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Abstract

Understanding and characterising the dynamics inside the Sun is vital to in-

terpret the large diversity of complex and variable magnetic phenomena that

continually appear on the solar surface. Owing to the theory of magneto-

hydrodynamics, many aspects of solar physics have been and continue to be

investigated in order to unpuzzle the fundamental processes within the layers

of the Sun. Of crucial importance, is the central role of convection that under-

lies the structure and features we observe of the Sun. This thesis is devoted to

develop mathematical and computational modelling frameworks for the pur-

pose of exploring the interaction of magnetic fields with granular convection

in the unobservable layers of the Sun, to better understand the distributions

of field over the solar surface. In particular, I aim to address the influence of

convective turbulence on the emergence of solar magnetic structures.

By conducting a series of idealised numerical experiments, I first explore how

small-scale turbulent pumping in the convection zone can affect properties of

the large-scale buoyancy-driven magnetic field. This investigation is pursued

by an extension to account for more realistic turbulent pumping configurations,

where the effect of turbulent convection and magnetic buoyancy are further

examined. Finally, I focus on providing an insight into how the simplifying

assumptions introduced in the general modelling of thermal convection can

alter the behaviour of a system.
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Chapter 1

Introduction

1.1 The Sun: An Overview

Our Sun is a fascinatingly complex rotating body that has been a topic of

interest for thousands of years (Herschel, 1795; Pugh, 2007). Its proximity to

Earth gives us the ability to examine it in fine detail, unlike many other stars,

while it also serves as a valuable cosmic laboratory for stellar investigations.

The Sun has provided an exquisite view into the surface features and pro-

cesses, in parallel to the impressive advances in theoretical and observational

techniques (see Christensen-Dalsgaard, 2008, and references therein). How-

ever, the physical mechanisms underlying a plethora of dynamical phenomena

observed on the Sun today remain a current outstanding problem that is yet

to be fully understood.

The Sun is the sole star in our solar system formed some 4.6 billion years

ago (Dziembowski et al., 1999). It is a middle-aged dwarf star of stellar class

G2 on the main-sequence of the Hertzsprung-Russell (HR) diagram (Battrick,

1990). The HR diagram represents the relationship between luminosity (or

absolute magnitude) and effective temperature (or spectral class) for various

stellar sequences. As shown in Figure 1.1, most stars are grouped along the

diagonal band known as the main sequence, that spans from cool, dim stars

in the bottom right to hot, luminous stars in the top left corner.

1



CHAPTER 1. INTRODUCTION

Figure 1.1: Hertzsprung-Russell (HR) diagram. The plot illustrates the various
stages of stellar evolution, with the Sun positioned near the middle of the main
sequence. Image taken from Vita-Finzi (2008).

The Sun consists of plasma interacting with its own solar magnetic field. It

is an enormous source of heat and energy, with a surface temperature of ap-

proximately 5800 K, a total mass, M�, of 1.99× 1030 kg and a radius, R�, of

6.96×108 m (NASA, 2016). Like many celestial bodies, the Sun rotates on its

axis but with latitude variations (Livingston and Duvall, 1978), and it rotates

faster near the equator with a rotational period of 27 days compared to higher

latitudes (Mullan, 2009).

Figure 1.2 shows that the Sun embodies a complex underlying structure, which

is divided into different regions. Below the visible solar surface lies the solar

interior, which comprises three main parts: the core, radiative zone, and con-

vection zone. Although the solar interior is not directly accessible to observa-

tions, we have some valuable information about the internal structure. The

conditions in the inner core are extreme owing to a density of order 105 kgm−3,

and a temperature of order 107 K (Priest, 2014). As a result of this immense

pressure and sufficiently high temperature, the process of nuclear fusion takes

place. Hydrogen nuclei are converted into helium nuclei every second, releasing

mass in the form of energy (Priest, 2014). This tremendous energy is slowly

2



CHAPTER 1. INTRODUCTION

propelled, despite moving at the speed of light, across the radiative zone by

radiation (Bhatnagar and Livingston, 2005; Ryan and Norton, 2010). Moving

away from the radiative zone that extends from 0.25R� to 0.7R�, convection

becomes the predominant mechanism to transport energy.

Figure 1.2: Anatomy of the Sun. Schematic illustration of the structure of the
Sun, associated with the temperature, density and size of the layers. Image
taken from Priest (2014) and adapted to include the tachocline layer, located
at the base of the convection zone.

Above the convection zone lies the solar surface. The solar surface is distin-

guished as the layer with continuum optical depth unity (Heng, 2017), while

for the solar atmosphere, the definition is rather ambiguous. Some authors

consider the atmosphere as the photosphere, and the chromosphere (see, for ex-

ample, Stix, 2002), while others extend the definition to the heliopause (Jokipii

et al., 1997). In this thesis, the solar atmosphere will be defined as the outer

regions of the Sun, namely the photosphere, the chromosphere, and the corona.

The photosphere is the innermost thin layer of the atmosphere and is the

visible surface of the Sun (Mullan, 2009). It emits the maximum intensity of

3



CHAPTER 1. INTRODUCTION

solar radiation in the form of visible light (Jenkins, 2009). The chromosphere

is situated above the photosphere and is more transparent (Jenkins, 2009).

The corona is the outermost region of the solar atmosphere; it is a low-density

cloud of plasma with higher transparency due to temperature (Jenkins, 2009).

Temperature and density decrease gradually away from the solar interior, as

shown in Figure 1.2. However, at the outer regions of the chromosphere tem-

perature rises from a minimum temperature of 4300 K to over 106 K in the

corona (Priest, 2014; NASA, 2016). Such heating cannot be due to thermal

processes as it would contradict the second law of thermodynamics. This in-

homogeneous temperature problem of the solar corona is known as the coronal

heating problem.

In the next subsection, a detailed discussion will be provided on parts of the

Sun that are of great relevance to the current research – the base of the solar

convection zone. This is followed by an overview of the vast variety of features

seen on or above the solar surface.

1.1.1 The Convection Zone and Tachocline

The convection zone is the outermost region of the solar interior, and it ex-

tends from a depth of 0.7R� to near the surface. In the convection zone, as

the name implies, energy is transferred by turbulent thermal convection to

the solar surface (Bhatnagar and Livingston, 2005; Ryan and Norton, 2010).

Analogous to boiling water, hot plasma rises, and cooler plasma falls to be

reheated and rise again (see Subsection 2.4.1 for details on the onset of con-

vection). Generally, convection cells propagate and dissipate on four main

scales: granulation, meso-granulation, supergranulation, and giant cells (Rast,

2003; Priest, 2014). The scale of the cells increases with increasing depth,

due to the significant change in the pressure scale height from the bottom of

the convection zone to the photosphere (Hathaway et al., 2000; Proctor, 2004).

Surface manifestation of convection shows granular and supergranular scales;
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the presence of meso-granulations and giant cells are suspected, but no strong

evidence exists that distinctively identifies them (Hood and Hughes, 2011; Tla-

tov, 2012). Granular motions are visible in white light and are typically 106 m

in diameter with vertical plasma velocities of 1−2 kms−1 and lifetime of 0.2 h

(Rast, 2003). Supergranular motions, on the contrary, are not visible in white

light and can be detected by Doppler velocity measurements that extract the

horizontal flow components (Leighton et al., 1962; Muller, 2011). The typical

size of a supergranular cell is about 3×107 m in diameter, with a lifetime of 24

h and horizontal flow speeds of 0.4 − 0.5 kms−1 (Muller, 2011). The vertical

velocity amplitude is difficult to detect for supergranules due to the effect of

granulation noise, but it is reported to be very weak with downflows of order

0.05− 0.1 kms−1 (November et al., 1981; Muller, 2011). Differential rotation

within the convection zone is known to contribute towards the transport of

convective cells. However, the exact internal structure of the solar differential

rotation has remained unknown until the late 20th-century (Deubner et al.,

1979).

Over the past few decades, new methods empowered observers to look be-

neath the surface of the photosphere (see the review by Kosovichev, 2011).

The study of acoustic wave propagation in the solar interior, namely helio-

seismology, contributed towards our knowledge of the internal rotation and

dynamics of the Sun (Demarque and Guenther, 1999).

Figure 1.3 displays the obtained estimates of the internal rotation profile from

the Helioseismic and Magnetic Imager (HMI: Schou et al., 2012). Results re-

veal that the rotation profile is in agreement with solar surface observations,

and extends in a differential manner throughout the bulk of the convection

zone (Harvey, 1988). However, at the base of the convection zone, the rotation

rate transitions to a latitudinally uniform rotation (Thompson et al., 2003).

This relatively thin (∼ 0.04R�, c.f. Charbonneau et al., 1999) transition layer

that lies at the lower boundary of the convection zone exhibits an intense ra-

5



CHAPTER 1. INTRODUCTION

dial shear and is known as the tachocline (Spiegel and Zahn, 1992). Although

it has been postulated for many years (see Spiegel, 1972), the solar tachocline

has been of particular interest since it was proven to exist by helioseismology

and more details have emerged about it. The current prevailing idea is that

the tachocline plays a critical role in the evolution of the solar magnetic field

(see, for example, Gilman, 2005; Hanasoge et al., 2015).

Figure 1.3: Solar internal rotation. Depth profiles of the rotation rate (left),
and angular velocity isolines (right). Data is obtained with the HMI instrument
onboard Solar Dynamics Observatory (SDO), and is derived from helioseismic
inversion. Courtesy of GONG: Global Oscillation Network Group.

1.1.2 Magnetic Fields of the Sun

Records show that astronomers in ancient China first recorded small, dark,

evolving patches on the surface of the Sun hundreds of years ago (Graham,

2000; Stewart, 2016). These observations, however, interfered with the ancient

Greek beliefs (Graham, 2000; Stewart, 2016). This is because, in the West,

the teaching of Greek philosopher Aristotle that heavenly objects (such as the

Sun) are of unblemishing perfection and unchanging meant that such claims

were impossible! Later in the 1600s, the invention of telescopes allowed schol-

ars, namely Galileo, to witness these dark spots, later called sunspots, and

their movements (Graham, 2000; Stewart, 2016). Though, some people be-

lieved sunspots were simply an astronomical transit (shadows of undiscovered
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planets) (Scheiner, 1612).

With the increased observability of sunspots over the next two decades, Schwabe

(1843) was able to show that the regular appearance of sunspots follows a cy-

cle with a periodicity of approximately 11 years. The statistics of sunspot

emergence revealed an equatorward propagation as the cycle advanced (Car-

rington, 1858). In 1904, the butterfly diagram was first constructed by Edward

Maunder to monitor this migration characteristic of sunspots (see Figure 1.4).

Figure 1.4: Maunder’s butterfly diagram. The graph highlights the size and
frequency of sunspots occurrence at different solar latitudes versus time, from
the years 1874 to 2015, where the colours black, red, and yellow denotes small,
medium, and large spots respectively. Image taken from Hathaway (2015).

Until the early 20th century, no evidence bridging sunspots and the magnetic

field were yet found. Astronomical objects, other than the Earth, possessing

a magnetic field was conclusively established owing to the discovery of George

Hale. He identified sunspots as the seat of strong magnetic fields through ob-

servations of the Zeeman splitting in sunspots (Hale, 1908). This influential

discovery of Hale became the gateway to understanding the dynamical role of

magnetic fields in the Sun, the stars, and the universe.

Today, we know that sunspots are dark, cool regions of the solar surface (Priest,

2014). The sunspot only looks dark relative to the brightness of its surround-

ings, and it is cool since strong magnetic field suppresses the flow of energy

from below to the surface (Mullan, 2009). Over the interval of 11 years, the

solar activity changes continuously as the strong, twisted magnetic field lines,
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from below, breakthrough the visible surface to form sunspot pairs of oppo-

site polarity with a strong tendency for east-west orientation. The relative

orientation of sunspot pairs is opposite with respect to the solar hemisphere

(Solanski, 2003; Choudhuri, 2015).

Besides the trend of sunspots movement seen in Figure 1.4, the butterfly dia-

gram uncovers several properties of sunspot groups (Hale et al., 1919). At the

beginning of a new 11 years solar cycle, the magnetic polarities of sunspot pairs

located in the northern and southern hemisphere reverse. Therefore, making

the full magnetic cycle repeat approximately every 22 years. In addition, the

orientation of the bipolar sunspot pairs is tilted such that the leading spot

is closer to the solar equator than the following spot (Davidson, 2001; Lang,

2012).

The magnetic concentrations on the surface of the Sun fuel a list of multi-

scale and highly intermittent solar phenomena (see Figure 1.5). Solar flares

are one of the most interesting violent eruptions on the Sun, which can provoke

disruptive effects on Earth (Hanslmeier, 2007). The first ever recorded flare

was observed by Carrington (1859); a flare is defined as the sudden release of

intense electromagnetic radiation and energised particles into interplanetary

space (Priest, 2014). Other forms of solar phenomena include prominences.

A prominence is an area of relatively cool, dense loop-like gaseous structure

(plasma) suspended through the ultra low-density, hot corona by a strong mag-

netic field (Priest, 2014). It appears bright when viewed extending from the

Sun’s surface, but when viewed against the body of the Sun, it appears as a

dark thread-like cloud, namely filament.

These energetic solar phenomena, illustrated in Figure 1.5, are examples of the

various other features perceived on the Sun. Our understanding of the mag-

netic Sun, through exhaustive observational and theoretical measurements,

has continually developed over time. However, many questions related to the
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exact nature, the complexity of the Sun’s magnetic field and its unpredictable

features remain a topic of investigation.

Figure 1.5: Surface features of the Sun. Active regions around sunspots trigger
immense explosions, such as coronal mass ejections (CME) and solar flares.
Erupting prominences are plasma structures suspended in magnetic field loops
in the solar atmosphere. Dark areas called coronal holes appear in the corona,
and are the source of high-speed solar wind streams. Image taken from NASA
(2000).

1.2 Dynamics of the Large-Scale Solar Mag-

netic Field

Solar surface magnetic features, such as sunspots, appear in concentrations as

opposed to in a diffuse, evenly distributed manner from below (Bumba and

Suda, 1971; Solanki, 2003). In order to understand the underlying mechanism,
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one must explore the interactions occurring in the layers underneath the visible

layer of the Sun.

Motivated by such astrophysical problems, Thompson (1951) and Chandrasekh-

ar (1952) conducted studies on the effect of magnetic field on convective mo-

tions, in the framework of linear stability theory. This was followed by nu-

merical investigations of the non-linear evolution initiated by Weiss (1981).

Interactions between the magnetic field and convection were found to be able

to divide into magnetic and non-magnetic regions. Magnetic field is expelled

in regions where vigorous convection dominates, whereas convection is sup-

pressed in regions of concentrated magnetic field as tension of the field lines

inhibit convection, and so reducing heat transport efficiency.

The dynamics of the solar convection is one of the most prominent areas of in-

vestigation, as it contains the essential ingredients for an internally-generated

magnetic field, that is turbulent motions and/or differential rotation. Obser-

vations on the solar surface indicate the presence of a (large-scale) magnetic

field somewhere in the convection zone. However, it is still a matter of dis-

pute (see the review articles by Ossendrijver (2003) and Charbonneau (2014)).

Additionally, the detailed mechanism for generating a magnetic field, namely

solar dynamo, remains controversial (see Leighton, 1969; Charbonneau, 2005;

Hood and Hughes, 2011, and references therein).

The first plausible paradigm of the large-scale solar dynamo was pioneered

by Parker (1955b), when he proposed the concept of flux conversion between

toroidal and poloidal components of the field. The magnetic field can be ex-

pressed using spherical polar coordinates in the following form: B = Brr̂ +

Bθθ̂+Bφφ̂, with respect to the rotation axis of the axisymmetric astrophysical

body. The Bφφ̂ term is known as the toroidal (or azimuthal) component of

the magnetic field BT , whereas the sum of the remaining terms, Brr̂+Bθθ̂, is

known as the poloidal component of the magnetic field BP .
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Figure 1.6(a) demonstrates how differential rotation, in the toroidal direction,

causes stretching of the magnetic field in the poloidal plane, thus producing

a toroidal field of opposite directions in the two hemispheres. Parker (1955b)

established the likely scenario to complete the solar dynamo cycle through the

action of helical (small-scale) turbulence upon the toroidal magnetic field, to

produce the poloidal component of the field as shown in Figure 1.6(b). Cyclonic

convective motions are subject to Coriolis force that causes buoyancy-driven

flux tubes, frozen into the plasma, to helically twist out and produce (large-

scale) magnetic loops in the poloidal plane as displayed in Figure 1.6(c). This

qualitative argument of Parker (1955b) was later interpreted in a mathemati-

cal context by Steenbeck et al. (1966) using the approach of mean-field theory

of magnetohydrodynamics (see Subsection 2.4.3).

Figure 1.6: The dynamo process. The cyclic feedback loop on the poloidal and
toroidal components of the magnetic field, by differential rotation and helical
turbulence, propose a self-sustained dynamo. Image taken from Choudhuri
(1998).
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Although there are some uncertainties and discrepancies, the dynamo mech-

anism is believed to hold the key to understanding the dynamics of the Sun

(Jones et al., 2010). The site and physics of the solar dynamo is currently an

active subject of research (see, for example, Tobias, 2009; Charbonneau, 2014;

Brun and Browning, 2017). To date, our observational tools can only allow us

to optically see magnetic fields beyond the visible surface of the Sun. Thus,

to further delve into the intricate dynamics below the surface, one must seek

mathematical formulations and numerical simulations.

The dynamics in the solar interior relies critically on the indirect information

gained over the past years. Such includes helioseismic measurements, which

deduce the profiles of temperature, pressure, density, and composition with

depth. This allows one to impose constraints on standard theoretical models

of the Sun (Watanabe and Shibahashi, 2001).

From the combination of theoretical models and observational methods, one

can draw the following plausible picture: the generation and maintenance of

the solar magnetic field involve a dynamo operating at a region of strong

shear, the tachocline (Spiegel and Zahn, 1992). Large-scale magnetic field is

produced in the tachocline attributable to the action of downward penetrat-

ing weak, small-scale magnetic fields generated in the convection zone and the

sharp radial gradient within the tachocline (Parker, 1993). The tachocline is

generally regarded as the seat of strong large-scale magnetic field due to co-

inciding with the quiescent radiative zone, where the destabilising actions of

the magnetic field is suppressed (Spiegel and Weiss, 1980) and its exposure to

overshooting convection that intrudes from above, allowing field amplification

up to a commensurate level (Hughes, 2007; Priest, 2014). The possibility of

large-structured magnetic fields residing in the highly buoyant convection zone

is ruled out, as this would pose frequent rise of magnetic flux tubes (Parker,

1975, 1979).
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Inspection of the solar photospheric layer displays strong structured magnetic

fields in sunspots (see, for example, Fan, 2009), which suggests that magnetic

flux tubes must be triggered by instabilities of the large-scale magnetic field in

the non-turbulent tachocline, and maintain some degree of coherence through

the distortion and shredding of the turbulent convection zone. One of the main

issues in our knowledge, beside identifying the generation and evolution of the

magnetic field, is the emergence of intense magnetic concentrations from the

deep interior that imprints onto the surface of the Sun. In this thesis, I seek

to develop further our understanding of the dynamics near the base of, and

within, the convection zone.

This thesis is structured as follows. In Chapter 2, the essential equations that

underlie the physics present within the Sun will be outlined. Chapter 3 will

construct a simplified model that reflects on the interactions at the base of the

convection zone, discuss numerical techniques to solve the governing equations,

and present results that detail the transport of magnetic field throughout the

convection zone. Chapter 4 will focus on extending the results established in

Chapter 3 by modifying the model to incorporate more realistic configurations

that resemble the base of the solar convection zone, and thereafter explore the

dynamics of the system. In Chapter 5, attention will be directed to study the

development of convective instability by devising a theoretical framework that

intends to improve the modelling of thermal convection in complex systems

like the Sun. This is followed by a discussion in Chapter 6, where key findings

will be summarised and directions for future research will be suggested.

13



Chapter 2

Key Equations

In this chapter, the fundamental physical principles are applied to formulate

the required governing equations. This is followed by extending the equations

to magnetic fields in order to obtain the general set of equations that charac-

terise the system of interest. Various approximation techniques and simplifying

hypotheses are introduced to interpret the phenomena on desired scales.

