physical links ln,n0
G = (N,L) Physical network graph
P = {p1,p2, ...} Set of network paths p = {n1,n2, ...}
N̄ = {n̄1, n̄2, ...} Set of virtual nodes n̄
L̄ = {l̄1, l̄2, ...} Set of virtual links l̄ = l(n̄0, n̄0)
Ḡ = (N̄, L̄) Virtual network graph
Nd = {nd

1,n
d
2, ...} Set of demanded nodes nd

Ld = {l̄ d
1 , l̄

d
2 , ...} Set of demanded virtual links ld

Gd = (Nd,Ld) Network graph demand
d(n,n0) Distance between two nodes
r(n) Range capability of node
n(x,y) Position of a node
deg(n) Degree of node n
weight(l) Weight of a link l
G = (N,L,W) Weighted network graph
G = (N,L,F) Filter network graph

xxii Notations

SFC Notations
F = { f1, f2, ...} Set of virtual network functions f
f j
i Function type i in service node j
fi,u Function fi instantiated at most u times
S = {s1,s2, ...} Set of service function chains s = { f1, f2, ...}
sd Service function chain demand

Resource Notations
CP Computation power capacity
M Memory capacity
T Storage capacity
E Energy capacity
D Delay capacity
BW Bandwidth capacity
Rn = {CPn,Mn,Tn,En} Node n resource capacity
Rl = {Dl,BWl} Link l resource capacity
Rd

n Node n resource capacity demand d
Rd

l Link l resource capacity demand d
Rf = {CPf ,Mf ,Tf ,E f } Function resource capacity
Rd

f Function resource capacity demand

Data and Flow Notations
p Data packet
ppld Data packet payload
phdr Data packet header
k Encryption key
K = {k1,k2, ...} Set of encryption keys
c Cipher packet
Ek Encryption function where ES

k the symmetric and EA
k

the asymmetric
Dk Decryption function where DS

k the symmetric and DA
k

the asymmetric
f where fa is the ACL and fo the Openflow Rule
F = {f1,f2, ...} Set of data flow rules

Chapter 1

Introduction

1.1 Overview

In an interconnected cyber-physical world, people, devices and infrastructures interact,
establishing a smart environment in which the exchange of data and decisions is continuous.
With the anticipated exponential growth of connected devices, future networks require open
architectures, facilitated by standards and a strong ecosystem. Such devices need a simple
interface to the connected network to enable the kind of communication service characterised
with the required security and dependability guarantees. In response, the network should
grant the network resources and program the intermediate networking devices based on
device profile and privileges. A similar requirement comes also from business applications
where application itself asks for particular network end-to-end guarantees based on users and
tenants requests.

The fifth generation of networking (5G) aims to provide the next generation of mobile
networks to fulfill the increasing demand in the business contexts of 2020 and beyond
including service management and orchestration [1, 2]. Software Defined Networking (SDN)
and Network Function Virtualisation (NFV), important parts of 5G networking [3], provide
promising combination leading to programmable connectivity, rapid service provisioning
and service chaining and can thus help to decrease the capital and operational expenditure
costs (CAPEX/OPEX) in the control network infrastructure. Especially, with the fast growth
of SDN together with NFV and their integration with existing network architectures, the
design of networks enters in a new era. SDN and NFV in the Industry 4.0 arrive as new
concepts to promote the computerisation of the manufacturing part of the network. Industry
4.0 [4] is the current trend for data exchange and automation in manufacturing technologies
that can help in communicating essential technologies such as the Internet of Things (IoT),
communication machine-to-machine (M2M) and Cyber-Physical Systems (CPS) [5], cloud

2 Introduction

computing and cognitive computing. The evolution of the industry can be found in Figure
1.1. Furthermore, by appropriately leveraging the flexibility of SDN/NFV-enabled networks
in the context of the adopted security mechanisms, industrial infrastructures can not only
match but also improve their security posture compared to the existing legacy networking
environments [6]. However, industrial networks typically come with strict performance,
security, and reliability requirements [7]. Nevertheless, SDN and NFV expand the attack
surface of the communication infrastructure, necessitating the introduction of additional
security mechanisms.

Fig. 1.1 Evolution of Industry

The key concept of SDN is the decoupling of control and packet forwarding functionality
of the network. In legacy networks, both data and control functions are performed by the
forwarding devices of the network. In SDN, the separation has two specific functionality
planes: the control plane and the data plane. The separation of these two planes in SDNs has
two significant advantages. The first advantage includes the reduction of the complexity in
the configuration and alteration of the control functions of the network. This can be done
since the forwarding devices of the network, which tend to have proprietary implementations,
are no longer responsible for executing a set of functions. The second advantage enables the

1.1 Overview 3

implementation of more consistent control policies through fewer and uniformly accessible
controllers.

In traditional networks, administrators manually control the application access and config-
ure the network accordingly. This process demands a lot of engineering and operations effort.
In an SDN environment, the access of the applications to network resources is simplified
through the enabled network programmability. SDN has been envisioned as a promising
technology to reduce complexity and increase the flexibility of network configuration and
management. It allows network programmability, allowing network control to be decoupled
from the forwarding plane and the forwarding plane to be directly programmable by the
control plane. In SDN networks, the control plane, handling management operations, is logi-
cally centralised and physically decoupled from data plane, responsible for data forwarding
operations, thus enabling high network configurability and programmability. The decoupling
of the control plane from data plane provides SDN deployments the ability to easily add new
powerful network set of functions or protocols. Although the control plane can be distributed
[8], its logical centralised architecture offers one of the most important advantages of it such
as the simplification of network configuration, operation and management. The required high
level network policies and functionalities (e.g. routing, traffic engineering, access control)
are translated to low level network commands. Based on this translation, the controller
can insert appropriate flow rules to the programmable switching elements. The described
network programmability is expected to alleviate the burden of the data onslaught from
Internet of Things (IoT) deployments. This can be done primarily via centralised Network
Resources Optimisation (NRO) and optimally exploiting the underutilised network resources
[9]. As presented in [10], an SDN controller is employed to decouple the control plane,
which runs on top of the Wireless Sensor Networks (WSN), from the data plane, which is
still implemented in the sensor nodes. This appears to play an very important role especially
in smart cities and on critical infrastructure and is considered to be one of the key elements
of the 21st century. More specifically, the main target of SDN is to drive the reconfiguration
of these capabilities through specifications embedded especially in critical infrastructures. In
this view, SDN becomes another component in the IoT implementation stack that, like other
components, can be dynamically configured.

According to the Open Networking Foundation (ONF) [11], the SDN architecture consists
of different layers: the infrastructure layer, the control layer and the application layer
including also the respective intermediate interfaces, as can be seen in the Figure 1.2.

• The Infrastructure Layer, also referred as data plane, is responsible for the data
forwarding functionality of the network. The functionality of this plane is guaranteed
through a set of physical network devices (network elements). This layer includes

4 Introduction

Client Industrial	infrastructure	(e.g.	PLC)Services

Application	Plane

Control	Plane

Data	Plane

M
an
ag
em

en
t

East/Westbound	Interface	(EWI)
Northbound	Interface	(NBI)

Southbound	Interface	(SBI)
Management	Interface	(MBI)

Fig. 1.2 SDN Architecture

SDN network deployments containing physical instances of the network such as the
switching devices, the communication medium etc. (wired or wireless).

• The Control Layer, also referred as control plane, is responsible for the control
functionality of the network. The functionality of this plane is realised through a set of
devices and controllers that are able to facilitate the creation and destruction of network
flows and paths. This plane includes both the hardware (e.g. controllers, interfaces) and
software used to realise SDN control (e.g. interfaces for the controller communication),
along with system configuration and control data. Different controllers are responsible
to control the SDN network over disjoint subsets of forwarding devices. The different
parts of the SDN can be handled by the controller through these forwarding devices.
The control layer is focused on the control functionality of the network containing
base network service functions such as topology/flow/connection manager and flow
statistics. An SDN controller is able to (i) proactively plan redundant paths for critical
services and (ii) react in real-time in case of emergency. There is a number of open
source and commercial SDN controllers such as OpenDaylight (ODL) [12], Open
Network Operating System (ONOS) [13], POS, NOS, Ryu, Floodlight, Onix, Brocade,
Juniper [14].

1.1 Overview 5

• The Application Plane is responsible for generic network management auditing, and
reporting functionalities (e.g., SDN management, monitoring and security). All the
applications that are used to implement network functionalities such as network virtu-
alisation, network monitoring, intrusion detection and flow balancing are realised on
this layer. Furthermore, the application layer includes SDN applications, SDN/network
management and security/dependability management.

There are different application program interfaces (APIs) which are used for the communica-
tion between the different layers of SDN architecture.

• The Southbound Interface (SBI) is used to connect the control layer with the infras-
tructure layer. The SBI is capable of supporting multiple protocols, e.g., OpenFlow
[15], BGP [16], PCEP [17] or NetCONF [18]. This interface enables the commu-
nication between these forwarding devices and the controllers of the network. The
OpenFlow standard, managed and promoted by the ONF, is one of the most pop-
ular SBI SDN standards. One of the main functionalities of the SBI is to support
(i) Initial discovery of device capabilities and physical interconnections, (ii) runtime
configuration and (iii) synchronous and asynchronous monitoring.

• The Northbound Interface (NBI) is available for the application layer to interact
with the control layer. The NBI is implemented by the controllers of the SDN and is
used to facilitate the communication between controllers and the network management
applications. Representative examples of such APIs are FML, Procera, Frenetic, Maple
and RESTful. In this direction, ODL and ONOS are the most prominent open source
SDN Controllers which expose open NBI APIs, to be used by SDN applications. In
addition, platform-oriented services and other extensions can also be inserted into the
controller platform for enhanced SDN functionality.

• The East/West Bound Interface (EWBI) is implemented by the different controllers
of the SDN and is used to facilitate communications between them. Representative
examples of such APIs are ALTO and Hyperflow [19, 20].

On the other hand, NFV’s main vision is to address networking open issues by utilising
standard IT virtualisation technology. Furthermore, it aims to transform traditional network
operations, as software can easily be moved to, or instantiated in, various locations (e.g. data
centres, network nodes, end-user premises) without the need to use new equipment. In this
manner, a large number of network services can be easily deployed on standard servers in
a virtualised manner leveraging a number of important business and operational benefits.

6 Introduction

In this direction, Open Platform for NFV (OPNFV1) is an open source project focusing
on accelerating the evolution of NFV. Moreover, OpenMANO2 proposes an open source
platform for NFV Management and Orchestration (MANO).
According to the European Telecommunications Standards Institute (ETSI)3 the NFV archi-
tecture consists of different components and layers as described below:

• Operations Support Systems and Business Support Systems (OSS/BSS) is respon-
sible for network management and service provision.

• Virtual Network Functions (VNF) can be run as software instances on top of an
abstracted infrastructure for a more dynamic and cost-effective network sharing. VNFs
deliver software-only entities (e.g. vRouter, Firewall, vHoneypot etc.) to be installed
and run, storage and switching platforms residing in the local control centre.

• NFV Infrastructure (NFVI) can provide the separation of hardware and software
components that build up the environment in which related VNFs are deployed, man-
aged and executed agnostically over hardware platform.

• NFV Orchestrator (NFVO) are responsible for on-boarding of new network services
(NS) and VNF packages, NS lifecycle management, global resource management,
validation and authorisation of NFVI resource requests.

• Virtualised Network Function Manager (VNFM) oversees lifecycle management of
VNF instances, coordination and adaptation role for configuration and event reporting
between NFVI and E/NMS.

• Virtualised Infrastructure Manager (VIM) controls and manages the NFVI com-
pute, storage and network resources and corresponding virtualisation. It contains
physical hardware resources (computing, storage and network) and the virtualisation
layer, all managed by the (candidate component e.g. OpenStack).

NFV technology applies to all layers of SDN infrastructure including control plane
functions as well as data plane packet processing and has the potential to revolutionise both
fixed and mobile network infrastructures. The fit of SDN layers in the NFV architecture can
provide a clear view on how both concepts may be highly complementary as described in
[21] and depicted in Figure 1.3. Although the location and the functionality of each layer of
SDN architecture may be placed in more than one location in NFV architecture, this can be

1https://www.opnfv.org
2https://github.com/nfvlabs/openmano
3http://www.etsi.org

1.2 Motivation and Research Challenges 7

Fig. 1.3 SDN Mapping in NFV architecture

valid due to the NFV different view of the virtualisation concept. Therefore, the integration
of network orchestration with NFV and SDN can allow network operators to deploy their
services automatically in the cloud environment. Moreover, NFV is mostly involved with
abstraction of service function aiming to bring flexibility and cost reduction. On the other
hand, SDN focuses with the networking abstraction promises to bring unified programmable
control and open interfaces. Before network orchestration, the same has been achieved via
lengthy and sometimes error prone manual processes. Therefore, from a functional point of
view (non-automated) orchestration has always been the part of service provider’s solutions.

1.2 Motivation and Research Challenges

Critical infrastructures such as wind parks, water and gas distribution networks, power
grids, etc. constitute complex infrastructures [6], which reliable, safe and secure operation
is of paramount importance for daily activities at both national and international level.
Military applications, factories and industries, bridges, medical and health and environmental
applications are some examples where security threats should be taken into consideration.
Global networks such as SDN and NFV together with the IoT create an enormous potential

8 Introduction

for new generations of applications. Synergies arising through the convergence of consumer,
business and industrial Internet, can create open networks to connect people, data, and
things. A series of innovations across the landscape have converged to make network
products, platforms and devices technically and economically feasible. However, despite
these advancements the realisation of the potential risks requires overcoming significant
business and technical hurdles. All the above risks should be considered during the design
of network architectures due to their increasing role in the implementation of IoT and SDN
involving integrated cyber and physical components and devices.

Today, organisations are targeted by cyber adversaries with a range of goals from political
activism and sabotage to intellectual-property theft and financial gain. In the era of advanced
cyber threats, including mobile threats, greater situational awareness is essential to detect
and mitigate sophisticated attacks effectively. Organisations need to obtain the latest data
on threats, relate it to real-time insights into their dynamic IT and business environments,
determine what is relevant, make risk decisions, and take defensive action. Intelligence
gathering and analysis have become essential of information security capabilities. However,
most organisations while extending their network infrastructure by exploiting the use of
SDN/NFV and/or moving towards IoT, have not been designed with this objective in mind.
Security and Dependability (S&D) on SDN/NFV-enabled networks are both critical issues
for public security and safety. Cyber-attacks on remote monitored and managed IoT add new
security and safety threats, and consequently energy and economic losses. Integrating IoT and
SDN can increase the efficiency of the network by responding to changes or events detected at
IoT application layer, with network reconfiguration. One of the challenges of future networks
is to develop SDN/NFV capabilities tailored to the IoT. Lately, SDN extensions have been
proposed to directly incorporate IoT devices in SDN networks. Applications running on top
of SDN architecture need to be resource and network-aware, in order to take full advantage
of underlying network programmability and to become more agile. Moreover, SDN requires
a careful investigation of new S&D capabilities and risks, which have not beeityn relevant in
legacy systems. The design and verification methods for developing secure and dependable
system networks is necessary and should be considered at the design level to guarantee
security and mitigate safety threats, on remote monitored and managed networks. However,
the design of such networks effectively encounters difficulties that stem from the highly
distributed and heterogeneous nature of SDN and the extent of intelligence, dependability
and security that they need to demonstrate during their operation.
In addition to the above, paradigms of SDN/NFV security techniques and in consideration of
the criticality of industrial networks, the following principles outline design considerations
towards a secure and dependable network implementation [22]:

1.2 Motivation and Research Challenges 9

• Dynamic device association will ensure network function continuity and minimise
downtime and data loss. Network elements should be able to dynamically associate
to a backup controller in case of compromisation or inaccessibility of the primary
controller.

• Replication is an essential function for achieving dependability of a system or an entire
infrastructure. Replicated multiple instances of the controller as well as application
replication will ensure failure tolerance and minimise downtime whether the threat is
an attack or a physical disaster.

• Self-healing mechanisms whether proactive or reactive in combination with proper
maintenance can provide diversity in the recovery process, thus enhanced protection
towards attacks by exploiting targeted vulnerabilities.

• Diversity of controller types (e.g. different operating systems, hardware) can improve
dependability as it is unlikely that a variety of software and hardware combinations
will have the same vulnerabilities.

SDN/NFV-enabled network infrastructures face a number of security, privacy and de-
pendability issues which need to be resolved in order to step forward into the interconnected
world and the Future Internet. These issues can be categorised as: i) Data Plane issues
(e.g. data forging in switching devices), ii) Control Plane issues (e.g. controllers/interfaces
exploitation) and iii) Application Plane issues (e.g. network monitoring, traffic engineering)
[23]. Furthermore, the discrepancy between technologies and the attempt to interconnect
them have brought new security challenges and gaps which need to be filled. By appropriately
leveraging the flexibility of SDN/NFV-enabled networks in the context of the adopted security
mechanisms, industrial infrastructures can not only match but also improve their security
posture compared to the existing, traditional networking environments [6]. Nevertheless,
the flexibility of SDN networks guarantees that they can also help provide better security
for industrial networks. Due to the controller’s global view of the network and the ability to
reprogram the data plane at real-time, SDN allows not only to revisit old security concepts
(e.g. firewalls) but introduce new techniques (e.g. steering suspicious traffic to Supervisory
Control and Data Acquisition (SCADA) Honeypots, adopting moving target defence and
other reactive techniques). The deployment of these enhanced security concepts is in line with
the enhanced protection requirements of critical infrastructures, given that the old paradigm
of perimeter defences and trusted internal networks is obsolete, as the attacks demonstrated
in [24]. Thus, enhanced security services should be a requirement, as evidenced by the

10 Introduction

North American Electric Reliability Corporation (NERC)4 Critical Infrastructure Protection
standards (CIP) (ie. CIP-007-6 [25]). This update dictates the required continuous network
monitoring and deployment of network defences to detect/block malicious activity within the
utilities’ perimeter. In typical network deployments, the end-to-end traffic of various appli-
cations typically must go through several network services (e.g. firewalls, load-balancers,
WAN accelerators). It can also be referred to as Service Functions (or L4-L7 Services, or
Network Functions, depending on the source/organisation) that are placed along its path.
This traditional networking concept and the associated service deployments have a number
of constraints and inefficiencies [26], such as:

• Topology constraints: network services are highly dependent on a specific network
topology, which is hard to update.

• Complex configuration and scaling-out: a consequence of topological dependen-
cies, especially when trying to ensure consistent ordering of service functions and/or
when symmetric traffic flows are needed this complexity also hinders scaling out the
infrastructure.

• Constrained high availability: as alternative and/or redundant service functions must
typically be placed on the same network location as the primary one.

• Inconsistent or inelastic service chains: network administrators have no consistent
way to impose and verify the ordering of individual service functions, rather than using
strict topologies. On the other hand, these topology constraints necessitate that traffic
goes through a rigid set of services functions. This often imposes unnecessary capacity
and latency costs, while changes to this service chain can introduce a significant
administrative burden.

• Coarse policy enforcement: classification capabilities and the associated policy en-
forcements mechanisms are of coarse nature, e.g. using topology information.

• Coarse traffic selection criteria: as all traffic in a particular network segment typically
has to traverse all the service functions along its path.

As network services become decoupled from the underlying hardware, enterprises have
the opportunity to create software virtual networks, thus simplifying deployment and man-
agement; a direct impact on CAPEX and OPEX. NFV comes with the promise of a fully
virtualised network security solution that does not suffer from feature deprecation when

4https://www.nerc.com

1.2 Motivation and Research Challenges 11

compared to hardware-based solutions. The above are exacerbated nowadays with the ubiq-
uitous use of virtual platforms, which necessitates the dynamicity and flexibility of service
environments. This is even more pronounced in service provider and/or cloud environments,
with infrastructures spanning different domains and serving numerous tenants, each with
their own requirements. The tenants may share a subset of the providers’ service functions,
and may require dynamic changes to traffic and service function routing, to follow updates to
their policies (e.g. security) or Service Level Agreements. Security can be achieved using
the same centralised management platforms used today on physical solutions and promises
to offer enhanced visibility into applications, users and content. A further improvement
over hardware-based networks is that security can now be performed, in a simplified and
transparent manner, on the network device (VNF) itself, thus providing the ability to protect
against a wider range of threats. An effective NFV security program has to secure users,
clients, applications, data, servers and the network itself. As with other elements of an IT
Infrastructure, it is useful to approach NFV security from a functional perspective rather
than through the devices involved. This means starting with a list of functions that must be
applied holistically rather than attempting to secure each entity separately.
Based on the above, the most critical identified challenges that this thesis aims to investigate
and address are detailed below:

• Connectivity and scalability is required due to the fast-growing number of intercon-
nected users, smart objects and applications. At the network layer, the vastly increased
demands require highly efficient programmable connectivity. Scalability in the network
infrastructure level requires seamless discovery and bootstrapping of highly efficient
orchestration, event processing and analytics and platform integration.

• End-to-end security and privacy remains a particularly challenging problem, due
to the difficulty of: (a) analysing vulnerabilities in the complex end-to-end composi-
tions of heterogeneous components, (b) selecting appropriate controls (e.g., different
schemes for ID and key management, different encryption mechanisms) and (c) pre-
serving end-to-end security and privacy under dynamic changes in applications and
security incidents.

• Reliability and fault tolerance require the design of reliable network architectures to
guarantee also end-to-end availability in order to avoid potential attacks or failures and
enable fault tolerance reactive mechanisms at runtime. Furthermore, the provision of
reliable and fault tolerance networking is required integrating the current advancements
and vulnerabilities of SDN and NFV technologies.

12 Introduction

• Service provisioning and chaining is one of the main challenges (objectives) of
Industry 4.0 aim to reduce the time from several days to several minutes. This also
implies the potential to reduce CAPEX and OPEX, especially for short lived service.
Moreover, security functions can be chained in order to reduce the impact of the security
functions on the network’s performance and to alleviate the burden of deploying and
managing the security services themselves.

1.3 Research Aims and Objectives

All the above challenges give rise to significant complexities, and relate to the design,
implementation and deployment stack of network infrastructures. To address them, the
overall aim of this thesis is:

The purpose of this thesis is to develop a pattern framework to enable and guarantee
connectivity, S&D behaviour and service provisioning in SDN/NFV-enabled network
infrastructures. The pattern framework supports cross-layer intelligent dynamic adap-
tation. The above will be validated, using diverse usage scenarios to design network
topologies, guarantee S&D network properties and provide security network provision-
ing leveraging service function chaining in SDN/NFV-enabled network infrastructures.

The purpose of the work is to overpass the above open challenges by the use of design
patterns applied in a pattern framework. More specifically, to achieve the overall aim of this
thesis, the following key objectives were pursued:

• Objective 1: Review the literature on the most effective security and dependability
challenges, threats and mitigation mechanisms to identify gaps and controls relevant to
the overall research aim of the thesis.

• Objective 2: Definition of a pattern specification and pattern language for expressing
the pattern instances.

• Objective 3: Development of a number of pattern instances in order to design network
topologies, guarantee security and dependability properties and service provisioning
and chaining.

• Objective 4: Deployment of a pattern framework able to enforce the developed patterns
providing proactive and reactive S&D properties in SDN/NFV-enabled architectures.

• Objective 5: Evaluation of the proposed pattern framework, through different use
cases and scenarios.

1.4 Research Assumption and Hypothesis 13

1.4 Research Assumption and Hypothesis

Regarding the proposed approach followed by this research, the following assumptions are
made as starting points and directions of this thesis:

• The proposed design of large-scale network topologies in this research does not take in
account some additional parameters such as cost, energy consumptions in constrained
environments that are considered in deployment of actual topologies.

• The communication protocols, the semantic interoperability and the exposed interfaces
between the connected network component are assumed to be compatible during the
design and evaluation phase.

• The satisfaction of S&D properties in the design of SDN/NFV-enabled networks
through the developed patterns requires the existence of a deployed network containing
programmable switches controlled by an SDN controller.

• The focus of this research is to propose a way on how networks can be designed and
managed through a model-driven approach based on the developed pattern schema.
Therefore, the provision of additional more advanced patterns can offer further designs
and deployments ie. in industrial environments but the initial assumption of the
importance of the pattern schema will remain the same.

• Finally, the involved components and parties for the security assurance guarantees
are assumed to be trusted, fully complied with the required security and trustworthy
policies.

1.5 Research Contributions

The main contributions of this thesis contain the specification of a pattern schema for the
definition of pattern instances. In addition, the development of the pattern framework
together with the deployment of pattern-based reactive security leveraging service function
chaining are also presented in this research. Moreover, a network simulator is implemented
to monitor and management of the deployed SDN/NFV-enabled networks. Finally, the last
contribution includes the evaluation of the proposed framework and developed mechanisms
as a complete solution to enforce the different patterns on different use cases and scenarios.
All the previously identified developed contributions are also described in the following
subsections.

14 Introduction

1.5.1 Pattern Schema

The first contribution of this thesis is the specification of the pattern schema. The pattern
schema includes the pattern specification and the pattern language.

• The pattern specification defines a template able to describe the patterns. These
patterns can be used as a model driven reusable solutions to general problems, to
design, operate and verify network infrastructures regarding the functional properties
satisfied, such as connectivity and scalability, or the non-functional ones, such as
security and dependability. The specification contains the basic parts of the pattern
such as the name, the problem, the solution and the contribution with respect to the
state of the art. The main contribution of the approach is that design patterns can
encode designs of SDN/NFV-enabled network topologies, which are proven to satisfy
S&D properties and enable the semantic interoperability.

• The definition of a generic pattern language is proposed to encode patterns through
rule-based reasoning. By the use of this pattern language, patterns are encoded as
design solutions that can guarantee network properties for higher layers in the imple-
mentation stack of SDN/NFV-enabled networks. The semantics of the pattern language
provide interaction with the SDN controller and the NFV MANO for handling and
instantiating physical and virtual network component such as nodes, links and service
functions. Specific semantics have been also defined to enable the insertion, modifica-
tion and deletion of OpenFlow (OF) rules through the controller to the programmable
switches of SDN/NFV-enabled infrastructures.

1.5.2 Pattern Instances

The second contribution of this work includes the definition of different design patterns able
to support network designs, verification, management, monitoring and service provision in
SDN/NFV-enabled network architectures.

• Topology Patterns can design network topologies to support connectivity, scalability
and coverage based on different network topology patterns.

• Path Finding Pattern can offer end-to-end connectivity verification and guarantees
in network topologies.

• Dependability Patterns can assure end-to-end dependable networks enabling reliabil-
ity, fault detection, restoration and tolerance.

1.5 Research Contributions 15

• Security Patterns can provide link encryption and end-to-end secure transmissions.

• Service Function Chaining Patterns can provide security provision for reactive
security based on the defined Service Function Chaining (SFC) patterns.

1.5.3 Pattern Framework

The third contribution of this work is the development of a pattern framework that can be used
by designers or administrators of SDN/NFV-enabled networks to (a) create designs of their
systems to satisfy network properties, (b) verify if existing designs systems satisfy required
properties and (c) provide reactive security monitor and management of SDN/NFV-enabled
networks at runtime. The pattern framework consists of two parts: the pattern engine for the
design and verification of network infrastructures and the pattern user interface for enabling
the insertion of implemented patterns in the pattern engine as described below.

• Pattern Engine is implemented to handle design patterns and to interact with network
components of SDN/NFV-enabled infrastructure. The pattern engine is based on the
Drools Business Rules Management System [27] that enables the insertion, modifica-
tion, execution and deletion of design patterns expressed as pattern rules. Moreover,
the respective interfaces are used to enable also the interaction with core functionalities
of the controller and the SDN/NFV-enabled network architectures. Pattern engine is
distributed in two layers, i) in the application layer for designing network physical
and virtual topologies and ii) in the SDN controller to manage and monitor network
configurations.

• Pattern Graphical Use Interface (GUI) is developed to provide suitable interfaces to
insert defined patterns at design and runtime to monitor and manage network together
with pattern handling.

1.5.4 Reactive Security Leveraging SFC

The fourth contribution of this work is the development of a reactive security solution to
enhance SFC, enabling also the interaction between the developed pattern framework and the
respective SFC patterns. In addition, a number of different mechanisms such as IDS/DPI and
honeypot are deployed in order to assure end-to-end security. The presented solution allows
the continuous monitoring of the SDN/NFV-enabled networks, with provisions to reduce
CAPEX and OPEX based on the traffic classification and forwarding based on the different
identified type of traffics. Finally, the reactive security solution provides the capability for
interaction with NFV MANO infrastructures enabling the design of virtualised environments.

16 Introduction

1.5.5 Network Simulator

The fifth contribution of this work, includes the development of a network simulator to
monitor and manage deployed SDN/NFV-enabled network infrastructures. The need for
the development of such simulator came after the lack of a simulator able to cover all the
involved network elements of our infrastructure. After the development of this simulator,
it is possible to preview network topologies at runtime as designed by the related patterns
and evaluated through the pattern framework and the reactive security. Finally, the simulator
is able to depict not only physical infrastructures but also virtual ones including also the
presentation of service function chains.

1.5.6 Evaluation of the Pattern Framework

Finally, the last contribution of this work is the deployment and experimental evaluation
of the proposed scheme covering different aspects such as performance, usability, level of
assurance in SDN/NFV-enabled designs developed and emulated on different use cases and
usage scenarios. The first use case focuses on the design of network topologies based on
different topology patterns, the second use case is involved with the design of S&D network
designs and the third use case includes the evaluation of the reactive security built upon the
pattern framework leveraging SFC in an industrial environment.

1.6 Publications

The contributions of this thesis have been also submitted and published to different journal,
technical reports and conference papers. Bellow all published papers are presented.

Journals

• Nikolaos E. Petroulakis, Konstantinos Fysarakis, Ioannis Askoxylakis and George
Spanoudakis, Reactive security for SDN/NFV-enabled industrial networks leveraging
service function chaining in Transactions on Network and Service Management, Wiley
July 2018.
In this work, we present a Reactive Security Framework for next generation 5G (and
SDN/NFV in specific) enabled industrial networks leveraged by SFC. More specifically,
considering the energy production critical infrastructures, the framework features
enhanced security functions, such as SCADA honeypots, are modelled based upon
an operational wind park and ready to be deployed in one. The presented framework
allows the continuous monitoring of the wind park industrial network, with provisions

1.6 Publications 17

to reduce the impact of the security functions on the network’s performance and to
alleviate the burden of deploying and managing the security services themselves.

• Nikolaos E. Petroulakis, George Spanoudakis, Ioannis G. Askoxylakis, Patterns for
the design of secure and dependable software defined networks – Elsevier Computer
Networks, November 2016.
In this paper, we present a model driven approach to the design and verification of
secure and dependable SDN networks that is based on S&D network design patterns
(referred to as S&D patterns in the rest of this paper). These patterns can be used
to design and/or verify SDN network infrastructures and identify suitable paths and
nodes that can guarantee S&D properties. S&D patterns can be used to design SDN
infrastructures, and determine also the type, location and connectivity of end nodes with
forwarding devices. At the control layer, S&D patterns can ensure secure connectivity
between the controllers and the programmable switches.

• Nikolaos E. Petroulakis, Elias Z. Tragos, Alexandros Fragkiadakis, George Spanouda-
kis, A Lightweight Framework for Secure Life-logging in Smart Environments, Informa-
tion Security Technical Report, Elsevier, Volume 17, Issue 3, Pages 58–70, February
2013.
The purpose of this paper is to present in details the current topics of life-logging
in smart environments, while describing interconnection issues, security threats and
suggesting a lightweight framework for ensuring security, privacy and trustworthy
life-logging. In order to investigate the efficiency of the lightweight framework and the
impact of the security attacks on energy consumption, an experimental test-bed was
developed including two interconnected users and one smart attacker, who attempts
to intercept transmitted messages or interfere with the communication link. Several
mitigation factors, such as power control, channel assignment and AES-128 encryption
were applied for secure life-logging. Finally, research into the degradation of the
consumed energy regarding the described intrusions is presented.

Technical Reports

• Adrian Belmonte Martin (ENISA), Louis Marinos (ENISA), Evangelos Rekleitis
(ENISA), George Spanoudakis (City University London) and Nikolaos Petroulakis
(City University London) Threat Landscape and Good Practice Guide for Software
Defined Networks/5G, European Union Agency For Network And Information Security,
December 2015.
In this report, we review threats and potential compromises related to the security of

18 Introduction

SDN/5G networks. More specifically, this report contains a review of the emerging
threat landscape of 5G networks with particular focus on Software Defined Networking.
It also considers security of NFV and radio network access. To provide a compre-
hensive account of the emerging threat SDN/5G landscape, this report has identified
related network assets and the security threats, challenges and risks arising for these
assets. Driven by the identified threats and risks, this report has also reviewed and
identified existing security mechanisms and good practices for SDN/5G/NFV, and
based on these it has analysed gaps and provided technical, policy and organisational
recommendations for proactively enhancing the security of SDN/5G.

Conferences

• Nikolaos E. Petroulakis, George Spanoudakis, Ioannis G. Askoxylakis, Fault Toler-
ance using an SDN Pattern Framework in Globecom 2017.
In this paper, we propose a pattern framework built in an SDN controller able to import
design patterns in a rule-based language in order to provide fault tolerance in SDN
networks. We evaluate the framework for network fault tolerance as it appears to be a
critical topic for research and we propose suitable patterns able to guarantee network
connectivity, fault detection, fault restoration and fault tolerance. To evaluate the SDN
Pattern Framework, we import our patterns to handle network component as retrieved
by the inventory of the controller. Patterns are able to install flows and decrease the
failover time in case of faults and network failures providing fault tolerance in SDN
network architecture.

• Konstantinos Fysarakis, Nikolaos E. Petroulakis, Andreas Roos, Khawar Abbasi,
Petra Vizarreta, George Petropoulos, Ermin Sakic, George Spanoudakis, and Ioannis
Askoxylakis, A Reactive Security Framework for Operational Wind Parks Using
Service Function Chaining, ISCC 2017.
This work highlights the benefit of leveraging the flexibility of SDN/NFV-enabled
networks to deploy enhanced, reactive security mechanisms for the protection of the
industrial network, via the use of Service Function Chaining. Moreover, a proof of
concept implementation of the reactive security framework for an industrial-grade wind
park network is presented. The framework is equipped with SDN and Supervisory
Control and Data Acquisition (SCADA) honeypots, modelled on (and deployable
to) an actual, operating wind park, allowing continuous monitoring of the industrial
network and detailed analysis of potential attacks, thus isolating attackers and enabling
the assessment of their level of sophistication.

1.6 Publications 19

• Nikolaos E. Petroulakis, George Spanoudakis, Ioannis G. Askoxylakis, Andreas
Miaoudakis and Apostolos Traganitis, A Pattern-Based Approach for Designing Reli-
able Cyber-Physical Systems, Globecom 2015.
The purpose of this work is the development of a pattern-based approach for the
design of CPS. The main contribution of the approach is that encodes designs of CPS,
which are proven to satisfy S&D properties, as CPS design patterns. The first set of
S&D patterns includes the Reliability Component Composition (RCC) Patterns for
designing reliable CPS. RCC patterns are encoded in Drools, which is a rule-based
reasoning system. To evaluate our approach, we use RCC patterns as a methodology
for designing a reliable wireless sensor network attached to a physical architecture to
send monitored data to a central controller through relay nodes and paths.

• Nikolaos E. Petroulakis, Ioannis. G. Askoxylakis, Apostolos Traganitis, George
Spanoudakis, A Privacy-Level Model for User Centric Cyber Physical Systems, In
the 1st International Conference on Human Aspects of Information Security, Privacy
and Trust (affiliated with the 15th International Conference on Human-Computer
Interaction), Las Vegas, USA, July 2013.
This work presents an overview and analysis of the most effective attacks, privacy
challenges and mitigation techniques for preserving the privacy of users and their
interconnected devices. In order to preserve privacy, a privacy-level model is proposed
in which users have the capability of assigning different privacy levels based on
the variety and severity of privacy challenges and devices’ capabilities. Finally, we
evaluate the performance of specific CPSs at different privacy-levels in terms of time
and consumed energy in an experimental test-bed that we have developed.

Other Related Publications of Candidate

• Petra Vizarreta, Amaury van Bemten, Ermin Sakic, Khawar Abbasi, Khawar, Nikolaos
E. Petroulakis, and Wolfgang Kellerer and Carmen Mas Machuca, Incentives for
a Softwarization of Wind Park Communication Networks", IEEE Communications
Magazine, 2019. Othonas Soultatos, George Spanoudakis, Konstantinos Fysarakis,
Ioannis G. Askoxylakis, George Alexandris, Andreas I. Miaoudakis, Nikolaos E.
Petroulakis: Towards a Security, Privacy, Dependability, Interoperability Framework
for the Internet of Things. CAMAD 2018:

• E. Sakic , V. Kulkarni, V. Theodorou, A. Matsiuk, S. Kuenzer, N. E. Petroulakis
and K. Fysarakis, VirtuWind–An SDN-and NFV-Based Architecture for Softwarized
Industrial Networks. In International Conference on Measurement, Modelling and
Evaluation of Computing Systems, Munich, February 2018.

20 Introduction

• Ioanins Askoxylakis, Nikolaos Petroulakis, Vivek Kulkarni, Florian Zieger, Vir-
tuWind–Security in a Virtual and Programmable Industrial Network Prototype De-
ployed in an operational Wind ParkI Askoxylakis - ERCIM News, 2016.

• Nikolaos E. Petroulakis, Toktam Mahmoodi, Vivek Kulkarni, Petra Vizarreta, An-
dreas Roos, Khawar Abbasi, Xavier Vilajosana, Spiros Spirou, Anton Matsiuk, Ermin
Sakic, Yannis Askoxylakis, VirtuWind: Virtual and Programmable Industrial Network
Prototype Deployed in Operational Wind Park, EUCNC 2016.

• Alexandros G Fragkiadakis, Vasilios A Siris, Nikolaos E. Petroulakis, and Apostolos
Traganitis. Detection of Jamming Attacks, Local versus Collaborative Detection. in
IEEE Wireless Communications and Mobile Computing, 15 (2), 276-294, 2015.

• Ioannis G Askoxylakis, Antonis Makrogiannakis, Andreas Miaoudakis, Stefanos
Papadakis, Nikolaos E. Petroulakis, Manolis Surligas, Apostolos Traganitis, Nikolaos
Vervelakis, 2014 IEEE 19th International Workshop on Computer Aided Modeling
and Design of Communication Links and Networks (CAMAD), Athens, Greece, 1-3
December 2014,

• Andreas I. Miaoudakis, Nikolaos E. Petroulakis, Diomidis Kastanis, Ioannis G.
Askoxylakis, "Communications in Emergency and Crisis Situations", in the 2nd In-
ternational Conference on Distributed, Ambient and Pervasive Interactions, (affiliated
with the 16th International Conference on Human-Computer Interaction), Heraklion,
Greece, July, 2014.

• Panos Chatziadam, Ioannis G. Askoxylakis, Nikolaos E. Petroulakis, Alexandros G
Fragkiadakis, "Early Warning Intrusion Detection System", in the 7th International
Conference on Trust and Trustworthy Computing (TRUST), Heraklion, Greece, June
2014.

1.7 Outline of Thesis

The rest of this thesis is organised in 7 chapters as follows:

• Chapter 1 includes an introduction to the topic, motivation, objectives, main contribu-
tions and publications.

• Chapter 2 provides background and literature review including also an overview
analysis of the most effective security challenges, fault detection and and mitigation
techniques for preserving security and dependability of network infrastructures.

1.7 Outline of Thesis 21

• Chapter 3 defines the conceptual model of the pattern schema and the pattern language.

• Chapter 4 presents different design pattern instances to design and verify network
topologies that guarantee security, dependability and service provisioning.

• Chapter 5 describes the implementation of an architecture, including the development
of the pattern framework, the reactive security and the network simulator.

• Chapter 6 provides the evaluation of the proposed framework to design and verify
SDN/NFV-enabled networks on different use cases.

• Chapter 7 presents concluding remarks of this research, limitations and future objec-
tives.

Chapter 2

Background and Literature Review

2.1 Overview

SDN/NFV-enabled networks face a number of security, privacy and dependability issues
which need to be resolved in order to step forward into the interconnected world and the Future
Internet. Furthermore, the discrepancy between technologies and the attempt to interconnect
them have brought new security challenges and gaps which need to be filled. In this chapter,
an overview analysis of security and dependability attributes is presented. In addition, the
most effective attacks, privacy challenges and mitigation techniques for preserving security,
privacy and dependability in SDN/NFV-enabled networks are analysed. Security and privacy
threats are occurred from passive attacks, such as eavesdropping and traffic analysis or from
active attacks, such as impersonation and jamming. Suitable countermeasures which can be
applied in generic and SDN/NFV-enabled networks independently of devices’ capabilities
and operating systems, are described to protect data transmission, identity, location and
routing paths.

2.2 Security and Dependability Attributes

The general concept of CIA triad (Confidentiality, Integrity and Availability) supported by
[28] can be applied successfully for the secure data transmissions. In addition, dependability
is the ability of a system to deliver its intended level of service to its users [29]. The main
attributes which constitute dependability are reliability, availability and fault tolerance. More
specifically, the core security and dependability attributes can be defined as follows:

• Confidentiality focuses on keeping information private and ensuring that only the
right people will have access to it [30]. Confidentiality is ensured when information

24 Background and Literature Review

does not disclose to not authorised agents. This means that data should be not revealed
not only from the component which reacts as the source or destination, but also through
all the intermediate components. In addition, confidentiality is also related to privacy.
A passive listener can easily identify traffic without being identified. The widespread
use of network devices on uncontrolled environment endangers the possibility of
disclosing private data that should not be revealed. For instance, a wireless installed
camera for recording possible intruders, connected to an insecure home network could
be a susceptible threat to disclose the private actions of a family. Privacy is a major
concept in insecure smart environments in which a variety of data from users and
devices are exchanged and collected. The mass production and transfer of sensitive
data exposes the danger of privacy violation.

• Integrity guarantees the degrees of complete, consistent and accurate data [30]. In-
tegrity confirms also that data has not been modified. Impersonation attacks involve the
interaction of an adversary with the human user. A malicious node can easily intercept
transmitted information or impersonate a receiver. The adversary acts either as a man
in the middle or as a masquerade, pretending to be a legal node in the network to apply
spoofing attacks. These kinds of attacks not only appear to be critical for a user’s
privacy but also the consequences of such attacks can be extremely dangerous.

• Availability guarantees that information is available when it is needed [30]. The lack
of channel availability has a severe influence on the security of network. Network
availability is the ability of a system to be operational and accessible when required
for use.

In addition to the CIA concept, other properties such as reliability, fault tolerance and
authentication can be added in the list of S&D properties.

• Reliability is the ability of a system to perform a required function under stated
conditions, for a specified period of time [30]. It is an attribute of system dependability
and it is also correlated with availability [29]. For hardware components, the property
is usually provided by the manufacturer. This is calculated by the complexity and the
age of the component. Moreover, reliability in networks is the probability of successful
packet reception [31]. Different network topologies such as star, hierarchical/tree or
mesh networks affect the reliability of the network and of the system respectively.
Other factors which affect the reliability of a link are the transmission range of the
signal strength, noise, fading effects, interference, modulation method, and frequency.
Especially in wireless networks, the reliability of links can be classified into two

2.3 Security and Dependability Threats 25

main categories the deterministic models and the probabilistic ones. The exponential
increase in reliability can lead to a net increase in the energy efficiency.

• Fault Tolerance is the ability of a system or component to continue normal operation
despite the presence of hardware or software faults [30]. Network fault tolerance
appears to be a critical topic for research [32]. Fault detection, fault restoration and
fault tolerance can be included also in the network characteristics related also to
network availability.

• Authentication is the process of determining whether someone or something is, in fact,
who or what it is declared to be [33]. The main scope of authentication is the provision
of personal identification including verification of user knowledge, ownership and user
characteristics.

Apart from the non-functional S&D properties, there are some functional properties also
related to the QoS and the S&D properties that affect the design of network topologies such
as connectivity, scalability and coverage as described below:

• Connectivity is the property that given a network, a path between end nodes can be
determined. Moreover, a network is connected if every pair of nodes are connected
through a path.

• Scalability is the ability of a network to change in size or scale. This includes the
capability of a seamless discovery and bootstrapping of additional components as
well as highly efficient orchestration, event processing and analytics and platform
integration.

• Coverage on network architectures is the property describing the geographic area
where the nodes can communicate and the capability of service provision and assurance.

Finally, Figure 2.1 depicts the correlation between non-functional and functional S&D
attributes.

2.3 Security and Dependability Threats

S&D threats can be classified in generic ones, radio access or SDN/NFV related ones as
described in the next subsections.

