
This is the published version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/24104/

Link to published version: http://dx.doi.org/10.1016/j.ecoenv.2020.110601

Copyright and reuse: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to.
Do arsenic levels in rice pose a health risk to the UK population?

Manoj Menon, Binoy Sarkar, Joseph Hufton, Christian Reynolds, Saul Vazquez Reina, Scott Young

Department of Geography, University of Sheffield, Sheffield, S102TN, United Kingdom

Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S102TN, United Kingdom

School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RF, United Kingdom

ARTICLE INFO

Keywords:
Total arsenic
Arsenic speciation
Lifetime cancer risk
Rice consumption
Target hazard quotient
Margin of exposure

ABSTRACT

Consumption of rice and rice products can be a significant exposure pathway to inorganic arsenic (iAs), which is a group 1 carcinogen to humans. The UK follows the current European Commission regulations so that iAs concentrations must be < 0.20 mg kg\(^{-1}\) in white (polished) rice and < 0.25 mg kg\(^{-1}\) in brown (unpolished) rice. However, iAs concentration in rice used for infant food production or direct consumption has been set at a maximum of 0.1 mg kg\(^{-1}\). In this context, this study aimed to evaluate iAs concentrations in different types of rice sold in the UK and to quantify the health risks to the UK population. Here, we evaluated 55 different types of rice purchased from a range of retail outlets. First, we analysed all rice types for total As (tAs) concentration from which 42 rice samples with tAs > 0.1 mg kg\(^{-1}\) were selected for As speciation using HPLC-ICP-MS. Based on the average concentration of iAs of our samples, we calculated values for the Lifetime Cancer Risk (LCR), Target Hazard Quotient (THQ) and Margin of Exposure (MoE). We found a statistically significant difference between organically and non-organically grown rice. We also found that brown rice contained a significantly higher concentration of iAs compared to white or wild rice. Notably, 28 rice samples exceeded the iAs maximum limit stipulated by the EU (0.1 mg kg\(^{-1}\)) with an average iAs concentration of 0.13 mg kg\(^{-1}\); therefore consumption of these rice types could be riskier for infants than adults. Based on the MoE, it was found that infants up to 1 year must be restricted to a maximum of 20 g per day for the 28 rice types to avoid carcinogenic risks. We believe that consumers could be better informed whether the marketed product is fit for infants and young children, via appropriate product labelling containing information about iAs concentration.

1. Introduction

Geogenic arsenic poses one of the most significant public health challenges, affecting 140 million people across 70 countries in the world (WHO, 2018). In particular, inorganic arsenic (iAs) is a group 1 carcinogen as advised by the International Agency for Research on Cancer (IARC). Also, iAs is included in the list of top 10 chemicals, or group of chemicals, of significant public health concern by the World Health Organisation (WHO 2016). Arsenic exposure affects almost every organ in the human body and produces a range of health effects, including skin lesions, cancer, diabetes and lung diseases (NRC, 2014). Risk assessment, therefore, requires a comprehensive understanding of absolute intake of arsenic from multiple sources such as food, water, soil, dust and air (Carlin et al., 2016), depending on the region. In particular, rice, the staple food for more than half of the world’s population, has been shown to accumulate iAs in more significant amounts than other cereals (Carey et al., 2019; Liao et al., 2018; Meharg et al., 2008; Nunes and Otero, 2017). In regions where arsenic exposure through drinking water is minimal, rice and other foods rich in iAs can contribute significantly to human arsenic intake (54–85%) as shown in a US-based study (Kurzius-Spencer et al., 2013). Similarly, in the UK, arsenic exposure through drinking water is not widely reported except in private water supplies in Cornwall (Middleton et al., 2016). However, in the UK, arsenic exposure through the consumption of rice and rice products can be significant. Up to 90% of households in the UK buy rice; consumption of rice has increased by 450% since the 1970s, probably due to the growing Asian ethnic population and food diversification (Schenker, 2012; Rice Association, n. d). The per capita rice consumption in the UK is about 5.6 kg y\(^{-1}\) (i.e., 0.015 kg d\(^{-1}\)) which is slightly higher than across the European Union (4.9 kg y\(^{-1}\) (OECD, 2017)).
did consume rice, adults (16+ years of age) consumed 0.036 kg d⁻¹, while children and infants (0–15 years of age) consumed 0.021 kg d⁻¹. The adults of the sampled sub-population of Asian or Asian British ethnicity consumed 0.047 kg d⁻¹, while children and infants of Asian or Asian British ethnicity consumed 0.028 kg d⁻¹ (NatCen Social Research, 2019).