2.1 Equations of Stellar Structure

A simple approach to explore the internal structure of astrophysical objects,

such as the Sun, involves the use of stellar models for static, spherically sym-

metric, and homogeneous gas (see, for example, Demarque and Guenther,

1991). Within this framework, mass is assumed to vary radially according to

dM(r)

dr
= 4πr2ρ(r), (2.1)

whereM(r) is the mass interior to a radius r, and ρ is the density. Furthermore,

stable stars (like the Sun) must obey the law of hydrostatic equilibrium, which

states that all forces acting on a gas element inside the star should be very

nearly in balance. This involves the balance of gravitational and pressure forces

within the star
dp(r)

dr
= −GM(r)

r2
ρ(r) = −g(r)ρ(r), (2.2)
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where p is the pressure, G is the universal gravitational constant, and g is

the gravitational acceleration. Both Equations (2.1) and (2.2) determine the

mechanical structure of a star in hydrostatic equilibrium. However, to obtain

a closed set of equations, a relation between p and ρ, called the polytropic

relation, is introduced:

p = Kρ1+
1
m , (2.3)

where K is the polytropic constant, and m is the polytropic index. The above

equations were formally obtained in the 19th-century, to describe a star as a

polytropic self-gravitating gaseous sphere, and continue to be useful as crude

approximations to more realistic stellar models (Foukal, 1990; Chandrasekhar,

2003). Introducing the dimensionless quantities

ρ = ρcθ
m, p = pcθ

m+1, α2 =
K(m+ 1)ρ

1−m
m

c

4πG
, r = αξ, (2.4)

where θ is the polytropic temperature, α is a length constant, ξ is a new

radial variable, and subscript c denotes central values of the star, and coupling

Equations (2.1)-(2.3) yield the well-known Lane-Emden equation for polytropic

stars
1

ξ2
d

dξ

(
ξ2
dθ

dξ

)
= −θm. (2.5)

The Lane-Emden equation provides solutions, known as polytropes of index

m, that determine the stability conditions for stars over a range of stellar

masses and radii. For m ≤ 1.5, the solutions approximate an atmosphere in

adiabatic convective equilibrium, such as fully convective stars, while m > 1.5

corresponds to stars in radiative equilibrium.

White dwarfs, fully radiative stars, or fully convective stars are well mod-

elled as polytropes. However, to fairly approximate the Sun, one would re-

quire a composite polytropic model, such as proposed by Hendry (1993), for

example. Beneath the convection zone, the solar body is believed to be in

radiative equilibrium, and therefore stably stratified. Similarly, the tachocline
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is believed to lie in a region of strong, stable stratification, but is additionally

subject to convective overshooting. In other words, it experiences intrusion

of convective plumes from the overlying unstably-stratified convection zone.

Therefore, given that a small portion of the solar interior will be the main

focus of this thesis, a two-layer composite polytropic model will be considered

where appropriate.

2.2 Hydrodynamics

The basic hydrodynamic equations, which describe the macroscopic changes

and evolution of a fluid, follow from conservation laws: the conservation of

mass, the conservation of momentum, and the conservation of energy. The

equations consist of the standard mass continuity equation, the Navier-Stokes

equation, and the energy equation.

Mass Continuity

The equation for the mass is defined as:

∂ρ

∂t
+∇ · (ρu) = 0, (2.6)

where ρ is the fluid density, and u is the velocity field.

The Navier-Stokes equation

The Navier-Stokes equation arises from the momentum conservation, and is

given by:

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+ F , (2.7)

where p is the pressure and F indicates external forces, which includes the

effect of forces such as gravitational forces, Fg, and viscosity, Fv. Provided

that a Newtonian fluid is considered, the effect of viscosity

Fv = ∇ · (µτ ) (2.8)
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is expressed in terms of the viscous stress tensor

τij =
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij. (2.9)

In Equation (2.8), µ is the dynamic viscosity and is the product of kinematic

viscosity, ν, and density, i.e. µ = ρν.

Energy Equation

The energy equation can take different forms (see Priest 2014); in terms of the

internal energy, e, this gives:

ρ
de

dt
+ p∇ · u = −L, (2.10)

where L corresponds to the net effect of energy. The internal energy in a

polytropic atmosphere is defined as e = cvT , where cv is the specific heat

at constant volume. Additionally, cp is the specific heat at constant pressure

and we have a relation that links cp, cv, and the gas constant R∗ = cp − cv.

Equation (2.10) can be expressed in an often more helpful form, in terms of

temperature variations in time, as

ρcv
∂T

∂t
+ ρcv(u · ∇T ) + p∇ · u = −L, (2.11)

where T is the temperature. Including the relevant components of L,

L = ∇ · q −Hv, (2.12)

where q = −K∇T is the heat flux (K is the heat conductivity), and Hv =

µτ 2/2 is the viscous heating. The energy equation reads

ρcv

(
∂T

∂t
+ (u · ∇T )

)
= −p∇ · u+∇ ·

(
K∇T

)
+
µτ 2

2
. (2.13)
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Perfect Gas Law

Throughout the thesis, the fluid is assumed to obey the equation of state for

a perfect gas, that links temperature, density, and pressure

p = R∗ρT, (2.14)

where R∗ is the gas constant.

2.3 Magnetohydrodynamics

Matter in stellar interiors exists in the plasma state. With the purpose of

understanding the dynamics of the solar interior and the magnetic features

observed on the outer parts of the Sun, we require the magnetohydrodynam-

ics (MHD) equations. MHD equations are a self-consistent framework that

enables us to detail the large-scale dynamics of space plasmas in modern as-

trophysical problems (Powell et al., 2003; Zhang and Feng, 2016).

The governing equations, stated below, follow from the complete set of Maxwell’s

equations coupled with the equations of mass, momentum and energy, de-

scribed in Section 2.2, together with Ohm’s law. This includes the induction

equation, which is of vital importance to determine the evolution of the mag-

netic field B1, derived by eliminating the electric fields E in Faraday’s law,

Ampère’s law, and Ohm’s law. The induction equation will be derived below

based on Fearn (2013) and Priest (2014).

1To be precise, B is the magnetic induction but is commonly referred to as the magnetic
field (Fearn, 2013).
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Maxwell’s Equations

Maxwell’s equations are the governing equations for magnetic and electric

fields. In mks units, these are

∇ ·B = 0, (Gauss’ law for magnetism) (2.15a)

∇ ·E =
ρc
ε0
, (Gauss’ law) (2.15b)

∂B

∂t
= −∇×E, (Faraday’s law) (2.15c)

1

c2
∂E

∂t
= ∇×B − µ0j, (Ampère’s law) (2.15d)

under the relations B = µ0H and D = εE, to eliminate the magnetic field

strength H and the electric displacement field D. The permittivity, ε0, and

magnetic permeability, µ0, are approximated by their values in free space.

The equations of MHD, together with appropriate boundary conditions, form

a complicated set of coupled differential equations, thus making it essential

to reduce the system further by including simplistic assumptions that are ap-

propriate for modelling the inside of the Sun. A fundamental assumption for

many astrophysical applications, known as the MHD approximation, is that

relative velocities are minimal compared to the speed of light, c = 1/(ε0µ0)
2.

One consequence of this relation is the reduction of Ampère’s law (Equation

2.15d) to

∇×B = µ0j. (2.16)

Ohm’s Law

Ohm’s law is a relation between electric field and current density. In a moving

conductor, the total electric field is proportional to the current density j.

Further to the electric field E acting on a medium at rest, plasma moving

with velocity u is subject to an electric field u×B. Hence,

j = σ(E + u×B), (2.17)
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where σ is the electrical conductivity.

The Induction Equation

The induction equation plays a fundamental role in determining the behaviour

of a magnetic field B. The induction equation is derived as follows: start-

ing with the reduced form of Ampère’s law (Equation 2.16) and Ohm’s law

(Equation 2.17), one obtains

η∇×B = (E + u×B), (2.18)

where η = 1/(σµ0) is the magnetic diffusivity. Taking the curl of Equa-

tion (2.18) implies that

∇×
(
η∇×B

)
= ∇×E +∇× (u×B). (2.19)

Given Gauss’ law for magnetism (Equation 2.15a) and Faraday’s law (Equation

2.15c), Equation (2.19) reads

∂B

∂t
= ∇× (u×B − η∇×B). (2.20)

The above equation consists of the principal quantities in MHD, u and B, and

is known as the induction equation.

Modified hydrodynamical equations

To form a complete set of MHD equations, the significant contribution of the

magnetic field to the evolution of the system must be taken into account.

Returning to the basic hydrodynamic equations introduced in Section 2.2, an

additional forcing term appears for the magnetised plasma in the Navier-Stokes

equation (Equation 2.7), known as the Lorentz force,

Fl = j ×B. (2.21)
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Using the relation deduced from Ampère’s law (Equation 2.16) and vector

identity ∇(A ·B) = (A · ∇)B + (B · ∇)A+A× (∇×B) +B× (∇×A), Fl

can be decomposed into two terms. The magnetic pressure force, ∇|B|2/2µ0,

and the magnetic tension force, (B · ∇)B/µ0, that acts only when field lines

are curved. Thus, the Navier-Stokes equation (Equation 2.7) is modified to

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p−∇

(
|B|2

2µ0

)
+

(B · ∇)B

µ0

+∇ · µτ + Fg. (2.22)

Furthermore, Ohmic dissipation, |j|2/σ, is an additional source of energy and

is incorporated into the energy equation (Equation 2.13) to become

ρcv

(
∂T

∂t
+ (u · ∇T )

)
= −p∇ · u+∇ ·

(
K∇T

)
+
η|∇ ×B|2

µ0

+
µτ 2

2
. (2.23)

2.4 Instabilities, Turbulence and Mean-Field

Theory

Convection is an important physical process in which thermal energy is trans-

ferred by the motion of a fluid. Resulting from the large gradients in temper-

ature, together with gravity, convective flows are often present in atmospheres

of celestial bodies such as stellar interiors, and accretion disks. Convectively

driven flows within stars like the Sun are considered turbulent, rather than

laminar, and are important for the generation of a large-scale magnetic field

through dynamo action (refer to Section 1.2).

2.4.1 Convective Instability

The onset of convective instabilities crucially depends on the characteristics of

the fluid. Suppose a perfect gas in hydrostatic balance in a uniform gravita-

tional field. With the direction of the vertical coordinate, z, chosen opposite to

the direction of gravity, density ρ(z) and pressure p(z) are expected to decrease

with height z. Now, assume a parcel of gas in equilibrium with the ambient

medium, i.e. density ρ and pressure p are the same as the surroundings. By
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considering a small vertical displacement of the parcel against gravity, as illus-

trated in Figure 2.1, the parcel deviates to a surrounding environment of lower

density and pressure, ρ′ and p′ respectively. Acoustic waves quickly diminish

the imbalance of pressure and so, engender an adiabatic expansion of the par-

cel to reach pressure equilibrium (Clarke and Carswell, 2007). However, heat

exchange takes place rather slowly, which results in a change of temperature

inside the parcel and hence to the density at the new position, ρ∗. If ρ∗ > ρ′,

then the displaced parcel will tend to sink back to its original position, and the

gas is said to be stable against convection. If ρ∗ < ρ′, the parcel will rise due

to buoyancy force (according to Archimedes’ principle), and the gas is said to

be convectively unstable.

Figure 2.1: Convective instability. Illustration of a rising parcel of gas in a
stratified environment.

Mathematically, the stability of the system can be expressed by looking at

the density difference. In a perfect gas, this is given by

ρ∗ − ρ′ =
[
−
(

1− 1

γs

)
ρ

p

dp

dz
+
ρ

T

dT

dz

]
∆z. (2.24)

Here γs = cp/cv is the adiabatic index, where cp is the specific heat at constant

pressure, and cv is the specific heat at constant volume. Noting that the

gradients of pressure and temperature are negative, the system is stable against
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convection if ∣∣∣∣dTdz
∣∣∣∣ < (1− 1

γs

)
T

p

∣∣∣∣dpdz
∣∣∣∣. (2.25)

This value of dT/dz is known as the adiabatic temperature gradient, while

the above condition (Equation 2.25) is known as the Schwarzschild instability

criterion (Schwarzschild, 1906). By solving a simplified momentum equation

of the gas parcel, the behaviour can also be expressed in terms of a buoyancy

frequency, known as the Brunt-Väisälä frequency,

N = ±

√
g

T

[
dT

dz
−
(

1− 1

γs

)
T

p

dp

dz

]
. (2.26)

The quantity N is the frequency of oscillation, and it determines the behaviour

of the solution. If N ∈ R, the gas is convectively stable, and the solutions are

oscillations. If N ∈ C, the gas is convectively unstable, and the solutions rep-

resent an exponentially decaying and an exponentially growing mode (Choud-

huri, 1998).

Strictly speaking, the above analysis for stability is simplified. In particu-

lar, the conditions for stability are sensitive to disturbances, in addition to

radiative diffusion and conduction within the gas parcel. A more general cri-

terion for instability can be provided in terms of the dimensionless Rayleigh

number (Rayleigh, 1916; Jeffreys, 1926)

Ra =
gd4

νK

(
α

∣∣∣∣dTdz
∣∣∣∣), (2.27)

where d denotes the depth of the domain, and ν, K, and α are respectively the

coefficients of kinematic viscosity, thermal conductivity, and volume expan-

sion. For a given system, and depending on the boundary conditions, there

must exist a critical Rayleigh number, Rac, above which the system is linearly

unstable, and oscillatory patterns arise. For growing Ra values, convection is

likely to become more vigorous. A more detailed discussion of the derivation

and analysis are contained in Chandrasekhar (1961) and Stix (2002).
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2.4.2 Magnetic Buoyancy

Due to stretching caused by differential rotation, magnetic field beneath the

radiating surface is presumed to exist in the form of toroidal flux tubes of

strong field concentration. Assume an isolated flux tube with magnetic field

strength, B, internal gas pressure, pin, and external gas pressure, pext. In order

to maintain pressure equilibrium between the flux tube and its surrounding

atmosphere,

pext = pin +
B2

2µ0

, (2.28)

must be satisfied. In thermal equilibrium, the above equation implies that

the density in the region of the field is less than the surrounding density, i.e.

ρext ≥ ρin. If such configuration takes place in parts of the toroidal magnetic

flux tube, then the tube would experience a buoyant force and rise against the

gravitational field. This classic transport mechanism is known as magnetic

buoyancy instability and was introduced by Parker (1995a) in a discussion

of sunspots formation by instabilities associated with the deep-seated solar

toroidal field below the surface, and is invoked in most models of solar dynamo.

2.4.3 Mean-Field Approximation

Turbulence is one of the most unpredictable physical phenomena, underlying

the complicated and irregular motion of rapidly evolving fluids, that can con-

tribute to many different length-scales significantly (see, for example, Yoshizawa

et al., 2002). A physical representation of a fluid, from small to large scales,

remains notoriously difficult to contain in one consistent framework. Within

the theory of mean-field approximation, the behaviour of the large-scale fields

due to small-scale turbulence is described by parameterising the effects of tur-

bulence. This statistical approach is one plausible way of handling turbulence

in the solar context, since complexity within the highly turbulent solar con-

vection zone, for example, poses a broad spectrum of dynamical scales to be

present.
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In view of the definition by Steenbeck et al. (1966), the magnetic and velocity

fields can be decomposed in terms of mean and fluctuating parts:

B = B̄ +B′, u = ū+ u′, (2.29)

where

ū′ = B̄′ = 0. (2.30)

Here, the overline denotes the mean part of the corresponding field, and the

prime corresponds to the fluctuating part of the fields. Generally, the mean

quantities follow from defining an appropriate averaging procedure (e.g. spa-

tial, temporal, ensemble), whereby the average is taken over scales sufficiently

larger than the turbulent eddy scales.

Accordingly, the induction equation (Equation 2.20) can be expressed as

∂(B̄ +B′)

∂t
= ∇× ((ū+ u′)× (B̄ +B′)− η∇× (B̄ +B′)). (2.31)

By spatially averaging the terms in Equation (2.31) over some intermediate

length-scale, following Reynolds rules (see, for example, Hoyng, 2012), the

mean-field induction equation is derived. That is,

∂B̄

∂t
= ∇× (ū× B̄ + E − η∇× B̄), (2.32)

where E = u′ ×B′ is the mean electromotive force (e.m.f.) due to fluid ve-

locity and magnetic field fluctuations. This mean e.m.f., E , allows the system

to behave differently from laminar fields and so plays a vital role in turbulent

dynamo (Moffatt, 1978, 1983; Krause and Radler, 1980). By taking the differ-

ence of Equations (2.31) and (2.32), an equation for the magnetic fluctuation

is deduced:

∂B′

∂t
= ∇× (u′ × B̄ + ū×B′ + u′ ×B′ − E − η∇×B′). (2.33)
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Suppose the small-scale field B′ is zero at t = 0, then a linear relation can

consequently be established between the mean field B̄ and mean e.m.f E , if no

magnetic fluctuation at small scales (B′ = 0) is present. Let us further assume

the spatial scale of fluctuation to be small compared to that of the mean field.

This implies that E can be represented in the form of a Taylor expansion:

Ei = αijB̄j + βijk
∂B̄j

∂xk
+ γijkl

∂2B̄j

∂xk∂xl
+ ...+ aij

∂B̄j

∂t
+ bijk

∂2B̄j

∂xk∂t
+ ..., (2.34)

where αij, βijk, γijkl are pseudo-tensors that depend on properties of the flow.

Reducing Equation (2.34) to first-order spatial derivative terms gives

Ei = αijB̄j + βijk
∂B̄j

∂xk
. (2.35)

At this stage, it is necessary to specify the form of αij and βijk, and so deter-

mine their effect in the evolution of the mean magnetic field. Due to the lack of

adequate knowledge on convective turbulence, the simplest case is considered

where the mean flow is zero, ū = 0, and fluctuations in the velocity field, u′,

correspond to homogeneous and isotropic turbulence. That is such

αij = αδij and βijk = −βεijk, (2.36)

where α is a pseudo-scalar, β is a scalar, δij is the Kronecker tensor, and εijk

is the Levi-Civita tensor. Thus, back to Equation (2.35), the mean e.m.f. for

homogeneous isotropic turbulence reads

EA = αB̄ − β∇× B̄. (2.37)

By assuming inhomogeneity and anisotropy on the turbulent flow, one can

provide an alternative representation of E . In this case, the coefficients αij

and βijk may be split into symmetric and antisymmetric parts. Given that the

main focus is on terms up to first order, the α-tensor is only expressed into

26



CHAPTER 2. KEY EQUATIONS

symmetric and antisymmetric components, i.e.

αij = α
(S)
ij + α

(A)
ij = αδij − εijkγk, (2.38)

so that,

α
(A)
ij B̄j = (γ ×B)i. (2.39)

From this, the mean e.m.f. equation for inhomogeneous anisotropic turbulence

is obtained:

EB = αB̄ − γ × B̄ − β∇× B̄, (2.40)

where

α = −τ

3
u′ · (∇× u′),

β =
τ

3
u′ · u′,

and

γ = −τ

3
∇u′ · u′,

are the dynamo coefficients. Here the term α depends on helical flows associ-

ated to turbulence, and so the “α-effect” presents the twisting of the average

field driven by helical turbulent convection, where τ is the correlation time

for turbulence. The β-effect denotes the diffusive transport of B̄ arising from

turbulence and is also known as turbulent diffusivity. Lastly, the γ-effect cor-

responds to the additive advection of mean magnetic field by inhomogeneous

turbulence with pumping velocity γ.

In conjunction with the specification of the dynamo-coefficients and defini-

tion of the mean flow ū, the mean-field induction equation (Equation 2.32)

can be solved to determine the evolution of the mean magnetic field B̄. This

framework provides a simple, parametric modelling approach to tackle chal-

lenging questions associated with the role of turbulence in layers inaccessible

to direct observations, and to explain many of the observed features on the

Sun.
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Chapter 3

The Effect of γ-Pumping On

Buoyant Magnetic Structures

3.1 Introduction

Perceived magnetic features on, and above, the surface of the Sun have given

rise to a number of open questions concerning the mechanisms responsible for

the generation, maintenance, and emergence of magnetic fields from the deep

interior to the visible surface of the Sun (Zwaan, 1985; Solanki, 2003; Silvers,

2008). To address these topics, numerous investigations have been undertaken

(see, for example, Parker, 1993; Dikpati and Gilman, 2001; Tobias and Weiss,

2007, and references therein), and it has become clear that the tachocline re-

gion, which is located just beneath the convection zone, is a crucial component

of both the dynamo mechanism and also in the formation of strong structures

that emerge to form magnetic phenomena at the solar surface (see, for example,

Spiegel and Zahn, 1992; Gilman, 2005; Christensen-Dalsgaard and Thompson,

2007).

The solar tachocline proves to be a region of great dynamical interest. It is re-

garded as the seat of strong, large-scale toroidal magnetic field and is a region

of intense radial gradient (Charbonneau, 2010). Magnetic structures must be

generated in this region and retain their coherence throughout the turbulent
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convection zone, in order to reach the solar surface and give rise to sunspots

and other magnetic features. A key outstanding issue is to understand how

structures are formed with sufficient intensity, and on an appropriate timescale,

in the tachocline to emerge into the turbulent convection. While more recent

research has focused on the formation of solar surface magnetic concentrations

within the convection zone itself (Perri and Brandenburg, 2018), a substantial

body of literature has sought to examine magnetic buoyancy instabilities of

a shear-generated magnetic field (see, for example, Cline et al., 2003; Vasil

and Brummell, 2008; Silvers et al., 2009, and references therein). For the sake

of simplicity, many of these calculations investigate buoyant magnetic tubes

in isolation, i.e. by neglecting the presence of an overlying convective layer.