26 Background and Literature Review

Fig. 2.1 Relation Between non-Functional and Functional Attributes

2.3.1 Generic Threats

Security and privacy attacks may include physical and cyber tampering or compromising
devices and can be classified to passive and active ones. Passive are the attacks where
an adversary monitors traffic without interacting with the victim or modifying transmitted
data. The most common passive attacks are eavesdropping and traffic analysis. An active
attack occurs when an adversary attempts to modify exchanged messages, destroy the
communication or replay transmitted data. The most severe active attacks are impersonation
and denial of service.

2.3.1.1 Confidentiality Threats

The most confidentiality threats include the eavesdropping and the traffic analysis as
described below:

• Eavesdropping occurs when an adversary stealing personal data, monitors and listens
to the exchanged data with the intention to extract private data. That includes traffic
sniffing, which involves tapping data flows within a network enabled by weak or no
encryption in the relevant interface. Privacy seems to be quite challenging because of
the inability of devices to anticipate and sense possible eavesdroppers. The disclosure
of sensitive information such as identities and message payload, are severe privacy
violations from eavesdropping. For example, the disclosure of sensed medical data
such as patient’s personal data, blood pressure, vital signs or sugar level, transmitted to
a remote hospital or to a doctor’s office, may reveal the patient’s identity and condition.

• Traffic analysis attacks can be applied by adversaries who do not have the ability
to decrypt data payload. However, they can obtain private information such as data
sources, the location of devices and data routes. This can be done by the use of
sniffers and packet analysers on the wireless data transmission for tracking the traffic

2.3 Security and Dependability Threats 27

flow information hop-by-hop [34]. The disclosure of sensitive information about the
location, track and identity of a user may cause significant problems for him and his
interconnected network and users. The problem of the panda and the hunter describes
the situation in which scientists attempt to locate the position of a panda but they have
to hide its location from panda hunters as well [35]. Revealing the topology, nature and
routing paths of a transmission could be used by adversaries to track, destroy interrupt
and invade the privacy of a network. Moreover, the danger of a compromised relay
node is a result of location disclosure.

• Impersonation Masquerades/Identity spoofing identity spoofing retrieves and mas-
querades a legitimate entity of software component or human agents. In the case of
SDN, an attacker can impersonate a legitimate controller to instantiate network flows,
divert traffic etc.

• Tampering defines the altering of packet content through the network by an attacker.

2.3.1.2 Availability Threats

The most common availability threats occur by the Denial of Service attacks or through
other physical network threats as described below:

• Denial of Service(DoS) results in lack of network availability. DoS can include
any kind of attack which attempts to make the network resources unavailable but also
causing reduction or disruption of a service. An active adversary may apply DoS attacks
by destroying or modifying the communication channel. In particularly for SDN, DoS
threats may occur to all layers of the SDN reference architecture. Flood bandwidth or
resources of network elements can be caused by DoS attackers at the data plane. This
threat in many occasions originates by multiple compromised systems, such as botnets,
which are flooding the targeted network with traffic. Congesting controllers through a
large number of forged flow arrivals, causing network performance degradation and
interruption may occur in the control plane. Traditional defences are ineffective in the
cases of SDN control plane DoS attacks because DoS defences’ approaches focusing
on protecting data plane. Finally, at the application layer, network management
applications can be severely affected severely by DoS.

• Physical Network Threats are usually located in uncontrolled environments where
physical attacks might occur [34]. Physical threats include attacks related to destroying,
disabling, stealing or altering physical and cyber infrastructures. Damages and losses
are threats related to intentional or unintentional destruction of network infrastructures.

28 Background and Literature Review

Failures and malfunctions are threats which includes failures or insufficient functioning
of network infrastructures.

2.3.2 Radio Access Threats

Since network elements, such as access points and sensors, are usually equipped with one
wireless communication radio, security threats are mostly compared to wireless networks
threats. The main difference between wireless and wired networks is that suitable security
mechanisms are absent because of the lack of respective architectures and resources. In SDN,
there are some additional threats due to arising 5G technology [36, 37]; in particular the use
of wireless communication in 5G. Such threats, as described in [38] can be distinguished
into:

• User emulation: The wireless medium can be exploited by adversaries that mimic
incumbent signals. Nodes launching such attacks can be (i) greedy mobile nodes that
by transmitting fake incumbent signals force all other users to vacate a specific band
(spectrum hole) in order to acquire its exclusive use and (ii) malicious mobile nodes
(adversaries) that mimic incumbent signals in order to cause DoS attacks. Malicious
nodes can cooperate and transmit fake incumbent signals in more than one band,
thus causing extensive DoS attacks making a radio hop from band to band, severely
disrupting its operation.

• Spectrum sensing data falsification: The received signal power may become lower
compared to path loss models due to transmission features such as signal fading, multi-
path propagation, etc. [39]. This may lead to harmful interference due to undetected
primary signals.

• Medium Access Control (MAC) layer attack: This category of attacks includes:

– MAC spoofing, where attackers send spurious messages aiming to disrupt the
operation of network(e.g. channel negotiation),

– Congestion attacks, where attackers flood common control channel in order to
cause an extended DoS attack.

• Jamming attacks: are very serious security threats in wireless transmission in secure
or insecure communication channel due to collisions and channel occupations [40, 41].
The preservation of security is disrupted when an attacker applies collisions or jamming
attacks creating electromagnetic interference. An adversary, causing interference in a
channel in which users interchange sensitive or critical messages, may cause reportable

2.3 Security and Dependability Threats 29

privacy violations, such as data destruction or infinite retransmission of messages,
exhausting the batteries of resource constrained devices. Furthermore, the delayed
transmission of critical information, such as private medical data of a patient to the
doctor’s database, means the patient’s safety might be endangered.

2.3.3 SDN/NFV Threats

To secure SDN and NFV network deployments the related threats have to be considered.

2.3.3.1 Software Defined Networking Threats

Having a centralised controller architecture as well as total control network programmability,
SDN introduces new threats in addition to those of classic network deployments. These
threads can be extracted by examining the generic SDN architecture shown in Figure 2.2 and
are described as follows:

Fig. 2.2 SDN Threats

• Data forging: The injection of faked flows to the SDN switches in order to cause DoS
attack.

• API exploitation: The exploitation of the APIs that the control plane uses to commu-
nicate with the SDN devices including: i) the SBI for the communication between
controllers and switching devices ii) the NBI for the communication between con-
trollers and application and iii) the EWBI for the communication between different
controllers.

• Controller exploitation: The SDN controller is running a so called Network Operation
System (NOS) so any vulnerability of the NOS implementation poses a threat to the
network.

30 Background and Literature Review

• Traffic diversion: This threat includes compromising a network element in order to
divert traffic flows and to enable eavesdropping. Traffic diversion is a data plane related
threat. In the case of network virtualisation, a specific traffic diversion ensues when
isolation between network slices is compromised or when the enforcing access to a
slice in the edge equipment is either bypassed or misconfigured.

• Management exploitation: The workstations that are used to manage the network are
a well-known attack target. Compromising the management systems can be used to
maliciously alter the network behaviour. The ability of the SDN managing to easily
reconfigure the whole network makes this thread more critical.

• Application exploitation: SDN applications have access to various network func-
tionalities. A vulnerable application can be exploited to access and maliciously alter
network functionalities.

2.3.3.2 Network Virtualisation Threats

Network virtualisation threats [42–45] are threats related to the underlying IT infrastructure
used for virtualising network operations. Although NFV is a promising solution for service
providers, it encounters certain security challenges that could have detrimental effects on its
performance and could cause a security threat which may hinder its implementation in the
telecommunication industry.

The move to a virtual environment must be done carefully and with an understanding
of how the new infrastructure will change IT planning and management. In addition, roper
planning guaranties the existence of mechanisms that can help tackle any virtualisation
challenge. Some common threats to services running on virtual environments include:

• Generic virtualisation threats (e.g. memory leakage)

• Network function threats (e.g. distributed DoS attacks)

• Hybrid threats, as a result of the union of proprietary and NFV technologies.

In reference to the taxonomy of threats outlined NFV [46] threats can be seen as threats
under the Nefarious Activity/Abuse and Eavesdropping/Interception/ Hijacking categories.

2.4 Security and Dependability Countermeasures

In an insufficient security environment, new lightweight approaches should be considered in
order to overcome the lack of trust and privacy for thereby avoiding security dangers. There-

2.4 Security and Dependability Countermeasures 31

fore, suitable countermeasures which can be applied in a variety of devices and operating
systems, are described to protect data transmission, identity, location and routing paths.

2.4.1 Generic Countermeasures

2.4.1.1 Encryption for Confidentiality

Encryption is an efficient countermeasure to protect confidentiality and to limit access
control of data in case of a passive attack such as eavesdropping or active attacks such as
impersonation by the use of cipher and cryptographic check sums. When cryptographic
algorithms are not used, an attacker can eavesdrop or compromise the transmitted data
easily. Nevertheless, if there is no encryption applied, a malicious node can easily intercept
transmitted information or impersonate a receiver. In addition, an adversary knowing the
password may decrypt ciphered data. To avoid the danger of revealing the encryption
key, a predefined set of anonymous keys changing frequently could protect the encrypted
transmission between nodes. If the payload message is encrypted then a malicious node
that has the encryption key can also launch an impersonation attack. For instance, an
impersonation attack on devices interconnected with a patient, may cause false alarms or the
modification of medical data can put patient’s life in danger.

The goal of cryptography is to guarantee all the major properties such as confidentiality,
integrity, authentication and non-repudiation. There two type of encryption asymmetric and
symmetric.

• Symmetric encryption applies the same key for decryption and encryption. Non-
repudiation cannot be guaranteed using symmetric encryption because the use of
sharing keys cannot determine which party applied message encryption and decryption.

• Asymmetric encryption depends on the use of two keys the public and private. The
owner of the private key is able to encrypt data which can only be decrypted by the use
of the public key. On the other hand, data that is encrypted with the public key of an
owner can be decrypted only by the use of the private key.

Compared to symmetric encryption, asymmetric encryption is also computing and time
consuming process. The encryption of data by the use of the private key cannot guarantee
the confidentiality property since all the users can decrypt messages by the use of public
key. However, integrity can be guaranteed since data cannot be modified in addition to
non-repudiation and authenticity. Conversely, encryption by the use of the public key can
guarantee confidentiality since only the owner of the private key can decrypt the message but

32 Background and Literature Review

it cannot guarantee integrity and authentication since anyone can decrypt messages using a
public key.

Existing solutions include either link encryption or end-to-end encryption to protect data
confidentiality.

• Link encryption is able to encrypt not only the payload of a packet but also the packet
header, addresses and destination. Only instructions and parameters to synchronise
communication methods for data transmission are not encrypted. The packet must
be encrypted and decrypted in every hop by encrypting and decrypting packet using
different security keys. Although link encryption is a time and resource consuming
procedure, it is able to protect efficiently data transmission from eavesdroppers and
traffic analysis sniffers. However, link encryption usually is incorporated in protocols.
In this case, routers can decrypt the header to read the address and encrypt and send it
to destination. Link encryption occurs in the data link and physical layers of the lowers
OSI layers.

• End-to-end encryption (E2E) is able to encrypt the payload of the packet and not the
header. The data is encrypted in the source and decrypted in the destination. The user
is able to select whether specific data should be encrypted or not. E2E encryption does
not require relay nodes to have the encryption keys. However, the data is vulnerable to
attackers due to the unencrypted header data. Formal verification with E2E encryption
for secure networks is proposed in [47]. The advantages of E2E security methods are
described in [48].

Network encryption can be applied by the use of Internet Protocol Security (IPsec),
Secure Socket Layer (SSL), Transport Layer Security (TLS) and Secure Shell (SSH). The
main differences of the two protocols are described in [49]. More specifically the most
common encryption methods can be found bellow:

• Wi-Fi Protected Area (WPA/WPA2): security protocol for wireless networks de-
signed to improve the WEP. WPA is based on TKIP when WPA2 is based on the
extensible authentication protocol (EAP) and AES.

• Encryption protocols: SSL (Netscape)/TLS (IETF) (layer 5), SSH (5-7), PGP, Ker-
beros, IPsec

• Encryption algorithms for integrity: SHA1, SHA256, SHA512, SHA3

• Encryption algorithms for confidentiality: AES, DES, Triple DES

2.4 Security and Dependability Countermeasures 33

• In application layer: HTTPS for HTTP, LDAPS for LDAP, WSS for SOAP

• Other methods include 802.1x for authentication, KS,KIV, ATM, 802.1AE or MAC-
Sec - provides data confidentiality, data integrity and data origin authentication, point-
to-Point Tunnelling Protocol (PPTP)

In order to guarantee integrity, Message Integrity Codes (MICs) or Message Authen-
tication Codes (MACs) can be used to mitigate tampering of data and guarantee integrity
on data transmission. These codes ensure the integrity of the MAC header and the attached
payload data. If the messages exchanged between the nodes have a MIC in the headers and
payload, it is impossible for an attacker to launch a successful impersonation attack but it is
possible to become a passive listener.

IPSec [49] is a protocol in Layer 3 of OSI model that can send and receive cryptographic
type of messages such as Transport Control Protocol (TCP), User Datagram Protocol (UDP).
IPSec can be used in end-hosts, switches ,gateways and routers enabling end-to-end security.
IPSec flow protection has been proposed by Internet Engineering Task Force (IETF) [50]
for SDN traffic protection [51]. Based on this approach, a flow protection policy should be
defined in order to establish E2E security between hosts and gateways. The main parts of
IPSec include the following:

• IPSec Mode: IPSec operates in two modes the transport and tunnel one. In transport
mode, there is no modification in the IP header but it is used to secure the communica-
tion between end to end traffic transmission by encapsulating and securing only the
payload. The tunnel mode includes the hash of the entire packet including also the IP
header and is used to tunnel traffic between routers and gateways.

• IPSec Headers: IPSec headers can provide security in two ways either by the use of
the Authentication Header (AH) and Encapsulating Security Payload (ESP). Both
AH and ESP can protect data origin authentication by authenticating the source traffic
enabled by the suitable of MACs (i.e. DSA/RSA) [52]. Moreover, data integrity is en-
abled by the support of integrity checks algorithms (ie. MD5/SHA). To ensure that data
has not been altered and anti-replay can be guaranteed by detecting rejected replayed
packets in the receiver [53]. In addition, ESP can also support data confidentiality by
the use of symmetric key encryption algorithm (ie. DES/3DES, AES) to encrypt the
packets before the submission. The IPSec framework can be found in Figure 2.3 [54].

• IPSec Sessions: The procedure of the session establishment is made through the
Key Exchange (IKE). Internet Security Association and Key Management Protocol
(ISAKMP) provides a method for automatically setting up Security Associations (SA)

34 Background and Literature Review

Fig. 2.3 IPsec Framework

and managing their cryptographic keys. SA supports Security Association Database
(SAD), Security Policy Database (SPD) and Security Parameter Index (SPI) to define
the needed algorithm for packet decryption. IPSec has also the capability to establish
secure session by the use of SA for both AH and ESP but not at the same time. When
ESP header is applied, an IPSec header is added to the packet containing the SPI field
which includes the destination address, the protocol and the SA.

• IPSec Policy Procedure: To protect traffic, traffic classification can be done by the
use of Access Control List (ACL) to permit the traffic that should be encrypted or deny
the traffic sent unencrypted [55]. The procedure involves also peers authentication, SA
negotiation and finally the creation and termination of encrypted tunnels.

2.4.1.2 Fault Tolerance for Availability

The most common solutions to guarantee fault tolerance and avoid a single point of failure,
include the replication of paths forwarding traffic in parallel, the use of redundant paths
and the ability to switch in case of failure (failover) and traffic diversity. Fault tolerance

2.4 Security and Dependability Countermeasures 35

mechanisms exist in both legacy and SDN. More specifically, for SDN there are three types of
network failures: in data plane failures (link or switches), control plane (connection between
switch and controller) and controllers. Traditional defence approaches focus on protecting
the data plane and are therefore ineffective in the cases of SDN control plane attacks [23]. A
list of a variety fault tolerance mechanisms are presented in the SDN/NFV countermeasures
section.

2.4.2 Radio Access Countermeasures

For the radio access protection, a number of different countermeasures are proposed as
described below.

• Anonymity of source node’s identity and location assures that path will reach their
destination through trusted intermediate nodes. To protect the identity of source
and receiver, identities of messages should be hidden either encrypted or not unde-
fined [56]. Pseudonyms can be an effective way to hide the real identity of a node.
Although pseudonyms seem to be an effective solution, fixed pseudonyms cannot
prevent adversaries from deducing the topology of the network through traffic analysis
[57]. Furthermore, changing identities frequently may thwart attackers from identity
disclosure.

• Location protection can be established by hiding the received signal strength and the
time interval of a wireless network element [58]. To hide the location of the transmitter,
variations in signal strength and in time delay are employed. When actual encrypted
data are not exchanged, dummy messages can be send to mask the channel, hiding the
actual data transmission. This mechanism can keep the bandwidth constant and hide
the traffic to confuse passive listeners from effective eavesdropping and traffic analysis
[34, 59]. Works, such as [59–61], focus on location privacy and route protection,
providing partial privacy protection. Furthermore, if a packet has reached the range of
radio waves, then it is difficult to locate the source [57]. This can be done by the use of
multi-hop routing which can also prevent adversaries from identifying the source and
the routing paths of transmissions.

• Frequency hopping (or channel hopping) can be used to avoid jamming attack
[62, 63]. Investigations on channel assignment, based on energy detection and re-
ceived signal strength in wireless networks, are presented in [64]. It can also prevent
continuous passive listening attacks [65], protect source location and routing paths and
assure data transmission [66].

36 Background and Literature Review

• Signal strength increment can mitigate weak jamming attacks [66]. Suitable mitiga-
tion techniques include also the detection using algorithms based on dropped packets
or the decrease of the signal to noise ratio [40]. Data transmission is assured by the use
of acknowledgments. Even though acknowledgement mechanisms do not guarantee
data integrity, their use can ensure valid packet reception.

• Intrusion detection of jamming attacks based on experiments in 802.11 using soft-
ware defined radios, are described in [67, 68]. Theoretical analysis and simulation
results for mitigating mechanisms to detect jam attacks in wireless sensors networks
are presented in [69, 70].

• Multi-path and multi-hop routing is applied to protect the topology of routing paths.
Changing routing paths may thwart adversaries from jamming attacks [60]. Finally,
the creation of fake paths could potentially prevent an adversary from tracking the
routing path and destroying the transmission [59, 71].

• Random delay slots can be used for collision avoidance.

2.4.3 SDN/NFV Countermeasures

Various techniques have been proposed to ensure security and network function resilience.
The state of the art in protecting SDN can be summarised as follows:

• Trust between devices and controllers is of paramount importance as only a trust-
worthy infrastructure can provide a dependable network. Trustworthiness between
SDN devices is a must and can be implemented as mandatory authentication or as a
factor that is appointed to devices. A device must maintain its trustworthiness level in
order to be part of the SDN ecosystem.

• Trust between applications and controller software can be tricky as software is
meant to change and evolve as well as become untrustworthy when vulnerabilities
and exploits surface. A trustworthiness model that monitors and evaluates all SDN
software becomes a key player in achieving application reliability and resilience.

• Security domains can help minimise exposure and risk by isolating software compo-
nents such as SDN applications and core controller function. Proven techniques such
as sandboxing have already paved the path towards this type of isolation. A predefined
minimal set of interactions allows proper levels of communication and interoperability.

2.4 Security and Dependability Countermeasures 37

• Secure components are necessary for the SDN infrastructure. Tamper-proof device
techniques such as Trusted Computing Base (TCB) can help assure data confidentiality
if a system is compromised or stolen.

• Fast and reliable software update and patching will ensure that the SDN software
is secure (vulnerability patching) and performing at its best, utilising the hardware
to the fullest. Software updates and patching are perhaps the most important, totally
effective and least convoluted elements of proactive security.

• Reliable connectivity in 5G and SDN can be established in recover network failures
as proposed by [72] either creating automatic tunnel re-establishment or on-demand
tunnel re-establishment.

In order to provide efficient secure solutions in existing SDN environment, different
frameworks and products have been developed.

• SDN Flow integrity and conflict resolution:

– FortNOX is an extension of the NOX controller that provides flow rule contra-
diction validation via a non-bypassable mediation real-time service [73]. This is
performed during the rule insertion requests of OpenFlow applications.

– FlowChecker proposes a tool for verifying the consistency of different OpenFlow
enabled switches, validating the correctness of the flow table entries, debugging
reachability and security issues [74].

– NICE is a tool for automating the testing of OpenFlow applications that combines
model checking and symbolic execution to quickly explore the state space of
unmodified controller programs written for the popular NOX platform [75].

– FLOVER decomposes network security policies in sets of assertions referred to
as non-bypass properties that specify whether a certain packet/flow matching a
set of conditions should be forwarded to its destination [76].

• Strong Authentication: Ethane [77] utilises a Central Domain Controller (CDC) that
enables controlled admittance and routing of flows by implementing global-policy
validated and strongly-authenticated bindings between users, devices and services.
FortNOX is a software extension that utilises role-based authorisation and security
constraint enforcement [73].

• Encryption on the SBI/NBI/EWBI: The communication channel between each SDN
layer must be well protected. As a security measure, techniques such as secure coding,

38 Background and Literature Review

deployment of integrity checks and application for digital signing, should be used.
Moreover, all communication channels can be hardened using TLS security [78].
Although OpenFlow protocol is not the only protocol utilised in SDN, its TLS support
can protect the communication channel efficiently. However, the lack of TLS version or
reference in OpenFlow specification [79] could cause the adaption of non-interoperable
implementations and their TLS version vulnerabilities that have been fixed in later
version such as man-in-the-middle attacks in TLS 1.0 and 1.1 or the lack of 1.2 to
support newer cryptographic algorithms [80, 81].

• Access Control:

– Panopticon ensures E2E network policy by implementing a mechanism that
ensures the routing of inbound network traffic via at least one SDN capable
switch [82]. This mechanism carries the name of Solitary Confinement Tree
and utilises VLANs to perform the necessary traffic flow. This is particularly
important when dealing with Hybrid SDN infrastructures.

– FlowNAC is a Network Access Control solution that implements access to
services as a set of flows that can independently requested but only simultaneously
authorised [83]. Policies are formed dynamically as the result of data plane
services, providing holistic authentication and authorisation capabilities locally
at the data plane level. This authentication and authorisation is performed on per
service basis.

• Application isolation and Sandboxing:

– Rosemary introduces a micro-NOS sandboxing strategy to safeguard the control
layer from errant operations resulting from network applications [84]. Rosemary
supports context separation, resource utilisation monitoring, and a micro-NOS
permissions structure which limits the library functionality that a network appli-
cation is allowed to access.

– PERMOF is a fine-grained permission system that introduces a shim layer
between application and network operating system [85]. This shim layer acts as
an isolation mechanism that prevents application direct access to kernel code or
memory. Caller identity is used to perform permission control on a pre-configured
policy.

• Security Enhancements:

2.4 Security and Dependability Countermeasures 39

– FRESCO is a security application development framework that is intended to
enable the quick design of detection and mitigation modules based on Open-
Flow [86]. It provides a scripting API that enables the development of security
monitoring and threat detection logic as modular libraries.

– Security Enhanced Floodlight (SE-Floodlight) [87] is an implementation of an
OpenFlow security mediation service for enforcing network security. It is similar
to FRESCO except there is more functionality due to the extensions set by the
new OpenFlow specification.

– AVANT-GUARD is a data plane extension consisting of actuating triggers and a
connection migration module [88]. It is designed to enhance the scalability of
SDN security applications and thus their ability of tackling a dynamic range of
network threats. A connection migration module provides shielding to the control
plane from data plane originating saturation attacks.

Suitable fault tolerance mechanisms (Figure 2.1) have been developed in SDN that intend
to guarantee fault tolerance as described in the following:

• DefenceFlow is a commercial application that detects and resolves DoS attacks [89].
Its operation is based on pattern matching techniques performed on traffic statistics
collected from SDN forwarding devices. In case of DoS detection, DefenceFlow,
redirects traffic to the nearest mitigation device. Mitigation devices can be placed in
any location within the SDN network.

• HP Sentinel Security implements an SDN application that monitors the flow creation
process. Flows are compared to a threat reputation database in order to verify IP
Address and DNS name [90]. If the lookup is positive, traffic is dropped on the
forwarding devices. The NOX controller is one of the well-known SDN controllers
in regards to its expandability and enhancement capabilities. One very important
enhancement enables NOX to exercise traffic anomaly detection capabilities [91].

• FatTire [92] is a language for writing fault-tolerant SDN programs in terms of paths
through the network and explicit fault-tolerance requirements. The main features of
FatTire include fast-failover OpenFlow mechanisms, and correct behaviour during
periods of failure recovery. It focuses on data plane including the fault tolerance
between the source, the destination and the intermediate functions such as IDS and
firewall. The paths are defined by the use of the breath-first-traverse algorithm.

40 Background and Literature Review

• Coronet [93], on the other hand, proposes a fault tolerant system for SDN controller
which is able to receive topology information and protect data plane link/switch failures
and is based on Dijkstra’s shortest path algorithm.

• Ravana [94] is a fault tolerant SDN controller platform that processes the control
messages transactionally and supports fault tolerance for both controller and switches.
The advantage of Ravana is that (i) adapts replicated state machines for control state
replication and adds mechanisms for ensuring the consistency of switch state and
(ii) extends existing channel interface between controllers and switches. Ravana is
evaluated in the Ryu controller which supports ZooKeeper.

• SMaRtLight [95] is a practical fault-tolerant SDN controller which is based on a
shared database of stored network states. It supports primary and backup controllers
(master slave) are used to replicate SDN controllers. Paxos algorithm is used to
implement Replicated State Machine.

• LegoSDN [96] is able to tolerate SDN application failures,

• Onix [97] supports scalability and availability in SDN control platforms.

• AFRO [98] proposes an automatic failure recovery for POX SDN controller based on
simpler, failure-agnostic controller modules.

Table 2.1 SDN Fault Tolerance Mechanisms

Name Description Controller

FatTire language for fault-tolerance (data plane) Netcore compiler

SmaRtLight fault-tolerant (master/slave controllers) Floodlight and NOX

Coronet fault tolerance (link/switch) NOX

LegoSDN tolerate SDN application failures FloodLight

Ravana fault tolerant for controller/switch Ryu

AFRO automatic failure recovery POX

Pyretic language to flow policy POX

Although existing Byzantine Fault Tolerance (BFT) solutions are suited for the file system
environment, there are some problems to apply BFT to the SDN network. However, there as
some existing BFT solutions that are suited for the file system environment such as SDN.

2.5 Service Provisioning and Chaining 41

• BFT-SMaRT Authors in [99] propose a framework which is based to tolerate malicious
faults in both control and data plane. They implement two BFT controllers state
machine BFT. The first controller is based on SimpleBFT:OpenFlowJ with state
machine BFT-SMaRt (a state of the art tool for creating BFT [100]) and BeaconBFT:
Beacon with BFT-SMaRt. Their paradigm is based on existing controller suites instead
of developing entirely new paradigms for constructing SDN controllers, as FatTire and
Coronet. However, the use of a service proxy, in which related information is gathered,
considered to be replaced by enabling this functionality in the switches but hardware
integration presents a significant roadblock moving forward. As future work, they
intend to increase performance of controller Speculative BFT and integrate BFT in the
switch and not in a proxy since hardware integration presents a significant roadblock
moving forward.

• BFT in Cloud Authors in [101] propose a Byzantine-resilient secure SDN with multi-
ple controllers in cloud. In their contribution, a secure SDN architecture in which every
switch is controlled by multiple controllers are proposed. Their proposed framework is
based on NOX controller simulated in Mininet.

• Other fault tolerant mechanisms as presented by [94]: (i) Distributed SDN control
with consistent reliable storage (ONIX and ONOS apply replicate durable states
primary slave), (ii) Distributed SDN control with state machine replication (HyperFlow
which is based in NOX) using publish/subscribe paradigm among the controllers, (iii)
Distributed SDN with weaker ordering requirements as described in BGP routing (iv)
Traditional fault-tolerance techniques: Viewstamped Replication (VSR), Paxos and
raft, (v) TCP fault-tolerant mechanisms: have huge overhead, (vi) Virtual Machine
(VM) fault tolerance Remus and Kemari and (vii) Observational indistinguishably
(Lime)

2.5 Service Provisioning and Chaining

SDN-based deployments introduce great potential for innovation in the network usage,
high speed and agile service provisioning, as well as enhanced network flexibility and
holistic management. The combination of the global network-wide view and the network
programmability supports the process of harvesting intelligence from existing security devices
such as Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS), followed
by analysis and centralised reprogramming of the network. This approach can render the
SDN more robust to malicious attacks than traditional networks [102].

42 Background and Literature Review

2.5.1 Security Service Functions

Security services are a prime example of traditional network service functions that can
benefit from the adoption of SFC, especially in the context of SDN networks. Indeed,
security functions such as ACL, Segment, Edge and Application Firewalls, IDS/IPS and
Deep Packet Inspection (DPI) are some of the principal service functions considered by IETF
when presenting SFC use cases pertaining to Data Centers [103] and Mobile Networks [104].
Said IETF studies consider several use cases and highlight the numerous drawbacks of using
traditional service provision methods when applying, among others, the security functions.
The security services are typically deployed as monolithic platforms (often hardware-based),
installed at fixed locations inside and/or at the edge of trust domains, and are deployed
rigid and static, often lacking automatic reconfiguration and customisation capabilities. This
approach, combined with the typical networks’ architectural restrictions mentioned above,
increase operational complexity, prohibit dynamic updates and impose significant (and often
unnecessary) performance overheads, as each network packet must be processed by a series
of predefined service functions, even when these are redundant [105].

The most common security service functions are detailed below:

• IDS/IPS is a service able to monitor traffic or system activities for suspicious activities
or attack violations and is also able to prevent malicious attacks if needed (in the case
of IPS).

• Firewall is a service or appliance running within a virtualised environment providing
packet filtering. Legacy firewalls (e.g. actual hardware appliances) are also supported
and can easily be integrated into the architecture.

• Honeynet is formed by a set of functions (Honeypots), emulating a production network
deployment, able to attract and detect attacks, acting as a decoy or dummy target.

• DPI is a function for advanced packet filtering (data and header) running at the
application layer of OSI reference model. In DPI packet payloads are matched against
a set of predefined patterns.

• Network Virtualisation, via the use of Virtual Local Area Network (VLAN) [106]),
a VLAN-like encapsulation technique to encapsulate MAC-based OSI layer 2 Ethernet
frames within layer 4 UDP packets, brings the scalability and isolation benefits needed
in virtualised computing environments.

• ACLs are used at the entry of network domain to route traffic to the appropriate isolated
virtual networks and the corresponding security service functions.

2.5 Service Provisioning and Chaining 43

Table 2.2 Examples of Network Security Service Functions

Appliance Examples
Intrusion Detection System Snort 1, Bro 2

Antivirus/Anti-SPAM ClamAV3

L7 Firewall Linux L7-filter4, ModSecurity5

L7 Load Balancer F56 and A107

Leakage/Data Loss - Prevention System Checkpoint DLP8

Network Analyser/Classifier Qosmos9

Traffic Shaper/WAN optimisation Blue Coat PacketShapper10

• Packet inspectors to detect malformed packets or malicious activity (IPFiX, dis-
tributed DoS).

• Secure communication protocols with packet encapsulation services (e.g. IPSec).

• Instead of the service functions used, other than the ones employed above, other Service
Functions could be included in a real deployment, such as HTTP header enrichment
functions, TCP optimisers, Resource Signalling, etc.

A typical example of an important, and also ubiquitous, security-related function is DPI,
whereby packet payloads are matched against a set of predefined patterns. DPI imposes a
significant performance overhead, because of the pattern matching mechanisms that is a core
operation and thus largely unavoidable (motivating a wealth of research efforts focusing
on improving their performance [107, 108]). Nevertheless, DPI, in either form, is part of
many network (hardware or software) appliances and middleboxes; some examples can be
seen in Table 2.2 [109]. As Bremler-Barr et al. [109] have demonstrated, extracting the
DPI functionality and providing it as a common service function to various applications
(combining and matching DPI patterns from different sources) can result in significant
performance gains; their benchmarks, involving a single Snort-based IDS service function,
run in Mininet over OpenFlow to emulate an SDN deployment, compared to two separate
traditional instances of Snort, showed that the former (i.e. the single DPI service function)
performed 67%-86% faster than the latter.

44 Background and Literature Review

Apart from the specific security protocols, security functions can be used to guarantee
specific network S&D properties. Table 2.3 presents the S&D properties as satisfied by the
security network functions.

Table 2.3 Security Properties and Functions

Properties Security Dependability
Function Access Control Confidentiality integrity Availability Reliability
Firewall o o o
IDS/IDS o o o

DPI o o
IPSec o o o

Load-balancer o o
Honey-Pot o o o

2.5.2 Service Function Chaining

SFC provides the ability to define an ordered list of network services to create a service chain
[110] on network topologies. Different factors and constraints should be considered in order
to define suitable SFCs related to Service Function Instance (SFIs) and Service Function
Links (SFLs) especially for dynamic instantiation such as:

• Topological constraints due to SFI location

• Resource capacity Service Node that holds SFI

• Energy consumption of a service node that holds SFI

• Utilisation rate of a SFI

• Throughput constraint or demand constraint of a SFI
1http://www.snort.org
2http://bro-ids.org
3http://www.clamav.net/
4https://sourceforge.net/projects/l7-filter/
5https://www.modsecurity.org/
6https://f5.com/products/modules/local-traffic-manager
7http://www.a10networks.com/products/axseries-aflex_advanced_scripting.php
8http://www.checkpoint.com/products/dlp-software-blade/
9http://www.qosmos.com/products/technology-overview/

10https://www.bluecoat.com/

2.5 Service Provisioning and Chaining 45

• Bandwidth allocation constraint and Link capacity of a SFL

• Latency and delay of a SFL

• Lack of availability due to failures or attacks on an instance SFI or a SFL

SFC aims to address these issues via a service-specific overlay that creates a service-
oriented topology, on top of the existing network topology, thus providing service function
interoperability [110]. An SDN-based SFC Architecture, such as the one defined by the
ONF [111], can extend this concept by exploiting the flexibility and advanced capabilities of
SDN, to provide novel and comprehensive solutions for the afformentioned weaknesses of
the legacy networks.

The concept of SFC has shown promising results in enabling the faster time-to-market for
the new services in the domain of telecom operators. These services are stitched together in
the network to create a service chain. IETF, and the SFC Working Group [112] in particular,
built on top of the work of the ONF for the standardisation of SFC adopting and extending
features from relevant research efforts, where needed. Moreover, special care is given to
the security of the SFC mechanisms. This can be done by guaranteeing the integrity of
SFC-related data added to the packets for identifying the service functions chains and by
ensuring that no sensitive SFC data (and the associated metadata), crosses different SFC
domains, or legacy networks (non-SDN), unprotected.

2.5.3 SFC Related Research

Several SFC-related research efforts can be identified in the literature. Nevertheless, a
previous survey on the use of SFC [113] reveals a lack of work focusing on security-related
applications, and this is a gap that the framework presented in Chapter can cover. In terms
of the key technological building blocks, Network Service Headers (NSH) [114] is an
approach that involves the introduction of SFC-specific 4-byte headers which include all the
information needed (including associated metadata) to reach a policy decision with regard to
what service chain the traffic should follow. As part of the relevant IETF efforts, the NSH
approach has been extended to define a new service plane protocol (a dedicated service plane)
for the creation of dynamic service chains [115].

StEERING [116] is an OpenFlow-based alternative that allows for per-subscriber and
per-traffic type/application traffic routing to the various service functions. This can be done
via simple policies propagated from a centralised control point, but does not consider the
security-based classification that forms the basis of the work presented here. Researchers

46 Background and Literature Review

have also introduced SIMPLE [117], a policy enforcement layer that focuses on middleware-
specific traffic steering and considers the inclusion of legacy service instances into the chain.
It is based on monitoring and correlating packet headers before and after they traverse a
specific service function, though this leads to a rather complex process (collecting packets
for correlation, matching packets with high accuracy etc.).

The chaining of VNFs is another aspect examined in the literature, which considers the
trend of virtualising networks and network functions in modern networks. More specifically,
ETSI proposes a security management and monitoring specification in NFV that enable active
and passive monitoring of the VNF and the SFC as provisioned in the NFV environment
[118]. From this perspective, Megraghdam et al. [119] present a formal model for specifying
VNF chains and propose a context-free language for denoting VNF compositions. Blendin et
al. [120], exploit Linux namespaces to create isolated service instances per service chain,
allowing one-to-one mapping of users to service instances; nevertheless, such an approach is
not necessary in industrial environments, where, typically, the number of users is limited, and
the management of multiple service instances can have a significant administrative burden.

Leveraging the benefits of SDN-based SFC deployments involves reversing this trend
for monolithic, all-in-one common security services. This is an approach, brought forward
in part because of the advancements in hardware performance, which meant that a single,
relatively affordable, hardware platform had enough resources to accomplish multiple tasks
simultaneously. In the context of SFC, the focus is on breaking-up these complex services
into dedicated service functions, each providing a single task. This shift is not dissimilar to
the emergence of the Microservices [121] as described in [122], software architectural style
(i.e. the Microservices Software Architecture, MSA), which moves developers away from the
once-dominant paradigm of building entire applications as a monolith (again, leveraging the
benefits of more capable hardware - and mature, sophisticated programming tools), towards
applications made up from many smaller services (elastic, resilient, composable, minimal
and complete [123]), each of them performing a single function (adopting the Do one thing
and do it well philosophy).

2.6 Design Patterns

Driven from software development methodology, Model-Driven Engineering (MDE) [124]
can be used to analyse certain aspects of models, synthesise various types of artefacts and
design secure and dependable systems. The concept of MDE not only can be used for
software development but also for designing applications related to networks. Authors in
[125] present an MDE framework for architecting wireless networks. Based on the MDE

2.6 Design Patterns 47

paradigm, authors also in [126] propose the concept of Model-Driven Networking for the
development of SDN applications base on Domain-Specific Language (DSML). MDE applies
design patterns [127, 128] as solutions for reusable designs and interactions of objects by
the use of formal proven properties [129]. Based on this concept, the design of a system has
been simplified and facilitated by the modelling of design patterns.

The development of design patterns may benefit from existing implementations of soft-
ware patterns as described in the literature in a variety of works [130–134]. Furthermore,
the concept of component-based architecture composition is mainly applied on software
components and service oriented architecture but it can be also used successfully for de-
signing networks [135, 136]. Since network topologies are mainly related to the type of
component composition and flows, they can be described adequately by workflows of process
executions patterns [137]. Workflow patterns have been used for different applications such
as for QoS aggregation for web service composition as proposed in [138]. Security workflow
patterns for service compositions, based on enabling reasoning engines such as Drools, are
also described in [139, 140].

With the softwarisation of networks in SDN, design patterns can be applied in all the
different layers of SDN architectures. In general, design patterns have been also proposed for
the graph algorithms in works such as [141] and [142]. More specifically in the data plane,
the construction of network topologies includes the definition of network and traffic patterns
in SDN as presented in works such as in [143]. In the application plane, design patterns
can be used in northbound interface using RESTful API as proposed in [144]. Furthermore,
SFC [110] aims to provide E2E security in SDN following security function compositions.
Finally, the concept of intent-based engineering in SDN appears to enforce security policies
[145].

Design pattern can be expressed in a number of different representative modes. The Web
ontology language (OWL) is a family of knowledge representation languages for authoring
ontologies able to express patterns as a set of constraints and requirements [146]. In addition,
in PROLOG [147], design patterns go under various names: skeletons and techniques,
cliches, program schemata, and logic description schemata. An alternative to design patterns
is higher order programming [148]. The Rete algorithm is widely used to implement
matching functionality within pattern-matching engines that exploit a match-resolve-act
cycle to support forward chaining and inferencing [149]. Finally, Drools Business Rules
Management System [27] is a rule engine to enable reasoning and support design patterns
based on the predefined supported language.

Fault tolerance patterns have been proposed in works such as [150] and [151]. Although
authors in [152] and [153] present fault tolerant patterns for software, the proposed archi-

48 Background and Literature Review

tectural, detection, mitigation and recovery patterns can be also applied on SDN networks.
Flow policy patterns as expressed by Frenetic languages such as Pyretic, can generate flow
rules able to be installed in programmable switches of SDN networks [154].

Design patterns have been also proposed for SFC in virtulised network infrastructures
[155]. In [156], authors present efficient patterns for SFC within NFVI. The key points
of this work includes the definition of Language Requirements. In addition, patterns are
presented to increase network performance by minimising network performance. Patterns can
be also used to minimise switching and CPU resource required to implement each chain to (i)
minimise latency by shorting the the number of physical hops and the number of queues each
packet traversing a service chain, (ii) to minimise CPU processing by avoiding unnecessary
software switching.

Another approach for efficient provisioning of security SFC using security patterns can
be found in [155]. The problem statement of this work includes the (i) capture the security-
related best practices for the deployment of network security functions; (ii) optimise security
provisioning costs by simultaneously (a) placing the VNFs in the optimal locations and (b)
finding the optimal routing paths through the proper VNF sequence for each traffic request,
while respecting the capacity constraints and the security deployment constraints derived
from security-related best practices; (c) scale to large-sized cloud computing data centres.

2.7 Open Issues Addressed by this Work

According to the literature review, a number of open issues exist in all layers of generic and
SDN/NFV-enabled networks. This is related to the maturity level of developed solutions as
introduced in the SDN and the NFV environments. The existing mechanisms propose partial
solutions for the design and verification of S&D networks. More specifically, the following
beyond the state of the art solutions are proposed and developed by this work:

• Existing developed mechanism do not provide efficient mechanisms for the design of
SDN/NFV network topologies. This work proposes a pattern framework for developing
compositional structures of SDN/NFV-enabled infrastructures.

• S&D patterns set necessary and sufficient conditions not only for composing different
components in ways that guarantee S&D properties but also for ensuring network
designs will use pattern framework in ways that guarantee such properties.

• Introducing an autonomic deployment of VNFs based on the defined SFC patterns and
assigning physical resources to overlay virtual entities taking into account the context
of the data and services that request access to those entities.

2.8 Summary 49

• Existing data plane fault tolerance solutions do not provide the required open and
flexible design as our proposed approach.

• Workflows patterns have been used in our approach not for service composition but in
an innovative way for creating network topologies based on executable patterns.

• The concept of SFC is extended in this work by creating dynamic security chains,
following a backward chaining and enforcing security policies.

• Finally, in the proposed schema, it is possible to create a complete, open and extensible
solution to address all the described open issues. This can also involve and introduce
new concepts such as intent-based networking and artificial intelligence based on
reasoning and learning suitable under development concepts of 5G networking.

2.8 Summary

In this chapter, a detailed overview of the most critical security and privacy challenges was
presented. Network security appeared as a major concept especially in SDN/NFV-enabled
networks. A definition of the most crucial security and dependability attributes was also
given. Moreover, the most severe S&D generic, radio access and SDN/NFV threats were
identified. Based on this research, a number of different countermeasures to mitigate the
described threats were also presented. Furthermore, the background research on the security
service functions and service function chaining were also described. In addition, different
pattern-based approaches and model driven designs for secure and dependable were also
presented. Finally, a description of the identified open issues and how are addressed and
managed by this work were also provided.

Chapter 3

Definition of the Pattern Schema and
Language

3.1 Overview

This chapter presents the pattern schema. More specifically, the pattern schema includes the
definition of the pattern, containing the different aspects that covers the topology and the
requirements of the proposed patterns. Based on the pattern definition, the specification of
each pattern is provided. In addition, for the pattern composition and decomposition, forward
and backward reasoning is also described to enable inference. Furthermore, the semantics of
the developed pattern language and the developed class diagram that includes the interaction
between the components is also presented. Finally, the presentation of the deployed pattern
engine is also introduced.

3.2 Pattern Definition

The main focus of network design relies on specification analysis, design, verification, and
validation of systems that include hardware/software, data, procedures, and facilities. In
order to design network architectures with respect to S&D, a model-based approach can be
used adequately. This model approach is based on patterns to design and validate network
architectures as component compositions. Design patterns can give solutions to problems by
the use of formal proven properties or by testing. These patterns should be able to define
compositions of complex network topologies to guarantee the required S&D property at
design level. Based on these patterns a designer will be able to construct SDN/NFV-enabled
architectures without the need to prove previously verified network properties. Once proven,

52 Definition of the Pattern Schema and Language

relations between pattern component properties can be expressed as production rules to
enable reasoning.

