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Abstract: A well-established distributed LQR method for decoupled systems is extended to the
dynamically coupled case where the open-loop systems are dynamically dependent. First, a fully
centralized controller is designed which is subsequently substituted by a distributed state-
feedback gain with sparse structure. The control scheme is obtained by optimizing an LQR
performance index with a tuning parameter utilized to emphasize/de-emphasize relative state
difference between interconnected systems. Overall stability is guaranteed via a simple test
applied to a convex combination of Hurwitz matrices, the validity of which leads to stable
global operation for a class of interconnection schemes. It is also shown that the suboptimality
of the method can be assessed by measuring a certain distance between two positive definite
matrices which can be obtained by solving two Lyapunov equations.

Keywords: distributed LQR, coupled linear systems, multi-agent control, networked control.

1. INTRODUCTION

Networked systems have attracted attention from the
control community in recent years due to their broad
range of applications. Such schemes are often referred to as
multi-agent networks, with each agent having autonomous
actuation capacity. The need for forming networks in many
cases arises from the fact that some problems may not
admit a solution at the individual system level. Thus
agents despite their independent operation have also the
ability to cooperate with certain of their counterparts
within the network towards a common objective. In other
cases, the topology of the network may be imposed by
structural links such as in power systems where agents
denote power generators and interconnections represent
power transmission lines.

In this paper, we focus on multi-agent networks composed
of identical dynamically coupled linear time-invariant sys-
tems. We consider that these dynamical couplings can be
expressed in a state-space form of a certain structure. In
our case each system representing an agent can produce ac-
tuation signals independently and is dynamically coupled
with certain number of its peers referred to as neighboring
agents with whom it can exchange state information. Effec-
tively, we assume that the topology of physical couplings
and the topology of information exchange among agents
coincide and are described by the same graph. Network
stabilization is one of the most challenging problems in
multi-agent network control. In this work, we propose a
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stabilizing distributed LQR-based controller for networks
formed of identical agents with dynamical couplings.

Over the past few years, there has been a renewal of
interest in control of networks composed of a large number
of interacting systems. Rigorous methods for cooperative
control design for multi-agent systems with distributed or
decentralized pattern have been provided in Olfati-Saber
(2006); Fax and Murray (2002); Wang et al. (2018). A
thorough procedure for designing distributed controllers
for a class of coupled systems based on a decomposition
approach has been presented in Massioni and Verhaegen
(2009). The fundamental works of Borrelli and Keviczky
(2008); Deshpande et al. (2012) discuss distributed LQR
design for a set of identical decoupled dynamical systems.
Unfortunately, there is no documented distributed LQR-
based approach to networked systems with dynamical
couplings in the context of relevant literature.

In this work, we follow a top-down method to approx-
imate a centralized LQR optimal controller by a dis-
tributed control scheme. It is shown that overall network
stability is guaranteed via a stability test applied to a
convex combination of Hurwitz matrices. The validity of
this condition is consistent with the stability of a class
of network interconnection structures which is identified.
Sufficient condition for stability of convex combination
of Hurwitz matrices can be found in Bia las (2004). The
control scheme is obtained by optimizing an LQR perfor-
mance index with a tuning parameter which can be used to
emphasize/de-emphasize relative state difference between
interconnected systems. Our approach was inspired by the
powerful results proposed in Borrelli and Keviczky (2008).



Therein, the subsystems constituting the network are dy-
namically decoupled, and the stability of the distributed
scheme designed relies on the stability margins of LQR
control. A complementary distributed LQR method has
also been proposed in Deshpande et al. (2012), which
consists of a bottom-up approach in which optimal inter-
actions between self-stabilizing agents are defined so as to
minimize an upper bound of the global LQR criterion.

