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Abstract

In this paper, we present a novel neural network archi-
tecture for retinal vessel segmentation that improves over
the state of the art on two benchmark datasets, is the first
to run in real time on high resolution images, and its small
memory and processing requirements make it deployable in
mobile and embedded systems.

The M2U-Net has a new encoder-decoder architecture
that is inspired by the U-Net. It adds pretrained compo-
nents of MobileNetV2 in the encoder part and novel con-
tractive bottleneck blocks in the decoder part that, com-
bined with bilinear upsampling, drastically reduce the pa-
rameter count to 0.55M compared to 31.03M in the original
U-Net.

We have evaluated its performance against a wide body
of previously published results on three public datasets. On
two of them, the M2U-Net achieves new state-of-the-art per-
formance by a considerable margin. When implemented on
a GPU, our method is the first to achieve real-time inference
speeds on high-resolution fundus images. We also imple-
mented our proposed network on an ARM-based embedded
system where it segments images in between 0.6 and 15 sec,
depending on the resolution. Thus, the M2U-Net enables
a number of applications of retinal vessel structure extrac-
tion, such as early diagnosis of eye diseases, retinal biomet-
ric authentication systems, and robot assisted microsurgery.

1. Introduction

The retinal vasculature in each human eye is unique and,
in the absence of pathologies, stays unaltered throughout
the lifetime [34, 41]. This trait makes the automatic seg-
mentation of the vessel structure suitable for two main ap-
plications:

First, in the early detection of diseases that affect the
vessel structure, such as diabetic retinopathy and wet age-
related macular degeneration. Diabetic retinopathy can
cause the growth of new blood vessels. Wet macular de-

generation can result in atherosclerosis, which can lead to
the narrowing of blood vessels and can affect the arteries to
vein ratio [2, 20].

Second, in biometric authentication systems, where the
vessel structure is commonly used as a feature pattern by
itself [17, 31] or as a preprocessing step to extract feature
points based on landmarks like bifurcations and crossovers
of retinal vessels [3, 4, 34]. To achieve retinal identification,
good segmentation of the principal vessels of each individ-
ual is necessary [17]. An emerging third application is in
robotic intraocular microsurgery, where the instruments lo-
cation relative to the retinal vessel structure is tracked in
real time as proposed by Braun et al. [11].

For real-world deployments of vessel segmentation
methods, not only the segmentation quality, but also model
size and computational requirements in terms of memory
and processing power are important factors. In a real-world
retinal authentication system for example, it would be in-
feasible to deploy expensive and power-hungry server grade
GPUs, often consuming more than 200W, at every point of
authentication. Additionally, the usage of cloud-computing
resources in such a setting is prohibitive due to higher la-
tency and privacy concerns, arising from the processing of
large amounts of sensitive personal biometric data in the
form of retina fundus images. By deriving feature patterns
of the retina vasculature directly at the point of authentica-
tion, without the actual fundus images leaving the device,
the risk of leaking or exposing this sensitive information
can be reduced.

In this work we propose a novel neural network architec-
ture, called M2U-Net, for retinal vasculature segmentation.
M2U-Net reaches state of the art quality and is small and
fast enough for use in embedded and mobile environments,
enabling use-cases in biometrics and mobile diagnosis. Our
specific contributions are as follows:

• The M2U-Net architecture, which builds on pretrained
components of MobileNetV2 [39], is inspired by the
U-Net architecture [37] and introduces contracting
bottleneck blocks.
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• The proposed network is tested on three publicly avail-
able retina fundus image datasets with annotated vessel
ground truth labels: DRIVE [43], CHASE DB1 [18]
and HRF [23].

• We demonstrate that M2U-Net achieves new state-of-
the-art results on HRF and CHASE DB1 and new state
of the art for mobile/embedded implementations on
DRIVE. Our work is the first to reach super-human
performance on CHASE DB1 and real-time inference
speeds on HRF and CHASE DB1.

The remainder of this paper is structured as follows: Sec-
tion 2 reviews related work with a focus on deep neural net-
works and efficient models. Section 3 introduces the M2U-
Net architecture. Section 4 describes the implementation
details and datasets. Section 5 describes the results together
with an additional ablation study. Section 6 provides the
conclusion with further research avenues.