The compositions defined by patterns can be both vertical and horizontal, i.e., they can
involve components at the same (horizontal) or different (vertical) layer in the reference
architecture. To do so, design patterns should encode abstract and generic component
interaction and orchestration protocols, enhanced (if necessary) by transformations to ensure
the semantic compatibility of data or system functionality of the components that are (or
need to be) composed. Furthermore, the component interaction and orchestration protocols
encoded by the patterns must have an evidenced ability (i.e., an ability proven through formal
verification or demonstrated through testing and/or operational monitoring) to achieve a
semantically viable interoperability between their components.

Network patterns can be used as an instrument for designing, verifying and modifying the
topology of networks. More specifically, the pattern can define generic ways of composing
(i.e., establishing the connectivity between) and configuring the different and heterogeneous
components that may exist at all layers of the implementation stack of network. The
patterns will enable orchestrations that preserve the basic security properties of confidentiality,
integrity and availability, as well as privacy, dependability and interoperability properties
able to guarantee different states. More specifically, patterns can be applied as described
below:

• At design time, the procedure includes the definition of a design problem and the
required S&D property that must be guaranteed by the pattern. This can include the
creation of network infrastructures or the discovery of available paths to assigns flow
rules which are able to guarantee the required property.

• In verification, an existing network design (topology) and the required S&D properties
are provided. The pattern is applied to analyse the former and ensure that the latter
property is satisfied. The analysis is based on checking if the topology of the pattern
matches totally or partly the network design and on whether the individual components
that constitute the network with the particular topology have certain properties that can
guarantee end-to-end network level S&D properties.

• Finally, at runtime when a property is violated, patterns are applied at runtime to
alter the topology, the components, the paths or the forwarding rules of an operational
network in order to ensure the satisfaction of S&D properties.

Patterns can be used to design infrastructures able to guarantee the S&D properties. These
patterns can be used for the discovery of component compositions with verified properties.

3.3 Pattern Topology 53

The pattern specifies the order of component compositions constituting a primitive component
orchestration. The main target of a pattern can be to find suitable component compositions
in order to guarantee the required property. More precisely, the defined patterns are able to
validate system properties and in case that the property is not guaranteed, the pattern will
have to substitute components with other atomic ones or compositions in order to guarantee
system properties. Based on above, the pattern specification schema is defined as follows:

Definition 1. A pattern schema is an abstract structure for specifying design patterns which
includes: (a) an abstract network topology, defining the control structure and data flows of
the components, (b) functional requirements that should be satisfied by the components of the
network that are composed according to the structure of (a), (c) the required S&D property
that the pattern guarantees and (d) an execution pattern rule.

The constituents (a)–(d) of the S&D pattern schema are discussed in more detail below.
In the following sections, the description of the pattern schema is given including also the
specification and the language of patterns.

3.3 Pattern Topology

The representation of networks as a constitution of physical and cyber component composi-
tions and flows is essential for the model-based design. Component-based engineering can
be applied for the composition of physical and cyber subsystems of networks. The main idea
is that the composition of subsystems can also compose new systems enhancing their inputs,
outputs, properties and attributes. Furthermore, the composition of components can create
composition from atomic or from other compositions. For instance, the composition of two
atomic components c1 and c2 can be defined as

c1 � c2 = c (3.1)

More specifically, in the context of component composition, the following rule can be
applied:

Comp(x,z)�Comp(z,y)! Comp(x,y) (3.2)

where x,z,y are the inputs and outputs of respective components c1,c2.
On the other hand, the decomposition of a component composition can lead to atomic

components:

c = c1 � c2 (3.3)

54 Definition of the Pattern Schema and Language

For the component decomposition, when the following rule can be applied:

Comp(x,y)! Comp(x,z)�Comp(z,y) (3.4)

The composition of two components will perform as action a, the composition of two
actions a1 � a2. On the other hand, the substitution of a system c with a composition of two
objects c1 and c2 will invoke and save the same actions. In addition to that, a component c01
can substitute c1, if it provides and uses what the latter provides. The generic substitution
approach is that components can be replaced by compositions able to perform the same
actions. Based on that, the below action compositions can be defined:

a1 � a2 = a (3.5)

Let c is a component which utilises an action a, to substitute this by a composition of c1

and c2, the a ✓ a1 � a2 should be guaranteed:

Definition 2. Let c1 and c2 be components performing activities a1 and a2, the component
composition c will be equal to c = c1 � c2, with activity a = a1\ a2 for the serial composition
and a = a1[a2 for the parallel composition.

3.4 Pattern Requirements and Properties of Compositions

The definition of compositions includes also a set of functional properties and non-functional
properties and constraints expressed also as requirements that should be satisfied by the
individual network components composed by the pattern and/or the component composition
as a whole. To achieve this objective, design patterns are able to design physical and logical
architecture so the following definition can be given:

R(P(c)) (3.6)

where R is the requirement of the composition c, c can express either a topology structure,
components composition with source src and destination dst in case of a path and P is the
required property. As properties, the approach can be split to functional and non-functional
requirements as described in the next subsections.

3.4.1 Composition Properties

The properties satisfied by components may be different from each other and different from
the properties that the composition satisfies. In component composition, when c1, ..,cn are

3.4 Pattern Requirements and Properties of Compositions 55

components that satisfy a property P, then the composition c = c1 � c2... � cn formed of these
components should satisfy P.

P(c1)� · · ·�P(cn)! P(c) (3.7)

More specifically, as an example let’s consider a sequential composition of two compo-
nents: c1 � c2! c. It exists when the following implication can be proved:

When (c1 satisfies P) and (c2 satisfies P)! (c satisfies P)

On the other hand, component decomposition appears to be critical for system de-
signs with respect to required properties. In component decomposition, when c is re-
quired to satisfy a property P, then suitable components c1, ..,cn should be found to satisfy
R(P(c1), ..,R(P(cn)):

R(P(c))! R(P(c1)) and . . . and R(P(cn)) (3.8)

As an example, let’s consider a sequential decomposition of two components: c! c1 �c2.
When a required property should be guaranteed by the c, the subcomponents c1 and c2 should
satisfy the condition:

R(P(c))! R(P(c1)) and R(P(c2))

or

R(P(c))! R(P(c1 � c2))

If there are no atomic components to guarantee the required property, a recursive proce-
dure is used in which successive (sub-) compositions are being generated until the atomic
components bound to them satisfy the required properties. The decomposition can be
analysed as follows:

R(P(c))! R(P(c1)) and R(P(c2))!

(R(P(c11)�R(P(c12)) and (R(P(c21)�R(P(c22))

! · · ·! until components c11,c12,c21,c22

that satisfy the required property P are found

56 Definition of the Pattern Schema and Language

Considering the components composition, Figure 3.1 depicts a stepwise decomposition
of components based on sequence and parallel-split workflow patterns.

Fig. 3.1 Stepwise Decomposition

3.4.2 Functional Requirements

Functional Requirements characterise the functionalities and features of a system. More-
over, functional requirements state what a system should define what a system must do and
how it reacts on specific inputs or situations. The list of functional requirements include
a number of different technical details, data manipulation and processing and some con-
straints such as connectivity, coverage, scalability, resource management, activities and other
functionalities.

3.4.3 Non-Functional Requirements

Non-functional Requirements describe the qualities of a systems. Network analysis in-
cludes whether non-functional requirements such as S&D properties including the confiden-
tiality, integrity, availability, reliability, safety, maintainability together with QoS properties
are preserved. The conditions depend on the respective non-functional requirement that
networks guarantee. The satisfaction of a non-functional property can be defined by a boolean
value (i.e. encryption enabled/disabled), an arithmetic measure (i.e. delay, encryption level)
or a probability measure (i.e. reliability/uptime availability).

The S&D properties are also related to the components and the topology which are
included in this network. However, it should be noted that the composition of two components
which preserve a S&D property does not necessarily guarantee that the composition will
preserve the same property. In addition, if a composition guarantees the conditions of a
S&D property, the atomic components may not preserve the property. If those conditions are
satisfied, the property will be guaranteed at the communication link. However in networks, it
is important that properties are also guaranteed on the communication medium. Attacks on

3.5 Pattern Specification 57

wireless medium can also cause an attack on a system component. Since, a medium such as
a wireless link cannot be modified, the security property should be satisfied both the output
of the source node and at the input of the destination node.

3.5 Pattern Specification

The pattern specification is responsible to provide the required structure and meaning of the
proposed pattern as can be defined bellow:

i) Name: include a clear statement of the role and the definition of the pattern.

ii) Problem: analyse the problem that the pattern should solve.

iii) Existing solutions: describe the current state of the art solutions for the problem.

iv) Our solution: describe the pattern, emphasising the key technical points of solution.

v) Evaluation: experimentally or formally of the pattern.

vi) Contributions: define the contributions and advances of the proposed pattern over
state of the art existing solutions.

The template of each pattern is defined as follows:

• Case Study 1: <name>

• Problem

• Existing solutions

• Our solution (key technical points of solution)

– Pattern X which . . .

• Contributions (wrt SOTA)

– C1

– C2

58 Definition of the Pattern Schema and Language

3.6 Pattern Composition and Reasoning

Design patterns can be applied using recursively forward or backward chaining respectively
enabling reasoning for an inference engine. Inference provides the required reasoning steps
to move from premises to conclusions [157]. The inference engines match rules and facts in
the Knowledge Base (KB). Backward and forward chaining are methods based on inference
rules. Inference rules can be used to express the properties such as correctness, soundness,
completeness, incompleteness and timeliness. Forward chaining is useful in verification and
backward chaining can be used at design.

Algorithm 1 Forward Chaining
1: procedure FORWARD CHAINING
2: newFact False
3: for all Facts in Fact Base do
4: if all premises match fact-base then
5: for all Rules in Rule Base do
6: if fact not in fact-base then
7: add Fact to Fact Base
8: newFact = True
9: end if

10: end for
11: end if
12: end for
13: end procedure

3.6.1 Forward Chaining

Forward chaining is a data-driven inferencing where the conditions proceed to the conclusion
of the goal. When the premises of a rules are satisfied the rule infer the conclusion. Forward
chaining systems usually employ a Breadth-First Search (BFS) strategy. BFS is a method for
finding connected components of nodes in graph through the level by level node visit. The
schema for Forward Chaining from Gonzalez and Dankel [158] is presented in Figure 3.2.

Syntax :< IF > conditions < THEN > conclusion < . >

The forward reasoning Algorithm 1, supports four different steps:

• Match premises of each rule with facts

3.6 Pattern Composition and Reasoning 59

Match Conflict
Resolution Execution

Rule Base Fact Base

Available
Rules

Select
Rule

Facts Rules New
Fact

Fig. 3.2 Forward Chaining Schema

• Conflict Resolution Choose the rule based on its priority and ignore rules with known
conclusions

• Execution the rule and the result as a fact in the fact base

• End Condition define the end of the procedure since there is no rule without results

In forward chaining, query is entailed if it maps by homomorphism to the enriched facts
[159].

Algorithm 2 Backward Chaining
1: procedure BACKWARD CHAINING
2: Input: Knowledge base: including facts and rule
3: Outputs:
4: goalsKnowledge base
5: goal isSatisfied False
6: for all Facts in Fact Base do
7: if all premises match fact-base then
8: for all Rules in Rule Base do
9: if fact not in fact-base then

10: add Fact to Fact Base
11: newFact = True
12: end if
13: end for
14: end if
15: end for
16: end procedure

60 Definition of the Pattern Schema and Language

3.6.2 Backward Chaining

Backward chaining is a goal-driven inferencing that provides a backward search from goal to
the conditions used to satisfy this goal. Backward chaining tests if an hypothesis is true. The
main idea of the backward chaining is based on goal reduction to prove the fact that appears
in the conclusion and proves the premises of rule recursively. Backward chaining systems
usually employ a Depth-First Search (DFS) strategy. DFS is a technique for solving graph
problems such as finding connected components of directed or undirected graphs [160]. DFS
can be used as an algorithm to search or traverse data structures of graphs or trees. The
algorithm visits the nodes of the graph until to reach a leaf or a node without having non
visited nodes. It starts at the root following a children sub tree. Backward chaining proceeds
in the reverse manner compared to forward chaining because it applies the rules to rewrite the
query in several ways and the initial query is entailed to the initial facts [159]. The forward
reasoning is expressed in Algorithm 2.

Syntax : conclusion < IF > conditions < . >

A comparison of forward and backward chaining is provided in [161] and the most critical
points are presented in table 3.1.

3.7 Pattern Components

Before the construction of the pattern language, a number of different components are
required to be defined. The background knowledge and component definitions are provided
in the next subsections.

3.7.1 Network Graphs

To express architectural topologies of networks including spanning tree component composi-
tions as an integration of components and flows, the basics of graph theory approach can be
used adequately [162, 163].

Definition 3. A graph G=(V,E) is a directed graph that contains a set of vertices V and a set of
edges E as ordered pairs of vertices so V = {u1,u2, ...,ui} and E = {(u1,u2),(u2,u3), ...,(ui�1,ui)}
then E ✓ V ⇥V .

In Algorithm 3, the expression of forward chaining in graphs is described.
The generic graph theory approach can be defined to satisfy network topologies including

physical (or virtual) network components such as nodes and links. Therefore, the term of

3.7 Pattern Components 61

Table 3.1 Comparison Between Forward and Backward Chaining

Forward Reasoning Backward Reasoning
Starts with the initial facts Starts with some hypothesis or goal
Asks many questions Asks few questions
Tests all the rules Tests some rules
Slow, because it tests all the rules Fast, because it tests less rules
Provides a huge amount of informa-
tion from a small amount of data

Provides a small amount of informa-
tion from just a small amount of data

Attempts to infer everything possible
from the available information

Searches only that part of the knowl-
edge base that is relevant to the current
problem

Primarily data-driven Goal-driven
Uses input; searches rules for answer Begins with a hypothesis; seeks infor-

mation until the hypothesis is accepted
or rejected

Top-down reasoning Bottom-up reasoning
Works forward to find conclusions
from facts

Works backward to find facts that sup-
port the hypothesis

Tends to be breadth-first Tends to be depth-first
Suitable for problems that start from
data collection, e.g. planning, monitor-
ing, control

Suitable for problems that start from a
hypothesis, e.g. diagnosis

Non-focused because it infers all con-
clusions, may answer unrelated ques-
tions

Focused because all questions aim to
prove the goal and search as only the
part of KB that is related to the prob-
lem

Explanation not facilitated Explanation facilitated
All data is available Data must be acquired interactively

(i.e. on demand)
A small number of initial states but a
high number of conclusions

A small number of initial goals and a
large number of rules match the facts

Forming a goal is difficult Easy to form a goal

G = (N,L) can be used instead of G = (V,E), where N is a set of nodes that will be used
instead of the term vertices and L is a set of links that will be used instead of the term edges.
The following terms can be used to define the properties of network graphs.

• Nodes can be defined as N = {n1,n2, ...}. Other definition of source can be src or s
and dst or t as the destination.

62 Definition of the Pattern Schema and Language

Algorithm 3 Forward Chaining in Network Graphs
1: procedure FORWARD CHAINING IN GRAPHS

Input: Graph G = (V,E), directed or undirected with v 2 V and e 2 E : V xV
Output: Path

2: for all v 2 V do
3: while u 2 V has an unvisited neighbour v 2 V do
4: for u 2 j = 1 to n�1 do
5: if a 2 M(i0, j0) then
6: M(i0, j0) = {a}
7: else
8: M(i0, j0) = M(i0, j0)� A
9: end if

10: end for
11: end while
12: end for
13: end procedure

Network

getNodes()
getLinks()

Node
*..1

Link
src: Node()
dst: Node()

*..1

2..1

Path

getSrcNode()
getDstNode()

..1..1

Fig. 3.3 Class Diagram of the Network Components in Graphs

• Links can be defined as L = {l1,l2, ...} where is an ordered pairs of nodes so L ✓ N xN:

L = {l1,l2, ...,li} = {hn1,n2i, hn2,n3i, ..., hni�1,ini} (3.9)

3.7 Pattern Components 63

• Path between two nodes Path(s,t) is a sequence of different nodes N and links L
which connect source s and destination t. A path can be represented as:

Path(s,t) = (s, hs,n1i,n1, hn1,n2i,n2, ...,nk, ...hnk,dst,i,t) (3.10)

• Length of a path is the sequence of i+1 nodes and i consecutive links.

• Adjacent are two nodes {ni,nj} when exists a link li j 2 L between them.

• Directed is the graph/network that each link (ni,nj) belonging to L has a direction that
does not imply that (nj,ni) belongs to L, where Links are called arcs.

• Weighted is the graph G = (N,L) when there is a value wi j associated with each
link li j representing a number or attribute (ie. cost, lengths, capabilities, link speed,
capacity, security property etc.). The graph can be denoted as (G,W) or G = (N,L,W).
A weighted path based on the function can be represented as follows:

Pathw(s,t) = (s, hs,n1i,n1, hn1,n2i,n2, ...,nk, ...hnk,t,i,t) (3.11)

• Loop exists when both endpoints of a link are on the same node.

• Simple is the graph that has not any loop and a node/link appear only once.

• Parallel defines the parallel links.

• Degree of a n node deg(n) is the number of interconnected nodes (in-degree: number
of nodes entering, out-degree: number of nodes leaving).

• Weight of a l link weight(l) is the number related to the factor of the link.

• Depth of a node is the number of links from the root.

• Connected is the graph when every pair of nodes can be connected by a path.

• Trial is the path without repeated links.

• Cycle or closed path is the path that begins and ends at the same node and all links
are different.

• Tree is a connected graph without cycles when there is only one path between two
nodes.

64 Definition of the Pattern Schema and Language

• Height of a node is the number of nodes of the longest path to any node.

• Diameter of a network is the maximum length of any shortest path between an ingress
and an outgress node.

• Distance of a path is the minimum number of links along a path from ni to nj .

3.7.2 Network Components

Network topologies include a number of different components and functions on different
layers. The topologies can determine actual network infrastructures including different
network elements such as end-hosts, network service functions, intermediate nodes and
forwarding devices. Network components may be classified in two types the physical and
the virtual ones. Especially in SDN, the term of SDN controller can be also included in the
list of architectural components. More specifically, the following type of components are
mainly used in this work.

• End hosts can be servers and clients, controllers and applications running on network
infrastructures.

• Forwarding Nodes can include intermediate and forwarding nodes such as routers,
switches (legacy of programmable), hubs, IoT gateways, wireless access points,

• Network functions may include Firewall, IDS, DPI, and Honeypot.

• SDN Controllers are responsible to manage and monitor network components of an
SDN architecture.

In addition to that, regarding the network links, there are two categories the physical and
the virtual. In the case of physical link, this can also include wireless or wired links such
as Ethernet, coaxial or fibre-optic cables. Each of the described links can also have specific
capabilities and constraints.

3.7.3 SFC Terms and Components

The basic terms and definitions of SFC architectural components and configurations are
based on the IETF, SFC Architecture [110] and SFC environment Security requirements
[164] as follows:

3.7 Pattern Components 65

• Service Function Chain (SFC) defines an ordered set of abstract service functions
and ordering constraints that must be applied to packets and/or frames and/or flows
selected as a result of classification. The SFC is also called as Virtual Network Function
Forwarding Graph (VNF-FG).

• Service Function (SF) is responsible for specific treatment of received packets. A set
of service functions includes functions such as firewall, DPI, IDS, etc. Each function is
located beside a forwarder which is able to forward the traffic to the specific function.
These services may be composed of one or multiple instances. These may be the
physical appliances or virtual machines running in NFVI. Service functions are key
security mechanisms to be leveraged in a secure industrial infrastructure, and deployed
as virtualised network service functions.

• Service Function Instance (SFI) denotes an instantiation of a service function.

• Service Node (SN) is a virtual or physical element that holds at least one service
function. An SN can contain an entire SFC or a part of it.

• Classifier is responsible to classify incoming traffic based on the predefined flow rules
of the ACLs and mark packets with the corresponding SF Chain Identifier. It can be
on a data path or run as an application on top of a network controller. Classifiers are
responsible for assigning traffic to the appropriate service chain, based on various
criteria, such as its maliciousness or the tenant that it belongs to. It can be assumed
that tenant identities have already been validated by authentication/authorisation com-
ponents. Classifier is responsible to embed a header into the flow packet utilising the
NSH field to facilitate the forwarding of flow packets along the service function chain
path. This header also allows the transport of metadata to support various service chain
related functionalities.

• Service Function Forwarder (SFF) is responsible for forwarding traffic to one or
more connected service functions according to information carried in the SFC encap-
sulation, as well as handling traffic coming back from the service function (legacy or
virtual). A set of service function forwarders can forward the traffic to the assigned
service chain. Service Forwarders and Proxies (where needed) are responsible for steer-
ing traffic accordingly, in order to realise said Service Chains. The Service Function
Forwarders steer traffic to the various Service Function Nodes. If the Service Function
Nodes are not OpenFlow-speaking or SFC-aware, or are in different domains, SFC
Proxies are necessary.

66 Definition of the Pattern Schema and Language

Node

Host

Classifier

*

1
Forwarder

1 *
ServiceNode

1 *

Function

functions
*..1

Chain

functions
*

Path

nodes
*

Link

links
*

nodes
2

Fig. 3.4 Class Diagram of the Network Components in Service Function Chaining

• Service Function Path (SFP) is a constrained specification of where packets assigned
to a certain route must go. Any overlay or underlay technology can be used to create
service paths (VLAN, ECMP, GRE, VXLAN, etc.). SFP is related to the SFC and may
provide information such as SF instances and in case this is not provided, the RSP can
provide the actual path.

• Rendered Service Path (RSP) is the actual Service Chain that refers to the SFP and
includes all the SFP and SFC information for creating the Service Chain. If SF details
are not included in the SFP, path selection algorithms can be used to to identify routes
and to includes to programmable SFFs.

• Tenant: A tenant is an organisation that may use SFC on one’s own private infrastruc-
ture or on an infrastructure shared with other tenants. The tenant may be using SFC to
provide service to its customers or users.

3.7.4 Data Flows and Policies

Flows are considered the transport of physical quantities or the transmission of computed
data on network infrastructures. More specifically, data flows include data packets and bit
streams. On the other hand, physical quantities can be water and oil quantities. Especially
for control flow analysis, a reverse postordering depth-first search can be used to produce
natural linearisation of directed graphs.

3.7 Pattern Components 67

Packet
packet_size:Int

add_payload(void)
add_header(void)

Header
protocol:String
src:(ip,port)
dst:(ip,port

1..1
Payload

payload : String
payload_size : Int

1..1

Fig. 3.5 Class Diagram of Packet Components

3.7.4.1 Network Packets

A network packet is a formatted unit of data carried by a packet switched network. Packet
consists of the control information as included in the header and data in the payload as
follows:

• Packet p := hphdr,ppldi.

• Header phdr := hproto,srcIP,dstIP,srcPort,dstPorti where proto 2 {ip.icmp,tcp,udp},
srcIp,dstIp 2 IP, srcPort,dstPort 2 (0..65535).

• Payload ppld := data payload

3.7.4.2 Packet Encryption

The encryption of packet p is defined by the use of hash functions E so the p E(p) = c. The
cipher c can be decrypted by the use of the decryption function D so the c D(c) = p. The
key k which has specific length length(k) can be used for encrypting and decrypting packets
using the described respective encryption and decryption functions Ek /Dk respectively. In
case of symmetric encryption the term can be expressed as ES

k /DS
k . In case of asymmetric

encryption, the key can be expressed as k AB from A to B and kBA from B to A and the
encryption/decryption functions as EA

k /DA
k .

68 Definition of the Pattern Schema and Language

1 <?xml version="1.0" encoding="UTF-8" standalone="no"?>
2 <flow xmlns="urn:opendaylight:flow:inventory">
3 <idle�timeout>0</idle�timeout>
4 <priority>1</priority>
5 <flow�name>flow1</flow�name>
6 <match>
7 <ipv4�source>10.0.0.2/24</ipv4�source>
8 <ipv4�destination>10.0.0.1/24</ipv4�destination>
9 <in�port>openflow1:1</in�port>

10 </match>
11 <id>1</id>
12 <table_id>0</table_id>
13 <instructions>
14 <instruction>
15 <order>1</order>
16 <apply�actions>
17 <action>
18 <output�action>
19 <output�node�connector>2</output�node�connector>
20 </output�action>
21 <order>1</order>
22 </action>
23 </apply�actions>
24 </instruction>
25 </instructions>
26 </flow>

Fig. 3.6 OpenFlow Rule Example

3.7.4.3 Flow Policies and Filtering

Flow rule policies can be used to classify and handle traffic and resource constraints. ACL
is an example of a flow rule having a list of permissions which grant access and operations
to objects such as network packets. ACLs are used to filter network traffic in the switches,
routers, firewalls etc. An ACL is a list of filtering rules that are able to deny, redirect or
allow traffic when packets match specific criteria such as i) source and destination IP address,
MAC address and TCP/UDP port, ii) IP Protocol, iii) MAC ether type, iv) VLAN Priority, v)
Differentiated Services Code Point (DSCP) and finally v) ICMP type and code.

OpenFlow is a protocol able to manage and modify flow entries in a switch forwarding
table from a SDN controller . More specifically OpenFlow rules can managed by the
controller to determine the network traffic path through programmable switches. Compared

3.8 Pattern Language 69

to the ACL rules, OpenFlow rules enable also more sophisticate packet forwarding through
specific paths and routes. The structure of the OpenFlow rule has some similarities with the
ACL but it includes also some additional fields such ingress port and output which are related
to the path selection and classification. Finally, apart from the match and action capabilities
of the openFlow protocol, there is also the capability for retrieving data flow statistics by the
programmable switch. The structure of an OpenFlow rule can contain the following field as
presented in Figure 3.6.
The main flow policy notations can be expressed as filtering rules applied to the properties of
packets as presented below:

• Flow Rule: f : haction : {encrypt,bypass,drop},protocol,src,dst,propertyi

• Set of Flow Rules: F = hf1,f2, ...i

• ACL Rule: fa = haction : {permit,deny,redirect},
match : {src{IP,M AC,Port},dst{IP,M AC,Port},proto{ip.icmp,tcp,udp}, · · · i

• OpenFlow Rule: fo = hmatch : {in port,src{IP,M AC,Port},dst{IP,M AC,Port},
vlanID,vlanPCP,ipSrc,ipDst,ipPr,ipToS},
action: {Forward packet to port(s), encapsulate and forward to controller,
drop packet, send to normal processing pipeline}i

• Filter Network G = hN,L,Fi. where N are the Nodes, L the links and F the filters.

3.8 Pattern Language

Design patterns can be expressed as pattern rules. For that reason, a rule engine is required
to support backward and forward chaining inference and verification. Drools rule engine
[27] is selected to express design patterns as production rules. Enabling reasoning, driven
by production rules, appears to be an efficient way to represent design patterns. It enables
reasoning driven by production rules, usually used for business management, software
development and service oriented architectures, but they can be also applied adequately to
the design of network architectures. It supports backward and forward chaining inference
and verification by applying and extending the Rete algorithm [149]. Each rule consists of
two parts: the when conditions and the then actions. When the conditions in the Left Hand
Side (LHS) are satisfied, then the rule is fired to execute the actions as described in its Right
Hand Side (RHS). Drools inference engine is using forward chaining searches the inference
rules until it finds one where the antecedent (If clause) is known to be true. When such a rule

70 Definition of the Pattern Schema and Language

is found, the engine can conclude, or infer, the consequent (Then clause), resulting in the
addition of new information to its data. An example of a Drools rule can be seen in Rule
3.1. Furthermore, Drools can also support backward chaining as presented in Rule 3.2 as an
inference method that can be described (in lay terms) as working backward from the goal(s).

1 rule "Hello World"
2 when
3 m : Message(status == Message.HELLO, myMessage : message)
4 then
5 System.out.println(myMessage);
6 m.setMessage("Goodbye cruel world");
7 m.setStatus(Message.GOODBYE);
8 update(m);
9 end

10
11 rule "GoodBye"
12 when
13 Message(status == Message.GOODBYE, myMessage : message)
14 then
15 System.out.println(myMessage);
16 end

Rule 3.1 Drools Sample

1 query isContainedIn(String x, String y)
2 Location(x, y;)
3 or
4 (Location(z, y;) and isContainedIn(x, z;))
5 end
6
7 rule "go1"
8 when
9 String(this == "go1")

10 isContainedIn("office", "house";)
11 then
12 System.out.println("office is in the house");
13 end

Rule 3.2 Backward Chaining Drools Sample

Computational models include a set of objects, rules and semantics. In order to specify
and express design patterns with respect to S&D properties and constraints, the semantics of

3.8 Pattern Language 71

the pattern language should be defined. As mentioned previously, different network topology
ontologies such as Nodes, Links and Flows are included in the list of the components. The
correlation between the different components are depicted in the class diagram as shown in
Figure 3.7. Moreover, the Req represents the constraints as requirements of the topology
and the required property. Therefore, different Java classes were developed to represent the
different Network Components of the topology (nodes, links, paths and flows) and the S&D
Requirements and Properties as needed by Pattern Rules. All the developed Java classes are
included in the Annex of this thesis.

Node
 - id: String
 - position: Coordinates
 - address: IPaddress
 - encryption: Boolean
 - encryptionKeys: List<Key>
 - range: double

Link
 - pathLoss: Probability

 + getSource()
 + getDestination()

Network
 + getNodes()
 + getPaths()
 + getFlows()

Path
 + getLinks()
 + getNodes()

Flow
 + setSourceIP()
 + setDestinationIP()
 + setPriority()

Requirement
 - satisfied: Boolean
 - path: Path
 - property: Property

 + getPath()
 + setProperty()
 + setSatisfied()

Property
 - name: String
 - value: Value

Fig. 3.7 Class Diagram of Network Components

Drools rule semantics are used to encode the topology of a pattern and the process of
finding suitable component compositions in order to guarantee the required properties. The
definition of the component in Drools language are based on the previous described network
components. In the LHS, the network components which constitute the topology of the
pattern are defined. In the RHS, new or updated compositions or atomic components can
be inserted, updated, modified, executed or deleted/retracted of facts in the knowledge base
which will update also the inventory list. When a network that matches the topology of a
pattern does not satisfy the required property, the pattern may be used to substitute, add or
remove components in order to satisfy the property. In Table 3.2 the most useful semantics
are presented. Finally, the semantics of Drools language give the potentiality to represent
more complex patterns by adding more variables and pattern properties.

72 Definition of the Pattern Schema and Language

Table 3.2 Pattern Language Semantics

Type Syntax Description

rule rule "name" name of the rule

Left Hand Side (LSH)

when

Network Pattern Elements (Facts)
Node (address, ports, position, properties) match network nodes

Link (src, dst, weight) match links between nodes

Path (src, dest, links, nodes) match paths between source and destina-
tion nodes, intermediate links

Flow (src, dst, inPort, outPort, priority) match flow rules between nodes

Req (src, dst, pro, satisfied) match requirements of pattern such as
source, destination, satisfied property

Conditional Elements
== match conditions

contains contains object (logical)

not not match (logical)

!= not match (arithmetic)

collect, accumulate, forall, extists not arithmetic

Right Hand Side (RSH)

then

Actions
modify ($fact){pro=pro’} modify knowledge base fact

retract ($fact) retract knowledge base fact

insert (new Fact ()) insert knowledge base fact

update ($fact) update knowledge base fact

Java commands other Java language syntax

3.9 Summary

In this chapter, the pattern schema was defined. Design patterns express conditions that
can guarantee specific S&D properties and can be used to design networks that have these
properties and manage them during their deployment. The topology of the patterns and the
component compositions preserving properties were also described. The functional and the
non functional requirements as expressed in patterns are also presented. In addition, the

3.9 Summary 73

pattern specification was also provided. Moreover, the forwarding and backward reasoning
inference mechanisms were also defined as the two main methods of reasoning when using
an inference engine for expert systems, business and production rule systems. In addition, the
different components as used by the proposed patterns were also included. Finally, a pattern
language was proposed to design executable patterns, encoded in a rule-based reasoning
system, able to guarantee S&D properties in SDN/NFV-enabled networks in order to mitigate
security and dependability challenges.

Chapter 4

Secure and Dependable Design Patterns

4.1 Overview

This chapter presents the development of pattern instances supporting the design and verifica-
tion of physical and virtual network topologies, based on the pattern specification schema as
discussed in Chapter 3. Design patterns are proposed to design network topologies, guarantee
S&D properties and finally provide service provisioning and chaining. In the next subsec-
tions, a number of different design patterns are proposed including the network topologies
patterns, the path discovery pattern, the reliability and fault tolerance patterns, the security
patterns and finally, the SFC patterns.

4.2 Topology Patterns

A network topology defines the arrangements of elements and can be either physical or
logical. The design of network infrastructures can be based on topology patterns as described
below.

4.2.1 Physical Topology Patterns

4.2.1.1 Background

A physical topology describes how the nodes are connected in the network, where are placed
and what type of link exists between them. There are different physical network topologies
(Figure 4.1) as described below:

• Line topology is used to define the connection between two endpoints.

76 Secure and Dependable Design Patterns

Fig. 4.1 Physical Network Topologies

• Bus topology uses a common backbone to connect all nodes. A single cable can be
connected with a number of network nodes. A bus topology is cost effective and can
be easily expanded.

• Star topology features a central connection node (network hub). Compared to the bus,
a failure to the communication medium can only affect the attached node and not all
the network. A star graph has only one node with degree greater than one.

• Tree topology contains a root node at the top level of the hierarchy connected to one
or more nodes, one level lower. Tree is a connected graph without cycles. Cellular
networks are tree topologies. A chain is a tree where there are no nodes of degree
greater than two. A tree can be unreliable due to a single point of failure.

• Ring topology contains nodes with each node having two exactly neighbours. All
packets travel to the same direction (clockwise or counterclockwise) providing the
capability for redundancy in case of a failure.

• Mesh topology provides redundant paths. In mesh graph each node is connected with
each adjacent/neighbouring node. Each node must have at least a degree of 2 or more.
Fully meshed is the graph where every node is connected with all the other nodes. Grid

4.2 Topology Patterns 77

topology is also a mesh technology used in wireless sensor networks. The messages
can be sent in routing logic or in flooding.

• Hybrid can combine variations of different network topologies. For instance, a hybrid
tree can integrate multiple star topologies into a bus in hybrid approach. The leaf
devices connect to a higher level and eventually, all nodes lead to a central node that
controls all.

Topology

Line

Tree

3..1

Mesh
4..1

FullMesh

2..1 1..1

s

t

s

n

t

(i)

s

t1 t2

s

n1 n2

t1 t2 t3 t4

(ii)

n11 n12

n21 n22

n11 n12

n21 n22

n31 n32

n13

n23

n33

(iii)

n11 n12

n21 n22

n11 n12

n21 n22

n31 n32

n13

n23

n33

(iv)

Fig. 4.2 Network Pattern Compositions (i) Line (ii) Tree (iii) Mesh (v) Full-Mesh

An important factor for all the network topologies includes the composition of the
different network topology patterns. Based on this procedure, Figure 4.2 presents the
composition phases based on basic network patterns as described in the next subsections.

78 Secure and Dependable Design Patterns

4.2.1.2 Line Pattern

The Line Pattern appears to be the basic ingredient for all other basic topology patterns. It
is based on the point-to-point network topology similarly to the sequence workflow pattern.
The structure of the line pattern includes two placeholders: the source node s, the destination
node t.

Line(s,t) = {Node(s),Node(t)} (4.1)

When 9 a link Link(s,t), then the line pattern defines an atomic composition of nodes.
Moreover, when 9 a path Path(s,t) ö Link(s,t), the line pattern defines a composition of
nodes. The degree of each node is deg(n) 2 since all nodes apart from the leaf and the
end nodes have degree 1 when all the other have 2. The Line Pattern can design network
topologies guaranteeing the connectivity property. However, one crucial factor for the line
topology is the distance between nodes and their position. Based on this requirement which
affects initially the line pattern and consequently all the network topology designs, the
following definitions are given:

• The distance between nodes is related to the range of the transmission in case of
wireless connectivity or the maximum wired link distance. For instance, in Ethernet,
the maximum cable distance between nodes is 100m. On the other hand for wireless
networks, the transmission range of two nodes can be calculated by the Friis transmis-
sion equation [165]. The generic calculation for finding the distance d between two
nodes n1 = (x1,y1),n2 = (x2,y2) can be found as follows:

dn1n2 =

q
(x1� x2)2+ (y1� y2)2 (4.2)

• The position of a node (x,y) between two other nodes ((x1,y1),(x2,y2)) can be defined
as follows:

– The straight line between these two points is defined as follows:

y = ax+ b) y1 = ax1+ b,y2 = ax2+ b (4.3)

– The relation between the nodes and the position of the requested node is:

a =
y1� y2
x1� x2

b = y1� ax1

4.2 Topology Patterns 79

n1

n2

dn1n2

n

d

Fig. 4.3 Distance and Position of Nodes

y = ax+ b = ax+ y1� ax1 = a(x� x1)+ y1

– Based on the described equations, the position of a node n = (x,y) with distance
d from n1 is:

d =
q
(x� x1)2+ (y� y1)2)

d2 = (x� x1)2+(y� y1)2 = (x� x1)2+(a(x� x1)+ y1� y1)2 = (x� x1)2+(a(x� x1))2)

d2 = (1+ a2)(x� x1)2) (x� x1) = ±
dp

1+ a2
)

x = x1 ±
dp

1+ a2
)

x = x1+
dp

1+ a2

y = a(x� x1)+ y1 = a
⇣
x1+

⇣ dp
1+ a2� x1

⌘⌘
+ y1

– Finally, the position of the node n between the nodes n1,n2 is:

x = x1+
dp

1+ a2
,y = a

⇣ dp
1+ a2

⌘
+ y1 (4.4)

The line topo pattern can design line network topologies either following forward chain-
ing with line pattern composition or backward reasoning with pattern decomposition The
composition of line pattern can create a line network topology, as can be seen in Figure 4.3.

Line(s,n1)� Line(n1,n2)� Line(n2,n3)� Line(n3,t) =

80 Secure and Dependable Design Patterns

Line(Line(s,n1),Line(n1,n2))� Line(Line(n2,n3),Line(n3,t)) =

Line(Line(s,n2),Line(n2,t)) = Line(s,t)

s n1
lsn1

s n1 n2
lsn1 ln1n2

s n1 n2 n3
lsn1 ln1n2 ln2n3

s n1 n2 n3 t
lsn1 ln1n2 ln2n3 ln3t

Fig. 4.4 Line Composition

Rule 4.1 expresses the line topo composition pattern. The main target of the pattern is to
find the required nodes starting from a central node to a predefined range. The rule defines
the structure of the pattern, including the source in node1, the destination placeholder as
node2, and the maximum distance between them (line 4). When the required connectivity
value (span) is greater than the distance (dist) between the nodes of the line composition,
the rule will enter in the RHS (lines 5-7). A new node dst will be inserted in the working
memory and will be placed in the node2 position of the line topology, creating a link between
these nodes lines 11-12). Furthermore, the new node will be inserted in the topology in the
node1 position (line 13). Finally, a new requirement will be added (line 14) triggering also
the recursion of the pattern until the final goal is satisfied (lines 15-16).
The decomposition of the line pattern is analysed in the Figure 4.5:

Line(s,t) = Line(s,n2)� Line(n2,t) = Line(s,n1)� Line(n1,n2)� Line(n2,n3)� Line(n3,t)

The line decomposition pattern (Rule 4.2) is able to design line network topologies by
applying backward chaining. Starting from the identification of the end nodes (line 4)
and the requirement of the maximum allowed span between these nodes to guarantee the
connectivity property (lines 5-7). When the requested distance between nodes is greater

4.2 Topology Patterns 81

1 rule "Line Topo Composition"
2 ruleflow-group "Topo Line Composition"
3 when
4 $topo: Line($src:node1,$dst:node2, $dist:distance)
5 $req: Req($topo:=topo,$pro:property,
6 $pro.name=="Connectivity",$span: $pro.value,
7 $dist<=$span, satisfied==false)
8 $graph: Graph()
9 $count: Integer()

10 then
11 $dst=new Node(++$count,"relay", new Point($src,$dist));

$topo.setNode2($dst); $graph.addNode($dst);
12 Link $link=new Link($src,$dst); $graph.addLink($link);
13 Line $line=new Line($dst, new Node(), $dist); insert($line);
14 Req req=new Req($line,new Connectivity($span-$dist),false);

insert(req);
15 if ($span<$dist){
16 $dst.setGroup("client");}
17 modify($req){satisfied = true};
18 update($graph); retract($count); insert($count);
19 end

Rule 4.1 Line Pattern Composition Pattern Rule

s t
pst

s n2 t
psn2 pn2t

s n1 n2 n3 t
psn pn1n2 pn2n3 pn3t

Fig. 4.5 Line Decomposition

than the maximum, the rule will enter to the RHS where a new node will be added (line 11).
Moreover, two additional line components together with the requirements will be added in the
knowledge base (lines 12-15). Finally, two additional links will be added in the knowledge
based when the condition of dist < span is satisfied in the RHS (lines 16-18).

82 Secure and Dependable Design Patterns

1 rule "Line Topo Decomposition"
2 ruleflow-group "Topo Line Decomposition"
3 when
4 $topo: Line($src:=node1,$dst:=node2,$dist: distance)
5 $req: Req($topo:=topo,$pro:property,
6 $pro.name=="Connectivity",$span:$pro.value,
7 $dist>$span,satisfied==false)
8 $graph: Graph()
9 $count: Integer()

10 then
11 Node $node=new Node(++$count,"relay", new Point($src,$dist));

$graph.addNode($node);
12 Line $line1=new Line($src, $node); insert($line1);
13 Req $req1= new Req($line1,new Connectivity($dist/2),false);

insert($req1);
14 Line $line2=new Line($node, $dst);insert($line2);
15 Req $req2= new Req($line2,new Connectivity($dist/2),false);

insert($req2);
16 if ($span <= $dist){
17 Link $link1 = new Link($src,$node);$graph.addLink($link1);};
18 Link $link2=new Link($node,$dst); $graph.addLink($link2);};
19 modify($req){satisfied = true};
20 update($graph); retract($count); insert($count);
21 end

Rule 4.2 Line Pattern Decomposition Pattern Rule

4.2.1.3 Tree Pattern

The Tree Pattern is an extension of the star topology with at least three hierarchical levels.
A tree can be unreliable due to a single point of failure. Tree pattern can design network
topologies guaranteeing the scalability property. The tree topology consists of three different
elements: the root, the nodes and the leafs. The degree of each intermediate node is
deg(n) � 2 apart from the leaf and the end nodes are 1.

• The root is the first node of the tree that has no parents but only children.

• Each node has a single parent node which is closest to the root.

• Each node has zero or more children which are farthest from the root.

• The leaf is a node without a child.

4.2 Topology Patterns 83

When the central node is s, the destination nodes are t1,t2, ...tk where k is the degree of
the tree pattern, the number of the network links can be defined as follows:

Link(s,t1),Link(s,t2), . . . ,Link(s,tk) (4.5)

As described in Figure 4.2(ii), when the composition of two nodes and the degree of root is
2, then the number and the type of components can be defined as follows:

Tree(s,t1,t2)= {Line(s,t1)�Line(s,t2)} = {Node(s),Link(s,t1),Link(s,t2),Node(t1),Node(t2)}

1 rule "Tree Topo Composition"
2 ruleflow-group "Topo Tree Composition"
3 when
4 $topo: Tree($root: node1, $leaf1: node2, $leaf2: node3,
5 $dist: distance)
6 $req: Req($topo:=topo, $pro:=property,
7 $pro.name=="Scalability", $span:=$pro.value,
8 $dist<=$span, satisfied==false)
9 $graph: Graph()

10 $count: Integer()
11 then
12 $leaf1 = new Node(++$count,"relay", new Point());

$topo.setNode2($leaf1); $graph.addNode($leaf1);
13 Link $link12 = new Link($root,$leaf1);

$graph.addLink($link12);
14 Tree $topo1=new Tree($leaf1, $dist); insert($topo1);
15 Req $req1= new Req($topo1, new Scalability($span-$dist),

false); insert($req1);
16 $leaf2 = new Node(++$count,"relay",new Point());

$topo.setNode3($leaf2);$graph.addNode($leaf2);
17 Link $link13 = new Link($root,$leaf2);

$graph.addLink($link13);
18 Tree $topo2 = new Tree($leaf2, $dist); insert($topo2);
19 Req $req2= new Req($topo2,new Scalability($span-$dist),

false); insert($req2);
20 if ($dist>$span)){
21 $leaf1.setGroup("client"); $leaf2.setGroup("client");}
22 modify($req){satisfied = true};
23 update($graph); retract($count); insert($count);
24 end

Rule 4.3 Tree Topo Composition Pattern Rule

84 Secure and Dependable Design Patterns

The decomposition phase of a tree topology can be defined as follows:

Tree(s,{t1,t2,t3,t4}) = Tree(s,{n1,n2})�Tree(n1,{t1,t2})�Tree(n2,{t3,t4})

Tree(s,{Tree(n1,{t1,t2}),Tree(n2,{t3,t4}}) =

= Tree(s,{n1,n2})�Tree(n1,{t1,t2})�Tree(n2,{t3,t4})

The tree topo composition pattern can be expressed in the Rule 4.3. The tree topo rule
can design tree network topologies following forward chaining where the main target of
the pattern is to find the required nodes starting from a central node to reach the required
scalability property by satisfying a number of end nodes. The rule defines the structure of
the pattern, including the source in root, and two lea f nodes and the maximum distance
between them (lines 4-5). When the required scalability value (span) is greater than the
distance (dist) between the nodes of the line composition, the rule will enter in the RHS
(lines 6-8). Two new nodes lea f 1,lea f 2 will be inserted in the working memory and will
be placed in the node2,node3 position of the tree topology, with the additional links lines
12-14, 16-18). Finally, two new requirements will be added (lines 15,19), triggering also the
recursion of the pattern until the satisfaction of the final goal (lines 20-21).