However, to develop an enhanced picture of the dynamics, it is essential to

consider and understand the evolution of magnetic structures in the presence

of convection.

Previous studies of the interaction between buoyant magnetic flux structures

and convection (Nordlund et al., 1992; Brandenburg et al., 1996; Tobias et al.,

1998, 2001) have explored the influence of turbulent convection on the trans-

port and storage of the underlying magnetic field. In their frameworks, they

achieve a radial pumping that arises naturally from the turbulent convective

flow. However, resulting from the complex interactions in these models, it is

difficult to extract more general phenomena that permit global features, par-

ticularly the emergence of magnetic flux structures, to take place. A small

number of studies have implemented the simpler approach of parameterising

the pumping effects observed in magnetoconvection simulations using the the-

ory of mean-field electrodynamics (refer to Subsection 2.4.3), to capture such

global features (see, for example, Ossendrijver et al., 2002). This so-called

γ-pumping implies a secondary advection term of the mean magnetic field

relative to the flow and can be characterised to describe properties of the tur-

bulent convective flow without the associated complications of full convection

calculations (Moffatt, 1983; Tobias et al., 2001).
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Theoretical investigations of turbulent transport coefficients, including the tur-

bulent γ-pumping effect, have been previously studied (see Krause and Rädler,

1980; Moffatt, 1983; Kichatinov, 1991; Brandenburg and Subramanian, 2005).

Vertical pumping mechanisms are long known to play a prominent role in the

maintenance and generation of the solar magnetic field; the pumping effect is

found to expel magnetic flux from regions associated with strong turbulence

and so, is also known as the diamagnetic effect (Zel’dovich, 1957). However, the

role of turbulent pumping in the horizontal direction did not receive adequate

attention, though its existence has been suggested from symmetry considera-

tions in the context of mean-field electrodynamics (Krause and Rädler, 1980)

and from analytical calculations using the first order smoothing approximation

(FOSA) (Kichatinov, 1991).

The first insight into the non-radial γ-pumping in a numerical framework

was performed by Ossendrijver et al. (2002). Their work revealed interest-

ing measures of the directional-dependent turbulent pumping. Latitudinally,

for instance, the pumping effects of the mean toroidal field favour an equator-

ward motion which may indicate the propagation of emerging sunspots as a

result of such pumping, rather than to meridional circulations.

Recently, Barker et al. (2012) carried out the γ-pumping approach in their

model in order to capture the dynamics of overshooting convection on buoyant

magnetic structures forming in the tachocline. Results from their numerical

calculations establish an equipartition relation between the magnetic field and

the γ-pumping under which the evolution of the large-scale field is determined;

proposing a plausible mechanism of restraining and intensifying the magnetic

field before buoyancy instabilities play a significant role in the emergence of

flux structures. However, their investigation in this framework was prelimi-

nary as several features were not included and therefore may not capture the

entire picture of the dynamics of the magnetic field in the presence of tur-
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bulent convection. Turbulent motions naturally depend on variables of time

and space (Toomre et al., 1984; Weiss et al., 1996, 2004), and it is unclear

how the system would evolve if the static pumping profile in the Barker et al.

(2012) model were extended to account for temporal characteristics. A time-

dependent γ-pumping will lead to temporal variations in the mean downward

force and hence, the equipartition value. The research presented here will build

on the work of Barker et al. (2012) by exploring the effect of time-dependent

pumping on the formation and evolution of magnetic structures.

3.2 Model and Method

To investigate the dynamics within the Sun, it is possible to study the inter-

action acting at local scales or otherwise global scales. Global-scale modelling,

however, cannot capture the many processes that occur over a large range of

spatiotemporal scales, and so would require scale-truncation conditions (see,

for example, Browning et al. 2006). Local-scale investigations, where a small

portion of the region of interest is considered, can provide a more detailed de-

scription. For example, instabilities due to magnetic buoyancy are thought to

act primarily locally. Therefore, a local three-dimensional Cartesian domain

of electrically conducting, compressible fluid will be considered here, with co-

ordinates (x, y, z) extending from x, y = 0 to x, y = λx,y in the horizontal

directions and from z = 0 to z = d in the vertical direction. The z-axis is

chosen to point vertically downwards, parallel to the constant gravitational

force, gẑ (refer to Figure 3.1 for an illustration).

The evolution of the desired system is governed by the induction equation

(Equation 2.20), the equations of conservation of mass (Equation 2.6), mo-

mentum (Equation 2.22), and energy (Equation 2.23), in addition to the ideal

gas equation of state (Equation 2.14). Properties such as temperature, density,

and pressure within the Sun depend on other interrelated transport properties

of the medium. These include the thermal conductivity, viscosity and magnetic

31



CHAPTER 3. THE EFFECT OF γ-PUMPING ON BUOYANT
MAGNETIC STRUCTURES

diffusivity (Burnell, 2004). The challenge to solar physicists is to provide an

accurate relationship between the various properties. This issue is addressed in

more detail in Chapter 5. However, by adapting simplifying assumptions, it is

possible to draw some qualitative information about the underlying dynamics.

Figure 3.1: A schematic representation of the three-dimensional Cartesian
plane considered for the model.

3.2.1 The Equations

To reduce the complexity of the system, it is convenient to cast the equations

into dimensionless form by eliminating the measurement units. The depth of

the domain, d, and the sound-crossing time, t = d/
√
R∗T0, are chosen as the

fundamental units of length and time, respectively, where T0 corresponds to

the temperature at the top boundary and is the unit of temperature. In a sim-

ilar vein, ρ0 is the unit of density and is scaled by the initial value at the top

boundary. Furthermore, the magnetic field is assumed to be initially uniform

and is scaled by the magnitude of the undisturbed strength B0.
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Suppose the dynamic viscosity, µ, magnetic diffusivity, η, thermal conductivity,

K, and specific heats at constant density and pressure, cv and cp respectively,

all constant, then the set of non-dimensional equations read:

∂ρ

∂t
+∇ · (ρu) = 0, (3.1)

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p−∇

(
F |B|2

2

)
+ F (B · ∇)B

+ σCk(∇ · τ ) + ρgẑ,

(3.2)

ρ

(γs − 1)

(
∂T

∂t
+ (u · ∇)T

)
= −p∇ · u+

γsCk
(γs − 1)

∇2T

+ Ck

(
Fζ0|∇ ×B|2 +

στ 2

2

)
,

(3.3)

∂B

∂t
= ∇× (u×B − Ckζ0∇×B), (3.4)

∇ ·B = 0, (3.5)

p = ρT. (3.6)

Consequently, a number of non-dimensional quantities parameterise the prob-

lem. These are: the Prandtl number σ = µcp/K, the dimensionless thermal

diffusivity Ck = K/ρ0cpd
√
R∗T0, the ratio of magnetic to thermal diffusivity at

the top of the domain ζ0 = ηcpρ0/K, the temperature gradient θ = ∆d/T , the

polytropic index m = gd/R∗∆T−1, and lastly the dimensionless field strength

F = B0
2/R∗T0ρ0µ0.

3.2.2 Boundary and Initial Conditions

To close the system of equations, certain boundary conditions are prescribed.

In the horizontal directions, the system is assumed to satisfy periodic bound-

ary conditions. The imposed boundary conditions at the top and bottom of

the domain (z = 0 and z = d, respectively) are such that the system is imper-

meable, stress-free, and the magnetic field is vertical, i.e. the mass flux and

mechanical energy flux vanishes at the boundaries. Temperature is fixed at
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the upper surface, whilst heat flux is assumed to be a constant at the lower

surface, which means that the imposed heat flux is the only flux of energy into

and out of the system. These conditions are summarised by

uz =
∂ux
∂z

=
∂uy
∂z

= Bx = By = 0, T = T0 at z = 0,

uz =
∂ux
∂z

=
∂uy
∂z

= Bx = By = 0,
∂T

∂z
=
T0θ

d
at z = d.

(3.7)

The governing equations exhibit an equilibrium solution describing a stratified

polytropic atmosphere in hydrostatic balance. Thus, the initial configuration

for temperature and density distributions take the form

T = T0(1 + θz/d), ρ = ρ0(1 + θz/d)m, (3.8)

where m is the polytropic index introduced earlier. All simulations start from

this initial state together with small amplitude perturbations of the temper-

ature profile. The early stages of evolution exhibit sensitivity to the initial

conditions prescribed, however the specific details of the initial perturbation

do not greatly influence the long-term evolution of the system. Examples of

different initial temperature and density profiles are displayed in Figure 3.2.

3.2.3 Magnetic Pumping Profiles

As in Barker et al. (2012), the model has been modified to incorporate the

γ-effect, derived in Subsection 2.4.3, via an additional term ∇ × (γ × B)

in the induction equation (Equation 3.4). It is worth emphasising that this

modulation of pumping only captures the effect of small-scale turbulence on

the evolution of the large-scale magnetic field. Although this mathematical

approach does not consider the scales of convection which are comparable or

larger than the buoyancy modes, it is to provide an understanding of the un-

derlying physical interactions that influence buoyant magnetic structures.

Given that the computational box in the Cartesian space has periodic bound-
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Figure 3.2: Plots of the initial temperature distribution (top panel) and density
distribution (bottom panel) for several values of θ and m, where d = T0 = ρ0 =
1.
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ary conditions imposed in the horizontal directions, it is appropriate to express

the mean quantities as horizontal averages. Convection cells with relatively

small spatial scale, comparable with the horizontal length scales of the box,

are considered. Therefore, an average of these small-scale convection cells can

be defined. In these simulations, the magnetic field B is introduced as a mean

field, with scales being larger than the artificial convection.

The initial vertical profile of magnetic pumping described by Barker et al.

(2012) had the following form:

γ = γ(z)ẑ =
γm
2

[
1 + tanh

(
(∆zB)−1(zB − z)

)]
ẑ, (3.9)

where γm is the magnetic pumping strength, zB is the bottom of the pumping

layer, and (∆zB)−1 is the width of transition layer.

This spatial dependency of the pumping was selected to represent the change

that occurs between the radiative and convection zones with the pumping

gradually decaying to zero at the interface of the two zones. However, such

pumping profile does not convey the full picture of the dynamics of magnetic

field in the presence of turbulent convection. The chosen profile can be inter-

preted as a solid wall acting upon the magnetic field, i.e. there is no variability

in the mean downward force overlying the magnetic layer.

Unlike in Barker et al. (2012), γ will be time-dependent as its derivation

incorporates spatial but not temporal averaging. The form of the γ-pumping

is formally discussed in, for example, Moffatt (1983), where it is shown that

the vector γ can be time-dependent in a similar way that the α-effect can

be time variant (see Hughes et al., 2011). In this work, the time-dependent,

vertical γ-pumping profile is chosen to have the following form:

γ = γ(z, t)ẑ =
γm
2

[
1 + sin(kt)

][
1 + tanh

(
(∆zB)−1(zB − z)

)]
ẑ , (3.10)
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where k controls the variation of the pumping in time, and where γ is always

greater than, or equal to, zero. As this is the first inclusion of a time-dependent

γ-pumping in such a model, the motivation was to first mathematically under-

stand the effect of time-dependence on the γ-pumping. Therefore, the time-

dependent nature of the pumping has been chosen to behave in a simple os-

cillatory pattern to ease our understanding of the dynamics in a controlled,

and well-defined, framework. Figure 3.3 illustrates an example of how the

γ-pumping varies throughout space and time in this model.
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Figure 3.3: A pumping profile, γ(z, t) with k = 1, γm = 0.01, zB = 0.5, and
(∆zB)−1 = 30, as function of depth at time t = 0 (top panel) and time at
depth z = 0.2 (bottom panel).
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3.2.4 Parameter Choices

The dynamical evolution of a uniform, horizontal magnetic layer B = Byŷ,

positioned in the region bounded by z = z1 and z = z2 and is zero everywhere,

is evaluated under the influence of magnetic flux pumping. To accommodate

the imposed magnetic field, upon the existing hydrodynamic state, the density

in the magnetic layer is adjusted, so the system is in equilibrium. Table 3.1

displays the parameter choices for this model. These are chosen exactly as in

Barker et al. (2012) to allow direct comparison with the results of the current

investigation when a time-dependent pumping profile is included.

Parameter Description Value
σ Prandtl number 0.005
Ck Thermal diffusivity 0.01
θ Thermal stratification 2.0
γs Ratio of specific heats 5/3
ζ0 Magnetic diffusivity 0.01
F Magnetic field strength 0.01
m Polytropic Index 1.6
γm Magnetic pumping strength 0.1
zB Bottom of pumping layer 0.5
(∆zB)−1 Width of transition layer 30.0
z1, z2 Top and bottom of magnetic layer 0.6, 0.8
λx, λy Box horizontal aspect ratio 1.0, 4.0
d Vertical depth of box 1.0
By(t = 0) Initial horizontal magnetic strength 1.0
k Frequency associated with magnetic pumping Variable

Table 3.1: The choice of parameters for the γ-pumping model.

The choice of parameters represents a sub-adiabatic, stratified layer achieved

by setting γs = 5/3 and m = 1.6, which is noted to be less appropriate for the

region straddling the boundary of the convection zone. However, the results

in Barker et al. (2012) did not differ significantly from considering a piece-

wise polytropic layer. The strength of the magnetic pumping is constrained to

γm < 0.5 in order to mimic the magnetic effects resulting from compressible

turbulent convection (see Tobias et al., 2001). While the chosen values of ther-

mal diffusivity, viscosity, and magnetic diffusivity are less extreme than in the
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Sun, the same order as associated with the solar interior, i.e. 1� ζ0 � σ and

Ck � 1, is maintained (Gough, 2007). Magnetic field strength is restricted

to F � 1 on adopting the plasma beta present in the tachocline, β ∼ 107,

which is the ratio of magnetic and gas pressures (Tobias and Hughes, 2004).

The only variable quantity in the present simulations is k. Here, three cases

are discussed: Case 1 where k = 1, Case 2 where k = 0.1, and Case 3 where

k = 0.01.

Pumping effect on scalar fields of density and temperature, arising from turbu-

lence, are ignored as they are not directly related to the magnetic pumping ve-

locity. Also, the computational domain is elongated in parallel to the imposed

discontinuous field to allow vortex-induced instabilities and three-dimensional

structures to form (Matthews et al., 1995a). Non-zero diffusion coefficients are

incorporated into the system by explicitly defining the diffusive length scales

to be considerably more significant than the scale of the unresolved convection.

As in Barker et al. (2012), these diffusivities should be considered as eddy dif-

fusivities due to the unresolved small-scales of convection, which is consistent

with the spirit of the mean-field framework.

3.2.5 Numerical Scheme

The complex non-linear interactions and the broad range of spatial and tem-

poral scales that occur in astrophysical systems pose significant challenges in

solving the MHD equations, by which all scales of motion are fully resolved.

To date, several numerical techniques have been devised to solve the full set of

coupled equations with acceptable accuracy. The direct numerical simulation

(DNS) is the most exact method as the full, time-dependent set of equations

are solved numerically, and so it directly captures all scales contained in the

field. However, it is the most expensive approach due to the huge computa-

tional resources required. Current resources are insufficient to span all relevant

scales of turbulence down to the diffusion scale, for instance.
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With the desire of predicting accurate dynamic properties of turbulent flows,

the local approach of solving the MHD equations is employed using the DNS

scheme in a Cartesian framework. A modified version of a mixed finite-

difference/pseudo-spectral code is used, where detail on the original numerical

set-up can be found in Matthews et al. (1995b). Time discretisation is carried

out based on an explicit, third-order Adams-Bashforth scheme, whilst spatial

discretisation is performed using fourth-order finite-difference in the vertical

direction (upwind derivatives being utilised for the advection terms), and fast

Fourier transforms in the horizontal direction.

Spatial-discretisation

To approximate gradients in the vertical direction, an explicit fourth-order

finite difference method is applied to the conservative form of the governing

equations. The concept of a finite-difference scheme follows from invoking the

definitions of a derivative, and Taylor series expansion. For a differentiable

function f , the derivative with respect to x is expressed by the limit

df

dx
= lim

∆x→0

f(x+∆x)− f(x)

∆x
, (3.11)

and using Taylor’s theorem, the function f can be expanded as a Taylor series

around x,

f(x+∆x) =f(x) +∆x
df(x)

dx
+
∆x2

2

d2f(x)

dx2
+
∆x3

3!

d3f(x)

dx3
+ ...

+
∆xn−1

(n− 1)!

dn−1f(x)

dxn−1
+O(∆xn).

(3.12)

By assuming that the grid spacing is uniform and rearranging the Taylor series,

the first derivative of f at grid point i reads as follows:

f
(1)
i =

df

dx

∣∣∣∣
i

=
fi+1 − fi
∆x

− ∆x

2
f
(2)
i −O(∆x2) (3.13)

f
(1)
i ≈

fi+1 − fi
∆x

, (3.14)
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where subscript i+ 1 denotes the mesh point i+ 1. The last two terms on the

right-hand side of Equation (3.13) refer to the error committed by truncating

the series and is known as the truncation error. The accuracy of the approx-

imation relies on terminating the expansion and considering the truncation

error at higher orders. Equation (3.14) is called the first-order forward differ-

ence formula. Similarly, expressions for the backward and central differences

can be determined by calculating fi − fi−1 and fi+1 − fi−1 respectively. For

the central difference scheme, that is

fi+1 − fi−1
2∆x

= f
(1)
i +

∆x2

3!
f
(3)
i +

∆x4

5!
f
(5)
i +O(∆x6). (3.15)

Thus to obtain the second-order central difference approximation, terms of

order O(∆x2) and higher are eliminated. For fourth-order approximation,

it is essential to include additional neighbouring points. Using Taylor series

expansion, one can derive an expression for fi+2−fi−2 and eliminate the second

order error term to get

8(fi+1 − fi−1)− (fi+2 − fi−2)
12∆x

= f
(1)
i −O(∆x4). (3.16)

This fourth-order central difference scheme is employed on all interiors points,

while the backward or forward schemes can be utilised at the boundaries.

The periodicity in the horizontal directions of the domain encourages the

pseudo-spectral approach of computing the derivatives using fast Fourier trans-

forms, such that a spectral domain is used merely to obtain approximations of

the spatial derivatives at the grid points. This consequently leads to better ac-

curacy, with respect to the resolution, relative to the standard finite-difference

schemes (Fox and Orszag, 1973; Durran, 2013).

To illustrate the pseudo-spectral approach, suppose the periodic function f(x)

with period L discretised for N values by taking samples at the frequencies

nL/N such that fn = f(nL/N), where n = 0, 1, ..., N − 1. Expressing fn in
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the following form:

fn =
N−1∑
k=0

Fke
2πi
N
nk, (3.17)

the Fourier coefficients Fk are determined using the discrete Fourier transform

(DFT) (Johnson, 2011)

Fk =
1

N

N−1∑
n=0

fne
−2πi
N

nk. (3.18)

Therefore, applying the differential operator d/dx simply involves pointwise

multiplication of each Fk term in the k-space. The direct computation of the

DFT would involve O(N2) operations, while by adapting the algorithm of fast

Fourier transform (FFT), this is reduced to O(N logN) (Nussbaumer, 2013).

Thus, providing an effective way of computing the transition between spatial

and Fourier domains and a rapid means of calculating the derivatives. A com-

plete review of FFT can be found in Manolakis and Ingle (2011) and Ryan

(2019).

It is important to note, however, that one would deduce the exact samples

fn for terms Fke
2πi
N
nk and Fke

2πi
N
n(k+mN), given that e2πinm = 1 for any integers

n and m. This sample reconstruction, based on wrong frequencies, is known as

aliasing. The re-sampling of fn is unaffected, but the additional m-oscillations

between the sample points return significant changes on the derivatives. Sev-

eral methods do exist to eliminate the aliasing error (see Canuto et al., 2006),

which includes setting a bandlimit to frequencies |k + mkN | ≤ N/2 or alter-

natively minimising the first derivative of the interpolated f(x). The latter

approach of minimising the mean-square slope (see Johnson 2011 for a com-

plete derivation) yields minima for mk = 0 if 0 ≤ k < N/2 and for mk = −1

if N/2 < k < N . However, solutions are not unique for the k = N/2 compo-

nent, for even N . Following from Johnson (2011), the unique trigonometric
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interpolation of the form

f(x) = F0 +
∑

0<k<N/2

(
Fke

2πi
L
kx + FN−ke

− 2πi
L
kx

)
+ FN/2 cos

(
π

L
Nx

)
(3.19)

provides the minimal oscillation between the sample points.

The approach considered in this work to control the aliasing error and en-

sure calculations of more spectral accuracy, is to place a cut-off at one-third

of the possible frequencies (N/2)/3.