Our definition of multi-agent networks with dynamical
couplings has been motivated by the structure of a multi-
area power system. The proposed method has been suc-
cessfully applied to multi-area power system control design
numerous simulations of which can be found in Vlahakis
et al. (2019). A major assumption of our work is that
the dynamical models of each system are identical. Al-
though this assumption may be unrealistic in practice,
it simplifies the design problem considerably, which is
especially hard due to the coupling terms appearing in
the model. Future work will attempt to eliminate or relax
this assumption. Preliminary results in this direction can
be found in Vlahakis and Halikias (2018a,b).

The remaining of the paper is organized in four sections. In
Section 2 notation and some preliminaries on graph theory
are presented. The main results of our work are presented
in Section 3 and 4 where LQR properties of coupled linear
systems and the distributed control algorithm are derived,
respectively. Section 5 summarizes the main conclusions
of the work where a discussion of the main results and
suggestions for future work are also included.

2. NOTATION AND GRAPH THEORY
PRELIMINARIES

The field of real and complex numbers are denoted by R
and C, respectively. Rn denotes the n-dimensional vector
space over the field R. Rn×m denotes the set of n × m
real matrices. ξ′ and Ξ′ denote the transpose of ξ and
Ξ, respectively. Matrix Ξ ∈ Rn×n is called symmetric if
Ξ′ = Ξ. The identity matrix of dimension m×m is denoted
by Im ∈ Rm×m. The n×m zero matrix is denoted by 0n,m.
C = {s ∈ C : Re(s) < 0}. C = {s ∈ C : Re(s) ≤ 0}.
Let A ∈ Rn×m and B ∈ Rq×p. Then, the Kronecker
product of A and B is denoted by A ⊗ B and defined
as

A⊗B =

a11B · · · a1mB...
. . .

...
an1B · · · annB

 ∈ Rnq×mp,

where aij is the (i, j)-th entry of A, with i = 1, · · · , n and
j = 1, · · · ,m.

Let λi(Ξ) denote the i-th eigenvalue of Ξ ∈ Rn×n, i =
1, · · · , n. Then, the spectrum of Ξ is denoted by S(Ξ) =
{λ1(Ξ), · · · , λn(Ξ)}.
Definition 1. Matrix Ξ ∈ Rn×n is called Hurwitz (or
stable) if all its eigenvalues have negative real part, i.e.,
λi(Ξ) ∈ C , i = 1, · · · , n.

Proposition 2. Let A1 = aIm and A2 ∈ Rm×m. Then
λi(A1 +A2) = a+ λi(A2), i = 1, · · · ,m.

Proof. Let λi(A2) be any eigenvalue of A2 with corre-
sponding eigenvector vi ∈ Cm. Then (A1+A2)vi = A1vi+
A2vi = avi + λi(A2)vi = (a+ λi(A2))vi.

Proposition 3. Consider matrices A1, A2 ∈ Rm×m and
Ξ ∈ Rn×n and let Ā1 = In ⊗ A1 and Ā2 = Ξ ⊗ A2

with Ā1, Ā2 ∈ Rnm×nm. Then S(Ā1 + Ā2) = ∪ni=1S(A1 +
λi(Ξ)A2) where λi(Ξ) represents the i-th eigenvalue of Ξ.

Proof. Let v ∈ Cn be an eigenvector of Ξ associated
with eigenvalue λ(Ξ) and u ∈ Cm be an eigenvector of
M = A1+λ(Ξ)A2 associated with eigenvalue λ(M). Define
the vector v ⊗ u ∈ Cnm and consider

(Ā1 + Ā2)(v ⊗ u) = v ⊗A1u+ Ξu⊗A2u

= v ⊗A1u+ λ(Ξ)v ⊗ u
= v ⊗ (A1u+ λ(Ξ)A2u).

Since (A1 + λ(Ξ)A2)u = λ(Ξ)u, we get (Ā1 + Ā2)(v ⊗
u) = λ(Ξ)(v ⊗ u).

