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ABSTRACT 

 

Mixed Formulation for Seismic Analysis of Shear Critical Reinforced 

Concrete, Steel and Composite Structures 

 

by 

Dipankar Das 

Doctor of Philosophy in Structural Engineering 

School of Mathematics, Computer Science and Engineering  

City, University of London 

Professor Ashraf Ayoub, Supervisor 

 

This study presents the formulation of new two-dimensional frame finite 

element models for the analysis of shear-critical reinforced concrete, steel 

and steel-concrete composite structural members considering the 

interaction of axial force, bending moment and shear force under 

monotonic and cyclic loading conditions. The elements are developed by 

following a variational approach with consistent linearization of the 

governing equations. Shear deformation is considered through the 

Timoshenko-based section kinematics. Distributed inelasticity at the 

element and section levels are considered through section integration points 

along the length of the element and material fibre discretization across the 

cross-section respectively. Multi-axial stress states due to crack-induced 

anisotropy in reinforced concrete fibres is simulated through a fixed crack 

smeared softened membrane model which is based on the stress 

equilibrium, the strain compatibility and the constitutive relationships of 

materials. 2d J2 plasticity and generalized plasticity models with radial 

return mapping algorithm are implemented for structural steel fibres under 
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monotonic and cyclic loading conditions respectively to accommodate the 

interaction among the multiaxial stress states. Three types of frame 

elements are formulated, namely a shear frame element which is applicable 

for both shear critical reinforced concrete and steel members, a composite 

shear beam element considering coupling between bond-slip and shear 

deformation, and a shear critical frame element considering both material 

and geometric nonlinearity. 

 

The new shear beam element formulations for reinforced concrete and steel 

members are based on a two-field mixed formulation where both section 

forces and displacements are simultaneously approximated within the 

element through independent interpolation functions. New displacement 

shape function has been developed, which can alleviate the shear locking 

issue for displacement-based formulation and also, satisfy the new stability 

criteria for two-field mixed-based formulation considering shear 

deformation. The element is validated through correlation studies with 

experimental results of shear-critical RC beams, columns, walls and steel 

beams for monotonic and cyclic loading conditions. 

 

The new shear beam element formulations for steel-concrete composite 

members with deformable shear connectors are based on a displacement 

and two-field mixed formulations, where the transfer of forces between 
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steel and concrete is modelled by distributed spring elements. New stability 

criteria has been proposed for shear critical inelastic composite mixed-

based formulation with partial interaction. The element is validated through 

correlation studies with experimental results of shear-critical Steel-

Concrete (SC) composite beams for monotonic loading conditions. 

 

This research work concludes with the development of a new shear beam 

element under large displacements which is based on two-field mixed 

formulations. The corotational formulation is used to describe the large 

displacement at the element nodal level and degenerated Green-Lagrange 

strain measures are used at the basic element level. Since the development 

of consistent state determination of fibre element formulation three decades 

ago, this is the first shear fibre beam element formulation which can 

reasonably reproduce the experimentally-observed post-peak softening 

region of shear force-shear deformation curve of RC columns. The element 

is validated through correlation studies with experimental results of P-Delta 

dominated flexure-shear critical RC columns under monotonic and cyclic 

loading conditions. 
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Chapter 1  Introduction 
 

1.1 General 
 

In today’s engineering practice, it has become imperative to have a robust 

and reliable numerical model to design new structures and to assess 

existing structures for the purpose of rehabilitation to achieve the desirable 

seismic performance following the performance based seismic design 

philosophy. This inelastic analysis-driven design process requires the 

global load-deformation response of the structures under moderate to high 

seismic risk to determine various damage states, which in turn are 

controlled by the failure modes of the individual components of the 

structures. The failure mode of individual components depends on the 

material, structural detailing, geometry and multi-axial stress state present 

in the system under the application of external input energy in the form of 

load and deflection. Traditionally, axial-flexure interaction has been 

studied extensively because of its determinate nature of stress condition, 

while the shear deformation brings an internal indeterminacy in the stress 

condition which requires the extra compatibility conditions to reach a 

unique solution, has made the research complex for several decades.  

 

Continuum finite element analysis is best suited for the simulation of multi-

axial stress states present in the system as the degrees of freedom of 

continuum elements can capture the nonlinear variation of deformations 
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along all the three directions of the geometry simultaneously. However, it 

needs huge numbers of degrees of freedom to reach the converged 

deformation and consequently stress conditions, which makes it very 

expensive for analysing global structures. Therefore continuum finite 

element analysis is suitable for simulation of local regions where accuracy 

cannot be achieved by using macroscopic models which use various 

assumptions to find the numerical solution of global structures with 

reasonable accuracy yet more efficient and much less computational and 

associative cost.  

 

This research work develops various new two-dimensional beam-column 

frame elements considering axial-flexure-shear interaction through 

implementing multi-axial constitutive material models for reinforced 

concrete and steel. Several elements have been developed for reinforced 

concrete, steel and steel-concrete composite members with partial 

interaction for monotonic and cyclic loading. The frame elements have 

been further extended to include large displacement effects on cyclic 

response of reinforced concrete members. Two types of functional are used 

to formulate these elements i.e. potential energy and Hellinger- Reissner 

functional. Performance evaluation of developed inelastic frame element 

formulation with respect to accuracy, efficiency and robustness is essential 

to satisfy two conditions together: 1. Equilibrium of force in the interior 
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and 2. Displacement compatibility with the adjacent elements. Accuracy is 

a measure of the degree of agreement between the numerical and 

experimental measured response of structural members. Robustness refers 

to its numerical stability while efficiency refers to the computational cost of 

the whole member simulation. Elements developed based on mixed based 

formulations exhibits more robust and accurate behaviour than that of 

displacement-based formulations and are quite efficient for inelastic 

seismic analysis of large structural systems throughout the loading history. 

1.2 Literature Review 
 

 

The literature review will deal with various frame element formulations 

which have been developed by various researchers throughout the world. 

We will focus on particularly those elements which have the capability to 

simulate axial-flexure-shear interaction considering both geometric linear 

and non-linear formulations for reinforced concrete, steel and steel-

concrete composite members under monotonic and cyclic loading 

conditions. 

 

Conventional frame element formulations need two ingredients. The first 

one is the variational functional which relates internal and external energy 

of the system. The other one is the section level kinematics which connects 

states of stress and strain at the section and the material fibres. By varying 

these two ingredients several frame element formulations can be 
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developed. For example, if the section level kinematics follows Euler-

Bernoulli beam theory which assumes plane sections before deformation 

remain plane and normal to the deformed axis of the beam after 

deformation, beam element formulations based on this type of section level 

hypothesis are suitable to simulate the experimentally observed behaviour 

of flexure critical members. On the other hand, if the section level 

kinematics follows Timoshenko beam theory which assumes plane sections 

before deformation remain plane but not normal to the deformed axis of the 

beam after deformation, beam element formulations based on this type of 

section level hypothesis are suitable to simulate the experimentally 

observed behaviour of shear critical members. There are other types of 

section level kinematics available in the literature such as higher order 

beam theory which removes the restriction imposed in the Timoshenko 

beam theory i.e. the constant shear strain and stress across the section depth 

which violates the mechanical boundary conditions at the top and bottom 

fibres of the section. This type of higher deformation theory assumes 

parabolic distribution of shear stress and strain across the section depth in 

priory and is particularly suitable for the analysis of the system up to the 

linear elastic material state. The true variation of the shear stress or strain 

along the section depth is not a known entity at the start of the analysis as it 

depends on the evolving material states (Vecchio et al.(1988)). Therefore, 

more generalized material state dependent section kinematics have been 
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used to simulate the shear behaviour for particularly reinforced concrete 

members under monotonic loading conditions. This type of formulations 

need to satisfy the partial differential equation of equilibrium at the 

material fibre level and a coupling approach between the section and fibre 

level (Bairan et al. (2006a)), which may introduce convergence issues and 

prevents them to implement cyclic loading conditions which poses 

additional challenges to simulate the unloading and reloading stiffness 

degradation with crack opening and closing phenomenon. 

 

There are different types of elements that have been developed by varying 

the variational functional. For example, if the element formulation is based 

on potential energy functional, we termed it as displacement based 

formulation as the principle argument of this functional is nodal 

displacement. In this formulation, we need to have only displacement based 

shape functions which are required to satisfy the property of the shape 

functions and the compatibility conditions in its strong form. This type of 

formulation is computationally expensive and needs a huge number of 

elements to simulate the stress variables and inelastic section deformations 

along the length of the member. On the contrary, if the element formulation 

is based on complementary energy functional, we termed it as force based 

formulation as the principle argument of this functional is nodal forces. In 

this formulation, we need to have only force based shape functions which 
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are required to satisfy equilibrium between the applied nodal force and 

sections forces which in turn need to satisfy the differential equilibrium 

equations at section level in its strong form. This type of formulation is 

computationally cheap and superior to that of displacement based 

formulation as the inelastic section deformations are determined from the 

equilibrated force shape functions. However, there is a limitation of the 

force based formulation i.e. they are suitable for the applications where the 

section forces can be obtained from the available equilibrium equations i.e. 

the system must be internally statically determinate. If this criteria fails, 

then additional assumptions will come into picture and the original 

differential equation of equilibrium will not get satisfied in its strong form 

and the formulation consequently loose its credibility for not fulfilling its 

most powerful characteristics. 

 

There are other alternative element formulations where we use both nodal 

displacement and force as principle arguments and consequently we need 

to have both displacement and force shape functions. This type of 

formulation is known as Hellinger-Reissner formulation and does not need 

any subsidiary conditions to fulfil compared to its counterparts such 

displacement and force based formulations. However, both shape functions 

needs to pass stability criteria for HR formulations which makes it very 

useful for the applications where the internal section forces cannot be 
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determined from the available equilibrium equations. This gives an 

additional advantage over force based formulations as HR formulations can 

be applied for internally statically indeterminate system. However, cautions 

needs to be adopted to choose judiciously both the displacement and force 

shape functions. 

 

Element formulations are not self-sufficient. Solver and element 

formulations work together. They provide information such as element 

resistance and stiffness matrix to the solver and the solver assembles this 

information for all the elements and solve for the principle nodal argument. 

However, most solvers can handle only nodal displacements as a principle 

argument. Therefore, the assembled system always follows the 

displacement based formulation. It has to be noted that when we use a 

variational functional for element formulation, the functional is applied to 

the assembled elements not to a particular single element. It introduces an 

inconsistency for force based formulations which has only force nodal 

degrees of freedom at the element level. Therefore, force based 

formulations are not variationally a consistent formulation. On the other 

hand, HR formulation has nodal displacement degrees of freedom, which 

makes it compatible to the solver once the nodal force degrees of freedom 

gets statically condensed out. However, both force based and HR 

formulations use complementary energy term which needs the 
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determination of fibre strain from the fibre stress. In reality, we have 

material constitutive law from the experiments which are strain driven 

material. This introduces a residual term which gets dissipated through the 

internal element iteration and therefore makes these formulations 

variationally consistent from the term of strain energy perspective 

(Hjelmstad et al. (2005)). Moreover, there is another mixed based 

formulation available in the literature i.e. three-field Hu-Washizu 

variational functional which needs three independent arguments. In this 

formulation, when the section deformations and the nodal force get 

statically condensed out, the state determinate procedure follows the force 

based formulation.  

 

In the following, we will present various element formulations developed 

by researchers throughout the world for reinforced concrete, steel and steel-

concrete composite members limited to those elements which are able to 

capture the axial-flexure-shear interaction. We will focus only on those 

element formulations which are based on distributed inelasticity at the 

element and section levels considered through section integration points 

along the length of the element and material fibre discretization across the 

cross-section respectively. Both available geometric linear and nonlinear 

element formulations will be discussed. 
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Apart from distributed inelasticity approach there are two other types of 

inelastic element formulation available in the literature i.e. concentrated 

inelasticity models and spread inelasticity models. Interested readers are 

referred to Filippou et al. (2004) and Zimos (2017) who have offered 

extensive review and formulation of these types of models respectively. 

The challenge of these kinds of elements are to simulate the interaction 

among various response variables along with huge experimental calibration 

required to define section levels generalized force-deformation curves for 

different loading and boundary conditions. 

1.2.1 Reinforced Concrete Members 
 

 

Flexure-shear interaction arises due to crack induced anisotropic behaviour 

present in the concrete for its very different non-linear response in tension 

and compression. This effect reduces the shear resisting capacity primarily 

because the induced principle tensile strain reduce the compressive strength 

of the material and at the same time diagonal cracks make the system more 

flexible and consequently reduces the shear stiffness of the reinforced 

concrete beams. The effect of shear on flexure introduces an additional 

stress into the longitudinal bars in beam depending on the position in a 

section, whereas the effect of flexure on shear introduces an additional 

stress in the tie bars once the inclined crack forms (particularly evident on 

shear failure of slender reinforced wall in the later stage of cyclic loading 

history). Therefore, simulation of flexure shear interaction is essential to 
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capture the experimentally observed global and local responses accurately. 

Axial forces reduce the flexural strength of reinforced concrete columns, 

whereas the shear capacity, stiffness and deformation capacity of the 

columns depend on the nature of axial force and state of applied lateral 

loading history i.e. its effect on shear behaviour may be completely 

different before and after the peak shear strength. Axial compressive load 

may increase the shear strength before the peak shear strength by 

introducing additional frictional effect whereas after peak shear strength 

region, it may aggravate the negative shear stiffness as the friction effect 

will get lost by that time and drop of shear resistance may be faster until the 

onset of axial failure. After the onset of axial failure, disintegrated parts 

will move like rigid body motion and remain in contact due to applied axial 

compression load and consequently shear friction will get developed at 

major inclined plane and rate of drop of shear resistance will be lesser 

compared to that of before the onset of axial failure. It is to be noted that, 

during this post peak shear region p-delta effects contributes a substantial 

part to reducing the shear resistance along with longitudinal bar buckling 

under compression, whereas bar fracture substantially reduces the shear 

resistances with making the system hugely flexible. The above description 

of shear force resisting process indicates that if we want to capture the 

whole post-peak range of the shear resistance and shear deformation curve, 

we need to model large displacement effect, bar buckling and bar fracture 
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in a rational way along with the right choice of section kinematics as 

Timoshenko section kinematics will not be valid at this time of loading 

stage. In the present research work, element formulation considers the large 

displacement effect with multi-axial constitutive material which can couple 

the shear deformation with the axial deformation arises due to axial and 

flexural effect in a rational way.  

 

In the following, we will first discuss those beam element formulations 

which are formulated based on linear geometry i.e. small deformation 

theory.  

 

Petrangeli et al.(1999) developed an equilibrium based fibre beam element 

formulation considering parabolic distribution of shear strain along the 

section depth. To include axial-flexure-shear interaction, the microplane 

model for concrete proposed by Bazant et al. (1985) has been implemented. 

Axial strain in the shear reinforcement is determined from the vertical 

equilibrium between the stirrup tensile force and concrete compressive 

force of 2d reinforced concrete fibre. The element is validated with 

experimental results for cyclic loading conditions (Petrangeli(1999)). Later 

on Jiang et al. (2010) has extended this element formulation to model the 

inelastic flexure-shear interaction of moderate aspect ratio reinforced 

concrete wall with DRAIN-2DX program (Prakash et al. 1993). 
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Marini et al. (2006) presents a force based fibre beam element formulation 

considering Timoshenko based section kinematics to include axial-flexure-

shear interaction for monotonic and cyclic loading conditions. Ad hoc 

nonlinear shear force – shear deformation law is used to include the shear 

effect at the section level. Therefore, true coupling with axial and flexure 

effect has not been considered at the section level, however due to adopting 

equilibrated force shape functions which is derived from the solution of 

governing differential equation of equilibrium at the section level, axial-

flexure-shear interaction is achieved at the element level. This study has 

been able to reproduce the experimentally observed post-peak softening 

region of shear force-shear deformation curve under cyclic loading 

condition. 

 

Ceresa et al. (2007) provided a literature review of fibre based element 

formulations which are able to simulate axial-flexure-shear interaction 

through various multi-axial material constitutive law such as Strut and Tie 

models (Guedes et al. (1994), Ranzo et al. (1998) and Martinelli (1998)) , 

microplane model, smeared crack models (Rahal et al. (1995), Vecchio et 

al.(1988),Bentz (2000) and Bairan (2006b)), damage models (Kotronis et 

al. (2005) and Mazars et al. (2006)), etc. All the elements developed up to 
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this time were based on either displacement based or flexibility based. 

Interested readers are encouraged to access these research works. 

 

Gregori et al. (2007) proposed a displacement based 3d curved Timoshenko 

fibre beam element considering axial-flexure-shear-torsion interaction 

through the modified compression field theory at the material level. 

Reduced integration has been used to alleviate shear locking phenomenon. 

The element is validated with experimental results for monotonic loading 

conditions only. 

 

Saritas et al. (2009) developed a mixed based Timoshenko fibre beam 

element which can take care of the inelastic axial-flexure-shear interaction 

through the use of plastic-damage model for concrete material at the fibre 

level. The special feature of this element is that it is based on three field 

Hu-Washizu variational principle where equilibrated section forces and 

discontinuous section deformations are used. This formulation does not 

need any displacement shape functions. The element is validated with 

experimental results for both monotonic and cyclic loading conditions. This 

model is computationally demanding as both section force and section 

deformation need to be condensed out before sending nodal displacement 

to the solver. Also, plastic-damage model for concrete can induce 
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convergence issues during internal iterations of vertical equilibrium at fibre 

level. 

 

Ceresa et al. (2009) developed a displacement based Timoshenko fibre 

beam element. This research work considers the coupling of axial-flexure-

shear interaction by implementing the Modified Compression field theory 

at the fibre level. A bubble function has been introduced with the linear 

shape function to remove the shear locking effect which is a serious issue 

for displacement based finite elements. The element has been validated for 

cyclic loading conditions however simulation of post-peak softening region 

needs additional research in the constitutive models of materials and other 

associated shear force resisting mechanisms. 

 

Mohr et al. (2010) presented a force based fibre beam element considering 

flexure-shear interaction through smeared crack models at the material 

level. The special characteristics of this element formulation are that the 

variation of shear and vertical strains are determined from the current 

material states. It is to be noted that the vertical strain is an integral part of 

the shear resisting mechanism which gets suppressed in case of 

Timoshenko section kinematics. The element is validated with 

experimental results for monotonic loading conditions only. 
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Mullapudi et al. (2010) formulated a force based 2d Timoshenko fibre 

beam element considering axial-flexure-shear interaction at the material 

level through the bi-axial softened membrane model. The special 

characteristic of this element is that smeared shear stress along the inclined 

crack has been explicitly modelled through the fixed crack softened 

membrane model. Other valuable contribution of this model is that the 

smeared stress-strain curve of steel and concrete material along with 

cracked Poisson ratio before and after the yielding of steel has been 

successfully implemented. Mullapudi et al. (2013) has extended this 

element formulation for 3d axial-flexure-shear-torsion interaction with tri-

axial concrete material states. These elements are validated with 

experimental results for both global and local response variables for 

monotonic, cyclic and dynamic loading conditions. 

 

Guner et al. (2011) developed a displacement based fibre beam element 

considering flexure-shear interaction at the material level through fibre 

beam element considering flexure-shear interaction at the material level 

through modified compression field theory with plastic strain offsets to 

make the material model applicable for cyclic loading conditions. The 

element has used parabolic shear strain profile along the section depth. The 

element is validated through experimental results of shear critical frames 

under cyclic loading conditions. 



39 

 

 

Stramandinoli et al. (2012) formulated a 2d displacement based 

Timoshenko fibre beam element considering flexure-shear interaction at 

the material level through modified compression field theory. The 

displacement shape function is used as proposed by Reddy (1997) which is 

different than the conventional displacement shape function as the flexure 

and shear rigidity terms are embedded in it. The element is validated with 

experimental results for monotonic loading conditions only. 

 

Long et al. (2014) proposed a 3d displacement based fibre beam element 

with degenerated solid elements. Reduced integration method is used to 

remove shear locking. Axial-flexural-shear interaction is adopted by 

unified concrete plasticity model along with Hinton concrete model to 

simulate crack opening and closing phenomenon. The element is validated 

with experimental results for monotonic loading conditions only. 

 

Li et al. (2016) developed a 3d displacement based Timoshenko fibre beam 

element considering axial-flexure-shear interaction at the material level 

through enhanced tri-axial modified compression field theory by 

incorporating the Poisson effect, plastic deformation and other non-

mechanical deformations as strain offset. The element is validated with 

experimental responses for both one and bi-directional shear loading 
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conditions. The element is able to capture the pinching effect observed in 

the experimental tests under bi-directional cyclic shear loading conditions. 

 

Kagermanov et al. (2017) developed a force based fibre beam element 

considering axial-flexure-shear interaction through a smeared crack 

orthotropic constitutive model where shear strain components at the crack, 

arising from deviations between principal and crack directions, are related 

to shear stresses by means of a shear stiffness term that fully satisfies 

compatibility and equilibrium conditions. The special feature of the 

element formulation is that an exact shear strain profile and corresponding 

shear stress distribution over the cross section has been developedusing an 

averaged form of inter-fibre equilibrium over the cross section and 

piecewise linear interpolation of the shear strain distribution without 

considering section warping and distortion produced due to shear 

deformation. The element is validated with experimental results for 

monotonic and cyclic loading conditions. 

 

Feng et al. (2017) formulated a displacement based Timoshenko fibre beam 

element considering flexure-shear interaction at the material level through 

concrete multidimensional softened damage plasticity model. The concrete 

material parameters are determined from tensile and compressive fracture 

energy only without considering steel fracture energy (Pugh et al. (2015) 
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and Kenawy et al. (2018)) to avoid mesh-sensitivity issue. In addition, the 

element can capture the anchorage bond-slip (Feng et al. (2018)) which in 

turn force the joint to rotate and consequently contribute in lateral shear 

deformation. The stepped bond stress distribution was assumed inside the 

joint and bond-slip was implicitly considered through modification of 

uniaxial steel material model due to the derived slip. The element is 

validated by correlation studies of experimentally observed responses 

under cyclic loading conditions and able to simulate the pinching effect due 

to the inclusion of anchorage slip into the element formulation. 

 

Kagermanov et al. (2018) proposed a force based 3d fibre beam element 

considering axial-flexure-shear-torsion interaction considering 3d fixed 

crack smeared orthotropic model for concrete material. Unlike his previous 

study for 2d element with shear strain profile developed from inter-fibre 

equilibrium, in this 3d element formulation Timoshenko section kinematic 

has been adopted. Torsional effects are included through the Saint-Venant 

theory of torsion, which accounts for out of plane displacements 

perpendicular to the cross section due to warping effects. The element is 

validated with experimental results for monotonic and cyclic loading 

conditions. 
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Hereafter, we will present the element formulations based on large 

deflections theory. There are three approaches to include the nonlinear 

geometry effect into the element formulations i.e. the total Langrangian 

formulation which uses the undeformed structure as a fixed reference 

configuration, the updated Lagrangian formulation which uses the last 

deformed configuration as a reference configuration for the current time 

step and the corotational formulation which defines a new undeformed 

reference configuration at every time step whose position is based on the 

end node coordinates of the deformed element. Most of the research works 

considering large displacement effect have been concentrating on steel and 

composite structures.  

 

In the following we will discuss research works which have been carried 

out for reinforced concrete structure including nonlinear geometry effect. 