Time-discretisation

To advance a system in time, several numerical time-stepping treatments exist

that can be classified as explicit or implicit. Both types of procedures have

advantages and disadvantages, depending on the nature of the problem. In

explicit schemes, solutions are determined at each time-step based on the so-

lution at the current and previous time-steps. Therefore, explicit methods

are simple, as solutions can be directly calculated at each point; however, ap-

propriate small time-steps must be selected to capture the correct physical

behaviour and circumvent numerical instabilities (Wriggers, 2008). In implicit

schemes, conversely, solutions are determined at each time-step based on the

solution at the current and approximate future time-steps. Implicit methods

are not limited by time-step size and so can converge to the same solution

more efficiently, in comparison to explicit methods. However, to approximate

future time-steps, implicit schemes would require additional computational ef-

forts (Wriggers, 2008).

Besides the general classification of implicit and explicit schemes, time-discretis-

ation methods can also be identified as single-step or multi-step. One-step

methods include the Euler method, and the multi-stage Runge-Kutta method,

where only the solution of the previous state is required to compute the fu-

ture state (Grasselli and Pelinovsky, 2008). The Adam-Bashford method and
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the Leapfrog method are examples of multi-step methods, where several previ-

ous state solutions are considered to calculate the future state (LeVeque, 2007).

To allow the solutions of the governing MHD equations evolve in time, an

explicit Adams-Bashforth method of third-order is employed. The timescale

for diffusion and wave propagation through a mesh interval can become a

source of numerical instability, and thus impose limitations on the length of

the computational time-step. Additionally, such time-steps must be contin-

uously checked and modified during run-time, thus making it appropriate to

adopt this multi-step approach. In Matthew et al. (1995b), both for diffusion

and wave propagation the time-step limits were found to be of the same order

of magnitude.

The Euler method can be interpreted as the basis to all numerical methods.

Thus, prior to illustrating the third-order Adams-Bashforth scheme, consider

the initial value problem (Süli and Mayers, 2003):

f(t0, x) = f0(x),
∂f(t, x)

∂t

∣∣
t=t0

= f
(1)
0 (x). (3.20)

The solution of f(t, x) at time t = t0 + h, where h is the step size, can be

computed using the following forward Euler formula

f(t0 + h, x) = f(t0, x) + hf
(1)
0 (x). (3.21)

The first iteration in the Adams-Bashforth scheme is determined using Equa-

tion (3.21) and is also known as the first-order Adams-Bashforth. This is

followed by the second-order Adams-Bashforth in which the preceding time-

derivative is adapted to evaluate the next iteration

fn+1 = fn + α0f
(1)
n + α1f

(1)
n−1, (3.22)
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where subscript n denotes the present time-step, and the weights α0 and α1 are

to be found. This scheme is based on the idea of approximating the derivative

f (1) with a polynomial on the interval [tn, tn+1] via integration, where a p-order

polynomial results in a (p+ 1)-order method.

For the second-order Adams-Bashforth, the polynomial takes the form P (t) =

At + B, where the coefficients of the polynomial are determined using the

previously calculated points, n and n− 1. That is, the equations

Atn +B = f (1)
n , Atn−1 +B = f

(1)
n−1, (3.23)

are solved to give the polynomial coefficients

A =
f
(1)
n − f (1)

n−1

h0
, B =

tnf
(1)
n−1 − tn−1f

(1)
n

h0
, (3.24)

where h0 = tn − tn−1. Integrating the polynomial P within the interval

[tn, tn+1], where non-uniform step size is assumed gives

fn+1 =fn +
A

2
(t2n+1 − t2n) +B(tn+1 − tn)

=fn + f (1)
n

(
(t2n+1 − t2n)

2h0
− h1tn−1

h0

)
− f (1)

n−1

(
(t2n+1 − t2n)

2h0
− h1tn

h0

)
=fn + f (1)

n

(
h1 +

h21
2h0

)
− h21

2h0
f
(1)
n−1,

(3.25)

where h1 = tn+1 − tn. The weights for the second-order Adams-Bashforth

(Equation 3.22) are therefore given by

α0 = h1

(
1 +

h1
2h0

)
, α1 =

h21
2h0

. (3.26)

Similarly, the second-order method can be expanded for third-order or higher.

The third-order Adams-Bashforth scheme would require knowledge of two pre-

viously computed solution values

fn+1 = fn + α0f
(1)
n + α1f

(1)
n−1 + α2f

(1)
n−2, (3.27)
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with weights

α0 = h1 +
h21(h0 + h2)

2h0h2
+

h1
3h0h2

,

α1 =
h21h2

2h0(h0 − h2)
+

h31
3h0(h0 − h2)

,

α2 = − h21h0
2h2(h0 − h2)

− h31
3h2(h0 − h2)

,

(3.28)

where h2 = tn − tn−2.

When implementing the numerical algorithm discussed above to solve the de-

sired system, the choice of stress-free boundaries may raise an issue relating

to the momentum conservation, as reported by Jones et al. (2011). The

conservation form of the mass, momentum, and magnetic field equations are

considered in order to ensure that the mass, momentum, and the divergence

of the magnetic field are well conserved as the simulation proceeds. However,

numerical errors, including round-off and truncation errors during each time-

step, tend to add a small change in momentum. As the time-step magnitude

increases, these small changes can produce non-physical solutions. The solu-

tions reported in this thesis are carefully checked, where mass and momentum

remain conserved.

3.3 Results (Nonlinear Breakup)

This section is devoted to a discussion of the non-linear breakup of a uni-

form, artificially imposed, horizontal magnetic layer, in the presence of a time-

dependent magnetic flux pumping at the upper fraction of the domain, using

the numerical model detailed in Section 3.2. In the absence of the γ-pumping,

the physics underlying this configuration has been elucidated in a series of nu-

merical experiments carried out by Cattaneo and Hughes (1988) and Matthews

et al. (1995a). The here presented results are an extension of work previously

performed by Barker et al. (2012) on the emergence of magnetised structures

at the base of the convection zone.
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The effects of a time-dependent γ-pumping are explored by considering a se-

lection of different pumping timescales. In Case 1, the pumping profile is as

given in Equation (3.10) where k = 1, such that the γ-pumping evolves in line

with the sound-crossing time. Snapshots of the magnetic field for this regime

(Case 1) are shown in Figure 3.4. The system initiates with the uniform mag-

netic layer embedded in the lower part of the domain (Figure 3.4(a)). As

time evolves, a Rayleigh-Taylor type instability occurs as a result of the dense

medium supported by the less dense magnetised layer under gravity, leading to

the formation of buoyancy-driven magnetic structures ascending towards the

pumping region (Figure 3.4(b)). Once the magnetic field reaches the base of

the γ-pumping region, zB, magnetic flux concentrations begin to intensify.

The enhancement of the magnetic field strength is influenced by several fac-

tors. These include the vertical variation in the downward pumping which can

contribute to field amplification according to the induction equation, the com-

peting effect of magnetic buoyancy and γ-pumping below the interface, and

the complex interaction due to the magnetic field generating vortices. Locally

ascending magnetic structures and descending fluid are known to cause the on-

set of Kelvin-Helmholtz instability, giving rise to three-dimensional arching of

the magnetic field (Matthews et al., 1995a; Fan, 2001), as seen in Figure 3.4(c).

Emerging magnetic flux tubes continue to ascend in Figure 3.4(d) but are

soon pushed back down in Figure 3.4(e). This is in contrast with the earlier

findings of Barker et al. (2012), where concentrated magnetic structures were

seen to rise continually once the magnetic field reaches the equipartition value

determined by the Alfvénic Mach number for the γ-pumping at the interface,

Mγ = (By(t))
−1γm

√
ρ(zB)

/
F . (3.29)

In this model, the Alfvénic Mach number must be modified to allow for tem-
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Figure 3.4: Snapshots of the y-component of the magnetic field for Case 1 at
(a) t = 0.69, (b) t = 156.8, (c) t = 188.5, (d) t = 206.5, (e) t = 208.6, (f)
t = 210.8, (g) t = 211.5, (h) t = 212.2, (i) t = 212.9, (j) t = 213.6, and (k)
t = 214.4 respectively.
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poral and spatial variations. That is, to take into account the time-dependent

nature of the γ-pumping and to determine the action of the magnetic field

across various depths, i.e.

Mγ = (By(t))
−1γ(z, t)

√
ρ(z)

/
F = (By(t))

−1Beq(z, t) , (3.30)

where Beq denotes the equipartition value of the mean magnetic field with the

γ-pumping.

To study the behaviour of emerging magnetic flux in more detail, the hori-

zontal magnetic component of the field in the y-direction is examined, as a

function of time and depth. Magnetic components in the x- and z-directions

are of least interest and remain significantly small throughout all calculations.

Figure 3.5 provides an example of the changes that are occurring to the mag-

netic field in relation to the strength of the γ-pumping by focusing on an

individual magnetic structure (see the box in Figure 3.4(f) for a visualisation

of the region of interest) at the particular point x = 0.25 and y = 0. To allow

a clearer physical interpretation of the results, the difference Beq−By (plotted

in Figure 3.5) is introduced. Positive values of Beq − By represent changes in

the magnetic field and/or the magnetic flux pumping such that the γ-pumping

counteracts the upward transport of the magnetic field, i.e. Mγ & 1.

From Figure 3.5(a) it can be seen that at the near-interface region, zB, the in-

tense magnetic structure begins to escape the lower layer where Beq −By < 0.

The extent to how far the structure can traverse depends on whether an

equipartition-strength mean magnetic field is attained. This magnetic struc-

ture continues to rise to the upper layer in Figures 3.5(b) and 3.5(c), while

the field generally decreases in magnitude. Eventually, further through the

upper domain, the magnetic strength, By, becomes insufficient to overcome

the threshold equipartition value, and hence transitioning to the Beq−By > 0

regime, where the pumping is able to hold back the magnetic field from rising.
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Figure 3.5: The horizontal magnetic field By and the difference Beq − By vs.
depth for a magnetic structure in Case 1, located at x = 0.25 and y = 0, at
times (a) t = 210.8, (b) t = 211.5, (c) t = 212.2, (d) t = 212.9, (e) t = 213.6,
and (f) t = 214.4.
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Given the temporal variation of the γ-pumping in Case 1, the magnitude of the

pumping and hence the equipartition value begin to increase in Figure 3.5(d).

This can be traced by the difference Beq−By at the upper part of the domain,

i.e. z < 0.2, where By ≈ 0. Emerging magnetic structures experience the max-

imum downward force at the upmost depth achieved, due to the nature of the

pumping profile. Hence, the intensification of the magnetic field, By, observed

just above z ≈ 0.4, in addition to the magnetic field being pushed downwards.

This behaviour persists with the growth of the equipartition value, as a result

of the increase in the pumping strength, in Figure 3.5(e). Finally, Figure 3.5(f)

shows that the γ-pumping achieves sufficient strength to push and maintain

the magnetic field below z ≈ 0.5, in addition to the amplification of the mag-

netic field.

In Case 1, magnetic structures are observed to be continuously pushed down

and repelled back up due to the temporal variation of the magnetic pumping.

Further, a dependency on the Alfvénic Mach number Mγ that controls the rise

of localised magnetic structures is established. The magnetic field is found to

be held down, with intense concentrations generated below the interface, in the

phase where Mγ & 1, i.e. Beq − By > 0. Transitioning to Mγ . 1, these mag-

netic concentrations become sufficiently stronger than the present equipartition

threshold. Thus, ascending to the upper domain until the periodic pumping

cycle reaches high levels of strength, returning background magnetic field to

the lower domain. The γ-pumping, occupying the region above zB, acts as a

filter allowing magnetic structures to emerge into the upper domain once the

desired strength is achieved while sustaining the magnetic field at the lower

domain. Nonetheless, variations in the pumping timescale play an important

role in the emergence of magnetic structures.

To explore the relationship that exists between the time-dependent γ-pumping

and emerging magnetic structures in greater detail, the frequency of the pump-
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ing cycle is scaled down by setting k = 0.1. In this case (Case 2), the spreading

of the initial magnetic field is found consistent with Case 1. However, the con-

tribution of different pumping timescales becomes evident once the magnetic

field has diffused and reached the pumping zone. To elaborate, Figure 3.6

follows the evolution of a magnetic structure in Case 2, located at x = 0.25

and y = 0 for a period of time, similar to that in Figure 3.5.

As opposed to Case 1, Figures 3.6(a) and 3.6(b) show that the rise of the

magnetic structure, through the γ-pumping region, is delayed to a later stage.

This arises from the magnetic pumping strength, γm, varying at a slower rate

in Case 2. Accordingly, the interactions between the γ-pumping and magnetic

field occur over a longer timescale, causing the formation of stronger magnetic

concentrations below z ≈ 0.5, as shown in Figures 3.6(c)−3.6(f). Within the

time period where an apparent magnetic emergence process in Case 1 is found,

the magnetic equipartition value is always dominant in the upper domain for

Case 2. Therefore, no flux emergence is observed, and so it is useful to explore

the magnetic emergence across a broader time range.

Figure 3.7 demonstrates the evolution of the particular magnetic structure

considered in Figure 3.6 during a complete pumping cycle. The equipartition

criterion established earlier remains consistent with the emergence of magnetic

flux. However, in this regime, the magnetic field is noticed to spread further

throughout the pumping region. This is because, for slower temporal variation

in the γ-pumping, magnetic structures are able to propagate further once emer-

gence takes place. Moreover, at particular stages, the pumping strength de-

cays, followed by the equipartition value. Hence, permitting buoyancy-driven

magnetic structures to rise. Snapshots of the non-linear evolution of the hori-

zontal magnetic field in Case 2 are displayed in Figure 3.8.

Evolution of the total kinetic and magnetic energies for Case 1, Case 2 and an

additional Case 3, where k = 0.01, are shown in Figure 3.9. The kinetic and
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Figure 3.6: The horizontal magnetic field By and the difference Beq − By vs.
depth for a magnetic structure in Case 2, located at x = 0.25 and y = 0, at
times (a) t = 210.8, (b) t = 211.5, (c) t = 212.2, (d) t = 212.9, (e) t = 213.6,
and (f) t = 214.4.
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Figure 3.7: Line graphs of By vs. depth, for a magnetic structure in Case
2, located at x = 0.25 and y = 0, at regularly-spaced time intervals. The
pumping cycle starts at t = 171.9 and ends at t = 236.8.

Figure 3.8: Snapshots of the y-component of the magnetic field for Case 2 at
(a) t = 210.8, (b) t = 214.4, (c) t = 222.3, (d) t = 233.9, and (e) t = 254.8
respectively.
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magnetic energies are expressed as

EK =

∫
V

1

2
ρu2dV, (3.31)

and

EM =

∫
V

1

2
FB2dV, (3.32)

respectively, where the volume integral is computed over the whole domain.

The growth of the kinetic and magnetic energies result from the mechanisms

responsible for the enhancement of the local magnetic field. This is followed

by the almost periodic release of energies, based on the characteristics of the

imposed γ-profile, leading to the emergence of magnetic structures through

the upper layer. For Case 1, magnetic concentrations emerge frequently, but

with weaker field strengths in comparison to Case 2 and Case 3. The magnetic

intensification process in Case 3 is found more effective, due to the pumping

strength varying over a longer timescale, hence allowing the magnetic field to

interact efficiently with the γ-pumping.

The temporal variation of the γ-pumping reveals a correlation with the action

of buoyant magnetic structures. This is shown in Figure 3.10 by comparing

the evolution of a γ-pumping profile with its associated magnetic energy for

Case 1. Pumping peaks are shown to be in agreement with the generation of

the strongest magnetic concentration at each cycle of the turbulent pumping

profile.

To examine further the dissimilarities in the three cases considered here, stan-

dard measures of depth with respect to the maximum value and centre of the

magnetic field are applied (Wissink et al., 2000; Tobias et al., 2001). These

quantities are given by

zmax = z
∣∣∣max

z
〈By〉(z) , (3.33)
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Figure 3.9: Temporal evolution of the total kinetic energy and magnetic energy
for Case 1 (top panel), Case 2 (middle panel), and Case 3 (bottom panel).
The kinetic energy is scaled up by a factor of 10 to ease comparison with the
magnetic energy. Note that Case 3 is shown for a longer period than Cases 1
and 2 to consider a complete pumping cycle.
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Figure 3.10: Comparison between the variation of the imposed pumping profile
and magnetic energy for Case 1. The magnetic energy is scaled up by a factor
of 10 to ease comparison with the γ-pumping profile.

and

zB =

∫ 1

0

z〈By〉 dz
/∫ 1

0

〈By〉 dz , (3.34)

respectively, where 〈By〉 =
∫∫
By dxdy. In addition, the fraction of magnetic

flux present in the part of the domain above the initial location of the magnetic

field (z1 = 0.6) is quantified and given by

Φ =

∫ 0.6

0

〈By〉 dz
/∫ 1

0

〈By〉 dz . (3.35)

The evolution of zmax, zB, and Φ in time is shown in Figure 3.11 for Cases 1−3.

A general decline in zmax is initially observed as the magnetic field is subject

to diffusion. This is shortly restored by the magnetic buoyant force, leading to

the rise of magnetic fields within the lower region of the domain. Interactions

between the γ-pumping and magnetic buoyancy become more pronounced, af-

ter t ≈ 50, once the redistribution of the magnetic flux reaches the interface

region. This competition continues along with the generation of magnetic flux

concentrations, near zB.

The depth to which maximal magnetic strengths are achieved, zmax, in time
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Figure 3.11: The location of the maximum magnetic field, zmax, location of
centre of magnetic field, zB, and the magnetic flux fraction contained above
the initial location of magnetic field, Φ, in time, for Case 1 (top panel), Case
2 (middle panel), and Case 3 (bottom panel).
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vary depending on the particular choice of k. In Case 3, for instance, since

the pumping evolves on a slower pace, the intensification and breakout of the

magnetic field occur over a longer timescale. However, in Case 1, the dynam-

ics are observed to be more varied, where local field amplification occurs more

frequently. Generally, for all cases, the bulk of the field is maintained at the

lower fraction of the domain, as shown by the global measure zB. The variable

Φ highlights the effect of the γ-pumping on the dispersion of magnetic field

above where it is initially located. The fraction of magnetic flux is shown to be

greater for Case 3, reaching approximately 40% of the total initial flux, which

indicates that magnetic concentrations can spread further for slower temporal

variations in the γ-pumping.

3.4 Conclusion

In this chapter, I have focused on examining the influence of time-dependent

γ-pumping on the formation and evolution of buoyant structures, using an

idealised mathematical framework. All the simulations began with an initial

state, thermally perturbed, giving rise to buoyancy-driven magnetic structures

at the surface of the discontinuous magnetic layer. Similar to the earlier work

of Barker et al. (2012), the homogeneous magnetic slab, initially imposed in

the lower layer, remains below the interface with only locally intense concen-

trations of magnetic flux rising against the γ-pumping. In other words, only

structures where the magnetic field strength is comparable to equipartition

strength are able to overcome the overlying pumping and rise. However, the

effect of time-dependent γ-pumping was found to introduce a more complex

evolution than previously recognised, where magnetic structures rise unhin-

dered once the equipartition threshold was attained. In all cases considered,

rising magnetic structures were shown to be regularly pushed down and re-

pelled back up depending on the temporal evolution of the magnetic pumping.

Furthermore, the competition between buoyant magnetic structures and down-

ward, time-dependent pumping velocity was found to alter various properties
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of the emerging magnetic flux structures.

Results from the three different pumping timescales considered revealed that

the strength of magnetic concentrations, the rate of magnetic emergence, and

the spread of magnetic field all depend on the characteristics of the pump-

ing profile. The degree of magnetic emergence was found to directly correlate

with the frequency of the imposed γ-pumping. Additionally, the intensity of

flux structures was found to vary significantly with the choice of pumping

timescale. Slower temporal variations in the pumping profile were found to

permit magnetic structures of higher magnetic strength to travel further into

the pumping zone.

In this model, I sought to explore the general impact of time-dependent pump-

ing on the action of emerging magnetic structures. However, based on theoret-

ically derived estimates of convective turnover timescale, Kim and Demarque

(1996) defined two different convective timescales: a global, large-scale, convec-

tive turnover time for the complete convection zone and a local, smaller-scale,

convective turnover time near the base of the convection zone. Measurements

of the local solar convective timescale, in terms of the variable k, approximately

fall within k < 0.001. Unfortunately, such calculation is not easily accessible

in the current modelling framework. However, the gradual reduction in the

magnitude of k provided meaningful patterns of the rising magnetic structures.

Furthermore, the proposed model in this chapter assumes a regular periodicity

in the pumping, which is unlikely to occur within the Sun, but it does reveal

that the evolution of buoyant magnetic structures is greatly influenced by the

changes in convection. Structures of sufficient strength, relative to the down-

ward motions, will rise and can reach the solar surface. Weaker structures will

be halted in the ascent and then will interact with the turbulence, forming

part of the interface dynamo model.

