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Abstract

A methodology for modelling cavitating flows using a high-order Adaptive Mesh Refinement (AMR) approach
based on the Discontinuous Galerkin method (DG) is presented. The AMR implementation used features on-the-fly
adaptive mesh refinement for unstructured hybrid meshes. The specific implementation has been developed for the
resolution of complex multi-scale phenomena where high accuracy p-adaptive discretisations are combined with an
h-adaptive data structure. This approach accommodates the fine spatial resolution for the interface discontinuities and
the shock waves observed in compressible cavitating flows. The Tait equation of state is used for the modelling of
the liquid phase while an isentropic path is assumed for the liquid/vapour mixture. Second order spatial and a third
order non-oscillatory temporal discretisation are used for the integration of the mass and momentum conservation
equations, in order to resolve the flow structures responsible for the formation of cavitation bubbles and the resulting
compression waves. Assessment of the developed methodology is performed for the one-dimensional advancement
of a compressible liquid-vapour interface and the symmetric collapse of a spherical vapour bubble.

Following, results obtained with the developed multi-scale modelling AMR approach has revealed a complex
bubble collapse mechanism near a rigid wall, providing evidence of processes that have been unknown before due
to reduced resolution and dissipative nature of past simulations. The impinging jet accompanying the collapse of a
bubble near a wall, was found to induce vortical structures, which result to the formation of a secondary cavitation
of a wall-attached bubble at the vicinity of the impingement jet shear layer. At the final stages of the initial bubble
collapse, the impinging jet was found to penetrate the centre-line of the wall bubble inducing its partial collapse. This
secondary collapse results to a rich spatial structure of shock waves, interacting with the secondary bubbles. Moreover,
the calculated pressure level are found to be much higher than those reported from previous methodologies.
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1. Introduction

The high complexity of cavitating flows due to the variety of different physical phenomena (coherent structures,
liquid/vapour interface, impinging jets, and shocks) that occur in a wide range of scales, makes cavitation a typical
example of a multi-scale problem in fluid mechanics. Cavitation is observed in a variety of engineering applications
such as turbomachinery [1], fuel injectors [2, 3, 4, 5, 6, 7, 8], hydrofoils and propulsion systems [9]. It is observed
in devices which explicitly reduce the static pressure of a liquid, such as the suction section of pumps, but also it
can occur in any configuration that induces low pressure flow structures. Vortex and shear induced cavitation is
observed also in living organisms [10, 11]. Cavitation induces vibrations, noise [12] and limits the performance
characteristics of hydrodynamic machines [13]. The solid material confining cavitating flows is subject to cavitation
erosion [14] induced by bubble collapse. Besides the above mentioned unfavourable consequences of cavitation in
engineering applications, there are cases where cavitation is desirable. Droplet atomisation is enhanced by cavitation
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in injector nozzles [2, 3, 15]. Also, the erosive characteristics of collapsing bubbles are employed in surface treatment
applications [16, 17, 17].

Bubbles exhibit a unique feature by focusing the potential energy of the surrounding pressure field during their
collapse to a small scale. This is expressed by the delivery of a micro-scale transverse jet during the collapse of
bubbles near a wall [18], or the increase of the temperature of the contained gas [19]. The applicability of this
property of bubbles has been investigated by numerous studies. Specifically, the prospects of using cavitating bubbles
as a micro-scale chemical reactor is investigated in [19]. A review of novel applications of cavitating flows in the field
of bio-engineering is presented in [20]. Bubbly flows appear in vivo in living organisms [10, 11]; they are also used
for enhancing the depicting potential of ultrasound imaging [21]. The focusing characteristics of collapsing bubbles
provide a promising method in delivering micro-scale incisions for injecting macro-molecules like genes or enzymes
into cells and cellular organs [22], for thrombolysis micro-operations [23], and for targeted drug delivery [24]. The
scales of these phenomena in biological systems vary from the sub-cellular scale within the cytoplasm [10] and the
cytoplasmic membrane of a cell, up to the level of a whole tissue as in the applications of lithotripsy, histotripsy,
thrombolysis and histectomy [20]. Apart from the direct applications of cavitation in vivo, as a means of medical
treatments, recently cavitation bubbles have been exploited as a means of needle-less injection [25]. By exploiting
the energy focusing mechanism of bubbles and the resulting jetting phenomena, high velocity jets can be formed [26]
capable of penetrating skin [16] and delivering drugs or vaccines, minimizing accidental needle-stick injuries and
resulting contaminations.

During bubble collapse, the collision of opposite moving masses of the liquid results to the emission of shocks
which transverse both upstream and downstream, triggering the collapse of nearby cavities. The increased density of
the liquid contributes to the sharpening of the pressure fronts [18]. The timescales of the application of the pressure
on the confining structure, the resolution of the sharp gradients of the pressure field and the dynamic response of the
surrounding materials are crucial factors for the development of the shear and normal stresses [27] that would lead to
the rupture of soft tissue during histectomy, drug delivery and lithotripsy applications. In addition to the shocks the
interface of the liquid and gaseous phase should be also resolved. The topic of bubble–wall interaction has been a
focus of interest in literature, as it is closely tied to the understanding of erosion mechanisms; indeed, micro-jetting
is one of the speculated mechanisms of localized work-hardening, pitting and material removal [18]. A variety of
approaches have been used for the capturing of the interface, e.g. the Volume of Fluids (VoF) method, the level set
method and also the front tracking approach [28].

Previous studies on the subject involve sharp interface and interface tracking methods, such as the Marker-and-Cell
Method (MCM) [29], the Boundary Element Method (BEM) [30] and the Front-Tracking method [31]. Despite their
ability of interface representation, a common problem with such techniques is the complexity of handling rigorously
the interactions of 3-dimensional interfaces, such as e.g. merging, splitting etc, especially in multi-material configu-
rations [32, 33] and the treatment of the conservative variables of the solution. The Front Tracking approach is using
a two-dimensional surface that follows the interface; it can model three-dimensional problems and can resolve the
interface down to sub-grid levels by using an underlying Lagrangian grid over a background Eulerian mesh on which
the bulk of the flow is modelled as a hyperbolic problem. In MCM [34], instead of a Lagrangian surface, a marker flag
identification of the interface. The Boundary Element Method (BEM) [30] resolves the interface discontinuity using a
vortex method and provides fast algorithm that can capture only the essential physics of the interface interaction. Al-
ternative techniques are the interface capturing methods; these techniques sacrifice the sharp interface representation
with a volume-averaged representation, which is inherently conservative but the interface is smoothed and diffused
[35, 36, 37]. This simplifies the handling of complex interfaces (e.g. merging and splitting). Advanced techniques,
however, such as the constructed differencing schemes, can greatly limit the diffusion induced by cell-averaging. In-
dicative works involve techniques such as the Homogeneous Equilibrium Method (HEM) [38, 39], where the different
states (liquid/vapour) are represented using a complex Equations of State (EoS), or the Volume-of-Fluid [40] and the
Level-Set [41] methods. It is notable, that one of the most recent simulations involving the interaction of 15,000
bubbles with a nearby wall [42] employed interface capturing techniques to provide an unprecedented level of detail
of the bubble cloud collapse.