Regardless of ethnicity, rice and rice-based products are widely used for weaning and as an infant food due to nutritional benefits and relatively low allergic potential (Signes-Pastor et al., 2016a). Rice is also a preferred gluten-free choice for the Celiac disease affected population (one in every 100 people) in the UK (Munera-Picazo et al., 2014; National Health Service UK, 2020). Also, according to European Food Safety Authority (EFSA, 2014), children are 2–3 times more susceptible to arsenic risks than adults due to higher food and fluids consumption rates relative to their body weight (Guillod-Magnin et al., 2018).

It is essential to reduce the risk of arsenic exposure to humans through rice consumption (Carlin et al., 2016; Islam et al., 2016). Total arsenic concentration (tAs) in food products includes comparatively highly toxic inorganic (iAs) forms (i.e., AsIII and AsV) as well as less toxic organic (oAs) forms (e.g., dimethylarsenic acid (DMA) and traces of monomethylarsonic acid (MMA)); all these arsenic species are commonly found in rice (Islam et al., 2016; Meharg et al., 2008; Norton et al., 2013). Rice is mainly grown under flooded soil conditions that are conducive to the reduction of AsV to AsIII. The resulting lower-valent species, arsenic acid (H₃AsO₃, pKa 9.2), is soluble in flooded soil and readily bioavailable to rice for uptake in the plant parts including grains (Bakhit et al., 2017; Islam et al., 2016).

In 2011, the US-EPA estimated lifetime cancer risk (LCR) through iAs intake and recommended 1.5 mg kg⁻¹ bw d⁻¹ as the upper limit for iAs oral intake rate (US-EPA, 2011; Jallad, 2019). Furthermore, Joint Expert Committee on Food Additives (JECFA) with Food and Agricultural Organisation (FAO) provided a Benchmark Dose Lower Confidence Limit (BMDDL₅₀) of iAs as 0.003 mg kg⁻¹ bw d⁻¹ (FAO, 2011) for various cancers and skin lesions, which replaced the previous Provisional Tolerable Weekly Intake (PTWI) of 0.015 mg kg⁻¹ bw d⁻¹. The EFSA identified a range of BMDDL₀.1 (i.e. dose needed for 0.1% increase of various cancers and skin lesions of iAs between 0.0003 and 0.008 mg kg⁻¹ bw d⁻¹ (EFSA, 2009, 2014; Guillod-Magnin et al., 2018; Jallad, 2019; Rintala et al., 2014). Subsequently, the European Commission (EC, 2015) has set a maximum permissible limit of iAs in rice, which is currently followed in the UK. Based on this, the limits for iAs are 0.20 mg kg⁻¹ in white or polished rice, and 0.25 mg kg⁻¹ in parboiled or husked rice. However, rice destined to produce food for infants and young children must be < 0.10 mg kg⁻¹. Similarly, the US Food and Drug Administration (US FDA, 2016) has limited the iAs concentration of 0.10 mg kg⁻¹ in infant rice cereals.

Rice imported and marketed in the UK include wild, white and brown rice, which can be organically or non-organically produced. Rice labels often contain additional information about the grain size classification (short, medium and long) set up by the UK government (HM Revenue and Customs, 2015) mainly for import and export purposes. The main aims of this research were to evaluate arsenic concentrations in various types of rice and to determine the arsenic exposure risk to the UK population from this source as there have been no previous studies that compared different rice types available in the UK retail outlets. The specific objectives of this investigation are listed below.

1. To assess and compare arsenic (total and its different species) concentrations in rice marketed in the UK, based on rice cultivation methods (organic or non-organic) as well as rice types (wild, white or brown).
2. To determine the risk to the UK population (adult males and females, and infants), based on reported consumption rates.

2. Methods

2.1. Collection and processing of rice samples

Fifty-five different rice types were purchased (0.5–1 kg packets) from various retailers such as major supermarket chains and online suppliers in the UK (the suppliers have been anonymised) during August–September 2018. Our sampling strategy was to obtain as many representative samples as possible from wild (n = 6), white (n = 36) and brown or unpolished (n = 13) rice under organic (n = 16) and non-organic (n = 39) categories (Supplemental Table 1). Though technically not a member of the rice family, wild rice (Zizania sp.) was included in this study due to its increasing presence in the UK retail stores. Note that we did not include ‘ready to eat’ rice brands or wild-white rice mixtures. Out of the 55 rice samples, 20 did not contain any specific information on their country of origin (Supplemental Table 1).