2. Related work
The task of retinal blood vessel segmentation falls into

the computer vision subcategory of semantic segmentation,
which in recent years has seen tremendous improvements
in performance thanks to the introduction of novel deep
neural network architectures [27, 36, 37]. Similarly, recent
state-of-the-art methods in retinal blood vessel segmenta-
tion that focus on segmentation quality are dominated by
various variations of deep neural networks [26, 29, 45].

Liskowski and Krawiec [26] propose a patch-based ap-
proach, where a network that consists of a stack of convo-
lutional layers followed by three fully-connected layers is
trained with small patches of the input fundus image. In
contrast, Maninis et al. [29] and Yan et al. [45] train their
networks with complete fundus images.

Maninis et al. [29] extract intermediate feature maps of
a VGG-16 network [42], pretrained on ImageNet, which
are upsampled via transposed convolutions and concate-
nated before applying a final 1 × 1 convolutional layer.
Their method, called DRIU, achieves a state-of-the-art Dice
score of 0.822 on DRIVE. Yan et al. [45] train the U-Net
model [37] with a joint-loss by appending two separate
branches, one with a pixel-wise and one with a segment-
level loss, that are trained simultaneously.

While these supervised methods accomplish good seg-
mentation results, their computational requirements are
substantial and as a consequence are commonly imple-
mented on high-performance server-grade GPUs such as the
NVIDIA TITAN class GPUs in [26, 29, 45].

Additionally they either fail to reach the performance of
unsupervised methods on very high-resolution datasets or,
as a result of their computational requirements, can only be
trained with small patches of the complete input image that
fit into memory and thereby further increase the time it takes

to segment the complete fundus image. For example, on the
high resolution HRF dataset, the unsupervised method in-
troduced by Annunziata et al. [5] achieves a state-of-the art
Dice score of 0.7578, while the best-performing supervised
method [45] achieves a Dice score of 0.7212.

Furthermore unsupervised methods are still dominant in
works that focus on embedded or mobile systems and on
execution speed [6, 8, 9, 24]. These methods often rely on
matched filtering, contour tracing and morphological trans-
formation techniques. In [6], a combination of matched
filtering and contour tracing is proposed and implemented
on GPU, realizing an execution time of 10ms on DRIVE.
FPGA implementations of matched filtering based meth-
ods are introduced in [8] and [24] that accomplish execution
times of 2ms and 52.3 ms respectively. In addition to mor-
phological transformations, Bibiloni et al. [9] use CLAHE
and hysteresis thresholding to segment the retinal vascu-
lature and report single-core execution speeds of 37ms on
DRIVE, using a Intel i5-3340 CPU.

To the best of our knowledge, [44] is the only existing
work that has been implemented and tested on a mobile
device, a Samsung Galaxy S5. The algorithm they intro-
duced is based on visual saliency and incorporates orienta-
tion, morphological, spectral and intensity features and has
an execution time of 118s on DRIVE images.

3. Model architecture
In this work we address this gap between unsupervised

and supervised methods in retinal vessel segmentation by
introducing a light-weight supervised method that can be
deployed in embedded systems, can be trained on very high
resolution images and produces competitive segmentation
quality.

Like the U-Net architecture, our proposed network can
be conceptually divided into two parts: a contracting en-
coder part and an expanding decoder part. For the encoder
part, we employ the first fourteen layers of MobileNetV2
that were pretrained on ImageNet. The key building blocks,
introduced by Sandler et al. [39] in the MobileNetV2 net-
work, are inverted bottleneck blocks with Stride=1 and
Stride=2, which are illustrated in Figure 1. Bottlenecks
blocks with Stride=1 contain a residual connection if the
number of input channels d′ is equal to the number of out-
put channels d′′. Bottleneck blocks with Stride=2 do not
have a residual connection. Both types of blocks start with
a 1 × 1 convolution that expands the number of channels
d by a factor t, followed by a depthwise separable convo-
lution [40] that consists of a depthwise convolution and a
pointwise 1× 1 convolution.

In the decoder part we make use of the same Stride=1
bottleneck blocks as used in the encoder, but this time with a
contracting factor of t = 0.15 instead of using an expansion
factor of t = 6. These contracting bottleneck blocks do not
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Figure 1: Bottleneck blocks: each box represents a multi-
channel feature map. The height corresponds to the resolu-
tion, the width to the number of channels. Best viewed in
color.

contain a residual connection. The contracting bottleneck
blocks allow us to further reduce the amount of trainable
parameters. Additionally we follow the recommendation of
Fauw et al. [16] and use parameter-free bilinear upsampling
instead of transposed convolutional operations to upsample
the spatial resolution of feature maps. Table 1 and Figure 2
describe and illustrate the proposed architecture in more de-
tail 1.