 

Long et al. (2013) has developed a 3d displacement based corotational 

beam element using vectorial rotational variables which are three 

orthogonal components of normal vector and thus commutative additions 

are possible in the incremental solution process. The flexure-shear 

interaction for reinforced concrete material is considered uncoupled in this 

formulation. The element is validated with experimental results for 

monotonic loading conditions only. 
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Gendy et al. (2018) recently developed two fibre beam element formulation 

considering potential energy and Hellinger-Reissner functional for 

reinforced concrete components. These element formulations consider the 

axial-flexure interaction only. The special feature of these element 

formulations are the implemented numerical robust state determination 

process and complex uniaxial cyclic constitutive material law for both steel 

and concrete. The element is validated with experimental results of flexure 

critical P-delta dominated reinforced concrete specimens for both 

monotonic and cyclic loading conditions for global and local response 

variables. 

 

Re et al. (2018) proposed a mixed based 3d corotational fibre beam element 

formulation considering axial-flexure-shear interaction through 3d damage-

plastic concrete material law at the fibre level. Numerical localization issue 

has been considered at the section level instead of fibre level. The element 

is based on four-field Hu-Washizu variational principle where the 

additional field has been introduced to include the cross-section warping 

effect in the element formulation. Small deformation theory has been 

adopted in the basic element level. The element is validated with 

experimental results of flexure critical P-delta dominated reinforced 

concrete specimen for cyclic loading condition. The main limitation of this 
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model is that small P-Delta effect cannot be simulated as this formulation 

does not use any displacement shape function inside the element state 

determination. More number of elements are required to simulate this 

characteristics which in turn will make the simulation computationally 

demanding and expensive. While two-filed Hellinger-Reissner formulation 

with only single element will be able to simulate both small and large P-

Delta effect which are necessary to predict accurate plastic hinge length for 

slender columns. 

 

From the above literature survey of element formulations of reinforced 

concrete structures, the following observations can be made: 

 

1. Very limited amount of research works have been concentrated on 

the axial-flexure-shear interaction at the post-peak softening region 

of shear force-shear deformation curve. There are plenty of 

opportunity still remains and huge research work needs to be 

conducted in future to include various resisting mechanisms such as 

longitudinal bar buckling and fracture, mechanisms related to 

determine before and after the onset of axial failure, cyclic damage, 

robust crack opening and closing phenomena under cyclic loading 

etc. in the fibre element formulation. 
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2. So far there are basically three types of fibre element formulations 

that have been developed which are able to simulate axial-flexure-

shear interaction i.e. displacement based, force based and three-field 

mixed based. There are still lots of scope remaining for other types 

of element formulation such as hybrid and two field mixed based 

formulations which may be more efficient and robust. 

 

3. Very limited amount of research work have been conducted for 

reinforced concrete structures considering geometric nonlinearity 

effect. Future research work should be concentrated in this area, as 

P-delta effect is one of the main players to contribute to the drop of 

shear resistance at the post-peak softening region of shear force-

shear deformation curve. Lots of opportunities remain for various 

types of element formulations to simulate inelastic axial-flexure-

shear interaction with large displacement effect. 

 

4. Very limited work has been conducted to handle the numerical 

localization issue for flexure-shear critical cases. Rational approach 

to reach the concrete solution of this problem is yet to be established 

for fibre beam element formulations. In this regard, readers are 

encouraged to follow the research work by Zimos et al. (2018) for 

spread plasticity beam element formulations. 
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5. Currently anchorage-slip effect in fibre element formulations needs 

the assumption of bond stress/strain distribution inside the joint 

region. Robust model of anchorage-slip considering bond 

stress/strain variation inside the connection based on equilibrium, 

compatibility and constitutive law with inelastic axial-flexure-shear 

interaction is yet to be developed in fibre element formulations. 

 

1.2.2 Steel Members 

 

 

Shear force in steel beams is primarily resisted by the developed diagonal 

tensile and compressive resistance in the web region of the sections. Under 

compression, web may be subjected to diagonal buckling. To resist or delay 

the buckling in the web, stiffeners are provided in the shear dominated steel 

beams such shear links in eccentrically braced frames and hybrid coupled 

walls. Shear links are designed to control the damage and used it as fuse to 

reduce the axial compression demand in the bracings so that bracing can 

resist the axial compressive force without going through buckling and 

contributes in providing the required global lateral strength, stiffness and 

stable energy dissipation under cyclic loading conditions. It is therefore 

utmost important to simulate the shear resisting mechanism of steel beams 

like shear links considering the axial-flexure-shear interaction through 
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multi-axial material constitutive law for monotonic and cyclic loading 

conditions. 

 

There are three types of inelastic element formulation available in the 

literature i.e. stress resultant models with and without fibre models and 

pure distributed inelasticity models to simulate axial-flexure-shear 

interaction. Interested readers are referred to Bosco (2015) for pure stress 

resultant models and Kanvinde et al. (2015) and Belega et al. (2017) for 

mixed fibre and stress resultant models. The challenge of these kinds of 

elements are to simulate the interaction among various response variables 

along with huge experimental calibration required to define section levels 

generalized force-deformation curves for different loading, geometry and 

boundary conditions. 

 

In the following we will discuss the inelastic element formulation for steel 

members considering axial-flexure-shear interaction with distributed 

inelasticity approach including geometric nonlinear effect considered 

through a corotational approach. 

 

Simo et al. (1984) developed a displacement based fibre beam element 

considering axial-flexure-shear interaction through elastic-plastic material 

law without considering nonlinear hardening at the fibre level. Reduced 
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integration has been used to get rid of shear locking. Element is validated 

with experimental results of shear links for both monotonic and cyclic 

loading conditions. 

 
 

Saritas et al. (2009) developed a mixed based Timoshenko fibre beam 

element which can take care of inelastic axial-flexure-shear interaction 

through the use of J2 plasticity and generalized plasticity model for steel 

material at the fibre level. The special feature of this element is that it is 

based on three field Hu-Washizu variational principle where equilibrated 

section forces and discontinuous section deformations are used. This 

formulation does not need any displacement shape functions. The element 

is validated with experimental results for both monotonic and cyclic 

loading conditions. This model is computationally demanding as both 

section force and section deformation need to be condensed out before 

sending nodal displacement to the solver.  

 

Papachristidis et al. (2010) proposed a force based 3d Timoshenko fibre 

beam element considering axial-flexure-shear-torsion interaction through 

closed form 3d J2 plasticity material model at the fibre level developed by 

Yamada et al. (1968). The special feature of this element formulation is 

that element kinematics are obtained by natural mode method developed by 

Argyris et al. (1998). The element is validated with experimental results for 

monotonic, cyclic and dynamic loading conditions. 
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Triantafyllou et al. (2011) developed a displacement based Timoshenko 

beam element considering axial-flexure-shear interaction through multi-

axial Bouc-Wen nonlinear material model. Shear locking phenomena has 

been removed by using the exact shape functions obtained by solving the 

governing differential equations for linear elastic case as proposed by 

Rakowski (1990) and Friedman et al. (1993). The element is validated with 

experimental results of shear critical steel specimens for monotonic, cyclic 

and dynamic loading conditions. 

 

Alsafadie et al. (2011) developed a 3d mixed based beam element. The 

cross section is discretized using isoparametric quadratic finite elements 

with four number of gauss points. Axial-flexure-shear-torsion interaction 

has been considered through von Mises material models at integration 

points. Linear shape functions for displacements are used for all the section 

displacement variables. The element is developed based on two-field 

Hellinger-Reissner variational principle. Corotational approach has been 

used to include nonlinear geometry effects.  The element is validated with 

experimental results for monotonic loading condition only. 

 

Soydas et al. (2013) proposed a 3d mixed based fibre beam element 

considering axial-flexure-shear-torsion interaction through 3d J2 plasticity 
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model at the fibre level. Three-field Hu-Washizu variational principle has 

been used. It removes the shear locking phenomena automatically. The 

element is validated with experimental results of uniform and tapered steel 

specimens for monotonic loading conditions. This model is 

computationally demanding as both section force and section deformation 

need to be condensed out before sending nodal displacement to the solver.  

 

Li et al. (2013) developed a displacement based Timoshenko fibre beam 

element considering axial-flexure-shear interaction through multi-axial J2 

plasticity model. Shear locking phenomena has been removed by using the 

exact shape functions obtained by solving the governing differential 

equations for linear elastic case as proposed by Reddy (1997). The element 

is validated with experimental results for monotonic loading conditions 

only. 

 

Correia et al. (2015) formulated a 3d force based higher order fibre beam 

element considering flexure-shear-torsion interaction at the material level 

through linear J2 plasticity model for steel material (Almeida et al. (2015)). 

The element is validated with experimental responses for monotonic 

loading conditions only as the implemented material model may not be 

suitable for cyclic loading conditions. 
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Rezaiee-Pajand et al. (2015) developed a 3d force based Timoshenko fibre 

beam element considering axial-flexure-shear-torsion interaction at the 

material level through a 3d elastic-plastic material model. Corotational 

approach has been used to include nonlinear geometry effect. The element 

is validated with experimental responses for monotonic loading conditions 

only. 

 

Ding et al. (2018) proposed a displacement based fibre beam element 

considering axial-flexure-shear interaction at the material level through 2d 

Chaboche elasto-plastic material model incorporating both nonlinear 

kinematic and isotropic hardening. The special feature of the element is 

that it can simulate the flange and axial restraint effect on shear link 

capacity. The element is validated with experimental responses for both 

monotonic and cyclic loading conditions. 

 

Silva et al. (2018) developed a displacement based Timoshenko fibre 

element. Material rigidity dependent displacement shape functions have 

been used. Material nonlinearity is considered based on the plastic zone 

method. The special feature of the element is that second order effects (big 

and small P-delta) and residual stress effect have been considered. 

Corotational approach has been used to include nonlinear geometry effect. 
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The element is validated with experimental responses for monotonic 

loading conditions only. 

 

From the above literature survey of element formulations of steel 

structures, the following observations can be made: 

 

1. There is no study to simulate the fracture process of steel material at 

the post hardening stage in the fibre element formulation with axial-

flexure-shear interaction. 

 

2. So far there are basically three types of fibre element formulations 

that have been developed which are able to simulate axial-flexure-

shear interaction i.e. displacement based, force based and three-field 

mixed based. Only one study considers the two-field mixed 

formulation, however the element formulation cannot be termed as 

fibre beam element as the cross-section of the element was 

discretized by finite elements. Therefore, there are still lots of scope 

remaining for other types of element formulations such as hybrid and 

two field mixed based formulations which may be more efficient and 

robust. 
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3. Two research works have been conducted for steel structures 

considering geometric nonlinearity effect with axial-flexure-shear 

interaction. However, there is still an opportunity for various types of 

other element formulations to simulate inelastic axial-flexure-shear 

interaction with large displacement effects with robust inelastic 

constitutive material law. 

1.2.3 Steel-Concrete Composite Members 

 

 

There are several types of steel-concrete composite systems available in the 

literature. The current research work focuses on two types of composite 

systems. The first one is the old conventional two-layer steel-concrete 

composite deck system where concrete slab is connected to the steel beam 

through shear studs. The other one is quite new compared to the old one i.e. 

steel-concrete-steel sandwiched systems where two thin steel plates are 

connected by tie rods integrally and a middle thick concrete layer is 

sandwiched between the top and bottom steel plates and connected by the 

shear studs with each steel layer. Shear resisting mechanism in these two 

types of composite system is different. It was earlier thought that the 

concrete slab in two-layer composite systems contributes very less amount 

in the overall shear resistance and hence concrete contribution in shear has 

not been included in the design standards. However, recent experimental 

studies (Nie et al. (2004)) has proved that the concrete layer provides 33% 
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to 56% shear resistance which cannot be neglected and should be included 

into the design standards in a rational way. On the other hand, shear 

resistance in three-layer sandwiched systems is mainly coming from thick 

concrete layer till the formation of full diagonal shear cracks. Later on, 

shear action gets resisted by the top and bottom steel plate cage connected 

by the tie rods with the help of shear studs. Therefore, for this kind of 

sandwiched system, after formation of full diagonal shear cracks, a huge 

amount of residual shear capacity remains. In both types of composite 

systems, shear studs deforms due to their finite stiffness and thus transfer 

the shear force between the concrete and steel layers. Hence, it is 

imperative that analysis tool should be capable of simulating the 

experimentally observed material inelasticity and will help to develop the 

reliable inelastic analysis driven design process for these types of steel-

concrete composite systems. 

 

There are mainly two types of analysis procedures used in the previous 

research works i.e. analytical formulations (Challamel et al. (2011) and 

Martinelli et al. (2012)) and finite element analysis. The analytical 

formulations are based on linear elastic material and simple boundary 

conditions. Therefore, it is difficult to simulate the experimentally observed 

behaviour through analytical formulations especially when the complex 

nature of load resisting process with material nonlinearity under multiaxial 
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stress interactions is involved. On the other hand, finite element analysis 

can handle this type of behaviour efficiently. There are two types of 

elements that are generally used in finite element analysis i.e. continuum 

elements and structural frame elements. Many researchers have performed 

detailed finite element analysis with continuum elements by using available 

commercial software to reproduce the experimentally observed responses. 

However, this type of analysis involves a huge number of degrees of 

freedom and hence, they are suitable for simulation of local region because 

of the huge amount of cost associated to analyse the complete global 

structure. Therefore, frame finite element analysis is the alternative one 

which has been used by various researchers as they can efficiently simulate 

both local and global behaviour of complete composite structures with 

reasonable accuracy and much less computational cost. 

 

In the following, we will discuss the research works which has been carried 

out considering frame finite elements. Extensive amount of frame finite 

element studies have been carried out considering axial-flexure interaction 

in the past. Interested readers are referred to Spacone et al. (2004) and Lee 

et al. (2015) for flexure critical frame element formulations. The current 

research work focuses on the simulation of shear critical composite 

structures. Therefore, in the following we will discuss those frame finite 

element formulations which are able to simulate axial-flexure-shear 
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interaction in steel-concrete composite structures considering partial 

interaction. 

 

We will start our discussion on those frame element formulations which are 

simulating axial-flexure-shear interaction for linear elastic materials. 

 

Schnabl et al. (2007) developed a strain based Timoshenko composite 

beam element with partial interaction through the modified principle of 

virtual work where the strain field vector is the unknown quantity which 

makes the formulation locking free from both shear and slip perspectives.  

The element is validated with numerical responses for monotonic loading 

conditions only. 

 

Da Silva et al. (2009) presented a displacement based Timoshenko 

composite beam element. Partial interaction is simulated by zero thickness 

four-node continuum interface elements. The element is validated with 

numerical responses for monotonic loading condition only. 

 

Hjiaj et al. (2012) proposed a displacement based Timoshenko composite 

beam element considering a continuous relationship between the interface 

shear flow and the corresponding slip. Displacement shape functions are 

derived from the closed-form solution of the governing equations to avoid 
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curvature and shear locking phenomena. Corotational approach has been 

used to include nonlinear geometry effect. The element is validated with 

numerical responses for monotonic loading conditions only. 

 

Chakrabarti et al. (2012) formulated a displacement based higher order 

composite beam taking into account the effect of longitudinal as well as 

vertical partial interaction between the adjacent layers. A third order 

variation of the axial displacement of the fibres over the beam depth is 

taken to have a parabolic variation of shear stress which is also made zero 

at the beam top and bottom surfaces. As a result, element formulation 

becomes free of shear locking problem. Later on, the element formulation 

has been extended for dynamic response analysis (Chakrabarti et al. 

(2013)). The elements are validated with numerical responses for 

monotonic and dynamic loading conditions. 

 

Batista et al. (2013) proposed a Timoshenko composite beam element with 

partial interaction for multi-layered system. The element formulation is 

based on the analytical solution of the differential equations of the problem. 

The developed flexibility matrix from the solution of the differential 

equations has been used in direct stiffness solver after inverting it. The 

element is validated with numerical responses of multi-layered specimens 

for monotonic loading condition only.  
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Santos et al. (2014) developed an equilibrium-based Timoshenko 

composite element with partial interaction. The formulation relies on a 

variational principle of complementary energy involving only force and 

moment-like variables as fundamental unknown fields. The approximate 

field variables are selected such that all equilibrium equations hold in 

strong form. The inter-element equilibrium is enforced by resorting to the 

Lagrangian multiplier method. The element is validated with numerical 

responses for monotonic loading condition only.  

 

Taig et al. (2015) formulated a composite beam element with partial 

interaction by considering generalized beam theory where section warping 

and distortion are inbuilt into the formulation. Cross sectional analysis has 

been performed by considering different order of polynomials in 

interpolation functions of tangential and longitudinal displacements, which 

in turn affected the tangential and shear membrane stress. The proposed 

formulation has been validated by comparing the responses of composite 

box Girder Bridge with that of shell finite element analysis. 

 

Keo et al. (2016) proposed a displacement based composite Timoshenko 

beam element for the analysis of partially connected shear-deformable 

multi-layered beams where the slips and shear deformations are considered 
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as primary variables. This coupled system of differential equations has 

been solved in closed form and the exact stiffness matrix has been derived 

using the direct stiffness method. 

 

Hereafter, we will discuss frame element formulations which are able to 

simulate inelastic axial-flexure-shear interaction: 

 

Zona et al. (2011) developed a displacement based Timoshenko fibre 

composite beam element considering partial interaction. Incorporation of 

shear deformation varies in two formulations i.e. in one formulation shear 

deformation is considered in both concrete and steel layers and in the other 

one, it is considered only in the steel layer (Ranzi et al. (2007)). Normal 

and shear stress is uncoupled in the concrete material model. Uniaxial 

nonlinear model for normal and shear stress components for concrete and 

steel with von Mises yield condition and elastic-plastic-hardening rebar 

material models are adopted. The element is validated with experimental 

responses for monotonic loading conditions only. 

 

Nguyen et al. (2014) proposed a force based Timoshenko beam element 

considering small deformation theory at the basic frame of reference with 

partial interaction. Corotational approach has been used to include 

nonlinear geometry effect. The elastic axial-flexure-shear interaction is 
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achieved in steel through von Mises plasticity theory with combined 

isotropic and kinematic hardening rule, while for concrete, flexure and 

shear behaviour is uncoupled. For tension/compression of concrete 1d 

elastic-plastic model and for shear, linear elastic model has been adopted. 

The element is validated with numerical responses for monotonic loading 

conditions only. 

 

Uddin et al. (2017 &2018) developed a displacement based composite 

beam element considering higher order beam theory (Reddy (1984)) and 

partial interaction. A third order variation of longitudinal displacement of 

material fibre has been assumed along the depth of the section. Axial-

flexure-shear interaction is achieved through von Mises plasticity theory 

with an isotropic hardening rule for concrete in compression and steel 

material while a damage mechanics model for concrete in tension. The 

Green-Lagrange strain vector is used to capture the effect of geometric 

nonlinearity due to large deformations. The element is validated with 

numerical and experimental responses for monotonic loading conditions 

only. 

 

Das et al. (2019) developed a displacement and two-field mixed based 

Timoshenko fibre composite beam elements considering partial shear 

interaction. These elements are formulated for three-layer steel-concrete 
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sandwiched system where shear deformation effect in steel plates are 

negligible. Inelastic axial-flexure-shear interaction is simulated through 

smeared fixed crack soften membrane material model for concrete. 

Numerical performance of developed elements is established by comparing 

various response variables under monotonic loading conditions only. 

 

From the above literature survey of frame element formulations of steel-

concrete composite structures, the following observations can be made: 

 

1. Most of the research works have been performed for linear elastic 

material considering axial-flexure-shear interaction. It is to be noted 

that the material undergoes inelastic deformations under seismic 

loading conditions. Therefore, these elements are not suitable for 

simulation of inelastic axial-flexure-shear interaction for flexure-

shear and shear critical specimens. 

 

2. Very limited amount of research works was recently conducted to 

include inelastic axial-flexure-shear interaction into the frame 

element formulation. It is to be noted that plasticity based concrete 

models are used in these studies. Lots of opportunities remain to 

implement more efficient and robust concrete constitutive models to 

simulate multi-axial stress states. 
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3. So far there are basically two types of fibre element formulations that 

have been developed which are able to simulate the axial-flexure-

shear interaction i.e. displacement based and force based. Therefore, 

there is still lots of scope remaining for other types of element 

formulations such as two field and three-field mixed formulations 

which are more efficient and robust. 

 

4. Two research works have been conducted for composite structures 

considering geometric nonlinearity effect with axial-flexure-shear 

interaction. However, there is still opportunity for various types of 

other element formulations to simulate inelastic axial-flexure-shear 

interaction with large displacement effect with robust multi-axial 

inelastic constitutive material laws. 

 

5. Except our own work, there is no frame element formulation 

available in the literature for three-layer sandwiched composite 

systems considering inelastic axial-flexure-shear interaction. 

 

6. So far all the research works of composite frame element 

formulations considering axial-flexure-shear interaction are validated 

only for monotonic loading condition. Suitability of these elements 

for cyclic and dynamic loading conditions is questionable. Therefore, 
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future research works need to be performed to develop element 

formulations considering robust cyclic multi-axial constitutive laws 

for materials. 

 

 

1.3 Objectives and Scope 
 

 

This research work deals with the inelastic material and nonlinear 

geometric response of two-dimensional beam elements under consideration 

of the multi-axial coupling of axial, flexure and shear force for reinforced 

concrete, steel and steel-concrete composite members. 

 

The main objectives of this research work are as follows: 

 

• To develop several new inelastic fibre beam element formulations 

following various variational approaches with consistent 

linearization of the governing equations.  

 

• To develop a new shear beam element formulation for reinforced 

concrete and steel members based on two-field mixed formulations 

where both section forces and displacements are simultaneously 

approximated within the element through independent interpolation 

functions.  

 



64 

 

• To implement 2d J2 plasticity and generalized plasticity models with 

radial return mapping algorithm for structural steel fibres under 

monotonic and cyclic loading conditions respectively to 

accommodate the interaction among the multiaxial stress states.  

 

• To develop a new shear beam element formulation for steel-concrete 

composite members with deformable shear connectors based on  

displacement and two-field mixed formulations, where partial 

interaction provided by the shear studs between steel and concrete is 

modelled by distributed spring elements.  

 

• To develop a new shear beam element based on two-field mixed 

formulations for reinforced concrete members considering large 

displacement effects. The corotational formulation is used to 

describe the large displacement at the element nodal level and 

Green-Lagrange strain measures are used at the basic element level. 

Since the development of consistent state determination of fibre 

element formulation three decades ago, this is the first shear fibre 

beam element formulation which can reasonably reproduce the 

experimentally observed post-peak softening region of the shear 

force-shear deformation curve.  
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• To validate the developed frame elements with experimental results 

of shear critical reinforced concrete, steel and steel-concrete 

composite members for monotonic and cyclic loading conditions. 

 

The dissertation is organized into eight chapters as follows: 

 

Chapter 2 presents the two-field mixed formulation of two dimensional 

shear critical reinforced concrete and steel members. The chapter starts 

with the derivation of the variational framework and is followed by the 

multiaxial constitutive material models. The chapter concludes with the 

presentation of the stability criteria and state determination of shear critical 

two-filed mixed formulation. 

 

Chapter 3 presents the validation of the developed shear two-field mixed 

beam element with experimental results of shear critical reinforced 

concrete beams, columns, walls and steel shear links for monotonic and 

cyclic loading conditions. 

 

Chapter 4 presents the displacement and two-field mixed formulation of 

two dimensional shear critical steel-concrete composite members with 

partial interaction. The chapter starts with the derivation of the 

displacement based variational framework and is followed by the mixed 
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based formulation. The chapter concludes with the presentation of the 

stability criteria and state determination of shear critical two-field mixed 

formulations. 