The moisture content of rice samples was determined using a gravimetric method (65 °C; up to 48 h); this was used to produce dry-weight based arsenic concentrations. For chemical analysis, approximately 150–200 g of rice was sampled and finely ground using a ball mill grinder (Retsch MM 200 Model Mixer Mill). Three sub-samples (~1–2 g) were taken for total arsenic analysis and arsenic speciation. To avoid cross-contamination, the grinding jars were cleaned thoroughly using acetone and ultrapure water (18.2 MΩ cm) and then left to dry before reuse.

2.2. Chemical analysis

2.2.1. Total arsenic (tAs) concentration

Samples (0.2 g dry weight) of rice powder were microwave-digested in 6 mL HNO₃ (Primar Plus grade, Fisher Scientific, U.K.) for 15 min in a microwave oven (Multiwave; Anton Paar GmbH, St. Albans, U.K.). The digested samples were diluted to 20 mL, and then 1-in-10 with ultrapure water (18.2 MΩ cm), immediately before elemental analysis by inductively coupled plasma mass spectrometry (ICP-MS). Each digestion batch included operational blanks and certified reference material (NIST 1568b, rice flour) for quality assurance (QA) purposes. The average percentage recovery of tAs (0.285 mg kg⁻¹) was 104%. Multi-element analysis of digested aliquots was undertaken by ICP-MS (Thermo-Fisher Scientific iCAP-Q; Thermo Fisher Scientific, Bremen, Germany).

2.2.2. Arsenic speciation

Based on tAs concentrations in 55 rice samples, 42 samples with tAs > 0.10 mg kg⁻¹ were selected for further arsenic speciation analysis. On average, ~70% of the tAs in rice consists of the toxic iAs, and it rarely exceeds 85% mark (Islam et al., 2016). Thus, the benchmark of 0.10 mg kg⁻¹ tAs would be well within the current lowest regulatory limit for infants (0.10 mg kg⁻¹ iAs) in Europe. In other words, tAs < 0.10 mg kg⁻¹ can be considered safe for the consumption for all age groups, including infants. The selected rice types in the speciation analysis included four wild, 13 brown and 25 white rice samples composed of both organically (n = 9) and non-organically (n = 33) grown categories.

Based on the above criteria, the arsenic speciation was carried out using a separate extraction and analysis from the tAs assay. Extraction of arsenic species from rice flour was undertaken using a method similar to that described by Huang et al. (2010). Approximately 1.5 g each of the 42 selected rice samples was suspended in 15 mL 2% nitric acid (Primar Plus grade, Fisher Scientific, U.K.) in polypropylene ‘DigitiTubes’ (SCP Science, Quebec, Canada), and heated at 95 °C for 1.5 h...
on a Teflon-coated graphite block digester (Model A3, Analyso Ltd, U.K.). Cooled suspensions were made up to 50 mL with ultrapure water (18.2 MΩ cm), and an aliquot (c. 6 mL) was syringe-filtered to < 5 μm for the speciation analysis. Arsenic speciation was undertaken using a coupled LC-ICP-MS (HPLC 5000 series, Thermo Scientific) with a PRP-X100 anion exchange column (PS-DVB/Trimethyl ammonium exchanger; 5 μm particle size; 4.6 mm ID; 250 mm length); the eluent was 20 mM NH₄H₂PO₄ and (NH₄)₂HPO₄ (analytical grade) at pH = 5.6, pumped at 1.5 mL min⁻¹ in isocratic mode. Standards included 5.0 μg L⁻¹ arsenite (As III) and arsenate (As V) (Spex Certiprep, Stanford, U.K.), and 5.0 μg L⁻¹ dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) (purity > 98%; Sigma/Merck, Darmstadt, Germany). Chromatography runtime was c. 13 min per sample. Based on the data obtained, we used concentrations of individual species to obtain the sum of inorganic (As III and As V) and organic (DMA and MMA) species for the statistical analysis and presentation of data.

2.3. Health risk calculations

The risk to humans from arsenic is based on estimated daily intake (EDI, mg kg⁻¹ d⁻¹) which is calculated as follows (Liao et al., 2018; Weber et al., 2019):

\[
\text{EDI} = \frac{AC \times ADC}{bw}
\]

where AC is the average concentration of iAs in rice (mg kg⁻¹), ADC is the average daily consumption rate of rice (kg d⁻¹), and bw represents the average body weight of the local population (kg). For the UK, bw values for adult males, adult females and infants (1-year-old) were taken as 83.6, 70.2 and 9 kg, respectively (Office of National Statistics, 2018).