A graph G is defined as the ordered pair G = (V, E), where
V is the set of nodes (or vertices) V = {1, · · · , N} and E ⊆
V ×V the set of edges (i, j) with i ∈ V, j ∈ V. The degree
dj of a graph vertex j is the number of edges which start
from j. Let dmax(G) denote the maximum vertex degree
of the graph G. We denote by A(G) the (0, 1) adjacency
matrix of the graph G. In particular, the (ij)th element of
A, Aij = 1 if (i, j) ∈ E ∀ i, j = 1, · · · , N , i 6= j and zero
otherwise. Let j ∈ Ni if (i, j) ∈ E and i 6= j. We call Ni

the neighborhood of node i. The adjacency matrix A(G) of
undirected graphs is symmetric. We define the Laplacian
matrix as L(G) = D(G) − A(G), where D(G) is the diag-
onal matrix of vertex degrees di (also called the valence
matrix). Let S(L(G)) = {λ1(L(G)), · · · , λN (L(G))} be the
spectrum of the Laplacian matrix L associated with an
undirected graph G arranged in nondecreasing semi-order.
The following Proposition is derived straight forward from
Proposition 3

Proposition 4. Let A, B be matrices of appropriate dimen-
sions and L be Laplacian matrix of graph G with spectrum
S(L) = {λ1(L), · · · , λN (L)}. Then,

S(IN ⊗A+ L ⊗B) = ∪i∈[1:N ]S(A+ λi(L)B),

with λi(L) ∈ S(L).

The following result is standard (Mohar (1991)) and is
stated without proof.

Proposition 5. Let G be a complete graph (with all possi-
ble edges) with NL vertices and L(G) be the correspond-
ing Laplacian matrix. Then the following hold: L(G)p =

Np−1
L L(G) and S(L(G)) = {0, NL, · · · , NL}.

3. LARGE-SCALE LQR FOR DYNAMICALLY
COUPLED SYSTEMS

Consider a network of NL dynamically coupled LTI sys-
tems referred to as agents. At local level the dynamics of
the i-th agent is represented in state-space form as:

ẋi = A1xi +A2

NL∑
j=1,j 6=i

(xi − xj) +Bui, x0,i = xi(0) (1)

where xi ∈ Rn, ui ∈ Rm denote states and inputs of
the i-th system, respectively. A complete graph (with all
possible edges) G = (V, E) with Laplacian matrix Lc is
utilized to model the topology of the physical links among
the agents. Node i ∈ V of G corresponds to local state
xi while edge (i, j) ∈ E corresponds to the xi − xj term



in (1). Now construct the aggregate state x̃ ∈ RnNL and
input vector ũ ∈ RmNL by stacking all state and input
vectors, respectively, of all NL systems taken in ascending
order depending on their label in graph G. The aggregate
state-space of the network becomes:

˙̃x = Ãx̃+ B̃ũ, x̃0 = x̃(0) (2)

with

Ã = INL
⊗A1 + Lc ⊗A2, B̃ = INL

⊗B (3)

Consider now LQR control problem for the network of NL

coupled systems:

min
ũ

J(ũ, x̃0) s.t. ˙̃x = Ãx̃+ B̃ũ, x̃0 = x̃(0) (4)

where the cost function

J(ũ, x̃0) =

∫ ∞
0

x̃′Q̃x̃+ ũ′R̃ũ dt (5)

with

Q̃ = INL
⊗Q1 + Lc ⊗Q2 and R̃ = INL

⊗R. (6)

Here Q1 = Q′1 ≥ 0 and Q2 = Q′2 ≥ 0 penalize local state
and relative state difference xi − xj between the nodes
i, j ∈ V, respectively. The matrix R = R′ > 0 weighs
inputs of each subsystem. The following stabilizability and
observability assumptions guarantee a unique stabilizing
solution to LQR problem (4).

Assumption 6. Let C ′1C1 = Q1. The pair (A1, B) is stabi-
lizable and (A1, C1) is observable.

Assumption 7. Let C ′12C12 = Q1 +NLQ2. The pair (A1 +
NLA2, B) is stabilizable and (A1 + NLA2, C12) is observ-
able.