 

Chapter 5 presents the validation of the developed shear displacement and 

two-field mixed beam elements with experimental results of shear critical 

steel-concrete composite members for monotonic and cyclic loading 

conditions. 

 

Chapter 6 presents the two-field mixed formulation of two dimensional 

shear critical reinforced concrete members considering large displacement 

effects. The chapter starts with the derivation of the variational framework 

and is followed by the stability criteria and state determination of shear 

critical two-filed mixed formulation considering geometric nonlinearity 

effects. 

 

Chapter 7 presents the validation of the developed large displacement shear 

two-field mixed beam element with experimental results of P-delta 

dominated flexure-shear critical reinforced concrete columns for cyclic 

loading condition. 
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Chapter 8 presents the summary and conclusion of the current research 

work and provides directions for future research works. 
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Chapter 2 Shear Critical Frame Element – 

Mixed Formulation 
 

2.1 Overview 
 

 

This chapter presents a new2d shear critical frame element based on a two-

field Hellinger-Reissner functional considering the constitutive models of 

reinforced concrete and steel which can accommodate the multi-axial 

coupling of various stress measures at the fibre level following the three 

pillars of structural mechanics i.e. compatibility, equilibrium and 

constitutive models at respective levels. 

 

The following presentation starts with the overview of mixed formulation 

following the main assumptions of the element formulation and the 

definition of element, section kinematics, equilibrium, compatibility and 

constitutive law followed by the derivation of the mixed variational 

formulation. The finite element discretization results in the consistent 

resisting force vector and stiffness matrix of the element. It concludes with 

the incorporation of multi-axial inelastic material response and element 

state determination process along with stability criteria of the mixed 

formulation. 

 

Mixed finite element formulations offer an efficient method for 

determination of element internal resistance forces and tangent stiffness 
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matrices. There are two types of mixed-based formulations based on the 

number of independent degree of freedoms. Three field mixed-based 

formulation (Taylor et al. (2005) and Saritas et al. (2009)) follows de 

Veubeke (1951)-Hu (1955)-Washizhu (1955) variational principle where 

nodal displacements, section deformations and section forces are 

independent fields. State determination of three-field mixed formulation 

follows the similar process of force-based formulation where section 

deformation and section force have been condensed out at the element 

level. Two-field mixed based formulations (Spacone et al. (1996), 

Neuenhofer et al. (1997), Ayoub (2001), Hjelmstad (2002) and Nukala et 

al. (2004a, 20004b)) follows Hellinger (1914)-Reissner (1950) variational 

principle where nodal displacements and section forces are independent 

fields. Independent interpolation functions are used to determine section 

deformation and force fields. By choosing the distributions of section 

forces in a smart way, it is possible to satisfy differential equilibrium 

equation at the section level. The element deformations from an 

interpolated displacement field and an interpolated force field are both 

enforced to be compatible to each other in a variational sense. Selecting 

accurate force interpolation functions also improves the accuracy of the 

nonlinear curvature and shear deformation fields. Selection of displacement 

and force shape functions should satisfy the stability criteria (Ayoub et al. 

(2000)). The mixed finite element formulations also have a more 
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complicated force recovery procedure than the displacement-based and 

force-based formulations. Incorporation of geometric nonlinearity is the 

least cumbersome in the displacement-based formulations but shear locking 

issues may arise. In force-based formulation, the formulation becomes 

complex to simulate the geometric nonlinearity as there is no displacement 

degrees of freedom available (De Souza, (2000)). On the other hand, it is 

the mixed formulation that provides the best balance between accurate 

assessments of nonlinear curvatures along the length along with the 

capability to include geometric nonlinearity directly in the formulation 

(Alemdar et al. (2005)).  

 

The element kinematics are based on the assumption of small 

displacements and is described in a basic or corotational reference system 

that excludes rigid body modes from the global nodal displacement. 

Timoshenko based section kinematics has been adopted where shear strains 

along the section remain constant. This assumption of shear strain violates 

the fibre level partial differential equation of equilibrium and the actual 

profile of shear strain depends on section geometry. To overcome these 

issues, shear correction factor is required for linear elastic material 

behaviour, however under inelasticity the shear strain distribution is 

material state dependent and the requirement of shear correction factor is 



71 

 

uncertain. The developed element is free from shear locking which is based 

only on interpolation of the displacement fields. 

 

The current research work aims to extend the two-filed mixed-based 

formulation by Ayoub et al. (2000) to account for shear critical reinforced 

concrete and steel members by implementing coupled multi-axial 

constitutive laws for materials, along with new stability criteria. To achieve 

this purpose, the following new shape function for transverse displacement 

varying with cubic function along the length of the element has been 

developed in our research work. This is the only shape function which can 

fulfil the stability criteria of two-filed HR mixed-based formulation 

considering Timoshenko-based section kinematics. This shape function 

also needs to be used either for compatible Displacement-based 

formulation with mixed-based or higher-order independent new 

displacement-based formulation considering Timoshenko shear 

deformation. As a result, we need to use three node beam finite element 

where the middle degree of freedom will get statically condensed out at the 

element level before sending the information to the solver. 
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This is the higher order version of Cook (1995) proposed following 

transverse displacement varying with quadratic function along the length of 

the element. This shape function has been used by researchers for 

independent displacement-based formulation with Timoshenko beam 

theory but it cannot be used for mixed-based formulation as it cannot 

satisfy the required stability criteria for shear critical beam element. 
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The following shape function for axial displacement varying with quadratic 

function along the length of the element used in our research work: 
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The following shape function for independent rotation varying with 

quadratic function along the length of the element used in our research 

work: 
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2.2 Element Kinematics 
 

The axis of the proposed frame element is a straight line joined by nodes I 

and J in the statically determinate basic reference system in which rigid 

body displacements are removed by choosing the simple supported 

boundary conditions as shown in Figure 2-1. The frame element is 

composed of several sections along its axis. Every section is composed of 

several fibres which are identified by their position from the reference axis 

and individual cross-section area. 

 

Figure 2-1. Basic reference system without rigid body modes 

 

The section displacement vector 𝒖(𝑥) collects the two translations 

𝑢(𝑥), 𝑣(𝑥) in X and Y directions respectively and one rotation 𝜃𝑧(𝑥) about 

Z axis. 

 

𝒖(𝑥) =  [𝑢(𝑥)𝜃𝑧(𝑥)    𝑣(𝑥)]𝑇          (5) 
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The element nodal displacement vector 𝒖𝑰𝑱collectsthenodal displacement 

with respect to global axes according to the section displacement vector in 

Equation (5). In the proposed frame element, an additional middle nodal 

rotational degree of freedom is included which has been statically 

condensed out at the element level before the assembling process. 

 

𝒖𝑰𝑱 =  [𝑢𝐼𝑣𝐼𝜃𝑧𝐼   𝑢𝐽𝑣𝐽𝜃𝑧𝐽𝜃𝑧𝐾]
𝑇
                         (6) 

 

The element deformation vector 𝒗collects the relative translation 𝑢 at node 

J in X direction, rotations 𝜃𝑧 at nodes I and J and middle node k with 

respect to basic reference axes as shown in the Figure 2-2. 

 

𝒗 =  [𝑢    𝜃𝑧𝐼𝜃𝑧𝐽𝜃𝑧𝐾]
𝑇

        (7) 

 

Figure 2-2. Element nodal deformations 

 

The relation between element nodal deformation 𝒗anddisplacements 𝒖𝑰𝑱can 

be uniquely determined by compatibility matrix 𝒂𝒄with constant 

𝑢 

𝜃𝑧𝐽 𝜃𝑧𝐼 𝜃𝑧𝐾  

I K J 
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coefficients under linear geometry conditions where L is the undeformed 

length of the element. 

 

𝒗 = 𝒂𝒄𝒖𝑰𝑱          (8) 

 

Where 

𝒂𝒄 =
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2.3 Section Kinematics 
 

Under the assumption of Timoshenko beam theory, the displacements 

𝑢𝑚(𝑥, 𝑦) of a material point 𝑚 with coordinate 𝑦 at a section with distance 

𝑥 from the origin of the reference frame can be represented with the cross-

section generalized displacements 𝒖(𝑥) as follows. 

 

𝑢𝑥
𝑚(𝑥, 𝑦) = 𝑢(𝑥) − 𝑦𝜃𝑧(𝑥)       (9) 

 

𝑣𝑥
𝑚(𝑥, 𝑦) = 𝑣(𝑥)         (10) 
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The material strain displacement vector 𝜺(𝑥, 𝑦)can be related with material 

displacement vector 𝑢𝑚(𝑥, 𝑦)as follows. 

 

𝜀𝑥𝑥 =
𝜕𝑢𝑥

𝑚(𝑥,𝑦)

𝜕𝑥
=

𝜕𝑢(𝑥)
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− 𝑦
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𝜕𝑥
      (11) 

 

𝜀𝑦𝑦 =
𝜕𝑣𝑥

𝑚(𝑥,𝑦)

𝜕𝑦
=
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2𝜀𝑥𝑦 =
𝜕𝑢𝑥

𝑚(𝑥,𝑦)

𝜕𝑦
+

𝜕𝑣𝑥
𝑚(𝑥,𝑦)

𝜕𝑥
= −𝜃𝑧(𝑥) +

𝜕𝑣(𝑥)

𝜕𝑥
    (13) 

 

By introducing section the deformation vector 𝒅(𝑥) which is a function of 

section displacement vector 𝒖(𝑥), we can write down the following 

equation with the help of section compatibility matrix 𝒂𝑠(𝑦): 

 

𝜺(𝑥, 𝑦) = 𝒂𝑠(𝑦)𝒅(𝑥)        (14) 

 

Where 

𝒅(𝑥) = [
𝜕𝑢(𝑥)
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𝒂𝑠(𝑦) = [
1 −𝑦 0
0 0 1

] 
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2.4 Equilibrium 
 

The differential equilibrium equation of a segment of length 𝑑𝑥 as shown 

in the Figure 2-3 can be written down as follows: 

 

 

 

 

 

𝑑𝑥 

Figure 2-3. Section differential equilibrium 

 

𝑑𝑁𝑥

𝑑𝑥
= 0          (15) 

 

𝑑𝑀𝑥

𝑑𝑥
− 𝑉𝑥 = 0                 (16) 

 

𝑑𝑉𝑥

𝑑𝑥
= 0                  (17) 

 

Where 𝑁𝑥 , 𝑀𝑥, 𝑉𝑥are the axial force, bending moment and shear force 

respectively. 

 

Writing the equilibrium equations in matrix form: 

𝑁𝑥 
𝑁𝑥 + 𝑑𝑁𝑥 

𝑉𝑥  

𝑉𝑥 + 𝑑𝑉𝑥  

𝑀𝑥 
𝑀𝑥 + 𝑑𝑀𝑥 
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𝑳𝑇𝑫(𝑥) = 0                (18) 

 

Where 

 

𝑫(𝑥) = [𝑁𝑥𝑀𝑥𝑉𝑥]
𝑇 

 

𝑳𝑇 =  

[
 
 
 
 
 
d

dx
0 0

0
d

dx
−1

0 0
d

dx ]
 
 
 
 
 

 

 

2.5 Compatibility 
 

The components of generalized section deformation vector 𝒅(𝑥) are the 

axial strain 𝜀0 at the reference 𝑥 axis, the curvature ∅𝑧 about the 𝑧 axis and 

shear deformation 𝛾𝑦  in the 𝑦 direction respectively: 

 

𝒅(𝑥) = [𝜀0∅𝑧𝛾𝑦]
𝑇

                 (19) 

 

Where 
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𝜀0 =  
𝑑𝑢(𝑥)

𝑑𝑥
 

∅𝑧 =
𝑑𝜃𝑧(𝑥)

𝑑𝑥
 

𝛾𝑦 = −𝜃𝑧(𝑥) +
𝑑𝑣(𝑥)

𝑑𝑥
 

 

Writing the compatibility equations in matrix form: 

 

𝑳𝒖(𝑥) − 𝒅(𝑥) = 0                 (20) 

 

Where 

 

𝑳 =

[
 
 
 
 
 
d

dx
0 0

0
d

dx
0

0 −1
d

dx]
 
 
 
 
 

 

 

2.6 Constitutive Laws 
 

The section constitutive law is as follows: 

 

𝑫(𝑥) = 𝑓𝑠𝑒𝑐𝒅(𝑥)                 (21) 

 



80 

 

Where 𝑓𝑠𝑒𝑐 is a nonlinear function that describes the section force-

deformation relation. The section force-deformation relation is obtained 

through fibre integration as described in Section 2.8. 

 

2.7 Variational Formulation 

 
The formulation of the beam element in this section uses independent 

generalized stress and displacement interpolation functions in a two-field 

Hellinger-Reissner (HR) functional which is written in the basic frame of 

reference as follows: 

 

∏ (𝒖, 𝝈)𝐻𝑅 =  −∫ 𝑊 (𝝈(𝑥, 𝑦)) 𝑑𝑣
𝑣

+ ∫ 𝝈𝑇𝜺𝒖
𝑣

𝑑𝑣 − ∏ (𝒖(𝑥))𝑒𝑥𝑡 −

∏ (𝒖)𝑏𝑐           (22) 

 

where 𝑊(𝝈) is the complementary energy function. 

 

In HR variational principle, strain-displacement relation 𝜺 = ∇𝑠𝒖(𝑥) on 𝑣 

and displacement boundary condition 𝒖 =  𝒖∗ on Γ𝑢, are satisfied in their 

strong differential form. Where as, equilibrium conditions 𝒅𝒊𝒗 𝝈 + 𝒃𝒐 = 𝟎 

on 𝑣, constitutive relation 𝝈 = 𝝈(𝜺)on 𝑣 and traction boundary conditions 

𝒕 =  𝒕∗ on Γ𝑡 are satisfied in their integral weak form. 
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HR energy functional of Eq. (22) can be written without body force and 

surface traction with section level variables in the following form: 

 

∏ (𝒖, 𝒑)𝐻𝑅 =  −∫ 𝑫𝑇𝒅(𝑫) 𝑑𝑥
𝐿

+ ∫ �̂�𝑇(𝒑)𝒅(𝒖)
𝐿

𝑑𝑥 − 𝒖𝑇𝑷∗    (23) 

 

In this formulation, beam section forces 𝑫 ̂are independentlydetermined 

from element nodal forces 𝒑  as follows: 

 

�̂�(𝑥) = 𝒃(𝑥) 𝒑         (24) 

 

𝒃(𝑥) =

[
 
 
 
 
1 0 0

0 −
1

𝐿
−

1

𝐿

0
𝑥

𝐿
− 1

𝑥

𝐿 ]
 
 
 
 

 

 

where 𝒃(𝑥) is the matrix of force interpolation functions.  

 

Equilibrium matrix 𝒃(𝑥) satisfies differential equilibrium equation (18) at 

the section level in its strong form.  

 

The variation of HR energy functional in Eq. (23) can be written in the 

following form: 
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𝛿 ∏ (𝒖, 𝒑)𝐻𝑅 = −∫ 𝛿𝑫𝑇𝒅(𝑫) 𝑑𝑥
𝐿

+ ∫ 𝛿(�̂�𝑇(𝒑)𝒅(𝒖))
𝐿

𝑑𝑥 − 𝛿𝒖𝑇𝑷∗  (25) 

 

𝛿 ∏ (𝒖, 𝒑)𝐻𝑅 = −∫ 𝛿𝑫𝑇𝒅(𝑫) 𝑑𝑥
𝐿

+ ∫ 𝛿(�̂�𝑇(𝒑))𝒅(𝒖)
𝐿

𝑑𝑥 +

∫ (�̂�𝑇(𝒑))𝛿(𝒅(𝒖))
𝐿

𝑑𝑥 − 𝛿𝒖𝑇𝑷∗      (26) 

 

The solution of the variational in Equation (26) is non-linear under inelastic 

material conditions, hence the problem needs to be linearized about a state 

of both principle arguments𝒖𝑖 and 𝒑𝑖 as follows: 

 

𝛿 ∏ (𝒑𝒊+𝟏, 𝒖𝒊+𝟏)𝐻𝑅 =  𝛿 ∏ (𝒑𝒊, 𝒖𝒊)𝐻𝑅 +
𝜕𝛿 ∏ (𝒑,𝒖)𝐻𝑅

𝜕𝑝
|𝒑𝑖,𝒖𝑖 ∆𝒑 +

𝜕𝛿 ∏ (𝒑,𝒖)𝐻𝑅

𝜕𝑢
|𝒑𝑖,𝒖𝑖 ∆𝒖         (27) 

 

Where ∆𝒖and ∆𝒑are the incremental nodal displacement and force vector 

respectively. 

 

At equilibrium: 

 

𝛿 ∏ (𝒑𝒊+𝟏, 𝒖𝒊+𝟏)𝐻𝑅 = 0        (28) 

 

Therefore from Equation (27), we can write the following: 
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𝛿 ∏ (𝒑𝒊, 𝒖𝒊)𝐻𝑅 +
𝜕𝛿 ∏ (𝒑,𝒖)𝐻𝑅

𝜕𝑝
|𝒑𝑖,𝒖𝑖 ∆𝒑 +

𝜕𝛿 ∏ (𝒑,𝒖)𝐻𝑅

𝜕𝑢
|𝒑𝑖,𝒖𝑖 ∆𝒖 = 0  (29) 

By using Equations (20), (21), and (24), Equation (29) can be written in the 

following form: 

 

𝛿𝒖𝑇 [∫ 𝑩𝑠
𝑇(𝑥) 𝒃(𝑥) 𝑑𝑥 Δ𝒑 + ∫ 𝑩𝒔

𝑇𝑫(𝑥)𝑑𝑥
𝑳

− 𝑷∗
𝐿

] +

 𝛿𝒑𝑇 [−∫ 𝒃𝑇(𝑥)𝒇𝒔(𝑥)𝒃(𝑥)𝑑𝑥Δ𝒑 + ∫ 𝒃𝑇
𝐿

(𝑥)𝑩𝒔(𝑥)𝑑𝑥Δ𝒖
𝐿

+

 ∫ 𝒃𝑇(𝑥)
𝐿

𝒅(𝑥)𝑑𝑥 − ∫ 𝒃𝑇(𝑥)
𝐿

�̂�(𝑥)𝑑𝑥 ] = 0    (30) 

 

Where𝒇𝒔(𝑥) is the section flexibility matrix, 𝑩𝒔(𝑥)is the strain 

displacement matrixand �̂�(𝑥) is the section deformation vector determined 

from section force vector �̂�(𝑥) with the help of the section flexibility 

matrix. 

 

From arbitrariness of 𝛿𝒖and 𝛿𝒑, Equation (30) can be written in the 

following matrix form: 

 

[
0 ∫ 𝑩𝑠

𝑇𝒃𝑑𝑥
𝐿

∫ 𝒃𝑇𝑩𝑠𝐿
𝑑𝑥 −∫ 𝒃𝑇𝒇𝑠𝒃𝑑𝑥

𝐿

] (
∆𝒖
∆𝒑

) = (
𝑷∗ − ∫ 𝑩𝑠

𝑇𝑫𝑑𝑥
𝐿

∫ 𝒃𝑇(�̂�
𝐿

− 𝒅)𝑑𝑥
)  (31) 

 

Equation (31) can be written in the following concise form: 
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[
0 𝑮𝑇

𝑮 −𝑭𝒄+𝒔
] (

∆𝒖
∆𝒑

) =  (
𝑷∗ − 𝑷𝒄+𝒔

𝒓

𝒖𝑟 )     (32) 

Here, 

 

𝑮 = [
0 1 0 0
1 0 0 0
0 0 1 0

] 

 

Where𝑭𝑐+𝑠 is the element flexibility matrix and 𝒖𝑟 is the element residual 

deformation vector. It is important to note that on convergence, the element 

residual deformation vector 𝒖𝑟 reduces to zero inside each element 

satisfying compatibility. 

 

The two independent fields of the mixed formulation result in different 

numerical implementation strategies. The first numerical implementation 

approach preserves the parameters of the element force field as global 

variables alongside the end node displacements of the beam element. In 

this case the governing element equations for these variables in Equation 

(32) are assembled for the structural model and solved simultaneously for 

the independent parameters of the two fields at the structural level by a 

suitable non-linear solution strategy. This algorithm enforces continuity at 

element boundaries by solving for the forces as independent global degrees 

of freedom. The implementation of this first strategy is less common in 

finite element analysis as global solver needs to be coded for both 
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displacement and force variables, and therefore, this algorithm has not been 

pursued in this research work. Also, it is recommended that force 

continuity shall be relaxed locally at element level (Zienkiewicz et. al. 

(1989)) to avoid highly oscillating displacement distribution. The second 

numerical implementation strategy condenses the internal force fields from 

the governing element equations in Equation (32) and retains only the end 

node displacements of the beam element as global variables. This approach 

relaxes the basic force continuity requirement across inter-element 

boundaries. 

 

In a nonlinear structural analysis algorithm, computations of the element 

resisting force vector and the element tangent stiffness matrix 

corresponding to the given current element nodal displacements and their 

increments, is known as element state determination process. In this 

formulation, the force degrees of freedom are condensed out at the element 

level from Equation (32) resulting in a generalized stiffness matrix as 

follows: 

 

𝑮𝑇[𝑭𝑐+𝑠
−1 ][𝑮∆𝒖 − 𝒖𝑟] = 𝑷∗ − 𝑮𝑇𝑷𝒄+𝒔

𝒓       (33)

   

Two alternative solution strategies exist for the element state determination 

of the mixed beam element based on whether storing of element residual 
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deformation vector 𝒖𝑟 in Equation (33) between subsequent global 

iterations is required or not. A non-iterative solution algorithm where no 

internal element iteration is necessary as in this algorithm storing element 

residual deformation is eliminated through the inclusion of 𝒖𝑟 in the 

element forces at the basic frame of reference before exiting from the 

element state determination at each iteration. Whereas for an iterative 

solution algorithm internal element iteration is necessary until the 

deformation vector is adjusted to satisfy compatibility at the element level 

and the element residual deformation vector 𝒖𝑟 reduces to zero before 

returning to the global iteration. 

 

In this formulation, the iterative solution algorithm has been adopted and 

the choice of displacement and force interpolation functions should follow 

Babuska-Brezzi condition along with principle of limitation (De Veubeke 

(1965)). However, it has been established by Ayoub et al. (2001) that the 

principle of limitation criteria is the prime governing criteria to choose the 

right order of displacement and force interpolation functions to achieve 

anaccurate solution. Detailed step by step procedure for both solution 

algorithms with stability of mixed formulation are described in Section 2.9. 

 

Once convergence has reached at the element level i.e. 𝒖𝑟 becomes zero,  

Equation (33) can be written as following: 
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(𝑮𝑇[𝑭𝑐+𝑠
−1 ]𝑮)∆𝒖 = 𝑷∗ − 𝑮𝑇𝑷𝒄+𝒔

𝒓       (34)

   

(𝑲𝒄+𝒔)∆𝒖 =  𝑷∗ − 𝑮𝑇𝑷𝒄+𝒔
𝒓        (35) 

  

𝑲∆𝒖 =  𝑷∗ − 𝑷𝒓         (36) 

 

The nodal displacements of the structural model in the global frame of 

reference are collected in the displacement vector𝑼𝑔. Detailed procedure of 

mapping structural nodal displacement relative to global coordinates to the 

element nodal deformation at the basic frame of reference, transformation 

of element stiffness matrix and resisting forces from basic to global level 

and assembling of global stiffness matrix and resistance forces of all 

elements to assembled structural stiffness matrix 𝑲𝑔 and structural 

resistance vector 𝑷𝑔𝑟are described in detail in Filippou et al. (2004). 