4.2.1.4 Mesh Pattern

The Mesh Pattern is also based on the basic line network topology. In mesh graph, each
node is connected with each adjacent/neighbouring node. Each node has a degree equal to 2
or more. Fully meshed is the graph where every node is connected with all the other nodes.
Grid topology is a mesh technology used in wireless sensor networks. The messages can be
sent in routing logic or in flooding where all messages are transferred to. Mesh pattern can
design network topologies guaranteeing both coverage and redundancy.

The components of the mesh pattern are the central node s and the destination nodes
t1,t2, ...tk where k is the degree of the mesh pattern including a number of links:

Link(s,t1),Link(s,t2), . . . ,Link(s,tk)

In the described four-node pattern, the following structure can be defined:

Mesh(s,n1,n2,n3) = {Node(s),Node(n1),Node(n2),Node(n3)} =
= {Link(s,n1),Link(s,n2),Link(s,n3),Link(n1,n2),Link(n1,n3),Link(n2,n3)}

(4.6)

4.2 Topology Patterns 85

(a) Mesh 4-node Pattern

(b) Fully Mesh 4-node Pattern

Fig. 4.6 Stepwise Decomposition

The composition of a mesh pattern is based on multiple point-to-point topology. The
stepwise decomposition of the mesh and the fully-mesh pattern can be seen in Figure 4.6.
More specifically, the decomposition in the mesh pattern can described as follows:

Mesh(n11,n13,n23,n33) =

Mesh(Mesh(n11,n12,n21,n22),Mesh(n12,n13,n22,n23),

Mesh(n21,n22,n31,n32),Mesh(n22,n23,n32,n33

The Mesh Topo Decomposition Pattern is presented in Rule 4.4. The pattern is able to
design mesh network topologies by applying backward chaining. The rules identifies the end
nodes (line 4) and the requirement defining the maximum allowed span between these nodes
to guarantee the coverage property (lines 5-7). Moreover, to avoid duplication of existing
nodes in the topology, an additional constraint is entered (lines 8-9). When the conditions
are met, the rule will enter to the RHS, where four different mesh topologies (lines 15,18, 21,
23) will be inserted in the working memory with the required nodes (lines 12-14,17-18, 20)
and requirements (lines 16,19,22,24).

86 Secure and Dependable Design Patterns

1 rule "Mesh Topo Decomposition"
2 ruleflow-group "Topo Mesh"
3 when
4 $topo: Mesh($n1: node1, $n2: node2, $n3: node3, $n4: node4,

$dist:distance)
5 $req: Req($topo:=topo, $pro: property,
6 $pro.name=="Coverage", $span: property.value,
7 $dist> $span, satisfied==false)
8 $graph: Graph(nodes contains $n1, nodes contains $n2,
9 nodes contains $n3, nodes contains $n4)

10 $count: Integer()
11 then
12 Node $n5 = new Node(++$count,"relay", new Point($n1,$n2));

$graph.addNode($n5);
13 Node $n6 = new Node(++$count,"relay", new Point($n1,$n3));

$graph.addNode($n6);
14 Node $n7 = new Node(++$count,"relay", new Point($n1,$n4));

$graph.addNode($n7);
15 Mesh $mesh1 = new Mesh($n1,$n5,$n6,$n7); insert($mesh1);
16 Req $req1=new Req($mesh1,new Coverage($span),false);

insert($req1);
17 Node $n8 = new Node(++$count,"relay", new Point($n2,$n4));

$graph.addNode($n8);
18 Mesh $mesh2 = new Mesh($n5,$n2,$n7,$n8); insert($mesh2);
19 Req $req2=new Req($mesh2,$new Coverage($span),false);

insert($req2);
20 Node $n9 = new Node(++$count,"relay", new Point($n3,$n4));

$graph.addNode($n9);
21 Mesh $mesh3 = new Mesh($n6,$n7,$n3,$n9); insert($mesh3);
22 Req $req3=new Req($mesh3,new Coverage($span), false);

insert($req3);
23 Mesh $mesh4 = new Mesh($n7,$n8,$n9,$n4); insert($mesh4);
24 Req $req4=new Req($mesh4,new Coverage($span),false);

insert($req4);
25 modify($req){satisfied = true};
26 update($graph); retract($count); insert($count);
27 end

Rule 4.4 Mesh Topo Decomposition Pattern Rule

4.2.2 Logical Topology Patterns

Compared to physical topologies, a logical topology defines how devices, components or
processes interact or communicate with each other. A logical topology can include the

4.2 Topology Patterns 87

transmission of signals through a network. The communication of nodes can define the
logical topology in a physical topology. Logical topologies describe the path of data between
nodes through physical network topologies. The basic building blocks for forming logical
network topologies can be the same to those identified for workflow patterns [137]. Flows
on physical and cyber networks can be described as a composition of workflows, such as
sequence, parallel-split, multi-choice, multi-merge and exclusive choice. More specifically,
as it can be seen in Figure 4.7. Workflow patterns are suitable for graph analysis as presented
in [166]. The composition of different service functions as chains can be based on different
workflows such as the sequence, multi-choice, parallel and exclusive choice based on the
predefined workflow patterns as follows:

AND

AND

OR

OR

XOR

XOR

Fig. 4.7 Basic Logical Topologies: (a) Sequence (b) Parallel-split-join (c) Multi-choice-join
(d) Exclusive-choice-join

• Sequence The sequence pattern defines that a process is enabled after the completion of
a previous one. Especially for networks, the sequence topology depicts the sequential
composition of nodes in a network. This topology is the fundamental approach for
building network process blocks and the diameter/tiers of a network.

• Parallel-split-join The parallel-split-join topology (AND–AND) allows the parallel
split into two or more branches. This pattern is able to provide load-balance in network
transmissions.

• Exclusive-choice-join The exclusive-choice-join topology (XOR–XOR) diverges a
branch into two or more exclusive branches. The latter topology can be used in
networks in order to avoid flooding and for conditional routing.

• Multi-choice-join The multi-choice-join topology (OR-OR) provides the execution of
a process to be diverged to two or more branches. This topology offers redundancy in
network structures.

88 Secure and Dependable Design Patterns

WorkFlowTopology

Sequence

ParallelSplit 2..1

ParallelJoin
2..1

MultiJoin
2..1

ExclusiceChoice2..1

ExclusiceJoin
1..1

MultiChoice2..1

Fig. 4.8 Class Diagram of the Workflow Patterns

The described logical topologies can express the interaction between the components.
This involves the different aspects of component compositions related to specific metrics such
as the probability, the maximum and minimum costs/time and encryption size, as described
in Table 4.1. The logical topologies can be used to design logical network topologies
guaranteeing specific S&D properties as described in the next sections.

4.2 Topology Patterns 89
Ta

bl
e

4.
1

C
om

po
si

tio
n

M
et

ric
s

Pa
tte

rn
N

am
e

St
ru

ct
ur

e
Pr

ob
ab

ili
ty

M
ax

tim
e/

co
st

M
in

tim
e/

co
st

Bo
ol

ea
n

En
cr

yp
tio

n
Si

ze

Se
qu

en
ce

AN
D

AN
D

OR OR

XO
R

XO
R

P
=
Œ n k=

1(p
k
)

Õ n k=
1

c i
Õ n k=

1
c i

tru
e

m
in
{k

ey
1,
..,

ke
y n
}

Pa
ra

lle
l-

sp
lit

-jo
in

(A
N

D
-A

N
D

)

AN
D

AN
D

OR OR

XO
R

XO
R

P
=
Œ n k=

1(p
k
)

m
ax

{c
1,

c 2
}

m
in
{c

1,
c 2
}

tru
e/

fa
ls

e
m

in
{k

ey
1,
..,

ke
y n
}

M
ul

ti-
ch

oi
ce

-
jo

in
(O

R
-O

R
)

AN
D

AN
D

OR OR

XO
R

XO
R

P
=

1�
Œ n k=

1(1
�
p k
)

m
in
{c

1,
c 2
}

m
in
{c

1,
c 2
}

tru
e/

fa
ls

e
m

in
{k

ey
1,
..,

ke
y 2
}

Ex
cl

us
iv

e-
ch

oi
ce

-jo
in

(X
O

R
-X

O
R

)

AN
D

AN
D

OR OR

XO
R

XO
R

P
=

m
in
{p

1,
p 2
,.
..,
p n
}

m
ax

{c
1,

c 2
}

m
ax

{c
1,

c 2
}

tru
e/

fa
ls

e
m

in
{k

ey
1,
..,

ke
y 2
}

90 Secure and Dependable Design Patterns

4.3 Path Discovery Pattern

Network failures are related to misconfigurations including violation on properties such
as reachability, security and dependability. Connectivity is the property that given a graph
G and two vertices s and t determine if there is a path between the nodes. A graph is
connected if every pair of nodes are connected through a path. Higher connectivity and
average nodal degree and shorter average length path and network diameter can lead to
higher network reliability [167]. Application reliability is related to network connectivity
and routing protocols (Djistktra, and BFS).

Connectivity plays a crucial role in reliable networks [168]. The connectivity between the
different components is one important requirement of the component composition. Different
parameters such as the distance between network nodes that is a topological constraint for
a network may be expressed through pattern’s constraints. For instance, in wired networks
the connectivity can be satisfied using suitable interfaces and cables. However, in wireless
networks, the connectivity is based on the coverage of each node and it can be classified
into deterministic and probabilistic models. However, for a wireless link the following can
be assumed: either a communication link is characterised as a component having specific
properties (propagation, length, interference, noise, etc.) or a link is a connector of two
components i.e. two wireless sensors. As a general statement, connectivity can influence the
infrastructure or application communication based on the following factors:

• Network Topology: star, tree, mesh etc.

• Network Characteristics: connectivity, path length, nodal degree, network diameter.

• Routing Algorithms: short-path distance or hop (Djisktra, BFS, DFS).

• Delivery models: unicast, multicast, anycast broadcast etc.

• Other requirements: related coverage and density focused on wireless communica-
tions.

When there it is necessary to discover a path between two points, the search of available
links that is able to compose the path is required. As an example lets consider the path in
which a Link can be defined also as a Path from x to y.

Link(x,y) or ((Path(x,z)�Path(z,y))! Path(x,y) (4.7)

When the decomposition of Path(x,y) exists, then following can be assumed.

Path(x,y)! Link(x,y) or (Path(x,z)�Path(z,y)) (4.8)

4.3 Path Discovery Pattern 91

s

t

pst

s

t

pst lst OR

s

n

t

psn

pnt

s

n

t

psn

pnt

OR

s

n

n0

t

psn0

pn0n

pnt

Fig. 4.9 Path Decomposition

Let assume that there is a path between nodes s and t, then the following proposition can
be proved.

Proposition 1. Let a Path between two nodes s,t with s 2 N and t 2 N exists if and only if
there is a a link between these two nodes or there is a node n 2 N so the following expression
can be assumed:

Path(s,t)$ Link(s,t) or (Path(s,n)�Path(n,t)) (4.9)

Proof. The above proposition requires both directions to be proved. Based on path definition,
a path is a composition of consecutive edges. Therefore, when there is a link Link(s,t)
between two nodes s,t, then a least a Path(s,t) with length 1 exists so Link(s,t)! Path(s,t).
Furthermore, the composition of two paths Path(s,n) � Path(n,t) defines a Path(s,t) so
Path(s,n)�Path(n,t)! Path(s,t). On the other hand, when the length of a Path(s,t) is 1,
then a link Link(s,t) should exists. Furthermore, when the length of the path k is greater
than 1, then at least one node n exists defining two new paths Path(s,n) with length k1 and
Path(n,t) with length k2, k k1+ k2 so Path(s,t)! Path(s,n)�Path(n,t). ⇤

As described previously and depicted in the Figure 4.9, the procedure for path discovery
is based on the path decomposition. The procedure is expressed by the Path Discovery
Pattern which is able to guarantee end-to-end reachability and connectivity by the use of the
functionality of Drools to support backward chaining. The pattern is expressed in Rule 4.5 to
guarantee the discovery of a path between two nodes. The insertion of a query to express

92 Secure and Dependable Design Patterns

1 query isPath(Node src, Node dst)
2 Link(src, dst;)
3 or
4 (Link(src,node;) and isPath(node, dst;))
5 end
6
7 rule "Path Atomic"
8 ruleflow-group "Path Find"
9 when

10 $link: Link($src:=src, $dst:=dst)
11 $req: Req($src:=src, $dst:=dst, $pro:=property,
12 $pro.name=="Connectivity", satisfied==false)
13 $path: Path()
14 then
15 $path.addLink($link);
16 update($path);
17 modify($req){satisfied = true};
18 end
19
20 rule "Path Decomposition"
21 ruleflow-group "Path Find"
22 when
23 $link: Link($src:=src, $node:=dst)
24 isPath($node, dst;)
25 $req: Req($src:=src, $dst:=dst, $pro:=property,
26 $pro.name=="Connectivity", satisfied==false)
27 $path: Path()
28 then
29 $path.addLink($link);
30 update($path);
31 Req req= new Req($node, $dst, $pro, false);
32 insert(req);
33 modify($req){satisfied = true};
34 end

Rule 4.5 Path Discovery Pattern Rules

the Equation 4.9 is described in the lines 1-5. In the LHS, when there is a link between the
requested nodes (line 10) and the requirement is guaranteed (lines 11-12), the rule enters
in the RHS and the identified link is added in the path (line 15). On the other hand, when
there is no link between the end nodes, the rule can investigate available linked intermediate
nodes (line 23). By the use of the query, the isPath is applied to walk the path line 24 and
identify the available intermediate node for satisfying the requirement of line 25-26. In the

4.4 Reliability Patterns 93

RHS, the path decomposition can be applied to add the link in the path (line 29). Finally, the
rule will insert a new requirement in order to continue the recursive procedure of secure path
identification (lines 31-32).

4.4 Reliability Patterns

One of the most important issues for a system designer is to validate system reliability and
identify the weakest components in order to replace, redesign or find alternative solutions.
For that reason, the reliability is analysed as a critical property for the design of network
infrastructures.
Reliability Pattern can guarantee reliability to avoid node failures by installing multiple
nodes in parallel at design and assigning new paths at runtime. Reliability patterns can be
used to recursively build reliable network topologies. Network reliability can be defined as
a weighted graph where the weights represent the probabilistic approach for the node and
the links. To extend this approach for complex systems, including spanning tree component
compositions, a depth-first search based on a graph theory approach can be used adequately.
Especially, for control flow analysis, a reverse postordering depth-first search can be used to
produce natural linearisation of directed graphs.

4.4.1 Reliability in Compositions

System reliability depends on component’s arrangements. The two basic arrangements
include components in series and in parallel. Other arrangements can include parallel-series,
k-out-of-n or non-series-parallel systems [169] as will be described in the next subsections.

4.4.1.1 Reliability in Serial Compositions

For components in series, the reliability quickly decreases as the number of components
increases. In a serial system, a single failure results in entire assembly or system failure.
The addition of new components in series decreases the reliability of system. For network
topologies such as tree, star, linear and hybrid the logical topology follows the topology
of components in series. Components in series may have arrangements either following
the sequence or parallel-split workflow patterns. This occurs because a failure of a single
component will result in the failure of the system. Reliability of systems in series can be
defined as follows:

Definition 4. Let C = {c1,c2, ...cn} be a number of components in series and r1,r2, . . . ,rn be
the reliability of each component, then the component composition c will have reliability r

94 Secure and Dependable Design Patterns

equal to:

r =
n÷

k=1
(rk) (4.10)

Another topology of this pattern can be the parallel-split. The functional arrangement
of this structure is similar to the parallel, where as the logical reliability arrangement is
similar to the serial. In this case, the source input of c1 is equal to the c2 where as the outputs
are different. In this case, both components should be functional in order to guarantee the
property of the pattern.

4.4.1.2 Reliability in Parallel Compositions

On the other hand, in case of components in parallel, the reliability of the system exists
only when at least one component is functional. The reliability of the system is 1 minus the
probability that all fail. In parallel components, all redundant units failure causes system
failure. Thus, the addition of components in parallel increases the reliability of the subsystem.
In addition, actual network topologies, multi-path network topologies such as ring and mesh
networking can be expressed as parallel compositions. We may associate the multi-choice
pattern as a parallel arrangement because the failure of a single component does not cause
system failure. Reliability of components in parallel can be defined as follows:

Definition 5. Let C = {c1,c2, ...cn} be a number of components in parallel and r1,r2, · · · ,rn

be the reliability of each component, then the parallel component composition c will have
reliability r:

r = 1�
n÷

k=1
(1� rk) (4.11)

Based on the serial and parallel definitions, it can be easily proven the following:

Definition 6. When c is the composition of components c1 and c2 with reliability r1 and
r2 respectively, then (a) if a serial composition c preserves the reliability property, both c1

and c2 will satisfy the reliability property and (b) if both c1 and c2 preserve the reliability
property, the parallel composition c will also satisfy the reliability property.

4.4.1.3 Reliability in Non Series-Parallel Compositions

Reliability in non-series-parallel logical arrangements can define complex network topologies.
More precisely, fully-mesh physical network topology represents a specific case in which
reliability follows the non parallel-series arrangements. Therefore, to measure the reliability
of fully-mesh networks the division method is used [170]. In the fully-mesh topology

4.4 Reliability Patterns 95

consisting of four nodes and six links, the split of the pattern in a non-reducible series of
systems can be seen in Figure 4.10.

n1 n2

n3 n4

G1
G1

G2

G2 G3

G3

G1

n1

G2

n2

G3

n3 n4

G1

n1

G2

n2

n3

G3

n4

Fig. 4.10 Non-reducible Split of Fully Mesh Pattern

The reliability of the non series-parallel composition can be defined as follows:

r =
n÷

k=1
(rs

k)
n�1÷
k=1

(rp
k) (4.12)

where rs
k , rp

k are the non-reducible series and parallel system respectively. In case of the
non-reducible split of fully mesh pattern of the Figure 4.10, the equation is:

rG1 = rn⇥ (1� (1� rl)3), rG2 = (rn)2⇥ rl, rG3 = rn⇥ (1� (1� rl)2)

where G1,G2... represent the subgraphs of the composition.
So the atomic reliability of the fully-mesh pattern will be:

r = r1⇥ r2⇥ r3

= (rn⇥ (1� (1� rl)3))⇥ ((rn)2⇥ rl)⇥ ((1� (1� rl)2)⇥ rn)
= ((rn)4⇥ rl ⇥ (1� (1� rl)3)⇥ (1� (1� rl)2)

Finally, the summary of the reliability for the different network topologies can be evalu-
ated as depicted in the table 4.2.

96 Secure and Dependable Design Patterns

Table 4.2 Reliability in Physical Network Topology Patterns

Topo Topology Nodes Links System Reliability E2E Reliability
Line 2 1 (rn)2⇥ rl (rn)2⇥ rl

Tree 3 2 (rn)3⇥ (rl)2 (rn)3⇥ (rl)2

Star 3 3 (rn)3⇥ (rl)3 (rn)3⇥ (rl)3

Ring 6 6 (rn)6⇥ (rl)6 rn(1 � (1 �
((rn)2rl)3)2rn)

Mesh 4 4 (rn)4⇥ (rl)4 rn(1 � (1 �
((rn)rl)2)2rn)

Fully Mesh 4 6 (rn)4⇥ (rl)6 (rn)4 ⇥ (rl ⇥ (1 �
(1 � rl))3 ⇥ (1 �
(1� rl)2)

4.4.2 Serial and Parallel Reliability Pattern

In order to create reliable system design based on pattern, the following approach can be used.
The pattern validates whether the serial composition satisfies the required reliability property.
If this property is not satisfied, a component is added in parallel in order to increase individual
component reliability. The procedure continues until the composition of all components
guarantees the required property. In Figure 4.11 the execution order of pattern is depicted.

Let assume that a system with two placeholders in series provides the reliability property.
Then both c1 and c2 should provide the reliability property given c = c1 � c2. If there is no
atomic component to preserve the above reliability of c1, then a parallel composition of c11

and c12: c1 = c11 � c12 may provide such property. The same procedure can be followed for
c2 as well. Based on such parallel composition, we are able to create a reliable composition
of atomic components.

4.4 Reliability Patterns 97

The Reliability Serial and Parallel Pattern can be expressed as two Drools production
rules. These rules encode compositions corresponding to the structure of the logical reliability
arrangements.

Fig. 4.11 Activity Diagram of Reliability Pattern

We may consider two components, the c1 with source input v1 and output v2 and the
c2 having as source input v2 and output v3 and reliability r1, r2. The composition of c1

and c2 will be described as a new component c with reliability r based on the components’
arrangement. For the component composition in series, the control flow describes the serial
arrangement of the components c1 and c2. The data flow defines that for c1 the output v2

is the input of c2. The composition c will have as an input the v1 and as an output the v3.
In addition, the reliability property guaranteed by a serial component composition is equal
to r = r1 · r2. Therefore, the guaranteed reliability property r should satisfy the required
reliability property rd r . The encoded pattern in Drools is depicted in Rule 4.6.

The Reliability Serial Rule defines three processes of the pattern: the composition of
the components, the validation and the guarantee concerning the reliability of the serial
component composition. In the LHS, the rule searches for suitable components in which
the output of c1 will be the input of c2 in order to define a serial composition lines 3-4. The
topology of the composition (in this case a serial) is required in Line 5. In line 6 the required
reliability property is given. If the condition of r r1 · r2 is met, the rule enters in the RHS.
In the RHS, the rule creates a new component c with the input of c1, the output of c2 and
as reliability the product of r1 and r2 line 10-11. The new component c is inserted in the
working memory. If the condition is met, the rule will modify the satisfied requirement as
true indicating the end of the procedure as the pattern succeeds its goal.

98 Secure and Dependable Design Patterns

1 rule "Reliability Serial"
2 when
3 $c1: Comp($v1:=input, $v2:= output, $r1:= rel)
4 $c2: Comp($v2:=input, $v3:= output, $r2:= rel)
5 $topo: Serial($c1:= src, $c2:= dst)
6 $req: Req($v1:=input, $v3:=output, $pro:=property,
7 $pro.name=="Reliability",$rel:$pro.value,
8 $rel<=$r1*$r2, satisfied==false)
9 then

10 Comp comp = new Comp($topo, $r1*$r2);
11 insert(comp);
12 modify($req){satisfied = true};
13 end

Rule 4.6 Reliability Serial Pattern Rule

1 rule "Reliability Parallel"
2 when
3 $c1: Comp($v1:=input, $v2:= output, $r1:= rel)
4 $c2: Comp($v1:=input, $v2:= output, $r2:= rel)
5 $topo: Parallel($c1:=comp1, $c2:=comp2)
6 $req: Req($v1:=input,$v2:=output,$pro:=property,
7 $pro.name=="Reliability", $rel:$pro.value,
8 $rel>=$r1+$r2-$r1*$r2, satisfied==false)
9 then

10 Comp comp = new Comp($topo, $r1+$r2-$r1*$r2);
11 insert(comp);
12 end

Rule 4.7 Reliability Parallel Pattern Rule

If the property is not satisfied, the components c1 and c2 should be replaced by a new
component composition in parallel. The Reliability Parallel Rule is then fired to find new
components which guarantee the required property. The control flow of this rule defines the
multi-choice selection of components c1 and c2. The data flow of the component c1 (line
3) which is in parallel with the c2 (line 4) must have both input the v1 and as an output v2.
The reliability property which should be guaranteed by a parallel component composition
(line 6) is equal to r r1+ r2� r1 · r2 (line 7). If the condition is met, the parallel component
composition c will be inserted in the working memory as a new component having as an input
v1 and v2 as an output and as reliability the r1+ r2� r1 · r2 (line 10-11). This will trigger a

4.4 Reliability Patterns 99

new reinforcement of the serial rule to check whether new additional component composition
satisfy the required by the sequential composition reliability function.

4.4.3 Serial-Parallel Reliability Pattern

Apart from the creation of reliable compositions based on the combination of serial and
parallel compositions, the Serial-Parallel Reliability Pattern follows both the serial and the
parallel simultaneously. The topology of the pattern consists of four nodes, the source n1, the
destination n2 and two nodes n3 and n4 placed in the middle of end nodes. It also includes
four paths:

p1 = Path(src = n1,dst = n3)
p2 = Path(src = n3,dst = n2)
p3 = Path(src = n1,dst = n4)
p4 = Path(src = n4,dst = n2)

The decomposition procedure (Figure 6.11b) can continue until atomic links are found as
analysed below:

p =Path(src = n1,dst = n2) =
(Path(src = n1,dst = n3)�Path(src = n3,dst = n2)) or

(Path(src = n1,dst = n4)�Path(src = n4,dst = n2))

The reliability guaranteed by this pattern is related to the serial and parallel path com-
position. When m is the number of parallel paths p and n is the number of sub-paths of
each parallel path and rpi is the probabilistic reliability of each sub-path, the probabilistic
reliability r of the composition can be given by the following formula:

r = 1�
m÷

i=1
(1�

n÷
j=1

rpij) (4.13)

Since the topology of Serial-Parallel pattern consists of two parallel paths with two
sub-paths in sequence ((p1 � p2) or (p3 � p4)), the reliability r will be equal to:

r = 1� (1� rp1 · rp2)(1� rp3 · rp4)

.

100 Secure and Dependable Design Patterns

N1

N2

N1

N2

N3 N4 N3 N4

N1

N2

N5

N6 N7

N8

N9

N10 N11

N12

P1 P3

P4P2

Fig. 4.12 Reliability Serial-Parallel Pattern Decomposition

When the required reliability property of the entire path is rd , the network reliability r
should satisfy the following condition: rd r. In case of equal uptime probability of each
sub-path (rp1 = rp2 = rp3 = rp4 = rp), the required reliability should satisfy the equation:

rd r = 1� (1� (rp)2)2) rp �
q

1�
p

1� rd (4.14)

If there is not any atomic path with this reliability, the pattern will be executed by adding
two new nodes and four new paths in the middle distance of each path pi, as defined by the
pattern topology. The new required reliability of each new path will be: rp =

p
1�
p

1� rd .
it can be easily proven that the r rd applies for requested path reliability greater than
62%. Finally, the recursive execution of the pattern will increase network reliability and will
guarantee the required path reliability.

The pattern rule encodes the described reliability topology (Rule 4.8). In the LHS of
this pattern, the rule matches the two nodes nodes src and dst which the distance between
them is dist with path reliability which assigned as the weight of the path relP (line 3). The
requirement of the pattern defines that the reliability relP should be equal or greater than
the rel and the constraint is that the distance dist between the nodes should be less or equal
than the predefined range lines 4-7. When the topology constraint and the reliability are not
satisfied the rule will enter in the RHS of the rule. In the RHS, two nodes n1 and n2 should
be inserted in parallel between the src (line 9) and dst (line 14). Moreover, four new paths
(lines 10,12,15,17) and requirements (lines 11,13,16,18) will be inserted in the knowledge
base. Finally, the rule will modify the requirement satisfaction to true (line 19). The recursive

4.5 Fault Tolerance, Detection and Restoration Patterns 101

1 rule "Reliability Serial-Parallel"
2 when
3 $path: Path($src:=src, $dst:=dst, $dist:distance, $relP:

weight)
4 $req: Req($path:= path, $span:span, $pro: property,
5 $pro.name=="Reliability", $rel:$pro.value,
6 $rel>$relP, $span<=distance, satisfied==false)
7 $count: Integer()
8 then
9 Node $n1 = new Node(++$count,new Point($src,$dst));insert($n1);

10 Path $p1 = new Path($src,$n1,$rel); insert($p1);
11 Req $req1 = new Req($p1,new Pro("Reliability",

Math.sqrt(1-Math.sqrt(1-$relP))),false)); insert($req1);
12 Path $p2 = new Path($n1,$dst,$rel); insert($p2);
13 Req $req2 = new Req($p2,new Pro("Reliability",

Math.sqrt(1-Math.sqrt(1-$relP))),false)); insert($req2);
14 Node $n2 = new Node(++$count,new Point($src,$dst));insert($n2);
15 Path $p3 = new Path($src,$n2,$rel); insert($p3);
16 Req $req3 = new Req($p3,new Pro("Reliability",

Math.sqrt(1-Math.sqrt(1-$relP))),false); insert($req3);
17 Path $p4 = new Path($n2,$dst, $rel); insert($p4);
18 Req $req3 = new Req($p4,new Pro("Reliability",

Math.sqrt(1-Math.sqrt(1-$relP))),false)); insert($req4);
19 modify($req){satisfied = true};
20 retract($count); insert($count);
21 end

Rule 4.8 Reliability Serial-Parallel Pattern Rule

procedure will be completed when the distance constraint and required availability property
are satisfied.

4.5 Fault Tolerance, Detection and Restoration Patterns

Fault Tolerance, Detection and Restoration Patterns are able to avoid DoS attacks by
creating paths based on the existing links and nodes at design and by creating new paths in
case of attack or failure. Fault tolerance in network architectures requires the design of a
network able to guarantee avoidance of single or multiple link failures, faulty end-hosts and
switches, or attacks. In the control plane, faults appear in the controllers or in the east-west
interface. Moreover, the softwarisation of SDN controllers makes the construction of fault
tolerance mechanisms even more complicated but at the same time necessary because of

102 Secure and Dependable Design Patterns

the multi-layer orchestrations. The development of a fault tolerance mechanisms in the
northbound and southbound interfaces to avoid intermediate failures is required. The key
technical solution of the problem includes the creation of a fault tolerance SDN pattern based
on the defined pattern schema that can provide open-flexible design where existing fault
tolerance solutions do not.

4.5.1 Fault Tolerance Pattern

Fault tolerance pattern enforces the design of fault tolerance architectures based on existing
network infrastructures. The main purpose of the pattern is to provide proactively connectivity
and path protection solutions for fast failure recovery against faults, extremely useful for
large-scale SDN systems. The discovery of network topologies can be done by pattern
matching of suitable interconnected nodes such as number of hosts, switches and the existing
links between them. This includes the identification of all available paths and chooses the
most appropriate ones in order to define the degree of the redundancy of the network topology.
For instance, a path between source and destination will have degree of redundancy 1, where
the existence of more than one paths will increase the level of redundancy. In addition, the
insertion of suitable flow rules in the programmable switches will enable the prioritisation
through the preplaned path identification. To define all paths from source to destination,
suitable graph algorithms such as breadth-first algorithm can be applied. More specifically,
the shortest path can be found from the Dijkstra algorithm which adapts breadth-first approach
to find single source shortest path.

n1

n2

n3

flow

l1

l2

visited

queue

destPort

srcPort

Fig. 4.13 Fault Tolerance Pattern

The describe pattern as Drools rule, is presented in the Rule 4.9. The two main core
actions of this rule are:

• The pattern identifies the shortest path between source and destination.

4.5 Fault Tolerance, Detection and Restoration Patterns 103

1 rule "Fault Tolerance Pattern"
2 when
3 $n1: Node($port1: port)
4 $n2: Node($port2: port)
5 $n3: Node($port3: port, $n1!=$n3)
6 $l1: Link($n1:=src, $n2:=dst)
7 $l2: Link($n2:=src, $n3:=dst)
8 $req: Req($pro: property, $pro.src!=$n1, $pro.dest!=$n3,
9 $pro.name=="Fault Tolerance",$visited:$pro.visited,

10 $queue:$pro.queue, $visited contains $n2,
11 $queue not contains $n2, $visited not contains $n3)
12 $path: Path()
13 then
14 $queue.remove($n2); $queue.add($n3); $visited.add($n3);
15 update($queue); update($visited);
16 $path.addLink($l1);
17 update($path);
18 Flow flow = new Flow($n2.id, $l1.dst.port, $l2.src.port);
19 insert(flow);
20 end

Rule 4.9 Fault Tolerance Pattern Rule

• To preplan and reserve paths, the actions of the pattern contains the installation of
suitable flow rules in the OpenFlow-enabled switches.

More specifically, the pattern rule in the LHS identifies three nodes (lines 3-5) and two
links between these nodes (lines 6-7). As defined in the lines 8-10, the requirement of the
pattern to provide fault tolerance is related to the path finding. To find the shortest path
the visited/queue approach of the breadth first search is followed. When the requirement is
satisfied, the rule enters in the RHS, where the pattern is able to walk the path (lines 14-15),
store the path lines 16-17) and insert the appropriate flow rule in the switch, guaranteeing the
priority of the traffic forwarding through this path (lines 17-18).

4.5.2 Fault Detection and Restoration Pattern

Apart from the proactive definition of the respective flows, the fault detection and restoration
pattern provides a reactive mechanism to dynamically allocate path flows for fast fault detec-
tion and restoration of network availability. The pattern topology includes the source node,
the destination nodes and the active path for data transmission. To enable the fault/failure
detection condition different triggering events should be activated:

104 Secure and Dependable Design Patterns

• In case of dropped packets between the two nodes.

• In case of a link failure.

• Other monitoring mechanisms including ping/echo, heartbeats, ack, time interval and
by request.

n1

n2

path1 path2detection

Fig. 4.14 Fault Detection and Restoration Pattern

1 rule "Fault Detection and Restoration Pattern"
2 when
3 $n1: Node($tx: txPkt)
4 $n2: Node($rx: rxPkt)
5 $path: Path($n1:=src.id,$n2:=dst)
6 $req: Req($topo:$path, pro.name =="Fault Detection", $tx>$rx)
7 then
8 retract($path);
9 Req req = new Req($n1, $n2,"Fault Tolerance");

10 insert(req);
11 end

Rule 4.10 Fault Detection and Restoration Pattern Rule

After the detection of such failure, different actions are described in Rule 4.10 to achieve
the following results:

• Path removal including all the related links and node from the inventory list.

• Flow rule removal from the inventory list (in case of SDN networks).

• Recover path by finding alternative paths via the insertion of a new requirement as a
new fact to the knowledge base to activate the Fault Tolerance Flow Pattern.

4.6 Security Patterns 105

The pattern is able to guarantee fault detection when there is data transmission from n1

to n2 (lines 3-5). This can be done by identifying the fault detection based on the statistics
retrieved by the programmable switches. When lost packets are detected, the rule will enter
in the RHS (line 6). In this case, the path will be removed (line 8) and a new requirement for
triggering the fault tolerance pattern to instantiate a new path will be inserted (lines 9-10).

4.6 Security Patterns

Security Patterns are able to guarantee confidentiality and integrity in network infrastruc-
tures. At design, encryption patterns can be used to avoid man in the middle attacks by
providing encryption (i.e. SSL, IPSec) at runtime by updating the encryption keys frequently.
Data confidentiality and integrity is guaranteed either by the use of symmetric or asymmetric
encryption. The two two most common encryption methods are the link and end-to-end
encryption as described below.

4.6.1 Link Encryption Pattern

Link Encryption protects traffic flows from monitoring since all data (payload and headers)
are encrypted/decrypted in every hop. However, the link encryption is not related to the
network protocols. All transmitted data will be encrypted reducing the overhead and the
required bandwidth compared to IPSec by as much as 40%1. When two neighbouring nodes
src and dst are connected, the path is encrypted when both nodes are able to encrypt and
decrypt the exchanged data. Further constraints of the link encryption pattern relates to
the connectivity between edge nodes. More specifically, the link encryption can guarantee
confidential data transmission as expressed in the following definition:

Definition 7. Let a source node s transmit data p to a destination node t, link encryption
can guarantee confidentiality when every pair of neighbouring nodes from s to t such as
{(s,n1),(n1,n2), ...(ni,t)} share keys k1,k2, ...,ki 2 K and are able to encrypt data in source
with algorithm E and decrypt in destination with decryption algorithm D.

When there is a connected Graph such G = (N,L) and there are two nodes s,t 2 N
connected with a link, without sharing an encryption key k, confidential data exchange
cannot be guaranteed until a key generation procedure is applied as described in Rule 4.11.
The Link Encryption Instantiation Pattern is able to guarantee secure link paths between
nodes by creating a set of keys to share the interconnected nodes as described in the Rule

1https://blog.finjan.com/what-is-link-layer-encryption/

106 Secure and Dependable Design Patterns

4.11. The pattern is able to validate whether two nodes connected with a link (lines 3-5)
share the same encryption key to provide link encryption (lines 6-8). If not, the rule will enter
in the RHS where a key generation is applied (lines 10-13). The symmetric key is stored in
both nodes for enabling the link encryption property and transit secure data (lines 14-15).

1 rule "Link Encryption Instantiation"
2 when
3 $s: Node($id1:=id, $key1:=key)
4 $t: Node($id2:=id, $key2:=key)
5 $link: Link($s=src, $t:=dst)
6 $req: Req($s:=src, $t:=dst, $pro:property,
7 $pro.name=="Link Encryption", $value:=$pro.value,
8 $key1 not contains $key2, satisfied==false)
9 then

10 KeyGenerator keyGenerator = KeyGenerator.getInstance("AES");
11 SecureRandom secureRandom = new SecureRandom();
12 keyGenerator.init($value, secureRandom);
13 SecretKey key = keyGenerator.generateKey();
14 $s.addKey($key);
15 $t.addKey($key);
16 modify($req){satisfied = true};
17 end

Rule 4.11 Link Encryption Instantiation Pattern Rule

When two nodes s and t are connected with a link and both share the same symmetric
key k (or kst and kts in asymmetric cryptography), the transmission can be assumed as
confidential.

s
Key k�����������!

Link Encryption
t (Secure link) (4.15)

In addition, when two nodes s and t are connected with a path but no with a link, then for
every link of the path, a shared key between the nodes of the links should exist.

s
Key k1�����������!

Link Encryption
n1

Key k2�����������!
Link Encryption

n2...ni
Key ki�����������!

Link Encryption
t (Secure path)

To identify the secure path in which traffic should be forwarded, the Path Discovery Pattern
(Rule 4.5) is extended to fulfill not only the connectivity property but also the link encryption
property. More specifically, when there is a requirement to find an encrypted path between
two nodes, then the following procedure should be followed.

Req(s,t,Link Encryption)! (s == t) or (s! t) or (sd t) with Link Encryption �!

4.6 Security Patterns 107

1 rule "Link Encryption Path Atomic"
2 when
3 $link: Link($src:=src, $dst:=dst)
4 $req: Req($src:=src, $dst:=dst, $pro:=property,
5 $pro.name=="Encryption",
6 $src.key contains $dst.key, satisfied==false)
7 $path: Path()
8 then
9 $path.addLink($link);

10 update($path);
11 modify($req){satisfied = true};
12 end
13 rule "Link Encryption Path Decomposition"
14 when
15 $link: Link($src:=src, $node:=dst)
16 isPath($node, dst;)
17 $req: Req($src:=src, $dst:=dst, $pro:=property,
18 $pro.name=="Encryption",
19 $src.key contains $node.key, satisfied==false)
20 $path: Path()
21 then
22 $path.addLink($link);
23 update($path);
24 Req req= new Req($node, $dst, $pro, false);
25 insert(req);
26 modify($req){satisfied = true};
27 end

Rule 4.12 Link Encryption Path Pattern Rules

• (s == t)! data are secure

• (s! t), Link Encryption is True when they share the same key k1

• (sd t), Link Encryption is True when there is a node n1 so

– (s! n1), Link Encryption is True when they share the same key k2

– (n1 d t), Link Encryption is True when there is a node n2 so

* (n1! n2), Link Encryption is True when they share the same key k3

* (n2 d t), Link Encryption is True...

The pattern Rule 4.12 express the described condition to identify secure paths between
two nodes. If there is a link between the nodes (lines 3), the requirement is satisfied when

108 Secure and Dependable Design Patterns

both nodes share the same key (lines 4-6). The identified link is added the secure path
identification (lines 9-10). When there is no link between the nodes (lines 15-16) and there is
an intermediate node that shares the same key with the source as satisfied by the requirement
(lines 17-19), the path decomposition can be applied to identify the secure path lines 22-23.
Then the rule will insert a new requirement to continue the recursive procedure of secure
path identification (lines 24-25).

1 rule "Link Encryption"
2 when
3 $s: Node($id1:=id, $key1:=key)
4 $t: Node($id2:=id, $key2:=key)
5 $link: Link($s=src, $t:=dst)
6 $pkt: Message(packet==plaintext)
7 $req: Req($s:=src, $t:=dst, $pro:property,
8 $pro.name=="Encryption",
9 $key1 contains $key2, satisfied==false)

10 then
11 Encrypt $cph = new Encrypt($pkt, $key);
12 modify($req){satisfied = true};
13 end
14 rule "Link Decryption"
15 when
16 $s: Node($id1:=id, $key1:=key)
17 $t: Node($id2:=id, $key2:=key)
18 $link: Link($s=src, $t:=dst)
19 $cph: Message(packet==ciphertext)
20 $req: Req($s:=src, $d:=dst, $pro:=property,
21 $pro.name=="Decryption",
22 $key1 contains $key2, satisfied==false)
23 then
24 Decrypt $pkt = new Decrypt($cpr, $key);
25 modify($req){satisfied = true};
26 end

Rule 4.13 Link Encryption/Decryption Pattern Rules

Finally, when there is runtime data exchange, the source s can encrypt data p to cipher c
by the use of Ek and t can decrypt them in the destination by the use of Dk .

c = Ek(p)�Dk(c) = Dk(E)k(p) = p (4.16)

4.6 Security Patterns 109

The Rule 4.13 describes the Link Encryption and Decryption Pattern where both rules can
express the procedure of encrypting and decrypting data in the source and in the destination
respectively. More specifically, link encryption rule forwards the packet pkt (line 6) from s
to t (lines 3-5). The requirement validates whether both nodes share the same key to enter in
the RHS of the rule (lines 7-9). If true, the packet pkt is encrypted to cipher by the use of a
encryption function (line 11). Similarly to the link encryption rule, the link decryption rule is
able to decrypt cipher text (line 19) by the application of the decryption function (line 24).

4.6.2 End-to-End Encryption Pattern

E2E encryption can guarantee confidentiality and authentication between source and destina-
tion based on the composition of different components or applications for secure E2E data
transfer, as expressed in the following definition:

Definition 8. Let s a source node of transmitting data p to destination t through intermediate
nodes ni,i 2 {1,2, ...,k}, end-to-end encryption can guarantee security when transmitted data
is encrypted to s by the use of an encryption algorithm E and a key k and the cypher c is
decrypted in destination node t by the use of a decryption algorithm D.

s! t : {E}k(p)� {D}k(c) (4.17)

The main property that ensures E2E secrecy is the Perfect Forward Secrecy (PFS). PFS
is the property of key-exchange in case that the long-term session keys exposure used for
authentication and negotiation does not compromise the secrecy of established keys before
the exposure [171]. This can be accomplished by enforcing the creation for each and every
session with a new key [172]. Different transport layer security protocols such as IPSec, SSH
and TLS are able to satisfy E2E security and the PFS.

IPSec can be used to authenticate and/or encrypt messages for satisfying the goal of E2E
security. To instantiate an IPSec E2E session the following should be defined:

• Security Associations (SAs) should be generated to encrypt and/or authenticate traffic.
The SA can be defined as follows:

SA : hsrc,dst,protocol,algorithm,keyi

where src is the source and dst is the destination of the association, the protocol
can be ESP with encryption algorithms such as 3DES/AES or AH algorithm for
authentication (MD5/SH A) and key is a string.

110 Secure and Dependable Design Patterns

• Security Policies (SPs) define how data can be handled by the devices and imple-
mented following ACL rule structure.