The present work aims to build further on interface capturing methods and more specifically on the HEM tech-
nique, to provide a stable and high-order framework, by exploiting the advantages of the Discontinuous Galerkin (DG)
such as the accommodating nature of DG to local mesh refinement (h- adaptivity), the explicit in-cell nature of the
DG discretisation that allows the arbitrary control of the order of the discretisation (p-adaptivity) and the ability to in-
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corporate an arbitrary order of accuracy of the scheme in unstructured meshes. The Finite Element (FEM) framework
[43] for the solution of PDE’s gives us two options to enhance the spatial resolution (and accuracy) of discretisation.
Firstly, this can be achieved by increasing the number of the polynomial basis functions used for the discretisation
of the field variables, resulting in an increase of the Degrees of Freedom (DoF) within the element and the order of
accuracy of the discretisation (i.e. p-type refinement) [44, 45]. Secondly, this can be achieved by local increase of
mesh resolution (i.e. h-type refinement), a strategy which is also relevant to the Finite Volume (FV) [46, 47] and
Finite Differences [48] framework. A combination of both approaches (i.e. h/p-type refinement) can also be applied
[49, 50].

DG [51, 52, 53, 54] combines high order accuracy with the ability to handle complex geometries described by
hybrid unstructured meshes. The computational efficiency of this method (alongside the spectral volume [53, 55]
and spectral difference [53, 56, 57] methods), however, is generally believed to be inferior to more commonly used
methods, such as the FD and FV [58, 59] methods. From an application point of view, the finite volume method is
known as a robust and cheap method for the discretization of conservation laws (by robust, we mean a scheme which
behaves well even for particularly difficult equations, such as nonlinear systems of hyperbolic equations and which can
easily be extended to more realistic and physical contexts than the classical academic problems). FV is cheap thanks
to short and reliable computational coding for complex problems. It may be more adequate than the finite difference
method (which requires a simple geometry). However, in some cases, it is difficult to design schemes which give
enough precision. Thus, FV remains a popular approach to descretizing the governing equations for cavitating flows,
as it has been used in numerous studies; see for example [60] for relevant detailed works, either in a pressure based
framework [4, 61], or in a density based approach [62, 27, 5, 63, 64]. Recently DG has been used for the modelling
of compressible cavitating flows, [65, 66]. In [65] and in [66] the Modified Ghost Fluid Method (MGFM) (see [67])
was used for the treatment of the interface between the liquid and vapour phases in an explosion induced cavitating
flow near a deformable wall. In the same work the Tait EoS was used for the liquid phase alongside a cutoff cavitating
model for the liquid/vapour mixture. In [68] a genuinely DG implementation of the five equation model, [69], is
presented and assessed for one-dimensional problems. In [70], DG was used for the modelling of one-dimensional
cavitating flows where filtering, MINMOD limiting on the conservative space, and the HLLC approximate Riemann
solver are employed.

In this work, a modelling approach for two phase flows which is based on the barotropic model as described in
[62] within the ForestDG multi-scale high-order modelling platform, [71] is presented. ForestDG has been based
on the modal, hierarchical polynomial basis, as described in [72] and in [73] for conforming hybrid meshes. The
ForestDG implementation of the DG method features on-the-fly Adaptive Mesh Refinement (AMR) for unstructured
hybrid meshes. The cell splitting AMR strategy results in irregular meshes with hanging nodes. Due to the in-
element explicit formulation of the fluxes, DG can handle irregular meshes with hanging nodes and non-conforming
neighbouring faces on structured grids [74, 75, 76, 49, 77]. The on-the-fly adaptation of the computational grid as
supported by the current AMR implementation is a computationally demanding procedure. In [71] it was shown that
the forest of oct-trees facilitates a quick response to changes of the grid imposing a minimal computational overhead.
This is obtained by defining the addressing, the decomposition and the connectivity relations in an explicit formulation
that is not affected by the local refinement of local branches of the forest graph.

The specific implementation has been developed for the resolution of complex multi-scale phenomena where high
accuracy p-adaptive discretisation is combined with an h-adaptive data structure. Scope of this work is to use the
ForestDG AMR platform to resolve the detailed structure of the interface of the bubbles and to resolve the shocks
and refraction waves emitted during the bubble collapse. It is expected that the fine spatial resolution will minimise
the discrepancies stemming from the resolution of the interface discontinuity [71], providing an interface capturing
approach.

The computational approach presented is essentially a diffused interface approach, which allows for non-physical
mixing states [60, 78]. To address this, an artificial isentropic/Tait EoS [62], based on the barotropic model, was
introduced and equilibrium thermodynamics were adopted [79]. In the barotropic model, the two phases are dealt in
a unified manner where the transition of the working fluid from the vapour/liquid mixture to the fully saturated liquid
phase is assumed isentropic. The pure liquid phase is assumed to be governed by the Tait equation. [80, 39, 62].
Furthermore, a MINMOD limiter for non-conforming faces, compatible to the conservative variables of the barotropic
model was developed. To model the interface discontinuity, in the two-phase flows simulated, we used the most
common approximate Riemman solvers. Namely the Lax-Friedrich, the hybrid [81] and the HLLC [82] approximate

3



Riemann solvers were developed for our implementation and where adapted in the DG framework for the general case
of non-conforming meshes. The conservativeness of the schemes used in our analyses is an inherent characteristic of
their formulation [82].

In the following section 2, the barotropic model for the modelling of compressible two-phase flows used in our
analysis is presented for reasons of completeness. The numerical approach is presented in section 3. In section 4 the
numerical implementation is assessed for one-dimensional compressible two-phase flow problems and is compared
with the non-AMR and the FV approaches. Finally, the last section presents the combination of the DG method for the
modelling of the hydrodynamic problem with the oct-tree AMR approach for resolving the flow structures, the shocks
and the interface for a near-wall bubble collapse case; this has revealed a new complex bubble collapse mechanism.