Under Assumption 6,7, problem (4) has a unique stabi-

lizing solution ũ = K̃x̃, which gives finite performance
index (5) equal to x̃′0P̃ x̃0. The optimal state-feedback gain

K̃ = −R̃−1B̃′P̃ , where P̃ is the symmetric positive defi-
nite (s.p.d.) solution to the (large-scale) Algebraic Riccati
Equation (ARE):

Ã′P̃ + P̃ Ã− P̃ B̃R̃−1B̃′P̃ + Q̃ = 0. (7)

Due to special formulation of (4), K̃ and P̃ retain certain
structure, which will prove essential for designing stabiliz-
ing distributed controllers in the next section. The specific
structure of these matrices is proved in Theorem 8. In the
following, we set X = BR−1B′.

Theorem 8. Assume P̃ is the s.p.d solution to (7) associ-

ated with the optimal solution to (4). Let P̃ ∈ RnNL×nNL

be partitioned into N2
L blocks of dimension n × n, each

denoted by P̃ij and referred to as the (i, j)-block of P̃ .
Then, the following hold:

I. For i = 1, · · · , NL,
∑NL

j=1 P̃ij = P where

A′1P + PA1 − PXP +Q1 = 0. (8)

II. P̃ij = P̃kl = P̃2 for all i, j, k, l = 1, · · · , NL with j 6= i

and l 6= k, and P̃2 symmetric.

Proof. First, we prove part I of the theorem. The equa-
tions corresponding to diagonal blocks P̃ii of P̃ in (7) are:

(A1 + (NL − 1)A2)′P̃ii −A′2
NL∑
j=1
j 6=i

P̃ij

+ P̃ii(A1 + (NL − 1)A2)−
NL∑
j=1
j 6=i

P̃ijA2

−
NL∑
k=1

P̃ikXP̃ik +Q1 + (NL − 1)Q2 = 0 (9)

for i = 1, · · · , N . Note that P̃ij = P̃ji due to symmetry of
(7). Now let

Fii = P̃ii +

NL∑
i=1
j 6=i

P̃ij . (10)

Substituting (10) to (9) gives:

(NL − 1)(A′2Fii + FiiA2)−NL(A′2

NL∑
j=1
j 6=i

P̃ij −
NL∑
j=1
j 6=i

P̃ijA2)

(11a)

+A′1(Fii −
NL∑
j=1
j 6=i

P̃ij) + (Fii −
NL∑
j=1
j 6=i

P̃ij)A1

−
NL∑
k=1

P̃ikXP̃ik +Q1 + (NL − 1)Q2 = 0. (11b)

Using (10) the equations corresponding to off-diagonal

blocks P̃ij , i 6= j of P̃ are

(NL − 1)(A′2P̃ij + P̃ijA2)−A′2(Fii −
NL∑
k=1
k 6=i

P̃ik)

− (Fii −
NL∑
k=1
k 6=i

P̃ik)A2 −A′2
NL∑
l=1
l 6=i
l 6=j

P̃il −
NL∑
l=1
l 6=i
l 6=j

P̃ilA2 (12a)

+A′1P̃ij + P̃ijA1 −
NL∑
k=1

P̃ikXP̃kj −Q2 = 0 (12b)

Summing up (12a) for all j 6= i block-wise and adding this
summation to (11a) gives

(NL − 1)(A′2Fii + FiiA2)− (NL − 1)A′2Fii

− Fii(NL − 1)A2 −NLA
′
2

NL∑
j=1
j 6=i

P̃ij −
NL∑
j=1
j 6=i

P̃ijNLA2

+ (NL − 1)(A′2

NL∑
j=1
j 6=i

P̃ij +

NL∑
j=1
j 6=i

P̃ijA2)

+ (NL − 1)(A′2

NL∑
k=1
k 6=i

P̃ik +

NL∑
k=1
k 6=i

P̃ikA2)