Finally, while the principal motivation for this study was to better under-
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stand events at the base of the convection zone, the solar photospheric layer

also displays variation in the timescale of convective motions as well as in

the scales of emerging magnetic structures through, for instance, granulation

patterns (Cattaneo and Hughes, 2001; Priest, 2014). Therefore, a by-product

of the work here is to give an insight into the dynamics driven by convective

turbulence and magnetic fields in the photospheric region. The γ-pumping

considered with the fastest time variation showed frequent rise of relatively

weak, compared to the other cases considered, magnetic structures. This is

clearly not the situation deep in the convection zone, but it is very likely in the

near surface region of the Sun, where granular magnetic loops are observed to

appear very frequently in small magnetic concentrations.
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Chapter 4

The Interaction of Buoyant

Magnetic Structures with

Convective Plumes

4.1 Introduction

Until the late 1970s, solar physicists situated the mechanism maintaining so-

lar dynamo entirely in the highly-turbulent convection zone, where magnetic

fields undergo repeated stretching and folding due to the underlying turbu-

lence (Parker, 1955b; Babcock, 1961; Steenbeck and Krause, 1969). It was

then realised that magnetic fields could not fully be generated in the convec-

tion zone as the field can feedback on the flow in such a way as to disrupt the

regeneration rate of the magnetic field, and so leading to spatial and temporal

inconsistencies with the magnetic features observed on the solar surface (see

Parker, 1975; Silvers, 2008 and references therein). The idea of an interface-

type dynamo, partially situated in the stable overshoot layer just below the

convective zone was put forward by Parker (1993), where the existence of a

toroidal field in the tachocline was assumed due to the presence of important

physical processes that can influence the generation and sustenance of a large-

scale field (see Section 1.2).
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This solar interface dynamo model was built on the mechanisms of magnetic

field transport within the solar interior. In the convection zone, transport of

flux is enhanced, relative to the underlying sub-adiabatic layer, due to tur-

bulent convective motions (MacGregor and Charbonneau, 1997; Tobias et al.,

2001). Poloidal magnetic fields are primarily expelled to the tachocline as a

result of turbulent diffusivity, while the shear-generated toroidal components

are believed to reside within the low diffusion environment in the tachocline.

The non-linear interactions between compressible turbulence and the under-

lying, large-scale toroidal component of the magnetic field serve to transport

magnetic flux into the stellar atmosphere. Emergence of magnetic flux tubes

is considered to be triggered by instabilities of the field in the non-turbulent

tachocline (Tobias and Weiss, 2007). Most notably, the process driven by mag-

netic buoyancy instability (Parker, 1955a) due to an unstable vertical gradient

of the horizontally aligned magnetic field (see Subsection 2.4.2). However,

there remain some uncertainties on the exact physical mechanisms that allow

fairly strong magnetic structures to traverse the turbulent convection zone.

Inspired by the mechanism of magnetic flux emergence that yields the ob-

served solar features, Barker et al. (2012) conducted a pilot study of the

effects of turbulent flux pumping on the evolution of buoyancy instability, in

a framework resembling the base of the convection zone. Results from their

numerical calculations establish an equipartition relation between the Alfvén

speed of the magnetic field and the pumping velocity under which the evolu-

tion of the large-scale field is determined; proposing a possible mechanism of

suppressing the field before magnetic buoyancy instabilities play a significant

role in the emergence of flux tubes.

Following this, given that convective patterns are highly time-dependent, Chap-

ter 3 built on the model of Barker et al. (2012) to account temporal character-

istics of the magnetic flux pumping and explore its effect on the formation and
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evolution of magnetic structures. The rate of emergence of magnetic struc-

tures, as well as their strengths, were found to be related to the temporal

characteristics of the imposed pumping. The results reported by Barker et al.

(2012) and in Chapter 3 (published in Ali and Silvers (2018)) were based on

mean-field approximations where a net transport of mean magnetic field, that

results from the non-isotropic parts of the mean electromotive force expansion,

is adapted to simplify the effects of turbulent convection (see Subsection 2.4.3).

Parametrisation of the small-scale turbulent pumping does reveal interesting

properties relating to the emergence of magnetic structures throughout the

convection zone. However, simplifications of the pumping mechanism may not

capture the various physical factors that contribute to the overall dynamics

of the magnetic field. The research presented in this chapter will focus on

exploring the conclusions in the studies of Barker et al. (2012) and Chapter 3

in a more realistic attempt of modelling magnetoconvection, by establishing a

radial pumping that arises naturally from the turbulent convective flow.

Earlier studies have looked at such magnetoconvection interactions (Nordlund

et al., 1992; Brandenburg et al., 1996; Tobias et al., 1998, 2001), but focused

on the role of turbulent convection in transporting and storing the underlying

magnetic field. Here, I aim to investigate the transport of magnetic structures

through the turbulent convection zone, and mainly focusing on the effect of

the equipartition criterion established in the previous work of Barker et al.

(2012) and Chapter 3, in a framework of fully compressible convection.

Despite that convection in two-dimensions represents simplifications of the

real-world three-dimensional convective problems, it provides an understand-

ing of how the physical properties imply to three-dimensions. Furthermore,

two-dimensional simulations require fewer demands in terms of computational

power than three-dimensional simulations. Thus, as a first step in understand-

ing the problem, quasi two-dimensional numerical experiments of compressible
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magnetohydrodynamics are performed. This is followed by numerical simula-

tions extended to three-dimensions, to explore and compare with the quasi

two-dimensional findings.

4.2 Model

As in Chapter 3, a localised Cartesian system is considered with a plane layer

of compressible fluid extending from 0 ≤ x, y ≤ λx,y in the horizontal direc-

tion, and 0 ≤ z ≤ d increasing vertically downwards, parallel to the constant

gravitational acceleration. Throughout the domain, the fluid is assumed to

satisfy the perfect gas law with the dynamic viscosity, µ, the magnetic diffu-

sivity, η, the gravitational force, g, the specific heats at constant density and

pressure, cv and cp respectively, all constant. Thus, the set of non-dimensional

compressible MHD equations reads

∂ρ

∂t
+∇ · (ρu) = 0, (4.1)

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p−∇

(
F |B|2

2

)
+ F (B · ∇)B

+ σCk(∇ · τ ) + ρgẑ,

(4.2)

ρ

(γs − 1)

(
∂T

∂t
+ (u · ∇)T

)
= −p∇ · u+

γsCk
(γs − 1)

∇ ·
(
K∇T

)
+ Ck

(
Fζ0|∇ ×B|2 +

στ 2

2

)
,

(4.3)

∂B

∂t
= ∇× (u×B − Ckζ0∇×B), (4.4)

∇ ·B = 0, (4.5)

p = ρT. (4.6)

Initially, quasi two-dimensional simulations will be performed by assuming no

gradients of quantities in the y-direction, i.e. motion only exists in the x − z

plane. This will be followed by considering the full three-dimensional problem.
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In this specific model, the thermal conductivity, K, is assumed to be a function

of depth and is scaled by its initial value at the upper surface, K0. Following

this, several non-dimensional control parameters obtained earlier in Chapter 3

are modified. These include the Prandtl number σ = µcp/K0, the dimension-

less thermal diffusivity Ck = K0/ρ0cpd
√

(cp − cv)T0, and the ratio of magnetic

to thermal diffusivity at the top of the layer ζ0 = ηcpρ0/K0.

The computational domain is split into two piecewise polytropic layers to

mimic the interface region between the radiative zone and the convection zone.

This is such that the top layer 0 ≤ z ≤ d/2 is convectively unstable, and the

bottom layer d/2 ≤ z ≤ d is stable, with a smooth transition between the

unstable layer and the stable layer, achieved by a hyperbolic tangent profile.

This is built by defining the depth-dependent thermal conductivity as

K(z) =
1

2

[(
mB + 1

mT + 1
+ 1

)
+

(
mB + 1

mT + 1
− 1

)
tanh

(
z − (d/2)

0.1

)]
, (4.7)

where mT and mB denote the polytropic indices of the top and bottom layers

respectively (see example in Figure 4.1). This approach was adapted in several

previous investigations to account the effect of overshooting motions via pen-

etrative convection on the stably stratified region below the convection zone

(see Hurlburt et al., 1994; Tobias et al., 1998; Silvers et al., 2009).

For convective instability, the super-adiabatically stratified medium must sat-

isfy m < 3/2 for a monoatomic perfect gas (Chandrasekhar, 1939). With the

effect of adiabatic expansion (compression) of an ideal gas taken into account,

the form of the dimensionless Rayleigh number, Ra, that determines the onset

of buoyancy-driven convection in this framework is explicitly given by

Ra =
(mT + 1)θ2

σC2
kγ

(mT + 1− γmT )(1 + (θd)/4)(2mT−1), (4.8)
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where the Ra values quoted in this work are evaluated at the middle of the

upper convective layer.

0 0.5 1 1.5 2

z

1

1.5

2

2.5

K
(
z
)

Figure 4.1: The thermal conductivity profile as a function of depth, where
d = 2, mT = 1, and mB = 4.

To complete the description of this model, boundary conditions must be spec-

ified. As in Chapter 3, the system is assumed to satisfy periodic boundary

conditions in the horizontal directions. The conditions at the upper and lower

boundaries are

uz =
∂ux
∂z

=
∂uy
∂z

= Bx = By = 0, T = T0 at z = 0,

uz =
∂ux
∂z

=
∂uy
∂z

= Bx = By = 0,
∂T

∂z
=
mT + 1

mB + 1

θT0
d

at z = d,
(4.9)

where the constant heat flux at the bottom of the domain is modified to ac-

count for the composite polytropic domain.

For all calculations, an initial hydrostatic state is chosen by setting u = 0.

Accordingly, the equilibrium solutions for ρ(z) and T (z) are found numerically

given the non-linearity of the static state thermal profile in this model. By
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assuming no time-derivatives, the energy equation (Equation 4.3) reduces to

∇ ·
(
K(z)∇T

)
= 0. (4.10)

Therefore, choosing the steady state to be independent of horizontal coordi-

nates, the background temperature profile is found by solving

K
d2T

dz2
+

dK

dz

dT

dz
= 0, (4.11)

using fourth-order finite-difference subject to thermal boundary conditions

(Equation 4.9).

Similarly, the background density profile is calculated by considering the ideal

gas law (Equation 4.6) and the reduced momentum equation:

dp

dz
=
gp

T
. (4.12)

The equilibrium solutions are shown in Figure 4.2 for some values of mT , mB,

θ, and d.

A uniform horizontal magnetic field B = Byŷ is introduced into the exist-

ing hydrodynamic state, in the region bounded by z = z1 and z = z2, at

later stages once convection has attained a statistically stationary state. To

accommodate the imposed field, the density in the magnetic layer is adjusted

so that the system is in equilibrium. This initial configuration is adapted to-

gether with the addition of small, random perturbations in the temperature

profile. The equations are solved numerically using a parallel hybrid finite-

difference/pseudo-spectral code, where time is advanced using a third-order

Adams-Bashforth scheme as discussed in Subsection 3.2.5. All simulations,

described below, are carried out using a spatial resolution of 256 × ny × 400,

where ny = 1, 256 for the quasi two-dimensional and three-dimensional simu-

lations respectively.
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Figure 4.2: Initial background states of temperature (top panel) and density
(bottom panel) for d = 2, T0 = 1, ρ0 = 1, θ = 4 with mT = 1 and mB = 4.
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This model problem is governed by a number of non-dimensional quantities,

which leads to a broad parametric space that requires large numerical efforts.

In the solar context, the parameter settings are not known exactly, but rather

a range of estimates for the parameters are available (see, for example, Priest,

2014). For instance, in the lower parts of the convection zone, the Prandtl

number is of order 10−6 or less (Brummell et al., 1995; Christensen-Dalsgaard

and Thompson, 2007). Current numerical limitations do not allow to simulate

the extreme values within the Sun; however the aim is to gain an insight into

the underlying physics by choosing appropriate parameter values. The param-

eter choices are outlined in Table 4.1 1.

Parameter Description Value
σ Prandtl number Variable
Ck Thermal diffusivity 0.07
θ Thermal stratification 10.0
γs Ratio of specific heats 5/3
ζ0 Magnetic diffusivity 0.1
F Magnetic field strength Variable
mT ,mB Polytropic indicies 1.0, 9.0
z1, z2 Top and bottom of magnetic layer 1.35, 1.65
λx, λy Box horizontal aspect ratio 6.0, 6.0
d Vertical depth of box 2.0
By Initial Horizontal magnetic strength 1.0

Table 4.1: The choice of parameters for the magnetoconvection model.

With the primary objective of simulating turbulent magnetoconvection, a su-

percritical convection is considered by setting the thermal stratification θ = 10,

specific gas γs = 5/3, thermal diffusivity Ck = 0.07, and Prandtl number

σ ≤ 0.5. A penetrative configuration is achieved, via the depth-dependent

thermal conductivity profile in Equation (4.7), by considering a convectively

unstable top layer with polytropic index mT = 1, and a convectively stable

bottom layer with polytropic index mB = 9. As described earlier, the horizon-

1Prior to the choice of parameters in Table 4.1, some experiments on various convective
patterns and their interactions with the magnetic field were conducted. The results are not
essential for this chapter but can be found in Appendix A
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tal magnetic layer will be introduced in the convectively stable region, with

an initial magnetic field magnitude By = 1, magnetic diffusivity ζ = 0.1, and

magnetic field strength F chosen to vary to explore its dependence on flux

emergence.

4.3 Results

4.3.1 Quasi Two-Dimensional Simulations

The investigation is initiated by restricting attention to quasi two-dimensional

simulations, where the hydrodynamic evolution of the system is focused upon

to establish a convective motion before imposing a magnetic layer. The topo-

logical structure of the penetrative compressible convection can be seen in

Figure 4.3 for the parameter settings in Table 4.1 with σ = 0.01, which shows

snapshots of the vertical velocity, w, and enstrophy density (vorticity squared),

ω2 = (∇× u)2, at a single computational time.

For the w-velocity field, the colours red and blue denote upward and down-

ward motions respectively. The enstrophy density highlights the intensity of

the vorticity field, where bright and opaque colours denote strong values of the

field, whereas weak values are more translucent. Most of the vorticity is gen-

erated at the interface between the stable and unstable regions. The motion

in the upper convection layer is of asymmetric nature, with narrow regions of

rapid downflow and broad regions of relatively slow upflow due to buoyancy

braking. As reported by Hurlburt et al. (1984), such asymmetry is stemming

from the combined effects of compressibility and stratification.

The background density stratification within the convectively unstable layer

varies approximately by a factor of 5, and by a factor of 58 across the en-

tire domain. The presence of the stably stratified lower layer decelerates the

motion as it overshoots from above, in addition to reducing the strength of

the overturning flow. It is to note that the convective plumes may continue
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Figure 4.3: Snapshots of the vertical velocity field (top panel) and enstrophy
(bottom panel) for σ = 0.01 at computational time t = 64.12. The colours red
and blue in the velocity field correspond to upward and downward convective
motions respectively. Strong enstrophy densities are yellow, whereas weaker
densities are dark and translucent.
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to progress through the stable region, and are not confined to the convective

region. The extent of overshooting depends largely on the choice of parameters.

To relate the convection simulations to the γ-pumping in Barker et al. (2012)

and Chapter 3, I look at achieving a scale separation of the motion and ex-

tracting the fluctuation field. A simple way to obtain scale separation is by

decomposing the velocity field in terms of mean and fluctuating parts (Steen-

beck et al., 1966; Moffatt, 1983; Currie, 2016). Given that the pumping in the

investigations of Barker et al. (2012) and Chapter 3 was depth-dependent, I

choose to look at the fluctuation field of the vertical velocity in the z-direction.

Figure 4.4 displays temporal line graphs of the average w-velocity, w̄, and the

small-scale fluctuations, w′, over horizontal coordinates for the parameters in

Table 4.1 with σ = 0.01, and two additional turbulent flows with σ = 0.1 and

0.5. This is such that Ra = 4.9× 106, 4.9× 105 and 9.8× 104 respectively.

Figure 4.4 shows, as expected, that at high supercritical Rayleigh numbers

non-linear effects lead to the further development of turbulence (Busse, 1985;

Koschmieder, 1993), and so introduces greater variability in the field. The

γ-pumping extracted in the previous work of Barker et al. (2012) and Chapter

3, does seem appropriate to portray this small-scale turbulence of the field

in a simplified manner and isolate the action of turbulence on the large-scale

magnetic field. Note that the vertical fluctuation scales are extremely small,

as opposed to the γ-pumping amplitudes imposed in Barker et al. (2012) and

Chapter 3. This is due to the computationally feasible choices of Ra in this

model, which are small compared to that of the Sun, where Ra ∼ 1020 (Spiegel,

1971).

As opposed to a dynamo-generated magnetic field (see, for example, Cline

et al., 2003; Vasil and Brummell, 2008; Silvers et al., 2009), the magnetic slab

is introduced to the non-convective region, similar to the approach conducted

by Tobias et al. (1998, 2001). Once the convective flow has fully developed for
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Figure 4.4: Temporal line graphs of the average component (top panel) and
fluctuating component (bottom panel) of the w-velocity field for several Ra
values.
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σ = 0.01, the horizontally aligned magnetic field is inserted in the stable region

of the domain. The magnetic field is imposed in the region 1.35 ≤ z ≤ 1.65 by

balancing the magnetic pressure and the gas pressure, to maintain the original

pressure distribution. The discontinuity in the initially imposed magnetic field

rapidly leads to diffusion at the interface. More significantly, the field is sus-

ceptible to instabilities driven by magnetic buoyancy. The convective motion

penetrating the stably stratified layer induces distortion in the magnetic layer,

with some of the magnetic flux transported through the convection zone, while

the bulk of the field is maintained in the overshoot region.

To highlight the magnetoconvection interactions, Figure 4.5 shows snapshots

of the horizontal component of the magnetic field, together with the vertical

velocity field, for magnetic strength F = 0.0001. Initially, the field in Figure

4.5(a) appears as a thin slab of strong horizontal magnetic field embedded in

the lower region. After a short time, the buoyancy-driven magnetic field in-

teracts with the overshooting convection. Magnetic flux can be seen to rise in

Figure 4.5(b), resulting from the combined effects of magnetic buoyancy and

advection by the upflows (as indicated in red).

Figures 4.5(c)-4.5(d) depict strong downward plumes piercing into the sta-

ble layer, with local magnetic field amplification occurring within the vicinity

of the downflow due to stretching of the magnetic field lines, in addition to the

complex interactions due to the small-scale vortical motions. This behaviour

was also identified in Barker et al. (2012) and Chapter 3 as the magnetic field

interacts with the overlying downward turbulent pumping. The system acts to

restrain the magnetic field in regions where the motion is downward. Figures

4.5(f)-4.5(h) continue to show the dynamics of the magnetic field as it inter-

acts with the overlying plumes, while it is largely maintained in the stable layer.

To define the magnetic buckling effects as structures of sufficient strength

that are able to overcome the convective region or simply the advection of the
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Figure 4.5: Snapshots of the z-component of the velocity field overlaid with
the y-component of the magnetic field at computational times (a) t = 40.68,
(b) t = 41.21, (c) t = 42.03, (d) t = 43.04, (e) t = 44.50, (f) t = 45.73, (g)
t = 46.87, and (h) t = 47.92 respectively.
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magnetic field by the flow in a passive manner, kinetic and magnetic ener-

gies need to become comparable (equipartition), given that the back reaction

of the magnetic field becomes of significant importance (Cattaneo and Vain-

shtein, 1991; Silvers, 2008). Magnetic fields need to achieve an equipartition

strength with the flow, on a local scale, to escape through the convective mo-

tions, as found in the turbulent pumping model of Barker et al. (2012) and

Chapter 3, or otherwise are transported passively. Initially, on a global scale,

the magnetic field appears to be a weak field. Though, this could give rise to

local small-scale structure of the magnetic field with energy comparable to the

kinetic energy of the flow.

To distinguish the behaviour of the magnetic field, the equipartition of energy

is investigated in Figure 4.6 for a stronger magnetic field strength F = 0.1,

by calculating the ratio of kinetic energy to magnetic energy. Values greater

than unity suggest that the magnetic field is influenced by the surrounding

convective motions, whereas values less than unity suggest that the magnetic

field is able to resist the surrounding motions, and so rises. According to

the equipartition measure, the magnetic field in Figure 4.6(a) predominantly

behaves with respect to the surrounding motions, which in this case causes

buoyant magnetic structures to rise further. As time evolves, Figure 4.6(b)

reveals small-scale magnetic structures of equipartition strength developing

at various regions in the domain. However, these structures do not progress

further through the upper layer, as one would imagine, due to the frequent

mixing of the overlying turbulent convection. The locality of the equipartition

strength achieved by the magnetic field does not overcome the motion as the

magnetic structure continues to rise.