2. Governing equations

The compressible formulation of the Euler equations is used for the modelling of the working fluid. The flow
field is described by the Eulerian state vector field U(x, t) , that contains the density ρ, and the momentum vector ρu
field along the computational domain x at time t. For the general case of a viscous turbulent flow field modelled by
the Navier-Stokes equations, in the Large Eddy Simulation context, the Favre averaging operator (̃·) = ρ(·)/ρ may be
used [71] instead. The state vector U reduces to the instantaneous state vector, defined as U(x, t) = (ρ, ρu1, ρu2, ρu3),
for the fully resolved simulations presented in this work. The conservation of mass, and momentum provides the set
of the governing equations for an inviscid compressible flow field and their strong conservative form is presented as
[83]:

∂U
dt

+ ∇ · Finv (U) = S (U) , (1)

The source term S (U) accounts for the transformation of the domain to spherical coordinates or cylindrical coordinates
[82]. Finv is the 4 × 3 tensor of the inviscid fluxes, defined as:

Finv =

[
ρu j

ρuiu j + pδi, j

]
, i, j = 1 . . . 3 . (2)

The piece-wise barotropic (EoS) is used for the modelling of a liquid flow subject to cavitation as in [62, 5]. In
this approach the working fluid is considered as a compressible vapour gas-liquid system and is uniquely described
by the state vector U(x, t) = (ρ, ρu1, ρu2, ρu3). For the barotropic model used in this analysis, pressure is defined by
the EoS solely as a function of the density field. Specifically, the pressure of the working fluid is given by the Tait
EoS for densities larger than the saturation density ρsat. For densities smaller than the saturation density the working
fluid is a mixture of liquid and vapour and its pressure is provided by the second branch of the piece-wise EoS. For
the vapour/liquid mixture, the EoS is based on a local equilibrium assumption, where the mixture is following an
isentropic path. This allows the evaluation of the pressure field without the use of an energy equation. The piece-wise
state equation is then provided by the following equation:

p =

 psat + B
((

ρ
ρsat

)n
− 1

)
ρ ≥ ρsat,l

psat + C
(

1
ρsat
− 1

ρ

)
ρ < ρsat,l

, (3)

where the first branch corresponds to the Tait equation for the pure liquid phase and the second branch corresponds
to the isentropic approximation inside the saturation dome. For the Tait EoS branch in Equation (3), B is the bulk
modulus of the liquid, and the exponent n is taken equal to 7.15. In the isentropic EoS for the mixture C is a constant
characteristic of the fluid material. The pressure psat corresponds to the pressure of the liquid at the saturation point.
Also ρsat,l is the density of the liquid at the saturation point. The speed of sound for the liquid/vapour system, is
provided by the square root of first derivative of the EoS in relation to the density

√
dp/dρ and exhibits a discontinuity

at ρsat:

c(ρ) =


√

Bn ρn−1

ρn
sat,l

ρ ≥ ρsat,l√
C
ρ2 ρ < ρsat

(4)

The working liquid for the simulations presented here is assumed to be water characterised by the set of parameters
presented in Table 1.
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Fluid B (Pa) n ρsat,l (kg/m3) C (Pa · kg/m3) psat (Pa)
Water 293.5 · 106 7.15 998.2 1450 2339

Table 1: Properties of the EoS for working fluids presented in our analyses.

3. Discretisation

The computational domain Ω is discretised into N unstructured elements Em (Ω = ∪Em). A weak formulation
of the governing equations is obtained by multiplying the conservative formulation with a test function w (x) and
integrating them over the element. In the Galerkin context, the test function is taken from the same set of polynomial
basis functions as used for the interpolation of the state vector U. The interpolated distribution Um

h for U is defined as
the weighted sum of Np polynomial basis functions:

Um
h =

Np∑
i=1

cm
i (t)bi(x) , for m = 1,Np , (5)

where p is the maximum degree of the basis functions. In this expansion, the coefficients ci(t) constitute the
degrees of freedom of the solution and bi(x) is the tensor product of the Legendre polynomial basis functions in the
three spatial dimensions. The integral formulation of the governing Equations (1) is expressed as:

∫
Em

bi
∂Um

h

∂t
dE +

∮
S m

biFinv
(
Xm

h

)
· ndS −

∫
Em

∇bi · Finv
(
Xm

h

)
dE =

∫
Em

biwm
d dE for i = 1,Np, m = 1,N , (6)

providing a set of Np × N equations for cm
i (t).

The volume and surface integrals in Equation (6) are defined in the physical space. The integrals are evaluated
in the transformed domain for the computational space elements using the Gauss-Legendre quadrature rule and the
Jacobian of the transformation [43] of the physical coordinates (x)Em for each element of the discretisation Em to the
computational space Ωm of the FEM element.

The surface integrals are defined on the surface of the element S m = ∂Em and are calculated in the computational
space, with n defined as the outward normal unit vector. The continuity of the interpolated variables across the element
faces is not required in the DG context, thus, the values of the approximations on each side of the face S m, Um(−)

h and
Um(+)

h are doubly defined. The flux at the boundaries of the elements is a function of Um(−)
h and Um(+)

h and they are the
same for the adjoin elements of each face, thus, ensuring the conservativeness of the discretisation scheme. For the
Local Lax-Friedrichs (LLF) scheme, the inviscid fluxes Finv are evaluated from the mean value of the variables on the
two face sides

{
Um

h

}
, where an artificial diffusion term, proportional to the jump of the fluxes on the bounding surface

[[Um
h ]], is introduced via the equation:

Finv = Finv

({
Um

h

})
+
λi

2
[[Um

h ]] , (7)

where, in the LLF scheme, λi = max
(
|F′inv(Ui)|

)
is the maximum absolute eigenvalue of the inviscid flux at the specific

position of the interface (local). For the standard Lax-Friedrichs (LF) scheme, the global maximum of the absolute
eigenvalue in the whole domain is used instead.