 

 

2.8  Material Model 
 

 

2.8.1 Overview 

 

Multi-axial constitutive law for materials are essential to couple normal 

stresses and shear stress at the material fibre level which in turn help to 
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account for the interaction of axial force, bending moment and shear force 

at element section level. This section presents the various types of 

constitutive models of structural steel and reinforced concrete available in 

the literature followed by the implemented material models in the current 

research work. 

 

Reinforced concrete is a composite material which consists of concrete and 

rebars. The length dimension of rebars is much greater than its cross-

sectional dimensions. Therefore in the frame element formulation, uniaxial 

stress states are considered for the rebars. On the other hand, a multi-axial 

stress state exists in the concrete material point under combined loading 

conditions. In the following, we will first describe various modelling 

strategies available for multi-axial concrete constitutive laws followed by 

the uniaxial rebar material, and conclude with the multi-axial constitutive 

law for structural steel. 

 

The strength of concrete in tension is significantly lower than that in 

compression. It has been experimentally observed that the interaction 

among multi-axial tensile stress is much less i.e. tensile stress in one 

direction does not affect the tensile strength in other directions. On the 

contrary, multi-axial interaction under compressive stress is very prominent 

and it changes the behaviour of concrete tremendously.  Under tensile 
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loading, concrete cracks and behaves like a tensile softening material 

although the presence of rebars in concrete converts it to tensile stiffening 

behaviour by reducing the post-peak negative slope of tensile stress-strain 

curve; while under multi-axial compressive loading it crushes and behave 

like a ductile material. Upon unloading from the compressive stress state 

after crossing the cracking state, concrete exhibits unrecoverable 

deformation due to the micro cracks and slip at the micro scale level, which 

makes it to be treated as a plastically deformable material (Ottosen (1977), 

Chen (1982)) under compressive loading. On the other hand, tensile macro 

cracks make concrete more flexible and reduces the elastic stiffness of 

concrete which cannot be represented by plasticity theory, but can be 

simulated through continuum damage mechanics theory (Kachanov (1958), 

Mazars (1986), Luccioni et al. (2003)), whereas it is to be noted that 

concrete dilatancy due to cracked poison ratio and inelasticity cannot be 

represented by damage mechanics theory. Therefore, several models have 

been proposed by combining these two theories for cyclic loading 

condition as concrete possess the characteristics of both plasticity and 

damage. Interested readers are referred to notable contributions made by Ju 

(1989), Lubliner et al. (1989), Faria et al. (1998), Lee et al. (2001), and Wu 

et al. (2006).However, the experimentally observed compression-softening 

effect of reinforced concrete in shear has recently been considered in 

damage plasticity model (Feng et al. (2017)). Like damage-plastic model, 
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plasticity is combined with theory of fracture mechanics in fracture-plastic 

model (Bazant et al. (1979), Owen et al. (1983), Cervenka et al. (1998)). In 

this model, the concrete compressive behaviour is simulated by plasticity 

theory and tensile behaviour by a fracture model. Currently, Long et al. 

(2014) has included crack opening and closing rules into the fracture-

plastic model. Apart from macroscopic phenomenological approach of 

modelling concrete, Bazant et al. (1988) developed the microplane model 

of concrete based on micromechanics of the inelastic phenomena in the 

material microstructure. 

 

In the above mentioned concrete models, calibration has been conducted by 

performing experimental tests on concrete specimens only without 

considering embedded rebars under multi-axial stress states mostly for 

monotonic loading condition. However, in reality, the presence of rebars 

affects both the concrete and rebar properties. For this reason, realistic 

reinforced concrete models have been developed by conducting 

experiments on reinforced concrete panels under monotonic and cyclic 

loading conditions by following the three pillars of continuum mechanics 

i.e. stress equilibrium, strain compatibility and constitutive law of material. 

These models are known as smeared crack orthotropic models. 
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In the following, we will discuss various types of smeared crack 

orthotropic models available in the literature. Unlike other available 

concrete models, material state determination for smeared crack modes 

need equivalent uniaxial stress-strain relation of concrete along each axis of 

orthotropy. 

 

During the past three decades, extensive experimental testing (Vecchio et 

al. (1981), Vecchio et al. (1986), Belarbi et al. (1994, 1995), Pang et al. 

(1995), Hsu et al. (1996)) of reinforced concrete membrane panels 

subjected to in-plane and out-of-plane loads have been carried out 

throughout the world. The goal was to develop rational theoretical multi-

axial models of reinforced concrete based on smeared crack approach. 

There are several models available based on smeared or average concepts 

such as Noguchi et al (1983), Rots et al (1985), de Brost et al (1985), 

Stevens, et al (1987)Noguchi (1992), Shin et al (1992), Izumo et al (1992), 

Inoue et al (1992) among others. Important advantages over other concrete 

models are that local bond-slip is embedded into the smeared stress-strain 

relationship and smeared tension stiffening model is mesh independent 

(Hsu et al. (1996)). The research group at the University of Toronto, 

developed three reinforced concrete constitutive models: the compression 

field theory (Vecchio et al. (1981)) which was not able to take into account 

tension stiffening effect; the modified compression field theory (Vecchio et 
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al. (1986)) which can predict the post-peak behaviour by considering a 

concrete local shear stress in the principal direction along with compression 

softening due to perpendicular tensile strain, and the disturbed stress field 

theory (Vecchio(2000)) which is a hybrid rotating-fixed smeared cracked 

model for cyclic loading condition. The research group at the University of 

Houston, developed four reinforced concrete constitutive models: the 

rotating-angle softened truss model (Belarbi et al. (1995), Pang et al. 

(1995)) which is a rotating crack model that can predict the behaviour up to 

the ultimate point and able to simulate tension stiffening effect and the 

effect of concrete on steel stress-strain relationship; the fixed-angle 

softened truss model (Pang et al. (1996), Hsu et al. (1997)) which is based 

on the applied principal stresses and can predict the pre-peak behaviour 

with fixed crack approach with consideration of concrete contribution; and 

the softened membrane model (Zhu (2000),Hsu et al. (2002)) with cracked 

concrete Poisson ratios or Hsu/Zhu ratios (Zhu et al. (2001)) to capture the 

pre-peak as well as the post-peak softening response for monotonic loading 

and the cyclic softened membrane model (Mansur (2001), Mansur et al. 

(2005a, 2005b), Hsu et al. (2005)) for reverse cyclic loading condition.  

 

Hereafter, we will present an overview of various types of constitutive 

material models used to simulate structural steel under multi-axial stress 

states. 
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Steel is considered a ductile material which can undergo significant plastic 

deformations without losing its equal strength in tension and compression. 

It also exhibits strain hardening; however modelling of it depends on the 

type of applied loading on the system. Strain hardening in structural steel 

material under multi-axial stress state is a complex phenomenon like strain 

softening of concrete material. There are two types of strain hardening 

phenomena observed in the experimental tests of structural steel i.e. 

isotropic strain hardening where the centre of yield surface remains at the 

origin and kinematic strain hardening (Figure 2-4) where the centre of yield 

surface moves along the direction of the plastic strain rate throughout the 

loading history. For reverse cyclic loading conditions, combined isotropic 

and kinematic hardening needs to be considered to simulate the 

experimentally observed Bauschinger effect. There are mainly four types of 

material models used to simulate rate-independent plasticity problems i.e. 

linear plasticity, nonlinear kinematic hardening plasticity, bounding surface 

plasticity and generalized plasticity. Linear plasticity is the well-known J2 

plasticity model (Figure 2-4) in its simplest form. The model is based on 

linear evolutionary rules for both the plastic strain rate and the kinematic 

hardening which results in a piecewise linear stress-strain relation. 

Nonlinear kinematic hardening plasticity (Armstrong et al. (1965), 

Chaboche (1986)) is based on the use of nonlinear kinematic hardening 
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rules and bounding surface plasticity models (Dafalias et al. (1975), Krieg 

(1975), Dafalias (1986)) where plastic stiffness is a function of the distance 

between the loading surface and limit (bounding) surface. On the other 

hand, generalized plasticity (Auricchio et al. (1992), Lubliner (1993)) is 

based on the use of  

 

 

Figure 2-4. Linear Plasticity Model 

 

nonlinear evolutionary equations for the plastic strain rate. The numerical 

implementation of plasticity models requires the numerical integration of 

the rate constitutive equations over a discrete sequence of time steps in the 

incremental-iterative framework. The outcome of adopted integration 

algorithm is a nonlinear response function i.e. stress tensor which is a 

function of the strain history up to the current time step. In order to 
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preserve the quadratic rate of asymptotic convergence, elasto-plastic 

tangent over a typical time step must be obtained by consistent linearization 

of the response function. To achieve this goal, the radial return mapping 

algorithm (Wilkins (1964)) provides an effective and robust integration 

scheme of the rate constitutive equations through the discrete enforcement 

of limit equation. It is an elastic-predictor plastic-corrector algorithm which 

has two parts. In the first part, a purely elastic trial state is computed and in 

the second part, a plastic correction is computed using the calculated trial 

state as an initial condition. Interested readers are referred to Simo et al. 

(1998) for additional discussion. 

 

In the following, we will first discuss the implemented reinforced concrete 

models followed by steel multi-axial J2 and generalized plasticity models 

of structural steel adopted for monotonic and cyclic loading conditions 

respectively. The uniaxial material models for concrete and steel have been 

briefly described in Appendix B. 

2.8.2 Reinforced Concrete 
 

 

In this research work, the softened membrane model has been adopted to 

simulate the biaxial interaction between normal stress and shear stress at 

the material fibre level. In the following, we will first present the salient 

features of the implemented softened membrane model which has been 
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developed by Zhu (2000) and Hsu et al. (2002). Mullapudi et al. (2010) 

implemented it into the force-based fibre element formulation. 

 

2.8.2.1 Concrete – Biaxial 

 

 

To formulate the softened membrane model, three coordinate systems are 

typically assumed as shown in Figure 2-5. The first coordinate system (X, 

Y) defines the local coordinate of the fibre element at the basic frame of 

reference; the second coordinate system (1, 2) represents the applied 

principal stresses of reinforced concrete membrane panel which has an 

angle 𝜃1 with respect to X axis while the third coordinate system (𝑋𝑠 , 𝑌𝑠) 

represents the rebar coordinate system which has angle 𝜃𝑠with respect to X 

axis.  

 

 

Figure2-5. Applied principal stresses and reinforcement directions of RC 

element 

 

X 

Y 

1 

2 
𝜃1 
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The stress and strain vectors in X-Y and 1-2 coordinate axes are 

representedby{𝜎𝑥𝜎𝑦𝜏𝑥𝑦}
𝑇

,{𝜀𝑥𝜀𝑦
1

2
𝛾𝑥𝑦}

𝑇
and{𝜎1𝜎2𝜏12}

𝑇,{𝜀1𝜀2
1

2
𝛾12}

𝑇
respect

ively. We have information available in terms of strain vector at X-Y 

coordinate system and we need to determine the stress vector in X-Y 

coordinate system along with tangent stiffness of RC panel through the 

following material state determination process. 

 

The strains are transformed from the X-Y system to 1-2 system through the 

following transformation matrix: 

 

{
𝜀1
𝜀2

1
2
𝛾12

} = [𝑇(𝜃1)] {

𝜀𝑥
𝜀𝑦

1
2
𝛾𝑥𝑦

}                (37) 

 

Where 

[𝑇(𝜃1)] = [
𝑐2 𝑠2 2𝑠𝑐
𝑠2 𝑐2 −2𝑠𝑐

−𝑠𝑐 𝑠𝑐 𝑐2 − 𝑠2

] 

 

Here, 𝑐 =  cos 𝜃1 and 𝑠 =  sin 𝜃1 

 

The iterative process of determining 𝜃1 based on strain state, equilibrium of 

vertical stress and state of stress can be found in details from Mullapudi et 

al.(2010). 
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Biaxial strains in 1-2 system has been transformed into equivalent uniaxial 

strains at 1-2 system with the help of cracked concrete Poisson ratio which 

is known as Hsu/Zhu ratio. 

 

{

�̅�1
�̅�2

1
2
𝛾12

} = [𝜇] {
𝜀1
𝜀2

1
2
𝛾12

}                 (38) 

 

Where 

 

[𝜇] = [

1

1−𝜇12𝜇21

𝜇12

1−𝜇12𝜇21
0

𝜇21

1−𝜇12𝜇21

1

1−𝜇12𝜇21
0

0 0 1

] 

 

Here, 𝜇12 represents the effect of compression strain in the 2-direction on 

the tensile strain in the 1-direction and 𝜇21 represents the effect of tensile 

strain in the 1-direction on the compression strain in the 2-direction. Zhu et 

al. (2002) has proposed the following equations of Poisson ratios for 

cracked concrete based on the biaxial experimental tests on RC panels: 

 

𝜇12 = 0.2 + 850𝜀𝑠𝑓 if 𝜀𝑠𝑓  ≤  𝜀𝑦              (39) 

 

𝜇12 = 1.9   if 𝜀𝑠𝑓 > 𝜀𝑦              (40) 
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𝜇21 = 0.2   before cracking             (41) 

 

𝜇21 = 0   after cracking             (42) 

 

Where 𝜀𝑠𝑓 is the strain in the steel bar that yields first and 𝜀𝑦 is the yield 

strain. 

 

Compressive and tensile strength of concrete has been determined from the 

uniaxial smeared stress-strain curve of concrete. However, compressive 

strength of concrete depends on material state of stress. For tensile-

compressive state, the compressive strength gets softened due to tensile 

strains acting in the perpendicular direction whereas for compressive-

compressive state of stress, the compressive strength gets enhanced due to 

the compressive stress acting in the perpendicular direction. This 

enhancement factor of compressive strength has been adopted in this 

research work following the Vecchio’s model (1992) which is a simplified 

version of Kupfer et al. (1969) biaxial compression strength envelope. 

However, the tensile strength of concrete gets influenced in a very minimal 

way due to the presence of perpendicular tensile strength. 
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Hsu and Zhu (2001) derived a softening equation in the tension-

compression region, which is implemented in the current model, and is 

based on panel testing as proposed by Hsu et al. (1995) and Belarbi and 

Hsu (1995). The equation for compressive strength reduction factor 

proposed by Hsu and Zhu (2001) is: 

 

𝜁 = (
5.8

√�́�𝑐(𝑀𝑃𝑎)
≤ 0.9)(

1

√1+400�̅�1
)(1 −

|𝛽|

24°
)             (43) 

 

Where, 

 

𝛽 = 0.5 tan−1(
𝛾12

𝜀1 − 𝜀2
) 

 

The softening coefficient ζ value is limited to 0.9, because the uniaxial 

concrete compressive strength𝑓�́� is calculated from standard cylinder test, 

while from the panel experiments at the University of Houston it was 

observed that the concrete strength does not reach𝑓�́�. The reason is due to 

size effect, loading rate effect, and shape factor which have ample effect on 

the concrete compressive strength𝑓�́�. The ultimate stress in the orthogonal 

directions is therefore  ζ𝑓�́�at a softened strain ζε0, where ζ is the softening 

coefficient, 𝛽 is the deviation angle which is the difference between the 

applied stress angle α1 and the rotating angle αr, 𝜀1̅ is the lateral tensile 
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strain,  ε0 is the concrete strain at peak compressive strength 𝑓�́� and ζ𝑓�́�is the 

softened concrete compressive strength, ε1 is the bi-axial strain of concrete 

in principal direction 1,  ε2 is the bi-axial strain of concrete in principal 

direction 2 and γ12 is shearing strain in applied principal co-ordinate system 

1-2.  

 

Once the strength has been determined in the equivalent uniaxial 1-2 

coordinates system, we can determine shear strength and stiffness (G) as 

follows: 

 

𝐺 =
𝜎1−𝜎2

𝜀1−𝜀2
                  (44) 

 

𝜏12 𝑎𝑡 (𝑡 + 1) = 𝜏12 𝑎𝑡 (𝑡) + 𝐺
𝛾12

2
              (45) 

 

The equivalent uniaxial strain of concrete can be transformed into uniaxial 

strain of rebars as follows: 

 

{

�̅�1𝑠
�̅�2𝑠

1
2
𝛾12

} = [𝑇(𝜃𝑠 − 𝜃1)] {

�̅�1
�̅�2

1
2
𝛾12

}       (46) 

 

Once we have strength at concrete and steel rebar at their respective co-

ordinate systems, we can determine the strength vector of reinforced 
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concrete panel in X-Y coordinate system from the following equilibrium 

equations: 

 

{
𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

} = [𝑇(−𝜃1)] {
𝜎1
𝜎2
𝜏12

} + ∑ [𝑇(−𝜃𝑠𝑖)]𝑖 {
𝜌𝑠𝑖𝜎𝑠𝑖

0
0 }    (47) 

 

Here, 𝜌𝑠𝑖 is the smeared steel ratio in the direction of i. 

 

The material stiffness matrix [𝐷] of reinforced concrete panel in X-Y 

coordinate system can be determined from equivalent uniaxial stiffness of 

concrete and steel at their respective coordinate systems as follows. 

 

[𝐷] = [𝐷𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒] + [𝐷𝑠𝑡𝑒𝑒𝑙]              (48) 

 

Where, 

 

[𝐷𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒] = [𝑇(−𝜃1)][𝐷𝑢𝑛𝑖𝑎𝑥𝑖𝑎𝑙
𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒][𝜇][𝑇(𝜃1)] 

 

[𝐷𝑠𝑡𝑒𝑒𝑙] = ∑

𝑖

[𝑇(−𝜃𝑠𝑖)][𝐷𝑢𝑛𝑖𝑎𝑥𝑖𝑎𝑙
𝑠𝑡𝑒𝑒𝑙_𝑖 ][𝑇(𝜃𝑠𝑖 − 𝜃1)][𝜇][𝑇(𝜃1)] 

 

[𝐷𝑢𝑛𝑖𝑎𝑥𝑖𝑎𝑙
𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒] = [

𝐸𝑡1 𝐷12 0
𝐷21 𝐸𝑡2 0
0 0 𝐺

] 
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Here 𝐷12 =
𝑑𝜎1

𝑑�̅�2
 and 𝐷21 =

𝑑𝜎2

𝑑�̅�1
 are coupling material stiffness terms which 

exists only when the material is under tensile-compressive state of strain 

due to the presence of softening coefficient which is a function of 

perpendicular tensile strain.  

 

[𝐷𝑢𝑛𝑖𝑎𝑥𝑖𝑎𝑙
𝑠𝑡𝑒𝑒𝑙_𝑖 ] = [

𝜌𝑠𝑖𝐸𝑡 0 0
0 0 0
0 0 0

]       (49) 

 

2.8.3 Steel 
 

 

In this research work, the J2 model for monotonic loading and generalized 

plasticity model for cyclic loading has been adopted to simulate the biaxial 

interaction between normal stress and shear stress at the material fibre 

level. In the following, we will first present the implemented J2model of 

steel followed by the salient features of generalized plasticity model. 

Auricchio et al. (1992) has developed the generalized plasticity model and 

Saritas et al. (2009) implemented it into the three-field mixed based fibre 

element formulation. 

 

2.8.3.1 Steel - Biaxial 

 

 



104 

 

In case of rate independent small deformation plasticity, we can split the 

total strain vector 𝜺into an elastic component vector 𝜺𝒆 and a plastic 

component vector𝜺𝒑 i.e. 𝜺 = 𝜺𝒆 + 𝜺𝑷.  

 

The stress (𝝈) behaviour of a material can be composed of a stress 

associated with uniform hydrostatic pressure (volumetric part ‘p’) and a 

stress associated with the resistance of the material to shear distortion 

(deviatoric part‘s’) which contributes in yielding and plastic flow.  

 

𝑝 =  
1

3
𝑡𝑟(𝝈)          (50) 

 

Where ‘tr’ is the trace operator that adds the diagonal terms of stress 

tensor 𝝈. 

 

With this relation the stress can be written as: 

 

𝝈 = 𝒔 + 𝑝. 𝟏               (51) 

 

Where the trace of deviatoric stress is zero and 𝟏is the rank 2 identity 

tensor. 

The second invariant of deviatoric stress tensor 𝒔is known as J2. 
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Similarly, the strain tensor can be split into volumetric (𝜃) and deviatoric 

part (𝒆). 

 

𝜃 = 𝑡𝑟(𝜺)          (52) 

 

Where the plastic part of 𝜃is zero. With this relation the strain can be 

written as: 

 

𝜺 = 𝒆 + 
1

3
𝜃𝟏         (53) 

 

The deviatoric strain e can also be decomposed into an elastic and plastic 

part: 

 

𝒆 =  𝒆𝒆 + 𝒆𝒑          (54) 

 

The elastic behaviour of the material can be described as: 

 

𝒔 = 2𝐺(𝒆 − 𝒆𝒑)         (55) 

 

Where G is the shear modulus. 

 

2.8.3.1.1 J2 Plasticity Model 
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We are using linear isotropic and kinematic hardening rules for the current 

J2 plasticity model (Figure 2-4). The equations relative to the yield 

function, plastic flow rule and hardening rules are briefly summarized here.  

 

The yield function is expressed in terms of the deviatoric stress s, the back 

stress variable 𝒔𝒃representing the distance of yield surface centre from the 

origin of deviatoric stress spaceand linear isotropic hardening modulus 𝐻𝑖. 

 

𝑓(𝒔, 𝒔𝒃, 𝐻𝑖) =  ‖𝒔 − 𝒔𝒃‖ − √
2

3
(𝜎𝑦 + 𝐻𝑖𝛽)     (56) 

 

Here, 𝜎𝑦 is the uniaxial tensile yield strength and 𝛽 is the isotropic 

hardening variable with nature of plastic strain. 

 

The plastic flow rule is: 

 

𝒆�̇� =  𝛼
𝜕𝑓

𝜕𝒔
          (57) 

 

Here 𝛼 is known as plastic consistency parameter and 
𝜕𝑓

𝜕𝒔
 is the normal to 

the yield surface which is determined as: 

 

𝜕𝑓

𝜕𝒔
=  

(𝒔−𝒔𝒃)

‖𝒔−𝒔𝒃‖
          (58) 
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The hardening rules are: 

 

�̇� =  √
2

3
𝛼          (59) 

 

𝒔�̇� =  
2

3
�̇�𝐻𝑘

𝜕𝑓

𝜕𝒔
         (60) 

 

Where 𝐻𝑘 is the kinematic hardening modulus. 

 

The plastic consistency parameter 𝛼 satisfies the following Kuhn-Tucker 

loading and unloading conditions: 

 

�̇� ≥ 0,     𝑓 ≤ 0,     �̇�𝑓 = 0       (61) 

 

Also, the following consistency condition needs to be satisfied: 

 

𝛼𝑓̇ = 0          (62) 

 

A step by step summary of the material state determination through the 

integration of the above mentioned governing equations with the 

backword-Euler integration scheme which results in a radial return 

mapping algorithm, is presented below for a single material point. A more 
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detailed explanation can be found in Simo et al. (1998). The summary 

focuses on a single iteration 𝑖 for reaching vertical stress equilibrium at 

material point (Klinkel et al. (2002)). 

 

Step 1: Determine the elastic trail stress for a given strain vector at time 

(𝑡 + 1). 