SP : hmatch : {src{IP,M AC,Port},dst{IP,M AC,Port},proto{ip.icmp,tcp,udp}},

action : {bypass,drop,encrypt,create/lookupSA}i

• Flow Rules The creation of the respective SA and SP rules to establish the security
property are:

F : haction : {encrypt,bypass,drop},protocol{ESPor AH},SA src,SA dst,propertyi

When the SA and the SP have been established, the next step includes the encryption/au-
thentication of traffic as defined by IPSec policies in SA. There are two modes, the transport
mode where the data are protected and the tunnel mode where both the header and the pay-
load are protected. However, in order to satisfy property, the need for forwarding the traffic
through IPSec or other specific mechanisms such as firewall or NAT may create network
unreachability issues. This happens when there is not path or available ACL rules that are
able to forward the traffic between two end points. In order to satisfy reachability/connec-
tivity property, the creation of a new requirement for defining the path between source and
destination based on the connectivity pattern should be given.

The followed procedure to guarantee encryption for confidentiality and authentication
for integrity is depicted in the activity diagram of Figure 4.15. The diagram presents the
process to achieve E2E security requirement between two end nodes. Based on the requested
encryption or authentication, if the respective SA does not exist, it is instantiated applying
either the ESP protocol for encryption (ie. 3DES/AES) or AH for authentication (MD5/SAH).
Furthermore, the required SP is instantiated and is inserted to respective flow rules for E2E
path instantiation.

The E2E security patterns are able to express the proposed security procedure based on
the IPSec mechanism to satisfy secure E2E message transmission. Based on the above, two
different E2E security patterns are defined as pattern rules (Rule 4.14 and 4.15) supporting
the IPSec protocol and the respective enabling mechanism as described earlier. Moreover,
the pattern rules are able to instantiate not only the respective SA to support encryption and
authentication introducing a new requirement for path discovery under existing network
topologies. More specifically, the E2E Encryption Pattern defines the requirement for E2E
encryption (lines 5-6) between the end nodes (lines 3-4). When there is no SA instantiated
between these nodes (line 7), the rule can enter to the RHS. In the RHS, a new SA is

4.6 Security Patterns 111

Fig. 4.15 Activity Diagram of the E2E Security Procedure

instantiated and inserted in the memory to establish IPSec encryption by enabling the ESP
and AES (lines 9-10). Moreover, a new flow rule is created and installed in the memory (lines
11-12). The last step of this rule contains the insertion of a new requirement to trigger the
Pattern Discovery Pattern to identify the shortest path between the end nodes (lines 13-14.
On the other hand, the Rule 4.15 is able to guarantee authentication. The rule is similar to

112 Secure and Dependable Design Patterns

1 rule "End to End Encryption Pattern"
2 when
3 $n1: Node($ip1: address)
4 $n2: Node($ip2: address)
5 $req: Req($n1:=src, $n2:=dst, $pro:=property,
6 $pro.name =="E2E Encryption", satisfied==false)
7 not (SecAs($ip1:=src, $ip2:=dst))
8 then
9 SecAs sa = new SecAs($n1, $n2, new IPSec(ESP, AES, new

Key(IKE)));
10 insert(sa);
11 Flow flow = new Flow($n1, $n2, sa);
12 insert Flow;
13 Req req = new Req($n1, $n2, new Connectivity($n1,$n2);
14 insert(req);
15 modify($req;){satisfied = true};
16 end

Rule 4.14 End to End Encryption Pattern Rule

1 rule "End to End Authentication Pattern"
2 when
3 $n1: Node($ip1: address)
4 $n2: Node($ip2: address)
5 $req: Req($n1:=src, $n2:=dst, $pro:=property,
6 $pro.name =="E2E Authentication", satisfied==false)
7 not (SecAs($ip1:=src, $ip2:=dst))
8 then
9 SecAs sa=new SecAs($n1,$n2,new IPSec(AH,SHA2,new Key(IKE)));

10 insert(sa);
11 Flow flow = new Flow($n1, $n2, sa);
12 insert(flow);
13 Req req = new Req($n1, $n2, new Connectivity($n1,$n2);
14 insert(req);
15 modify($req){satisfied = true};
16 end

Rule 4.15 End to End Authentication Pattern Rule

Rule 4.14 with the main difference in the instantiation of different security association by
enabling the AH and the SH2 authentication mechanism (lines 9-10).

4.7 Service Function Chaining Patterns 113

1 rule "E2E Encryption"
2 when
3 $s: Node($id1:=id, $key1:=key)
4 $t: Node($id2:=id, $key2:=key)
5 $pkt: Message(packet==plaintext)
6 $req: Req($s:=src, $t:=dst, $pro:property,
7 $pro.name=="Encryption",
8 $key1 contains $key2, satisfied==false)
9 then

10 Encrypt $cph = new Encrypt($pkt, $key);
11 modify($req){satisfied = true};
12 end
13 rule "E2E Decryption"
14 when
15 $s: Node($id1:=id, $key1:=key)
16 $t: Node($id2:=id, $key2:=key)
17 $cph: Message(packet==ciphertext)
18 $req: Req($s:=src, $d:=dst, $pro:=property,
19 $pro.name=="Decryption",
20 $key1 contains $key2, satisfied==false)
21 then
22 Decrypt $pkt = new Decrypt($cpr, $key);
23 modify($req){satisfied = true};
24 end

Rule 4.16 E2E Encryption/Decryption Pattern Rules

Finally, the E2E Encryption and Decryption Pattern (Rule 4.16) aims to guarantee that
no message p sent by a source node s through intermediate nodes and links to destination
node t can be revealed by an adversary. The rule is similar to the Rule 4.13 but in this one,
the link existence between source and destination is not required.

4.7 Service Function Chaining Patterns

Network service deployments are often coupled to network topology, whether it is physical,
virtualised, or a hybrid of the two. The problems which SFC is trying to solve are: topology
dependencies, configuration complexity, constrained high availability, consistent ordering
of service functions etc. SFC aims to address the aforementioned problems associated with
service deployment including also the instantiation of a SFC that can be either static or
dynamic [173]. In case of a static instantiation, the instances are predefined based on the

114 Secure and Dependable Design Patterns

assigned configuration of policy of the network administrator. However, the static approach
includes the danger of vulnerable paths in case of failure or overload. On the other hand, a
dynamic approach can avoid such dangers by introducing the instantiation of SFI according
to states or attributes at initial classification or at the time of demand of the SFP intermediate
traversal. Based on the above, one of the most important issues in SFC is the current service
delivery model that is usually bound to static topologies and manually configured resources.

Service Function Chaining Patterns provide the ability to define an ordered list of
security network services (e.g. firewalls, DPIs, IDS) for security in network infrastructures
by creating chains at design and by updating function in chains based on available ones
at runtime. SFC patterns should cover the placement, security and scalability aspect of
SDN/NFV-enabled network infrastructures. More precisely, SFC patterns can be used as
follows:

• Instantiate virtual network function to address SFC requests.

• Instantiate service function chains

• Design and optimisation of paths

Our definition is based on formal analysis of the composition of service function chaining
and the network functions as presented in [174, 175].

4.7.1 VNF Instantiation Pattern

The design of SDN/NFV-enabled networks includes the placement of network functions
either in a physical network function (PNF) in a VNF. PNFs can be also called Service Node
(SN) containing of one or multiple VNF instances. NFV is focused on the replacement
of PNFs with VNFs that is a virtual version of a network function and can be located in
physical nodes. They can be located on physical appliances or virtual machines, running in
virtualisation infrastructures.

The physical network can be defined as G = (N,L) while the virtual network can be
defined as Ḡ = (N̄, L̄). Virtual graph may share or not some common elements with the
physical graph G. The physical placement of network functions in the physical nodes includes
also the partition of the network and the placement of functions on different locations as can
be seen in Figure 4.16. More specifically, the different cases of the VNFs inside the PNFs
connected on different SDN topologies can be seen below:

1. Different network functions on the same service node, switch and controller (domain)

4.7 Service Function Chaining Patterns 115

2. Different service node with different network functions on the same switch and con-
troller (domain)

3. Different network switches holding different service nodes and functions on the same
controller (domain)

4. Different controller connected on different switches holding different service nodes
and functions on different domains and controllers

c

s1

n

f1 f2

c

s

n1

f1

n2

f2

c

s1 s2

n1 n2

f1 f2

c1

s1

n1

f1

c2

s2

n2

f2

Fig. 4.16 Service Functions (i) on Same Service Node, (ii) on Same Switch (iii) on Same
Domain (iv) on Different Domains

The applications and services that make use of the network are crucial factors for the
design of a network as they can affect the limitations of the device such as computational
power, available memory, storage and networking capabilities. Other constraints which may
be defined include the quantity and type of nodes, interfaces per nodes, cost and energy
consumption, distance and range. More specifically, each node of the network has specific
characteristics and constrains as follows:

• Each physical node N = {n1,n2, ..} has specific resource (or capacity) capabilities so

R = {CP,M,T,E} (4.18)

where computation power/CPU (CP), memory (M), storage (T), energy (E).

Rnj = {CPn,Mn,Tn,En} (4.19)

• Each physical node n 2 N can hold a number of virtual network functions F = { f1, f2, ..}

F ✓ N

.

116 Secure and Dependable Design Patterns

• Each network function requires a certain amount of physical resources at the physical
node such as CPfi , Mfi , Tfi and E fi . The required capacity by each function can be
defined as follows:

Rfi = {CPfi,Mfi,Tfi,E fi } (4.20)

• Each function node should no exceed the capacity of physical nodes. This includes
also the function placement based on the resource capabilities of each service node.

R �
k’

i=1
Rfi =

k’
i=1

{CPfi,Mfi,Tfi,E fi } � {
k’

i=1
CPfi,

k’
i=1

Mfi,
k’

i=1
Tfi,

k’
i=1

E fi } (4.21)

• Each function node fi can be instantiated (i) once, (ii) at most u times, i.e. due to the
limited number of licenses (iii) unlimited times.

k’
i=1

z’
u=1

fiu (4.22)

On the other hand, each physical or virtual link of the network has specific characteristics
and constrains as follows:

• Each physical link l 2 L between two nodes n1,n2 2 N so ln1n2 has specific constraints
such as (i) limited bandwidth BWln1n2

and (ii) introducing a link propagation delay
D : Dln1n2

so ln1n2 : Rln1n2
= {BWln1n2

,Dln1n2
}

• Each virtual link l̄ between virtual functions fi and ni.

In order to allocate virtual resources in physical nodes, the requested capacity of Nd of
the virtual node n̄i is characterised by the requested resources Rd including the requested
node capacity regarding CPU, memory, storage and energy. In addition, the requested link
capacity of Ld of the virtual link ¯li j is characterised by the requested resources in bandwidth
BWd and the allowed delay Dd between the end points.

Gd = (Nd,Ld) (4.23)

When there is a request for an SFC instantiation containing service functions, the depicted
in Figure 4.17 procedure should be followed. If the SFC does not exist, the instantiation of
the respective SFC is deployed through the identification of the requested VNFs. If the VNFs
exist in the service nodes, the SFC is updated including these VNFs. If the VNFs do not
exist, the service node with the available resources is requested to instantiate the respective

4.7 Service Function Chaining Patterns 117

Fig. 4.17 VNF Instantiation based on SFC Request

Algorithm 4 Recursive Procedure of SFC Pattern

1: procedure SFC (G,Sd)
Input: sd = (u,v,s) is the requirement from u to v and SFC s = (f1, f2, f3), and G = (N,L)
defines the service node N nodes and the links L of the network
Output: Shortest path from u to v passing from the chain s, satisfying the constraints
bandwidth b and delay d
Ḡ = (N̄, L̄)

2: for all SF do
3: for all SN in N do
4: if SF does not exist in SN then
5: if available SN resources can satisfy required SF resources then
6: instantiate a SF in SN
7: update resources of SN
8: add SN to SFP
9: elsebreak

10: end if
11: else
12: add SN to SFP
13: end if
14: end for
15: end for
16: end procedure

118 Secure and Dependable Design Patterns

1 rule "Virtual Network Function Instantiation"
2 when
3 $vnf: Function($type: type,

$resources:resources,undefined==true)
4 $graph: Graph($node: node, $node not contains $function,

$node.hasResources($resources)}
5 $req: Req($sfc: chain, $sfc not contains $vnf,

satisfied==false)
6 then
7 $node.add($vnf);
8 update($node);
9 modify($vnf){undefined = false};

10 $sfc.add($vnf);
11 update($sfc);
12 end
13 rule "Virtual Network Function Find"
14 when
15 $vnf: Function($type:

type,$resources:resources,undefined==true)
16 $graph: Graph($node: node, $node contains $function}
17 $req: Req($sfc: chain, $sfc not contains $vnf,

satisfied==false)
18 then
19 modify($vnf){undefined = false};
20 $sfc.add($vnf);
21 update($sfc);
22 end

Rule 4.17 Virtual Network Function Placement Pattern Rules

VNFs. The procedure is ended when all the requested VNFs are included in the SFC. The
respective algorithm is described in the Algorithm 4.

The Virtual Network Function Placement Pattern is able to process the previously de-
scribed procedure as presented in the abstract form of the pattern Rule 4.17. The pattern
consists of two parts: the VNF Find Rule and the VNF Instantiation Rule. The rule is triggered
when a VNF does not exist in any service node, there are resources available to instantiate it
(lines 3-4) and there is a SFC request (line 5). The rule will enter in the RHS, where the node
will instantiate a VNF (lines 7-8) and will be added in the SFC (lines 10-11). On the other
hand, when the VNF exists (lines 15-16) and the SFC does not include it (line 17), it will be
added in the SFC without the need for any additional instantiation (lines 20).

4.7 Service Function Chaining Patterns 119

4.7.2 SFC Path Finding Pattern

The dynamic creation of SFC chains according to available or instantiated function instances
and security policy requirements can be described as virtual graph Ḡ = (N̄, L̄).

Definition 9. Let the forwarding graph Ḡ defines an SFC graph so Ḡ = (N̄, L̄), where Ḡ is
the service chain graph, N̄ = { fi |i = 1,2, ...,k) can be considered as the service functions
representing the virtual nodes of the graph S = {sk |k = 1,2...,k} are the set of chains that
hold different service functions types and L̄ are the virtual links that interconnect the service
functions.

An SFC includes all the services that are stitched together. However, the path of the chain
can include all the actual components that are contained in the path such as source u and the
destination v nodes, the classifiers, the forwarders, the service nodes where the functions are
located and the function nodes. As depicted in Figure 4.18, the conceptual and extensive SFC
diagram consisting of a two service functions, the following backward chain decomposition
can include the following steps:

• Service Function Chain : s = (f1, f2, ..., fk)

• Service Function Path: p = {u, f1, f2, f3,v}, where u,v are the ingress and the egress
nodes.

• Service Function Path can include apart from the ingress u and the egress v, the service
nodes:

{u,n1, f1, f2,n2, f3,v}

• Service Function Path can include apart from the ingress u and the egress v, the
physical nodes np and the service functions f , the classifiers nc and the forwarders n f :

{u,nc
1,n

s
1,n

p
1, f1, f2,n

s
2,n

p
2, f3,n

c
2,v}

The design and the optimisation of service function chains and the respective paths
include the finding of the optimal routes. The position of the classifier and forwarders can
improve network performance (by minimising the delay and number of physical hops) based
on capacity constraints. In addition, the order, the placement and the selection of the service
functions can satisfy the security requirements of the chain as described below:

• Inspect encrypted data: For instance, encrypting functions such as VPN or IPSec
should be placed after firewall (and DPI) or just before decryption functions [176].

120 Secure and Dependable Design Patterns

source classifier forwarders

service nodes

service functions

classifier destination

(a) Conceptual service function chain architecture

ingress classifier1 SFF1

SF1

SFF2

SF2 SF3

classifier2 outgress

(b) Simple Service Function Chain

ingress Classifier
switch switch switch

Classifier egress

switch

node

SF1

switch

node

SF2 SF3

(c) Extensive Service Function Chain

Fig. 4.18 Conceptual, Simple and Extensive Service Function Chaining Example

• DDos attacks avoidance based on an IDS should be placed close to the source

• End-to-end encryption should be done before the untrusted networks.

When there is a request Sd consisting of two or more end points of a path Sd
p , a set of

virtual functions Sd
f that need to be mapped and the set of virtual links sd between endpoints

and functions should be defined. Let Sd represent all SFC requests that have to be embedded
in the network, the service request may include the ingress and egress through a list of
intermediate services as described below:

sd = (u,v,s,bw,t,d) (4.24)

4.7 Service Function Chaining Patterns 121

where u is the source, v is the destination, s is the set of required VNFs for the SFCs, bw is
the bandwidth requirement; t is the lifecycle; and d is the maximum allowed delay.

1 rule "SFC Verification"
2 when
3 $src: Node($src: src)
4 $dst: Node($dst: dst)
5 $chain: Chain($functions: functions)
6 $req: Req($src:=src, $dst:=dst, $pro: property,
7 $pro.name:= "Chaining", $chain:=$pro.chain,
8 satisfied==false)
9 then

10 modify($req){satisfied = true};
11 Req req = new Req($src, $dst, new Pro("Chain Path",$chain),

false); insert(req);
12 end
13 rule "SFC Instantiation"
14 when
15 $src: Node($src: src)
16 $dst: Node($dst: dst)
17 $req: Req($src:=src, $dst:=dst, $pro: property,
18 $pro.name:= "Chaining", $chain:=$pro.chain,
19 satisfied==false)
20 not Chain($chain.functions:=functions)
21 then
22 Chain $chain = new Chain($functions); insert($chain);
23 Req req = new Req($chain, false); insert($req);
24 modify($req){satisfied = true};
25 end
26 rule "SFC Path Discovery"
27 when
28 $req: Req($src:=src,$dst:=dst, $pro:= property
29 $pro.name=="Chain Path", $chain:= $pro.chain,
30 satisfied==false)
31 then
32 Req req1 = new Req($src,$chain.getFirst(),
33 new Connectivity(true), false); insert(req1);
34 $chain.removeFirst(); update($chain);
35 Req req2 = new Req($chain.getFirst(),$dst, $pro, false);

insert(req2);
36 modify($req){satisfied = true};
37 end

Rule 4.18 SFC Pattern Rules

122 Secure and Dependable Design Patterns

The SFC Pattern abstract definition of the pattern rule is depicted in Rule 4.18. The
pattern contains three different rules in which each one implements specific actions. The first
action of the pattern is to identify in the SFC Verification Rule if the requested SFC exists in
order to forward the traffic from source to destination (lines 3-5). If the requirement is true,
the rule will enter in the RHS where a new requirement regarding the identification of the
SFC path will be inserted (line 11). If the chain does not exist (line 20), the SFC Verification
Rule will be triggered to instantiate the requested chain (line 22) and a new requirement
for function instantiation will be inserted in the knowledge base (line 23. This requirement
will also trigger the previously described Virtual Network Function Placement Pattern to
identify or instantiate any required network function by the chain. When the chain is created
including the required functions, the SFC Path Discovery will be enforced. Two additional
requirements will be inserted in the knowledge based. The first one will trigger the Path
Discovery Pattern to identify the shortest path between the source and the first function of
the chain lines 32-33). After the removal of the first function line 34 from the chain list, a
new requirement for a SFC Path Discovery will be inserted (line 35). The recursion will
be completed when all the requested chains will be instantiated with respective network
functions. To conclude, the procedure described above represents a very accurate example
on how the composition of a number of different patterns can provide a complete solution for
the design of SDN/NFV-enabled networks.

4.8 Summary

In this chapter, a set of pattern instances was presented. A number of different patterns
encoded as rule were presented in order to design network topologies and guarantee S&D
properties in SDN/NFV-enabled networks. More specifically, the design of network topolo-
gies is based on the enforcement of topology patterns, such as the line, the mesh and the tree,
able to guarantee functional properties such as connectivity coverage and scalability respec-
tively. In addition, the presented reliability patterns can assist the design and verification
of reliable network topologies. The development of fault tolerance patterns in SDN/NFV-
enabled architecture can be used for enabling proactive and reactive fault tolerance and
restoration mechanism. Moreover, the security patterns can guarantee link encryption and
end-to-end encryption in network topologies. Finally, the SFC patterns are able to provide
service provisioning for secure and traffic forwarding through different network service
functions.

Chapter 5

Implementation of the Pattern
Framework

5.1 Overview

As discussed in the previous chapters, design patterns can be used for the design, configuration
and verification of network topologies to guarantee some S&D properties. To give a proof of
concept of the approach, the implementation of a prototype pattern framework is proposed
and developed to evaluate the applicability of this pattern schema and the potentiality in
the SDN/NFV-enabled network environments. The system architecture and the interaction
between blocks are presented in the Figure 5.1. The developed pattern framework consists of
different layers:

• Application Layer: This layer includes the translation of network monitoring and
management requirement of applications as expressed by the proposed pattern schema.

• SDN/NFV Layer: This layer contains two main components: the SDN controller
which enables the different network capabilities and the NFV MANO for the virtuali-
sation of network infrastructures.

• Infrastructure Layer: The infrastructure layer is responsible to host the different
network elements required for deploying network topologies. This layer can include
components that are responsible for forwarding or interacting with the data flow such
as switches, routers, hosts, servers, IoT devices, in a physical infrastructure, a virtual
emulated or simulated environment.

124 Implementation of the Pattern Framework

Fig. 5.1 Architecture of the Pattern Framework

5.2 Pattern Framework

The pattern framework is implemented in order to provide a framework able to host and
enforce design patterns for the design and verification of network infrastructures. The pattern
framework is deployed in both the application and the network layer.

5.2.1 Pattern Schema and Requirements

The insertion of the requirements in the pattern schema to trigger the respective design
patterns is one of the most important factors for the design and management of networks.
The specification of the different pattern schma and requirements regarding the applications,
the design and verification of networks and the S&D management are described in the next
subsections.

5.2 Pattern Framework 125

• Pattern Schema: The schema describes the structure of the pattern including the
structure of the design patterns into the predefined specification and language. The
Pattern Specification can be described by a template able to provide the name of the
pattern, the problem which tries to be solved, the differences between the proposed
solution and the existing solutions. It can provide also the evaluation of the proposed
solution and the contributions related to the state of the art. Regarding the Pattern
Language, this follows the language proposed in Chapter 3. This can translate the
property that should be guaranteed by the patterns. Moreover, the structure of these
patterns are similar to the previous described S&D patterns.

• Definition of Application Requirements: The definition of the application require-
ments is crucial for the network management and monitoring. This is related to the
intent that should be guaranteed by the application. For instance, the sentence design
an IoT network with coverage 100km for deploying monitoring applications describes
the application domain. This can be translated to the placement of a number of different
IoT devices able to collect measurements of the covered area. However, each device
has specific characteristics, such as range, network interfaces, energy constraints that
should also be considered.

• Design and Verification of Networks: The design of network infrastructures includes
the expression of application requirements in network designs. That involves the
placement of network nodes into specific locations in order to guarantee the required
properties. In addition to the above, the number of nodes and links is related to the
available type of nodes, type of links wired and wireless). Moreover, the network
topologies is correlated with the type of application that is required to run upon this
network. Finally, the verification of existing networks should also evaluate and monitor
the characteristics of network designs on whether they have satisfied the predefined
application requirements. This is related to definition of monitoring conditions and
elements in order to provide the required network verification and validation.

• Security and Dependability Management: The management of network designs
requires the definition and provision of predefined S&D properties. This properties can
be guaranteed by the determination of specific network designs and by the addition of
dedicated elements that satisfy these properties. Furthermore, the addition of specific
service function chains in order to forward traffic to specific chains is required for
guaranteeing the above S&D challenges.

It is crucial for all the above requirements to be defined not only during the network design
phase but also during the validation and runtime phase. Thus, high quality network analysis,

126 Implementation of the Pattern Framework

evaluation and procedure may be involved in actual implementation. The use of design
patterns in the pattern framework is important to express all the above requirements. In the
next subsections, a detailed description of the cross-layer pattern engines, the implemented
components and the technology used during the design, integration and deployment of the
developed framework are described.

5.2.2 Pattern Engine in the Application Layer

The Pattern Engine is based on the Drools rule engine as an enabler to insert design patterns
as production rules. Pattern Engine is able to store the pattern rules and conflict the facts from
the knowledge management by pattern matching. In this way, it can enable the capability to
insert, modify, execute and retract patterns at design or at runtime. The production rules are
being stored in the production memory and are used to process data inserted in the working
memory (Knowledge Base) as facts by pattern matching (Figure 5.2).

Fig. 5.2 Drools Patterns

Variants of pattern engines can be found at the application and at SDN controller. More
specifically, each pattern engine is able to handle different type of components and the
satisfaction of specific properties. Compared to the pattern engine in the SDN controller,
pattern engine in the application layer is able to instantiate components and handle different
network properties. In addition, the pattern engine can be used to design and verify network
infrastructure by the insertion of S&D patterns and requirements. More specifically, pattern
can be used for designing scalable networks with respect to network pattern topologies. In
addition, the pattern engine is able to reason on the S&D properties of aspects pertaining to
the operation at design time. Then, the tool uses Drools engine to apply Pattern Matching

5.2 Pattern Framework 127

and identify if a network can be formed out of the available types of nodes that satisfy the
required S&D property.

The framework is able to convert facts to network topologies which can be used either to
create physical custom topologies or to import in a network emulator as shown in the process
diagram in Figure 5.3. Especially in case of exposing custom emulated network topologies
to Mininet a converter is required to be created in order to convert pattern engine outputs
(Java based facts) to a Mininet understandable format (python based).

Fig. 5.3 Network Design within the Pattern Framework

Apart from the network designs, pattern engine is also usable to interact with the NFV
Mano in order to instantiate VNFs based on the predefined descriptors. This is also related to
the instantiation of specific VNFs if requested by the respective service function chains. For
runtime adaptation, the pattern engine may receive fact updates from the SDN Pattern Engine,
allowing it to have an up-to-date view of the S&D state of said layers and the corresponding
components at runtime. This can also involve the collecting of monitoring conditions from
more than one controller in inter-domain scenarios.

5.2.3 Pattern Engine in the SDN Controller

ODL can receive application requests and translate the high-level APIs into low-level internal
ones as exposed interfaces (e.g. function calls using YANG data structures) or inside in the
controller requests as exposed by Java classes. ODL is based on Apache Karaf1 and uses
Apache Maven2. Apache Maven is a software management tool that allows developers to
define project’s build lifecycle (compile and deploy the source code), dependencies, phases,
goals, dependencies, build plug-ins and profiles, in order to provide a variety of builds for the

1https://karaf.apache.org/
2https://maven.apache.org/

128 Implementation of the Pattern Framework

project. ODL exposes its pre-compiled modules as artifacts in the Maven Central Repository.
The modular architecture adheres to OSGi specification3, which aids to modules’ lifecycle
management enabling dynamic state at runtime. For example, the modules can be loaded and
unloaded, updated, started or stopped without influencing other running services. At core,
ODL solution promotes modular and extensible controller platform design, with the controller
instances contained in their own JVM and thus deployable on any Java -supported systems. In
OSGi, a module is called bundle, and it is realised as an executable Java Archive (JAR) which
contains module metadata such as bundle name, activators, version, as well as information
about exported packages and required imports which are references to other module packages.
The role of Apache Karaf and Equinox, in ODL project, is to act as containers of OSGi
bundles as well as launching the contained bundles on top of its implementation. Finally,
ODL supports a number of south-bound protocols such as OpenFlow; this capability enables
the interaction with physical infrastructures.

Based on the above, ODL is selected as an open source controller which has attracted
a lot of attention in the networking area with more active contributors compared to other
open-source solutions [14]. It is chosen to build the pattern framework, as it provides a wide
range of abstractions and functionalities that facilitate controller application development
and numerous built-in modules that can be either reused or even extended. Furthermore, to
implement functionalities in ODL, certain purpose-built modules as well as enhancements to
existing SDN controller modules need to be installed and set up appropriately. Based on that,
a number of different components were implemented, integrated and used in order to provide
network designs with S&D properties guarantees.

In order to support S&D monitoring and management of network infrastructures, pattern
engine is also integrated in the controller to enable the capability to insert, modify, execute
and retract patterns at design or at runtime. Since pattern engine is based on Maven and is
OSGI-enabled, one core part of this framework is the integration of all the dependencies in
the ODL controller, as well as the integration of the entities that interact with the controller
to run Drools rules at design and at runtime. As ODL does not support all Drools Maven
libraries by default, some modifications must be done in order to import the required packages
(knowledge-api, drools-core, drools-compiler, drools-templates, drools-decisiontables.

The verification of an existing SDN network with regards to S&D, is supported by our
S&D pattern framework as shown in Figure 5.4. In particular, a designer can Insert S&D
Patterns in the Pattern Rules production memory of the framework and S&D requirements
the Working Memory as Facts. After specifying or importing the network to be verified (Get
Network Topologies/Flows), S&D patterns are executed to realise the verification process

3https://www.osgi.org/developer/specifications/

5.2 Pattern Framework 129

and new paths can be inserted (Put Flows) or current paths can be deleted (Delete Flows) or
modified (Post Flows) in the Controller and consequently in the Programmable Switches.
Through the use of verification patterns, suitable paths can be found in order to pre-plan
and reserve paths with respect to S&D properties. In addition, the proposed framework can
be used not only for the verification of network paths but also at runtime i.e. following a
network link failure or when an S&D property is not guaranteed. Finally at runtime, the
framework is able not only to verify a network but also also to reconstruct it and restore the
required S&D properties in cases where such properties have been violated.

Fig. 5.4 Network Verification and Adaptation within the Pattern Framework

5.2.3.1 Pattern Engine NBI

To support insertion, modification and deletion of facts and rules in the knowledge base by
administrators or users, suitable northbound interfaces (YANG APIs and the respective REST
APIs) are implemented. Moreover, a number of different YANG interfaces are implemented
to interact with the different components including also network components such as switches,
service functions and end-hosts, active links and statistics from the controller as required by
the pattern rules. In addition, pattern engine is able to import existing network topologies
and flows from the inventory list of the ODL. It is capable to export produced OpenFlow
rules as generated by the Drools rules. These topologies and flows are imported/exported in a
REST/XML format by the use of the NBI interface. Finally, both transformers are developed
in Java as part of our framework.

5.2.3.2 Pattern GUI

The Pattern GUI module is implemented in the SDN Controller as an additional module on
the ODL controller to monitor, manage and assess the proof of concept implementation of

130 Implementation of the Pattern Framework

the SDN Pattern Framework. Pattern rules can be inserted as a plain text or as an external file
in Json format. Suitable Javascripts and html files have been implemented in order to support
the insertion of patterns either at design or at runtime. More precisely, angularJS4 is used as
a Javascript-based library for front-end web application. The use of predefined pattern/rule
templates is considered to be enhanced as a more convenient way to manage patterns. The
imported patterns are previewed automatically in an interactive table as presented in the
Figure 5.5. Appropriate APIs have been implemented in order an administrator to be able to
insert, modify, delete and enable/disable imported rules using the implemented controls.

Fig. 5.5 OpenDaylight SDN Pattern Framework GUI

5.3 SFC Reactive Security

The implementation of reactive security leveranging SFC is one core topic of this work. The
SFC reactive security is able to forward the traffic to the respective chains. This chains may
consist of the instantiated virtual network functions as instantiated by the respective patterns
deployed in the developed pattern framework. Moreover, the interaction with the network is
also available. In addition, the traffic traversing said network, e.g. to automatically mitigate
attacks, block malicious entities, route them to specific, dummy network components can
be done through through the SFC. Furthermore, the allowance for enhanced monitoring or

4https://angularjs.org

5.3 SFC Reactive Security 131

even trigger the deployment of new security functions alleviate the effects of an ongoing
attack. By leveraging the flexibility of SDN-based deployments and the concept of SFC, a
service-specific overlay creates a service-oriented topology, on top of the existing network
topology, thus providing service function interoperability.

The aim of this service chaining is to overcome constraints and inefficiencies, as men-
tioned previously. This can be used to fulfil the target of providing security profiles per
application classification based on the originating application. The per tenant classification
serves multiple virtual tenant networks with the chaining of vital security functions. More-
over, the per traffic classification, for both intra- and inter- domain deployments, can forward
the traffic following predefined service function paths for each traffic type. By instantiating
of security network functions such as Firewalls, IDS, DPI, Honeypots and Honeynets, a
number of service function chains can be created to forward traffic based on the type of
traffic or running application.

Important parts of the implementation of this functionality are the Classifier and the
DPI service function. The Classifier is responsible for classifying and forwarding incoming
packets based on predefined rules, exploiting pattern matching and tags found on the packet
headers, and forwards the packets through one of the predefined function chains. In the case
of packets already carrying a tag classifying, the traffic is forwarded via the associated chain
providing faster packet transmission. In case of a malicious type of packets, the classifier will
forward the packets to the honeypot (or honeynet, depending on the deployment), to isolate
and investigate the attack. When there is no previous acquired knowledge about the packet’s
classification (i.e. no tag on the packet header), the classifier will forward the traffic to the
nDPI aiming to detect any malicious activity, assess its impact, and attach the associated
tag, to help form the system’s response and enhance the attack mitigation effectiveness. The
nDPI disassembles the traffic packets, assesses their content and decides on their traffic type.
Then, the packet is repackaged by assigning the appropriate headers to allow for its routing
through the corresponding service chain. However, even if this chain protects SDN network
from malicious attacks, the procedure will add delay to the transmission.
The reactive security is based on the following components:

• Virtual Network Functions

• SFC Manager The SFC Manager to stitch security service functions

• SFC GUI The SFC GUI to monitor and manage the reactive security

• Dynamic SFC instantiation

132 Implementation of the Pattern Framework

5.3.1 Virtual Network Functions

The preparation of an incident detection and response mechanism contains a generic incident
handling of a reactive security for cyber-physical system. Additionally, the incident response,
vulnerability and artefact handling include analysis, support and coordination. In the same
way, the protection, detection and response are a combination of monitoring and incident
detection, mitigation and trace-back and audit mechanisms. One of the goals of this effort is to
provide a secure industrial networking infrastructure, via the associated security mechanisms,
such as network monitoring and intrusion detection for industrial SDN networks. To achieve
this objective, the reactive security presented herein includes a number of different VNFs
for continuous network monitoring and intrusion detection for identification of attacks and
run-time network adaptation for attack response and mitigation mechanisms. The placement
of exemplary security VNFs in the NFV architecture is depicted in Figure 5.6. That includes
the implementation of the following virtual switches and the proactive service functions:

Fig. 5.6 Security Functions in NFV Architecture

5.3.1.1 IDS and SCADA IDS

The security mechanisms include continuous network monitoring and intrusion detection for
identification of attacks and run-time network adaptation for attack response and mitigation
mechanisms. More specifically, IDS instances of Snort [177] are deployed, with scripts to
ensure that the most up-to-date rules are constantly active. A database for event monitoring

5.3 SFC Reactive Security 133

is present, while provisions are made to allow for future extensions to transmit relevant
information to a security backend (e.g. for more sophisticated pattern matching). Moreover,
a SCADA-specific instance of Snort [178] is deployed, where SCADA traffic is routed.
This limits the delay imposed on the SCADA traffic by the IDS functionality (a delay
that significantly depends on the number of rules/patterns in the IDS’s database, which is
significantly lower in the case of the IDS with only SCADA-specific rules installed).

5.3.1.2 Honeynet

Network-based Honeypots have been widely used to detect attacks and malware. A Honeypot
is a decoy deployment that can fool attackers into by making them believe that they are hitting
a real network whereas in the same time it collects information about the attacker and attack
method. A Honeynet contains a set of functions, emulating a production network to attract
and detect attacks, acting as a decoy or dummy target. In the protected wind park network,
a Honeynet can consist of Honeypot network elements, as well as emulating operational
systems of the wind park and more specifically elements, such as the SCADA systems and
data historian. Simple Honeypots [179] and SCADA-specific Honeypots [180] are deployed
to emulate the exact network and SCADA system setup present in the SDN-enabled wind
park. Moreover, passive Honeypots (Early Warning Intrusion Detection Systems, (EWIS),
in specific [181]) are part of the Honeynet, acting as a network telescope on the production
part of the industrial network, to monitor all activity in normally unused parts of the network.
Such activity is a good indicator of malicious entities operating on the network (such as
an attacker probing/foot-printing the network), thus providing early warning of incoming
attacks.

5.3.1.3 Firewall

A software or hardware firewall instance is also deployed on the wind park’s network use
case to implement network perimeter security. This is a software firewall (instance of pfsense
[182]), but a hardware (legacy) firewall appliance already present in the industrial network
or even a virtualised commercial firewall appliance (such as the VM-Series from Palo Alto
[183]) could also be used. The type of firewall, as well as its placement, is irrelevant to the
context of the reactive security employed to protect the industrial network, as the service
plane view of the framework focuses on the type of service and not the underlying technology.
This allows the use of any type of firewall and placement in any place on an SDN network
deployment.

134 Implementation of the Pattern Framework

5.3.1.4 DPI

As a proof-of-concept implementation of a DPI function, nDPI [184] is employed to monitor
incoming traffic and to forward it to the corresponding service chain. In order to have an up
to date view, the SFC-related information is fetched from the ODL controller via constantly
running scripts (e.g. information about the various chains or information on which chain
IDs correspond to reverse chains, i.e. return traffic). Firstly, the NSH header is extracted to
check if the packet is already processed (in this case, the packet chain ID would be that of a
reverse chain). If it is already processed, it is simply forwarded to the attached forwarder. If
the packet has not been processed before, the developed application encapsulates the packet
and sends it to the nDPI engine for processing. As soon as a response is received from
the nDPI engine, the appropriate chain IDs and the appropriate next hops from rendered
service chains are fetched from the controller. Based on the received information from
the controller, the NSH header is generated and the packet is encapsulated appropriately,
before being forwarded to the appropriate SFC to support dynamic packet flow change. The
response of the nDPI engine is based on a set of rules that the engine has compiled to classify
traffic types, and can be extended by writing additional rules (for instance TCP and UDP
ports 502 associated with Modbus traffic can be defined as being malicious, if such traffic
is not expected in the specific part of the network). The response from the nDPI engine
classification of each packet is either the protocol/application/framework ID that the above
mentioned rules define, or UNKNOWN if it cannot be determined.

5.3.1.5 Open vSwitch

Finally, the last required virtual component is Open vSwitch (OVS) which is a production
quality, multilayer virtual switch licensed under the open source Apache 2.0 license. It is
designed to enable massive network automation through programmatic extension, while
still supporting standard management interfaces and protocols (e.g. NetFlow, sFlow, IPFIX,
RSPAN, CLI, LACP, 802.1ag). In addition, it is designed to support distribution across
multiple physical servers similar to VMware’s vNetwork distributed vswitch or Cisco’s
Nexus 1000V 5. Finally, OVS Switch is able to support IPSec encryption for the tunnel traffic
to prevent the traffic data from being monitored and manipulated 6.

5https://www.openvswitch.org
6http://docs.openvswitch.org/en/latest/tutorials/ovn-ipsec/

5.3 SFC Reactive Security 135

5.3.2 SFC Manager

An SFC determines an abstract set of service functions and their ordering constraints that
should be applied to packets and/or frames selected as a result of classification. Service
instances may include Firewall, IDS, DPI, and HoneyPot. These services may be the physical
appliances or virtual machines running in network function virtualisation infrastructures.
They may be composed of one or multiple instances. Each SFC configuration includes a
set of service nodes, a set of service functions, a set of service function forwarders, a set of
service chains, a set of service paths and a set of configurations for classifiers (ACL/NSH). If
the Service Function Nodes are not OpenFlow-speaking or SFC-aware, or are in different
domains, SFC Proxies are needed.

To implement the above functionality, certain purpose-built modules as well as enhance-
ments to existing SDN controller modules are needed. The SDN controller programs the
underlying forwarding elements that do the actual packet forwarding. In essence, the SDN
Controller is converting commands from the high-level SFC language to the low-level flow
filters expressed in the OpenFlow semantics. The SDN Controller provides an abstraction
view of the network topology. This significantly simplifies the configuration. However, the
SDN Controller does the necessary transformations to put the paths (sequence of service
instances where the packet traverses) and filters (associate user based on his profile to its
respective service chain) in the forwarding devices (OF-enabled).

The SFC Manager is able to handle service function chaining of network functions. This
allows the SFC Manager to focus on the chaining itself and not on the internal topology of
the Network Controller. This means that SFC Manager manages forwarding rules and flow
filters on external ports. In particular, the job of SFC Manager is to register external ports of
the SDN transport network (which is being used for SFC) and to declare and associate service
instances to the external ports. In more detail, the SFC Manager controller module exposes a
number of interfaces. The various components can use the interfaces to provide and receive
information about service chains that need to be built. This may include which tenants want
to use them, which destinations are being accessed, what applications the traffic pertains to
and about the service instances of the network functions. The SFC Manager aggregates this
information, combines it, and sends service chains in commands to the SDN Controller.

At the Management and Control planes, the SFC Manager and the SFC-enabled SDN
controllers are responsible for administrating the services chains, i.e., for mapping the opera-
tor’s/tenant’s/ application’s requirements into service chains. At the Data plane, Classifiers
assign traffic to their intended service chain (based on pre-defined criteria) and Service
Forwarders and Proxies (where needed) are responsible for steering traffic accordingly, in
order to realise said Service Chains. In the windpark case, such service instances may include

136 Implementation of the Pattern Framework

vFirewall, IDS, DPI, and Honeypot. These services may be composed of one or multiple
instances. These may be the physical appliances or virtual machines running in NFVI. Finally,
the syntax of the respective SFC files and the templates are presented in Table 5.1

Table 5.1 Abstract SFC Component Structure

Service-nodes Syntax

Service Function (SF)

"service-function": [
{"name","ip-mgmt-address", "rest-uri","type",
"nsh-aware", "sf-data-plane-locator": [
{"name","port","ip","transport",
"service-function-forwarder"}] }]

Service Function Forwarder (SFF)

"service-function-forwarder": [
{"name","service-node",
"service-function-forwarder-ovs:ovs-bridge":
{"bridge-name"}, "sf-data-plane-locator": [
{"name","port","ip","transport",
"service-function-forwarder"}] }],
"service-function-dictionary": [
{"name", "sff-sf-data-plane-locator":
{"sf-dpl-name", "sff-dpl-name" }}]

Classifier
"service-function-classifier": [
{"name","scl-service-function-forwarder": [
{"name", "interface"}], "acl":{"name","type"}]

Service Function Chain

"service-function-chain": [
{"name", "symmetric",
"sfc-service-function": [
{"name", "type"}, {"name", "type"}]

Service Function Path

"service-function-path": [
{"name","service-chain-name","starting-index",
"symmetric","context-metadata",
"service-path-hop": [
{"hop-number", "service-function-name" }]

5.3.3 SFC GUI

To assess and manage the proof of concept implementation of the Reactive Security, a
Graphical User Interface (GUI) is developed, as an additional module on the ODL SDN
Controller. The GUI displays instantiated VMs/Service Chains and traffic paths, based on the
chains seen in the bottom of Figure 5.7. Based on this classification, SCADA traffic goes to
the SCADA IDS and then to its intended SCADA system at the wind park. HTTP traffic goes
to normal IDS and then to its intended system at the wind park. Malicious traffic (e.g. nmap
port scan) is detected and goes to Honeypot/Honeynet instead of its intended target wind park

5.3 SFC Reactive Security 137

system. Finally, unknown traffic is routed to DPI for classification, where a modification in
the header of the packer, can forward the traffic to the respective active chain (legitimate,
SCADA or malicious). One additional capability of the implemented GUI module depicts
realtime network traffic monitoring interfaces and functions and Service Function resource
monitoring interfaces and functions custom of the imported data.

Fig. 5.7 Reactive Security SFC GUI

To preview the topology of the network, nodeJS library [185] is used to present network
topology at real-time. Suitable REST interfaces were implemented to import network
components such as switches (i.e. forwarders and classifiers), security functions (FW, DPI,
IDS and SCADA-IDS) and end-hosts (i.e. windparks, scada servers). Moreover, the condition
of service functions with respect to CPU and memory utilisation of the various security
service functions (i.e. the VMs running said service functions), is imported automatically by
the use of implemented REST interfaces presented in real-time on a separate table.

5.3.4 SFC in the NFV MANO

In today’s legacy network infrastructure security-related functionalities and applications
are running on dedicated locations in the network architecture. Nowadays, these locations
have to be decided in the network planning phase and are very difficult to change during

138 Implementation of the Pattern Framework

Fig. 5.8 Expanded, NFV-O Managed and ETSI-aligned, Framework Architecture

the lifetime of a network infrastructure. The approach proposed in this work enables future
scenarios to add or delete functionalities or applications in the network infrastructures at
runtime. It has been identified the benefit of incorporation the NFV and SDN world in order
to bring the best of both worlds related to network setup, configuration and management
together.

In order to enhance this flexibility in a network, the principles of NFV MANO can be
combined with the framework presented here. The expanded architecture can be aligned to
the approach described in ETSI GS NFV 002 [186], as depicted in Figure 5.8. This enhances
the proposed framework with flexible deployment and instantiation of network functions and
the automated preparation of service functions chains. For that reason, the SFC Manager can
be enhanced to handle the interactions between the SDN controller and the MANO, in order
to receive networking information about instantiated VMs, as well as to provide information
about possible service function chains.