In addition to the LF and the LLF schemes, the hybrid [81] and the HLLC [82] schemes have been implemented
for a simple one-dimensional realisation (RKDG) of the discontinuous Galerkin method, which was used for the
derivation of the test case simulations presented in the next section. The time-advancement for both the 3D AMR and
the 1D RKDG implementations is based on an non-oscillatory 3rd order RK algorithm, [84]. Special care however is
needed when dealing with non-conforming meshes. Since the fluxes are eventually projected to a different basis, their
distribution across the faces is not identical [85, 49]. According to [49], the level of error in the total mass conservation
remains at the levels of the discretisation error, as in the standard conforming cases. Calculating the fluxes from one
of the two sides for the adjoin elements guarantees the conservation properties of the schemes [71].
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Case Configuration Fluid ρhigh ρlow phigh plow uhigh ulow

CaseA Shock tube Water 1000 kg/m3 0.998 kg/m3 38.1 bar 887.8 Pa 0 0.3csat,l
CaseB Symmetric bubble Water 998.246 kg/m3 8.851kg/m3 1.0 bar 2176.7 Pa 0 0
CaseC Near wall bubble Water 1002.89 kg/m3 49.41kg/m3 100.0 bar 2311.5 Pa 0 0

Table 2: Operating conditions for the simulations presented. The subscript high/low corresponds to the left and right values (L,R) for the ini-
tialisation of the shock tube problem. For the bubble collapse cases the subscripts high/low correspond to the values outside and inside of the
bubble.

The FV results presented in this work are based on the implementation of [62]. In this implementation the HLLC
scheme, [82], is used for the evaluation of Finv, while a MINMOD slope limiter is used for the interpolation of the
conservative variables at the cell faces. In the current DG implementation, the capturing of the different length-
scales of the vapour-liquid interface, the flow vortical structure and the resulting compression waves are resolved
using the h/p-refinement characteristics of the ForestDG implementation described in [71]. This approach results
in non-conformal faces between the neighbouring adapted elements. The evaluation of the fluxes across the non-
conformalities is addressed by ensuring the conservativeness of the discretisation as described in [49]. The on-the-fly
AMR implementation used, allows for the continuous refinement and coarsening of the grid. Thus, it presents shock
capturing characteristics and enhances the resolution of the interface discontinuities. It proves to be a powerful tool
for modelling the complex mechanism of bubble growth due to coherent vortical structures in the flow, the volatile
topology of the bubble interface during bubble collapse and the capturing of the pressure wave fronts generated. A
limiting approach, however, is still necessary to detect and smooth sharp gradients by limiting the local gradients
ensuring the monotonicity of the solution. For this, a MINMOD limiting approach in the space of the conservative
variables is used [70].

4. Results

In this section the numerical results for the implementation of the DG methodology of the barotropic model are
presented. The model presented is used for the simulation of the bubble collapse problem (CaseC) at different dis-
tances near a solid wall. Initially, the approach is validated against the analytical solutions for simple one-dimensional
test case, (CaseA and CaseB), and against results inferred from FV simulations. The details of the cases simulated are
summarised in Table 2.

4.1. Test Cases
The approach suggested in the previous sections is assessed against the analytic solution for the one-dimensional

shock tube problem (CaseA) and for the numerical integration of the Rayleigh-Plesset (R-P) equation describing the
collapse of a vapour bubble (CaseB).

4.1.1. One-dimensional shock tube problem
For CaseA, a liquid-vapour interface for water in an one dimensional configuration is simultated. The material

constants B and n for the EoS 3 of water, are taken equal to B = 293.526643 ·106Pa and n = 7.15. The saturation speed
of sound is C = 1450.0m/s, and the saturation density of the liquid phase is ρsat = ρl,sat = 998.2kg/s as presented
in Table 1. The domain extends along the x-axis from x = −L/2 to x = L/2. The initialisation of the problems the
domain is separated into a left (L) region in the interval [−L/2, 0] and a right (R) region in the interval [0, L/2]. The
length of the computational domain is L = 40.0m. The one-dimensional domain has been discretised with N = 1000
p1 elements. The left domain L is initialised with liquid water at a density ρL = 1000kg/m3 which is considered
quiescent, i.e. UL = 0m/s, and for the right side [0, L/2] we assume a vapour/liquid mixture with ρR = 0.001ρsat,l

moving at a speed of UL = 0.3c.
The distribution of the non-dimensional velocity is shown in the Figure 1(Left) at t = 0.01sec. In this figure the

results of the one-dimensional implementation RKDG for the barotropic model are shown, using different approximate
Riemann solvers; these are identifiable by the coloured lines in the diagram. More specifically, the result for the LF,
the LLF, the hybrid scheme with α = 10 and with α = 100 and finally the result from the HLLC scheme are presented.
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In the same figure the FV solution with the HLLC scheme represented with dots and the exact solution of the Riemann
problem represented by the thin black line are shown. The FV result has been obtained using the same number of
cells as for the DG solution (i.e. N = 1000). The flow presents two shock waves i.e. the L and the R and the interface
between the liquid phase and the vapour. At the instance presented in the Figure 1(Left) the L wave is located at
x ∼ −17.5m and the R wave is located near x ∼ 5.5m, the interface has propagated by ∼ 0.02m to the right.

By comparing the numerical solutions obtained with FV and DG to the exact solution it can be seen that apart
from the LF approach, all methods provide a satisfactory solution to the problem, capturing the discontinuities both
at the shocks and on the interface. The HLLC scheme provides the sharpest capturing of the interface both for the FV
and the DG implementation. For the L and R shocks, however, the LLF and the hybrid solvers provide similar result.
For the L and R shocks the FV approach seems to lag compared to the DG implementations. Compared to the LLF
approximate solver, the HLLC presents an overshoot for the velocity solution in the interval [0, 5m].

In Figure 2(Left) the L2 error for the velocity u is presented, inferred from the solution of CaseA at time t =

0.01s, as a function of the mesh resolution. The results were obtained for four different mesh sizes using N =

250, 500, 1000 and 2000 elements. The error analysis was carried out for the different discretisation schemes used
in the DG implementation, (i.e., the LF, LLF, hybrid and HLLC schemes). The error is calculated along the interval
x ∈ [1, 4] as the volume average of the square of divergence of the solution against the analytical value φexact, as:

L2(φ) =

√√√
1

VΩ

N∑
m=1

∫
Em

(φ − φexact)2 dV . (8)

The limited averaging interval x ∈ [1, 4] allowed the exception of the interface discontinuity, which is affected by the
MINMOD limiter. Except for the highly diffusive LF scheme, all other discretisation schemes present a second order
behaviour. The HLLC scheme outer performs the LLF and the Hybrid schemes, resulting to the smallest absolute
error. The divergence of the HLLC from the second order curve can be attributed to the contribution of the temporal
error of the solver and the unbounded behaviour of the HLLC.