 

𝒆𝒕+𝟏 = 𝜺𝒕+𝟏 −
1

3
𝜃𝑡+1𝟏 

 

𝒔𝒕+𝟏 = 2𝐺(𝒆𝒕+𝟏 − 𝒆𝒕
𝒑
) 

 

𝒔𝒆𝒇𝒇,𝒕𝒓𝒊𝒂𝒍
𝒕+𝟏 = 𝒔𝒕+𝟏 − 𝒔𝒃,𝒕 

 

Step 2: Compare the trial stress with the yield surface limit. 

 

𝑓𝑡+1(𝒔, 𝒔𝒃, 𝐻𝑖) =  ‖𝒔𝒆𝒇𝒇,𝒕𝒓𝒊𝒂𝒍
𝒕+𝟏‖ − √

2

3
(𝜎𝑦 + 𝐻𝑖𝛽𝑡) 

 

If  𝑓𝑡+1(𝒔, 𝒔𝒃, 𝐻𝑖) ≤ 0 

 

Determine elastic tangent matrix as follows: 
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𝑬𝑡+1 = 𝐾𝑛𝑛𝑇 + 2𝐺(𝑙 − 𝑙𝑣𝑜𝑙) 

 

Where K is the bulk modulus. 

 

If  𝑓𝑡+1(𝒔, 𝒔𝒃, 𝐻𝑖) > 0 

 

We will move to step 3 to establish the plastic state. 

 

Step 3: Determine consistency parameter and normal to yield surface. 

 

∆𝛼 =
𝑓𝑡+1(𝒔, 𝒔𝒃, 𝐻𝑖)

2𝐺 +
2

3
(𝐻𝑖 + 𝐻𝑘)

 

 

𝜕𝑓

𝜕𝒔𝑡+1
= 

(𝒔𝒆𝒇𝒇,𝒕𝒓𝒊𝒂𝒍
𝒕+𝟏)

‖𝒔𝒆𝒇𝒇,𝒕𝒓𝒊𝒂𝒍
𝒕+𝟏‖

 

 

Step 4: Determine the updated hardening variable, plastic strain and back 

stress. 

 

𝛽𝑡+1 = 𝛽𝑡 + √
2

3
∆𝛼 
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𝒆𝒕+𝟏
𝒑

= 𝒆𝒕
𝒑

+ ∆𝛼
𝜕𝑓

𝜕𝒔𝑡+1
 

 

𝒔𝒃,𝒕+𝟏 = 𝒔𝒃,𝒕 +
2

3
𝐻𝑘∆𝛼

𝜕𝑓

𝜕𝒔𝑡+1
 

 

Step 5: Determine the stress vector and consistent elastic-plastic tangent 

matrix. 

 

𝝈𝑡+1 = 𝐾𝜃𝑡+1𝟏 + 𝒔𝒕+𝟏 − 2𝐺∆𝛼
𝜕𝑓

𝜕𝒔𝑡+1
 

 

𝑬𝑡+1 = 𝐾(𝟏 ∗ 𝟏)

+ 2𝐺 [(1 − ω) (II −
1

3
(𝟏 ∗ 𝟏)) − (

G

Gp − ω)(
∂f

∂st+1
∗

∂f

∂st+1
)] 

 

Where 

Gp = 𝐺 +
𝐻𝑖 + 𝐻𝑘

3
 

 

ω =
2𝐺∆𝛼

‖𝒔𝒆𝒇𝒇,𝒕𝒓𝒊𝒂𝒍
𝒕+𝟏‖

 

 

2.8.3.1.2 Generalized Plasticity Model 
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The generalized plasticity model has been developed as an alternative to 

nonlinear hardening kinematic model. Auricchio et al. (1995) discusses the 

advantages of this model over the nonlinear kinematic hardening model. 

One of the advantages over J2 plasticity model is that it can simulate the 

smooth asymptotic transition (Figure 2-6) between elastic and inelastic 

states during loading stages which has also been observed in the 

experiment with cyclic and reverse cyclic loading conditions. To achieve 

this behaviour, an additional limit function F has been introduced which 

distinguishes between admissible and non-admissible states. 

 

 
 

 

Figure 2-6. Generalized Plasticity Model 

 

The limit function F has been described as: 

 

ST
R

ES
S

STRAIN

𝑓=0

𝑓 >0

𝑓 <  0

𝜎 ̇>0, 𝐹=0, 𝛼 ̇>0

𝜎 ̇>0, 𝐹<0, 𝛼 ̇=0

𝛿
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𝐹 = ℎ(𝑓) (
𝑑𝑓

𝑑𝝈
: �̇�) − �̇�        (63) 

 

Where, 

 

ℎ(𝑓) =
𝑓

𝜑(𝛿−𝑓)+(𝐻𝑖+𝐻𝑘)𝛿
        

 

Here, 𝜑 is the rate of approaching the asymptote and 𝛿 is the distance 

between the current and asymptotic radius of yield function. 

 

If 𝐹 ≤ 0, we have admissible state and if 𝐹  > 0, we reach a non-

admissible state. The yield function 𝑓 distinguishes between elastic state 

i.e. 𝑓 < 0 and inelastic states i.e. 𝑓 ≥ 0  which may or may not occur 

depending on loading or unloading conditions (Figure 2-6). 

 

The limit function is expressed in terms of the deviatoric stress s, the back 

stress variable 𝒔𝒃representing the distance of yield surface centre from the 

origin of deviatoric stress spaceand linear isotropic hardening modulus 𝐻𝑖: 

 

𝐹(𝒔, 𝒔𝒃, 𝐻𝑖) =  ‖𝒔 − 𝒔𝒃‖ − √
2

3
(𝜎𝑦 + 𝐻𝑖𝛽)     (64) 
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Here, 𝜎𝑦 is the uniaxial tensile yield strength and 𝛽 is the isotropic 

hardening variable with nature of plastic strain. 

 

The plastic flow rule is: 

 

𝒆�̇� =  𝛼
𝜕𝑓

𝜕𝒔
                 (65) 

 

Here 𝛼 is known as plastic consistency parameter and 
𝜕𝑓

𝜕𝒔
 is the normal to 

the yield surface which is determined as: 

 

𝜕𝑓

𝜕𝒔
=  

(𝒔−𝒔𝒃)

‖𝒔−𝒔𝒃‖
                 (66) 

 

The hardening rules are: 

 

�̇� =  √
2

3
𝛼          (67) 

 

𝒔�̇� =  
2

3
�̇�𝐻𝑘

𝜕𝑓

𝜕𝒔
               (68) 

 

Where 𝐻𝑘 is the kinematic hardening modulus. 
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The plastic rate parameter 𝛼 satisfies the following Kuhn-Tucker loading 

and unloading conditions. 

 

�̇� ≥ 0,     𝐹 ≤ 0,     �̇�𝐹 = 0       (69) 

 

A step by step summary of the material state determination through the 

integration of the above mentioned governing equations with the 

backword-Euler integration scheme which results in a radial return 

mapping algorithm, is presented below for a single material point. A more 

detailed explanation can be found in Auricchio et al. (1995). The summary 

focuses on a single iteration 𝑖 for reaching vertical stress equilibrium at 

material point (Klinkel et al. (2002)). 

 

Step 1: Determine the elastic trial stress for a given strain vector at 

time (𝑡 + 1). 

 

𝒆𝒕+𝟏 = 𝜺𝒕+𝟏 −
1

3
𝜃𝑡+1𝟏 

 

𝒔𝒕+𝟏 = 2𝐺(𝒆𝒕+𝟏 − 𝒆𝒕
𝒑
) 

 

𝒔𝒆𝒇𝒇,𝒕𝒓𝒊𝒂𝒍
𝒕+𝟏 = 𝒔𝒕+𝟏 − 𝒔𝒃,𝒕 
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Step 2: Compare the trial stress with the yield surface limit. 

 

𝐹𝑡+1(𝒔, 𝒔𝒃, 𝐻𝑖) =  ‖𝒔𝒆𝒇𝒇,𝒕𝒓𝒊𝒂𝒍
𝒕+𝟏‖ −  √

2

3
(𝜎𝑦 + 𝐻𝑖𝛽𝑡) 

 

𝐴2 = ‖𝒔𝒆𝒇𝒇,𝒕𝒓𝒊𝒂𝒍
𝒕+𝟏‖ − ‖𝒔𝒆𝒇𝒇,𝒕𝒓𝒊𝒂𝒍

𝒕‖ 

 

If  𝑓𝑡+1(𝒔, 𝒔𝒃, 𝐻𝑖) ≤ 0 OR 𝐴2 < 0 

 

Determine elastic tangent matrix as follows: 

 

𝑬𝑡+1 = 𝐾𝑛𝑛𝑇 + 2𝐺(𝑙 − 𝑙𝑣𝑜𝑙) 

 

Where K is the bulk modulus. 

 

If  𝑓𝑡+1(𝒔, 𝒔𝒃, 𝐻𝑖) > 0 OR 𝐴2 ≥ 0 

 

We will move to step 3 to establish the plastic state. 

 

Step 3: Determine consistency parameter (smallest positive root) and 

normal to yield surface. 
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∆𝛼 =
−𝑏(+𝑜𝑟 −)√(𝑏2 − 4𝑎𝑐)

2𝑎
 

 

Where, 

 

𝑎 = 2𝐺1𝐴3 

𝑏 = 𝐴4 − 𝐴1𝐴3 + 2𝐺1𝐴2 

𝑐 = −𝐴1𝐴2 

 

2𝐺1 = 2𝐺 +
2

3
(𝐻𝑖 + 𝐻𝑘) 

 

𝐴1 = 𝐹𝑡+1(𝒔, 𝒔𝒃, 𝐻𝑖) 

 

𝐴3 = 𝜑 − 2𝐺 

 

𝐴4 = (𝜑 + 𝐻𝑖 + 𝐻𝑘)𝛿 

 

𝜕𝑓

𝜕𝒔𝑡+1
= 

(𝒔𝒆𝒇𝒇,𝒕𝒓𝒊𝒂𝒍
𝒕+𝟏)

‖𝒔𝒆𝒇𝒇,𝒕𝒓𝒊𝒂𝒍
𝒕+𝟏‖

 

 

Step 4: Determine the updated hardening variable, plastic strain and back 

stress. 
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𝛽𝑡+1 = 𝛽𝑡 + √
2

3
∆𝛼 

 

𝒆𝒕+𝟏
𝒑

= 𝒆𝒕
𝒑

+ ∆𝛼
𝜕𝑓

𝜕𝒔𝑡+1
 

 

𝒔𝒃,𝒕+𝟏 = 𝒔𝒃,𝒕 +
2

3
𝐻𝑘∆𝛼

𝜕𝑓

𝜕𝒔𝑡+1
 

 

Step 5: Determine the stress vector and consistent elastic-plastic tangent 

matrix. 

 

𝝈𝑡+1 = 𝐾𝜃𝑡+1𝟏 + 𝒔𝒕+𝟏 − 2𝐺∆𝛼
𝜕𝑓

𝜕𝒔𝑡+1
 

 

𝑬𝑡+1 = 𝐾(𝟏 ∗ 𝟏)

+ 2𝐺 [(1 − ω) (II −
1

3
(𝟏 ∗ 𝟏)) + (ω − 𝐴𝑤)(

∂f

∂st+1
∗

∂f

∂st+1
)] 

 

Where, 

 

𝐴𝑤 =
2𝐺(𝑏1 + 𝑏2)

2𝐺1𝑏1 − 𝐴3𝑏2 + 𝐴4
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Where, 

 

𝑏1 = 𝐴2 + 𝐴3∆𝛼 

 

𝑏2 = 𝐴1 − 2𝐺1∆𝛼 

 

ω =
2𝐺∆𝛼

‖𝒔𝒆𝒇𝒇,𝒕𝒓𝒊𝒂𝒍
𝒕+𝟏‖

 

 

2.9 Stability Criteria and State Determination 
 

2.9.1 Stability Criteria 
 

 

The two-field mixed based formulation requires both displacement and 

force shape functions. However, the order of displacement (𝑛𝑑) and force 

(𝑛𝑓) shape functions are interconnected through the compatibility and 

constitutive relations. Proper care should be taken to choose the order and 

continuity of both shape functions, otherwise non-meaningful results will 

be produced as observed by Zienkiewicz et al. (1989). According to De 

Veubeke’s principle of limitation (1965), the order of stress quantity should 

be less than that of strain quantity to maintain the stability of the algorithm.  
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For flexure critical mixed element formulation, constant axial force 

distribution along the length of the element without the presence of axially 

distributed loads, require a linear distribution of axial displacement. 

Whereas, the linear moment field along the length of the element requires a 

linear curvature field which in turn requires cubic distribution of the 

transverse displacement field along the length of the element. Therefore the 

following relation can be written for flexure critical element as proposed by 

Ayoub (1999). 

 

For axial field, 

 

𝑛𝑓 = 𝑛𝑑 − 1           (70) 

 

For moment field, 

 

𝑛𝑓 = 𝑛𝑑 − 2              (71) 

 

Using Hermitian polynomial shape function for vertical displacement field, 

two nodes beam elements will be sufficient to satisfy the principle of 

limitation stability criteria for flexure critical condition. 
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For shear critical mixed element formulation, constant axial force 

distribution along the length of the element without the presence of axially 

distributed loads, require a linear distribution of axial displacements. 

Whereas, linear moment field along the length of the element requires a 

linear curvature field which in turn requires a quadratic distribution of 

rotation field along the length of the element. Whereas, constant shear force 

distribution along the length of the element require a cubic transverse 

displacement field along the length of the element to match the same order 

of the rotation field. Therefore the following relations are proposed for 

newly developed shear critical mixed element: 

 

For axial field, 

 

𝑛𝑓 = 𝑛𝑑 − 1              (72) 

 

For moment field, 

 

𝑛𝑓 = 𝑛𝑑 − 1                 (73) 

 

For shear field, 

 

𝑛𝑓 = 𝑛𝑑 − 3         (74) 
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Using quadratic polynomial shape functions for the rotation field, two 

nodes beam element will not be sufficient to satisfy the principle of 

limitation stability criteria for shear critical condition. Therefore, one 

additional middle degree of freedom for the rotation field is a must for 

shear critical two-field mixed beam element which will get statically 

condensed out at the element level before the assembling process. 

2.9.2 State Determination 
 

 

A step by step summary of the state determination algorithm is presented 

below for a single element. A more detailed explanation can be found in 

Ayoub (1999). The summary focuses on a single global iteration 𝑖 at the 

structural degree of freedoms through the Newton-Raphson method with 

applied load counter 𝑘. 

 

Step 1: Determine the incremental structural nodal displacement and its 

update with respect to the global axes of reference by the solver 

 

∆𝑼𝑖+1 = [𝑲𝑖]
−1

(𝑷𝑘+1 − 𝑷𝑅
𝑖 ) (By the solver) 

 

Where 
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𝑷𝑘+1 = 𝑷𝑘 + ∆𝑷𝑘+1 (Update of applied load vector) 

 

𝑼𝑖+1 = 𝑼𝑖 + ∆𝑼𝑖+1 (Update of global nodal displacement vector) 

 

Step 2: Determine the incremental element nodal deformation and its 

update with respect to the basic axes of reference with the help of nodal 

compatibility and extraction of rigid body modes 

 

∆𝒖𝑰𝑱𝒆𝒍𝒆

𝒊+𝟏 = 𝑨𝑰𝑱∆𝑼𝑖+1  (By the solver) 

 

∆𝒗𝑖+1 = 𝒂𝒄∆𝒖𝑰𝑱𝒆𝒍𝒆

𝒊+𝟏
  (By Element Subroutine) 

 

𝒗𝑖+1 = 𝒗𝑖 + ∆𝒗𝑖+1  (Update of element nodal deformation vector) 

 

Step 3: Determine the incremental element nodal force and its update with 

respect to the basic axes of reference for a given element nodal deformation 

vector which remains constant for element iteration loop counter 𝑗. 

 

∆𝒒𝑗 = 𝒌𝒆𝒍𝒆
𝒋−𝟏

(𝑮∆𝒗𝑖+1 − 𝒖𝑟,𝑗−1) 

 

𝒒𝑗+1 = 𝒒𝑗 + ∆𝒒𝑗   (Update of element nodal force vector) 
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Step 4: Determine the incremental section deformation and its update with 

respect to the basic axes of reference for a given element nodal force 

vector. 

 

∆𝒅𝑗 = [𝒌𝒔𝒆𝒄
𝒋−𝟏

]
−𝟏

(𝒃∆𝒒𝑗) 

 

𝒅𝑗+1 = 𝒅𝑗 + ∆𝒅𝑗   (Update of section deformation vector) 

 

𝒒𝒔𝒆𝒄
𝑗+1 = 𝒒𝒔𝒆𝒄

𝑗 + (𝒃∆𝒒𝑗)  (Update of section force vector) 

 

Step 5: Determine the section tangent stiffness (𝒌𝒔𝒆𝒄
𝒋+𝟏

) and resistance vector 

(𝒑𝒔𝒆𝒄
𝒋+𝟏

) for a given section deformation vector with mid-point integration 

rule and material state determination as described in Section 2.8. 

 

Step 6: Determine the element residual deformation and flexibility matrix 

and update the element nodal forces with updated section deformation and 

forces for the next element iteration until the norm of element nodal energy 

becomes less than the specified tolerance value to dissipate the element 

residual deformation. 

 

𝒇𝒆𝒍𝒆
𝒋+𝟏

= ∑𝒃𝑻 [𝒌𝒔𝒆𝒄
𝒋+𝟏

]
−𝟏

𝒃 
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𝒖𝑟,𝑗+1 = 𝒖𝑟,𝑗 + ∑𝒃𝑻 [𝒌𝒔𝒆𝒄
𝒋+𝟏

]
−𝟏

(𝒒𝒔𝒆𝒄
𝑗+1 − 𝒑𝒔𝒆𝒄

𝒋+𝟏
)(Update of element nodal 

residual deformation vector) 

 

𝒒𝑗+2 = 𝒒𝑗+1 − [𝒇𝒆𝒍𝒆
𝒋+𝟏

]
−1

𝒖𝑟,𝑗+1 

 

𝒅𝑗+2 = 𝒅𝑗+1 + [𝒌𝒔𝒆𝒄
𝒋+𝟏

]
−𝟏

(𝒒𝒔𝒆𝒄
𝑗+1 − 𝒑𝒔𝒆𝒄

𝒋+𝟏
) − [𝒌𝒔𝒆𝒄

𝒋+𝟏
]
−𝟏

(𝒃[𝒇𝒆𝒍𝒆
𝒋+𝟏

]
−1

𝒖𝑟,𝑗+1) 

 

𝒒𝒔𝒆𝒄
𝑗+2 = 𝒒𝒔𝒆𝒄

𝑗+1 − (𝒃[𝒇𝒆𝒍𝒆
𝒋+𝟏

]
−1

𝒖𝑟,𝑗+1) 

 

Step 7: Determine the element stiffness matrix and resistance vector in 

iteration counter 𝑖 for the given nodal element deformation upon the 

convergence of element compatibility at the basic frame of reference. 

 

𝑲𝒆𝒍𝒆
𝒊+𝟏 = 𝑮𝑻[𝒇𝒆𝒍𝒆

𝒋+𝟏
]
−1

𝑮 

 

𝑸𝒆𝒍𝒆
𝒊+𝟏 = 𝑮𝑻𝒒𝒆𝒍𝒆

𝒊+𝟏 

 

Step 8: Determine the element stiffness matrix and resistance vector in 

iteration counter 𝑖 at the global frame of reference. 
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𝑲𝒆𝒍𝒆,𝒈𝒍𝒐
𝒊+𝟏 = 𝒂𝒄

𝑻𝑲𝒆𝒍𝒆
𝒊+𝟏𝒂𝒄 

 

𝑸𝒆𝒍𝒆,𝒈𝒍𝒐
𝒊+𝟏 = 𝒂𝒄

𝑻𝑸𝒆𝒍𝒆
𝒊+𝟏 

 

2.10 Implementation 
 

 

The element subroutines are coded in FORTRAN 90 programming 

language. FEAP Pv (Taylor, 1989) has been used as global solver for finite 

element solution. The element formulation needs three frame of reference 

i.e. global frame of reference for element nodal degrees of freedom with 

rigid body modes, basic frame of reference for element nodal deformation 

without rigid body modes and basic frame of reference for element nodal 

forces. For a given set of element nodal displacement degree of freedoms 

by the solver, element state determination process becomes responsible to 

transfer the calculated consistent resistance and stiffness matrix at each 

frame of reference considering equilibrium, compatibility and multi-axial 

constitutive models of materials to the solver. Solver iteratively determines 

the converged value of element nodal displacement degree of freedoms 

after assembling the various elements information by following principle of 

potential energy. Required response variables which are stored in history 

variables in element subroutines, have been reported in the following 

chapters. 
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Chapter 3 Correlation Studies – Shear Critical 

RC and Steel Components 
 

3.1 Overview 
 

 

This chapter presents several correlation studies of the newly developed 

frame element based on two-filed mixed formulations with the 

experimental results of shear critical reinforced concrete and steel members 

under monotonic and cyclic loading conditions. 

 

The correlation studies starts with reinforced concrete beams under 

monotonic loading condition followed by reinforced concrete columns and 

walls under cyclic loading conditions. At the end, correlations studies 

extended to steel shear links under monotonic and cyclic loading conditions 

to demonstrate the capability of the element formulation with implemented 

multi-axial material models. 

 

3.2 RC Beams 
 

3.2.1 Beams by Vecchio and Shim (2004) 

 
Vecchio et al. (2004) performed tests on a series of 12 reinforced concrete 

beams under three point monotonic loading conditions to reproduce the test 

results of similar beam specimens tested by Bresler et al. (1963). The effect 
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of span to depth ratio and reinforcement details on the load-deformation 

response, load capacity and failure mode have been investigated. Three 

types of failure modes have been observed i.e. diagonal-tension, shear-

compression and flexure-compression. Out of these 12 specimens, three 

specimens A1, A2 and A3 (Figure 3-1) are chosen for the correlation 

studies. Specimens A1 and A2 which have shear span to depth ratio 

(1800/552=3.3) and (2285/552=4.1) respectively failed in a shear-

compression mode whereas specimen A3which has shear span to depth 

ratio (3200/552=5.8) failed in a flexure-compression mode. 

 

Figure 3-1. Geometry of A1, A2 and A3 beams 

 

The cross-section details of these three specimens are shown in Figure 3-2. 

All the specimens have same width and depth i.e. 305 mm and 552 mm 

respectively. 



128 

 

 

 

 

 

Figure 3-2. Cross-sections of A1, A2 and A3 beams 

 

The tension longitudinal reinforcements M25 and M30 have cross-sectional 

areas of 500 mm2 and 700 mm2 with yield strengths of 440 MPa and 436 

MPa respectively. Whereas compression longitudinal reinforcements M10 

has a cross-sectional area of 100 mm2 with yield strength of 315 MPa. Two 

types of shear reinforcement are used i.e. D4 and D5 which have yield 

strength of 600 MPa with cross-sectional areas of 25.7 mm2 and 32.2 mm2 

respectively. The spacing of transverse reinforcement along the length of 

the beams A1 and A2 is 210 mm, whereas for beam A3 it is 168 mm. The 

concrete compressive strength of beams A1, A2 and A3 are 22.6 MPa, 25.9 

MPa and 43.5 MPa respectively. 

 

552 

mm 

305 

mm 
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For three point loading conditions, two beam elements are used to model 

the entire beam specimen with 5 section integration points in each element. 

Figures 3-3, 3-4 and 3-5 compare the load versus mid-span deflection 

response of the models using the proposed beam element with the 

experimental results of beams A1, A2 and A3respectively. 