4. Implementation details
4.1. Training setup and datasets

The proposed architecture is implemented in PyTorch.
We use AdamW [28] as optimization method with a learn-
ing rate of 0.001. A combined binary cross-entropy and Jac-
card loss function LJBCE with a weighting factor w = 0.3
as proposed in [21] is utilized:

LJBCE = LBCE + w ∗ (1− J), (1)

where LBCE is the binary cross entropy loss:

LBCE = − 1

n

n∑
i=1

(yilog(ŷi) + (1− yi)log(1− ŷi)) (2)

and J the Jaccard index adapted for non-discrete objects:

J =
1

n

n∑
i=1

yiŷi
yi + ŷi − yiŷi

, (3)

1A PyTorch implementation is available at https://github.
com/laibe/M2U-Net

Input Operator t c n s Params

3× 5442 conv - 32 1 2 928
32× 2722 dwisesep 1 16 1 1 896
16× 2722 bottleneck 6 24 1 2 5,136
16× 1362 resbottleneck 6 24 1 1 8,832
24× 1362 bottleneck 6 32 1 2 10,000
32× 682 resbottleneck 6 32 2 1 29,696
32× 682 bottleneck 6 64 1 2 21,056
64× 342 resbottleneck 6 64 3 1 162,816
64× 342 bottleneck 6 96 1 1 66,624
96× 342 resbottleneck 6 96 2 1 236,544
96× 342 upconcat - 128 1 - -
128× 682 bottleneck 0.15 64 1 1 4,023
64× 682 upconcat - 88 1 - -
88× 1362 bottleneck 0.15 44 1 1 1973
44× 1362 upconcat - 60 1 - -
60× 2722 bottleneck 0.15 30 1 1 987
30× 2722 upconcat - 33 1 - -
33× 5442 bottleneck 0.15 1 1 1 237
1× 5442 sigmoid - 1 1 - -

Table 1: M2U-Net: Each row corresponds to an operation
that uses stride s, expansion factor t, is repeated n times and
outputs c channels. The encoder part consists of an initial
convolution (conv) and a depthwise separable convolution
(dwisesep) followed by a stack of (residual) bottleneck
blocks. The encoder part consists of repeated instances of
upsampling and concatenation operations (upconcat) fol-
lowed by bottleneck operations. Encoder bottleneck blocks
expand with a factor t = 6, decoder bottleneck blocks con-
tract with a factor t = 0.15. Batch normalization is used
after each convolutional operation. A final sigmoid layer
converts the raw logits into probabilities.

n denotes the number of pixels in a given image, the net-
work’s prediction probability output of the pixel belonging
to the vessel class is denoted by ŷ and the ground-truth by y.

For the DRIVE dataset we adopt the training-test split
as proposed by the authors of the dataset (20 training and
20 test images) [43]. For CHASE DB1 we follow the sug-
gestion of [18], where the first 8 images form the training
set and the remaining 20 the test set. This split is also used
in [33].

For HRF we adopt the split as proposed by Orlando et
al. [33] and adapted in [45], who introduced the only su-
pervised methods that have so far been evaluated on this
dataset. The training set contains the first five images of
each category (healthy, diabetic retinopathy and glaucoma);
the remaining 30 images define the test set.

Examples of training images of DRIVE, CHASE DB1
and HRF together with their resolution are shown in Fig-
ure 3. DRIVE and CHASE DB1 images contain large black
borders that do not contain any valuable information. To de-

https://github.com/laibe/M2U-Net
https://github.com/laibe/M2U-Net
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Figure 2: M2U-Net: Example for an input image of dimension 3×544×544. Each white and grey rectangular box represents
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of channels. The encoder part feature maps are highlighted in grey. Best viewed in color.

crease the number of background pixels and to ensure that
the input resolution is a multiple of 16, a requirement for
M2U-Net, U-Net [37] and ERFNet [36], we perform the
following crops:

• On DRIVE we take a 544× 544 center crop.

• On CHASE DB1 we crop 18 pixels on the left and 21
on the right, resulting in a resolution of 960× 960.

• On HRF we do not perform cropping as the original
resolution of 2336× 3504 is already a multiple of 16.