5.3.5 Dynamic SFC instantiation

One of the innovative approach supported by this work, is the dynamic instantiation of SFCs
based on the predefined SFC patterns. This can be applied based on the patterns as presented
in the Chapter 4. In addition, in Figure 5.9 the implemented process for VNF instantiation in
the pattern framework is presented.

5.4 Network Simulator 139

Fig. 5.9 SFC Requests in the Pattern Framework

5.4 Network Simulator

To evaluate the proposed pattern framework, it was necessary an open and extensible environ-
ment for deploying the design networks and its integration with the pattern network. There-
fore, to assess and manage the proof of concept implementation of the pattern framework,
a network simulator is developed in order to monitor and manage network infrastructures
deployed by the pattern framework and used by the reactive security. The main scope of the
simulator is to present existing or designed topologies including different kind of nodes and
links. In addition, the simulator is able to depict and update network topology at design or at
runtime. The structure of the simulator includes different deployed and implemented parts.

• Simulator Library: The simulator is based on the vis.js7 visualisation Javascript
library. Vis.js is able to handle dynamic data in order to enable data manipulation
and interaction. Different type of components are included in the Vis library such
as Network, DataSet, Timeline, Graph2d and Graph3d. For the development of the
network simulator, the network library is used to display networks, consisting different
nodes and link interactions. It supports custom shapes, images, styles colors and
clustering for large number of nodes.

• Simulator Functions: To be able to develop the simulator to fulfil the framework
requirements, a number of different additional Javascript functions are introduced.
Javascript functions are developed to enable the import and export of the network
topology files externally. Furthermore, the addition of functions to support the addi-
tional required attributes (ie. resources, ports resources etc.) of nodes for the different
import and export of topologies are also developed. Moreover, the capability to interact

7http://www.vis.js: A dynamic, browser based visualisation library.

140 Implementation of the Pattern Framework

with the depicted in the simulator nodes are included. These functions enable the
different component interaction with the mouse (ie, click, doubleclick, leftclick) the
node conditions such as address and resources can be previewed. Apart from the basic
functions, some other capabilities are introduced such as zoom in/out and move/drag
of the nodes.

• Network Component Descriptions: Apart from the different functions, to express
all the required components for the design of physical and network infrastructures,
a number of additional components are included in the description file. Each of the
below nodes are inserted as different groups enabling the depiction of different nodes
having a unique image. More specifically the following type of nodes are defined:

– End Hosts: client, host, server, controller historian, scada, windpark, printer,
pda, laptop, internet, network

– Forwarding Devices: router, switch, accesspoint, forwarder, classifier, servicen-
ode

– Service Functions: function, firewall, dpi, ids, scadaids, loadbalancer, honeypot,
honeynet

• Network Topology Json Format: All the deployed network topologies should be
formatted in a suitable Json format as required in order to be inserted and depicted in
the network simulator. The structure of the Json files following the format of:

{”data” : {”nodes” : [{...}, ...},{”edges” : [{...}, ...}]}

As an example of a Json network topology, Figure 5.10 depicts the expression of a
interconnection between a client and a server. Both group of nodes are introduced pre-
viously where the additional required information for the deployment of the proposed
topologies such as address, resources, etc. are also presented.

• Simulator GUI: The GUI of the simulator is developed by the creation of an HTML
web page as a canvas for rendering the network topologies. This canvas enables the
capability for runtime interaction between the user and the web page. In the Figure
5.11, the variety of the previously defined network elements supported by the simulator
is presented. The simulator provides the capabilities to import network topologies from
a file or to export them to a file by the use of the deployed buttons and the developed
functions. Moreover, the addition of a node on the fly is possible. Some additional
options are enabled to provide easier interaction with the output of the simulator, such

5.4 Network Simulator 141

1 {
2 "data": {
3 "nodes": [
4 {
5 "id": 1,
6 "label": "Client",
7 "group": "client",
8 "address": "192.168.1.1",
9 "ports": 80,

10 "position":["x": 30, "y": 40],
11 "resource":["cpu":30,"mem":40,"storage":40,energy":50]
12 },
13 {
14 "id": 2,
15 "label": "Server",
16 "group": "server",
17 "address": "192.168.1.2",
18 "ports": 80,
19 "position":["x": 60, "y":60],
20 "resource":["cpu":20,"mem":50,"storage":30,energy":40]
21 },
22],
23 "edges": [
24 {
25 "from": 1,
26 "to": 2,
27 "label": "Client to Server"
28 "width" : 1,
29 "color":["color": "blue"]
30 }
31]
32 }
33 }

Fig. 5.10 Network Topology Json Example

as arrows to move the topology or zoom in/out properties. Finally, the simulator is able
to update the topology of the network based on the latest received information stored
externally in a file since the auto refresh option is enabled.

• Pattern Framework Interaction: The last part of this development includes the
interaction between the pattern framework and the simulator. To fulfil the initial

142 Implementation of the Pattern Framework

Fig. 5.11 Implemented Network Simulator

Fig. 5.12 Network Simulator and Pattern Framework Interaction

requirement for runtime representation of the designed or updated network topologies
as retrieved by the pattern framework, suitable rules are developed to enable this
capability. For instance the initial design of a network including nodes and links has

5.5 Testing and Evaluation Environment 143

to be converted in the Json format as required by the simulator. The pattern engine is
applied to make this conversion by the development of suitable rules for this reason.
The converted network topology format is exported automatically as a Json file able
to be inserted in the network simulator. The identification of suitable paths, service
chain paths and secure paths as exposed by the pattern framework can be depicted by
enabling the modification of the default color of the respective links. The procedure of
the interaction between the pattern framework and the simulator is depicted in Figure
5.12

5.5 Testing and Evaluation Environment

5.5.1 Emulated Infrastructure

Network emulators such as Mininet8 platform are suitable for testing and emulation. Es-
pecially by the use of Mininet-WiFi [187] and NS39, it is possible to include not only
switches and hosts, but also OpenFlow-enabled access points. In the proposed framework,
Mininet is used to build network topology based on the predefined patterns. Moreover, with
the extension of Mininet-WiFi the possibility to extend the proposed scenarios for hosting
OpenFlow-enabled access points is also examined. In addition, the capability of Mininet to
create custom network topologies based on the predefined configuration files is applied.

5.5.2 Virtual Infrastructure

Virtual infrastructures represent a core part of NFV architectures. The possibility to instantiate
Virtual Machines (VMs) based on the use case requirements, emphasise also the great
capability of virtualisation. To instantiate VMs running vSwitchss, security VNFs and
SDN controller, a hypervisor is required. Hypervisor is a computer software or hardware
component that is able to create and run VMs. There are a number of hypervisors such as:

• VirtualBox VM 10 is a free and open-source hosted hypervisor for x86 virtualisation.

• Proxmox Virtualisation Environment11 is an open source server virtualisation manage-
ment software.

8https://www.mininet.org
9http://www.nsnam.org/

10https://www.virtualbox.org
11https://www.proxmox.com

144 Implementation of the Pattern Framework

• OpenStack12 is an open-source software platform for building private and public cloud.

In the context of this work, all the above platforms are evaluated in order to instantiate
VNFs for the different SFCs. VirtualBox was used initially to experiment locally the concept
of SFC. However, the resource requirements made necessary to develop the reactive security
in a dedicated machine running native Proxmox. Therefore, Proxmox is used as the standard
hypervisor to run static topologies, where the Openstack is used as an experimental platform
to apply dynamic topologies in NFV environment. In Figure 5.13 a screenshot of the tested
hypervisors (Proxmox and OpenStack) is presented.

Fig. 5.13 Hypervisors

The reactive security through SFC is developed in an experimental testbed. The testbed
featuring multiple VMs is developed and deployed on Proxmox which runs on a server
system (featuring 2 x Intel Xeon E5-2630 v2 6-core/12-thread CPUs, at 2.6GHz, with 32GB
RAM). The following VMs are required in order to implement the described scenario; three
different types of virtual instances were created (in parentheses the resources dedicated to
each VM):

• Controller: 1x OpenDaylight Controller instance (Boron release (4 CPU cores, 4GB
RAM)

12https://www.openstack.org

5.6 Summary 145

• Forwarding Devices: 5x Open vSwitch [188] (v2.59) instances (2 x Classifiers (4
CPU cores, 1GB RAM), 3 x Service Function Forwarders (4 CPU cores, 1GB RAM)

• Service Functions: 4x Security Service Functions: 1x Firewall instance (4 CPU cores,
2GB RAM), 1x DPI, i.e. the custom nDPI-based implementation (4 CPU cores, 4GB
RAM), 1x Snort-based IDS with all generic rules (4 CPU cores, 1GB RAM), 1x
Snort-based SCADA IDS, with SCADA-only rules (4 CPU cores, 1GB RAM)

• End-Hosts: 4x End-hosts: 1x Emulated Data Historian (4 CPU cores, 1GB RAM), 1x
Emulated SCADA system (4 CPU cores, 1GB RAM), 1x Passive EWIS Honeypot (4
CPU cores, 1GB RAM), 1x SCADA Honeypot (4 CPU cores, 1GB RAM)

5.5.3 Software Setup

Finally, for the evaluation and testing different software tools were used:

• Eclipse Modelling Tool13 with the JBoss Drools is used to evalute and text drools
rules. Eclipse is used to develop the Java classes as required by the definition and the
specification of under-development modules and blocks.

• Git14, is a tool that provides versioning and parallel development of source code. The
developers can have access to all versions of the files and exchange code modifications
via a git server. When a developer makes local changes to the code, these changes can
be pushed onto the git server. Other developers are able to pull these modifications
from the server. As git keeps track of all the modifications done to each and every file,
line by line, it is possible to retrieve any previous versions of the code at any time.

• Postman15 is a powerful GUI platform for testing building APIs and sharing REST
API calls exposed by ODL modules.

• JBoss Drools is used to express patterns and the respective Java classes in the rule
Engine.

5.6 Summary

In this chapter, the development of a pattern framework able to handle faults and failures in
SDN/NFV-enabled network infrastructures was presented . The flexibility of the framework

13http://www.eclipse.org
14https://git-scm.com/
15https://www.getpostman.com

146 Implementation of the Pattern Framework

to insert patterns as Drools rules in the pattern engine, shows the capability of the controller
to guarantee properties and handle incidents. The cross layer distribution of the different
pattern engines in the application and in the SDN controller is described. Especially in the
pattern engine developed in the SDN controller, there is no need to modify internal controller
modules since the interaction is applied through pattern rules. Thus, the framework can
be easily extended to interact with multiple controller capabilities and functionalities. In
addition, the reactive security leveranging SFC and the integration with the pattern framework
in order to provide traffic classification through different security network functions was also
presented. Finally, the developed network simulator and the testbed setup description was
given.

Chapter 6

Evaluation of Design Patterns in the
Pattern Framework

6.1 Overview

To evaluate the applicability, usability and performance of our patterns on the pattern frame-
work, three different main use cases are proposed each of them containing different usage
scenarios as depicted in the Figure 6.1.

• Design Networks: The first use case includes the design of different types of network
topologies based on the proposed topology patterns able to offer connectivity, coverage
and scalability.

• Design and Verify S&D Network Topologies: The second use case includes the
design and verification of existing network topologies with respect to different network
properties such as reliability, fault tolerance and security.

• Service Provisioning: The third use case includes the application of the pattern
framework to offer reactive security leveraging the SFC concept in a actual windpark
use case to ensure service provisioning and chaining.

These use cases and the outcomes of the evaluation are presented in the following
subsections.

6.2 Design Network Topologies

One of the main goal of network designers is to provide network topology designs able to
satisfy different application requirements and infrastructure properties. This may include the

148 Evaluation of Design Patterns in the Pattern Framework

Fig. 6.1 Evaluated Use Case and Scenarios

number of users, the covered area, the degree of redundancy, the type of network technology
or finally the available resources.

The first use case focuses on the design of network topologies based on the previously
defined topology patterns. After the execution of these topology patterns under the pattern
framework, network design are available either for physical deployment or under an emulated
enthronement for experimenting reasons. The three different network topology patterns (line,
mesh and tree) can be used for the evaluation of three usage scenarios that can demonstrate
the existing capabilities of the framework as provided below:

• End-to-end connected network topologies based on the Line Pattern.

• Maximum coverage and redundancy network topologies based on the Mesh Pattern.

• Designing scalable network topologies based on the Tree Pattern.

6.2.1 End-to-End Connected Network Topologies

The first usage scenario of network topology includes the design of a wireless network able
to guarantee the connectivity property between two end-points. In this scenarios, the number

6.2 Design Network Topologies 149

of intermediate nodes is related to the maximum distance between the nodes. This distance
is also related to the range of each node as depicted in Figure 6.2.

Fig. 6.2 End to End Connected Networks

The main scope of this scenario is to find the number of nodes between source and
destination. The role of the pattern framework in this usage scenarios, involves the design of
a connected E2E network able to satisfy the connectivity property based on the execution of
the Line Pattern.

Table 6.1 Experimental Results of the Line Pattern Execution

Distance (metres) Required Relay Nodes Exec. Time (msec)
500 4 44

1.000 9 58
2.000 17 60
5.000 33 85

10.000 65 101

To evaluate the line pattern, different requirements are inserted in the working memory
following the syntax: Req(src, dst, new Pro("connectivity", d), new Range(r), where src
is the source node, dst is the destination node, Pro(”connectivity”,d) defines the required
connectivity property as guaranteed by the Line Pattern, d is the distance between src and
dst, and r is the constraint that defines the maximum distance (range) between nodes in
order to establish connectivity. Different requirements, expressing a variety of distances d
between a src and dst are inserted in the working memory. Line pattern is executed based on
the inserted requirements for defining the required number of relay nodes for five different
distance values (500m, 1km, 2km, 5km, 10km) between src and dst with maximum range
of 100m between nodes. After the execution of the line pattern in the pattern framework,
the experimental results are presented in Table 6.1. Based on the different distances of src
and dst (column 1), the minimum number of required relay nodes (column 2) is presented.
Moreover, the execution times of line pattern to solve the design problem, are presented in
column 3. As expected and verified by the results, the execution time is increased as the
distance being increased. In addition, the number of relay nodes, necessary for preserving

150 Evaluation of Design Patterns in the Pattern Framework

the required connectivity property, is growing having as a result the CAPEX of such network
design deployment. Finally, together with the experimental results, Figure 6.3 depicts the
constructed network for the distance of 1km in the developed network simulator.

Fig. 6.3 Line Pattern Output on Network Simulator

6.2.2 Maximum Coverage and Redundancy in Network Topologies

Fig. 6.4 Mesh Networking in Rural and Urban Environments

The second usage scenario for the design of a network topology includes an IoT mesh
network able to monitor a large-scale area including the reception of monitoring measure-
ments. In order to offer maximum coverage, a mesh network must be designed to enable
path redundancy for failure avoidance. The topology should enable the maximum covered

6.2 Design Network Topologies 151

area considering also the number and kind of IoT devices. As an extension of this approach
it could be the definition of the minimum number of nodes to cover the maximum area for
nodes with different wireless ranges and terrains as depicted in Figure 6.4.

Table 6.2 Experimental Results of the Mesh Pattern Execution

Distance (metres x metres) Required Nodes Exec. Time (msec)
100 x 100 4 139
200 x 200 9 154
300 x 300 16 203
400 x 400 25 268
500 x 500 36 533
800 x 800 81 854

1.000 x 1.000 121 1206
2.000 x 2.000 441 3945
5.000 x 5.000 2601 6438

To design an IoT mesh network, the Mesh Pattern is applied. The main scope of the mesh
pattern is to define the placement of nodes for different distances. Different sets of covered
areas ({d,d0}) are inserted as requirements in the pattern framework and the results can be
seen in Table 6.2. After the execution of the mesh pattern in the pattern framework, a sample
of the pattern for coverage of 800⇥800 can be previewed in the network simulator as can be
seen in the Figure 6.5.

6.2.3 Scalable Network Design

The third usage scenarios of network topology includes the design of a multi-tier tree network
topology as depicted in the Figure 6.6. This topology can represent an SDN-supported
architecture where in Tier 0 is the SDN controller, Tier 1-3 are the intermediate switches and
Tier 4 is the host layer. Tree topologies are able to support scalable network designs. The
main concept that this scenario is able to investigate is the design of a flexible and extensive
network topology for supporting a number of clients under an SDN-enabled network topology.

Table 6.3 Experimental Results of the Tree Pattern Execution

End-Hosts Tie Number Required Switches Exec. Time (msec)
2 2 0 124
4 3 2 136

32 6 30 319
256 9 256 857

152 Evaluation of Design Patterns in the Pattern Framework

Fig. 6.5 Mesh Pattern Output on Network Simulator

To design scalable SDN-enabled topologies, the Tree pattern is applied. The main scope
of this pattern is to identify the tiers, the number of necessary switches in order to satisfy
a number of end-hosts. After the evaluation of the tree pattern for the different number of
clients, the results can be found in Table 6.3. The depicted outputs in the network simulator
for 32 clients can be seen in the Figure 6.7.

6.3 Design and Verification of S&D Networks

The second use case, investigated in this chapter, is the design and verification of network
infrastructures with respect to S&D properties. Based on that, three different usage scenarios
are described as follows:

• Reliable IoT Networks based on the developed Reliability Patterns as presented in
Section 4.4.

6.3 Design and Verification of S&D Networks 153

Fig. 6.6 Scalable Network Designs based on Tree Topologies

• Fault Tolerance SDN based on the developed Fault Tolerance Patterns as presented in
Section 4.5.1.

• Confidential Transmission in SDN based on the developed Confidentiality Patterns as
presented in Section 4.6.

6.3.1 Reliable Network Designs

System reliability is related to the reliability of cyber and physical components and to the
connectivity between these components. Failures or attacks on the IoT network consisting of
wireless IoT-enabled sensors may have as a result that possible anomalies disable the data
transmission to the central controller.

In this usage scenario, a network is deployed to send monitored data to a central controller
through relay nodes and paths. The transmission between end-hosts is applied through the
relay nodes that forward the received data continuously. For instance, source can be the
location of a monitoring mechanism and sink can be the location of a central controller as
depicted in Figure 6.8. The main scope of this scenario is the design of a reliable IoT network.

154 Evaluation of Design Patterns in the Pattern Framework

Fig. 6.7 Network Simulator Outputs on Tree Pattern

In order to satisfy the required reliability property, a number of different relay components
which compose the system should be installed to enable a reliable monitoring mechanism.

The role of the pattern framework is to design reliable network infrastructures based on
reliability patterns to avoid failure or attacks on the communication medium. This includes
the definition of the number and the location of relay IoT devices that should be installed in
order to ensure a reliable monitoring network. The pattern implies that the path reliability
is related to the probability of an attack or failure. In order to validate the component
composition of the monitoring mechanism, reliability patterns are used (a) to compose
components (b) to validate system reliability and (c) to guarantee system reliability.

The inputs of the described scenarios include (a) the distance between source and desti-
nation, (b) the maximum range of communication link IoT sensors (c) the reliability of each
component and (d) the required system reliability. The outputs of the described scenarios
include the following (a) the number of IoT sensors, (b) their position and (c) the number of

6.3 Design and Verification of S&D Networks 155

Fig. 6.8 Reliable Network Designs

paths and links. To evaluate the performance of the pattern, different scenarios are defined
where reliability patterns can be used satisfactorily.

6.3.1.1 Serial and Parallel Reliability Pattern

The Serial and Parallel Reliability Pattern is able to validate whether the reliability of the
system satisfies the required reliability and if not, it will add sensors in parallel in order to
guarantee the required reliability. This will produce solutions concerning the number of
sensors and their location. We may consider a system with c components as placeholders
where in each placeholder an IoT sensor must be installed. The number of placeholders
is related to the distance between the source and the sink is d. If the maximum range
between two wireless sensors is r, the minimum number of relay nodes can be calculated
by d/r�1. The reliability of the system is equal to the composition of components in series:
r =

Œn
k=1(rk). The deterministic approach is followed to verify the connectivity between two

sensors. If the distance between the two nodes is greater than the maximum distance d then
the reliability of a link is 0. On the other hand, if the distance is less or equal than d, the
link reliability is 1. This is an assumption to our approach because in reality the reliability
of a a link, particularly in case of wireless links, is probabilistic where other factors such as
interference, path loss and propagation can influence the reliability of the connectivity.

156 Evaluation of Design Patterns in the Pattern Framework

Let assume that a system includes 2 placeholders c1 and c2, the reliability of each sensor
is 98% and the required reliability is 99%. The pattern will validate system reliability by
placing two sensors s1 and s2 in series at placeholders. Calculating the reliability of the
system it will give: r = r1 · r2 = 0.98 · 0.98 = 0.96 which is lower than the required reliability.
Since the reliability is not guaranteed, the pattern will add an s3 at second placeholder c1. A
new validation occurs giving: r = (1� (1� r1) · (1� r3) · r2 = 0.98. The reliability is close to
99% but even now the property is not satisfied. Therefore, the pattern will add a new sensor
s4 in placeholder c2. Finally, the r = (1� (1� r1) · (1� r3) · (1� (1� r2) · (1� r4) = 0.999. The
described procedure is depicted in Figure 6.9. This example shows the procedure which
is followed for designing a reliable system containing 2 placeholders. However, in case of
multi-hops networks the solution is not so easily provided. Reliability pattern is able to
provide solutions for multi-hops networks as presented in the next subsection.

S2#

S1#

Sink

Source

S1#

Sink

S2#

S3#

Source

S1# S3#

Source

S2#

Sink

S4#
(a) (b) (c)

Fig. 6.9 Design Phases of a Sensor Network with Reliability (a) 96% (b) 98% (c) 99.9%

The previously described procedure is followed automatically by the serial and parallel
reliability pattern, as expressed in Drools rules (Rule 4.6 and 4.7), and is used for constructing
a reliable monitoring network consisting of wireless sensors. The number of placeholders is
based on the distance between the source and the sink node and the wireless transmission
range of each sensor. Let assume that each sensor has reliability factor 98% and transmission
range 100m. As different factors of the experiments, we may consider the distance between
the source and sink, which reflects the number of placeholders based on d/r� 1. The
number of sensors, the execution times for different distances between source and sink of
the described scenario are presented in Table 6.4. As we can observe from the results, the
execution time is increased as the number of distance is increased. In addition, the number
of sensors necessary for preserving the required reliability property is growing exponentially.

6.3 Design and Verification of S&D Networks 157

Table 6.4 Experimental Results of the Serial and Parallel Pattern Execution

Distance (metres) No Placeholders Reliability No Sensors Execution Time (msec)
1.000 9 99.6% 18 17
2.000 19 99.2% 38 19
3.000 29 99.8% 108 26
4.000 39 99.4% 128 35
5.000 49 99.0% 148 47
6.000 59 99.9% 336 50
7.000 69 99.9% 376 58
8.000 79 99.8% 508 66
9.000 89 99.4% 528 75

10.000 99 99.0% 548 78

6.3.1.2 Serial-Parallel Reliability Pattern

The evaluation of Serial-Parallel Reliability Pattern is also presented below. The results of
the pattern evaluation, after applying the above pattern, is presented in Table 6.5. The table
shows the number of nodes of each pattern and the time that was needed to execute each
pattern. The requirement of 99.999% reliability suggests that a great number of nodes should
be installed, especially for long distance links.

The developed pattern topology by the Serial-Parallel Reliability Pattern can be converted
to an SDN architecture based on the developed mechanism as discussed in Chapter 5.
Two different capabilities are examined below: i) the conversion of topologies to custom
Mininet topologies and ii) the developed network simulator. The created SDN infrastructure
can include hosts and OpenFlow-enabled (wired or wireless) switches as obtained by the
reliability patterns. Then, the emulator is able to forward the topology to a remote controller
such as ODL. Figure 6.10 depicts the outputs (nodes and links) of the reliability pattern
when the distance between the source and the destination is 500m, the range is 100m and the
uptime probability is 99%.

Table 6.5 Experimental Results of the Serial-Parallel Pattern Execution

Distance (metres) No Nodes Exec. Time (msec)
500 14 56

1.000 46 81
2.000 172 192
5.000 686 1487

10.000 2736 7530

158 Evaluation of Design Patterns in the Pattern Framework

Fig. 6.10 OpenDaylight SDN Infrastructure Topology

Finally, the comparison between the Serial and Parallel Reliability Pattern and the
Serial-Parallel Pattern outputs, as presented in the network simulator, are depicted in Figure
6.11.

6.3.2 Fault Tolerance, Detection and Restoration in SDN

The use of SDN networks imposes the necessity to provide higher fault and intrusion tolerance
compared to legacy networks as new threats are being introduced. More specifically, the
ability to control networks by means of software and centralisation of network control
makes SDN vulnerable to failures, attacks or overloads. In a network fault for example,
new alternative network paths must exist or should be found as depicted in Figure 6.12.
However, the most important factors for runtime adaptation appear to be both the detection of
an attack or failure and the reaction time to transfer the new flow rules to the controller and
the switches. The Fault Tolerance Pattern and the Fault Detection and Restoration Pattern
will be presented and evaluated below. The role of the pattern framework is to insert the
patterns in order to evaluate its performance and the applicability regarding fault tolerance in
the SDN-enabled networks.

6.3.2.1 Fault Tolerance Pattern

The Fault Tolerance Pattern is applied to preplan and configure suitable paths at design time
in order to provide a fault tolerance adaptation in case of fault or attack. To evaluate the
performance of the Fault Tolerance Pattern a number of executions are made regarding the
needed time to identify the available paths in order to preplan alternative solutions. Based on
the pattern, a proactive mechanism is presented that is able to install the required flow rules
inside the SDN switches in order to provide fault tolerance in case of attacks or faults. The

6.3 Design and Verification of S&D Networks 159

(a) Serial and Parallel Output

(b) Serial-Parallel Output

Fig. 6.11 Network Simulator Outputs on Reliability Patterns

results of the experiments for identification and installation of the required flows for different
custom topologies including different number of hosts, switches and links are presented in
Table 6.6.

160 Evaluation of Design Patterns in the Pattern Framework

Fig. 6.12 Fault Tolerance in SDN

Table 6.6 Experimental Results of Fault Tolerance Pattern Flow Configurations

Topo Hosts Switches Links Config Time Degree Topology
1 2 1 2 0.1sec 1

2 2 2 4 0.3sec 2

3 2 3 5 0.4sec 2

4 2 4 6 0.6sec 2

5 2 5 8 1.1sec 3

6 2 6 9 1.3sec 3

6.3.2.2 Fault Detection and Restoration Pattern

Fault Detection and Restoration Pattern can be executed to support runtime SDN adaptation
in cases of DoS attacks. For the detection, the pattern is based on the node connector statistics
as fetched from the OpenFlow-enabled switches to the ODL controller. The statistics include

6.3 Design and Verification of S&D Networks 161

0 2 4 6 8 100

2

4

6

8

10

12

Fault

Fault

Fault

Fault

Fault

time (sec)

Pa
ck

et
N

um
be

r
Topo 1
Topo 3
Topo 6

Topo 1 with 1 drop
Topo 3 with 1 drop
Topo 6 with 2 drops

Fig. 6.13 Experimental Results of Fault Detection and Restoration Pattern

receive and transmit packets, errors, drops CRC errors and collisions. The pattern can retrieve
these statistics and instantiate a new requirement for immediately reaction as an intrusion
detection mechanism. Suitable also to be used in case of malicious adversaries that create
DoS attacks and forward traffic to different secure paths based on the restoration capability.

The performance evaluation of the Fault Detection and Restoration Pattern is focused on
the time needed to detect and restore path, if possible, in case of link failures. The purpose
of these experiments, as conducted in the Mininet, is to send 10 packets from source to
destination for the different network topologies as were defined in the previous experiments.
Since the fault restoration pattern defines the shortest path between source and destination,
the purpose is to measure the detection and restoration time in case of a failure. Therefore,
six different experiments with and without faults are conducted to evaluate three different
topologies from Table 6.6; the results are presented in Figure 6.13. Topo 1 is the simplest one,
containing two hosts and one switch. In this case, pattern cannot guarantee fault restoration
since there is no alternative path to forward the traffic in case of a failure. So, when there is a
fault, the transmission of the packets just stops. The results of the transmission of ten packets
when there is no failure and in case of a fault can be seen in Figure 6.13. Topo 3 contains
two hosts and three switches, one switch in the first path and two switches in the second path
creating two alternative paths. Initially, the fault tolerance pattern will choose the shortest
path that contains only one switch and the packet transmission will be done through this path.
When there is a fault in this path, the restoration pattern detects the failure and identifies
an alternative path through longer path as can been in the transmission time in the Figure
6.13. In this case, the pattern is able to detect the failure and identify an alternative path that

162 Evaluation of Design Patterns in the Pattern Framework

requires less that a second for the detection and the restoration, including also the installation
of the required flow rules. Finally, Topo 6 includes two hosts again and 3 alternative paths
with one, two and three switches per path respectively. The procedure is similar to Topo
3, however the existence of a third alternative, enables the fault tolerance (detection and
restoration) of two failures, firstly in the path 1 (with the one switch) and secondly in path 2
(with the two switches). All the results of the experiments can be found in Figure 6.13.

6.3.3 Secure Transmission in SDN-enabled Networks

One of the most important issues especially in the SDN-enabled networks is to guarantee
secure data transmission. This includes the protection of transmitted data either in data or in
control plane but also through intermediate interface (ie. SBI). Different solutions for data
protection have been proposed in the literature as discussed in the Chapter 2. These include
the transmission of data through a number of different network devices such as routers,
firewalls, NAT and IPSec-enabled gateways by applying access control policies based on
predefined filtering rules able to forward discard or encrypt incoming traffic.

Fig. 6.14 End to End and Link Encryption Use Case

This use case deploys different approaches on how to enable secure data transmission
between a client and a server. The main scope of this use case is to identify suitable paths
able to support the confidential transmission of data between end hosts, as presented in
Figure 6.14. Two different scenarios are described where the the first on considers that each
node should be able to encrypt/decrypt data by applying link encryption and the second one
defines the E2E secure data transmission.

6.3 Design and Verification of S&D Networks 163

The role of pattern framework is to design secure SDN-enabled networks based on
security patterns able to avoid attacks on the communication medium such as eavesdropping.
These patterns guarantee that the exchanged data on the communication channel should be
secure either at the source and destination or between each step of the transmission hops.

6.3.3.1 Link Encryption Pattern

The procedure regards the satisfaction of confidentiality between end hosts in network
architectures based on link encryption. In order to guarantee confidentiality, the Link
Encryption Pattern is applied. The pattern configures network paths, where the intermediate
nodes share the same key and are able to guarantee link encryption. The evaluation of this
pattern is done by the use of an existing SDN infrastructure such as the network topology
shown in Figure 6.10). However, in this scenario, network nodes and links have different
encryption level as presented in Table 6.7.

Table 6.7 Link Encryption on a Network Topology

Links l 1,
5(

n 1
,n

5)
l 1,

4(
n 1
,n

6)
l 1,

7(
n 1
,n

7)
l 1,

8(
n 1
,n

8)
l 5,

3(
n 5
,n

3)
l 6,

3(
n 6
,n

3)
l 7,

4(
n 7
,n

4)
l 8,

4(
n 8
,n

4)
l 3,

9(
n 3
,n

9)
l 3,

10
(n

3,
n 1

0)
l 4,

11
(n

4,
n 1

1)
l 4,

12
(n

4,
n 1

2)
l 9,

2(
n 9
,n

2)
l 10
,2
(n

10
,n

2)
l 11
,2
(n

11
,n

2)
l 12
,2
(n

12
,n

2)

Encrypted X X X X X X X X X X X X X X X X

The evaluation of proposed schema is provided based on the three following phases:

• To preview the different conditions of the network topology regarding the security
level of each link and relay node, the topology of the Figure 6.10 is inserted in the
Figure 6.15a. The defined security levels (enabled/disabled) of each link are inserted
in the knowledge base of the pattern engine as defined in 6.7.

• The Link Encryption Pattern can find the most suitable path(s) for providing link
encryption from a client to a server. More specifically in the described scenario, the
pattern is able to verify and identify the following sequential and parallel paths that
guarantee the required link encryption property based on the pattern definition as
follows: R{s,t,P}, where R defines the requirement for link encryption property to
guarantee P from s source/client (n1) to t destination/server (n2). The results of this
pattern execution provides the required encryption property is provided below:

R{P(Path(s,t))} =

164 Evaluation of Design Patterns in the Pattern Framework

(a) Network Topology

(b) Secure Path Selection

Fig. 6.15 Link to Link Encryption in Network Topologies

R{Path(n1,n2),encryption} =

6.3 Design and Verification of S&D Networks 165

R{Link(n1,n4),encryption} and R{Link(n4,n11),encryption}

and R{Link(n11,n2),encryption}

or

R{Link(n1,n4),encryption} and R{Link(n4,n12),encryption}

and R{Link(n12,n2),encryption}

• Finally, the last procedure involves the instantiation of the respective OpenFlow rules
to be installed in the intermediate switches, reflecting also the selected paths as can be
previewed in the Figure 6.15b.

6.3.3.2 End to End Security Pattern

One of the crucial parts of a designer is to instantiate paths and configure the respective nodes
for providing E2E security property guarantees. This scenario focuses on the instantiation and
the configuration of respective security properties to support E2E secure path transmission in
the SDN data plane. The main mechanism to provide such E2E paths are based on the IPSec
enabling security mechanisms as proposed by the E2E Security Patterns. Two different steps
are included in this scenarios as described below:

• The first step includes the instantiation of the required security associations (SA) and
security policies (SP) for the specific end-nodes to provide the requested security
requirements configuration.

• The second step is the identification of the IPSec-enabled forwarding devices that are
able to encrypt/decrypt or authenticate the incoming and outcoming data. The role of
this step in the scenario is to identify the most efficient route for connecting source and
destination to these IPSec-enabled switches. After the identification of the respective
switches, the instantiated configuration from step 1 will be inserted in the respective
switches.

To evaluate the performance of the E2E Security Pattern, a custom topology is developed
including end-hosts, IPSec-enabled and non IPSec-enabled (with the red stripes) switches.
The custom topology is depicted in Figure 6.16 where apart from the hosts, the switches
with green stripes are the IPSec-enabled ones and with red stripes are the non IPSec-enabled
ones. Based on this topology, different requirements are identified for enabling E2E secure
transmission between the end-hosts and the intermediate nodes. As discussed previously, the
first step includes the IPSec configurations (SA and SP) that should be inserted in the OVS

166 Evaluation of Design Patterns in the Pattern Framework

Fig. 6.16 End to End Encryption in Network Topologies

switches where the IPSec protocol is enabled. The next step includes the identification of two
IPSec-enabled switches, one close to the source node and another close to the destination.
The insertion of the required configurations is applied to ensure confidentiality and integrity
through the IPSec encryption/decryption and authentication mechanisms.

Table 6.8 End to End Security on a Network Topology

Source Destination Hops Secure Links
n1 n2 5 2
n1 n3 5 2
n2 n3 3 0
n2 n3 7 3
n2 n4 5 2
n1 n4 5 3

For different E2E secure paths requests, the pattern is able to identify the provided
available paths to forward the traffic. This can be done by defining the available paths related
to the IPSec-enabled switches close to the source and the destination. In Table 6.8 the

6.4 Design Secure Industrial Networks Leveraging Service Function Chaining 167

different E2E requests and the outputs of the path identification are provided. In the Figure
6.17, the fully or partially secure E2E paths are depicted in the network simulator by the
identification of different path colors. The green path defines a secure transmission, where an
insecure one is presented. Finally, orange path can express an undefined one, corresponding
to the link between the host and the gateway where the IPSec tunnel mode is required for
guaranteeing security in this link.

6.4 Design Secure Industrial Networks Leveraging Service
Function Chaining

One of the main objectives in industrial networks is faster service provisioning. The time to
provision the service is foreseen to be reduced from several days to several minutes. The
concept of SFC has already shown promising results in enabling the faster time-to-market
for the new services in the domain of telecom operators. This implies the potential to reduce
CAPEX and OPEX, especially for short lived service. Depending on the focused aspect
relevant for each deployment of the proposed reactive security leveraging a service function
chaining, a mainly security-focused use case is identified.

This use case includes an approach to achieve reactive security for SDN/NFV-enabled
industrial networks, based on the use of SFC to dynamically chain various security functions,
classify traffic and steer traffic accordingly. The proof-of-concept application of this approach
led to the development of the reactive security modeled on (and deployable to) an actual,
operating wind park. This allows the continuous monitoring of the industrial network and
detailed analysis of potential attacks. Thus isolating attackers can enable the assessment
of their level of sophistication (e.g. from script kiddies to state actors). The main scope
of this use case is to provide a security SFC-based enhancement, for both intra- and inter-
domain deployments, with the ability to forward traffic, based on its security classification
(e.g. legitimate/SCADA-traffic/malicious/unknown), following the classification of Service
Function Paths for each traffic type. Moreover, this type of classification opens up various
possibilities for the integration of advanced malicious traffic detection techniques (e.g.
exploiting machine learning).

The role of the pattern framework in this use case is: i) to instantiate required security
functions for the different SFC requests based on the VNF Instantiation Pattern and ii) to
instantiate service function paths to forward the different type of traffics based on the SFC
Path Finding Pattern. In the next subsections, the SFC reactive security is evaluated in a
wind park use case to express traffic classification, as depicted in Figure 6.18.

168 Evaluation of Design Patterns in the Pattern Framework

(a) Partially Secure Traffic from n1 to n2 (b) Partially Secure Traffic from n1 to n3

(c) Multi-hop Partially Secure Traffic from
n2 to n3

(d) Insecure Traffic from n2 to n3

(e) Partially Secure Traffic from n2 to n4 (f) Fully Secure Traffic from n1 to n4

Fig. 6.17 Evaluation of the End-to-End Security Pattern in the Network Simulator (green:
secure, red: insecure, orange: undefined)

6.4 Design Secure Industrial Networks Leveraging Service Function Chaining 169

Fig. 6.18 Reactive Security - Implemented Service Chains

6.4.1 Virtual Functions Instantiation based on SFC Requests

The first aim of this use case is to instantiate the required chains and the respective VNFs
for providing packet classification and secure traffic forwarding under a proposed industrial
scenario. Based on the classification of each packet, the traffic can be directed to one of
three different SFCs (legitimate, unknown suspicious or malicious) as depicted in Figure
6.19 (a). The aim for this process is to route unknown/suspicious traffic via the IDS and DPI
Service Functions, in order to classify it (as either legitimate or malicious), thus allowing
us to forward it to the windpark or the honeypot, accordingly. Thus, malicious traffic can
be isolated in the honeypot, allowing us to track the attacker, identify its purpose and keep
him occupied. For the inter-domain use case, (Figure 6.19 (b)), the procedure is similar to
the intra-domain scenario. However, a more sophisticated honeypot deployment, such as
a Honeynet, can be used as an emulated wind park, having similar services and functions
as the original wind park. Moreover, in this case, after having acquired the needed tag (as
malicious or legitimate) in other parts of the larger wind park deployment, the traffic can
avoid going through the same procedures (i.e. Service Functions) again. This highlights the
benefits of SFC in terms of potential performance gains.

The per-traffic type classification is adopted for the reactive security, integrating all the
developed security service functions detailed in the Chapter 5, via the following implemented
SFCs. This type of classification forms the basis of the reactive security presented herein.
Based on the S&D property guarantees by each service function, the following classification
of type of traffic was made:

• The legitimate traffic (non-SCADA) is routed through the Firewall and then through
the generic IDS, before being forwarded to the intended destination (in this case, the
Data Historian).

170 Evaluation of Design Patterns in the Pattern Framework

Unknown

Legitimate

Malicious

(a) Intra Domain

Unknown

Legitimate
Malicious

UnknownLegitimateMalicious

Domain 1 Domain 2

WindPark
Dummy

WindPark

(b) Inter Domain

Fig. 6.19 SFC - Per Traffic Type Classification Example

Chain 1 - Legitimate (known) traffic: Firewall -> IDS -> Output (Data Historian)

• The SCADA traffic is routed through the Firewall and then through the SCADA-IDS,
which features only SCADA rules, to minimise the performance impact, before being
forwarded to its intended destination.

Chain 2 - SCADA traffic: Firewall -> IDS -> SCADA-IDS -> Output (SCADA)

• Traffic tagged as malicious (e.g. nmap port scanning), either by the Classifier or by
the DPI functionality, is routed through the Firewall and then to the appropriate part of
the honeynet; the latter can either be the SCADA Honeypot (if its original target was
a SCADA system), the generic Honeypot (if its original target is an SDN device or a
production system such as the Data Historian) or the passive EWIS honeypot (if the
original target is some unused address, indicating malicious probing/footprinting of
the network).

Chain 3 - Malicious traffic: Firewall -> Honeypot/Honeynet

• Finally, Traffic that is of unknown type (i.e. cannot be classified based on simple
ACL rules that the Classifier has), is routed to the Firewall and then to the DPI (nDPI),
where it is analysed, classified and its headers are updated appropriately and then is
being assigned to the appropriate Chain (Chains 1 to 3).

6.4 Design Secure Industrial Networks Leveraging Service Function Chaining 171

Chain 4 - Unknown traffic: Firewall -> DPI -> Chain 1 or Chain 2 or Chain 3

The procedure is followed by the framework when a data packet enters the intra-domain
wind park deployment and a classification is made to identify in which chain the traffic should
be forwarded. The classifier is responsible for classifying and forwarding packets based on
predefined ACL rules, exploiting pattern matching and tags found on the packet headers. The
(attached to the SFF) classifier forwards the packets through one of the predefined function
chains. For every chain, an access control list is required to be inserted in the classifier as
described below:

• Service Functions: F = { f f w, fids, fscada�ids, fdpi, fhp}

• Service Function Chains:: s1 = (f f w, fids), s2 = (f f w, fscada�ids), s3 = (f f w, fhp), s4 =

(fdpi,{s1,s2,s3})

• SFC: S = {s1,s2,s3,s4}

• Access Control Lists: F is the set of ACL rules fi the service functions chains.

• Classifiers: {(s1,f1),(s2,f2),(s3,f3),(s4,F/{f1,f2,f3})}

After the definition of the SFCs and the corresponding rules per chain, the next step
includes the instantiation of the SFCs corresponding to the available VNFs or the instantiated
ones. Therefore, the VNF Instantiation Pattern is responsible to request the specific identified
VNFs from the MANO which has all the required information regarding the existence of
the specific VNFs on the different service nodes. If there is not any available VNF, then the
pattern should request to MANO to instantiate one from the closest to the source service
node that has available resources. After the SFC pattern recursion, the instantiation of the
SFC request will be completed.

The SFC instantiation includes two phases: the VNF instantiation and the insertion of the
configuration SFC files in SDN controller configuration. More specifically, the instantiation
of the VNFs can follow either the described MANO-approach or without MANO. For the
MANO-based approach, Openstack is used as depicted in Figure 6.20. Furthermore, the
second used approach includes the VNF instantiation without the use of MANO in the
Proxmox hypervisor as depicted in the Figure 6.21. The second phase includes configuration
of SFC requests in the ODL controller. When all the VNFs are instantiated based on SFC
requests and included in the SFCs, the corresponding output files in Json formats Appendix
B are inserted in the ODL controller. These templates include all the required information for
SFC requests. The screenshots of the corresponding ODL SFC includes Service Functions
6.22, Service Node 6.23 and the Service Function Chains 6.24.

172 Evaluation of Design Patterns in the Pattern Framework

Fig. 6.20 VNF Instantiation in OpenStack

6.4.2 SFC Path Finding and Traffic Classification

The next step of the reactive security includes the path identification to forward the incoming
traffic to the respective chains. The procedure involves the association of the instantiated
VNFs to the classifiers and forwarders linked to the existing OVS switches. The inserted
configurations of the Forwarders and the ACLs are imported in the ODL controller as separate
Json files as depicted in Figures 6.25 and 6.26. In addition, the final step includes the SFC
path finding in order to insert the respective rules in the classifiers and forwarders. The
results of the OpenFlow rules inside the ovs switches are presented in Figure 6.27.

To evaluate the instantiated paths and the data flows through the different SFCs, suitable
shell scripts are developed in order to evaluate the deployed SFC chains for different traffic
types (Figure 6.28). In addition, changes in path for different traffic types are depicted on the
GUI, with different colors for the various active chains at each instance in time; the various
options that can be active (depicting real-time traffic flows and their associated chains) appear
in Figure 6.30.