− (NL − 1)(A′2

NL∑
l=1
l 6=i
l 6=j

P̃il −
NL∑
l=1
l 6=i
l 6=j

P̃ilA2) = 0 (13)



where all terms associated with A2 cancel out. By sum-
ming up now (12) for all j 6= i block-wise and adding this
summation to (11) gives

A′1Fii + FiiA1 − FiiXFii +

NL∑
k=1
k 6=i

(
P̃ikX

(
Fii − Fkk

))
+Q1 = 0. (14)

Eq. (14) has been established in Theorem 1 of Borrelli and
Keviczky (2008). It is true also here due to (13). Summing
up (14) for all i = 1, · · · , NL we get

NL∑
i=1

(
A′1Fii + FiiA1 − FiiXFii +Q1

)
= 0 (15)

which is sum of NL identical ARE’s, i.e.,

A′1Fii + FiiA1 − FiiXFii +Q1 = 0. (16)

Equation (10) implies Fii =
∑NL

i=1 P̃ij which, along with
(16), proves part I. The ARE (7) has a repetitive structure
and essentially can be decomposed into NL identical
equations since B̃, R̃ are block diagonal and Ã, Q̃ have
repetitive pattern. This implies that matrices P̃ij with
j 6= i are all equal and symmetric. This proves part II
of the theorem. 2

The following corollary of Theorem 8 is stated without
proof due to lack of space.

Corollary 9. Let P̃ij ∈ Rn×n, i, j = 1, · · · , NL, denote the

(i, j)-block of P̃ in (7) associated with the optimal solution
to (4). Then, the following hold:

I. P̃ii = P − (NL − 1)P̃2, for all i = 1, · · · , NL where P
is the s.p.d solution to ARE (8).

II. P̃ij = P̃2, for i, j = 1, · · · , NL and i 6= j, where P̃2 is
symmetric matrix associated with node-level ARE:

(A1 +NLA2)′(P −NLP̃2) + (P −NLP̃2)(A1

+NLA2)− (P −NLP̃2)X(P −NLP̃2)

+Q1 +NLQ2 = 0. (17)

By assumption, the matrices R̃ and B̃ are selected block
diagonal. Consequently, the state-feedback gain K̃ =
−R̃−1B̃′P̃ associated with the optimal solution to (4)

retains the same structure with P̃ . This leads to the
following Corollary.

Corollary 10. Assume K̃ = −R̃−1B̃′P̃ is the optimal
state-feedback gain obtained from the solution to (4)

which gives minimum performance index x̃′0P̃ x̃0 with P̃

being the s.p.d solution to (7). Let K̃ ∈ RmNL×nNL and

P̃ ∈ RnNL×nNL be partitioned intoN2
L blocks of dimension

m × n and n × n, denoted by K̃ij and P̃ij , respectively
each referred to as (i, j)-block of the respective matrix.
Then, the following are true;

I. P̃ = INL
⊗ P − Lc ⊗ P̃2.

II.
∑NL

j=1 K̃ij = −R−1B′P for i = 1, · · · , NL.

III. K̃ii = −R−1B′P + (NL − 1)R−1B′P̃2 for i =
1, · · · , NL.

IV. K̃ij = −R−1B′P̃2 for i, j = 1, · · · , NL and j 6= i.

V. K̃ = −INL
⊗R−1B′P + Lc ⊗R−1B′P̃2.

Theorem 8 along with the results stated in Corollary 9
suggest that due to special formulation of the cost function
(5) and the structure of the aggregate state-space form (2),
the large-scale LQR problem (4) under Assumption 6,7
can effectively be reduced to finding the solution of two
node-level ARE’s. This feature may be highly beneficial
for problems involving networks, the topology of which
is modeled by graph with an excessively large number of
vertices (NL).