4.1.2. Symmetric bubble collapse
The classic Rayleigh-Plesset symmetric bubble collapse problem [18, 86, 62] is investigated in this paragraph. A

spherical cavity consisting of vapour/water mixture is assumed within saturated water at a high pressure. Because of
the higher pressure of the surrounding fluid the bubble collapses. The collapse time T [18] for a bubble with radius
R0 = L0, assuming incompressibility for the liquid phase, is provided by the Rayleigh equation:

Ṙ = −

√
2
3

p∞ − pv

ρ

R3
0

R3 − 1
, T = 0.915R0

√
ρ

p∞ − pv
, (9)

where p∞ is the pressure of the surrounding liquid, pv is the pressure and ρ is the density of the liquid. For
the symmetric collapse (CaseB) T = 0.09251L0 m/sec or T = 134.1L0/csat,l. The problem is solved with the one-
dimensional RKDG implementation by integrating the momentum transfer Equation (1); the spherical symmetry of
the problem is accounted by the source term S . In Figure 1(Right) the temporal evolution of the bubble radius is
presented, as inferred from the barotropic model implementation, for four different discretisation schemes compared
with the integration of the Equation (9). As it can be inferred by the Figure 2, the LLF the hybrid and the HLLC
solvers predict the same result which is close to the theoretical result inferred by the Equation (9).

4.2. Near wall bubble collapse

In this section the numerical simulation of the water vapour bubble collapse is presented; the bubble is placed at
different distances from the rigid walll [62, 86, 41] (CaseC). The details of these simulations are shown in Table 2
and the problem setup is outlined in Figure 3 (Left). For the case shown in Figure 3, a low pressure vapour spherical
cavity is assumed, with radius R = 0.4mm, located 16µm off the wall. The distance of the sphere centre to the wall
is d = δ + R0 = 416µm. For CaseC, three more wall distances are considered with d = 600µm, d = 140µm and
d = −140µm, respectively. These cases have been also presented in [41] and in [62].
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Figure 1: Distribution of non-dimensional velocity, for the shock tube problem CaseA at t = 0.01s. The same diagram focused in the area of the
interface is shown in the inlet.
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Figure 2: Left: L2 error versus the normalised mesh resolution for the LLF the hybrid and the HLLC schemes for the shock tube problem CaseA.
Right: Temporal evolution of the position of the bubble interface for the symmetrical bubble collapse problem CaseB, comparison with the
Rayleigh collapse curve.

For all cases, the bubble radius is R0 = 400µm and the surrounding liquid is at a pressure Pout = 100bar, which cor-
responds to a density of 1002.89kg/m3 according to the EoS (3). The working fluid within the bubble is a vapour/liquid
mixture below the saturation pressure (psat = 0.02340bar). For the simulations to be presented here, the pressure in-
side the cavity is pin = 0.02311bar, which corresponds to a density ρin = 49.91kg/m3, or 0.05ρsat,l. For the near wall
bubble collapse (CaseC) the characteristic time is T = 3.657µsec or T = 5.3162L0/csat,l. The mesh is essentially
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unstructured and consists of prismatic and hexahedral elements.
The initialisation of the density field is shown in the Figure 3(Middle) The computational domain is discretised

by a three-dimensional mesh with 40 cells within the bubble diameter and forms a wedge of 2o shown in the Figure
3(Right). The LLF scheme is used for the evaluation of the fluxes and p1 polynomials are used for the interpolation of
the conserved variables within the element. This results to second order accurate scheme. The current implementation
allows for p-refinement alongside the spatial h-adaptation of the computational grid. The effect of the local order
refinement is presented in the Appendix.

Rd=400 µm

δ=16 µm

ρ = 0.05ρsat,l

p = 100bar

Induced

Main bubble

bubble

d

D

Figure 3: Left: Initialisation CaseC. Middle: Formation of a circular vapour film attached to the confining wall at the very initial stages of the near
wall bubble collapse simulation (t/T = 0.9766, Rd/D ∼ 0.5). Right: Computational mesh used for the case CaseC. Inlets show the dynamic local
refinement in the vicinity of flow structures, i.e. the interface and the pressure fronts for the initial stages of the bubble collapse. The colour map
represents the density gradient which is used as a criterion for the h-refinement

4.2.1. FV/DG/AMR study cases.
To compare the results inferred from the DG methodology to previous FV implementations, the near wall bubble

collapse simulation of CaseC was simulated with both approaches using the same mesh resolution of ∆ = 5µm. The
DG simulation was repeated with an AMR configuration using a baseline resolution ∆ = 20µm refined to ∆ = 5µm on
the bubble interface. The result for the FV, the DG (non-AMR), and the AMR DG simulation for the bubble collapse
case is presented by the three density fields shown in the Figure 4 at t/T = 1.0938 (t=4 µsec). Although, both DG
approaches deliver a similar result, it can be observed that in the FV simulation presents a temporal lag by a fraction
of a microsecond compared to the DG result, Also, the interface between the liquid and the gaseous phase is thicker
( 3-4 cells) than in the case of the DG simulations ( 2-3 cells). The diffusive character of the FV discretisation is also
evident in the 1D results presented in the section 4.1.

4.2.2. AMR computational cost.
Focusing the mesh resolution in the interface of the bubble, results in a significant reduction of the mesh size, (see

Figure 4), while the final result is not significantly affected by the low resolution of the surrounding flow. For the
AMR case presented in the Figure 4(Right) the mesh is refined to three levels only at the interface area resulting to
a total number of ∼ 11.840 p1 elements at t/T = 1.0938. For the non-AMR case, the hexahedral part of the domain
is uniformly refined down to three levels resulting to a constant mesh size of ∼ 48.825 elements. In the Table 3 the
computational cost break-down for the AMR and non-AMR implementations is presented. Depending on the stage
of the bubble collapse two different AMR strategies have been followed: a) adaptation of the grid every 10 iterations
or b) adaptation every 100 iterations. The latter was found to be adequate for the capturing of the change of the
topology of the flow features (i.e. the interface and the pressure waves). For each case, the computational cost is
expressed in terms of CPU time per processor. In addition to the CPU spend for communication, which is applicable
to both AMR and non-AMR configurations, the CPU time spent for the mesh adaptation, the re-partitioning of the
domain decomposition, and the reallocation of new leaves of the oct-tree forest is presented as a percentage of the
total computational time.
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Figure 4: Non-dimensional density field ρ/ρsat,l for the case CaseC with d = 412µm with ∆xmin = 0.5µm Left: FV result at t/T = 1.0938. Middle:
DG result with no AMR t/T = 1.0938. Right: DG result with three levels of AMR at t/T = 1.0938.