No other preprocessing is conducted and during training,
a set of random augmentations are applied: rotations, hori-
zontal and vertical flips, elastic distortions and changes in
brightness, contrast, saturation and hue. Image augmen-
tations are commonly used in biomedical image analysis
tasks, especially when working with small datasets, as they

can improve accuracy and generalization [14]. We limit the
rotations to a range from −15 to +15 degrees. Brightness,
contrast, saturation and hue are changed by a small random
factor in the range R ∩ [1 − c, 1 + c], where c determines
the freedom of change. The following values are selected:
cbrightness = 0.3, ccontrast = 0.3, csaturation = 0.02 and
chue = 0.02. Elastic transformations are governed by the
grid size and the magnitude, for which we selected values
of 8× 8 and 1 respectively [10].

Since our datasets contain a very small number of train-
ing images we derive separate validation sets from the train-
ing sets, using the same random augmentations. During
training, the model with the highest dice score on the vali-
dation set is selected. Training is stopped after 300 epochs.

We compare the performance of M2U-Net versus the
performance of ERFNet [36] and U-Net [37] that are trained
with identical training parameters. ERFNet is a recent ef-



Figure 3: Examples of training images (H ×W ). Top left:
DRIVE (584× 565); top right: CHASE DB1 (960× 999);
bottom: HRF (2336× 3504).

ficient real-time semantic segmentation method, originally
applied on urban scene segmentation tasks. We deviate
from the original U-Net implementation by using zero-
padding to ensure the resolution of the final feature map is
equal to the resolution of the input image. It should also be
noted that in contrast to ERFNet and M2U-Net that utilize
pretrained encoders, the U-Net was trained from scratch and
acts as a baseline only.

On DRIVE we use a batch-size of 4 for ERFNet and
M2U-Net and a batch size of 2 for U-Net due to it’s higher
memory footprint. On CHASE DB1 we use a batch-size of
2 for ERFNet and M2U-Net. The U-Net can not be trained
on CHASE DB1 and HRF without reverting to a patch-
based training approach, due to insufficient GPU memory
in our training setup (11 GB). Similarly the memory re-
quirement of ERFNet for HRF is too large for our setup.
As a consequence we train only M2U-Net on HRF, using a
batch-size of 1.

4.2. Evaluation metrics

Since in our segmentation task the number of non-vessel
pixels is far larger than the number of vessel pixels, accu-
racy is not a suitable evaluation measurement. Instead we
follow Maninis et al. [29] and plot precision (Pr) and recall

(Re) at various thresholds of the probability map output and
compute the Dice score (also referred to as F1-score) as our
key summary evaluation criteria. It is commonly expressed
in terms of true positives (TP ), false negatives (FN ) and
false positives (FP ):

Dice =
2 ∗ TP

2 ∗ TP + FN + FP
= 2

Pr ∗Re

Pr +Re
(4)

Another common evaluation measurement in semantic
segmentation tasks, the Jaccard index, has a monotonically
increasing relationship with the Dice score and as a conse-
quence both measures are equivalent for comparison pur-
poses [35]. We report the Dice score, since it is more com-
mon in the literature on retinal vessel segmentation. For
comparison purposes with methods that do not report Dice
scores, we additionally report accuracy and area under the
receiver operating characteristic curve (AuC). We adjust the
number of true negatives by the number of pixels that were
cropped to ensure a fair comparison of accuracy and AuC
with previous works.

5. Results

In this section we present the results of M2U-Net on
DRIVE, CHASE DB1 and HRF in comparison to the per-
formance of U-Net, and ERFNet, where possible. All net-
works were trained with the same training setups as M2U-
Net and their inference time evaluated on the same hard-
ware (Rockchip RK3399 SoC) and software (PyTorch [1]
with NNPACK [15] backend and TVM [13]). Additionally
we discuss the achieved results with regard to previous pub-
lished literature.

5.1. Experimental measurements

Table 2 shows the model sizes in terms of number of
trainable parameters and Multiply-Add operations together
with the achieved Dice score. For ERFNet, no ARM TVM
inference times are reported since the PyTorch implementa-
tion as provided by its authors is incompatible with TVM.