From Figure 4.6(c), less than 4% the strength of the initially imposed magnetic

field emerges through the convective layer, as a result of magnetic buoyancy

and advection by the upflows, with some stages where the magnetic energy

overcomes the kinetic energy. However, unlike in the previous investigations
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Figure 4.6: Snapshots of the the z-component of the velocity field overlaid
with the y-component of the magnetic field (left) and ratio of the kinetic to
magnetic energy (right) at (a) t = 40.68, (b) t = 41.21, and (c) t = 42.03
respectively.
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of Barker et al. (2012) and in Chapter 3, the efficient rise of equipartition-

strength magnetic structures are not yet clearly captured.

By increasing the strength of the field to F = 1.0, one allows magnetic struc-

tures of equipartition level to be reached easily. Figure 4.7 reveals a stage

where a magnetic structure escapes to the convective layer. From the equipar-

tition plot, the magnetic energy overcomes the kinetic energy throughout the

region of emergence, thus suggesting the rise of the magnetic field despite the

surrounding convective motions. This behaviour continues at various loca-

tions in Figures 4.7(a) and 4.7(b). However, these findings remain inadequate

to conclude the emergence of magnetic structures, comparable to equipartition

strength, throughout the convection zone. This is partially due to turbulent

motions appearing weak when emergence takes place in the regime where the

magnetic energy overcomes the kinetic energy – in addition to the possible

contribution of increasing F , which involves amplitude reduction of convective

motions in the traverse direction due to magnetic tension, and enhanced buoy-

ancy effect of localised magnetic structures due to magnetic pressure (Bushby

and Archontis, 2012).

The redistribution of the magnetic field is examined by calculating the evo-

lution of the average horizontal magnetic field in the y-direction, for various

magnetic strengths in the range 10−4 ≤ F ≤ 1. Generally, the mean magnetic

field plays a passive role for all cases and is relatively insensitive to the choices

of F on a global scale, as was also identified in Tobias et al. (2001). Accord-

ingly, I choose to fix F = 0.01, and display the analysis of the horizontally-

averaged magnetic field for σ = 0.01 and σ = 0.1.

Figure 4.8 represents the magnetic flux redistribution as line graphs for equally-

spaced time intervals, and as colour-coded spacetime diagrams that display a

colour, with respect to the amplitude of the magnetic field, in both space and

time. For both flows, σ = 0.01 (top panel of Figure 4.8) and σ = 0.1 (bottom
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Figure 4.7: Snapshots of the z-component of the velocity field (top), the y-
component of the magnetic field (middle) and ratio of the kinetic to magnetic
energy (bottom) at (a) t = 46.31 and (b) t = 46.56 respectively.
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panel of Figure 4.8), the evolution starts with the magnetic field contained

in the region where it is initially introduced (as displayed in solid line). The

peak strength remains located within that region, while it decreases in mag-

nitude as it spreads toward the unstable layer. Some of the flux can be seen

to escape through the boundaries, hence reducing the total amount of mag-

netic flux. Additionally, as time evolves, the magnetic field decays in strength

due to the absence of mechanisms that generate the field. This is expected

as this model represents magnetoconvection rather than dynamo interactions.
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Figure 4.8: Line graphs (left) and colour spacetime diagrams (right) of the
horizontal average of the magnetic field in the y-direction, By for σ = 0.01
(top panel) and σ = 0.1 (bottom panel), where F = 0.01.
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From both line graphs and spacetime diagrams, greater dispersal of the mag-

netic field can be noticed for σ = 0.01. This is a result of the local amplification

of the field in the more turbulent flow that leads to the emergence of small-

scale, equipartition strength magnetic structures, in addition to the transport

of the field by ascending flows.

The fraction of magnetic flux present in the part of the domain above the

initial location of the magnetic field (z1 = 1.35), and the measure of depth

with respect to the maximum value are quantified by

Φ =

∫ 1.35

0

〈By〉 dz
/∫ 1

0

〈By〉 dz , (4.13)

and

zmax = z
∣∣∣max

z
〈By〉(z) , (4.14)

respectively. Figure 4.9 displays Φ and zmax, for σ = 0.01, 0.1 and 0.5, for 30

time units after the field is imposed, in order to minimise the influence of the

upper boundary as the simulation progresses. Given that the field is imposed

at different computational times for each flow, time is normalised to unity to

allow direct comparisons. Interestingly, as fluctuations in the convective flow

increase, Φ reveals a greater proportion of magnetic flux in the upper layer

during the early stages of the interaction. This indicates the contribution of

the equipartition relation in transporting magnetic structures, which is more

pronounced as the flow increases in turbulence (case σ = 0.01). However, as

time evolves the strength of magnetic structures reduce, as noted in Figure

4.8, and so equipartition-strength magnetic structures are unlikely to play a

significant role. Therefore, advection becomes the predominant mechanism

for magnetic field transport, where the least turbulent convective flow (case

σ = 0.5) succeeds in carrying larger quantities of magnetic field throughout

the upper domain.

The measure zmax emphasises the effectiveness of the overlying pumping on
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Figure 4.9: The temporal evolution of the magnetic flux fraction contained
above the initial location of magnetic field, Φ, (top panel) and the location of
the maximum magnetic field, zmax (bottom panel).
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the imposed magnetic field. From all three cases of σ, strong concentrations of

the field are shown to be maintained deeper, with respect to z, for flows of en-

hanced turbulence. This means that overshooting convective plumes are more

efficient in pushing magnetic fields downwards in the case where σ = 0.01.

4.3.2 Three-Dimensional Simulations

To allow a fuller treatment of the problem, three-dimensional simulations are

conducted for some of the cases considered in the preceding subsection. Several

differences in the physical properties of the convective flow become apparent,

as the 3D simulations are compared with their equivalent quasi 2D simula-

tions. Snapshots of the vertical velocity for σ = 0.1 are shown in Figure 4.10

in both quasi 2D and full 3D, at different stages in time once the convective

patterns are developed. It emerges, from the vertical velocity field in quasi 2D

and the horizontal cross-section at y = 1 in 3D, that plume structures become

noticeably different near the interface region. In 3D, the flow is dominated

by small convective structures, while contrastingly, quasi 2D reveals more co-

herency within the flow, in addition to the effective penetration towards the

underlying stably stratified layer.

Evaluation of the horizontally average vertical velocity profiles in Figure 4.11

depicts the substantial change in the dynamics of the convective flow as one

transitions from quasi 2D simulations to fully 3D simulations. In the three-

dimensional framework, the average vertical motion varies smoothly in time,

with smaller amplitudes in comparison to the more chaotic quasi 2D regime.

The constrained motion in the two-dimensional plane triggers the accumu-

lation of energy, as displayed in the kinetic energy profiles in Figure 4.12,

which consequently leads to the rapid variation of velocity in time. Analo-

gous findings were also established in Van der Poel et al. (2013), where flows

are consistently more turbulent in 2D, and converge at large Prandtl numbers.

To capture the dynamics associated with the transport of the magnetic field
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(a)

(b)

Figure 4.10: The vertical velocity field at computational times (a) t ≈ 26 and
(b) t ≈ 35 for the case σ = 0.1 in two-dimensions (left) and three-dimensions
(right).
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Figure 4.11: Temporal evolution of the average vertical velocity for σ = 0.1
(top panel) and σ = 0.5 (bottom panel) in two- and three-dimensions.
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Figure 4.12: Temporal evolution of the total kinetic energy for σ = 0.1 (top
panel) and σ = 0.5 (bottom panel) in two- and three-dimensions.
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through the turbulent convecting region in three-dimensions, a horizontal mag-

netic layer is inserted at computational time t ≈ 42, in the case where the

Prandtl number σ = 0.1 and magnetic field strength F = 0.01. Snapshots of

the 3D magnetoconvection interactions in Figure 4.13 generally reveal similar

characteristics to that determined in two-dimensions (Figure 4.5). The effects

of convection and turbulence can clearly be viewed in Figures 4.13(a)-4.13(k),

where the buoyancy-driven magnetic field undergoes suppression and amplifi-

cation as it competes with the overlying convective motion to escape.

Figure 4.14 highlights the equipartition-strength magnetic structures for the

3D simulation, by displaying snapshots of the vertical velocity, horizontal mag-

netic field, and ratio of kinetic energy to magnetic energy, at several computa-

tional times. The transport of the magnetic field through the convective layer

is predominantly a result of advection. Magnetic structures of equipartition-

strength occur at the interface region, and almost remain within the lower

domain as the strength of the field is insufficient to overcome the relatively

stronger, overlying convective downflows. Therefore, to rise further through

the domain, magnetic structures must be transported by the convective up-

flows.

Focusing on the global distribution of the magnetic field, Figure 4.15 shows Φ

and zmax, as defined in Equations (4.13) and (4.14) respectively, for σ = 0.1

and σ = 0.5. The magnetic field is found to behave differently, in comparison to

the quasi 2D cases. Here, a smoother time evolution of the profiles Φ and zmax

is noticed. This is expected, given the reduced turbulence as the additional

dimension is introduced. For the least turbulent flow in 3D, σ = 0.5, a greater

amount of magnetic field is present in the upper domain. This agrees with the

pattern determined in the final stages of the quasi 2D evolution, where advec-

tion overtakes as the more active process in transporting the magnetic field,

and so suggests that the degree of turbulence in the 3D cases is insufficient

to highlight the contribution of equipartition-strength magnetic structures in
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Figure 4.13: Snapshots of the z-component of the velocity field overlaid with
the y-component of the magnetic field in three-dimensions at computational
times (a) t = 41.78, (b) t = 43.02, (c) t = 44.15, (d) t = 46.40, (e) t = 48.60,
(f) t = 49.80, (g) t = 52.16, (h) t = 54.66, (i) t = 55.61, (j) t = 57.37 and (k)
t = 58.69 respectively.
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Figure 4.14: Snapshots of the z-component of the velocity field (top), the y-
component of the magnetic field (middle) and ratio of the kinetic to magnetic
energy (bottom) at y = 0 for times (a) t = 45.3, (b) t = 50.9, and (c) t = 55.6
respectively.
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enhancing the rate of flux emergence.

The profile of zmax reveals similar features to the earlier quasi 2D findings;

maximum field strength is maintained deeper for turbulent flows of greater

velocity fluctuations, in this case σ = 0.1.

4.4 Conclusion

Starting from the fundamentals of MHD and the key equations governing the

interactions between electrically conducting fluid and magnetic field, I adapted

an idealised numerical model to explore the non-linear interaction between con-

vective flows and buoyancy-driven magnetic structures, in a regime resembling

the solar interior where the convection zone meets the tachocline, and address

the nature of emergence of magnetic structures. Initially, prior to exploring

the MHD model, various convective flows were established with respect to the

non-dimensional Rayleigh number. The magnetic field was later introduced

in a stably stratified region, positioned below the convectively unstable region

once the hydrodynamic convection was fully developed, and the evolution of

the magnetic field was investigated.

The quasi two-dimensional results, revealed two possibilities to explain the be-

haviour of the rising magnetic field. It was found that the magnetic field, while

it is largely maintained in the vicinity where it was initially prescribed, can rise

passively via convective motions, or alternatively strong magnetic structures,

comparable to the surrounding motions, can rise without getting distracted by

the overlying complexities of convection as was shown in Barker et al. (2012)

and Chapter 3. Given the extreme conditions in the solar interior, the second

possibility is most likely to occur. However, this equipartition phenomenon

was complicated and difficult to solidly highlight due to the limitation of the

simplified model.
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Figure 4.15: The temporal evolution of the magnetic flux fraction contained
above the initial location of magnetic field, Φ, (top panel) and the location of
the maximum magnetic field, zmax (bottom panel).
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In the presented simulations, the transport of the field was mainly passive

through the upper layer, but in the lower layer it was observed that small-

scale, equipartition strength magnetic structures were reached. These mag-

netic structures were easily captured for larger values of F and were found to es-

cape fractionally, however, they cannot rise unhindered given the inescapable,

larger velocities present further through the upper region. Hence, the only pos-

sible way to escape completely is through the combination of both mechanisms.

The equipartition criterion of Barker et al. (2012) and Chapter 3 was found to

appear on a local scale, and does contribute towards the global behaviour of

the magnetic field, particularly as the flow becomes more turbulent. Greater

fluctuations in the velocity field revealed an increased fraction of magnetic flux

escaping through the convection zone. This is a result of the effective pumping

and local amplification of the field due to turbulence, that enhances the emer-

gence of equipartition-strength magnetic structures. However, the absence of

mechanisms for generating magnetic fields led to a reduction in the magnetic

field as time evolves. Consequently, the occurrence of equipartition-strength

magnetic structures become less likely, and so advection overtakes as the pri-

mary source of field transport.

In this work, I also provided an insight into the magnetoconvection interactions

in three-dimensions by conducting some of the quasi two-dimensional cases in

three-dimensions. The additional degree of freedom was found to smoothen the

variability and reduce the fluctuations of the velocity field. Therefore, unlike

the quasi 2D simulations, equipartition-strength magnetic structures were not

found to globally contribute toward the transport of magnetic field through

the overlying convective layer. Results in quasi 2D highlight the findings of

Barker et al. (2012) and Chapter 3, in terms of the effective role of turbu-

lent pumping in transporting and maintaining the magnetic field. To capture

similar dynamics to the quasi 2D calculations in 3D, further calculations of

high-Rayleigh number turbulent convection must be investigated in 3D space.
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It is important to note, however, due to the gap between numerical calcu-

lations and observations, our understanding of the Sun remains incomplete.

The extreme conditions within the Sun cannot be retrieved in numerical simu-

lations of convection, for instance. The desired Rayleigh number that portrays

the property of convection in the solar interior cannot be simulated as the

available computational capacity remains a major constraint to achieving the

strong turbulence required. Therefore, the adaption of simplified models, such

as the γ-pumping in Barker et al. (2012) and Chapter 3, might be a better ap-

proach to shed further light on the effect of turbulence in the solar convection

zone.
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Chapter 5

The Effect of Non-Constant

Transport Coefficients on the

Onset of Compressible

Convection

5.1 Introduction

High-resolution observations of the solar surface are continually revealing a

bewildering variety of multi-scale magnetic features (Harrison, 2008; Wiegel-

mann et al., 2014), that are governed by the closely interacting magnetic fields

and convectively-driven motions. With the purpose of exploring these struc-

tures and activities on the solar surface, an impressive number of studies have

been conducted, and the role of the underlying convective processes are known

to significantly contribute to the overall dynamics on the surface of the Sun

(e.g. Galloway and Weiss, 1981; Cattaneo et al., 2003).

Generally, convection plays a fundamental role in the many processes of stel-

lar fluid dynamics (Weiss and Proctor, 2014; Kupka and Muthsam, 2017). In

understanding convection in stellar interiors, extensive research over the past
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several decades has been carried out to explore the onset of thermal convection

(see, for example, Goody, 1956; Jones and Moore, 1978; Zappoli et al., 2014).

The onset of convection is based on the idea of a layer of fluid heated from

below, which subsequently creates a vertical density variation resulting from

the effects of thermal expansion and compression. As the thermal variation

across the layer becomes larger, the fluid parcel becomes subject to an upward

buoyancy force (see Section 2.1).

The seminal work of Rayleigh (1916) formed the foundation of convective insta-

bilities, which has opened doors for further investigations over a wide range of

physical phenomena. A comprehensive survey of the onset of thermal convec-

tion is given by Chandrasekhar (1961) using linear stability analysis, where a

variety of features are examined, e.g. the effects of rotation and magnetic field.

Despite the great effort in exploring such complex systems, our understand-

ing of the convective onset in different contexts is far from complete. The

formalism of many of the early models introduced simplifying mathematical

assumptions to reduce the complexity of the problem considerably, and allow

employing analytical methods, in order to provide a preliminary exploration

of the physical processes. Most studies of convective instability relied on the

Boussinesq approximation, in which density variations are neglected in the

governing equations, except when the gravitational force and buoyancy are

considered (Boussinesq, 1903; Spiegel and Veronis, 1960).

In some astrophysical and geophysical systems, particularly the Sun, the in-

evitable large length scales result in substantial density variations through the

deep convective layer. Therefore, the Boussinesq approach is an oversimplica-

tion to explore the many scale heights of solar convection. Accordingly, Spiegel

(1965) constructed the linearised system for a fully compressible medium, to

determine the onset of steady convection, and provide an insight into the

non-linear evolution of compressible convection. Including compressibility was
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found to reveal important effects on convection such as the occurrence of asym-

metrical flows (Spiegel, 1965; Mizerski and Tobias, 2011).

It is essential to note that despite incorporating compressibility, constructed

models involve some form of simplifying assumptions regarding the transport

coefficients. The thermal conductivity and viscosity are usually approximated

to be spatially uniform, and independent of the thermodynamic variables, to

enable a more straightforward form of the equations describing the system, and

reduce the computational effort when solved (see, for example, Ossendrijver et

al., 2001; Botha et al., 2011; Bushby et al., 2018). In some situations, it may

be acceptable to consider such approximations, i.e. if the vertical extent of

temperature is sufficiently small, but generally, the transport coefficients are

not constant and depend on both the magnetic field and temperature (Priest,

1982; Spitzer, 2006).

Few attempts have been undertaken in order to understand the effect of non-

constant transport coefficients in linear studies of convection, in a compressible

atmosphere. Vickers (1971), for example, considered a position-dependent vis-

cosity and a conductivity that was a function of temperature, while Graham

and Moore (1978) included various forms of viscosity and conductivity. For a

fully ionized plasma, both viscosity and thermal conductivity are dominantly

proportional to T 5/2 (e.g. Priest, 1982; Spitzer, 2006). Thus, dependency will

be important for calculations where there is a large temperature difference be-

tween the top and bottom of the domain, and there is the potential for complex

local dynamics.

Appropriate non-constant transport coefficients, as outlined in Spitzer (2006),

can significantly alter the stability threshold of a convecting fluid (Glatzmaier

and Gilman, 1981; Drew et al., 1995). This chapter will explore the effect of

non-constant transport coefficients by deriving the hydrodynamic equations

for marginal stability to incorporate the Spitzer relation, for the first time,
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and use linear stability analysis to investigate the onset of instability of a

fully compressible stratified system. This investigation will serve to under-

stand the future magnetohydrodynamical problem, when magnetic fields are

incorporated, and will inform subsequent fully non-linear calculations.

5.2 Model and Method

Prior to introducing the model, to study the linear stability of the desired

system, it is convenient to briefly elaborate on the notion of stability. That

is, the ability of a system in a state of equilibrium to adjust to disturbances.

According to Żak (2013), the definition of an equilibrium state, i.e. the basic

state of a system, is given as follows. A vector xe is called an equilibrium point

for a system ẋ if once the state vector is equal to xe it remains equal to xe for

all future times.

The stability of a system is classified through perturbing the basic state, by

adding small amplitude disturbances. If initial perturbations decay in time,

then the system is called stable. Otherwise, a system is called unstable if the

initial perturbations grow or persist. In a mathematical context, the notion

of stability can be formalised based on the concept of Lyapunov stability for

which an equilibrium state xe is stable if for any given ε > 0 there exist δ > 0

such that if ||x(t = 0)− xe(t = 0)|| < δ then ||x(t)− xe(t)|| < ε for all t ≥ 0

(Lappa, 2009; Żak, 2013).

On this mathematical basis, linear stability analysis techniques can be ap-

plied to determine the conditional stability of a given system (Joseph, 1976;

Lappa, 2009). By decomposing the various physical variables describing the

system into background and infinitesimally small perturbation components,

that is f(x, t) = fe(x) + δf(x, t), linear equations governing the evolution of

the disturbances can be derived, and therefore solved to examine the stability

of the system.
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5.2.1 Derivation of Linear Stability Equations

The system considered here consists of a three-dimensional domain in a Carte-

sian geometry, with the x and y coordinates representing the horizontal direc-

tions, and the z-axis pointing vertically down, parallel to the constant gravita-

tional acceleration. In dimensional form, the set of equations for the evolution

of a compressible hydrodynamic system, as outlined in Chapter 2, is:

∂ρ

∂t
+∇ · (ρu) = 0, (5.1)

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+ ρgẑ +∇ · (µτ ), (5.2)

ρcv

(
∂T

∂t
+ (u · ∇)T

)
= −p∇ · u+∇ ·

(
K∇T

)
+
µτ 2

2
, (5.3)

where the perfect gas law

p = R∗ρT, (5.4)

(R∗ is the gas constant) and the viscous stress tensor

τij =
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij. (5.5)

The transport coefficients K and µ are assumed to be functions of temperature,

and take the following form:

K = K0

(
T

T∗

)q
, (5.6)

µ = µ0

(
T

T∗

)r
, (5.7)

where T∗, K0, and µ0 are the reference temperature, thermal conductivity, and

viscosity respectively, taken to be the value at the top of the domain. The in-

dices q and r are assumed constants that will be varied.
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Let ρ = ρ0+ρ′, T = T0+T ′, u = u0+u′, and p = p0+p′, where ρ0, T0, u0, and

p0 are the static solutions of the governing equations and ρ′, T ′, u′, and p′ are

to have infinitesimal amplitudes. The static solutions are found by neglecting

time-derivatives, and assuming a basic state where u0 = 0, T = T0(z), and

ρ = ρ0(z). Hence, from the above equations, one obtains

dp0
dz

= gρ0, (5.8)

K
dT0
dz

= constant, (5.9)

and

p0 = R∗ρ0T0. (5.10)

The equations for the evolution of the perturbed quantities are derived by

inserting the decomposed variables, adapting the basic state assumptions, and

linearising. Therefore, starting with Equation (5.1):

∂(ρ0 + ρ′)

∂t
+∇ · ((ρ0 + ρ′)(u0 + u′)) = 0,

and so,
∂ρ′

∂t
+∇ · (ρ0u′) =

∂ρ′

∂t
+ ρ0∇ · u′ + u′ · ∇ρ0 = 0.