AMR Re-Partitioning CPU Time per Communication Adaptation Re-Partitioning Memory
period period Iteration (sec) (%) (%) (%) reallocation (%)

N/A N/A 0.797 sec 0.5107 (%) – – –
100 Iter. 1000 Iter. 0.242 sec 0.6364 (%) 4.587 (%) 0.2578 (%) 0.02169 (%)

10 Iter. 100 Iter. 0.253 sec 0.6008 (%) 4.822 (%) 2.043 (%) 0.1427 (%)

Table 3: Comparison of the computational cost of the AMR approach with maximum resolution ∆xmin = 5µm for CaseC against a non-AMR with
a uniform ∆xmin = 5µm. For the two AMR approaches presented here, the mesh is refined every 10 and every 100 iterations.

The evolution of the computational cost break-down is depicted in the graphs shown in the Figure 5 for a period
of ten AMR cycles. It can be observed that the overhead cost is not affected by the frequency of the mesh adaptation.
This can be explained as the number of new elements created is related to the evolution of the flow field rather than the
frequency of the adaptation. Thus, if the frequency is high, fewer cells will be created per iteration, but at the end of
the simulation the same number of cells will be created eventually. On the other hand, repartitioning involves a large
scale exchange of information across all partitions and is related to the total number of cells rather than the number
of cells created. This part of the AMR overhead is growing with the AMR frequency. To address this issue, the mesh
is repartitioned only when the decomposition imbalance exceeds certain criteria. The memory allocation cost is also
increasing with the frequency of the AMR since it is mainly a part of the re-partitioning process. A small percentage
of this cost is however related to new leaves created.

4.2.3. Near wall bubble collapse using DG method and AMR interface capturing.
Here, we present the results of the DG simulation where AMR is used as means of interface capturing. During

the simulation the mesh is refined, depending on the density gradient magnitude, reaching to up to four levels at the
vapour liquid interface, which corresponds to a mesh size ∆ = 1.25µm; this is shown in Figure 3(Right). In areas
of high vorticity the mesh is also refined up to three levels (∆ = 2.5µm). In addition to the four configurations of
CaseC, the simulation with d = δ + R0 = 416µm is repeated for a more refined configuration up to five levels with
∆ = 0.625µm, in order to investigate the effect of the interface resolution on the bubble collapse mechanism.

The density distribution before the collapse of the bubble for each one of the different initialisations of CaseC
is presented in Figure 6. In Figure 7 the pressure distribution after the bubble collapse for the four initialisations is
presented. For d = −140µm in Figure 6(a) the bubble is initially attached on the wall and collapses radially towards
the centreline. This results to the pressure field shown in Figure 7(a), where a shock is emitted from the centreline
when the fronts of the collapsing bubble meet. For the d = 140µm initialisation, shown in Figure 6(b), an impinging
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Figure 5: Evolution of the computational cost expressed in CPU time per process. Squares correspond to the total CPU time, circles correspond to
inter-partition communication time, triagles correspond to the CPU time spend for the refinement of the mesh reverse triangles correspond to the
AMR CPU time spend for decomposing the new cells and repartitioning the computational mesh. Finally rhombuses correspond to the time spend
for the allocation and deallocation of new leafs in the computational graph during AMR and repartitioning. Left: CaseC with mesh adaptation
every 10 iterations and re-partitioning every 100 iterations. Right: CaseC with mesh adaptation every 100 iterations and re-partitioning every 1000
iterations.

jet along the axial direction is formed, which results in the formation of a toroidal bubble before its final collapse.
After its collapse, two distinct shock waves are observed, one that corresponds to the impingement of the jet on the
wall and a second one which is the result of the collapse of the toroidal bubble, as shown in the Figure 7(b). For a
bubble with d = 416µm, a more complex topology is observed (see Figure 6(b)), where an impingement jet is formed
at the top of the bubble; at the same time, the secondary bubble which is attached on the wall as shown in the Figure
3(Middle), is collapsing in the same fashion as the d = −140µm bubble (i.e. the bubble is collapsing on the radial
direction). In this configuration the bubble collapses partially while secondary bubbles are formed at the shear layer of
the impinging jet. This results in a complex shock structure, revealed by the pressure field shown in Figure 7(c). The
d = −600µm configuration exhibits a less pronounced impiging jet (see Figure 6(d)), resulting to a spherical shock
before its impact on the wall (see Figure 7(d)).

(a) (b) (c) (d)

d = −140µm d = 140µm d = 416µm d = 600µm

Figure 6: Non-dimensional density field ρ/ρsat,l before the collapse of the bubble for the cases CaseC with different inital distance from the wall.
(a): δ = −140µm. (b): δ = 140µm. (c): δ = 416µm. (d): δ = 600µm. For the first two simulations the bubble is initially attached to the wall.

The temporal evolution of the maximum pressure induced on the wall for all four configurations is shown in Figure
8(Left). The prevailing trend is that the further the bubble is located the more time it needs to impact the wall with
a smaller maximum wall pressure. The configuration with d = 416µm, however, exhibits a large maximum pressure
and also collapses later than the d = 600µm case. This can be attributed to the induced bubble on the wall and also
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(a) (b) (c) (d)

d = −140µm d = 140µm d = 416µm d = 600µm

Figure 7: Pressure field ρ/ρsat,l after the collapse of the bubble for the cases CaseC with different inital distance from the wall. (a): d = −140µm.
(b): d = 140µm. (c): d = 416µm. (d): d = 600µm. For the first two simulations the bubble is initially attached to the wall.

to its delayed collapse due to the interference of the wall. This configuration presents a complex collapse mechanism
and will be discussed in detail in the next paragraphs. In the same Figure 8(Left) the maximum pressure evolution for
the fine grid simulation is presented, where the bubble interface is refined up to ∆ = 0.625µm. The maximum pressure
evolution for both the fine and coarse configurations are close. As expected, the finer resolution simulation results
to a higher instantaneous maximum pressure. In Figure 8(Right) the density distribution from the two simulations is
presented during the last stages of the bubble collapse, where the impingement jet penetrates the bubble. Although
the shape of the bubble is not identical in both configurations, the phenomenon is qualitatively similar for both the
coarser and the fine resolutions of the interface at this scale which is one order of magnitude smaller than the radius
of the initial bubble.
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Figure 8: Left: Temporal evolution of the maximum wall pressure for the diferent configurations CaseC. Violet line: d = 600µm. Green line:
d = 416µm (coarse resolution ∆ = 0.625µm). Blue line: d = 416µm (fine resolution ∆ = 0.625µm). Red line: d = 140µm. Orange line:
d = −140µm. Right: Comparison of the density distribution for the two cases of CaseC with (a): ∆ = 1.25µm and (b): ∆ = 0.625µm during the
impingement jet penetration stage.