 

 

Figure 3-3. Load-Deflection Response of Beam A1 
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Figure 3-4. Load-Deflection Response of Beam A2 

 

 

Figure 3-5. Load-Deflection Response of Beam A3 

 

From the above plots, it can be observed that the proposed element 

reasonably reproduce the overall experimentally observed load-deflection 

response. However, it has produced a stiffer response at the pre-peak shear 

strength; whereas, the ultimate shear resistance and shear deformation 

capacity have been captured well. It is to be noted that with a higher shear 

span to depth ratio, the shear resistance capacity gets decreased but the 

shear deformation capacity substantially gets increased. 
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Figure 3-6. Effect of Integration Points on Load-Deflection Response of 

Beam A1 

 

 

 

Figure 3-7. Variation of Shear Deformation along length of Beam A1 
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Figure 3-8. Variation of Shear Force along length of Beam A1 

 

 

 

Figure 3-9. Variation of Bending Moment along length of Beam A1 
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Figure 3-10. Variation of Curvature along length of Beam A1 

 

 

 

Figure 3-11. Principle Compressive Strain- Load Response at Loading 

Point of Beam A1 
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Figure 3-12. Axial Strain- Load Response at Loading Point of Beam A1 

 

 

 

Figure 3-13. Effect of Integration Points on Load-Deflection Response of 

Beam A2 
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Figure 3-14. Variation of Shear Deformation along length of Beam A2 

 

 

 

Figure 3-15. Variation of Shear Force along length of Beam A2 
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Figure 3-16. Variation of Bending Moment along length of Beam A2 

 

 

 

Figure 3-17. Variation of Curvature along length of Beam A2 
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Figure 3-18. Principle Compressive Strain- Load Response at Loading 

Point of Beam A2 

 

 

 

Figure 3-19. Axial Strain- Load Response at Loading Point of Beam A2 
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Figure 3-20. Effect of Integration Points on Load-Deflection Response of 

Beam A3 

 

 

 

Figure 3-21. Variation of Shear Deformation along length of Beam A3 
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Figure 3-22. Variation of Shear Force along length of Beam A3 

 

 

 

Figure 3-23. Variation of Bending Moment along length of Beam A3 
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Figure 3-24. Variation of Curvature along length of Beam A3 

 

 

 

Figure 3-25. Principle Compressive Strain- Load Response at Loading 

Point of Beam A3 
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Figure 3-26. Axial Strain- Load Response at Loading Point of Beam A3 
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the load point due to flexure-shear interaction has been reported. However, 

variation of shear force is constant along the half span of the beam as can 

be observed in the Figures 3-10, 3-17 and 3-24 for Beam A1, A2 and A3 

respectively. 

 

Figures 3-9, 3-16, and 3-23 show the variation of bending moment along 

the length of Beam A1, A2 and A3 respectively. It can be noted that in both 

elastic and inelastic state of material, variation of moment is linear as 

expected. However, in elastic state of material, variation of curvature is 

linear while in inelastic state of material, nonlinear variation of curvature 

near the load point due to flexure-shear interaction has been reported in the 

Figures 3-10, 3-17 and 3-24 for Beam A1, A2 and A3 respectively. It can 

also be noted that accurate variation of curvature in inelastic state of 

material has not been produced by 3 no of integration points. Moreover, 

both 5 and 7 no of integration points have produced identical curvature 

variation in both elastic and inelastic state of material. 

 

Figures 3-11, 3-18, and 3-25 show the principle compressive strain-loading 

response of top and middle concrete fibres at the loading point of Beam 

A1, A2 and A3 respectively. It can be noted that for all the beams top 

concrete fibre reaches substantial amount of compressive strain. However, 

middle concrete fibre of beam A3 has produced very lesser amount of 
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compressive strain compared to its counterpart i.e. beam A1 and A2. This 

signifies that beam A1 and A2 fails in shear compression mode while beam 

A3 fails in flexure compression mode as observed in the experiments. This 

can be further substantiated from the Figures 3-12 and 3-19 that the bottom 

tensile reinforcement strain remains constant at the later stage of loading 

for beam A1 and A2, which signifies that input energy getting dissipated by 

the internal shear energy in the shear compression zone and flexural energy 

generated from the tensile rebar get ceased. However, for beam A3 from 

Figure 3-26, it can be observed that tensile strain gets increased in the later 

stage of loading as it fails in flexure mode. It should also be noted that in 

all the beams the compression rebar has produced comparable amount of 

strain with that of top compressive concrete fibre to satisfy the 

compatibility condition. 

 

These observations can conclude that the proposed beam element based on 

mixed formulation can reasonable reproduce the global and local behaviour 

along with failure modes observed in the experiments for both flexure and 

shear critical members. 

3.3 RC Columns 
  

3.3.1 Columns by Xiao, Priestley and Seible (1993) 
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Xiao et al. (1993) conducted tests on a series of three reinforced concrete 

columns R1, R3 and R5 (Figure 3-27) under constant axial compressive 

loading of 507.1 kN with increasing amplitude of lateral displacement 

cycles at the columns top end. The columns were fixed at both ends and the 

lateral loading displaced the columns in a double bending curvature mode.   

 

 

 

Figure 3-27. Geometry of RC Columns R1, R3 and R5 
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The cross-section details of these three specimens are shown in Figure 3-

28. All the specimens have the same width and depth i.e. 406 mm and 610 

mm respectively. 

 

 

Figure 3-28. Cross-sections of R1, R3 and R5 Columns 

 

22 longitudinal reinforcements of diameter 19.05 mm are uniformly spaced 

along the perimeter of the columns. Rectangular hoops of diameter 6.35 

mm are placed at a spacing of 127 mm along the length of the columns. 

Concrete compressive strengths of columns R1, R3 and R5 are 37.9 MPa, 

34.1 MPa and 32.8 MPa respectively. Yield strengths of longitudinal and 

transverse reinforcements are 317.2 MPa, 469.5 MPa, 469.5 MPa and 

360.6 MPa, 324.0 MPa, 324.0 MPa for columns R1, R3 and R5 

respectively. For all columns, peak compressive strain and strain at 

crushing of concrete material has been considered as 0.002 and 0.02 

respectively. The tensile strength of concrete has been taken as 0.33*(𝑓𝑐́ )0.5. 

Unloading stiffness for concrete material is considered as 0.01. 
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One element has been used to model the entire column specimen with 5 

section integration points. Figures 3-29, 3-30 and 3-31 compare the lateral 

load versus top end deflection response of the models using the proposed 

beam element with the experimental results of columns R1, R3 and R5 

respectively. 

 

 

Figure 3-29. Lateral Load-Deflection Response of Column R1 
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Figure 3-30. Lateral Load-Deflection Response of Column R3 

 

 

Figure 3-31. Lateral Load-Deflection Response of Column R5 
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From the above plots, it can be observed that the proposed element 

reasonably reproduces the overall experimentally observed load-deflection 

response. However, it has produced a stiffer response at the pre-peak shear 

strength. Whereas, hysteretic energy and shear deformation capacity have 

been captured reasonably well for columns R1 and R3, however some 

divergence in results can be observed for column R5. It is to be noted that 

the proposed element does not include large displacement effects, bar 

buckling and fracture, bond failure and spalling of cover concrete. These 

inelastic actions significantly influence energy dissipation characteristics 

and shear strength degradation. 

 

 

Figure 3-32. Lateral Load-Shear Deformation Response of Column R1 
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Figure 3-33. Variation of Shear Deformation along length of Column R1 

 

 

 

Figure 3-34. Variation of Shear Force along length of Column R1 
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Figure 3-35. Lateral Load-Curvature Response of Column R1 

 

 

 

Figure 3-36. Variation of Curvature along length of Column R1 
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Figure 3-37. Variation of Bending Moment along length of Column R1 

 

 

 

Figure 3-38. Principle Compressive Strain – Loading Response of concrete 
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Figure 3-39. Axial Strain – Loading Response of longitudinal Rebar of 

Column R1 

 

 

 

Figure 3-40. Lateral Load-Shear Deformation Response of Column R3 
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Figure 3-41. Loading-Axial Strain Response of Stirrup of Column R3 at 

Base Section 

 

 

 

Figure 3-42. Loading-Principle Compressive Strain Response of Concrete 

Fibre of Column R3 at Base Section 
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Figure 3-43. Loading-Axial Strain Response of longitudinal Rebar of 

Column R3 

 

 

 

Figure 3-44. Loading-Principle Tensile Strain Response of Concrete Fibre 

of Column R3 
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Figure 3-45. Lateral Load-Shear Deformation Response of Column R5 

 

 

 

Figure 3-46. Lateral Load-Curvature Response of Column R5 

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

A
p

p
lie

d
 L

o
ad

in
g 

(k
N

)

Shear Deformation

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05

A
p

p
lie

d
 L

o
ad

in
g 

(k
N

)

Curveture (1/m)



156 

 

 

Figure 3-47. Lateral Load-Displacement Response of Column R5 

 

 

 

Figure 3-48. Effect of Number of Elements on Lateral Load-Displacement 

Response of Column R1 
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Figure 3-49. Effect of Number of Elements on Lateral Load-Displacement 

Response of Column R3 

 

 

 

Figure 3-50. Loading-Principle Compressive Strain Response of Concrete 

Fibre of Column R5 
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Figure 3-51. Loading-Axial Strain Response of Stirrup of Column R5 at 

Base Section 

 

 

 

Figure 3-52. Loading-Axial Strain Response of longitudinal Rebar of 

Column R5 
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Figure 3-53. Loading-Principle Tensile Strain Response of Concrete Fibre 

of Column R5 
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at both ends due to flexure-shear interaction at different loading stages. 

Figure 3-35 and 3-46 show the load-curvature response of columns R1 and 

R5. It can be observed that at the later stage of loading curvature gets 

reduced for column R5 compared to that of R1. This is because of two 

reasons i.e. the first one is due to reduced moment capacity at the later 

stage of loading and the second reason is that flexural stiffness does not get 

reduced or gets ceased as shear deformation becomes fully prominent at the 

later stage of loading. This signifies that proposed mixed formulation is 

capable of reproducing flexure (R1) and shear (R5) failure from the section 

level information also. 

 

Figure 3-47 shows the need of having mixed shear element. Mixed flexure 

element overestimates the shear capacity and stiffness. Figure 3-48 and 3-

49 show the effect of number of elements on load-deflection response. It 

can be observed that larger number of elements produce lesser shear 

capacity at the later stage of loading. Future work is needed to fix the issue 

of mesh objectivity. 

 

From Figures 3-32 and 3-42 show the principle compressive strain in the 

leftmost concrete fibre for columns R1 and R3. It can be observed that for 

both columns compressive strain reaches substantial amount at the later 

stage of loading which indicates huge loss of compressive strength. Also 
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from Figure 3-33 the axial strain in vertical reinforcement also reaches 

substantial amount which indicates that the failure in column R1 governs 

by the flexural mode. However, for column R3 stirrup strain (Figure 3-41) 

and tensile strain (Figure 3-44) in middle concrete fibre reaches substantial 

amount at the later stage of loading indicates the behaviour of column R3 

gets dominated by the shear failure mode. However, unlike columns R1 

and R3, for column R5 the principle compressive strain (Figure 3-50) in the 

leftmost concrete fibre is substantially less while stirrup strain (Figure 3-

51) and tensile strain (Figure 3-53) in the middle concrete fibre are huge 

which indicates that the failure mode gets controlled by shear from the 

early stage of loading. As a result, expected pinching behaviour is 

predominant for R5 due to incremental loss of shear stiffness from the early 

stage of loading. This shear controlled phenomenon for column R5 from 

the initial stage loading can also be supported from Figure 3-52 that under 

positive loading excursion the leftmost vertical rebar reaches lesser amount 

of compressive strain compared to its counterparts R1 (Figure 3-39) and R3 

(Figure 3-43). Largest compressive strain (Figure 3-39) in left vertical rebar 

should occur for R1 as its failure is governed by flexure mode. For R3, 

failure mode is governed by flexure-shear which will induce lesser amount 

of compressive strain (Figure 3-43) in the leftmost vertical rebar. Also, 

after few cycles of loading, leftmost rebar remains in tensile strain zone 

even under constant compressive loading which signifies that the unloading 
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of compressive strain in the rebar happens to satisfy the equilibrium, which 

is a typical phenomenon for failure almost completely dominated by the 

shear deformation. 

3.3.2 Column by Arakawa, Arai and Mizoguchi (1989) 

 

Arakawa et al. (1989) performed cyclic tests of reinforced concrete 

columns under constant axial compressive loading of 476 kN with 

increasing amplitude of lateral displacement cycles at the columns top end. 

The specimen OA5 failed in a shear mode. The specimen has width and 

depth both of 180 mm and length of 225 mm.8 longitudinal reinforcements 

of diameter 12.7 mm are uniformly spaced along the perimeter of the 

columns. Square hoops of diameter 4 mm are placed at a spacing of 64.3 

mm along the length of the columns. The concrete compressive strength of 

the column is 33 MPa. Yield strengths of longitudinal and transverse 

reinforcements are 340 MPa and 249 MPa respectively. 

 

One element has been used to model the entire column specimen with 5 

section integration points. Figure 3-54 compares the lateral load versus top 

end deflection response of the models using the proposed beam element 

with the experimental results. It can be observed from the plot that the 

proposed element can capture the loading capacity and pinching effect of 

hysteretic behaviour reasonably well. 



163 

 

 

Figure 3-54. Lateral Load-Deflection Response of column OA5 

 

 

Figure 3-55. Lateral Load-Deflection Response of column OA5 comparing 

with mixed flexure element 
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have mixed shear element which can reasonably reproduce experimentally 

observed load deformation response for shear critical members. 

3.3.3 Column by Imai and Yamamoto (1986) 
 

 

Imai et al. (1986) conducted cyclic test of reinforced concrete columns 

under constant axial compressive loading of 392 kN with increasing 

amplitude of lateral displacement cycles at the columns top end. The 

specimen has width and depth of 400 mm and 500 mm respectively. 14 

longitudinal reinforcements of diameter 22 mm are uniformly spaced along 

the perimeter of the columns. Rectangular hoops of diameter 9 mm are 

placed at a spacing of 100 mm along the length of the columns. The 

concrete compressive strength of the column is 27.1 MPa. Yield strengths 

of longitudinal and transverse reinforcements are 318 MPa and 336 MPa 

respectively. 

One element has been used to model the entire column specimen with 5 

section integration points. Figure 3-56 compares the lateral load versus top 

end deflection response of the models using the proposed beam element 

with the experimental results. It can be observed from the plot that the 

proposed element can capture the loading capacity and pinching effect of 

hysteretic behaviour reasonably well. However, some divergence in results 

can be observed in the last loading cycle as the shear resisting mechanisms 

invoked during this loading stage has not been included in the element 

model. 
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Figure 3-56. Lateral Load-Deflection Response  

 

 
 

Figure 3-57. Lateral Load-Deflection Response comparing with mixed 

flexure element 
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It can be observed from Figure 3-57 that we need to have mixed shear 

element which can reasonably reproduce experimentally observed load 

deformation response for shear critical members, while the mixed flexure 

element overestimates the shear capacity and stiffness both. 

 

3.4 RC Shear Walls 
 

3.4.1 Walls by Lefas, Kotsovos and Ambraseys (1990) 
 

 

Lefas et al. (1990) performed tests on a series of thirteen reinforced 

concrete walls with increasing amplitude of lateral displacement 

monotonically at the walls top end to investigate the effect of several 

parameters such as height to width ratio, the axial load, the concrete 

strength and the amount of web horizontal reinforcement on shear resisting 

mechanisms of RC rectangular walls. The walls were fixed at the bottom 

end and the lateral loading displaced the walls in a single bending curvature 

mode. Out of these specimens, two specimens SW21 and SW22 (Figure 3-

58) are chosen for correlation studies. Specimens SW21 and SW22 have 

shear span to depth ratio (1300/650=) 2. The thickness of the walls is 65 

mm. 

 

The vertical and horizontal reinforcement comprised high-tensile deformed 

steel bars of 8 mm and 6.25 mm diameter with yield strengths of 470 MPa 

and 520 MPa respectively. Wall boundary zones are confined with stirrups 
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of 4 mm mild steel bars with yield strength of 420 MPa. The spacing of 

horizontal and vertical rebar’s are 115 mm and 62 mm respectively. 

Concrete compressive strengths of walls SW21 and SW22 are 42.8 MPa 

and 50.6 MPa respectively. Wall SW21 was subjected to lateral load only 

whereas wall SW22 was subjected to constant axial compressive load of 

182 kN with a lateral load monotonically increasing to failure. 

 

 

 

Figure 3-58. Geometry of RC Walls SW21 and SW22 
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One element has been used to model the entire wall specimen with 5 

section integration points. Figures 3-59 and 3-60 compare the lateral load 

versus top end deflection response of the models using the proposed beam 

element with the experimental results of walls SW21 and SW22 

respectively. The effect of number of elements on load-deflection response 

has been also reported. 

 

 

Figure 3-59. Lateral Load-Deflection Response of Wall SW21 
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Figure 3-60. Lateral Load-Deflection Response of Wall SW22 

From the above plots, it can be observed that the proposed element 

reasonably reproduce the overall experimentally observed load-deflection 

response. Pre-peak stiffness has been overestimated. Shear deformation 

capacity have been captured well. However, it has produced a softer shear 

strength response slightly. It is to be noted that the axial compressive load 

has increased the shear resisting capacity with the decrement of shear 

deformation capacity. It is also to be noted that for wall SW21, number of 

elements does not affect the load-deflection response in the entire loading 

duration. However, for wall SW22, the number of elements has affected the 

response after peak region. This aspect of mesh objectivity shall be 

investigated in future in more details. It is also to be seen that mixed 

0

20

40

60

80

100

120

140

160

180

200

0 4 8 12 16 20 24 28

Sh
ea

r 
Fo

rc
e 

(k
N

)

Lateral Displacement (mm)

Experiment-Wall SW22

Mixed Formulation - 1
Element

Mixed Formulation - 2
Elements

Mixed Formulation - 4
Elements

Mixed Flexure Element



170 

 

flexure element produce higher shear capacity than that of observed in 

experiments as expected. 

 

 

Figure 3-61. Variation of Shear Deformation along length of Wall SW21 

 

 

Figure 3-62. Variation of Curvature along length of Wall SW21 
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Figure 3-63. Principle Compressive Strain – Loading Response of Concrete 

Fibre of Wall SW21 

 

 

Figure 3-64. Axial Strain – Loading Response of Rebar Fibre of Wall 

SW21 
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Figure 3-65. Principle Tensile Strain – Loading Response of Concrete Fibre 

of Wall SW21 

 

 

Figure 3-66. Principle Compressive Strain – Loading Response of Concrete 

Fibre of Wall SW22 
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Figure 3-67. Axial Strain – Loading Response of Rebar Fibre of Wall 

SW22 

 

 

Figure 3-68. Axial Strain – Loading Response of Rebar of Wall SW22 

 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 20 40 60 80 100 120 140 160

A
xi

al
 S

tr
ai

n

Applied Loading (kN)

Leftmost Tensile
Longitudinal Rebar - with
Axial Compressive Load

Leftmost Tensile
Longitudinal Rebar -
without Axial
Compressive Load

0

0.002

0.004

0.006

0.008

0.01

0.012

0 20 40 60 80 100 120 140 160

A
xi

al
 S

tr
ai

n

Applied Loading (kN)

Horizontal Tensile Rebar - Middle Fibre

Vertical Tensile Rebar - Middle Fibre



174 

 

 

Figure 3-69. Axial Strain – Loading Response of Rebar Comparison 

between the walls 
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amount of strain which indicates flexure-shear interaction for wall SW21. 

Also, from Figure 3-68, it can be seen that middle vertical rebar unloads the 

strain while the horizontal web rebar reaches substantial amount of tensile 

strain, which also indicates the flexure-shear interaction for wall SW22. It 

can be concluded that axial compressive loading has helped to initiate early 

shear mechanism in wall SW22 compared to that of wall SW21. 

 

3.4.2 Walls by Tran and Wallace (2015) 

 

Tran et al. (2015) performed tests on a series of five large-scale cantilever 

reinforced concrete walls under constant axial compressive load and 

reversed cyclic lateral loading to investigate the effect of different variables 

such as wall aspect ratio, axial stress and shear stress on the nonlinear 

cyclic response of moderate aspect ratio (1.5 to 2.5) reinforced concrete 

structural walls such as wall deformation capacity and failure modes. 

Primarily three failure modes have been observed i.e. diagonal tension, web 

crushing and buckling of boundary vertical reinforcement. Out of these 

specimens, two specimens RW-A15-P10-S78 and RW-A15-P2.5-S64 are 

chosen for correlation studies. These specimens have shear span to depth 

ratio (1830/1220=) 1.5. The thickness of the walls is 150 mm. 
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Both the vertical and horizontal reinforcement comprised steel bars of 9.5 

mm with yield strength of 443 MPa in the web region of both walls. The 

spacing of both horizontal and vertical rebars are 127 mm and 152 mm for 

walls RW-A15-P10-S78 and RW-A15-P2.5-S64respectively. In the 

boundary zones, two types of vertical rebars are used i.e. 4 rebars of 

diameters of 15.9 mm with yield strength of 474 MPa and 4 rebars of 

diameters of 19.1 mm with yield strength of 477 MPa for both walls. 

Boundary zones are confined with stirrups of 6.4 mm steel bars with yield 

strength of 423 MPa with a spacing of 50 mm along the height of both wall 

specimens. Concrete compressive strengths of walls RW-A15-P10-S78 and 

RW-A15-P2.5-S64 are 55.8 MPa and 57.5 MPa respectively. Constant 

axial compressive loads of 663.2 kN and 170.6 kN are used for walls RW-

A15-P10-S78 and RW-A15-P2.5-S64 respectively. 

 

One element has been used to model the entire wall specimen with 5 

section integration points. Figures 3-70 and 3-71 compare the lateral load 

versus top end deflection response of the models using the proposed beam 

element with the experimental results of walls RW-A15-P10-S78 and RW-

A15-P2.5-S64respectively. 
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Figure 3-70. Lateral Load-Deflection Response of Wall RW-A15-P10-S78 

 

 

Figure 3-71. Lateral Load-Deflection Response of Wall RW-A15-P2.5-S64 
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From the above plots, it can be observed that the proposed element 

reasonably reproduce the overall experimentally observed load-deflection 

response. Stiffness, shear resistance, shear deformation capacity along with 

hysteretic behaviour with pinching have been captured well. However, 

some disagreements of results at the last loading stage are observed due to 

the reasons explained earlier. It is to be noted that the lower axial 

compressive load and larger spacing of horizontal and vertical rebars have 

caused pinching behaviour in wall RW-A15-P2.5-S64 whereas lesser 

spacing of horizontal and vertical rebars with a higher axial load have 

helped wall RW-A15-P10-S78 to achieve a stable hysteretic energy. 