The lifetime cancer risk (LCR) was calculated using EDI, and a slope factor (SF = 1.5 mg kg⁻¹ d⁻¹) established by the United States Environmental Protection Agency (US EPA, 2011), which assumes daily exposure over an entire lifetime. The acceptable upper limit for LCR, set by the US EPA, is 1.0 × 10⁻⁴. The LCR is given by Eq. (2):

\[
\text{LCR} = \text{EDI} \times SF
\]

The US EPA method for target hazard quotient (THQ) calculated from EDI and a reference oral dose (RfD) (Eq. (3)); The oral RfD for iAs set by the US EPA (0.0003 mg kg⁻¹ d⁻¹) (US EPA, 1988) was used for calculating THQ.

\[
\text{THQ} = \frac{\text{EDI}}{RfD}
\]

Finally, the Margin of Exposure (MoE) (Guillod-Magnin et al., 2018; Jallad, 2019; Rintala et al., 2014) was also calculated as follows:

\[
\text{MoE} = \frac{\text{BMDL}_{0.1}}{\text{EDI}}
\]

where BMDL₀.₁ is Benchmark Dose Lower Confidence Limit and EDI is Estimated Daily Intake as per Eq. (1). The BMDL₀.₁ is set at 0.0003 mg kg⁻¹ d⁻¹ for 0.1% increased incidence of various cancers as per EFSA, which is the same as RfD set by US EPA for THQ. In summary, the THQ is the inverse of MoE if BMDL₀.₁ is set at 0.0003 mg kg⁻¹ d⁻¹; hence the THQ values ideally be < 1 whereas the MoE > 1 to avoid iAs health risks.

Three different scenarios were tested to assess the risks to the UK population. The first scenario was based on the per capita consumption rate of rice in the UK (i.e., 0.015 kg d⁻¹) (Schenker, 2012) and the average iAs of 42 rice samples examined (0.13 mg kg⁻¹). In the second and third scenarios, we calculated the maximum permissible per capita consumption rates of rice for the above-mentioned age groups to avoid health risks.

2.4. Statistical analyses

GraphPad Prism (v 8) software was used to perform the statistical analysis and prepare the figures. Non-parametric tests, including Mann-Whitney test and Kurkal-Wallis Analysis of Variance (ANOVA), were used in combination with Dunn’s multiple comparison test to compare different groups. In our presented graphs, statistical significance is presented as “ns” P > 0.05 (not significant), “*” for P ≤ 0.05, “**” for P ≤ 0.01, “***” for P ≤ 0.001 and “****” for P ≤ 0.0001.

3. Results

3.1. Total arsenic concentration in rice

Total arsenic (tAs) in the 55 rice samples (Supplemental Table 1; rice selected for speciation are indicated using*) analysed ranged from 0.01 to 0.37 mg kg⁻¹ with an average of 0.15 (± 0.07) mg kg⁻¹. When we compared organic and non-organic rice cultivations for tAs in wild, brown and white rice types, the results showed no effect of rice cultivation method on tAs concentrations in wild rice (Fig. 1). The high standard error for organic rice in Fig. 1a was due to one wild rice sample included in this group. There was a significant difference observed in white rice (Fig. 1b) and brown rice (Fig. 1c) due to a change in the rice cultivation systems. In the case of white rice, non-organically grown rice contained a significantly higher concentration of tAs compared to organically grown white rice (P = 0.0004), and organically grown brown rice contained significantly more tAs compared to non-organic ones (P = 0.0189).

When data from all rice types were pooled together (i.e., wild, white and brown), there was no statistically significant difference between organically and non-organically grown rice categories (Supplemental Fig. 1a). Similarly, we statistically analysed the data using a non-parametric Kruskal-Wallis ANOVA test to compare wild, white and brown rice types irrespective of their cultivation methods. This analysis showed that rice type significantly influenced tAs levels (P < 0.0001), as shown in Supplemental Fig. 1b; the concentration of tAs in brown rice was almost double that of wild or white rice.
3.2. Total inorganic and organic arsenic concentrations in rice

The average concentrations of iAs and oAs in the 42 rice types analysed were 0.129 ± 0.048 (range: 0.065–0.286) and 0.047 ± 0.034 (range: 0.009–0.203) mg kg⁻¹, respectively. On average, the iAs concentration in the tested varieties was 73% (± 1.2% SD) of tAs. Out of the 42 samples, 14 samples were below the infant maximum limit for iAs (0.1 mg kg⁻¹) with an average iAs concentration of 0.082 (± 0.012) whereas the average iAs concentration of the remaining 28 samples was 0.152 (± 0.041) mg kg⁻¹.