Figure 3(Middle) corresponds to the very initial stages of the simulation t = 0.09766T for CaseC, δ = 16µm.
At this stage, as expected from the R-P solution for the symmetric bubble collapse (see Figure 2) the radius of the
spherical cavity is almost the same with the initial radius R0. At this point, a film of vapour is developing on the
wall, which is induced by the refraction wave of the collapsing bubble and is not attached to the main cavity. This
vapour film forms a meniscus shaped bubble on the projection of the main bubble to the wall. The formation of a
vapour film for bubbles very close to the wall has also been observed by the author’s team in [81]. The evolution of
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non-dimensional density field ρ/ρsat,l at later stages is shown in the Figures 9(a-d). From this sequence of images,
it can be observed that the induced bubble remains attached to the wall and follows a collapse pattern similar to the
one described by [41], were the radial collapse prevails contracting the radius of the bubble allong the direction of the
wall. The main bubble remains detached from the wall throughout the simulation.

In addition to the wall-attached bubble secondary bubbles are also formed at the shear layer of the impinging jet.
In Figure 9(a) the formation of the jet along the centre-line of the flow field is observed. At the shear layer secondary
bubbles are formed due to the vortical structures arising during the collapse. At the instance shown in the Figure 9(b)
the initiation of the bubble breakdown is observed, which is starting from two positions. The first position is located
on the centre-line where the impinging jet penetrates the main bubble and impacts with the liquid phase between the
primary and the wall bubble; this results to an increase of the density. The second point is located at the periphery of
the main bubble, as also indicated by the increased density region at y ∼ 0.1. The shock waves emitted at these two
positions propagate along the remainign main bubble inducing the collapse of the secondary bubbles too (see Figure
9(c). The collapse of the bubble has been complete by t/T = 1.48, as seen in the Figure 9(d).

The sequence of the impacts of the resulting shock waves onto the wall, can be seen in the Figures 10 and 11.
In the Figures 10(a-d) and Figures 11(a-d) the pressure field (in GPa) and the magnitude of the density gradient are
presented, respectively. The evolution of the maximum pressure on the wall is shown in the Figures 12(Left) and
(Middle). In the Figure 12(Middle) the instances where the shocks reach the solid wall, resulting to pressure maxima
are highlighted. The distribution of the pressure field for these instances is shown in Figure 12(Right).
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(a) (b) (c) (d)

Figure 9: Four consecutive instances of the non-dimensional density field ρ/ρsat,l for the case CaseC. At t = 1.1126T an impinging jet has formed
at the top of the bubble. The vortical structures at the shear layer of the jet induce the cavitation of the liquid phase creating secondary bubbles.
The bubble attached to the wall has formed from the initial stages of the collapse. The jet penetrates the bottom of the bubble at t = 1.1371T . The
induced shocks cause the collapse of the periphery of the bubble at t = 1.1430T and the wall attached bubble at t = 1.1471T .

(a) (b) (c) (d)

Figure 10: Four consecutive instances of the pressure distribution for the case CaseC. At t = 1.1464T the initial pressure front has reached the wall,
has reflected and it is accelerating the collapse of the bubble attached to the wall. At t = 1.1477T the shock reflects at the center-line providing the
maximum wall pressure for the simulation. At t = 1.1519T the shock from the collapse of the bubble periphery reaches the wall and at t = 1.1526T
it reflects at the center-line.

(a) (b) (c) (d)

Figure 11: Magnitude of the pressure gradient for the time instances t = 1.1464T ,t = 1.1477T , t = 1.1519T , t = 1.1526T which correspond to the
maxima of the wall pressure evolution during the bubble collapse. For each instance the computational grid is shown. The grid is refined in the
vicinity of the shocks and at the areas of high vorticity.
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The first pressure maxima at t/T = 1.14528 can be observed in Figures 9(c-d), where the shock emitted during
the penetration of the bubble reaches the wall. In Figure (10a) it can be seen that this wave initiates the collapse of the
wall-attached bubble at t/T = 1.14640 resulting to a pressure of 2GPa. The reflection of this shock to the centre-line
result to the absolute maxima for this simulation at t/T = 1.14772, as shown by the light blue curve in the Figure
12(Right). The pressure field at this instance is shown in the Figure 10(b). In the density gradient distribution shown
in Figure 11(b) two circular shock waves generated by the collapse of the last remaining secondary bubbles can be
observed. These shocks reach the wall at t/T = 1.15226 and t/T = 1.15715 resulting to the fourth and sixth maxima
in the diagram 12(Middle). The fifth maxima is the result of the reflection of the forth shock on the centre-line inferred
by the peak of the yellow curve for t/T = 1.5264 at x = 0 in the Figure 12(Right).
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Figure 12: Left: Temporal evolution of the maximum wall pressure for the case CaseC with d = 416µm. The maximum pressure on the wall
identifies the impingement of the collapsing bubble jet on the wall which initiates at t = 1.14T and results to a maximum pressure above 20GPa.
The last peak at t = 1.5T corresponds to the breakup of the toroidal bubble created after the completion of the collapse and the impingement of
the jet. Lines: DG-AMR simulation. Dots: FV result. The vertical red lines signify the time interval of the jet impingement to the wall i.e. from
t/T = 1.14 up to t/T = 1.16. Middle: The same result but for the time period of the bubble collapse. The bubble collapse results to six distinct
maxima signified with the coloured vertical lines. Right: The spatial distribution of the pressure for the instances shown in the figure (12)Middle.

Initially, a thin circular vapour layer is formed at the projection of the primary bubble on the wall. This vapour
layer organises to an attached meniscus shaped bubble which follows a collapse pattern similar to the attached bubble
collapse mechanism shown in [41] and [62]. The importance of this induced bubble is based on the fact that the
collapse of this bubble provides the maximum wall pressure value observed in the simulation.