 

 

Figure 3-72. Lateral Load-Shear Deformation Response  
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Figure 3-73. Lateral Load-Curvature Response 

 

 

 

Figure 3-74. Vertical-Horizontal Displacement Response  
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Figure 3-75. Curvature-Horizontal Displacement Response 

 

 

 

Figure 3-76. Loading-Axial Strain Response of Rightmost vertical Rebar at 

base section 
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Figure 3-77. Loading-Axial Strain Response of Rightmost horizontal Rebar 

at base section 

 

 

 

Figure 3-78. Loading-Axial Strain Response of Rightmost horizontal Rebar 

at 316 mm above base section 
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Figure 3-79. Variation of Axial Strain of Rightmost horizontal Rebar along 

height of wall 

 

 

 

Figure 3-80. Variation of Accumulated Plastic Tensile Strain of Rightmost 

vertical Rebar along height of wall 
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Figure 3-81. Variation of Principle Strain of Rightmost Concrete Fibre 

along height of wall RW-A15-P10-S78 at positive excursion 

 

 

 

Figure 3-82. Variation of Principle Strain of Rightmost Concrete Fibre 

along height of wallRW-A15-P2.5-S64 at positive excursion 
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Figures 3-72 and 3-73 show the load-shear deformation and load-curvature 

response for both walls. It can be observed that for wall RW-A15-P2.5-S64 

residual shear deformation has been observed compared to that of wall 

RW-A15-P10-S78. Also the curvature response for wall RW-A15-P2.5-

S64 is lesser compared to its counterpart in each cycle of loading. These 

observations supports that failure mode due to shear mechanism gets 

started early in the wall RW-A15-P2.5-S64 compared to that of wall RW-

A15-P10-S78 which has forced to have pinching behaviour in wall RW-

A15-P2.5-S64 due to loss of incremental shear stiffness. This can again be 

supported from the Figure 3-75 that curvature response remain almost 

constant from the early stage of loading for the wall RW-A15-P2.5-S64 

compared to that of wall RW-A15-P10-S78 where curvature response has a 

slope till the last stage of loading. This phenomenon can also be 

substantiated from the Figure 3-74 where it can be observed that vertical 

displacement for wall RW-A15-P2.5-S64 is larger in each cycle of loading 

than that of wall RW-A15-P10-S78. Lesser axial compressive load in wall 

RW-A15-P2.5-S64 has aggravated the loss of shear stiffness resulting in 

pinching behaviour. As a result, more accumulated plastic axial 

deformation occurs in each cycle of loading, which results in more vertical 

displacement in wall RW-A15-P2.5-S64 compared to that of wall RW-

A15-P10-S78.  
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From Figure 3-76, it can be observed that under positive loading excursion, 

the rightmost vertical rebar reaches substantial amount of compressive 

strain for wall RW-A15-P10-S78. However, for wall RW-A15-P2.5-S64 

the induced compressive strain is very less in early stage of loading cycle 

compared to its counterpart. Moreover, in the later stage of loading cycle, 

the strain remain in tensile regime signifies that compressive strain in 

vertical rebar unloads to satisfy the equilibrium. This means that external 

incremental input energy is getting dissipated almost completely by the 

incremental shear energy only for wall RW-A15-P2.5-S64. It can also be 

observed from Figures 3-77 and 3-78 that induced axial strain in the 

horizontal rebar at the base and second section from the base is larger for 

wall RW-A15-P2.5-S64 compared to that of wall RW-A15-P10-S78. It 

means that shear energy becoming responsible to resist the external input 

energy. This information along with the response in the Figure 3-79, will 

also help to identify the shear localization zone in the walls particularly 

when the horizontal rebar exceeds the yield strain indicating the failure 

controlled by shear mode. From Figure 3-79, it can also be reported that 

shear deformation gets localized at 316 mm from the base section for wall 

RW-A15-P10-S78. However, for wall RW-A15-P2.5-S64, shear 

deformation gets concentrated at the base section. As a result, for wall RW-

A15-P10-S78, localized crushing and cracking will happen at 316mm from 

the base section. On the above, due to having higher axial compressive 
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loading out of plane bar bucking becomes prominent. However, for wall 

RW-A15-P2.5-S64, concrete will remain intact at 316mm from the base 

section and also due to having lesser axial compressive loading, the 

probability of out of plane bar buckling becomes less. This phenomenon 

can also be supported from the Figure 3-80 where it can be observed that 

accumulated plastic tensile strain responsible for initiation of buckling, is 

larger for wall RW-A15-P2.5-S64 in each drift level compared to that of 

wall RW-A15-P10-S78. Initiation of in plane buckling becomes prominent 

for this wall RW-A15-P2.5-S64 due to the concentration of shear 

mechanism at the base section along with lesser compressive loading and 

accumulated plastic tensile strain.  

 

From Figures 3-81 and 3-82, it can be observed that the principle 

compressive strain in the rightmost concrete fibre at the base section for 

wall RW-A15-P2.5-S64 is substantially lesser compared to that of wall 

RW-A15-P10-S78. This is because the wall RW-A15-P2.5-S64 is getting 

subjected to 4 time lesser axial compressive loading. This means that 

concrete crushing is happening earlier for wall RW-A15-P10-S78 at the 

boundary zone compared to that of wall RW-A15-P2.5-S64. As a result, 

initiation of out of plane buckling becomes easier for wall RW-A15-P10-

S78due to higher axial compressive loading. However, for wall RW-A15-
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P2.5-S64, concrete crushing gets delayed and in plane buckling of vertical 

rod starts control the failure mode. 

3.5 Steel Shear Beams 
 

3.5.1 Shear Link by Hjelmstad and Popov (1983) – Monotonic 

Loading 
 

 

Hjelmstadet al. (1983) has studied the inelastic seismic behaviour of shear 

links which transfers the forces among connected members by going 

through flexure-shear deformation in eccentric bracing frame system. 

Therefore, these short beams are designed to dissipate a large amount of 

input energy. It is imperative to develop elements which can simulate the 

inelastic behaviour of shear links as it controls the global behaviour of the 

whole system. Specimen 4 is adopted for the correlation studies. It is fixed 

at both ends and is subjected to a vertical displacement at the right support 

monotonically. The length of the short beam is 28 inch. The cross-section 

details are shown in Figure 3-83.  
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Figure 3-83. Cross-sections of Specimen 4 

 

Both multi-axial models of steel material i.e. J2 plasticity and Generalized 

plasticity models have been used in the analysis with yield strength of 40 

ksi. The Poisson ration used was 0.3. Isotropic hardening ratio of 0.004 and 

zero kinematic hardening has been considered.  

 

Timoshenko section kinematics produce a uniform shear stress along the 

section depth. Shear correction factor is needed to handle the discrepancy 

between the uniform shear stress condition and actual response. It depends 

on the loading condition, material and geometric properties, and boundary 

conditions. Higher order beam theory manages this limitation by 

introducing nonlinear variation of axial displacement in the vertical 

direction. In this study, a non-uniform shear strain distribution is 

introduced by following an interpolation function which is multiplied with 
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generalized shear deformation, as proposed by Saritas et al. (2009), has 

been adopted. 

 

∝ (𝑦) =
1

𝛽
[(1 + 2𝛼) − 4 (

𝑦

ℎ
)
2
]       (1) 

 

Where, 

 

𝛽 =
(1 + 2𝛼)2 −

2

3
(1 + 2𝛼) +

1

5
2

3
(1 + 3𝛼)

 

 

𝛼 =
2𝑏𝑡𝑓

ℎ𝑡𝑤
 

 

One element has been used to model the entire beam specimen with 5 

section integration points. Figure 3-84 compare the vertical load versus end 

deflection response of the models using the proposed beam element with 

the finite element model by plane stress elements performed by Saritas et 

al. (2009). 
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Figure 3-84. Monotonic Load-Deflection Response of Specimen 4 
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specimen 4 is chosen for the correlation studies because of its stable energy 

dissipation capacity and the delay in the onset of local buckling. The cross-

section details of specimen 4 are shown in Figure 3-83. Generalized 

plasticity model for steel material is adopted with isotropic hardening ratio 

of 0.0002 and kinematic hardening ratio of 0.004. The Young’s modulus, 

yield and ultimate strength are taken as 28300 ksi, 39.5 ksi, 60.1 ksi and 

28000 ksi, 35 ksi, 58.5 ksi for web and flange regions respectively.  

 

One element has been used to model the entire beam specimen with 5 

section integration points. Figure 3-85 compare the vertical load versus end 

deflection response of the models using the proposed beam element with 

the experimental results of specimen 4. 
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Figure 3-85. Cyclic Load-Deflection Response of Specimen 4 
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resistance, shear deformation capacity along with hysteretic energy 

dissipation capacity have been captured well. However, some deviations of 
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of specimen at the restraint locations. 
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Chapter 4 Shear Critical Composite Element – 

Displacement and Mixed Formulation 
 

4.1 Overview 
 

 

In this chapter, we are going to develop two new shear critical composite 

frame elements based on distributed inelasticity approach considering the 

partial interaction between the two mediums i.e. steel and concrete. Unlike 

other formulations available in the literature, these elements are completed 

in the sense of constitutive model of materials considering multi-axial 

coupling among various stress measures and shear deformation in both 

mediums. Experimentally it has been observed that the shear contribution 

of concrete layer is not negligible, however it contributes between 30% to 

60% of the total shear resisting force which drives to formulate a rational 

shear element for steel-concrete composite members considering the partial 

interaction due to the finite stiffness provided by the shear studs. In the 

following, we will first develop the shear critical displacement-based 

formulation and then the two-field mixed based formulation with the help 

of total potential energy and Hellinger-Reissner functional respectively. 

Currently the contribution of shear resistance from the concrete layer has 

not been considered in the design of steel-concrete composite members. 

Therefore, lots of experimental research work has been recently conducted 

to develop empirical design equations to include the shear contribution of 

concrete layers in various countries. These distributed inelasticity based 
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frame element formulations are essential to develop the inelastic analysis 

driven design process such as performance based design methodology for 

steel-concrete composite systems with partial interaction. 

 

The current research work aims to extend the two-filed mixed-based 

formulation by Ayoub et al. (2000) to account for shear critical composite 

members by implementing coupled multi-axial constitutive laws for 

materials, along with new stability criteria. To achieve this purpose, the 

described new shape function (Section 2.1) for transverse displacement 

varying with cubic function along the length of the element has been used 

in our research work. 

4.2 Element Kinematics 
 

The axis of the proposed composite frame element is a straight line joined 

by nodes I and J in the statically determinate basic reference system in 

which rigid body displacements are removed by choosing the simple 

supported boundary conditions as shown in Figure. 4-1. The frame element 

is composed of several sections along its axis. Every section is composed 

of several fibres which are identified by their position from the reference 

axis and individual cross-section area. 
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Figure 4-1. Basic reference system without rigid body modes 

 

The section displacement vector 𝒖(𝑥) collects the two axial translations 

𝑢𝑠(𝑥), 𝑢𝑐(𝑥) in X direction which are axial section displacement passing 

through the chosen reference axis in steel and concrete layers respectively 

and one translation 𝑣(𝑥) in Y direction and one rotation 𝜃𝑧(𝑥) about Z 

axis. 

 

𝒖(𝑥) =  [𝑢𝑠(𝑥)𝑢𝑐(𝑥)𝜃𝑧(𝑥)    𝑣(𝑥)]𝑇      (1) 

 

The element nodal displacement vector 𝒖𝑰𝑱 collects the nodal displacement 

with respect to global axes according to the section displacement vector in 

Equation (1). In the proposed composite frame element, an additional 

middle nodal with axial and rotational degrees of freedom is included, 

which will be statically condensed out at the element level before the 

assembling process: 

 

𝒖𝑰𝑱 =  [𝑢𝐼
𝑠 𝑢𝐼

𝑐𝑣𝐼𝜃𝑧𝐼     𝑢𝐽
𝑠 𝑢𝐽

𝑐𝑣𝐽𝜃𝑧𝐽    𝑢𝐾
𝑠  𝑢𝐾

𝑐 𝜃𝑧𝐾]
𝑇

    (2) 

I J

 

Y 

X 

L 
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The element deformation vector 𝒗collects the relative translation 𝑢 at nodes 

I, J and K in X direction, rotations 𝜃𝑧 at nodes I and J and middle node K 

with respect to the basic reference axes as shown in the Figure 4-2: 

  

𝒗 =  [𝑢𝑏𝐼
𝐶 𝑢𝑏𝐽

𝐶 𝑢𝑏𝐽
𝑆 𝜃𝑧𝐼𝜃𝑧𝐽𝑢𝑏𝐾

𝐶 𝑢𝑏𝐾
𝑆 𝜃𝑧𝐾]

𝑇
      (3) 

 

 

Figure 4-2. Element nodal deformations 

 

The relation between element nodal deformation 𝒗anddisplacements 𝒖𝑰𝑱can 

be uniquely determined by the compatibility matrix 𝒂𝒄with constant 

coefficients under linear geometry conditions where L is the undeformed 

length of the element: 

 

𝒗 = 𝒂𝒄𝒖𝑰𝑱          (4) 

 

Where, 

 

I J K 

𝜃𝑧𝐼 
𝜃𝑧𝐾  𝜃𝑧𝐽 

𝑢𝑏𝐼
𝐶  𝑢𝑏𝐽

𝐶  𝑢𝑏𝐾
𝐶  

𝑢𝑏𝐾
𝑆  𝑢𝑏𝐽

𝑆  
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𝒂𝒄 =

[
 
 
 
 
 
 
 
 
 
 0

1

𝐿
1 0 0 −

1

𝐿
0 0 0 0 0

−1 0 0 1 0 0 0 0 0 0 0
−1 0 0 0 1 0 0 0 0 0 0

0
1

𝐿
0 0 0 −

1

𝐿
1 0 0 0 0

−1 0 0 0 0 0 0 1 0 0 0
−1 0 0 0 0 0 0 0 1 0 0
−1 0 0 0 0 0 0 0 0 1 0

0
1

𝐿
0 0 0 −

1

𝐿
0 0 0 0 1]

 
 
 
 
 
 
 
 
 
 

 

4.3 Section Kinematics 
 

Under the assumption of a Timoshenko beam theory, the displacements 

𝒖𝑚(𝑥, 𝑦) of a material point 𝑚 with coordinate 𝑦 at a section with distance 

𝑥 from the origin of the reference frame can be represented with the cross-

section generalized displacements 𝒖(𝑥) as follows: 

 

𝑢𝑥
𝑚,𝑠(𝑥, 𝑦) = 𝑢𝑠(𝑥) − 𝑦𝜃𝑧(𝑥)       (5) 

 

𝑢𝑥
𝑚,𝑐(𝑥, 𝑦) = 𝑢𝑐(𝑥) − 𝑦𝜃𝑧(𝑥)       (6) 

 

𝑣𝑥
𝑚(𝑥, 𝑦) = 𝑣(𝑥)         (7) 

 

The material strain displacement vector 𝜺(𝑥, 𝑦)can be related with the 

material displacement vector 𝒖𝑚(𝑥, 𝑦) as follows: 

 



198 

 

𝜀𝑥𝑥
𝑠 =

𝜕𝑢𝑥
𝑚,𝑠(𝑥,𝑦)

𝜕𝑥
=

𝜕𝑢𝑠(𝑥)

𝜕𝑥
− 𝑦

𝜕𝜃𝑧(𝑥)

𝜕𝑥
      (8) 

 

𝜀𝑥𝑥
𝑐 =

𝜕𝑢𝑥
𝑚,𝑐(𝑥,𝑦)

𝜕𝑥
=

𝜕𝑢𝑐(𝑥)

𝜕𝑥
− 𝑦

𝜕𝜃𝑧(𝑥)

𝜕𝑥
      (9) 

 

𝜀𝑦𝑦 =
𝜕𝑣𝑥

𝑚(𝑥,𝑦)

𝜕𝑦
=

𝜕𝑣(𝑥)

𝜕𝑦
= 0       (10) 

 

2𝜀𝑥𝑦 =
𝜕𝑢𝑥

𝑚(𝑥,𝑦)

𝜕𝑦
+

𝜕𝑣𝑥
𝑚(𝑥,𝑦)

𝜕𝑥
= −𝜃𝑧(𝑥) +

𝜕𝑣(𝑥)

𝜕𝑥
            (11) 

 

By introducing the section deformation vector 𝒅(𝑥) which is a function of 

the section displacement vector𝒖(𝑥), we can write down the following 

equation with the help of section compatibility matrix 𝒂𝑠(𝑦): 

 

𝜺(𝑥, 𝑦) = 𝒂𝑠(𝑦)𝒅(𝑥)               (12) 

 

Where, 

𝒅(𝑥) = [
𝜕𝑢𝑠(𝑥)

𝜕𝑥

𝜕𝑢𝑐(𝑥)

𝜕𝑥

𝜕𝜃𝑧(𝑥)

𝜕𝑥
   (−𝜃𝑧(𝑥) +

𝜕𝑣(𝑥)

𝜕𝑥
) ]

𝑇

 

 

𝒂𝑠(𝑦) = [
1 0 −y 0

0 1 −y 0
0 0 0 1

] 
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4.4 Equilibrium 
 

The differential equilibrium equation of a segment of length 𝑑𝑥 of a 

composite element with partial interaction as shown in Figure.4-3 can be 

written down as follows: 

 

 

 

 

 

 

 

 

𝑑𝑥 

Figure 4-3. Section differential equilibrium 

 

 

𝑑𝑁𝑥
𝑠

𝑑𝑥
+ 𝜏𝑥

𝑏 = 0                 (13) 

 

𝑑𝑁𝑥
𝑐

𝑑𝑥
− 𝜏𝑥

𝑏 = 0                 (14) 

 

𝑑𝑀𝑥

𝑑𝑥
− 𝑉𝑥 − 𝐻𝜏𝑥

𝑏 = 0        (15) 

 

𝑁𝑥
𝑠 + 𝑑𝑁𝑥

𝑠 

𝑁𝑥
𝑐 𝑁𝑥

𝑐 + 𝑑𝑁𝑥
𝑐 

𝑀𝑥 
𝑀𝑥 + 𝑑𝑀𝑥 

𝑉𝑥 + 𝑑𝑉𝑥  

Concrete 

Steel 𝑁𝑥
𝑠 

𝜏𝑥
𝑏 H 

𝑉𝑥  
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𝑑𝑉𝑥

𝑑𝑥
= 0          (16) 

 

Where 𝑁𝑥
𝑠 , 𝑁𝑥

𝑐 , 𝑀𝑥, 𝑉𝑥 , 𝜏𝑥
𝑏  are the axial force in steel beam, axial force in 

concrete beam, bending moment, shear force and interface bond force per 

unit length respectively, and H is the distance between the centroids of steel 

and concrete beams. 

 

Writing the equilibrium equations in matrix form: 

 

𝑳𝑇𝑫(𝑥) − 𝑳𝑏
𝑇𝜏𝑥

𝑏 = 0              (17) 

 

Where 

 

𝑫(𝑥) = [𝑁𝑥
𝑠𝑁𝑥

𝑐𝑀𝑥𝑉𝑥]
𝑇 

 

𝑳𝑇 =  

[
 
 
 
 
 
 
 
 

d

dx
0 0 0

0
d

dx
0 0

0 0
d

dx
−1

0 0 0
d

dx ]
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𝑳𝑏
𝑇 = [

−1
1
H
0

] 

 

4.5 Compatibility 
 

The components of generalized section deformation vector 𝒅(𝑥) are the 

axial strain 𝜀0
𝑠  in steel, the axial strain 𝜀0

𝑐  in concrete, the curvature ∅𝑧 

about the 𝑧 axis and shear deformation 𝛾𝑦 in the 𝑦 direction respectively: 

 

𝒅(𝑥) = [𝜀0
𝑠𝜀0

𝑐∅𝑧𝛾𝑦]
𝑇

              (18) 

 

Where 

 

𝜀0
𝑠 = 

𝑑𝑢𝑠(𝑥)

𝑑𝑥
 

 

𝜀0
𝑐 = 

𝑑𝑢𝑐(𝑥)

𝑑𝑥
 

 

∅𝑧 =
𝑑𝜃𝑧(𝑥)

𝑑𝑥
 

 

𝛾𝑦 = −𝜃𝑧(𝑥) +
𝑑𝑣(𝑥)

𝑑𝑥
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The interface slip 𝑆(𝑥) between the steel beam and concrete slab has been 

determined as follows: 

 

𝑆(𝑥) = 𝑳𝑏𝒖(𝑥)         (19) 

 

Writing the compatibility equations in matrix form: 

 

𝑳𝒖(𝑥) − 𝒅(𝑥) = 0         (20) 

 

Where 

 

𝑳 =

[
 
 
 
 
 
 
 
 

d

dx
0 0 0

0
d

dx
0 0

0 0
d

dx
0

0 0 −1
d

dx]
 
 
 
 
 
 
 
 

 

 

𝑳𝑏 = [−1 1 H 0] 

 

4.6 Constitutive Law 
 

The section constitutive law is as follows. 
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𝑫(𝑥) = 𝑓𝑠𝑒𝑐𝒅(𝑥)         (21) 

 

Where 𝑓𝑠𝑒𝑐 is a nonlinear function that describes the section force-

deformation relation. The section force-deformation relation is obtained 

through fibre integration as described in Section 2.8. 

 

The bond constitutive law is defined as follows: 

 

𝜏𝑥
𝑏 = 𝑓𝑏𝑜𝑛𝑑𝑆(𝑥)         (22) 

 

Where 𝑓𝑏𝑜𝑛𝑑 is a nonlinear function that describes the bond stress-interface 

slip relation. For the bond-slip constitutive relations, the Eligehausen et al. 

(1983) law has been used. 

 

4.7 Variational Formulation 
 

4.7.1 Displacement-based Formulation 
 

 

Nodal displacements are considered as the primary unknowns in 

displacement based formulations (Zienkiewicz et al. (1989), Bathe (1996), 

and Crisfield (1991)). Therefore, element deformations are found from 

displacement interpolation functions. Cubic Hermitian interpolation 
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functions for transverse deformation fields produce a linear distribution of 

curvature along the length of the element. The number of finite elements 

per member is increased to simulate the nonlinear curvature fields. Element 

equilibrium is satisfied only in the variational weak sense. Therefore, the 

element internal forces calculated from the assumed displacement field do 

not satisfy nodal equilibrium. This also requires decreasing the mesh size 

by using more finite elements per member. The state determination process 

uses the strain-displacement relations in connection with displacement 

interpolation functions to obtain the section deformations that are 

compatible with the given nodal displacements. It is relatively 

straightforward to find the resisting forces and section stiffness matrix from 

the section deformations (section state determination). The integration of 

the section response over the element length gives the element resisting 

forces and stiffness matrix, thus completing the state determination process 

for the element (Izzuddin et al. (1993)). In the case of composite members, 

the differential axial movement between the steel and concrete media can 

be determined directly from the deformation fields. Therefore, the bond 

force can be calculated with the help of the constitutive relation defined for 

the interface. 

 

The principle of virtual displacements forms the principle of minimum 

potential energy that uses displacements as the only independent field. The 
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potential energy functional (∏ )𝑝  is written in terms of independent nodal 

displacement (u) field in the basic frame of reference which does not 

include rigid body motions as follows: 

 

∏ (𝒖)𝑝 =  ∫ 𝑊 (𝜺𝒖(𝑥, 𝑦)) 𝑑𝑣
𝑣

+ ∏ (𝒖(𝑥))𝑏 − ∏ (𝒖(𝑥))𝑒𝑥𝑡 − ∏ (𝒖)𝑏𝑐   (23) 

 

 

In Eq. (23), u (𝑥) is the section displacement which can be derived from 

nodal displacement u, W (𝜺) is the strain energy function of concrete beam 

and steel face plate and𝜺𝒖 denotes the strains derived from nodal 

displacements, (∏ )𝑏  is the strain energy function due to partial bond-slip 

between these two media, (∏ )𝑏𝑐  is the potential energy due to nodal 

boundary forces and (∏ )𝑒𝑥𝑡  is the potential energy of the external loading 

due to body and surface forces and it has the following form: 

 

∏ =𝑒𝑥𝑡 ∫ 𝒖(𝑥)𝑇𝒃𝒐 𝑑𝑣 + ∫ 𝒖(𝑥)𝑇
Γ𝑡𝑣

𝒕∗𝑑Γ      (24) 

 

In Eq. (24), 𝒃𝒐is the vector of body forces per unit volume and the 

components of the prescribed external forces per unit area of the boundary 

are denoted as𝒕∗. 