We present iAs (sum of AsIII and AsV) and oAs (sum of DMA and MMA) concentrations when grown under two rice cultivation methods (Fig. 2 a & b); results showed a statistically significant (P < 0.0001) difference between the cultivation methods in the concentration of iAs but not oAs (P = 0.355). We were unable to compare iAs in wild, brown and white types of rice under organic and non-organic types (i.e. similar to Fig. 1) due to the insufficient number of replicates. Both wild and brown rice types contained similar concentrations of iAs, which were different from the white rice (Fig. 3a). An opposite trend was found for the concentration of oAs, where the white rice contained the highest concentration of oAs (Fig. 3b). Overall non-parametric ANOVA showed that rice type significantly influenced both iAs and oAs concentrations (P < 0.0001). Comparison of these rice types showed that a significant difference was found between wild and white, and between white and brown rice for both iAs and oAs (Fig. 3 a & b).

3.3. Comparison of arsenic species (AsIII, AsV and DMA) in rice

We compared concentrations of arsenic species (AsIII, AsV and DMA) under different rice cultivation methods (Fig. 4), and between rice types (Fig. 5). MMA was present in traces or not detected in most of the samples, and hence was not included in this comparison. The AsIII concentration of organically grown rice was significantly higher (P < 0.0001) than that of non-organically grown rice (Fig. 4a). However, the concentrations of AsV and DMA were similar under both cultivation methods (Fig. 4 b-c), and the differences were not statistically significant.

Different rice types significantly (P < 0.0001) influenced AsIII concentrations. Both wild and white rice types did not show any significant difference, but they were significantly lower in AsIII concentration than the brown rice (Fig. 5 a). Rice types also significantly influenced AsV concentrations (P < 0.0001) and, as shown in Fig. 5b, wild rice showed the greatest concentration of AsV, followed by brown and white rice. The differences between these rice types were statistically significant. The concentration of DMA was also influenced by rice type (P = 0.0019), and average DMA concentrations followed the order white > brown > wild rice with a significant difference between wild and white, as well as between white and brown rice (Fig. 5c). The difference in DMA between wild and brown rice was not statistically significant.

3.4. Relationship between total, inorganic and organic arsenic in rice

On average, iAs constituted 73% of the total sum of all species (iAs + oAs), but the range was 36–95% in the rice samples examined. The relationship between iAs and the total of all species (iAs + oAs) was linear and statistically significant (P < 0.0001) in all cases for different types of rice (Supplemental Fig. 2a-e). However, the R² value for organically grown rice (0.92) was higher than for non-organically grown rice (R² = 0.68). Similarly, R² values for different rice types were also different (0.97 for brown, 0.88 for wild and 0.66 for white rice).

3.5. Health risks

We considered three scenarios for the human health risk assessment of rice arsenic, as described in Table 1. The first scenario was based on the reported per capita consumption rate of rice in the UK (i.e., 0.015 kg d⁻¹) (Schenker, 2012) and the mean iAs concentration (0.13 mg kg⁻¹) of the 42 rice samples examined. Accordingly, the lifetime cancer risks (LCR) for UK adult males, adult females and infants were 3.5 × 10⁻³ (i.e., 3.5 individuals per 100,000 of male population),
4.17 × 10⁻⁵ (4.17 per 100,000 of female population) and 3.25 × 10⁻⁴ (3.25 per 10,000 of infant population), respectively. The corresponding target hazard quotients (THQs) were 0.08, 0.09 and 0.72, respectively. The MoE values were also > 1 in all groups. The risk nearly doubled when we considered the maximum iAs concentration (0.29 mg kg⁻¹ of a brown short-grained organic rice) found in the present study.

However, to avoid carcinogenic risks (i.e., LCR < 1 × 10⁻⁴) for men, women and infants, the consumption rates must not exceed 0.043, 0.036 and 0.0046 kg d⁻¹, respectively, as shown in the second scenario. These values correspond to a weekly maximum consumption rate of 0.301, 0.252 and 0.0322 kg for men, women and infants, respectively. In this scenario, THQ and MoE were 0.22 and 4.5 for all groups. If we consider THQ or MoE, rice consumption rate must be < 0.19, 0.16 and 0.02 kg d⁻¹ for men, women and infants, respectively, to avoid any health risks (Scenario 3). However, at this rate of consumption, the LCR would increase by a factor of four for all groups.