Out of the three evaluated networks, M2U-Net is by far
the smallest and computationally lightest network with only
0.55M parameters, a size on disk of just 2.2MB and 1.4B
multiply-adds for an input of dimension 3 × 544 × 544, as
illustarted in Figure 4. On DRIVE, our PyTorch implemen-
tation has an execution time of under 6 seconds on a sin-
gle Cortex-A72 compared to over a minute for ERFNet and
over 2 hours for U-Net. At the same time, the Dice score
of M2U-Net on CHASE DB1 achieves the best Dice score
in our experiment. Visualizations of the segmented vessel
probability map and thresholded binary map of M2U-Net
together with precision vs. recall curves for all three net-
works are shown in Figure 5.



DRIVE CHASE DB1

Model Params Size Dice MAdds ARM ARM TVM Dice MAdds ARM ARM TVM

2nd human annot. - - 0.7881 - - - 0.7686 - - -
U-Net [37] 31.03M 119.0MB 0.7941 246.6B 141min 58.1s - - - -

ERFNet [36] 2.06M 8.0MB 0.8022 2.8B 69.8s - 0.7994 51.3B 336s -
M2U-Net (ours) 0.55M 2.2MB 0.8091 1.4B 5.87s 577ms 0.8006 4.4B 23.5s 1.67s

Table 2: Results on DRIVE with input dimension 3 × 544 × 544 and CHASE DB1 with input dimension 3 × 960 × 960.
Params: Number of parameters. Size: Size of the weight file on disk. Dice: Dice score (= F1-Score). MAdds: Number
of Multiply-Add operations. ARM: Rockchip RK3399; NNPACK single thread Cortex-A72 inference time. ARM TVM:
Rockchip RK3399; TVM dual Cortex-A72 inference time.

DRIVE CHASE DB1

Method Platform Time Dice Acc AuC Time Dice Acc AuC

2nd human observer - - 0.7881 0.9472 - - 0.7686 0.9538 -
Unsupervised

Argüello et al. [6] NVIDIA GTX 680 10ms - 0.9431 - - - - -
Azzopardi et al. [7] 2GHz CPU - - - - 25s - 0.9387 0.9487
Bendaoudi et al. [8] Xilinx Kintex-7 FPGA* 2ms - 0.9218 0.9207 - - - -

Bibiloni et al. [9] Intel Core i5-3340 37ms 0.7521 0.938 - - - - -
Jiang et al. [22] Intel Core i7 Duo 1.677s - 0.9588 - - - - -

Koukounis et al. [24] Spartan 6 FPGA* 52.3ms - 0.9240 0.9008 - - - -
Xu et al. [44] Samsung Galaxy S5* 118s - 0.933 0.959 - - - -

Zhang et al. [46] 2.7GHz CPU 20s - 0.9476 0.9636 - - 0.9452 0.9487
Supervised

Fraz et al. [18] Intel Core2Duo 100s 0.7929 0.9480 0.9747 - 0.7566 0.9469 0.9712
Fu et al. [19] - 1.3s - 0.9523 - - - - -
Li et al. [25] AMD Athlon II X4 70s - 0.9527 0.9738 70s - 0.9581 0.9716

Liskowski et al. [26] NVIDIA TITAN - - 0.9535 0.9790 - - - -
Maninis et al. [29] NVIDIA TITAN-X 85ms 0.8220 - - - - - -
Marin et al. [30] Intel Core2Duo 90s - 0.9452 - - - - -

Orlando et al. [33] Intel Xeon E5-2690 1s 0.7857 - 0.9507 2.7s 0.7332 - -
Roychowdhury et al. [38] Intel Core i3 3.115s - 0.9520 0.9620 11.71s - 0.9530 0.9532

Yan et al. [45] NVIDIA TITAN-Xp - 0.8183 0.9529 0.9752 - - 0.9610 0.9781
M2U-Net (ours) NVIDIA GTX 1080 Ti 6ms 0.8091 0.9630 0.9714 7ms 0.8006 0.9703 0.9666
M2U-Net (ours) Rockchip RK3399* 577ms 0.8091 0.9630 0.9714 1.67s 0.8006 0.9703 0.9666

* Embedded/mobile platform

Table 3: Inference time, Dice score, accuracy, AuC and hardware platform of our proposed method and previous works on
DRIVE and CHASE DB1.