6.4 Design Secure Industrial Networks Leveraging Service Function Chaining 173

Fig. 6.21 VNF Instantiation in Proxmox

Fig. 6.22 Service Functions Imported in the ODL

174 Evaluation of Design Patterns in the Pattern Framework

Fig. 6.23 Service Node Imported in the ODL

Fig. 6.24 Service Function Chains Imported in the ODL

In Table 6.9, the results of the conducted experiments are presented. Apart from the
delay between end-hosts, following the respective service function chain, the delays between
end-hosts i) when there is no function in the middle and ii) when all the security functions

6.4 Design Secure Industrial Networks Leveraging Service Function Chaining 175

Fig. 6.25 Service Function Forwarders Imported in the ODL

Fig. 6.26 Access Control Lists Imported in the ODL

are used, are also presented. Although, the results of the experiments are related to the
location and the distance of the VMs (in this case, they are all located on the same server), the

176 Evaluation of Design Patterns in the Pattern Framework

Fig. 6.27 OpenFlow Rules Inside the Forwarders and the Classifiers

Fig. 6.28 Demo Shell Script

correlation between the number of functions and the delays is useful to evaluate the results
of the real traces as presented below.

Considering the performance of the service function chaining, network traces captured
from an operational wind park (in Brande, Denmark) are used to highlight the specificities
of industrial traffic in the context of this application domain [189] and assess the presented
performance evaluation in this context. The subject wind park consists of four wind turbines
connected in a redundant star topology. Flows have an end-to-end latency requirement of
500 ms. The data to and from the SCADA server was gathered during approximately 1000

6.4 Design Secure Industrial Networks Leveraging Service Function Chaining 177

Fig. 6.29 Reactive Security - Demo

Table 6.9 Experimental Results of the SFC Reactive Security

Type DPI FW IDS SCADA IDS End-Hosts No Func Delay
No Function Anywhere 0 0,45 ms
Legitimate O O Historian 2 66,57 ms
SCADA O O SCADA 2 45,83 ms
Malicious O Honepot 1 13,53 ms
Unknown -> Legitimate O O O Historian 3 169,74 ms
Unknown -> SCADA O O O SCADA 3 138,92 ms
Unknown -> Malicious O O Honepot 2 116,72 ms
All Functions O O O O Anywhere 4 191,24 ms

seconds. Though critical, these flows have only end-to-end requirements of 100 ms, 250
ms or 500 ms depending on the specific service. The analysis of the traces has shown that
industrial networks have very low data rate requirements. While a lot of short bursty flows
exist, only a few of them have QoS requirements. Though these requirements can reach
hundreds of milliseconds, a couple of critical flows have stringent low latency requirements
of the order of tens of milliseconds.

Based on results in Table 6.9, an important observation of the service function chaining is
applicable to operational wind parks, as the additional delays are affordable for most critical
services (which all have latency requirements of 100ms, 250ms or 500ms). Furthermore,
although the emulated experiments of service SFC provisioning are conducted on VMs on the
same server, thus minimising network delays, the multiple gigabit interconnections present in
a wind park all feature low latencies (through over-provisioning), and are, therefore, expected

178 Evaluation of Design Patterns in the Pattern Framework

(a) Legitimate traffic (b) Legitimate traffic classified by DPI

(c) SCADA traffic (d) SCADA traffic classified by DPI

(e) Malicious traffic (f) Malicious traffic classified by DPI

Fig. 6.30 Real-time Traffic Flows on the Controller’s GUI

to introduce minimal delays. Finally, the evaluation of the proposed solution in an actual
wind park, validates the feasibility of the approach, as it provides the necessary sophisticated,
dynamic and continuous security monitoring required in industrial networks nowadays.

6.5 Summary

In this chapter, the developed design patterns were evaluated in the pattern framework to
design network topologies, to validate reliability of the compositions and to guarantee system
security and dependability and to apply service function chaining for secure traffic forwarding.
More specifically, three different topology patterns were enforced and evaluated to design a
number of network topologies with respect to connectivity with the line pattern, coverage
with the mesh pattern and scalability with the tree pattern. The evaluation of design patterns

6.5 Summary 179

to satisfy S&D properties can be applied to design reliable networks with the reliability
patterns, availability with the fault tolerance patterns and security with the encryption
patterns. In addition, the design of secure industrial network can be benefited by the
enforcement of service function chaining patterns. To prove the applicability of our pattern-
based approach, all the developed patterns were inserted in the framework to support the
design and verification of SDN/NFV-enabled network infrastructures and evaluated in certain
initial experiments involving design and verification guaranteeing security and dependability.
Leveraging SFC not only enhances the industrial network’s security, but also decreases
the performance impact of the security functions. Finally, the performance evaluation of
the framework’s implementation validates the feasibility of the approach, considering the
current performance and requirements of industrial environment, as aggregated from an
actual, operating wind park.

Chapter 7

Conclusion

7.1 Overview

In the final chapter of this thesis, summary and discussion of the research work are given.
Furthermore, contributions in relation to the objectives are analysed. Moreover, evaluation
and approach limitations compared to the achievements of the objectives are presented.
Finally, short and long-term plans for future work and an extension of this research are also
provided.

7.2 Summary of the Research

This work presented the definition of design patterns able to design secure and dependable
SDN/NFV-enabled networks. S&D patterns express conditions and properties that need
to be satisfied by abstract networks of different topologies in order to preserve particular
end-to-end S&D properties. This research included the development of the S&D patterns
used to minimise the effects of passive and active attacks on physical layer. Moreover, a
pattern language, easily understandable and open to modifications was defined, based on the
requirements of administrators and users. In addition, a pattern framework was proposed to
enable the insertion of patterns to SDN/NFV-enabled network architectures, able to support
network designs and to guarantee properties such as connectivity, scalability and coverage
as well as the defined security and dependability properties. Flexibility of the framework
to insert patterns expressed as rules, has rendered it able to guarantee properties and handle
incidents. In addition, the pattern framework was extended in order to support reactive
security leveraging SFC for SDN/NFV-enabled industrial networks. SFC can classify and
steer traffic according to the instantiated service chains including a variety of security network

182 Conclusion

functions. To prove the applicability of the developed S&D patterns approach, a prototype
network simulator was developed supporting the design and verification of SDN/NFV-enabled
network infrastructures. The simulator was evaluated in initial experiments involving design
and verification scenarios with security properties of confidentiality and availability.

7.3 Contributions

The contributions of our research can be summarised as follows:

• Development of a pattern language for expressing design patterns
One of the main contributions of this thesis is the definition of a pattern language for
designing secure and dependable SDN/NFV-enabled networks. This language is based
on formal verification and reasoning driven by production rules enabled by the use
of the pattern engine. Pattern language can describe a variety of design patterns for
designing large scale networks with functional and non-functional requirements. The
semantics of the language defining pattern components and relationships are expressed
as Java classes and are used by pattern rules in a Drools production rule format. This
pattern-based language can be used to cover not only horizontally layered designs but
also vertical ones for SDN/NFV-enabled networks and systems that preserve required
S&D properties. Finally, the proposed pattern language can be used by experts and
non-expert programmers as it offers an interface for fast interaction with different
layers and components such as an SDN controller.

• Development of various pattern instances
Based on the developed language, a number of different pattern instances were devel-
oped to design network topologies with respect to S&D attributes. More specifically,
the main properties guaranteed by the developed topology patterns are connectivity,
scalability and coverage. In addition, the developed reliability, fault tolerance patterns
can guarantee dependable networks. Furthermore, the developed security patterns
can guarantee confidentiality through the deployed encryption patterns. Thus, SFC
patterns were proposed to support service function instantiation/identification based on
the respective instantiated service function chains. Finally, the path discovery pattern
applicable to all patterns, enabled the capability for path decomposition in deployed
network topologies.

• Development of a pattern framework
To provide proactive and reactive mechanism able to handle security incidents, failures,

7.3 Contributions 183

faults and attacks, a pattern framework was developed. This pattern framework was
able to host and enable an open and flexible way of designing networks, based on
the enforcement of the patterns as expressed by the pattern rules. The framework
enables multi-layer network support for the design of SDN/NFV-enabled networks
or the interaction with the involved network elements. The ability of the pattern
framework to interact with multiple distributed pattern engines on different layers,
including pattern enforcement inside SDN controller or from the application layer,
indicate its importance. Finally, the open architecture of the pattern framework and
due to its proven capability to insert additional S&D patterns at runtime, presents great
potentiality for further developments.

• Deployment of reactive security leveraging SFC in the pattern framework
One additional contribution of this research was the enablement of service function
chaining to support reactive security, modelled (and deployable) to allow continuous
monitoring of the industrial network and detailed analysis of the potential attacks. Its
combination with the pattern framework ensured security functions to be proactively
deployed through the respective patterns, whether the underlying network and service
functions were virtualised or not. Moreover, the instantiation of the service functions
chains through the pattern framework not only enhanced the industrial network’s
security, but also decreased the performance impact of the security functions. Finally,
the potentiality of the pattern framework to interact with hypervisor for instantiating
VNFs following SFC concept through the developed pattern instances underlined the
importance of the framework.

• Development of a network simulator for monitoring and management of network
topologies
In order to monitor and manage of deployed network topologies, a network simulator
was developed. This simulator is able to interact with pattern engines and the output
of the respective patterns to preview the data plane topologies of different SDN/NFV
topologies. The current and the updated network topologies can be inserted inside the
simulator in order to express the different interactions between forwarding devices
such as switches, routers, gateways and end-hosts such clients, servers and IoT devices
or service functions such as firewall, DPI and IDS. The simulator can support either
SDN/NFV components or legacy ones. Moreover, the capability of the simulator to
depict dynamically traffic forwarding through different chains and paths at runtime
made the potentiality of the developed tool even more crucial. Finally, the open and

184 Conclusion

extensible architecture of the simulator can be used for a variety of different potential
use cases.

• Evaluation of the pattern framework
The last contribution of this research included the evaluation of the developed frame-
work and the enforcement of the different developed pattern instances with a number
of different use cases and scenarios.

– The first use case included the design of network topologies based on the different
developed network topologies patterns to support the deployment of the required
network devices, in order to guarantee end-to-end connectivity, scalability and
coverage. A number of different experiments were conducted measuring the
required number of relay nodes for different distances and coverage requirements.
The results of the related patterns enforcement in the pattern framework were
presented and detailed. Moreover, the various network designs were deployed in
the network simulator.

– The second use case was related to the design and verification of S&D SDN/NFV-
enabled network topologies. Different scenarios were deployed to support relia-
bility, fault tolerance and security through a number of conducted experiments.
Apart from the recursive guarantee of reliability in network topologies, satisfied
and evaluated by the respective reliability pattern, the evaluation of the fault tol-
erance in SDN infrastructure and the provision of security through the respective
pattern proved the multidimensional applicability of the proposed framework.

– The last part of this evaluation included the provision of reactive security leverag-
ing SFC in the pattern framework. An industrial use case was selected to validate
the deployment of different service chains for the different types of traffics. The
evaluation of this use case for the function virtualisation, the path finding and
the traffic classification provided a complete solution for reactive security by
predefining the respective chains at design and by forwarding the different kind
of traffic through the respective service chains at runtime.

7.4 Limitations

The developed pattern framework and the pattern instances for the design of SDN/NFV-
enabled networks present some limitations. These limitations concerning the objectives and
the evaluation of the results are summarised bellow:

7.4 Limitations 185

• Design network limitations
The design of networks with model-based approaches is feasible and may present
very efficient and accurate results. However, these results may be affected by external
factors in real world. For instance, the existence of buildings or the dissimilarity of
terrain may interfere in optimum design networks. Moreover, different economic or
energy constraints can affect the desirable results. For example, the installation of a
number of intermediate nodes necessary to reach the required reliability percentage
may be theoretically correct, however in real world this is hardly feasible due to the
exponential increment of CAPEX and OPEX cost. Finally, the deployment of new
network designs and their co-existence with older ones may also modify the properties
guaranteed by new designs.

• Pattern schema limitations
The proposed pattern schema describes an approach on modelling network designs
with respect to specific functional and non-functional properties. However, additional
patterns and pattern parameters can be included in the proposed pattern schema. These
may include the modelling of all parameters and factors as additional attributes of
components. Therefore, the development of SDN and NFV network technologies
can enable the exposure of related interfaces and system parameters in a standardised
format able to be used by the design patterns.

• Design pattern limitations
Design patterns are mainly used for software integration and service composition.
Therefore, one of the most important challenges faced in this thesis was the transition
from software engineering to network engineering compositions. For instance, the call
or the replacement of web service is different that calling or replacing of a network
switch. Moreover, the interaction between two components requires the existence of
a network link where in the service composition the network is transparent. These
boundaries have affected the development of the respective network design patterns.

• Service provision imitations
As far as the application of design patterns is concerned , limitations include available
resources for the distribution of physical nodes to support the required virtual ones.
In addition, the instantiation of the respective service chains hypothesis that all the
intermediate switches are Openflow and NSH enabled ones. Otherwise the instantiation
of the respective should be done through VLAN to applying service chaining requiring
additional intermediate configurations.

186 Conclusion

7.5 Future Work

This research proposed a pattern-based framework that is able to design SDN/NFV-enabled
networks infrastructures satisfying specific security and dependability properties based on
predefined pattern instances. In the future, this work can be expanded in order to support
additional functionalities, properties and network designs. In this section, some directions
for future research are listed:

• Pattern language extension
The pattern specification language could be extended to support additional patterns
suitable to guarantee a variety of network and application properties and attributes.
In order to apply a pattern language extension, further tools, such as new classes
development and exposed interface, will be necessary to support horizontal and vertical
layer interaction and semantic interoperability.

• Additional pattern instances
Additional patterns can be developed to support a variety of functional and non-
functional properties. In the current work, patterns were able to guarantee security
and dependability by design at the SDN/NFV data plane. A future work, may concern
the development of new pattern instances able to guarantee security and dependability
by design of the control plane. For instance, this may be realized by protecting the
control plane from security attacks with installation of malicious controllers, man
in the middle and Byzantine fault tolerance as appeared to be a very crucial part on
SDN/NFV-enabled infrastructures.

• Development of a global pattern framework
Pattern framework can be enriched with new functional capabilities to cover not only
horizontally layered designs but also vertical layers of SDN/NFV-enabled architectures.
This can be realised by deploying multi-layer pattern engines handled centrally by a
pattern orchestrator who has a global view of the current conditions of the network and
additional components. The important contribution of our work is highlighted by the
advantage of this framework to be attached to different systems and architectures.

• Fully integration with NFV MANO
The framework can be enhanced via the fully automated use of the NFV MANO
software stack and the definition of the service templates at the MANO to instantiate
the required templates responsible for the boot-up of the necessary VMs using a VIM
software. In turn, the MANO can be used to program the ODL Controller accordingly,

7.5 Future Work 187

passing the necessary information to the SFC Manager. This will also ensure a more
accurate monitoring of the Service Functions’ resources (e.g. allowing the instantiation
of additional VMs when one of the existing functions is overloaded).

• Security service function improvements
Security service functions can be Improved in order to support further integration
with the pattern instances not only at design time but also at runtime. This may
include the extension of the packet inspection, enforced by patterns, to enable DPI
functionalities (essential for traffic-type classification), in order to minimise the impact
of the framework on the network’s performance and to enable its use in more time-
critical industrial applications.

• Network simulator upgrade
The developed network simulator was proposed to depict and monitor the design
and the condition of network topologies. Its consequent capability to integrate them
with the pattern framework, creates immense opportunities for further development to
support additional potentialities. These may include the direct interaction with physical
and virtual component and topology deployment together with the enforcement of
pattern instances used to guarantee different functional and non-functional properties
of SDN/NFV-enabled infrastructures.

References

[1] NGMN Alliance. 5g white paper. Next generation mobile networks, white paper,
2015.

[2] NGMN Alliance. 5g network and service management including orchestration. Next
generation mobile networks, 2019.

[3] Patrick Agyapong, Mikio Iwamura, Dirk Staehle, Wolfgang Kiess, and Anass Benjeb-
bour. Design considerations for a 5g network architecture. volume 52, pages 65–75.
IEEE, 2014.

[4] Mario Hermann, Tobias Pentek, and Boris Otto. Design principles for industrie 4.0
scenarios. In System Sciences (HICSS), 2016 49th Hawaii International Conference
on, pages 3928–3937. IEEE, 2016.

[5] Mauricio Jose da Silva Theo Lins and Ricardo Augusto Rabelo Oliveira. Software-
defined networking for industry 4.0. In 20th Advanced International Conference on
Telecommunications, 2016.

[6] Nikolaos Petroulakis, Toktam Mahmoodi, Vivek Kulkarni, Andreas Roos, Petra
Vizarreta, Khawar Abbasik, Xavier Vilajosana, Spiros Spirou, Anton Matsiuk, Ermin
Sakic, et al. Virtuwind: Virtual and programmable industrial network prototype
deployed in operational wind park. 2016.

[7] Eric D Knapp and Joel Thomas Langill. Industrial network security: Securing critical
infrastructure networks for smart grid, scada, and other industrial control systems.
2014.

[8] Teemu Koponen, Martin Casado, Natasha Gude, and Jeremy Stribling. Distributed
control platform for large-scale production networks, September 9 2014. US Patent
8,830,823.

[9] Nikos Bizanis and Fernando A Kuipers. Sdn and virtualization solutions for the
internet of things: A survey. IEEE Access, 4:5591–5606, 2016.

[10] Laura Galluccio, Sebastiano Milardo, Giacomo Morabito, and Sergio Palazzo. Sdn-
wise: Design, prototyping and experimentation of a stateful sdn solution for wireless
sensor networks. In IEEE Computer Communications (INFOCOM), pages 513–521.
IEEE, 2015.

[11] Open Networking Foundation (ONF). www.opennetworking.org/.

190 References

[12] Opendaylight: Open source sdn platform. https://www.opendaylight.org.

[13] Onos: Open network operating system. https://www.onosproject.org.

[14] Sharone Zitzman. What is sdn? sdn controllers wiki and roundup - opendaylight,
openflow, network automation and more.

[15] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson,
Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow: Enabling innovation
in campus networks. SIGCOMM Comput. Commun. Rev., 38(2):69–74, March 2008.

[16] Yakov Rekhter, Tony Li, and Susan Hares. A border gateway protocol 4 (bgp-4).
Technical report, 2005.

[17] JL Le Roux. Path computation element (pce) communication protocol (pcep). 2009.

[18] Rob Enns, Martin Bjorklund, and Juergen Schoenwaelder. Network configuration
protocol (netconf). Network, 2011.

[19] IETF. Alto: Application layer traffic optimization for distributed topologies.

[20] Hyperflow: A distributed control plane for openflow, author=Tootoonchian, Amin and
Ganjali, Yashar, booktitle = Proceedings of the 2010 Internet Network Management
Conference on Research on Enterprise Networking, year=2010.

[21] ISGNFV ETSI. Network functions virtualisation (nfv); ecosystem; report on sdn
usage in nfv architectural framework. ETSI GS NFV-EVE, 5:V1, 2015.

[22] Diego Kreutz, Fernando Ramos, and Paulo Verissimo. Towards secure and dependable
software-defined networks. In Proceedings of the second ACM SIGCOMM workshop
on Hot topics in software defined networking, pages 55–60. ACM, 2013.

[23] A Belmonte Martin, L Marinos, E Rekleitis, G Spanoudakis, and NE Petroulakis.
Threat landscape and good practice guide for software defined networks/5g. 2015.

[24] Cyber-Attack Against Ukrainian Critical Infrastructure. ICS-CERT, Alert (IR-ALERT-
H-16-056-01), 2015.

[25] NERC Standard CIP. 007-6-Cyber Security-Systems Security Management. 2013.

[26] Paul Quinn and Tom Nadeau. Problem Statement for Service Function Chaining, apr
2015.

[27] Paul Browne. JBoss Drools Business Rules. Packt Publishing Ltd, 2009.

[28] J.P. Vasseur and A. Dunkels. Interconnecting Smart Objects with IP: The Next Internet.
Morgan Kaufmann Publishers Inc., 2010.

[29] J. Laprie. Dependable computing and fault-tolerance. Digest of Papers FTCS-15,
pages 2–11, 1985.

References 191

[30] A. Geraci, F. Katki, L. McMonegal, B. Meyer, J. Lane, P. Wilson, J. Radatz, M. Yee,
H. Porteous, and F. Springsteel. IEEE standard computer dictionary: Compilation of
IEEE standard computer glossaries. 1991.

[31] P. Park, P. Di Marco, C. Fischione, and K. Johansson. Modeling and optimization
of the ieee 802.15. 4 protocol for reliable and timely communications. Parallel and
Distributed Systems, 24(3), 2013.

[32] Jue Chen, Jinbang Chen, Fei Xu, Min Yin, and Wei Zhang. When Software Defined
Networks Meet Fault Tolerance: A Survey, pages 351–368. Springer International
Publishing, Cham, 2015.

[33] Dhiren R Patel. Information security: theory and practice. PHI Learning Pvt. Ltd.,
2008.

[34] Na Li, Nan Zhang, Sajal K. Das, and Bhavani Thuraisingham. Privacy preservation
in wireless sensor networks: A state-of-the-art survey. Ad Hoc Networks, 7(8):1501–
1514, November 2009.

[35] Celal Ozturk, Yanyong Zhang, and Wade Trappe. Source-location privacy in energy-
constrained sensor network routing. Proceedings of the 2nd ACM workshop on
Security of ad hoc and sensor networks - SASN ’04, page 88, 2004.

[36] Georgios Mantas, Nikos Komninos, J Rodriuez, Evariste Logota, and Hugo Marques.
Security for 5g communications. 2015.

[37] Panagiotis Demestichas, Andreas Georgakopoulos, Dimitrios Karvounas, Kostas
Tsagkaris, Vera Stavroulaki, Jianmin Lu, Chunshan Xiong, and Jing Yao. 5g on the
horizon: key challenges for the radio-access network. IEEE Vehicular Technology
Magazine, 8(3):47–53, 2013.

[38] Alexandros G Fragkiadakis, Elias Z Tragos, and Ioannis G Askoxylakis. A survey
on security threats and detection techniques in cognitive radio networks. IEEE
Communications Surveys & Tutorials, 15(1):428–445, 2013.

[39] Ruiliang Chen, Jung-Min Park, Y Thomas Hou, and Jeffrey H Reed. Toward secure
distributed spectrum sensing in cognitive radio networks. IEEE Communications
Magazine, 46(4), 2008.

[40] A. Fragkiadakis, V. Siris, and N. Petroulakis. Anomaly-based intrusion detection
algorithms for wireless networks. In the 8th WWIC 2010, June 2010.

[41] Nikolaos E Petroulakis, Elias Z Tragos, and Ioannis G Askoxylakis. An experimental
investigation on energy consumption for secure life-logging in smart environments. In
IEEE CAMAD, pages 292–296. IEEE, 2012.

[42] Dmitry Drutskoy, Eric Keller, and Jennifer Rexford. Scalable network virtualization
in software-defined networks. IEEE Internet Computing, 17(2):20–27, 2013.

[43] Michael Pearce, Sherali Zeadally, and Ray Hunt. Virtualization: Issues, security
threats, and solutions. ACM Computing Surveys (CSUR), 45(2):17, 2013.

192 References

[44] ETSI NFV ISG. Network functions virtualisation (nfv)-nfv security: Problem state-
ment. White paper, 2014.

[45] ETSI NFV ISG. Network functions virtualisation (nfv); nfv security; security and
trust guidance. White paper, 2016.

[46] R Guerzoni et al. Network functions virtualisation: an introduction, benefits, enablers,
challenges and call for action, introductory white paper. In SDN and OpenFlow World
Congress, volume 1, pages 5–7, 2012.

[47] D. E. Britton. Formal verification of a secure network with end-to-end encryption. In
1984 IEEE Symposium on Security and Privacy, pages 154–154, April 1984.

[48] Paul Rösler, Christian Mainka, and Jörg Schwenk. More is less: On the end-to-end
security of group chats in signal, whatsapp, and threema. In 3rd IEEE European
Symposium on Security and Privacy (EuroS&P 2018), 2018.

[49] AbdelNasir Alshamsi and Takamichi Saito. A technical comparison of ipsec and
ssl. In Advanced Information Networking and Applications, 2005. AINA 2005. 19th
International Conference on, volume 2, pages 395–398. IEEE, 2005.

[50] Mark Needleman. The internet engineering task force. Serials Review, 26(1):69–72,
2000.

[51] R Lopez and G Lopez-Millan. Software-defined networking (sdn)-based ipsec flow
protection. In Internet Engineering Task Force, Internet-Draftdraft-ietf-i2nsf-sdn-
ipsec-flow-protection-00, 2017.

[52] Robert W Shirey. Internet security glossary, version 2. IETF, 2007.

[53] Cisco. Security for VPNs with IPsec Configuration Guide, Cisco IOS XE Release 3S.
2017.

[54] CISCO. Chapter 8: Implementing virtual private networks: Ccna security. 2008.

[55] Hazem Hamed, Ehab Al-Shaer, and Will Marrero. Modeling and verification of
ipsec and vpn security policies. In Network Protocols, 2005. ICNP 2005. 13th IEEE
International Conference on, pages 10–pp. IEEE, 2005.

[56] Riaz Ahmed Shaikh, Hassan Jameel, Brian J D’Auriol, Heejo Lee, Sungyoung Lee,
and Young-Jae Song. Achieving network level privacy in Wireless Sensor Networks.
Sensors (Basel, Switzerland), 10(3):1447–72, January 2010.

[57] Veeranna, M.Venkata Reddy Krishna, and D. Jamuna. Enhancement of Privacy Level
in Wireless Sensor Network. ijecse.com, 1(September):1024–1029, 2012.

[58] Yih-Chun Hu and Helen J. Wang. A framework for location privacy in wireless
networks. ACM SIGCOMM Asia Workshop, 2005.

[59] Xi Luo, Xu Ji, and Myong-Soon Park. Location Privacy against Traffic Analysis
Attacks in Wireless Sensor Networks. 2010 International Conference on Information
Science and Applications, pages 1–6, 2010.

References 193

[60] Marco Gruteser, Graham Schelle, and Ashish Jain. Privacy-aware location sensor
networks. Proceedings of the 9th . . . , 2003.

[61] Pandurang Kamat, Yanyong Zhang, Wade Trappe, and Celal Ozturk. Enhancing
Source-Location Privacy in Sensor Network Routing. 25th IEEE International Con-
ference on Distributed Computing Systems (ICDCS’05), pages 599–608, 2005.

[62] Kanika Grover, Alvin Lim, and Qing Yang. Jamming and anti-jamming techniques
in wireless networks: a survey. International Journal of Ad Hoc and Ubiquitous
Computing, 17(4):197–215, 2014.

[63] Vishnu Navda, Aniruddha Bohra, Samrat Ganguly, and Dan Rubenstein. Using
channel hopping to increase 802.11 resilience to jamming attacks. In IEEE INFOCOM
2007-26th IEEE International Conference on Computer Communications, pages 2526–
2530. IEEE, 2007.

[64] VA Siris and M Delakis. Interference-aware channel assignment in a metropolitan
multi-radio wireless mesh network with directional antennas. Computer Communica-
tions, 2011. Query date: 2012-10-13.

[65] Haowen Chan and Andrian Perrig. Security In Networks. IEEE Computer, 36
(10)(October):103–105, 2003.

[66] Kai Xing, Shyaam Sundhar, Rajamadam Srinivasan, and Manny Rivera. Attacks and
Countermeasures in Sensor Networks : A Survey A wireless sensor network (WSN)
is comprised of a large number of sensors that. pages 1–28, 2005.

[67] E Bayraktaroglu, C King, and X Liu. On the Performance of IEEE 802.11 under
Jamming. Infocom/08, 2008.

[68] Alexandros G Fragkiadakis, Elias Z Tragos, Theo Tryfonas, and Ioannis G Askoxy-
lakis. Design and performance evaluation of a lightweight wireless early warning
intrusion detection prototype. EURASIP Journal on Wireless Communications and
Networking, 2012(1):73, 2012.

[69] Incheol Shin, Yilin Shen, Ying Xuan, MT Thai, and T Znati. Reactive jamming attacks
in multi-radio wireless sensor networks: an efficient mitigating measure by identifying
trigger nodes. FOWANC’09, pages 87–96, 2009.

[70] V. Bhuse, a. Gupta, and a. Al-Fuqaha. Detection of Masquerade Attacks on Wireless
Sensor Networks. 2007 IEEE International Conference on Communications, pages
1142–1147, June 2007.

[71] Jaydip Sen. A Survey on Wireless Sensor Network Security. International Journal of
Communication Networks and Information Security (IJCNIS), Vol. 1, No. 2(2):55–78,
2009.

[72] Siwar Ben Hadj Said, Bernard Cousin, and Samer Lahoud. Software defined network-
ing (sdn) for reliable user connectivity in 5g networks. In Network Softwarization
(NetSoft), 2017 IEEE Conference on, pages 1–5. IEEE, 2017.

194 References

[73] Philip Porras, Seungwon Shin, Vinod Yegneswaran, Martin Fong, Mabry Tyson, and
Guofei Gu. A security enforcement kernel for openflow networks. In Proceedings of
the first workshop on Hot topics in software defined networks, pages 121–126. ACM,
2012.

[74] Ehab Al-Shaer and Saeed Al-Haj. Flowchecker: Configuration analysis and verifica-
tion of federated openflow infrastructures. In Proceedings of the 3rd ACM workshop
on Assurable and usable security configuration, pages 37–44. ACM, 2010.

[75] Marco Canini, Daniele Venzano, Peter Peresini, Dejan Kostic, Jennifer Rexford, et al.
A nice way to test openflow applications. In NSDI, volume 12, pages 127–140, 2012.

[76] Seuk Son, Seungwon Shin, Vinod Yegneswaran, Phillip Porras, and Guofei Gu. Model
checking invariant security properties in openflow. In Communications (ICC), 2013
IEEE International Conference on, pages 1974–1979. IEEE, 2013.

[77] Martin Casado, Michael J Freedman, Justin Pettit, Jianying Luo, Nick McKeown,
and Scott Shenker. Ethane: Taking control of the enterprise. In ACM SIGCOMM
Computer Communication Review, volume 37, pages 1–12. ACM, 2007.

[78] Adnan Akhunzada, Ejaz Ahmed, Abdullah Gani, Muhammad Khan, Muhammad
Imran, and Sghaier Guizani. Securing software defined networks: taxonomy, require-
ments, and open issues. Communications Magazine, IEEE, 53(4):36–44, 2015.

[79] Open Networking Foundation. Openflow specification 1.5. 2010.

[80] M. Wasserman, S. Hartman, and D. Zhang. Security analysis of the open networking
foundation (onf) openflow switch specification. IETF, 2012.

[81] What is the difference between tls 1.3 and tls 1.2? 2019.

[82] Dan Levin, Marco Canini, Stefan Schmid, Fabian Schaffert, Anja Feldmann, et al.
Panopticon: Reaping the benefits of incremental sdn deployment in enterprise net-
works. In USENIX ATC, 2014.

[83] Jon Matias, Jokin Garay, Alaitz Mendiola, Nerea Toledo, and Eduardo Jacob. Flownac:
Flow-based network access control. In Software Defined Networks (EWSDN), 2014
Third European Workshop on, pages 79–84. IEEE, 2014.

[84] Seungwon Shin, Yongjoo Song, Taekyung Lee, Sangho Lee, Jaewoong Chung, Phillip
Porras, Vinod Yegneswaran, Jiseong Noh, and Brent Byunghoon Kang. Rosemary:
A robust, secure, and high-performance network operating system. In Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Communications Security,
pages 78–89. ACM, 2014.

[85] Xitao Wen, Yan Chen, Chengchen Hu, Chao Shi, and Yi Wang. Towards a secure
controller platform for openflow applications. In Proceedings of the second ACM
SIGCOMM workshop on Hot topics in software defined networking, pages 171–172.
ACM, 2013.

References 195

[86] Seungwon Shin, Phillip A Porras, Vinod Yegneswaran, Martin W Fong, Guofei Gu,
and Mabry Tyson. Fresco: Modular composable security services for software-defined
networks. In NDSS, 2013.

[87] Ryan Wallner and Robert Cannistra. An sdn approach: quality of service using big
switch’s floodlight open-source controller. Proceedings of the Asia-Pacific Advanced
Network, 35:14–19, 2013.

[88] Seungwon Shin, Vinod Yegneswaran, Phillip Porras, and Guofei Gu. Avant-guard:
Scalable and vigilant switch flow management in software-defined networks. In
Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security, pages 413–424. ACM, 2013.

[89] The Challenge. Defenseflow – sdn based network ddos , application dos and apt
protection. 2014.

[90] HP. Realizing the power of SDN with HP Virtual Application Networks. Technical
White Paper, 2012.

[91] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martín Casado, Nick McK-
eown, and Scott Shenker. Nox: towards an operating system for networks. ACM
SIGCOMM Computer Communication Review, 38(3):105–110, 2008.

[92] Mark Reitblatt, Marco Canini, Arjun Guha, and Nate Foster. Fattire: Declarative
fault tolerance for software-defined networks. In Proceedings of the second ACM
SIGCOMM workshop on Hot topics in software defined networking, pages 109–114.
ACM, 2013.

[93] Hyojoon Kim, Mike Schlansker, Jose Renato Santos, Jean Tourrilhes, Yoshio Turner,
and Nick Feamster. Coronet: Fault tolerance for software defined networks. In 2012
20th IEEE International Conference on Network Protocols (ICNP), pages 1–2. IEEE,
2012.

[94] Naga Katta, Haoyu Zhang, Michael Freedman, and Jennifer Rexford. Ravana: Con-
troller fault-tolerance in software-defined networking. In Proceedings of the 1st ACM
SIGCOMM Symposium on Software Defined Networking Research, page 4. ACM,
2015.

[95] Fábio Botelho, Alysson Bessani, Fernando MV Ramos, and Paulo Ferreira. On the
design of practical fault-tolerant sdn controllers. pages 73–78, 2014.

[96] Balakrishnan Chandrasekaran and Theophilus Benson. Tolerating sdn application
failures with legosdn. In Proceedings of the 13th ACM Workshop on Hot Topics in
Networks, page 22. ACM, 2014.

[97] Teemu Koponen, Martín Casado, Natasha Gude, Jeremy Stribling, Leonid B.
Poutievski, Min Zhu, Rajiv Ramanathan, Yuichiro Iwata, Hiroaki Inoue, Takayuki
Hama, and Scott Shenker. Onix: A distributed control platform for large-scale produc-
tion networks. In OSDI, 2010.

196 References

[98] Maciej Kuźniar, Peter Perešíni, Nedeljko Vasić, Marco Canini, and Dejan Kostić.
Automatic failure recovery for software-defined networks. In Proceedings of the
second ACM SIGCOMM workshop on Hot topics in software defined networking,
pages 159–160. ACM, 2013.

[99] Karim ElDefrawy and Tyler Kaczmarek. Byzantine fault tolerant software-defined
networking (sdn) controllers. In Computer Software and Applications Conference
(COMPSAC), 2016 IEEE 40th Annual, volume 2, pages 208–213. IEEE, 2016.

[100] Alysson Bessani, João Sousa, and Eduardo EP Alchieri. State machine replication for
the masses with bft-smart. In Dependable Systems and Networks (DSN), 2014 44th
Annual IEEE/IFIP International Conference on, pages 355–362. IEEE, 2014.

[101] He Li, Peng Li, Song Guo, and Amiya Nayak. Byzantine-resilient secure software-
defined networks with multiple controllers in cloud. IEEE Transactions on Cloud
Computing, 2(4):436–447, 2014.

[102] Sandra Scott-Hayward, Gemma O’Callaghan, and Sakir Sezer. Sdn security: A survey.
In Future Networks and Services (SDN4FNS), 2013 IEEE SDN For, pages 1–7. IEEE,
2013.

[103] S. Kumar, M. Tufail, S. Majee, C Captari, and S. Homma. Service Function Chaining
Use Cases in Data Centers. 2016.

[104] W. Haeffner, J. Napper, M. Stiemerling, D. Lopez, and J. Uttaro. Service Function
Chaining Use Cases in Mobile Networks. 2015.

[105] Wolfgang John, Konstantinos Pentikousis, George Agapiou, Eduardo Jacob, Mario
Kind, Antonio Manzalini, Fulvio Risso, Dimitri Staessens, Rebecca Steinert, and
Catalin Meirosu. Research Directions in Network Service Chaining. In IEEE SDN for
Future Networks and Services (SDN4FNS), pages 1–7. IEEE, nov 2013.

[106] Mallik Mahalingam, Dinesh Dutt, Kenneth Duda, Puneet Agarwal, Lawrence Kreeger,
T Sridhar, Mike Bursell, and Chris Wright. Virtual extensible local area network
(vxlan): A framework for overlaying virtualized layer 2 networks over layer 3 net-
works, no. rfc 7348. Technical report, 2014.

[107] Hung-Jen Liao, Chun-Hung Richard Lin, Ying-Chih Lin, and Kuang-Yuan Tung. In-
trusion detection system: A comprehensive review. Journal of Network and Computer
Applications, 36(1):16–24, 2013.

[108] Liberios Vokorokos, Michal Ennert, Marek Cajkovský, and Ján Radušovský. A Survey
of parallel intrusion detection on graphical processors. Open Computer Science, 4(4),
jan 2014.

[109] A Bremler-Barr, Y Harchol, D Hay, and Y Koral. Deep Packet inspection as a service.
In 10th ACM International Conference on Emerging Networking Experiments and
Technologies, CoNEXT 2014, pages 271–282, 2014.

[110] J Halpern and C Pignataro. Service function chaining (sfc) architecture. Technical
report, 2015.

References 197

[111] L4-L7 Service Function Chaining Solution Architecture. Open Networking Founda-
tion, pages 1–36, 2015.

[112] Service function chaining (sfc) working group. https://datatracker.ietf.org/wg/sfc/
charter/.

[113] Deval Bhamare, Raj Jain, Mohammed Samaka, and Aiman Erbad. A survey on service
function chaining. Journal of Network and Computer Applications, 75:138 – 155,
2016.

[114] Paul Quinn and Jim Guichard. Service function chaining: Creating a service plane via
network service headers. Computer, 47(11):38–44, 2014.

[115] P. Quinn and U. Elzur. Network Service Header. Network Working Group, IETF Draft,
2016.

[116] Ying Zhang, Neda Beheshti, Ludovic Beliveau, Geoffrey Lefebvre, Ravi Manghir-
malani, Ramesh Mishra, Ritun Patneyt, Meral Shirazipour, Ramesh Subrahmaniam,
Catherine Truchan, and Mallik Tatipamula. StEERING: A software-defined network-
ing for inline service chaining. In Proceedings - International Conference on Network
Protocols, ICNP, 2013.

[117] Zafar Ayyub Qazi, Cheng-Chun Tu, Luis Chiang, Rui Miao, Vyas Sekar, and Minlan
Yu. SIMPLE-fying middlebox policy enforcement using SDN. In Proceedings of the
ACM SIGCOMM 2013 conference on SIGCOMM - SIGCOMM ’13, page 27, New
York, New York, USA, 2013. ACM Press.

[118] GS NFV-SEC 013 ETSI. Network functions virtualisation (nfv) release 3; security;
security management and monitoring specification. 2017.

[119] Sevil Mehraghdam, Matthias Keller, and Holger Karl. Specifying and placing chains
of virtual network functions. In 2014 IEEE 3rd International Conference on Cloud
Networking, CloudNet 2014, pages 7–13, 2014.

[120] Jeremias Blendin, Julius Ruckert, Nicolai Leymann, Georg Schyguda, and David
Hausheer. Position paper: Software-defined network service chaining. In Proceedings
- 2014 3rd European Workshop on Software-Defined Networks, EWSDN 2014, pages
109–114, 2014.

[121] Microservices a definition of this new architectural term. http://martinfowler.com/
articles/microservices.html.

[122] Johannes Thönes. Microservices. IEEE Software, 32(1), 2015.

[123] Microservices five architectural constraints. http://www.nirmata.com/2015/
02/microservices-five-architectural\protect\discretionary{\char\hyphenchar\
font}{}{}constraints/.

[124] DC. Schmidt. Model-driven engineering. Computer Society, pages 286–298, 2006.

[125] Krishna Doddapaneni, Enver Ever, Orhan Gemikonakli, Ivano Malavolta, Leonardo
Mostarda, and Henry Muccini. A model-driven engineering framework for architecting
and analysing wireless sensor networks. In SESENA, 2012.

198 References

[126] Felipe A Lopes, Marcelo Santos, Robson Fidalgo, and Stenio Fernandes. Model-
driven networking: A novel approach for sdn applications development. In Integrated
Network Management (IM), 2015 IFIP/IEEE International Symposium on, pages
770–773. IEEE, 2015.

[127] Christopher Preschern, Nermin Kajtazovic, and Christian Kreiner. Applying patterns
to model-driven development of automation systems: an industrial case study. In
Proceedings of the 17th European Conference on Pattern Languages of Programs,
page 5. ACM, 2012.

[128] Brahim Hamid, Christian Percebois, and Damien Gouteux. A methodology for
integration of patterns with validation purpose. In Proceedings of the 17th European
Conference on Pattern Languages of Programs, page 8. ACM, 2012.

[129] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of
reusable object-oriented software. Pearson Education, 1994.

[130] G. Spanoudakis and S. Kokolakis. Security and Dependability for Ambient Intelligence.
Springer Science & Business Media, 2009.

[131] Haralambos Mouratidis. Software Engineering for Secure Systems: Industrial and
Research Perspectives: Industrial and Research Perspectives. IGI Global, 2010.

[132] Markus Schumacher, Eduardo Fernandez-Buglioni, Duane Hybertson, Frank
Buschmann, and Peter Sommerlad. Security Patterns: Integrating security and
systems engineering. John Wiley & Sons, 2013.

[133] Eduardo Fernandez-Buglioni. Security patterns in practice: designing secure archi-
tectures using software patterns. John Wiley & Sons, 2013.

[134] Brahim Hamid, Jacob Geisel, Adel Ziani, Jean-Michel Bruel, and Jon Perez. Model-
driven engineering for trusted embedded systems based on security and dependability
patterns. In SDL 2013: Model-Driven Dependability Engineering, pages 72–90.
Springer, 2013.

[135] H. Petritsch. Service-oriented architecture (soa) vs. component based architecture.
Vienna University of Technology white paper, available at http://whitepapers. techre-
public. com. com/abstract. aspx, 2006.

[136] G. Gössler and J. Sifakis. Composition for component-based modeling. Science of
Computer Programming, 2005.

[137] W. Van Der Aalst, A. Ter Hofstede, B. Kiepuszewski, and A. Barros. Workflow
patterns. Distributed and parallel databases, 14(1), 2003.

[138] Michael C Jaeger, Gregor Rojec-goldmann, and M Gero. QoS Aggregation for Web
Service Composition using Workflow Patterns. Number Edoc, 2004.

[139] L. Pino, K. Mahbub, and G. Spanoudakis. Designing Secure Service Workflows in
BPEL. In 12th International Conference, ICSOC 2014, Paris, France, November 3-6,
2014., 2014.

References 199

[140] L. Pino, G. Spanoudakis, A. Fuchs, and S. Gürgens. Discovering secure service
compositions. In 4th International Conference on Cloud Computing and Services
Sciences, Barcelona, Spain, 2014.

[141] Dietmar Kühl. Design patterns for the implementation of graph algorithms. In
MASTER’S THESIS, TECHNISCHE UNIVERSITÄT. Citeseer, 1996.

[142] Wenfei Fan, Xin Wang, Yinghui Wu, and Jingbo Xu. Association rules with graph
patterns. Proceedings of the VLDB Endowment, 8(12):1502–1513, 2015.

[143] Ian F Akyildiz, Ahyoung Lee, Pu Wang, Min Luo, and Wu Chou. A roadmap for
traffic engineering in sdn-openflow networks. volume 71, pages 1–30. Elsevier, 2014.

[144] Wei Zhou, Li Li, Min Luo, and Wu Chou. Rest api design patterns for sdn northbound
api. In Advanced Information Networking and Applications Workshops (WAINA),
2014 28th International Conference on, pages 358–365. IEEE, 2014.

[145] Reuven Cohen, Katherine Barabash, Benny Rochwerger, Liran Schour, Daniel Crisan,
Robert Birke, Cyriel Minkenberg, Mitch Gusat, Renato Recio, and Vinesh Jain. An
intent-based approach for network virtualization. In Integrated Network Management
(IM 2013), 2013 IFIP/IEEE International Symposium on, pages 42–50. IEEE, 2013.

[146] Deborah L McGuinness, Frank Van Harmelen, et al. Owl web ontology language
overview. W3C recommendation, 10(10):2004, 2004.

[147] Ivan Bratko. Prolog programming for artificial intelligence. Pearson education, 2001.

[148] Leon Sterling. Patterns for prolog programming. In Computational logic: Logic
programming and beyond, pages 374–401. Springer, 2002.