Applying the stabilizing optimal state-feedback control
ũ = K̃x̃ to (2) results in a closed-loop matrix, which is
Hurwitz and is written as:

Acl = INL
⊗ (A1 −XP ) + Lc ⊗ (A2 +XP̃2). (18)

Due to Proposition 3 the spectrum of Acl can be decom-
posed into:

S(Acl) =

NL⋃
i=0

S
(
A1 +BK + λc,i(A2 −BK2)

)
(19)

where λc,i ∈ S(Lc).

Remark 11. From Proposition 5, the matrix A1 + BK +
αNL(A2 −BK2) is Hurwitz for α = 0 and α = 1.

In the sequel we require that:

Condition 12. The matrix A1 +BK +αNL(A2−BK2) is
Hurwitz for all α ∈ [0, 1].

Condition 12 states that all convex combinations of two
Hurwitz matrices

µĀ1 + (1− µ)Ā2 with µ ∈ [0, 1] (20)

are Hurwitz, where Ā1 = A1 + BK + NL(A2 − BK2)
and Ā2 = A1 + BK. Sufficient conditions for Hurwitz
stability of convex combination of Hurwitz matrices can
be found in Theorem 2.2 in Bia las (2004). In essence,
Condition 12 characterizes a class of LQR problems (4)
which admit of solutions for which the Condition 12 holds.
This will be used later for the design of distributed stabi-
lizing controllers. For a given selection of weighting ma-
trices (Q1, Q2, R) of the LQR problem (4), the validity of
Condition 12 can be verified by searching for a symmetric
positive definite matrix P̄ for which the following Linear
Matrix Inequality (LMI),−(Ā′1P̄ + P̄ Ā1) 0n×n 0n×n

0n×n −(Ā′2P̄ + P̄ Ā2) 0n×n
0n×n 0n×n P̄

 > 0, (21)

is feasible. Obviously, if matrix P̄ exists then premultiply-
ing and postmultiplying (21) by [

√
µIn

√
1− µIn 0n×n]′

and [
√
µIn

√
1− µIn 0n×n], respectively, for µ ∈ [0, 1]

leads to Lyapunov inequality:

(µĀ1 + (1− µ)Ā2)′P̄ + P̄ (µĀ1 + (1− µ)Ā2) < 0, (22)

which admits of a solution P̄ = P̄ ′ > 0. This demonstrates
that µĀ1 + (1 − µ)Ā2 is a Hurwitz matrix for all µ ∈
[0, 1]. Alternatively, the stability of µĀ1 + (1 − µ)Ā2 can
be examined via a simple graphical test by plotting the
eigenvalue with the maximum real part of the matrix
µĀ1 + (1− µ)Ā2 for µ ∈ [0, 1].

The following arguments are given without proof due to
lack of space. Consider now the aggregate input matrix

B̃ = INL
⊗B1 + Lc ⊗B2 (23)



where B1 ∈ Rn×m, B2 ∈ Rn×m represent input channels
corresponding to local inputs and relative input difference
ui − uj between the node i, j ∈ V with i 6= j, respectively.
In this case the state-space form at node level is written
as:

ẋi = A1xi +A2

NL∑
j=1,j 6=i

(xi − xj) +B1ui

+B2

NL∑
j=1,j 6=i

(ui − uj), x0,i = xi(0). (24)

Then solving LQR problem (4) with Ã as given in (3), B̃ as

given in (23) and weighting matrices (Q̃, R̃) as selected in

(6), results in optimal solution P̃ in (7). This has structure

as defined in Theorem 8 and Corollary 9, i.e., P̃ = INL
⊗

P − Lc ⊗ P̃2 where P is the solution to ARE (8) and

P̃2 is symmetric matrix associated with ARE (17). The

optimal state-feedback controller K̃ can then be derived
by K̃ = −R̃−1B̃′P̃ = INL

⊗K − Lc ⊗K2 with

K = −R−1B′1P, (25)

K2 = −R−1(B′1P̃2 +B′2P −NLB
′
2P̃2) (26)

where the property L2
c = NLLc (see Proposition 5) was

used. Proof of closed-loop stability of this control scheme
along with derivation of all equations will be included in
an extended work of this paper. In the sequel, we consider
multi-agent systems with dynamical couplings in their
states only.