5.2. Comparison with previous work

Table 3 lists previous works in retinal vessel segmenta-
tion on DRIVE and CHASE DB1 in terms of reported in-
ference time, hardware platform, Dice score, accuracy, and
AuC. On CHASE DB1, our proposed architecture achieves
a new state-of-the-art Dice score of 0.8006 and an infer-
ence time of 1.67s on a Rockchip RK3399 SoC and 7ms
on a NVIDIA GTX 1080Ti. In contrast, the second fastest
method [33] takes 2.7s on a Intel Xeon CPU with a Dice

score of 0.7332. On DRIVE our method achieves a Dice
score that is 1.3 percentage points lower compared to [29],
but has 14× less parameters.

On HRF, M2U-Net achieves new state-of-the-art results
in terms of Dice score and inference times as shown in Ta-
ble 4. Compared to the previous best unsupervised and su-
pervised method we report an improvement in Dice score
of 2.36 and 6.02 percentage points respectively. On ARM
M2U-Net achieves inference times of 14.7s and on a GPU it
achieves inference speed of 19.9ms, making it the first real-
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time method on this high-resolution dataset (2336× 3504).
The method by [29] might be able to achieve higher qual-

ity results on HRF and CHASE DB1 compared to ours,
however due to it’s larger size, we expect it to face mem-
ory constraints when trained with full resolution images.

The power consumption measured during inference of
our method on a Rockchip RK3399 SoC development board
is 9.6W with an idle power consumption of 3.6W. This is
substantially lower than the power consumption of common
server grade GPUs that is often above 200W. The only other
work in the reviewed literature that explicitly reports power
consumption measurements [24], reports a power consump-
tion of 2.89W and takes 52.3ms on a Spartan 6 FPGA,
which is not directly comparable. Optimized FPGA imple-
mentations are generally faster and more energy efficient
than ARM implementations, and we would expect similar
gains for our model on FPGA. The model of [24], however
achieves an accuracy of only 0.9240 and an AuC of 0.9008
on DRIVE, compared to an accuracy of 0.9630 and AuC of
0.9714 of our method (no Dice score is reported in [24]).

5.3. Ablation study

In our experiments with various values for t in the de-
coder block, we found that values smaller than 1 result
in similar Dice scores to values greater than 1, while at

Method Plt. Time Dice Acc
Unsupervised

Annunziata et al. [5] CPU* - 0.7578 0.9581
Budai et al. [12] CPU† 26.7s - 0.9610

Odstrcilik et al. [32] CPU‡ 92s 0.7324 0.9494
Zhang et al. [46] - - - 0.9556

Supervised
Orlando et al. [33] CPU¶ 5.8s 0.7158 -

Yan et al. [45] GPU§ - 0.7212 0.9437
M2U-Net (ours) GPU|| 19.9ms 0.7814 0.9635
M2U-Net (ours) ARM# 14.7s 0.7814 0.9635

* AMD A4-3300M
† 2.3 GHz
‡ Intel Core i7
¶ Intel Xeon E5-2690
§ NVIDIA TITAN-Xp
|| NVIDIA GTX 1080 Ti
# Rockchip RK3399 (TVM)

Table 4: Inference time, Dice score, accuracy and hardware
platform of our proposed method and previous works on
HRF.

the same time substantially reducing the parameter count
and memory footprint of the network. We also tried using
only depthwise separable convolutions after each upsam-
pling and concatenate operation instead of Stride=1 bottle-
neck blocks and found slightly worse performance in terms
of Dice score while having a higher number of parameters.

6. Conclusion
We introduced M2U-Net, a new light-weight neural net-

work architecture for the segmentation of retinal vascula-
ture with novel contracting bottleneck blocks in the decoder
part and elements of a pretrained MobileNetV2 in the en-
coder part.

It achieves a significant reduction in the trade-off be-
tween hardware requirements, energy demand and execu-
tion times for retinal vessel segmentation compared to pre-
vious models. Furthermore, it will enable new practical ap-
plications, where high quality analysis of high resolution
images in real-time is required, e.g. in robotic microsurgery
of the eye. We expect that the architecture can also be suc-
cessfully applied to related tasks, such as road segmentation
on satellite images or the semantic segmentation of urban
scenes.
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Figure 5: Visualization of results for DRIVE (top) and CHASE DB1 (bottom). Left: first column, fundus test image; second
column, vessel probability map output of M2U-Net; third column, thresholded binary map with indication of true positives
(white), false positives (yellow) and false negatives (red). Right: precision vs. recall curves together with the Dice score at
the optimal point along the curve. Best viewed in color.
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