Note that ADCs derived in this scenario for adult male and female (Table 1) were well above the average rice consumption rates for > 16-year-old population (the UK average = 0.036 kg d⁻¹; Asian or Asian British ethnic communities = 0.047 kg d⁻¹) as shown by the NDNS survey (see the introduction). However, ADC derived for infants was very close to the current average consumption rate of 0.021 kg d⁻¹, the MoE will be 0.74, increasing the risk of arsenic exposure.

4. Discussion

4.1. Arsenic concentrations in rice

This is the first study, which has quantified differences in human health risks from iAs using a substantial number of rice samples marketed in the UK. Even though our overall strategy was to obtain as many samples as we could, we were not able to obtain an equal number of samples from all rice types. This was because most supermarket chains and online retailers have similar product ranges mostly dominated by white and non-organic rice types in comparison to the others. To increase the sample size from organic types, we bought additional samples from a few organic health food online suppliers. Wild rice (pure without mixing with white rice) was only available through online retailers as they were not available in any major supermarket chains. Thus, our sample numbers also reflected the availability or popularity of various rice in the UK. The study could not successfully relate the risk to the origin of rice samples because 20 out of the 55 samples analysed did not contain this information on their packaging labels. However, the origin could be an important factor, as demonstrated in a recent compressive study (Carey et al., 2019) where the authors reported that lowest iAs concentrations were found in rice sourced from East Africa and the Southern Indonesian islands. However, rice sourced from South American rice types were universally high in iAs. However, none of our samples originated from the above regions as per the information available (Suppl. Table 1) on the packaging. A study from Italy (Sommella et al., 2013) which examined 101 rice types (mostly different varieties of short-grain japonica) and iAs in their samples ranged from 0.08 to 0.11 mg kg⁻¹ by variety. Though not shown in this paper, 15 of our samples were short-grain rice, and the average iAs was 0.125 ± 0.065 (range: 0.060-0.336) mg kg⁻¹; however, our samples are from a diverse range of suppliers and origins are not known for some samples. In another comprehensive study (Signes-Pastor et al., 2016b) from the Iberian Peninsula (Portugal and Spain) in which samples were collected from field-grown rice (20 samples) as well as the market (144 samples composed for white, brown and parboiled). The market-derived samples showed higher iAs in brown rice (0.053-0.247 mg kg⁻¹) in comparison to white rice (0.027-0.175 mg kg⁻¹), and parboiled rice iAs range was very similar to the white rice. The sample means for white and brown rice were 0.071 and 0.157 mg kg⁻¹, respectively, in comparison to 0.108 and 0.163 mg kg⁻¹ in this study.

Rintala et al. (2014) investigated iAs in both long grain rice (and rice-based baby food products) in Finland and found that the range of iAs concentrations in rice samples was 0.09-0.28 mg kg⁻¹. Although not shown in this paper, we analysed the data based on the grain length (23 long; 4 medium and 15 short grains samples) and iAs range in long-grain rice was 0.045-0.213 mg kg⁻¹, fitting well with the findings by Rintala et al. (2014). However, this study did not include baby food products; such studies have been conducted earlier (Signes-Pastor et al., 2016b).
2016a, 2016b) in the UK. Investigations that compared organically and non-organically grown rice types for arsenic health risk assessment are rare. Our findings are similar to a market-based study conducted in Brazil by Segura et al. (2016) which showed no difference between tAs for organic or non-organically (i.e., conventionally) grown rice; however, they found that iAs was 41–45% higher in organically produced husked or polished rice than the corresponding samples from conventionally produced rice. In contrast, a study conducted by Rahman et al. (2014) in Australia, found significantly higher tAs and iAs in organic rice compared to non-organic brown rice, similar to our findings. Although we do not have details of the source or amount of organic matter (OM) added during cultivation of the rice samples analysed, the addition of OM in lowland rice may play a significant role in increasing arsenic mobility and plant uptake. Addition of OM can reduce the redox potential of rice soils, which can trigger arsenic dissolution as arsenite (As III) from adsorbed arsenate (As V) forms in the soil (Islam et al., 2016; Rowland et al., 2009; Smedley and Kinniburgh, 2002). Based on this, we can expect to have more tAs and iAs when rice is grown organically. However, previous experimental data have suggested the opposite conclusion (Ma et al., 2014; Norton et al., 2013) and indicated an increase in oAs, which suggested that organically grown rice could be a healthier option for human consumption. Here we show that iAs increased significantly in organically grown rice, more specifically As III, which supports the recognised mechanisms of arsenic reduction, desorption and increased availability of iAs (As III and As V) compared to the methylated forms (DMA and MMA) (Raab et al., 2007).