4. DISTRIBUTED CONTROL DESIGN FOR
DYNAMICALLY COUPLED SYSTEMS

Let a network be formed of N identical and dynamically
coupled LTI systems. The couplings among the systems are
modelled by undirected graph G = (V, E) with Laplacian
matrix L. The neighborhood of the i-th system is denoted
by Ni ⊂ V. Let the dynamics at local level of the i-th
system be

ẋi = A1xi +A2

∑
j∈Ni

(xi − xj) +Bui, x0,i = xi(0) (27)

where xi ∈ Rn and ui ∈ Rm. The aggregate state-space of
the network becomes

˙̂x = Âx̂+ B̂û, x̂0 = x̂(0) (28)

where x̂ ∈ RnN , û ∈ RmN and

Â = IN ⊗A1 + L ⊗A2, B̂ = IN ⊗B. (29)

Note that the Laplacian matrix L in (29) does not nec-
essarily correspond to a complete graph in contrast to
(3) and generically the matrix Â in (29) is sparse. We
note here that the aggregate state-space forms (28) and
(2) differ in number of subsystems and the structure of
the Laplacian matrix L. We denote aggregate state-space
as in (2) when referring to centralized control problems
with NL subsystems and we use aggregate state-space
(28) when referring to distributed control problems with
N subsystems. Similarly, tilded matrices are referred to
centralized problems while hatted matrices to distributed
problems.

A stabilizing distributed controller for (28) is constructed
in the following Theorem.

Theorem 13. Consider a network of N coupled systems
with dynamics described in (27) modelled by graph GN
with Laplacian matrix LN . Let λN be the maximum
eigenvalue of LN and denote by dmax the smallest integer
which is greater than or equal to λN . Consider LQR
problem (4) for NL = dmax, define P and P̃2 via (8) and
(17), respectively, and assume Condition 12 is valid. Define

also: K = −R−1B′P , K2 = −R−1B′P̃2 and

K̂ = IN ⊗K − LN ⊗K2. (30)

Then, the closed-loop matrix

Acl = IN ⊗ (A1 +BK) + LN ⊗ (A2 −BK2) (31)

is Hurwitz.

Proof. Consider the spectrum S(Acl) = S(IN ⊗ (A1 +
BK) + LN ⊗ (A2 − BK2)). Let VN ⊗ In be state-space
transformation where VN ∈ RN×N is an orthogonal matrix
whose columns consist of the eigenvectors of LN . In the
transformed coordinates, Ācl = IN ⊗ (A1 + BK) + ΛN ⊗
(A2 − BK2) where ΛN = diag(0, λ2, · · · , λN ) with λN ≤
dmax. The spectrum of Ācl is

S(Ācl) =

N⋃
i=1

S(A1 +BK + λi(A2 −BK2)) (32)

where λi for i = 1, · · · , N are the eigenvalues of LN .
Condition 12 holds, hence (A1+BK)+αdmax(A2−BK2) is
Hurwitz for all α ∈ [0, 1]. Consequently Ācl is also Hurwitz
since λi ∈ [0, dmax] for all i = 1, · · · , N . This proves the
Theorem. 2

Remark 14. For a time-varying graph G(t) = (V, E(t))
with fixed number of vertices (N) and time-varying edges
the maximum eigenvalue of the time-varying Laplacian
matrix L(t) is bounded by 2N . Consequently, solving (4)
for NL = 2N and assuming Condition 12 holds leads to a
distributed controller K̂ which stabilizes the network for
all possible couplings among the N systems. Naturally,
this does not imply stability of switching between stable
network topologies.

4.1 Measure of suboptimality

At this point, we wish to employ a suboptimality measure
which can be cast as a performance loss index of the
distributed scheme proposed above. It is necessary so,
to define a reference performance index with which the
suboptimal scheme is compared. Such an index has been
introduced in Borrelli and Keviczky (2008) and is also
outlined here.