[149] C. Forgy. Rete: A fast algorithm for the many pattern/many object pattern match
problem. Artificial intelligence, 19(1):17–37, 1982.

[150] Matthias Tichy, Daniela Schilling, and Holger Giese. Design of self-managing de-
pendable systems with uml and fault tolerance patterns. In Proceedings of the 1st
ACM SIGSOFT workshop on Self-managed systems, pages 105–109. ACM, 2004.

[151] Titos Saridakis. A system of patterns for fault tolerance. In EuroPLoP, pages 535–582,
2002.

[152] Robert Hanmer. Patterns for fault tolerant software. John Wiley & Sons, 2013.

[153] Ferran Adelantado and Christos Verikoukis. Detection of malicious users in cognitive
radio ad hoc networks: A non-parametric statistical approach. Ad Hoc Networks,
11(8):2367–2380, 2013.

[154] Joshua Reich, Christopher Monsanto, Nate Foster, Jennifer Rexford, and David Walker.
Modular sdn programming with pyretic. 2013.

[155] Alireza Shameli Sendi, Yosr Jarraya, Makan Pourzandi, and Mohamed Cheriet. Effi-
cient provisioning of security service function chaining using network security defense
patterns. IEEE Transactions on Services Computing, 2016.

200 References

[156] David Dolson, Michael Marchetti, and Kyle Larose. Efficient Patterns for Service
Function Chaining within Network Function Virtualization Infrastructure . Internet-
Draft draft-dolson-sfc-nfv-patterns-00, Internet Engineering Task Force, March 2016.
Work in Progress.

[157] Stuart Russell, Peter Norvig, and Artificial Intelligence. A modern approach. Artificial
Intelligence. Prentice-Hall, Egnlewood Cliffs, 25(27):79–80, 1995.

[158] Avelino J Gonzalez and Douglas D Dankel. The engineering of knowledge-based
systems: theory and practice. Prentice-Hall, Inc., 1993.

[159] Mélanie König, Michel Leclere, Marie-Laure Mugnier, and Michaël Thomazo. A
sound and complete backward chaining algorithm for existential rules. In International
Conference on Web Reasoning and Rule Systems, pages 122–138. Springer, 2012.

[160] Robert Tarjan. Depth-first search and linear graph algorithms. In Switching and
Automata Theory, 1971., 12th Annual Symposium on, pages 114–121. IEEE, 1971.

[161] Ajlan Al-Ajlan. The comparison between forward and backward chaining. Interna-
tional Journal of Machine Learning and Computing, 5(2):106, 2015.

[162] A Knopfmacher and ME Mays. Graph compositions i: Basic enumeration. Integers:
Electronic Journal of Combinatorial Number Theory, 1:A04, 2001.

[163] S. Hsieh and C. Chen. Component-composition graphs: (t,k)-diagnosability and its
application. IEEE Transactions on Computers, 62:1097–1110, 06 2013.

[164] Sfc environment security requirements. https://tools.ietf.org/html/draft-mglt-sfc/
securityenvironment-req-01.

[165] H. Friis. A note on a simple transmission formula. IRE, 34(5), 1946.

[166] Wil MP van der Aalst, Alexander Hirnschall, and HMW Verbeek. An alternative way
to analyze workflow graphs. In International Conference on Advanced Information
Systems Engineering, pages 535–552. Springer, 2002.

[167] I. Buckley, E. Fernandez, G. Rossi, and S. Sadjadi. Web services reliability patterns.
In SEKE, pages 4–9, 2009.

[168] Ming Wang and Qiao Li. Conditional edge connectivity properties, reliability compar-
isons and transitivity of graphs. Discrete Mathematics, 258(1-3):205–214, 2002.

[169] D. Coit and A. Smith. Reliability optimization of series-parallel systems using a
genetic algorithm. IEEE Transactions on Reliability, 45(2), 1996.

[170] J. Lin, S. Sedigh, and A. Miller. Modeling cyber-physical systems with semantic
agents. In Computer Software and Applications Conference Workshops (COMPSACW),
2010 IEEE 34th Annual. IEEE, 2010.

[171] Hugo Krawczyk. Perfect forward secrecy. Encyclopedia of Cryptography and Security,
pages 921–922, 2011.

References 201

[172] Christoph G Günther. An identity-based key-exchange protocol. In Workshop on the
Theory and Application of of Cryptographic Techniques, pages 29–37. Springer, 1989.

[173] S. Lee, S. Pack, M-K. Shin, and E. Paik. SFC dynamic instantiation. Internet-Draft
draft-lee-sfc-dynamic-instantiation-01, Internet Engineering Task Force, October 2014.
Work in Progress.

[174] Marcelo Caggiani Luizelli, Leonardo Richter Bays, Luciana Salete Buriol, Mar-
inho Pilla Barcellos, and Luciano Paschoal Gaspary. Piecing together the nfv pro-
visioning puzzle: Efficient placement and chaining of virtual network functions. In
Integrated Network Management (IM), 2015 IFIP/IEEE International Symposium on,
pages 98–106. IEEE, 2015.

[175] Milad Ghaznavi, Nashid Shahriar, Reaz Ahmed, and Raouf Boutaba. Service function
chaining simplified. arXiv preprint arXiv:1601.00751, 2016.

[176] Alireza Shameli Sendi, Yosr Jarraya, Makan Pourzandi, and Mohamed Cheriet. Ef-
ficient Provisioning of Security Service Function Chaining Using Network Security
Defense Patterns. IEEE Transactions on Services Computing, (November):1–1, 2016.

[177] Snort. http://blog.snort.org/2012/01/snort-292-scada-preprocessors.html.

[178] Snort 2.9.2: Scada preprocessors. http://www.snort.org.

[179] Honeyd. https://github.com/sk4ld/gridpot.

[180] Scada honeynet project. http://scadahoneynet.sourceforge.net.

[181] Panos Chatziadam, Ioannis G. Askoxylakis, and Alexandros Fragkiadakis. A network
telescope for early warning intrusion detection. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), volume 8533 LNCS, pages 11–22, 2014.

[182] Open source security. https://pfsense.org/.

[183] Vm-series: Next-generation security for private and public clouds. https://www.
paloaltonetworks.com/.

[184] ndpi: Open and extensible lgplv3 deep packet inspection library. http://www.ntop.org/
products/deep-packet-inspection/ndpi/.

[185] Nodejs library. http://www.nodejs.org.

[186] ETSI Group Specification NFV 002. Network functions virtualisation (nfv); architec-
tural framework.

[187] Ramon R Fontes, Samira Afzal, Samuel HB Brito, Mateus AS Santos, and Chris-
tian Esteve Rothenberg. Mininet-wifi: Emulating software-defined wireless networks.
In 11th International Conference on Network and Service Management (CNSM). IEEE,
2015.

[188] Open virtual switch. http://www.openvswitch.org.

[189] Project VirtuWind. Deliverable D3.2: Detailed Intra-Domain SDN & NFV Architec-
ture, 2017.

Appendix A

Developed Java Classes

Implemented Java Classes for the Pattern Framework

Graph.java

1 import java.util.HashSet;

2 import java.util.Objects;

3 public class Graph {

4 public Node node;

5 public Link link;

6 public HashSet <Node > nodes = new HashSet <Node >();

7 public HashSet <Link > links = new HashSet <Link >();

8 public boolean directed = true;

9

10 public Graph() {}

11 public Graph(String type) {

12 if (type=="undirected") {

13 this.directed = false;

14 }

15 }

16 public Graph(HashSet <Node > nodes , HashSet <Link > links) {

17 this.nodes = nodes;

18 this.links = links;

19 }

20 public HashSet <Node > getNodes() {

21 return nodes;

204 Developed Java Classes

22 }

23 public HashSet <Link > getLinks() {

24 return links;

25 }

26 public HashSet <Node > addNode(Node node) {

27 getNodes().add(node);

28 return nodes;

29 }

30 public HashSet <Node > addNodes(HashSet <Node > nodes) {

31 for (Node node : nodes) {

32 addNode(node);

33 }

34 return nodes;

35 }

36 public HashSet <Link > addLink(Link link) {

37 if (getDirected() == false) {

38 getLinks().add(new Link(link.dst , link.src));

39 }

40 getLinks().add(link);

41 return links;

42 }

43 private boolean getDirected() {

44 return directed;

45 }

46 public HashSet <Link > addLinks(HashSet <Link > links) {

47 for (Link link : links) {

48 addLink(link);

49 }

50 return links;

51 }

52 public static class SubGraph extends Graph{

53 public SubGraph() {}

54 }

55 }

205

Node.java

1 import java.util.ArrayList;

2 import java.util.List;

3 public class Node {

4 public Integer id;

5 public String idS;

6 public String name;

7 public String type , group , label;

8 public String ip, address;

9 public String port;

10 public Point point;

11 public double range;

12 public List <String > ports = new ArrayList <String >();

13 public Resource resource;

14 public Node src, dst;

15 public Node() {}

16 public Node(Integer id, String group , Point point) {

17 this.id = id;

18 this.label = "n"+id.toString();

19 this.group = group;

20 this.point = point;

21 }

22 public Node(Integer id, String label , String group , Point

point) {

23 this.id = id;

24 this.label = label;

25 this.group = group;

26 this.point = point;

27 }

28 public Node(Integer id, String label , String group , Point

point , Resource resource) {

29 this.id = id;

30 this.label = label;

31 this.group = group;

32 this.point = point;

33 this.resource = resource;

206 Developed Java Classes

34 }

35 public Node(Integer id, String label , String group ,

String address , List <String > ports , Point point ,

Resource resource) {

36 this.id = id;

37 this.label = label;

38 this.group = group;

39 this.address = address;

40 this.ports = ports;

41 this.point = point;

42 this.resource = resource;

43 }

44 public Integer getId() {

45 return id;

46 }

47 public String getName() {

48 return name;

49 }

50 public String getGroup() {

51 return group;

52 }

53

54 public void setGroup(String group) {

55 this.group = group;

56 }

57 public double getRange(){

58 return range;

59 }

60 public String getAddress(){

61 return address;

62 }

63 public List <String > getPorts(String port){

64 return ports;

65 }

66 public Node getSrc() {

67 return src;

207

68 }

69 public Node getDst() {

70 return dst;

71 }

72 public static class Point {

73 public Node node1 , node;

74 public Double distance;

75 public double x, y;

76 public double range;

77 public Point point;

78 public Point() {

79 }

80 public Point(double x, double y) {

81 this.x = x;

82 this.y = y;

83 }

84 public Point(Node node1 , Node node2 , Double distance) {

85 double a = (node1.point.getY() - node2.point.getY())/

86 (node1.point.getX() - node2.point.getX());

87 this.x = node1.point.getX() + distance/

88 (Math.sqrt(1+Math.pow(a,2)));

89 this.y = a*(distance/(Math.sqrt(1+Math.pow(a,2))))+

node1.point.getY();

90 }

91 public Point(Node node1 , Node node2) {

92 this.x = (node1.point.getX() + node2.point.getX())/2;

93 this.y = (node1.point.getY() + node2.point.getY())/2;

94 }

95 public Point(Node node1 , double range) {

96 this.x = node1.point.getX() + range;

97 this.y = node1.point.getY();

98 }

99 public double getX() {

100 return x;

101 }

102 public double getY() {

208 Developed Java Classes

103 return y;

104 }

105 public Point getPoint() {

106 return point;

107 }

108 public void setPoint(Point point) {

109 this.point = point;

110 }

111 }

112 public static class Resource{

113 public int cpu, mem, storage;

114 public Resource() {

115 }

116 public Resource(int cpu , int mem , int storage) {

117 this.cpu = cpu;

118 this.mem = mem;

119 this.storage = storage;

120 }

121 public int getCpu() {

122 return cpu;

123 }

124 public int getMem() {

125 return mem;

126 }

127 public int getStorage() {

128 return storage;

129 }

130 }

131 }

Link.java

1 import java.util.Objects;

2 import org.kie.api.definition.type.Position;

3 public class Link{

4 @Position(0)

209

5 public Node src;

6 @Position(1)

7 public Node dst;

8 public Integer id;

9 public int weight = 0;

10 public String srcId , dstId;

11 public String srcPort , dstPort;

12 public Double distance;

13 public Link(){

14 }

15 public Link(Node src, Node dst) {

16 this.src = src;

17 this.dst = dst;

18 }

19 public Link(Node src, Node dst, int weight) {

20 this.src = src;

21 this.dst = dst;

22 this.weight=weight;

23 }

24 public Link(String srcId , String dstId) {

25 this.srcId = srcId;

26 this.dstId = dstId;

27 }

28 public Link(String id,String srcId , String dstId) {

29 this.dstId = id;

30 this.srcId = srcId;

31 this.dstId = dstId;

32 }

33 public Link(String srcId , String srcPort , String dstId ,

String dstPort) {

34 this.srcId = srcId;

35 this.srcPort = srcPort;

36 this.dstId = dstId;

37 this.dstPort = dstPort;

38 }

39 public Distance(Node node1 , Node node2) {

210 Developed Java Classes

40 this.node1 =node1;

41 this.node2 =node2;

42 this.distance = Math.sqrt(Math.pow(node1.point

43 .getX()-node2.point.getX() ,2)

44 + Math.pow(node1.point.getY()-node2.point.getY() ,2));

45 }

46 public Node getSrc() {

47 return src;

48 }

49 public Node getDst() {

50 return dst;

51 }

52 public int getWeight() {

53 return weight;

54 }

55 public Double getDistance() {

56 return distance;

57 }

58 public String getSrcId() {

59 return srcId;

60 }

61 public String getSrcPort() {

62 return srcPort;

63 }

64 public String getDstId() {

65 return dstId;

66 }

67 public void setWeight(int weight) {

68 this.weight = weight;

69 }

70 public String getDstPort() {

71 return dstPort;

72 }

73 }

211

Path.java

1 import java.util.ArrayList;

2 import java.util.LinkedList;

3 import org.kie.api.definition.type.Position;

4 public class Path {

5 @Position(0)

6 public Node src;

7 @Position(1)

8 public Node dst;

9 public Node node;

10 public Path path;

11 public int length;

12 public ArrayList <Node > nodes = new ArrayList <Node >();

13 public LinkedList <Link > links = new LinkedList <Link >();

14 public Path(){

15 }

16 public Path(ArrayList <Node > nodes) {

17 this.nodes = nodes;

18 this.length= nodes.size() -1;

19 }

20 public Path(LinkedList <Link > links) {

21 this.links = links;

22 this.length= links.size();

23 }

24 public void addNode(Node node) {

25 getNodes().add(node);

26 }

27 public void addLink(Link link) {

28 getLinks().add(link);

29 }

30 public void addPath(Path path) {

31 for(int i=0; i<=path.getLinks().size() -1; i++){

32 addLink(path.getLinks().get(i));

33 }

34 }

35 public void addLinks(LinkedList <Link > links) {

212 Developed Java Classes

36 for(int i=0; i<=links.size() -1; i++){

37 addLink(links.get(i));

38 }

39 }

40 public ArrayList <Node > getNodes() {

41 for(int i=0; i<links.size() -1; i++){

42 nodes.add(links.get(i).src);

43 }

44 nodes.add(links.getLast().src);

45 return nodes;

46 }

47 public LinkedList <Link > getLinks() {

48 return links;

49 }

50 public Node getSrc() {

51 if (getLinks().size() >0) {

52 src= getLinks().get(0).src;

53 }

54 else {

55 src=null;

56 }

57 return src;

58 }

59 public Node getNode() {

60 return node;

61 }

62 public Node getDst() {

63 if (getLinks().size() >0) {

64 dst = getLinks().get(links.size() -1).dst;

65 }

66 else {

67 dst=null;

68 }

69 return dst;

70 }

71 public double getWeight() {

213

72 double weight = 0;

73 for(int i=0; i<links.size() -1; i++){

74 weight = weight + getLinks().get(i).getWeight();

75 }

76 return weight;

77 }

78 public Double getDistance() {

79 double distance = 0;

80 for(int i=0; i<links.size() -1; i++){

81 distance = distance + getLinks().get(i).getDistance();

82 }

83 return distance;

84 }

85 public int getLength() {

86 length = links.size();

87 return length;

88 }

89 }

Topo.java

1 import java.lang.Math;

2 import java.util.HashSet;

3

4 import org.kie.api.definition.type.Position;

5 import com.sample.Node;

6

7 public class Topo {

8 @Position(0)

9 public Node node1;

10 @Position(1)

11 public Node node2;

12 @Position(3)

13 public Node node3=null;

14 @Position(4)

15 public Node node4=null;

214 Developed Java Classes

16 public Node src, dst;

17 public Double distance , diagonal;

18 public Constraint constraint;

19 public Topo topo1 , topo2 , topo3 , topo4;

20 public Topo() {}

21 public static class Line extends Topo {

22 public Line() {

23 };

24 public Line(Topo topo1 , Topo topo2) {

25 this.topo1 =topo1;

26 this.topo2=topo2;

27 }

28 public Line(Node node1 , Constraint constraint) {

29 this.node1 =node1;

30 this.constraint=constraint;

31 }

32 public Line(Node node1 , Node node2 , Constraint

constraint) {

33 this.node1 =node1;

34 this.constraint=constraint;

35 this.distance = Math.sqrt(Math.pow(node1.point

36 .getX()-node2.point.getX() ,2)

37 + Math.pow(node1.point.getY()-node2.point.getY() ,2));

38 }

39 public Line(Node node1 , Node node2) {

40 this.node1 =node1;

41 this.node2 =node2;

42 this.distance = Math.sqrt(Math.pow(node1.point

43 .getX()-node2.point.getX() ,2)

44 + Math.pow(node1.point.getY()-node2.point.getY() ,2));

45 }

46 public void setLine(Node node1 , Node node2) {

47 this.node1 = node1;

48 this.node2 = node2;

49 this.distance = Math.sqrt(Math.pow(node1.point

50 .getX()-node2.point.getX() ,2)

215

51 + Math.pow(node1.point.getY()-node2.point.getY() ,2));

52 }

53 }

54 public static class Tree extends Topo{

55 public HashSet <Node > nodes;

56 public HashSet <Node > leafs;

57 public Tree() {

58 }

59 public Tree(Node node1 , HashSet <Node > nodes) {

60 this.node1 = node1;

61 this.nodes = nodes;

62 }

63 public Tree(Node node1) {

64 this.node1 = node1;

65 }

66 public Tree(Node node1 , Constraint constraint) {

67 this.node1 = node1;

68 this.constraint = constraint;

69 //this.distance = null;

70 }

71 public Tree(Node node1 , Node node2 , Node node3) {

72 this.node1 = node1;

73 this.node2 = node2;

74 this.node3 = node3;

75 this.distance = Math.sqrt(Math.pow(node1.point

76 .getX()-node2.point.getX() ,2)

77 + Math.pow(node1.point.getY()-node2.point.getY() ,2));

78 }

79 public Tree(Node node1 , Node node2 , Node node3 , Node

node4) {

80 this.node1 = node1;

81 this.node2 = node2;

82 this.node3 = node3;

83 this.node4 = node4;

84 this.distance = Math.sqrt(Math.pow(node1.point

85 .getX()-node2.point.getX() ,2)

216 Developed Java Classes

86 + Math.pow(node1.point.getY()-node2.point.getY() ,2));

87 }

88 public void setTree(Node node1 , Node node2 , Node node3)

{

89 this.node1 = node1;

90 this.node2 = node2;

91 this.node3 = node3;

92 this.distance = Math.sqrt(Math.pow(node1.point

93 .getX()-node2.point.getX() ,2)

94 + Math.pow(node1.point.getY()-node2.point.getY() ,2));

95 }

96 public void setTree(Node node1 , Node node2 , Node node3 ,

Node node4) {

97 this.node1 = node1;

98 this.node2 = node2;

99 this.node3 = node3;

100 this.node4 = node4;

101 this.distance = Math.sqrt(Math.pow(node1.point.

102 getX()-node2.point.getX() ,2)

103 + Math.pow(node1.point.getY()-node2.point.getY() ,2));

104 }

105 }

106 public static class Mesh extends Topo{

107 public Mesh() {

108 }

109 public Mesh(Node node1 , Node node2 , Node node3 , Node

node4) {

110 this.node1 = node1;

111 this.node2 = node2;

112 this.node3 = node3;

113 this.node4 = node4;

114 this.distance = Math.sqrt(Math.pow(node1.point

115 .getX()-node2.point.getX() ,2)

116 + Math.pow(node1.point.getY()-node2.point.getY() ,2));

117 this.diagonal = Math.sqrt(Math.pow(node1.point

118 .getX()-node3.point.getX() ,2)

217

119 + Math.pow(node1.point.getY()-node3.point.getY() ,2));

120 }

121 public void setMesh(Node node1 , Node node2 , Node node3 ,

Node node4) {

122 this.node1 = node1;

123 this.node2 = node2;

124 this.node3 = node3;

125 this.node4 = node4;

126 this.distance = Math.sqrt(Math.pow(node1.point

127 .getX()-node2.point.getX() ,2)

128 + Math.pow(node1.point.getY()-node2.point.getY() ,2));

129 this.diagonal = Math.sqrt(Math.pow(node1.point

130 .getX()-node3.point.getX() ,2)

131 + Math.pow(node1.point.getY()-node3.point.getY() ,2));

132 }

133 }

134 public static class Sequence extends Topo{

135 public Sequence() {

136 }

137 public Sequence(Node node1 , Node node2) {

138 this.node1 = node1;

139 this.node2 = node2;

140 this.distance = Math.sqrt(Math.pow(node1.point

141 .getX()-node2.point.getX() ,2)+

Math.pow(node1.point.getY()-node2.point.getY() ,2));

142 }

143 public Sequence(Topo topo1 , Node node2) {

144 this.topo1 = topo1;

145 this.node2 = node2;

146 }

147 public Sequence(Node node1 , Topo topo2) {

148 this.node1 = node1;

149 this.topo2 = topo2;

150 this.distance = Math.sqrt(Math.pow(node1.point

151 .getX()-node2.point.getX() ,2)

152 + Math.pow(node1.point.getY()-node2.point.getY() ,2));

218 Developed Java Classes

153 }

154 public Sequence(Topo topo1 , Topo topo2) {

155 this.topo1 = topo1;

156 this.topo2 = topo2;

157 this.distance = Math.sqrt(Math.pow(node1.point

158 .getX()-node2.point.getX() ,2)

159 + Math.pow(node1.point.getY()-node2.point.getY() ,2));

160 }

161 public void setMesh(Node node1 , Node node2) {

162 this.node1 = node1;

163 this.node2 = node2;

164 this.distance = Math.sqrt(Math.pow(node1.point

165 .getX()-node2.point.getX() ,2)

166 + Math.pow(node1.point.getY()-node2.point.getY() ,2));

167 }

168 }

169 public void setNode1(Node node1) {

170 this.node1 = node1;

171 }

172 public void setNode2(Node node2) {

173 this.node2 = node2;

174 }

175 public void setNode3(Node node3) {

176 this.node3 = node3;

177 }

178 public void setNode4(Node node4) {

179 this.node4 = node4;

180 }

181 public Node getNode1() {

182 return node1;

183 }

184 public Node getNode2() {

185 return node2;

186 }

187 public Node getNode3() {

188 return node3;

219

189 }

190 public Node getNode4() {

191 return node4;

192 }

193 public Constraint getConstraint() {

194 return constraint;

195 }

196 public Double getDistance() {

197 return distance;

198 }

199

200 public void setDistance(Double distance) {

201 this.distance = distance;

202 }

203

204 public void setDiagonal(Double diagonal) {

205 this.diagonal = diagonal;

206 }

207

208 public Double getDiagonal() {

209 return diagonal;

210 }

211 }

Pro.java

1 public class Pro {

2 public String name;

3 public double value;

4 public Area area;

5 public boolean encrypted;

6 public boolean reached;

7 public Chain chain;

8 public Pro() {

9 }

10 // Functional Properties

220 Developed Java Classes

11 public static class Connectivity extends Pro{

12 public Connectivity() {}

13 public Connectivity(Double value) {

14 this.name = "Connectivity";

15 this.value=value;

16 }

17 }

18 public static class Coverage extends Pro{

19 public Coverage() {}

20 public Coverage(double value) {

21 this.name = "Coverage";

22 this.value=value;

23 }

24 }

25 public static class Scalability extends Pro{

26 public Scalability() {}

27 public Scalability(double value) {

28 this.name = "Scalability";

29 this.value = value;

30 }

31 }

32 public static class Reachability extends Pro{

33 public Reachability() {}

34 public Reachability(boolean reached) {

35 this.name = "Reachability";

36 this.reached = reached;

37 }

38 }

39 // Non Functional Properties

40 public static class FunctionChain extends Pro{

41 public FunctionChain() {}

42 public FunctionChain(Chain chain) {

43 this.name = "Chaining";

44 this.chain = chain;

45 }

46 public FunctionChainPath(Chain chain) {

221

47 this.name = "Chain Path";

48 this.chain = chain;

49 }

50 }

51 public static class Confidentiality extends Pro{

52 public Confidentiality() {}

53 public Confidentiality(boolean encrypted) {

54 this.name = "Confidentiality";

55 this.encrypted = encrypted;

56 }

57 }

58 public static class Availability extends Pro{

59 public Availability() {}

60 public Availability(double value) {

61 this.name = "Availability";

62 this.value = value;

63 }

64 }

65 public static class Area{

66 public double length , width;

67 public Area(double length , double width) {

68 this.length = length;

69 this.width = width;

70 }

71 }

72 public String getName() {

73 return name;

74 }

75 public Area getArea() {

76 return area;

77 }

78 public double getValue() {

79 return value;

80 }

81 public Chain getChain() {

82 return chain;

222 Developed Java Classes

83 }

84 public boolean isReached() {

85 return reached;

86 }

87 public boolean isEncrypted() {

88 return encrypted;

89 }

90 public void setValue(double value) {

91 this.value = value;

92 }

93 }

Req.java

1 import java.util.HashSet;

2 import java.util.Set;

3 import org.kie.api.definition.type.Position;

4 import com.sample.Node;

5 public class Req {

6 @Position(0)

7 public Node src;

8 @Position(1)

9 public Node dst;

10 public Node node1 , node2;

11 public Topo topo;

12 public Path path;

13 public Pro property;

14 public Constraint constraint;

15 public boolean satisfied;

16 public Req req;

17 public Set<Req> inferredReqs = new HashSet <Req >();

18 public Req() {

19 }

20 public Req(Node src, Node dst, Pro property , boolean

satisfied) {

21 this.src = src;

223

22 this.dst = dst;

23 this.property = property;

24 this.satisfied = satisfied;

25 }

26 public Req(Node src, Node dst, Pro property , Constraint

constraint , boolean satisfied) {

27 this.src = src;

28 this.dst = dst;

29 this.property = property;

30 this.satisfied = satisfied;

31 this.constraint = constraint;

32 }

33 public Req(Topo topo , Pro property , boolean satisfied) {

34 this.topo = topo;

35 this.src = topo.node1;

36 this.dst = topo.node2;

37 this.property = property;

38 this.satisfied = satisfied;

39 }

40 public Req(Topo topo , Pro property , Constraint

constraint , boolean satisfied) {

41 this.topo = topo;

42 this.src = topo.node1;

43 this.dst = topo.node2;

44 this.property = property;

45 this.constraint = constraint;

46 this.satisfied = satisfied;

47 }

48 public Req(Path path , Pro property , boolean satisfied) {

49 this.path = path;

50 this.property = property;

51 this.satisfied = satisfied;

52 }

53 public Node getSrc() {

54 return src;

55 }

224 Developed Java Classes

56 public Node getDst() {

57 return dst;

58 }

59 public void setSrc(Node src) {

60 this.src = src;

61 }

62 public void setDst(Node dst) {

63 this.dst = dst;

64 }

65 public Req getReq(){

66 return req;

67 }

68 public Topo getTopo() {

69 return topo;

70 }

71 public Pro getProperty() {

72 return property;

73 }

74 public Constraint getConstraint() {

75 return constraint;

76 }

77 public boolean isSatisfied() {

78 return satisfied;

79 }

80 public Node getNode1() {

81 return node1;

82 }

83 public Node getNode2() {

84 return node2;

85 }

86 public Path getPath() {

87 return path;

88 }

89 public Set<Req> getInferredReqs() {

90 return inferredReqs;

91 }

225

92 public void setNode1(Node node1) {

93 this.node1 = node1;

94 }

95 public void setNode2(Node node2) {

96 this.node2 = node2;

97 }

98 public void setTopo(Topo topo) {

99 this.topo = topo;

100 }

101 public void setPath(Path path) {

102 this.path = path;

103 }

104 public void setProperty(Pro property) {

105 this.property = property;

106 }

107 public void setConstraint(Constraint constraint) {

108 this.constraint = constraint;

109 }

110 public void setSatisfied(boolean satisfied) {

111 this.satisfied = satisfied;

112 }

113 public void setReq(Req req) {

114 this.req = req;

115 }

116 public void setInferredReqs(Set <Req> inferredReqs) {

117 this.inferredReqs = inferredReqs;

118 }

119 }

Flow.java

1 import java.util.ArrayList;

2 import java.util.List;

3 public class Flow {

4 public int id;

5 public String switchId , flowId , inPort , output , tableId;

226 Developed Java Classes

6 public List <String > outputs = new ArrayList <String >();

7 public int table , priority;

8 public Flow() {

9 }

10 public Flow(String switchId , String inPort , String

output) {

11 this.switchId = switchId;

12 this.inPort = inPort;

13 this.output = output;

14 }

15 public Flow(int id, String switchId , String inPort ,

String output) {

16 this.id = id;

17 this.switchId = switchId;

18 this.inPort = inPort;

19 this.output = output;

20 }

21 public Flow(int id, String switchId , String flowId ,

String inPort , String output) {

22 this.id = id;

23 this.switchId = switchId;

24 this.flowId = flowId;

25 this.inPort = inPort;

26 this.output = output;

27 }

28 public Flow(int id, String switchId , String tableId ,

String flowId ,

29 String inPort , List <String > outputs) {

30 this.id = id;

31 this.switchId = switchId;

32 this.tableId = tableId;

33 this.flowId = flowId;

34 this.inPort = inPort;

35 this.outputs = outputs;

36 }

37 public int getId() {

227

38 return id;

39 }

40 public String getSwitchId() {

41 return switchId;

42 }

43 public String getTableId() {

44 return tableId;

45 }

46 public String getFlowId() {

47 return flowId;

48 }

49 public String getInPort(){

50 return inPort;

51 }

52 public int getPriority() {

53 return priority;

54 }

55 public List <String > getOutputs(){

56 return outputs;

57 }

58 }

Chain.java

1 import java.util.ArrayList;

2 public class Chain {

3 public Node sf1;

4 public ArrayList <Node > functions = new

ArrayList <Node >();

5 public Chain(){

6 }

7 public Chain(Node sf1) {

8 getFunctions().add(sf1);

9 }

10 public Chain(Node sf1 ,Node sf2) {

11 getFunctions().add(sf1);

228 Developed Java Classes

12 getFunctions().add(sf2);

13 }

14 public Chain(Node sf1 ,Node sf2,Node sf3) {

15 getFunctions().add(sf1);

16 getFunctions().add(sf2);

17 getFunctions().add(sf3);

18 }

19 public Chain(ArrayList <Node > functions) {

20 this.functions = functions;

21 }

22 public ArrayList <Node > getFunctions() {

23 return functions;

24 }

25 public Node getFirst() {

26 return getFunctions().get(0);

27 }

28 public Node removeFirst() {

29 return getFunctions().remove(0);

30 }

31 }

SecAs.java

1 public class SecAs {

2 public Node src, dst;

3 public IPSec ipsec;

4 public SecAs(Node src , Node dst , IPSec ipsec) {

5 this.src = src;

6 this.dst=dst;

7 this.ipsec = ipsec;

8 this.key = key;

9 }

10 public static class IPSec{

11 public String key;

12 public Proto protocol;

13 public Algo algorithm;

229

14 public IPSec(Proto protocol , Algo algorithm , String

key) {

15 this.protocol = protocol;

16 this.algorithm = algorithm;

17 this.key = key;

18 }

19 }

Encrypt.java

1 import java.util.Arrays;

2 import java.util.Base64;

3 import javax.crypto.Cipher;

4 import javax.crypto.spec.SecretKeySpec;

5 public class Encrypt {

6 public String packet;

7 public String secret

8 public Encrypt(String packet , String secret) {

9 setKey(secret);

10 Cipher cipher =

Cipher.getInstance("AES/ECB/PKCS5Padding");

11 cipher.init(Cipher.ENCRYPT_MODE , secretKey);

12 return

Base64.getEncoder().encodeToString(cipher.

doFinal(packet.getBytes("UTF -8")));

13 }

14 }

Decrypt.java

1 import java.util.Arrays;

2 import java.util.Base64;

3 import javax.crypto.Cipher;

4 import javax.crypto.spec.SecretKeySpec;

5 public class Decrypt {

230 Developed Java Classes

6 public String cipherPacket;

7 public String secret

8 public Decrypt (String cipher , String secret){

9 setKey(secret);

10 Cipher cipher =

Cipher.getInstance("AES/ECB/PKCS5PADDING");

11 cipher.init(Cipher.DECRYPT_MODE , secretKey);

12 return new

String(cipher.doFinal(Base64.getDecoder().

decode(cipherPacket)));

13 }

14 }

Appendix B

Service Function Chaining Files

Service Function Chaining Output

service-nodes.json

1 {

2 "service -nodes": {

3 "service -node": [

4 {

5 "name": "sf4",

6 "service -function": [

7 "scada -ids -1"

8],

9 "ip-mgmt -address": "192.168.10.40"

10 },

11 {

12 "name": "sf3",

13 "service -function": [

14 "ids -1"

15],

16 "ip-mgmt -address": "192.168.10.30"

17 },

18 {

19 "name": "sf2",

20 "service -function": [

21 "dpi -1"

232 Service Function Chaining Files

22],

23 "ip-mgmt -address": "192.168.10.20"

24 },

25 {

26 "name": "sf1",

27 "service -function": [

28 "firewall -1"

29],

30 "ip-mgmt -address": "192.168.10.10"

31 },

32 {

33 "name": "sff3",

34 "ip-mgmt -address": "192.168.10.90"

35 },

36 {

37 "name": "sff2",

38 "ip-mgmt -address": "192.168.10.80"

39 },

40 {

41 "name": "sff1",

42 "ip-mgmt -address": "192.168.10.70"

43 },

44 {

45 "name": "classifier2",

46 "ip-mgmt -address": "192.168.10.60"

47 },

48 {

49 "name": "classifier1",

50 "ip-mgmt -address": "192.168.10.50"

51 }

52]

53 }

54 };

service-functions.json

233

1 {

2 "service -functions": {

3 "service -function": [

4 {

5 "name": "firewall -1",

6 "nsh -aware": true,

7 "ip-mgmt -address": "192.168.10.10",

8 "type": "firewall",

9 "sf-data -plane -locator": [

10 {

11 "name": "firewal -1-dpl",

12 "service -function -forwarder": "SFF1",

13 "transport": "service -locator:vxlan -gpe",

14 "ip": "192.168.10.10",

15 "port": 6633

16 }

17],

18 "rest -uri": "http://192.168.10.10:5000"

19 },

20 {

21 "name": "dpi-1",

22 "nsh -aware": true,

23 "ip-mgmt -address": "192.168.10.20",

24 "type": "dpi",

25 "sf-data -plane -locator": [

26 {

27 "name": "dpi-1-dpl",

28 "service -function -forwarder": "SFF2",

29 "transport": "service -locator:vxlan -gpe",

30 "ip": "192.168.10.20",

31 "port": 6633

32 }

33],

34 "rest -uri": "http://192.168.10.20:5000"

35 },

36 {

234 Service Function Chaining Files

37 "name": "scada -ids-1",

38 "nsh -aware": true,

39 "ip-mgmt -address": "192.168.10.40",

40 "type": "qos",

41 "sf-data -plane -locator": [

42 {

43 "name": "scada -ids -1-dpl",

44 "service -function -forwarder": "SFF3",

45 "transport": "service -locator:vxlan -gpe",

46 "ip": "192.168.10.40",

47 "port": 6633

48 }

49],

50 "rest -uri": "http://192.168.10.40:5000"

51 },

52 {

53 "name": "ids-1",

54 "nsh -aware": true,

55 "ip-mgmt -address": "192.168.10.30",

56 "type": "ids",

57 "sf-data -plane -locator": [

58 {

59 "name": "ids-1-dpl",

60 "service -function -forwarder": "SFF3",

61 "transport": "service -locator:vxlan -gpe",

62 "ip": "192.168.10.30",

63 "port": 6633

64 }

65],

66 "rest -uri": "http://192.168.10.30:5000"

67 }

68]

69 }

70 };

235

service-function-classifiers.json

1

2 {

3 "service -function -classifiers": {

4 "service -function -classifier": [

5 {

6 "name": "Classifier1",

7 "scl -service -function -forwarder": [

8 {

9 "name": "Classifier1",

10 "interface": "veth -br"

11 }

12],

13 "acl": {

14 "name": "ACL1",

15 "type": "ietf -access -control -list:ipv4-acl"

16 }

17 },

18 {

19 "name": "Classifier2",

20 "scl -service -function -forwarder": [

21 {

22 "name": "Classifier2",

23 "interface": "veth -br"

24 }

25],

26 "acl": {

27 "name": "ACL2",

28 "type": "ietf -access -control -list:ipv4-acl"

29 }

30 }

31]

32 }

33 }

236 Service Function Chaining Files

service-function-forwarder.json

1

2 {

3 "service -function -forwarders": {

4 "service -function -forwarder": [

5 {

6 "name": "Classifier1",

7 "ip-mgmt -address": "192.168.10.50",

8 "sff -data -plane -locator": [

9 {

10 "name": "sff0-dpl",

11 "data -plane -locator": {

12 "transport": "service -locator:vxlan -gpe",

13 "port": 6633,

14 "ip": "192.168.10.50"

15 },

16 "service -function -forwarder -ovs:ovs -options": {

17 "remote -ip": "flow",

18 "key": "flow",

19 "nshc3": "flow",

20 "nshc4": "flow",

21 "nshc1": "flow",

22 "nshc2": "flow",

23 "nsi": "flow",

24 "exts": "gpe",

25 "dst -port": "6633",

26 "nsp": "flow"

27 }

28 }

29],

30 "service -node": "classifier1",

31 "service -function -forwarder -ovs:ovs -bridge": {

32 "bridge -name": "br-sfc"

33 },

34 "rest -uri": "http://192.168.10.50:5000"

35 },

237

36 {

37 "name": "SFF1",

38 "ip-mgmt -address": "192.168.10.70",

39 "service -node": "sff1",

40 "sff -data -plane -locator": [

41 {

42 "name": "sff1-dpl",

43 "data -plane -locator": {

44 "transport": "service -locator:vxlan -gpe",

45 "port": 6633,

46 "ip": "192.168.10.70"

47 },

48 "service -function -forwarder -ovs:ovs -options": {

49 "remote -ip": "flow",

50 "key": "flow",

51 "nshc3": "flow",

52 "nshc4": "flow",

53 "nshc1": "flow",

54 "nshc2": "flow",

55 "nsi": "flow",

56 "exts": "gpe",

57 "dst -port": "6633",

58 "nsp": "flow"

59 }

60 }

61],

62 "service -function -dictionary": [

63 {

64 "name": "firewall -1",

65 "sff -sf-data -plane -locator": {

66 "sff -dpl -name": "sff1-dpl",

67 "sf-dpl-name": "firewall -1-dpl"

68 }

69 }

70],

71 "service -function -forwarder -ovs:ovs -bridge": {

238 Service Function Chaining Files

72 "bridge -name": "br-sfc"

73 },

74 "rest -uri": "http://192.168.10.70:5000"

75 },

76 {

77 "name": "SFF3",

78 "ip-mgmt -address": "192.168.10.90",

79 "service -node": "sff3",

80 "sff -data -plane -locator": [

81 {

82 "name": "sff3-dpl",

83 "data -plane -locator": {

84 "transport": "service -locator:vxlan -gpe",

85 "port": 6633,

86 "ip": "192.168.10.90"

87 },

88 "service -function -forwarder -ovs:ovs -options": {

89 "remote -ip": "flow",

90 "key": "flow",

91 "nshc3": "flow",

92 "nshc4": "flow",

93 "nshc1": "flow",

94 "nshc2": "flow",

95 "nsi": "flow",

96 "exts": "gpe",

97 "dst -port": "6633",

98 "nsp": "flow"

99 }

100 }

101],

102 "service -function -dictionary": [

103 {

104 "name": "ids-1",

105 "sff -sf-data -plane -locator": {

106 "sff -dpl -name": "sff3-dpl",

107 "sf-dpl-name": "ids -1-dpl"

239

108 }

109 },

110 {

111 "name": "scada -ids -1",

112 "sff -sf-data -plane -locator": {

113 "sff -dpl -name": "sff3-dpl",

114 "sf-dpl-name": "scada -ids -1-dpl"

115 }

116 }

117],

118 "service -function -forwarder -ovs:ovs -bridge": {

119 "bridge -name": "br-sfc"

120 },

121 "rest -uri": "http://192.168.10.90:5000"

122 },

123 {

124 "name": "Classifier2",

125 "ip-mgmt -address": "192.168.10.60",

126 "sff -data -plane -locator": [

127 {

128 "name": "sff4-dpl",

129 "data -plane -locator": {

130 "transport": "service -locator:vxlan -gpe",

131 "port": 6633,

132 "ip": "192.168.10.60"

133 },

134 "service -function -forwarder -ovs:ovs -options": {

135 "remote -ip": "flow",

136 "key": "flow",

137 "nshc3": "flow",

138 "nshc4": "flow",

139 "nshc1": "flow",

140 "nshc2": "flow",

141 "nsi": "flow",

142 "exts": "gpe",

143 "dst -port": "6633",

240 Service Function Chaining Files

144 "nsp": "flow"

145 }

146 }

147],

148 "service -node": "classifier2",

149 "service -function -forwarder -ovs:ovs -bridge": {

150 "bridge -name": "br-sfc"

151 },

152 "rest -uri": "http://192.168.10.60:5000"

153 },

154 {

155 "name": "SFF2",

156 "ip-mgmt -address": "192.168.10.80",

157 "service -node": "sff2",

158 "sff -data -plane -locator": [

159 {

160 "name": "sff2-dpl",

161 "data -plane -locator": {

162 "transport": "service -locator:vxlan -gpe",

163 "port": 6633,

164 "ip": "192.168.10.80"

165 },

166 "service -function -forwarder -ovs:ovs -options": {

167 "remote -ip": "flow",

168 "key": "flow",

169 "nshc3": "flow",

170 "nshc4": "flow",

171 "nshc1": "flow",

172 "nshc2": "flow",

173 "nsi": "flow",

174 "exts": "gpe",

175 "dst -port": "6633",

176 "nsp": "flow"

177 }

178 }

179],

241

180 "service -function -dictionary": [

181 {

182 "name": "dpi-1",

183 "sff -sf-data -plane -locator": {

184 "sff -dpl -name": "sff2-dpl",

185 "sf-dpl-name": "dpi -1-dpl"

186 }

187 }

188],

189 "service -function -forwarder -ovs:ovs -bridge": {

190 "bridge -name": "br-sfc"

191 },

192 "rest -uri": "http://192.168.10.80:5000"

193 }

194]

195 }

196 };

service-function-chains.json

1 {

2 "service -function -chains": {

3 "service -function -chain": [

4 {

5 "name": "SFC4",

6 "symmetric": true,

7 "sfc -service -function": [

8 {

9 "name": "firewall -abstract1",

10 "type": "firewall"

11 },

12 {

13 "name": "dpi-abstract1",

14 "type": "dpi"

15 }

16]

242 Service Function Chaining Files

17 },

18 {

19 "name": "SFC3",

20 "symmetric": true,

21 "sfc -service -function": [

22 {

23 "name": "firewall -abstract1",

24 "type": "firewall"

25 },

26 {

27 "name": "ids-abstract1",

28 "type": "ids"

29 }

30]

31 },

32 {

33 "name": "SFC2",

34 "symmetric": true,

35 "sfc -service -function": [

36 {

37 "name": "firewall -abstract1",

38 "type": "firewall"

39 },

40 {

41 "name": "scada -ids -abstract1",

42 "type": "qos"

43 }

44]

45 },

46 {

47 "name": "SFC1",

48 "symmetric": true,

49 "sfc -service -function": [

50 {

51 "name": "firewall -abstract1",

52 "type": "firewall"

243

53 },

54 {

55 "name": "ids-abstract1",

56 "type": "ids"

57 }

58]

59 },

60 {

61 "name": "grgre"

62 }

63]

64 }

65 };