Arsenic data on wild rice are sparse in the literature. The first study of arsenic speciation, brown rice accumulated more As III (Fig. 5a) compared to wild or white rice whereas As V concentrations were significantly higher in wild rice compared to the others, which warrants further research on uptake mechanisms. In particular, concentrations of the less toxic DMA species were significantly lower in wild and brown rice, compared to white rice, suggesting that DMA accumulates more in the starchy interior part of the rice and less in the bran of brown or wild rice. Further studies on wild rice are required to understand the mechanisms behind the accumulation of higher concentrations of As V in comparison to white and brown rice (Fig. 5b). The findings from this study should be taken into consideration when advocating the consumption of brown rice for increased dietary fibre, minerals and B-vitamins in the bran (Schenker, 2012).

In a recent review, Liao et al. (2018) demonstrated that only one-third (11 out of 30) of the reported studies on carcinogenic risk assessment of rice arsenic were based on measured concentrations of iAs. The rest of the studies estimated iAs based on either regression equations, or in most cases it was assumed that iAs was ~80% of tAs. Based on our data for 42 rice types, on average, iAs constituted 73.46% (± 11.91) of the sum of all species of arsenic. This could enable the saving of the substantial analytical costs involved in arsenic speciation, in a limited number of labs in the UK, by selecting rice types based on tAs > 0.1 mg kg −1 for speciation. In other words, rice types with tAs < 0.1 mg kg −1 cannot be regarded as unsafe for consumption, especially for infants, and we found only 13 such samples out of 55. The linear regression equations developed in this study (Suppl. Fig. 2 a-e) could be used to predict iAs based on tAs concentrations for various groups of rice in regions where arsenic speciation facilities are not available or unaffordable.

4.2. Health risks

According to the EFSA (EFSA, 2014), the mean dietary iAs exposure infants are limited by the lack of an adequate number of surveys; according to two dietary surveys (one of which had only 16 participants). Based on the available data, the mean dietary exposure to iAs for infants ranged from 0.000024 to 0.00043 mg kg −1 bw d −1 (min-max Lower Bound or LB). The 95th percentile dietary exposure based on single qualifying study ranged from 0.00054 to 0.00167 mg kg −1 bw

<table>
<thead>
<tr>
<th>Scenario 1 Target Population</th>
<th>AC (As m) (mg kg −1)</th>
<th>ADC (kg)</th>
<th>BW (kg)</th>
<th>EDI (mg kg −1 day −1)</th>
<th>LCR (mg kg −1 day −1)</th>
<th>THQ</th>
<th>MoE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult Male</td>
<td>0.13</td>
<td>0.015</td>
<td>83.6</td>
<td>2.3 × 10 −5</td>
<td>3.50 × 10 −5</td>
<td>0.08</td>
<td>12.86</td>
</tr>
<tr>
<td>Adult Female</td>
<td>0.13</td>
<td>0.015</td>
<td>70.2</td>
<td>2.8 × 10 −5</td>
<td>4.17 × 10 −5</td>
<td>0.09</td>
<td>10.80</td>
</tr>
<tr>
<td>1 year old infant</td>
<td>0.13</td>
<td>0.015</td>
<td>9</td>
<td>2.2 × 10 −4</td>
<td>3.25 × 10 −4</td>
<td>0.72</td>
<td>1.38</td>
</tr>
</tbody>
</table>

Scenario 2

Adult Male	0.13	0.043	83.6	6.6 × 10 −5	1.0 × 10 −4	0.22	4.5
Adult Female	0.13	0.036	70.2	6.6 × 10 −5	1.0 × 10 −4	0.22	4.5
1 year old infant	0.13	0.0046	9	6.6 × 10 −5	1.0 × 10 −4	0.22	4.5

Scenario 3

Adult Male	0.13	0.192	83.6	3.1 × 10 −4	4.47 × 10 −4	1.0	1.00
Adult Female	0.13	0.162	70.2	3.1 × 10 −4	4.50 × 10 −4	1.0	1.00
1 year old infant	0.13	0.0208	9	3.0 × 10 −4	4.50 × 10 −4	1.0	1.00