Note that ρ0 is only a function of z, thus the above equation yields

∂ρ′

∂t
+ ρ0∇ · u′ + w′

∂ρ0
∂z

= 0. (5.11)

Next, considering Equation (5.2):

ρ
∂u

∂t
+ (u · ∇)u = −∇p+ ρgẑ +

µ0

T r∗
∇ · (T rτ ). (5.12)
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Perturbing Equation (5.12) gives

ρ0
∂u′

∂t
= −R∗ρ′∇T0 −R∗ρ0∇T ′ −R∗T ′∇ρ0 −R∗T0∇ρ′ + ρ′gẑ

+
µ0

T r∗
∇ · (T r0 τ ′),

(5.13)

where τ ′ is the stress tensor for the perturbed component of the velocity.

For the temperature, Equation (5.3) becomes

ρcv

(
∂T

∂t
+ (u · ∇)T

)
= −p∇ · u+

K0

T q∗ (q + 1)
∇2(T q+1) +

µτ 2

2
, (5.14)

and by perturbing, one obtains

ρ0cv
∂T ′

∂t
+ ρ0cvw

′∂T0
∂z

= −R∗ρ0T0∇ · u′ +
K0

T q∗
∇2(T q0T

′). (5.15)

Note that the basic state condition for u means that there will be no contri-

bution to the linear equation from the heating terms.

The non-dimensional form of Equations (5.11), (5.13), and (5.15) are given

following an appropriate choice of scales. The unit of length is scaled by the

depth of the layer, d. Density and temperature are scaled by their initial values

at the upper surface, ρ∗ and T∗ respectively. Velocity is scaled by the sound

travel time across the layer in terms of the isothermal sound speed,
√
R∗T∗, and

is related to the unit of time d/
√
R∗T∗. Thus, for the mass equation (Equation

5.11) this gives
∂ρ′

∂t
+ ρ0∇ · u′ + w′

∂ρ0
∂z

= 0. (5.16)

The momentum equation (Equation 5.13) becomes

ρ0
∂u′

∂t
= −ρ′∇T0 − ρ0∇T ′ − T ′∇ρ0 − T0∇ρ′ + ρ′

dT0
dz

∣∣∣∣
∗
(m+ 1)ẑ

+σCk∇ · (T r0 τ ′),
(5.17)
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where the polytropic index m = −1 + g/R∗(dT0/dz)|∗, the Prandtl number

σ = µ0cp/K0, and the dimensionless thermal diffusivity Ck = K0/ρ∗cpd
√
R∗T∗.

For the temperature equation (Equation 5.15), the non-dimensional form reads

ρ0
∂T ′

∂t
+ ρ0w

′∂T0
∂z

= −(γs − 1)ρ0T0∇ · u′ + γsCk∇2(T q0T
′). (5.18)

where γs = cp/cv is the ratio of specific heats.

Given the depth-dependent equilibrium state, each perturbed quantity can

be expressed through the typical normal-mode ansatz f(z) exp(ikx+ ily+ st),

where k, l ∈ R are the horizontal wave numbers, s = sr + isi ∈ C with sr

being the growth rate of the instability, and f describes the variation of the

disturbances across the layer (Tobias and Hughes, 2004; Favier et al., 2012;

Crouch, 2016). Henceforth, the equations that govern the development of

small-amplitude perturbations can be cast in the following form:

sρ′ = −iku′ρ0 − ilv′ρ0 −D(w′ρ0), (5.19)

ρ0su
′ = −ρ0ikT ′ − T0ikρ′ + σCkT

r
0

(
D2u′ +

1

3
ikDw′ − 4

3
k2u′ − l2u′ − 1

3
klv′

)
+rσCkT

r−1
0 DT0(Du

′ + ikw′),

(5.20)

ρ0sv
′ = −ρ0ilT ′ − T0ilρ′ + σCkT

r
0

(
D2v′ +

1

3
ilDw′ − 4

3
l2v′ − k2v′ − 1

3
klu′

)
+rσCkT

r−1
0 DT0(Dv

′ + ilw′),

(5.21)
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ρ0sw
′ = −D(T0ρ

′)−D(ρ0T
′) + ρ′DT0|∗(m+ 1) + σCkT

r
0

(
4

3
D2w′ +

1

3
ikDu′

+
1

3
ilDv′ − w′k2 − w′l2

)
+ rσCkT

r−1
0 DT0

(
4

3
Dw′ − 2

3
iku′ − 2

3
ilv′
)
,

(5.22)

ρ0sT
′ = −ρ0w′DT0 − (γs − 1)ρ0T0(iku

′ + ilv′ +Dw′) + γsCk(−k2 − l2

+D2)(T q0T
′),

(5.23)

To simplify the problem, it is possible to reduce the three-dimensional set of

linearised equations to an equivalent two-dimensional problem, without losing

information about the stability properties in the three-dimensional framework.

Squire’s theorem (Squire, 1933; Drazin and Reid, 2004) states that to each

unstable three-dimensional disturbance there corresponds a more unstable two-

dimensional one. The proof of the theorem was formulated to transform an

inviscid fluid; however, it can be applied to a viscous fluid, if a Squire’s trans-

formation is found. The coordinate transformation in this framework exists

and is as follows: k̃ =
√
k2 + l2, k̃ũ′ = ku′ + lv′, ρ̃0 = ρ0, ρ̃′ = ρ′, T̃0 = T0,

T̃ ′ = T ′, s̃ = s, w̃′ = w′, where tilde denotes two-dimensional quantities.

On substituting, and dropping the tildes, Equations (5.19)-(5.23) are reduced

to an equivalent two-dimensional problem:

sρ′ = −iku′ρ0 −D(w′ρ0), (5.24)
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ρ0su
′ = −ρ0ikT ′ − T0ikρ′ + σCkT

r
0

(
D2u′ +

1

3
ikDw′ − 4

3
k2u′

)
+rσCkT

r−1
0 DT0(Du

′ + ikw′),

(5.25)

ρ0sw
′ = −D(T0ρ

′)−D(ρ0T
′) + ρ′DT0|∗(m+ 1) + σCkT

r
0

(
4

3
D2w′ +

1

3
ikDu′

−w′k2
)

+ rσCkT
r−1
0 DT0

(
4

3
Dw′ − 2

3
iku′

)
,

(5.26)

ρ0sT
′ = −ρ0w′DT0 − (γs − 1)ρ0T0(iku

′ +Dw′) + γsCk(−k2 +D2)(T q0T
′),

(5.27)

which can be written in the form sf = Af , where the vector f = (ρ′, u′, w′, T ′)

is the solution vector containing the eigenfunctions, and A is a 4 × 4 matrix

that consists of linear differential operators in z.

Equations (5.24)-(5.27) are solved numerically by dividing the layer depth

0 ≤ z ≤ d into n uniformly distributed points, and the differential operators

are approximated using a central fourth-order finite-difference approximation

(see Subsection 3.2.5). The method used in this model is adapted from the gen-

eral method discussed in Favier et al. (2012) and Witzke et al. (2015), where

the Schur factorisation is utilised to determine the eigenvalues and eigenvec-

tors.

5.2.2 Boundary and Initial Conditions

To complete the description of the problem, impermeable, stress-free velocity,

and constant temperature boundary conditions are employed on the top and
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bottom boundaries:

∂u′

∂z
=
∂v′

∂z
= w′ = 0 at z = 0 and z = d,

T ′ = T∗ at z = 0 and T ′ = T∗(1 + θ) at z = d.

(5.28)

At this stage, it is convenient to explicitly define the equilibrium temperature

and density distributions. Starting with Equation (5.9):

K0

(
T0
T∗

)q
∂T0
∂z

= A,

which implies that

T q
∂T0
∂z

= B.

Thus,
T q+1
0

q + 1
= Bz + C,

and so

T0 = (Dz + E)
1
q+1 ,

where A,B,C,D,E are all constants. Using boundary conditions T (0) = T∗

and T (1) = 1 + θ, and non-dimensionalising gives

T = T∗

[(
(1 + θ)q+1 − 1

)z
d

+ 1

] 1
q+1

. (5.29)

For density, starting from Equation (5.8):

R∗
∂(ρ0T0)

∂z
= ρ0g.

Non-dimensionalising gives,

R∗ρ∗T∗
d

∂(ρ0T0)

∂z
= ρ∗ρ0g,

and so,
R∗T∗
d

(
ρ0
∂T0
∂z

+ T0
∂ρ0
∂z

)
= ρ0g.
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Using the definition of the polytropic index, the above equation becomes

T0
∂ρ0
∂z

= ρ0

(
gd

R∗T∗
− ∂T0

∂z

)
= ρ0

(
R∗(dT0/dz)|∗(m+ 1)d

R∗T∗
− ∂T0

∂z

)
.

Thus,

∫
1

ρ0
∂ρ0 =

(m+ 1)
(
(1 + θ)q+1 − 1

)
q + 1

∫
1

T0
∂z −

∫
∂T0/∂z

T0
∂z.

At this step, it is crucial to have knowledge of the value of q. Integrating the

above equation, for non-zero q, gives

ln ρ0 =
d(m+ 1)

qT∗

[(
(1 + θ)q+1 − 1

)z
d

+ 1

] q
q+1

− lnT0 + F,

where F is a constant. Using conditions ρ(0) = ρ∗ and T (0) = T∗, one deduces

F = ln(ρ∗T∗)−
d(m+ 1)

qT∗
.

Therefore,

ln

(
ρ0T0
ρ∗T∗

)
=
d(m+ 1)

qT∗

[((
(1 + θ)q+1 − 1

)z
d

+ 1

) q
q+1

− 1

]
,

and finally,

ρ0 = ρ∗

((
(1 + θ)q+1 − 1

)z
d

+ 1

)− 1
q+1

exp

{
d(m+ 1)

qT∗

[((
(1 + θ)q+1 − 1

)z
d

+1

) q
q+1

− 1

]}
.

(5.30)

The background state of density and temperature varies depending on the val-

ues of q and is unaffected by r since viscosity, in this case, does not modify the

basic state. Figure 5.1 highlights the differences in the initial temperature and

density profiles for several q values. The temperature at the top and bottom

of the domain is held fixed for all q, as imposed by the boundary conditions
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(Equation 5.28). However, as q increases, the temperature gradient continually

changes with depth (see Figure 5.2), and the temperature distribution is no

longer linear. Interestingly, the density distribution is found to increase ex-

ponentially, as the value of q grows, introducing high density contrasts across

depth.

5.2.3 Parameter Choices

For this preliminary investigation, the principal objective is to understand the

general influence of non-constant transport coefficients on stability. Therefore,

the parameters that characterise the system do not necessarily provide direct

insight into the dynamics of the Sun. I choose to present the survey of critical

values of instability by fixing the thermal stratification, θ, and the Prandtl

number, σ, to unity in all cases while the variable parameters are the poly-

tropic index, m, thermal conductivity index, q, and viscosity index, r.

It is known that for a monoatomic ideal gas, where the specific heat ratio

of γs = 5/3 is employed, the polytrope is stable for m ≥ 1.5. In this case, I fix

m < 1.5 and accordingly analyse the effect of varying polytropic index on the

instability of the system. A summary of the input parameters is shown in Ta-

ble 5.1. The resolution of this problem has been carefully selected and tested

for the results quoted in this work. Note that, owing to the large density con-

Parameter Description Value
σ Prandtl number 1.0
Ck Thermal diffusivity Variable
θ Thermal stratification 1.0
γs Ratio of specific heats 5/3
m Polytropic index Variable
q Thermal conductivity index Variable
r Viscosity index Variable
d Vertical depth of layer 1.0

Table 5.1: The choice of parameters for the linear stability model.

trast as q increases, the choices of q are limited. For example, for q = 2.5, the
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Figure 5.1: The background thermal profile (left) and density profile (right)
for q = 0.5 (top panel), q = 1 (middle panel), and q = 2 (bottom panel), where
T∗ = ρ∗ = d = m = θ = 1.
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Figure 5.2: The temperature gradient profile for different values of the thermal
conductivity index, q, where T∗ = d = θ = 1.

system remains under-resolved as it requires more points than computational

resources allow.

5.3 Results

Here attention is focused on the stability threshold of the pure hydrodynamical

system, while the characteristics of the transport coefficients are varied. The

complete Equations (5.24)-(5.27) are solved numerically for a range of wave

numbers, with stability threshold solutions discussed in terms of the critical

Rayleigh number, in addition to the thermal diffusivity, for varying polytropic

index, thermal conductivity index, and viscosity index. By setting the trans-

port coefficients’ indices to zero, one falls in the common framework of constant

thermal conductivity and viscosity. Therefore, the presented results can par-

tially be compared to Gough et al. (1976).

In keeping with the standard derivation of the non-dimensional Rayleigh num-

ber, the governing parameter for thermal convection (see Section 2.1 for de-

tails), the definition of Vickers (1971) for which the framework was built on
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the foundation of similar assumptions to this model is given by

Ra =
(dT1/dz)ρ21gcpd

4

T1K1µ1

, (5.31)

where subscript 1 refers to the value of the variable evaluated at an arbitrary

level within the layer. Note that, the definition of the Rayleigh number in

Equation (5.31) differs slightly from Spiegel (1965), where constant transport

coefficients are considered. However, to enable direct comparisons between

constant and non-constant transport coefficients, through varying q and r, the

definition of the Rayleigh number in this model (Equation 5.31) is modified to

allow the factor

1− g

(dT1/dz)cp
=

3− 2m

5
, (5.32)

as in Speigel’s definition of the Rayleigh number. As illustrated in Figure 5.3,

the depth-dependent Rayleigh number is highly variable and so, the common

convention of expressing Ra in terms of the mid-layer value is followed (Bran-

denburg et al., 1990; Hurlburt et al., 1994).

To determine the critical Rayleigh number, Rac, the eigenvalue problem is

solved, such that the most unstable mode is found for each parameter regime.

The system is assumed to be stable if the growth rate, s, is zero for all wave

numbers, k. Tables 5.2 and 5.3 summarise the results of the numerical simula-

tions. For each fixed m, the critical Rayleigh numbers are found and presented

in Table 5.2 for varying q and fixed r = 0, and in Table 5.3 for varying r and

fixed q = 0, such that for Ra > Rac convection will ensue. As values of Ra

become larger than Rac, the band of wave numbers k, in which perturbation

grows, expand. It can be noted that the system initiates close to the Boussinesq

limit for stability of Rac = 27π4/7, since the density variation is minimal for

small m, q, and r. This signifies the good agreement between the compressible

and Boussinesq calculations when density variations are small. As expected,

the compressible flow is generally more stable as the polytropic index reaches

the adiabatic value of m = 1.5.
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Figure 5.3: Graphs of the critical Rayleigh number as a function of depth for
polytropic indices m = 0.1 (left panel) and m = 1 (right panel), and thermal
conductivity indices q = 0 (top panel), q = 1 (middle panel), and q = 2
(bottom panel).
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Rac
q m = 0.1 m = 0.25 m = 0.5 m = 1.0 m = 1.3
0 664.90 674.79 690.30 728.40 747.56
0.001 665.22 674.65 691.20 729.00 751.56
0.01 669.31 679.45 697.60 744.20 789.82
0.1 712.77 731.00 770.00 916.80 1554.72
0.5 994.67 1086.25 1347.20 12350.20 1884433.52
1.0 1828.40 2429.00 6980.80 854356.80 97909022.64
1.5 6166.16 20463.50 140300.80 14391648.84 *
2.0 66514.00 207128.00 1466010.40 162759215.00 *
2.5 518030.24 1704571.50 12956050.00 * *

Table 5.2: The critical Rayleigh number, Rac, for a range of q and m, for fixed
r = 0. Values presented here are rounded to two decimal places. The asterisk
(*) represents unachieved values due to the insufficient resolution available for
these cases.

Rac
r m = 0.1 m = 0.25 m = 0.5 m = 1.0 m = 1.3
0 664.90 674.79 690.30 728.40 747.56
0.001 664.93 674.79 690.86 728.43 748.25
0.01 666.80 676.27 692.74 728.43 750.32
0.1 690.30 700.01 718.38 750.76 773.72
0.5 795.57 806.14 823.66 862.84 888.91
1.0 958.10 969.72 991.47 1033.04 1060.16
1.5 1160.48 1172.75 1195.79 1241.93 1272.86
2.0 1421.55 1428.60 1451.70 1502.70 1535.72
2.5 1739.67 1749.28 1774.14 1829.30 1864.62

Table 5.3: The critical Rayleigh number, Rac, for a range of r and m, for fixed
q = 0. Values presented here are rounded to two decimal places.
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Of interest in this chapter is to discover how Rac behaves with varying q

and r. The quantitative indication of the results reveals the stabilisation of

the compressible medium as both q reaches the Spitzer limit (q = 2.5) in Table

5.2, and r reaches the Spitzer limit (r = 2.5) in Table 5.3. However, stabilisa-

tion is more effective for increasing q. This remark mainly lies in the effect of

the large density stratifications. In other words, the substantial growth in Ra

is primarily due to the exponential, depth-varying background density profile,

that is incorporated in the definition of the Rayleigh number. This is in agree-

ment with the results of Gough et al. (1976) and Calkins et al. (2014), where

increasing stratification was found to lead to a growth in the critical Rayleigh

number.

The plots in Figure 5.4 illustrates how variations in q (for fixed r) and r

(for fixed q) influence the marginal stability for convection in terms of the

thermal diffusivity, Ck, for a range of polytropic indices, m. By employing a

logarithmic scale, a monotonic decrease in Ck is noticed with increasing q. The

onset of Ck becomes significantly smaller as q grows, which escalates the criti-

cal Rayleigh values (as shown in Table 5.2) and delays the onset of convective

instability. As mentioned earlier, at this stage it was found challenging to pin

down the onset of convection for large values of q and m.

With varying viscosity in terms of r, an almost linear decay in the thermal

diffusivity was found in Figure 5.4. Similar behaviour in the rate of decay

was noticed for different values of the polytropic index. Intriguingly, a criti-

cality was found around m ≈ 0.7, where for smaller values of the polytropic

index the thermal diffusivity threshold for convective instability proves to be

higher. This criticality was also observed for varying thermal conductivity

when q . 0.5. The thermal diffusivity transition, with respect to the poly-

tropic index, cannot be extracted directly from Tables 5.2 and 5.3, given the

definition of the Rayleigh number. This is because both the reduction of Ck
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Figure 5.4: Onset of instability expressed in terms of the thermal diffusivity,
Ck, for varying q and fixed r = 0 (top panel) and for varying r and fixed q = 0
(bottom panel).
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and the increase of the polytropic index promotes system stability, i.e. the

growth of the dimensionless Rayleigh number.

Vertical profiles of the marginal eigenfunctions for the vertical velocity, tem-

perature, and density are shown in Figure 5.5, to provide a better insight into

the local dynamical properties. The eigenfunctions displayed in this figure

are for two values of the polytropic index, m = 0.1 and m = 1, for different

values of q. In the constant transport coefficient regime, where q = 0, the

shape of the temperature eigenfunctions can be seen to be parabolic in nature

with a symmetry around z = 0.5 for both m = 0.1 and m = 1. However, by

increasing q, changes in the general form of the eigenfunctions are revealed.

The symmetry of the eigenfunctions breaks and becomes skewed towards the

upper boundary. This can be explained as follows, the temperature gradient

(Figure 5.2) as q increases becomes steeper near the top of the layer, therefore

is prone to convective instability, and produces this deviation in the eigenfunc-

tions. Generally, growth in temperature produces a decline in density, which

consequently causes fluid motion due to pressure and other forces when dif-

ferences in density occur under the influence of gravity (Böhm-Vitense, 1992;

Subramanian and Balasubramaniam, 2001). This pattern can be seen in both

eigenfunctions of density and velocity, where the peak height increases with

increasing q.