Let matrix Ξ ∈ RmN×nN be partitioned into N2 blocks
of dimension m × n, each referred to as (i, j)-block of Ξ
and denoted by Ξij ∈ Rm×n, with i, j = 1, · · · , N . In
particular, the (i, j)-block can be written as: Ξij = Ξ[(i−
1)m + 1 : im, (j − 1)n + 1 : jn]. The class of structured
matrices KN

n,m(G) is now defined as follows:

KN
m,n(G) = {Ξ ∈ RmN×nN | Ξij = 0m,n if (i, j) /∈ E ,

Ξij = Ξ[(i − 1)m + 1 : im, (j − 1)n + 1 : jn], i, j =
1, · · · , N}.
Consider now the following optimal control problem:



min
û

J(û, x̂0) =

∫ ∞
0

(x̂′Q̂x̂+ û′R̂û) dt (33a)

subject to: ˙̂x = Âx̂+ B̂û, x̂0 = x̂(0) (33b)

û = K̂x̂ (33c)

K̂ ∈ KN
m,n(G) (33d)

Q̂ ∈ KN
m,n(G), R̂ = IN ⊗R (33e)

where Q̂ = Q̂′ ≥ 0 and R̂ = R̂′ > 0. We note that in the
absence of constraint (33d), the optimal control problem
(33) if feasible, yields a centralized optimal control u∗ =

K∗x̂ where K∗ = −R̂−1B̂′P ∗ and P ∗ is the symmetric
positive definite solution to:

Â′P ∗ + P ∗Â− P ∗B̂R̂−1B̂′P ∗ + Q̂ = 0. (34)

Note that, since constraint (33d) is not included in the op-
timization, K∗ and P ∗ are centralized solutions, and thus,
the value x̂′0P

∗x̂0 is the minimum achievable performance
index for a given x̂0.

Assume now that constraint (33d) is in force. Then, the

distributed state-feedback controller K̂ as constructed
in (30) can be considered as a suboptimal solution to

(33) with (Â, B̂) as given in (29) and Q̂ = IN ⊗ Q1 +
LN ⊗ Q2, with LN as defined in Theorem 13. Then, a
performance index for this suboptimal distributed scheme
can be computed as

J(K̂x̂, x̂0) = x̂′0P̂ x̂0, (35)

where P̂ is the positive definite solution to the following
Lyapunov equation:

(Â+ B̂K̂)′P̂ + P̂ (Â+ B̂K̂) + (Q̂+ K̂ ′R̂K̂) = 0. (36)

Since P ∗ is optimal, J(K∗x̂, x̂0) ≤ J(K̂x̂, x̂0) for all x̂0
and thus ∆P = P̂ − P ∗ is a positive semidefinite matrix
which is equal to zero if K̂ = K∗. Any norm of ∆P can
be cast as a measure of suboptimality of the distributed
controller K̂.

5. CONCLUSIONS

Stabilizing distributed state-feedback controller for net-
works of coupled identical systems was proposed based
on a large-scale LQR optimal problem. This method has
originally been proposed in Borrelli and Keviczky (2008)
for the decoupled case and was extended here to include
couplings between the subsystems representing a multi-
agent network. An effective condition for stability is also
provided which admits of network stable operation for
a class of interconnections. The control scheme was ob-
tained by optimizing an LQR performance index with

a tuning parameter utilized to emphasize/de-emphasize
relative state difference between interconnected agents.
The assumption of identical dynamics is clearly restrictive
but simplifies the design problem considerably and leads to
the derivation of a stability condition which can be easily
tested. Attempts to eliminate or relax this assumption will
be the topic of future work. Preliminary results in this
direction can be found in Vlahakis and Halikias (2018a,b).
The control scheme has also been successfully applied to a
multi-area power grid numerous simulations for which can
be found in Vlahakis et al. (2019).
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