Table 1

Lifetime Cancer Risk (LCR), Target Hazard Quotient (THQ) and Margin of Exposure (MoE) under different scenarios. Key: AC = Average concentration of As m in rice (mg kg −1); ADC = Average daily consumption rate of rice (kg); BW = Average body weight of the local population; and EDI = Estimated daily intake. Scenario 1 is based on current per capital consumption rates of 0.015 kg day −1 in the UK. Scenario 2 is maximum ADC to avoid LCR. Scenario 3 is ADC based on THQ and MoE.
and brown/unpolished). The total arsenic (tAs) concentrations in marketed rice and rice products made for infants and young children in the UK were compared in this study. We found that manufacturers and suppliers inform consumers about iAs concentrations in rice products, but not about MoE. Therefore, it is appropriate that consumers could be better informed whether rice and rice products are suitable for infants and young children up to 5 years in the product description labels.

Author contributions

MM designed the study including sample collection, moisture analysis, prepared graphs and statistical analyses including the risk calculations and wrote the manuscript. BS helped to design the study, rice collection as well as reviewed the manuscript. JP provided all rice samples through ball milling and was responsible for sample storage and postage of samples, and reviewed the paper; CR contributed provided UK-wide rice consumption database, and reviewed the paper. SVR contributed to the analysis of total arsenic and its species in their labs at the University of Nottingham and SY provided overall supervision of the arsenic analyses, and reviewed the manuscript.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The project was funded by the Science and Technology Research Council (STFC) Food Network (Grant No: ST/P003079/1), United Kingdom (https://www.stfcfoodnetwork.org/). We also would like to acknowledge Prof Ed Rhodes (The University of Sheffield) and Prof Andrew Meharg (Queen's University, Belfast) for their support and advice throughout the research.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ececo.2020.110601.

References

M. Menon, et al.

Ecotoxicology and Environmental Safety 197 (2020) 110601

5. Conclusions

This study examined arsenic concentrations in 55 rice types marketed in the UK in which we compared cultivation methods (organic or non-organically grown) and various types of rice (wild, white/polished and brown/unpolished). The total arsenic (tAs) concentrations in organic white rice were significantly lower than non-organic types, whereas the opposite was true for brown rice. However, inorganic arsenic (iAs) concentrations of organically grown rice was significantly higher than non-organically produced rice. The order of accumulation of iAs in different rice types was brown > wild > white. Out of 55 rice types studied, 28 exceeded infant iAs maximum limit stipulated by the European Commission as unsuitable for the production of baby food products or direct feeding. Our study showed that health risks due to rice arsenic consumption are confined mainly to infants in the UK. We recommend that consumers could be better informed whether rice and rice products are suitable for infants and young children up to 5 years in the product description labels.

Acknowledgments

This study examined arsenic concentrations in 55 rice types marketed in the UK in which we compared cultivation methods (organic or non-organically grown) and various types of rice (wild, white/polished and brown/unpolished). The total arsenic (tAs) concentrations in organic white rice were significantly lower than non-organic types, whereas the opposite was true for brown rice. However, inorganic arsenic (iAs) concentrations of organically grown rice was significantly higher than non-organically produced rice. The order of accumulation of iAs in different rice types was brown > wild > white. Out of 55 rice types studied, 28 exceeded infant iAs maximum limit stipulated by the European Commission as unsuitable for the production of baby food products or direct feeding. Our study showed that health risks due to rice arsenic consumption are confined mainly to infants in the UK. We recommend that consumers could be better informed whether rice and rice products are suitable for infants and young children up to 5 years in the product description labels.

Author contributions

MM designed the study including sample collection, moisture analysis, prepared graphs and statistical analyses including the risk calculations and wrote the manuscript. BS helped to design the study, rice collection as well as reviewed the manuscript. JP provided all rice samples through ball milling and was responsible for sample storage and postage of samples, and reviewed the paper; CR contributed provided UK-wide rice consumption database, and reviewed the paper. SVR contributed to the analysis of total arsenic and its species in their labs at the University of Nottingham and SY provided overall supervision of the arsenic analyses, and reviewed the manuscript.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The project was funded by the Science and Technology Research Council (STFC) Food Network (Grant No: ST/P003079/1), United Kingdom (https://www.stfcfoodnetwork.org/). We also would like to acknowledge Prof Ed Rhodes (The University of Sheffield) and Prof Andrew Meharg (Queen’s University, Belfast) for their support and advice throughout the research.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ececo.2020.110601.

References

European Food Safety Authority. 2009. Scientific opinion on arsenic in food. EFSA panel on the contaminants in the food chain. EFSA J 7 (10), 1351.