By comparing the eigenfunctions for m = 0.1 and m = 1 in Figure 5.5, one

inspects that the skewness to the top boundary is faster with sharper peaks

for large m. Further, the eigenfunctions vanish at the bottom, and the onset

of convection takes place at a sublayer near the upper domain. This returns

to the nature of the background density, where the system is less dense at

the upper boundary (as imposed by the boundary conditions) and buoyancy

force is driving the motion. As the fluid becomes more stratified along with

depth, buoyancy braking overtakes as the dominant mechanism driving the

flow, and so leads to enhanced stability. Massaguer and Zahn (1980) and
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Figure 5.5: Eigenfunctions of the perturbed temperature field (top panel),
density (middle panel), and vertical velocity (bottom panel) for polytropic
indices m = 0.1 (left) and m = 1 (right), for several q values.
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Hurlburt (1983) have indeed reported that buoyancy braking is responsible for

the enhancing effect of stabilisation in layers with large density.

The perturbed temperature, density, and vertical velocity eigenfunctions for

constant and temperature-dependent viscosities, as specified by r, are similarly

depicted in Figure 5.6. The distributions are exact for both r = 0 (Figure 5.6)

and q = 0 (Figure 5.5), given both transport coefficients are assumed constant.

However, a different behaviour emerges in the eigenfunctions as r is varied. The

symmetry is largely maintained with increasing r and is mildly skewed towards

the upper layer. This is mainly because the basic state remains unchanged for

varying r, as opposed to varying q. The eigenfunctions at onset indicate that

the temperature-dependence of viscosity enhances the temperature perturba-

tion about the midpoint of the layer, which accordingly attenuates density.

However, as the viscosity proportionality with temperature increases, the ef-

fect on convective instability becomes evident. The vertical velocity reveals

that increasing r is to inhibit the fluid flow, and hence, its effect is to delay the

onset of convection. For increasing m, a qualitatively comparable behaviour

is observed, with the addition of the enhanced impact of stabilisation due to

density stratification.

5.4 Conclusion

With the ultimate objective of closely computing the intricate dynamics within

the Sun, this chapter addressed a crucial issue regarding the simplifying as-

sumptions in the mathematical modelling of MHD problems. The form of the

transport coefficients, such as the dynamic viscosity and thermal conductivity,

are often simplified to a constant value in space. To explore the impact of

non-constant transport coefficients in the modelling of convective instabilities,

a general form of the equations governing thermal convection in a compress-

ible polytropic atmosphere, using the Spitzer relations for temperature-varying

thermal conductivity and viscosity, were derived for the first time, and the sta-
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Figure 5.6: Eigenfunctions of the perturbed temperature field (top panel),
density (middle panel), and vertical velocity (bottom panel) for polytropic
indices m = 0.1 (left) and m = 1 (right), for several r values.
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bility of the system was examined using linear stability analysis for each non-

constant transport coefficient separately. The linear equations were solved

numerically to determine the nature of the unstable modes, together with the

structure of the eigenfunctions.

This investigation, though far from being comprehensive, provides an insight

into the complexity introduced by non-constant transport coefficients. Here,

I chose to initially present the conditions for instability, and not focus upon

the growth rate of individual modes. The occurrence of convective instability

was analysed by using the dimensionless Rayleigh number, and the thermal

diffusivity, for several values of the polytropic index m, thermal conductivity

index q, and viscosity index r. Accordingly, a range of critical parameters that

determined the loss of stability was established. In all cases, the calculated

values of the critical Rayleigh number for marginal stability was found to be

consistently higher as the indices q and r increased. For large q, the onset of

convection required huge computational efforts, which restricted the survey of

analysis. Nevertheless, given that the structure of the static atmosphere was

to a large extent determined by q, increasing q was found to produce large den-

sity stratifications, which led to delaying the onset of convection significantly.

For fluids with high viscosity, resulting from increasing the parameter r, the

stabilising effect was found to be weaker, in comparison to varying q. This

is presumably due to the small changes in the distribution of the basic tem-

perature and density profiles, as r was varied. The polytropic index in all the

cases investigated in this study was shown to stabilise the system as it reached

the adiabatic limit. An interesting result is the criticality identified around

m = 0.7, where higher values of the thermal diffusivity were determined at

the onset of instability for smaller values of m. While the cause of this phe-

nomenon remains unclear in this study, I aim to embark on this feature in

future investigations.
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The general behaviour of the eigenfunctions for the temperature-dependent

transport coefficients revealed a far more interesting impact on the convecting

fluid. This reinforces the notion that the choice of transport coefficients can

have a great influence on the overall dynamics of convection, and thus should

be carefully selected to investigate different convective atmospheres. Given

that this study is a preliminary step to understand convective instability, it

must be kept in mind that many other potential instabilities could contribute

to the overall instability. In the Sun, for instance, instabilities can be driven

by differential rotation and magnetic fields (see, for example, Tobias, 2005).

Ultimately, our interest lies in the rich behaviour that is expected to emerge in

the fully non-linear development of instability. Prior to undertaking full non-

linear calculations of convection regimes, it is important to understand the

combined effect of non-constant viscosity and thermal conductivity, by means

of linear stability analysis. Besides, I also aim to assess the influence of varying

the Prandtl number on the onset of convection. Furthermore, it is necessary to

consider the full magnetohydrodynamic problem, by incorporating the effect

of the temperature-dependent magnetic diffusivity, that is η ∼ T 3/2 (Schmidt,

1966; Spitzer, 2006), to further understand the interaction between magnetic

fields and thermal convection, and to explain complex regions within stars,

such as sunspots on the surface of the Sun.
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Chapter 6

Discussion and Future Prospects

In this thesis, a number of results has been obtained. Here I shall provide

a summary of the important findings, and discuss their implications for our

present understanding of the interaction between convection and magnetic

fields in the solar interior, particularly in the tachocline region. I also shall

discuss some avenues for future research.

The transport of magnetic structures in the Sun is a complex phenomenon

that is not well understood. As a step in the direction of tackling such a prob-

lem, this thesis focused on plausible mechanisms that drive magnetic struc-

tures throughout the solar convection zone. It is unquestionable that convec-

tion plays an essential role in the magnetic emergence process. In the first

study (Chapter 3), I chose to demonstrate the competition between magnetic

buoyancy and turbulent convection using the mean-field approximation in a

numerical set-up that resembles the base of the solar convection zone, where

the three-dimensional, fully compressible, non-linear magnetohydrodynamics

equations were solved.

Describing the effect of small-scale turbulence on the large-scale magnetic field

in a parameterised manner enabled us to filter out important information re-

garding the efficiency of magnetic field transport. The interactions of the net

downward, time-dependent, γ-pumping overlying an imposed layer of magnetic
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fluid revealed that equipartition of energy, between the magnetic and kinetic

components, must be reached for buoyancy-driven magnetic structures to rise

into the pumping region. The temporal variation of the γ-pumping was shown

to significantly affect the evolution and other features of the emerging mag-

netic flux structures. The rate of emerging structures, the strength of magnetic

concentrations, and the extent to how far magnetic field can travel were all

found to depend on the timescale of the γ-pumping.

These findings shed new light on the timescale of convective turbulence and its

influential role on the transport of magnetic fields. Depending on the timescale

of the γ-pumping, magnetic structures were shown to concentrate and disperse

accordingly. Frequent rise of weak magnetic structures was linked to highly-

variable turbulent pumping profiles in time, while relatively infrequent emer-

gence of stronger magnetic concentrations was found for turbulent pumping

profiles that varied at a slower rate in time.

The presented results are encouraging in that they highlight the properties

of magnetic structures that are distributed over granulation scales on the pho-

tospheric region of the Sun. The emergence rate and strength of magnetic

fields link to the timescales and velocities associated with the solar surface

convection (see, for example, Priest, 2014). However, it is necessary to realise

that the solutions were obtained from a highly-simplified model, where several

assumptions and limitations have been imposed, such as the parameterisation

of turbulent pumping, and therefore is considered very simple to directly cap-

ture solar observations.

To bring the identified features of the simplified γ-pumping model a step closer

to solar interior conditions, Chapter 4 incorporated fully-developed convection

in the system to achieve the mean pumping imposed in Chapter 3 naturally.

Additionally, a two-layer configuration was adapted to resemble the interface

region embedded between the radiation zone and the convection zone inside
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the Sun. This approach, as expected, brought some additional difficulties

to extract information on the magnetoconvection interactions. Notably, the

equipartition criterion was found challenging to clearly identify, due to the

turbulent nature of convection.

The numerical simulations were performed in both quasi two-dimensional and

fully three-dimensional geometries. The analysis of several magnetoconvec-

tion regimes revealed that the equipartition criterion does contribute globally

in the flux emergence process as fluctuating motions in turbulent flows be-

come more energetic. The results were found to be less pronounced in the

three-dimensional simulations due to the effectively reduced fluctuations as an

additional dimension was introduced into the model.

In Chapter 5, I addressed an important issue regarding the assumptions in-

volved in the governing magnetohydrodynamics equations that determine the

dynamics of the Sun. Temperature-dependent transport coefficients were found

to be more complicated than its constant counterpart, and does modify the

stability condition of convecting fluids. These preliminary findings, based on

linear stability analysis, were shown to provide an effective stabilising mech-

anism as transport coefficients exhibit the dependency on temperature, and

therefore suggesting that non-linear calculations of temperature-dependent co-

efficients may alter the dynamics further.

For future work, there are several interesting directions of research to extend

and improve the work presented in this thesis. The frameworks proposed in

Chapters 3 and 4 can be built on by considering the effect of various factors

that are present in the Sun, and exploring their impact on the efficiency of

pumping and properties of emerging magnetic structures. Such factors include

shear, rotation, and nature of the magnetic field.

Furthermore, I intend to extend the investigations conducted in Chapter 4 to
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consider three-dimensional flows of higher Rayleigh numbers. Though numeri-

cally demanding to perform, these simulations will allow us to reach convective

flows of relatively comparable turbulence to the quasi two-dimensional simula-

tions, and therefore enable us to examine and directly compare the mechanisms

of magnetic field transport in quasi two-dimensional and three-dimensional

frameworks.

Moving attention to Chapter 5, I aim to carry out further calculations to deter-

mine the onset of convection in the presence of magnetic fields, for temperature-

dependent transport coefficients. This is followed by conducting non-linear

calculations of the temperature-dependent coefficients and comparing them

with the constant coefficient models, in order to better understand their con-

tribution to the overall evolution of the desired system.

Finally, it is worth mentioning that the physics of the Sun have not been

thoroughly understood yet and remain a great challenge, however by focusing

on the pieces, and tailoring approaches to provide an insight into the physical

interactions, we are gradually being able to build a coherent picture of the

dynamics in the interior regions of the Sun, and other stars.
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Appendix A

The Interplay between

Convection Patterns and

Magnetic Field

Various convectively-driven plumes are considered, with their dynamics exam-

ined as they interact with the underlying magnetic field. The preliminary work

discussed in this Appendix is to merely provide an insight into the influence of

different convective motions (laminar to turbulent) on the action of magnetic

flux structures. Using the exact set-up in Chapter 4, a localised two-layer

Cartesian plane of a compressible fluid in quasi two-dimensions is considered,

where the dynamical evolution is described by the set of coupled, non-linear,

dimensionless MHD Equations (4.1)-(4.6), subject to the boundary conditions

specified in Equation (4.9). The system of equations is solved numerically on a

uniform computational grid using the parallel hybrid finite-difference/pseudo-

spectral code discussed in Subsection 3.2.5.

In the absence of magnetic field, a series of numerical simulations are carried

out to find a range of parameter combinations that give steady and various

time-dependent convection. The parameter settings in this model are not in-

tended to reflect on the conditions in the inner layers of the Sun. Since the

extreme diffusivities present in the Sun cannot be fully resolved using current
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processing power, the dissipative length-scales chosen are of larger scales com-

pared to the solar interior, but the same order of diffusivities is maintained,

i.e. 1 � ζ0 � σ and Ck � 1 (Barker et al., 2012). One way to observe

these convection patterns is by varying the values of the Rayleigh number, Ra,

defined by Equation (4.8). Hence, I choose to fix all parameters and vary the

Prandtl number, which appears in the Rayleigh number, to give rise to the

different types of convection, as listed in Table A.1.

Parameter Description Value
σ Prandtl number Variable
Ck Thermal diffusivity 0.35
θ Thermal stratification 4.0
γs Ratio of specific heats 5/3
mT ,mB Polytropic indicies 1.0, 4.0
λx, λy Box horizontal aspect ratio 8.0, 8.0
d Vertical depth of box 2.0

Table A.1: The choice of parameters for the hydrodynamic cases.

The onset of buoyancy-driven convection, as we recall, occurs once Ra ex-

ceeds a critical threshold value. The developmental transition from stable

to unstable can be demonstrated by the temporal evolution of the total ki-

netic energy, defined by Equation (3.31). The evolution for a range of Prandtl

numbers is displayed in Figure A.1. Primarily, the initial peaks in the kinetic

energy of the system, as clearly shown in Figure A.1(a), pursue from the initial

perturbations in the equilibrium state to trigger instabilities. The amplitude

of perturbations in Figure A.1(a) simply decays in time, which denotes the

stability of the system. On the other hand, in Figures A.1(b)-(f), the pertur-

bations begin to grow later in time and the onset of convective instabilities

is the dominant phenomena, with various unstable flows emerging, that range

from laminar to turbulent, as the values of the Prandtl number decrease in

this set-up. For smaller values of the Prandtl number, i.e. larger values of

the Rayleigh number, irregular oscillations appear with higher kinetic energy

levels.
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Figure A.1: Temporal evolution of the total kinetic energy Ek for (a) σ = 0.3,
Ra = 522.39, (b) σ = 0.2, Ra = 783.58, (c) σ = 0.15, Ra = 1044.77, (d)
σ = 0.11, Ra = 1424.69, (e) σ = 0.1, Ra = 1567.16, and (f) σ = 0.05,
Ra = 3134.32 respectively.
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The current resolution of 256 × 1 × 300 is downscaled, in some cases, to

128×1×200 in order to reduce the computational time. However, the choices

of resolution are carefully tested for numerical instabilities by investigating the

global kinetic energy spectrum in each simulation. The energy at each wave

number, k, is tracked by transforming the results from real to Fourier space.

At initial modes, large energy levels are expected that should reach fairly small

or zero energy levels before reaching the cut-off frequency 2k/3. Figure A.2

illustrates the logarithmic plot of the kinetic energy spectrum for low- and

high-resolution calculations of σ = 0.11. Although both plots, in Figure A.2,

are statistically about the same, the right plot is a better choice as to ensure

accurate results since there is no discontinuity in the kinetic energy spectrum.
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Figure A.2: The energy spectrum versus wave number on logarithmic scales
for a low resolution simulation of 128 × 1 × 200 (left), and a high resolution
simulation 256× 1× 300 (right).

All numerical experiments have been performed for sufficiently long enough

to ensure that the system is settled and to define the convection patterns cor-

rectly. From Figure A.1(b), one could conclude steady convection by noticing

the saturation of the kinetic energy plot up to t ≈ 120. For steady convection,

an additional measure is taken by calculating the slope of the energy level, and

ensuring a zero gradient.
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Figures A.3 and A.4 highlight the motion of convective plumes by display-

ing pseudo-colour snapshots of the horizontal and vertical components of the

velocity field for the steady, and moderately turbulent regimes respectively.

Horizontally, the colour blue (red) indicates right-moving (left-moving) convec-

tive cells, while vertically blue (red) indicates a downward (upward) direction

of motion. In the steady case, σ = 0.15, the system consists of three equally-

spaced convection cells undergoing circular motion at almost constant speeds.

However, moving attention to time-dependent convective patterns, Figure A.4

shows snapshots of the velocity for case σ = 0.05, in both horizontal and verti-

cal directions. Unlike the steady case, the motion in the time-dependent cases

involves transitions in the number of cells. As the Prandtl number becomes

smaller, the configurations of the convective cells become random and lead to

more vigorous convective flows in time.

Similar to the approach conducted in Chapter 4, a horizontal magnetic slab is

introduced to the non-convective region in the bottom layer once the convec-

tive flows are established in the upper layer of the domain. The horizontally

aligned magnetic field in the y-direction, By = 1, is inserted in the lower re-

gion, where no significant motion is present due to the composite polytropic

configuration. The magnetic field is imposed in the region 1.6 ≤ z ≤ 1.8 and

is in an initial magnetostatic equilibrium with its surroundings.

Given the choice of parameters in the hydrodynamic regime (Table A.1), mag-

netic diffusivity must yield to significantly high diffusion rates to satisfy the

condition 1� ζ0 � σ. Thus, convection becomes insufficient to suppress and

interact with the underlying magnetic field. To see this, Figure A.5 shows the

evolution of the field By when imposing one of the various field strengths tested,

and choosing the magnetic diffusivity such that 1 � ζ0 = 0.1 � σ = 0.06 for

a turbulent convective flow. The evolution of the horizontal magnetic field,
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(a)

(b)

Figure A.3: Snapshots of the horizontal component (top panel) and vertical
component (bottom panel) of the velocity field for σ = 0.15 at computational
times (a) t = 215.8 and (b) t = 323.3.
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(a)

(b)

Figure A.4: Snapshots of the horizontal component (top panel) and vertical
component (bottom panel) of the velocity field for σ = 0.05 at computational
times (a) t = 118.3 and (b) t = 222.1.
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By, shows that the field is highly diffusive, and can easily overcome convec-

tion. Therefore, the imposed field rises almost unimpeded, while it decays in

strength due to the absence of mechanisms that generate the field.

In this context, it is necessary to reduce the magnetic diffusion term and

ensure the order of diffusivities condition remains satisfied. By doing so, the

Prandtl number must be scaled down, which is responsible for the different

convection patterns in this framework. Additionally, for ease of computation,

I choose to reduce the values of the thermal diffusivity and stratification. The

modified set of parameters is found in Table A.2.

Parameter Description Value
σ Prandtl number Variable
Ck Thermal diffusivity 0.1
θ Thermal stratification 0.5
γs Ratio of specific heats 5/3
ζ0 Magnetic diffusivity 0.01
F Magnetic field strength Variable

Table A.2: The choice of parameters for the magnetohydrodynamic cases.

For the parameter values in Table A.2, steady and time-dependent convective

flows are achieved by setting σ = 0.02 (Ra ≈ 625) and σ = 0.001 (Ra ≈ 12500)

respectively. The total kinetic energy for these regimes are shown in Figure

A.6. Contrasting with the kinetic energy plots in Figure A.1, the kinetic en-

ergies in these cases indicate broader convective timescales with delays in the

onset time of convection. The energy contained in the convective flows, ac-

cording to the total kinetic energies, also appear to be weaker in these modified

parameter regimes.

By setting the magnetic field strength F = 0.1, the imposed magnetic field

is observed to slowly diffuse until it is held back by the overlying, fully de-

veloped convective motion. The system acts to suppress the magnetic field

in regions where the motion is downward, as indicated in blue in Figure A.7,
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(a)

(b)

(c)

Figure A.5: Snapshots of the horizontal component of the magnetic field for
σ = 0.06, F = 0.01 and ζ = 0.1 at computational times (a) t = 477.3, (b)
t = 479.1 and (c) t = 481.4. The magnetic field is imposed at t = 476.9 once
convection is fully developed in the upper domain.
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Figure A.6: Temporal evolution of the kinetic energy Ek for (a) σ = 0.02,
Ra ≈ 625 and (b) σ = 0.001, Ra ≈ 12500.

for the steady case σ = 0.02. Further, the buckling regions suggest that the

magnetic field is being carried by convective upflows to the unstable region,

which indicates that advection is the predominant transport process in this

regime. However, given the chaotic nature of turbulent convection, it is of in-

terest to analyse the evolution of the field in the regime where σ = 0.001, and

thereafter investigate the mechanisms for magnetic field transport throughout

the unstable layer.

For σ = 0.001, the behaviour of the imposed magnetic field is explored for

a range of magnetic field strengths, 0.001 ≤ F ≤ 1.0. Figure A.8 captures

the magnetoconvection interactions for F = 0.001 and F = 1.0. Generally,

the dynamics reveal the passive role of magnetic fields as the system evolves

with time. No apparent evidence is extracted that suggests the contribution

of other processes to the transport of the underlying magnetic field.

The convective timescales in these simulations seem to be too long for ef-

fective pumping to be achieved in the unstable layer, and thus are not ideal

to investigate given that, for instance, magnetic buoyancy occurs on relatively

short timescales. Therefore, we chose to further modify the parametric set-
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Figure A.7: Snapshots of the vertical component of the velocity field (top
panel) and horizontal component of the magnetic field (bottom panel) for
σ = 0.02 and F = 0.1 at computational time t = 2215.6. The magnetic field is
imposed at t = 2070.8 once convection is fully developed in the upper domain.
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(a)

(b)

Figure A.8: Snapshots of the vertical component of the velocity field (top
panel) and horizontal component of the magnetic field (bottom panel) for
σ = 0.001 and (a) F = 0.001 at computational time t = 2181.3 and (b)
F = 1.0 at computational time t = 2104.9. The magnetic field is imposed at
t = 1910.7 once convection is fully developed in the upper domain.
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tings, in a computationally efficient way as proposed in Chapter 4, to promote

the effect of turbulent convection.
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