Using the refinement capabilities of the presented implementation, it can be observed that the main bubble does not
connect to the wall-attached bubble throughout the simulation. It does collapses after the initiation of the main bubble
collapse due to shocks emitted by the collapse of the main bubble. The main bubble presents a collapse mechanism
similar to the result of [41], where a more advanced thermodynamic model is used instead. More specifically, the
main bubble collapses partially, starting from the centre-line, where the impingement jet has its maximum intensity.
During the penetration of the bubble by the impingement jet vortical structures that rise at the shear layer of jet.
These vortical structures result to the formation of secondary bubbles at the shear layer of the impingement jet. These
secondary bubbles collapse later due to their interaction with the shocks emitted from the collapse of the bubble on the
centre-line. The observed partial collapse mechanism is characterised by collapsing interfaces at multiple localities
and results to a rich structure of interacting shocks. The shocks deliver a series of consecutive blows to the confining
wall. These high-pressure impacts present intense spatial gradients which are expected to induce increased shear
stresses to the material of the wall.
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4.2.4. Comparisson of AMR-DG results with FV and DG.
In this section, the numerical implementation was assessed for one-dimensional compressible two-phase flow

problems by means of error analysis for the the different approximate Riemann solvers implemented. The suggested
numerical approach is compared to the results obtained by the FV methodology and the computational efficiency
of the AMR implementation for the capturing of the interface discontinuity is studied. A combined h/p-adaptive
approach for the resolution of the impingment jet wake, is presented in the Appendix. The collapse mechanism for
a vapour bubble near a wall using a fine resolution up to ∆ = 0.625µm revealed a rich shock wave structure and
a detailed pressure field on the wall surface. The solution is characterised by steep spatial gradients and an abrupt
surface loading in time. Specifically, this collapse mechanism is characterised a) by the formation of a pronounced
bubble attached to the wall, b) the partial collapse mechanism of the main bubble and c) by the creation of secondary
bubbles at the wake of the impinging jet induced by the bubble collapse. Also, the levels of the wall pressure induced
were found to be one order of magnitude greater to that obtained with the FV methodology, while The collapse takes
place in a time interval of 0.01T which corresponds to 36nsec for the (CaseC).

Comparing the density fields shown in the Figures 4 and 6, it can be inferred that the shear layer instability
responsible for the secondary bubbles is not observed in low mesh resolutions. Also, the complex sructure of the
bubble just before its collapse is less evident in the coarse simulations shown in the Figure A.13. This physical
mechanism is observed when the liquid/vapour interface is resolved at a very high resolution (∆x = 1250nm) and
(625nm). Such levels of mesh resolution can only be obtained with an on-the-fly AMR approach, since both the
number of cells and the time-step would be computationally prohibitive. Additionally, the high order of the DG
discretisation results to a thinner interface in relation to the FV method.

5. Conclusion

The present work aimed to build further on interface capturing methods and more specifically on the Homogeneous
Equilibrium Method (HEM). The suggested approach provides a stable and high-order framework, by exploiting
the advantages of the Finite Element Method (FEM) and the Discontinuous Galerkin (DG) approach, such as h-
/p- adaptivity. Rigorous assessment of the developed methodology is performed through a series of test cases of
compressible two-phase flows where different approximate Riemann solvers are used and compared with the FV
implementation. The low dissipative nature of the high-order discretisation for the integration of the conservative
equations revealed the detailed coherent structures that emerge during collapse, although a simple piece-wise EoS is
employed. Specifically, the vortical structures emerging from the shear layer of the impingement jet were identified.
The increased vorticity results to the formation of secondary bubbles which play a significant role in the subsequent
structure of the pressure field after the collapse. The rich shock structure emerging by the collapse mechanism affects
the distribution of the pressure gradients on the wall and are responsible for the shear strain on the confining solid
structure. In addition to the complex collapse mechanism revealed by the combination of a high order method with
the AMR resolution of the vortical structures, the AMR allowed for the capturing of the interface discontinuity by
employing elements with resolution levels of 1.25µm down to 0.625µm. The mesh independence study shows to
similar qualitative and quantitative results with the exception of the maximum wall pressure which is increased for
the finer resolution simulations. The suggested methodology within the ForestDG framework allows for high order
capturing of the resulting coherent structures, a feature which is necessary for the investigation of vortex and shear
induced cavitation. Furthermore, it was shown that the AMR framework allows the detailed resolution of the interface
and the impingement jet shear layer without imposing a prohibitive computational cost for complex geometries that
employ hybrid unstructured computational grids.

Appendix A. P-adaptivity for two-phase simulations on h-adapted meshes

In this section the details of the implementation of p-adaptivity for the h-adapted two-phase simulations are pre-
sented. Although this work is focused in presenting an interface capturing approach based on the increased resolution
offered by the AMR h-refinement methodology, in this section the p-refinement functionality of the hp-adaptive DG
implementation is demonstrated. It was shown previously that the most important features of the bubble collapse
flow field arise during the partial collapse of the bubble, where the kinetic energy of the liquid phase is transformed
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to dynamic energy identified by high values of pressure. The shape of the bubble collapse, however, is affected by
vortical structures arising at the wake of the collapsing bubble. These vorticial structures deflect the surface of the
liquid/vapour interface, thus influencing the sequence of events during collapse. In the figure A.13, we present a
comparison of the density fields at time t = 1.1390T between the coarsely resolved h-adaptive test case shown in
Figure 4(Left) and an h/p-refined simulation of the same problem. The h-refinement strategy is the same for both
simulations while in the hp-adaptive case the elements with high values of vorticity are automatically interpolated
with p2 elements, which result to third order local accuracy. Limited cells are reduced to p1 elements since all p2
terms are set to zero. The p3 elements are described by 27-uknown basis coefficients and the integration is achieved
over 27 quadrature points (for p1 elements we have 8 unknows and 8 quadrature points). It should be noted here that
both the interface and the shear layer of the impinging jet is much less resolved than the highly resolved result shown
in the Figure 8 (Right).

Figure A.13: Non-dimensional density field ρ/ρsat,l for the case CaseC with d = 412µm with ∆xmin = 0.5µ m Left: Discontinuus Galerkin
result with hp refinement at AMR t/T = 1.1390. The black dots represent the positions of the quadrature points. Two levels of p-refinement are
considered. The first level with four quadrature points results to second order accurate discretisation. The second level with nine quadrature points
on two dimensions (27-qouadrature points in three-dimensions) results to a third order accurate discretisation. Right: Discontinuus Galerkin result
with h-refinement only and uniform p1 interpolation at the same instance t/T = 1.1374.
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