 

In this variational principle, strain-displacement relation 𝜺 = ∇𝑠𝒖(𝑥) on 𝑣, 

constitutive relation 𝝈 = 𝝈(𝜺)on 𝑣, and displacement boundary condition 

𝒖 =  𝒖∗ on Γ𝑢 where 𝒖∗is the imposed displacement, are satisfied in their 
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strong differential form. Whereas, equilibrium conditions 𝒅𝒊𝒗 𝝈 + 𝒃𝒐 = 𝟎 

on 𝑣 and traction boundary conditions 𝒕 =  𝒕∗ on Γ𝑡 are satisfied in their 

integral weak form where the traction 𝒕 =  𝝈 ∙ 𝒏isthe dot product of the 

stress tensor 𝝈 with the outward normal 𝒏 to the boundary. 

 

The domain of the body is denoted by 𝑣 in Eq. (23) and Eq. (24), while the 

traction and displacement boundaries are Γ𝑡 and Γ𝑢 respectively. It is 

assumed that the latter two boundaries are distinct, but the joint set of the 

two establishes the total boundary surface, i.e. Γ 𝜖 {Γ𝑢𝑈Γ𝑡}. 

 

The potential energy functional of Equation (23) can be written without 

body force and surface traction with section level variables in the following 

form: 

 

∏ (𝒖)𝑝 =  ∫ 𝒅𝑇(𝑥)𝑫(𝑥) 𝑑𝑥
𝐿

+ ∫ 𝑠𝑇(𝑥) 𝜏𝑥
𝑏(𝑥) 𝑑𝑥

𝐿
− 𝒖𝑇𝑷∗  (25) 

 

where 𝑷∗ is the applied nodal boundary forces. 

 

Transformation of this functional from the material level to the section 

level needs a compatibility condition through appropriate section 

kinematics. In this formulation, distributed inelasticity at the section level 

is considered through fibre discretization. Section resisting force and 



207 

 

stiffness are obtained from the integration of the fibre level variables. It is 

to be noted that by adopting a fibre model, coupling of axial, shear and 

bending response is a natural process. This is a significant advantage over 

section based models where coupling needs extra care through plasticity 

formulation.  

 

The variation of potential energy functional in Equation (25) can be written 

in the following form: 

 

𝛿 ∏ (𝒖)𝑝 = ∫ 𝛿𝒅𝑇(𝑥)𝑫(𝑥) 𝑑𝑥
𝐿

+ ∫ 𝛿𝑠𝑇(𝑥) 𝜏𝑥
𝑏(𝑥) 𝑑𝑥

𝐿
− 𝛿𝒖𝑇𝑷∗ (26) 

 

The solution of the variational in Equation (26) is non-linear under inelastic 

material conditions, so the problem is linearized about a state 𝒖𝑖 as follows: 

 

𝛿 ∏ (𝒖𝒊+𝟏)𝑝 =  𝛿 ∏ (𝒖𝒊)𝑝 + 
𝜕𝛿 ∏ (𝒖)𝑝

𝜕𝑢
|𝒖𝑖 ∆𝒖     (27)

    

Where ∆𝒖 is the incremental nodal displacement vector. 

 

At equilibrium, 

 

𝛿 ∏ (𝒖𝒊+𝟏)𝑝 = 0         (28) 
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From Equation (27) we get,  

 

𝛿 ∏ (𝒖𝒊)𝑝 + 
𝜕𝛿 ∏ (𝒖)𝑝

𝜕𝑢
|𝒖𝑖 ∆𝒖 = 0      (29)

     

Equation (29) can be written in the following expanded form: 

 

∫ 𝛿𝒅𝑇(𝑥)𝑫𝒊(𝑥) 𝑑𝑥
𝐿

+ ∫ 𝛿𝒔𝑇(𝑥) 𝜏𝑥
𝑏,𝑖(𝑥) 𝑑𝑥

𝐿
− 𝛿𝒖𝑇𝑷∗ +

 (∫ 𝛿𝒅𝑇(𝑥)
𝜕𝑫(𝑥)

𝜕𝒖
 𝑑𝑥

𝐿
+ ∫ 𝛿𝒔𝑇(𝑥)

𝝏𝜏𝑥
𝑏

𝝏𝒖
 𝑑𝑥

𝐿
− 𝛿𝒖𝑇 𝜕𝑃∗

𝜕𝑢
) ∆𝒖 = 0        (30) 

 

By using Equations (17), (19), (20) and (21) and assuming conservative 

applied load and from arbitrariness of 𝛿𝒖, Eq. (30) can be written in the 

following expanded form: 

 

(∫ 𝑩𝒔
𝑇(𝑥)𝑲𝒔(𝑥)𝑩𝒔(𝑥)𝑑𝑥

𝐿
+ ∫ 𝑩𝑏

𝑇(𝑥)𝑲𝒃(𝑥)𝑩𝒃(𝑥)  𝑑𝑥
𝐿

)∆𝒖 = 𝑷∗ −

 ∫ 𝑩𝒔
𝑇(𝑥)𝑫𝒊(𝑥) 𝑑𝑥

𝐿
− ∫ 𝑩𝒃

𝑇(𝑥) 𝜏𝑥
𝑏,𝑖(𝑥) 𝑑𝑥

𝐿
           (31) 

 

Where, 𝑩𝒔(𝑥) and 𝑩𝒃(𝑥) are the strain-displacement and slip-displacement 

matrix. 

 

Eq. (31) can be written in the following concise form: 
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(𝑲𝒄+𝒔 + 𝑲𝑩)∆𝒖 =  𝑷∗ − 𝑷𝒄+𝒔
𝒓 − 𝑷𝒃

𝒓       (32) 

 

𝑲∆𝒖 =  𝑷∗ − 𝑷𝒓         (33) 

 

where 𝑲is the composite element stiffness matrix which consists of 

combined concrete and steel beam stiffness 𝑲𝒄+𝒔and bond stiffness 𝑲𝑩 and 

𝑷𝒓is the composite element resistance matrix which consists of combined 

concrete and steel beam resistance𝑷𝒄+𝒔
𝒓 and bond resistance 𝑷𝒃

𝒓 .  

 

4.7.1.1 State Determination 

 

A step by step summary of the state determination algorithm is presented 

below for a single element. The summary focuses on a single global 

iteration 𝑖 at the structural degree of freedoms through the Newton-

Raphson method with applied load counter 𝑘. 

 

Step 1 to Step 2 is similar to the section 2.9.2. However, concerned 

matrixes should be based on this chapter. 

 

Step 3: Determine the incremental section deformation and slip and its 

update with respect to the basic axes of reference for a given element nodal 

deformation vector: 
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∆𝒅𝑖 = 𝑩𝒔(𝑥)∆𝒗𝑖+1 

 

∆𝒔𝑖 = 𝑩𝒃(𝑥)∆𝒗𝑖+1 

 

𝒅𝑖+1 = 𝒅𝑖 + ∆𝒅𝑖    (Update of section deformation 

vector) 

 

𝒔𝑖+1 = 𝒔𝑖 + ∆𝒔𝑖    (Update of slip) 

 

Step 4: Determine the section tangent stiffness (𝒌𝒔𝒆𝒄
𝒊+𝟏) and resistance vector 

(𝒑𝒔𝒆𝒄
𝒊+𝟏)  for a given section deformation vector with mid-point integration 

rule and material state determination as described in Section 2.8. Also, 

determine bond forces𝜏𝑥
𝑏,𝑖+1

and bond stiffness𝑲𝒃
𝒊+𝟏from the bond 

constitutive relations: 

 

Step 5: Determine the element stiffness matrix and resistance vector at the 

basic frame of reference: 

 

𝑲𝒆𝒍𝒆
𝒊+𝟏 = 𝑲𝒄+𝒔

𝒊+𝟏 + 𝑲𝑩
𝒊+𝟏 

 

𝑲𝒄+𝒔
𝒊+𝟏 = ∑𝑩𝒔

𝑻𝒌𝒔𝒆𝒄
𝒊+𝟏 𝑩𝒔 
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𝑲𝑩
𝒊+𝟏 = ∑𝑩𝒃

𝑻𝑲𝒃
𝒊+𝟏 𝑩𝒃 

 

𝑷𝒓,𝒊+𝟏 = 𝑷𝒄+𝒔
𝒓,𝒊+𝟏 + 𝑷𝒃

𝒓,𝒊+𝟏
 

 

𝑷𝒄+𝒔
𝒓,𝒊+𝟏 = ∑𝑩𝒔

𝑇𝒑𝒔𝒆𝒄
𝒊+𝟏 

 

𝑷𝒃
𝒓,𝒊+𝟏 = ∑𝑩𝒃

𝑇𝜏𝑥
𝑏,𝑖+1

 

 

Step 6: Determine the element stiffness matrix and resistance vector in 

iteration counter 𝑖 at the global frame of reference: 

 

𝑲𝒆𝒍𝒆,𝒈𝒍𝒐
𝒊+𝟏 = 𝒂𝒄

𝑻𝑲𝒆𝒍𝒆
𝒊+𝟏𝒂𝒄 

 

𝑸𝒆𝒍𝒆,𝒈𝒍𝒐
𝒊+𝟏 = 𝒂𝒄

𝑻𝑷𝒓,𝒊+𝟏 

 

 

4.7.2 Mixed-based Formulation 
 

 

The formulation of the composite beam element in this section uses 

independent generalized stress and displacement interpolation functions in 
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a two-field Hellinger-Reissner (HR) functional which is written in the basic 

frame of reference as follows: 

 

∏ (𝒖, 𝝈)𝐻𝑅 =  −∫ 𝑊 (𝝈(𝑥, 𝑦)) 𝑑𝑣
𝑣

+ ∫ 𝝈𝑇𝜺𝒖
𝑣

𝑑𝑣 + ∏ (𝒖(𝑥))𝑏 −

∏ (𝒖(𝑥))𝑒𝑥𝑡 − ∏ (𝒖)𝑏𝑐                  (34) 

 

where 𝑊(𝝈) is the complementary energy function. 

 

In the HR variational principle, strain-displacement relation 𝜺 = ∇𝑠𝒖(𝑥) 

on 𝑣 and displacement boundary condition 𝒖 =  𝒖∗ on Γ𝑢, are satisfied in 

their strong differential form. Whereas, equilibrium conditions 𝒅𝒊𝒗 𝝈 +

𝒃𝒐 = 𝟎 on 𝑣, constitutive relation 𝝈 = 𝝈(𝜺)on 𝑣 and traction boundary 

conditions 𝒕 =  𝒕∗ on Γ𝑡 are satisfied in their integral weak form. 

 

HR energy functional of Equation (34) can be written without body force 

and surface traction with section level variables in the following form: 

 

∏ (𝒖, 𝒑)𝐻𝑅 =  −∫ 𝑫𝑇𝒅(𝑫) 𝑑𝑥
𝐿

+ ∫ �̂�𝑇(𝒑)𝒅(𝒖)
𝐿

𝑑𝑥 +

 ∫ 𝒔𝑇(𝒖) 𝜏𝑥
𝑏  𝑑𝑥

𝐿
− 𝒖𝑇𝑷∗                (35) 
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In this formulation, beam section forces �̂�are independentlydetermined 

from element nodal forces 𝒑  as follows: 

 

�̂�(𝑥) = 𝒃(𝑥) 𝒑         (36)

         

Where𝒃(𝑥) is the matrix of force interpolation functions.  

 

It is to be noted that bond forces are determined through bond constitutive 

relation. Therefore, the equilibrium matrix 𝒃(𝑥) only satisfies the 

differential equilibrium Equation (17) partially without the contribution of 

bond stress. It is in synchronization with HR energy functional as in this 

variational principle there is no subsidiary condition required. However, 

composite element formulation based on principle of complementary 

energy functional loses its most powerful credibility for not satisfying the 

differential equilibrium equations in its strong form fully. 

 

The variation of HR energy functional in Equation (35) can be written in 

the following form: 

 

𝛿 ∏ (𝒖, 𝒑)𝐻𝑅 = −∫ 𝛿𝑫𝑇𝒅(𝑫) 𝑑𝑥
𝐿

+ ∫ 𝛿(�̂�𝑇(𝒑)𝒅(𝒖))
𝐿

𝑑𝑥 +

∫ 𝛿𝒔𝑇(𝑥) 𝜏𝑥
𝑏(𝑥) 𝑑𝑥

𝐿
− 𝛿𝒖𝑇𝑷∗       (37) 
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𝛿 ∏ (𝒖, 𝒑)𝐻𝑅 = −∫ 𝛿𝑫𝑇𝒅(𝑫) 𝑑𝑥
𝐿

+ ∫ 𝛿(�̂�𝑇(𝒑))𝒅(𝒖)
𝐿

𝑑𝑥 +

∫ (�̂�𝑇(𝒑))𝛿(𝒅(𝒖))
𝐿

𝑑𝑥 + ∫ 𝛿𝒔𝑇(𝑥) 𝜏𝑥
𝑏(𝑥) 𝑑𝑥

𝐿
− 𝛿𝒖𝑇𝑷∗   (38) 

 

The solution of the variational in Equation (38) is non-linear under inelastic 

material conditions, hence the problem needs to be linearized about a state 

of both principle arguments𝒖𝑖 and 𝒑𝑖 as follows: 

 

𝛿 ∏ (𝒑𝒊+𝟏, 𝒖𝒊+𝟏)𝐻𝑅 =  𝛿 ∏ (𝒑𝒊, 𝒖𝒊)𝐻𝑅 +
𝜕𝛿 ∏ (𝒑,𝒖)𝐻𝑅

𝜕𝑝
|𝒑𝑖,𝒖𝑖 ∆𝒑 +

𝜕𝛿 ∏ (𝒑,𝒖)𝐻𝑅

𝜕𝑢
|𝒑𝑖,𝒖𝑖 ∆𝒖         (39) 

 

Where ∆𝒖and ∆𝒑are the incremental nodal displacement and force vector 

respectively. 

 

At equilibrium, 

 

𝛿 ∏ (𝒑𝒊+𝟏, 𝒖𝒊+𝟏)𝐻𝑅 = 0        (40) 

 

Therefore from Equation (39), we can write the following: 

 

𝛿 ∏ (𝒑𝒊, 𝒖𝒊)𝐻𝑅 +
𝜕𝛿 ∏ (𝒑,𝒖)𝐻𝑅

𝜕𝑝
|𝒑𝑖,𝒖𝑖 ∆𝒑 +

𝜕𝛿 ∏ (𝒑,𝒖)𝐻𝑅

𝜕𝑢
|𝒑𝑖,𝒖𝑖 ∆𝒖 = 0  (41) 
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By using Equations (19), (20), (21), (22) and (36) along with the 

assumption of conservative external load, Equation (41) can be written in 

the following form: 

 

𝛿𝒖𝑇 [∫ 𝑩𝑠
𝑇(𝑥) 𝒃(𝑥) 𝑑𝑥 Δ𝒑 + ∫ 𝑩𝑏

𝑇(𝑥)𝑲𝒃(𝑥)𝑩𝑏(𝑥)𝑑𝑥 Δ𝒖 +
𝐿𝐿

∫ 𝑩𝒔
𝑇𝑫(𝑥)𝑑𝑥

𝑳
+ ∫ 𝑩𝒃

𝑇𝜏𝑥
𝑏(𝑥)𝑑𝑥

𝑳
− 𝑷∗] +

 𝛿𝒑𝑇 [−∫ 𝒃𝑇(𝑥)𝒇𝒔(𝑥)𝒃(𝑥)𝑑𝑥Δ𝒑 + ∫ 𝒃𝑇
𝐿

(𝑥)𝑩𝒔(𝑥)𝑑𝑥Δ𝒖
𝐿

+

 ∫ 𝒃𝑇(𝑥)
𝐿

𝒅(𝑥)𝑑𝑥 − ∫ 𝒃𝑇(𝑥)
𝐿

�̂�(𝑥)𝑑𝑥 ] = 0    

           (42) 

 

where 𝒇𝒔(𝑥) is the section flexibility matrix and �̂�(𝑥) is the section 

deformation vector determined from section force vector �̂�(𝑥) with the 

help of the section flexibility matrix. 

 

From arbitrariness of 𝛿𝒖 and 𝛿𝒑, Eq. (42) can be written in the following 

matrix form: 

 

[
∫ 𝑩𝑏

𝑇
𝐿

𝑲𝑏𝑩𝑏𝑑𝑥 ∫ 𝑩𝑠
𝑇𝒃𝑑𝑥

𝐿

∫ 𝒃𝑇𝑩𝑠𝐿
𝑑𝑥 −∫ 𝒃𝑇𝒇𝑠𝒃𝑑𝑥

𝐿

] (
∆𝒖
∆𝒑

) =

(
𝑷∗ − ∫ 𝑩𝑠

𝑇𝑫𝑑𝑥 − ∫ 𝑩𝑏
𝑇𝜏𝑥

𝑏𝑑𝑥
𝐿𝐿

∫ 𝒃𝑇(�̂�
𝐿

− 𝒅)𝑑𝑥
)               (43) 
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Eq. (43) can be written in the following concise form: 

 

[
𝑲𝐵 𝑮𝑇

𝑮 −𝑭𝒄+𝒔
] (

∆𝒖
∆𝒑

) =  (
𝑷∗ − 𝑷𝒄+𝒔

𝒓 − 𝑷𝒃
𝒓

𝒖𝑟
)    (44) 

 

where 𝑭𝑐+𝑠 is the element flexibility matrix and 𝒖𝑟 is the element residual 

deformation vector. It is important to note that on convergence, the element 

residual deformation vector 𝒖𝑟 reduces to zero inside each element 

satisfying compatibility. 

 

In this formulation, the force degrees of freedom are condensed out at the 

element level from Equations (44) resulting in a generalized stiffness 

matrix as follows: 

 

𝑮𝑇[𝑭𝑐+𝑠
−1 ][𝑮∆𝒖 − 𝒖𝑟] + 𝑲𝐵∆𝒖 = 𝑷∗ − 𝑮𝑇𝑷𝒄+𝒔

𝒓 − 𝑷𝒃
𝒓    (45) 

Once convergence is reached at element level i.e. 𝒖𝑟 becomes zero, 

Equation (45) can be written as follow: 

 

(𝑮𝑇[𝑭𝑐+𝑠
−1 ]𝑮 + 𝑲𝐵)∆𝒖 = 𝑷∗ − 𝑮𝑇𝑷𝒄+𝒔

𝒓 − 𝑷𝒃
𝒓     (46) 

 

(𝑲𝒄+𝒔 + 𝑲𝑩)∆𝒖 =  𝑷∗ − 𝑮𝑇𝑷𝒄+𝒔
𝒓 − 𝑷𝒃

𝒓      (47) 
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𝑲∆𝒖 =  𝑷∗ − 𝑷𝒓         (48) 

 

The nodal displacements of the structural model in the global frame of 

reference are collected in the displacement vector𝑼𝑔. Detailed procedure of 

mapping structural nodal displacement relative to global coordinates to the 

element nodal deformation at the basic frame of reference, transformation 

of element stiffness matrix and resisting forces from basic to global level 

and assembling of global stiffness matrix and resistance forces of all 

elements to the assembled structural stiffness matrix 𝑲𝑔 and structural 

resistance vector 𝑷𝑔𝑟are described in details in Filippou et al. (2004). 

4.7.2.1 Stability Criteria 

 

 

The two-field mixed based formulation requires both displacement and 

force shape functions. However, the order of displacement (𝑛𝑑) and force 

(𝑛𝑓) shape functions are interconnected through the compatibility and 

constitutive relations. Proper care should be taken to choose the order and 

continuity of both shape functions, otherwise non-meaningful results will 

be produced as observed by Zienkiewicz et al. (1989). According to De 

Veubeke’s principle of limitation (1965), the order of stress quantity should 

be less than that of strain quantity to maintain stability of the algorithm.  
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For flexure critical mixed composite element formulation, a linear axial 

force distribution along the length of the element without the presence of 

axially distributed loads, require quadratic distribution of axial 

displacement. Whereas, a linear moment field along the length of the 

element requires linear curvature field which in turn requires cubic 

distribution of the vertical displacement field along the length of the 

element. Therefore the following relation can be written for flexure critical 

element as proposed by Ayoub (1999): 

 

For axial field, 

 

𝑛𝑓 = 𝑛𝑑 − 1         (49) 

 

For moment field, 

 

𝑛𝑓 = 𝑛𝑑 − 2                 (50) 

 

Using Hermitian polynomial shape functions for the vertical displacement 

field, two nodes beam element will be sufficient for dependent rotation 

field to satisfy the principle of limitation stability criteria for flexure critical 

condition. However, one additional middle degree of freedom for the axial 
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field will get statically condensed out at the element level before the 

assembly process. 

 

For shear critical mixed composite element formulation, a linear axial force 

distribution along the length of the element without the presence of axially 

distributed loads, require quadratic distribution of axial displacement. 

Whereas, a linear moment field along the length of the element requires a 

linear curvature field which in turn requires quadratic distribution of 

rotation field along the length of the element. Whereas a constant shear 

force distribution along the length of the element requires a cubic vertical 

displacement field along the length of the element to match the same order 

of the rotation field. Therefore the following relations are proposed for the 

newly developed shear critical mixed element: 

 

For axial field, 

 

𝑛𝑓 = 𝑛𝑑 − 1         (51) 

 

For moment field, 

 

𝑛𝑓 = 𝑛𝑑 − 1         (52) 
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For shear field, 

 

𝑛𝑓 = 𝑛𝑑 − 3         (53) 

 

Using quadratic polynomial shape functions for axial and rotational fields, 

two nodes beam element will not be sufficient to satisfy the principle of 

limitation stability criteria for shear critical condition. Therefore, one 

additional middle degree of freedom for the axial and rotation field is must 

for shear critical two-field mixed beam element, which will get statically 

condensed out at the element level before the assembly process. 

 

4.7.2.2 State Determination 

 

 

A step by step summary of the state determination algorithm is presented 

below for a single composite element. A more detailed explanation can be 

found in Ayoub (1999). The summary focuses on a single global iteration 𝑖 

at the structural degrees of freedom through the Newton-Raphson method 

with applied load counter 𝑘. 

 

Step 1 to Step 3 is similar to the section 2.9.2. However, concerned 

matrixes should be based on this chapter. 
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Step 4: Determine the incremental section deformation and slip and its 

update with respect to the basic axes of reference for a given element nodal 

force vector: 

 

∆𝒅𝑗 = [𝒌𝒔𝒆𝒄
𝒋−𝟏

]
−𝟏

(𝒃∆𝒒𝑗) 

 

𝒅𝑗+1 = 𝒅𝑗 + ∆𝒅𝑗    (Update of section deformation 

vector) 

 

𝒒𝒔𝒆𝒄
𝑗+1 = 𝒒𝒔𝒆𝒄

𝑗 + (𝒃∆𝒒𝑗)  (Update of section force vector) 

 

∆𝒔𝑖 = 𝑩𝒃(𝑥)∆𝒗𝑖+1 

 

𝒔𝑖+1 = 𝒔𝑖 + ∆𝒔𝑖    (Update of slip) 

 

Step 5: Determine the section tangent stiffness (𝒌𝒔𝒆𝒄
𝒋+𝟏

) and resistance vector 

(𝒑𝒔𝒆𝒄
𝒋+𝟏

)  for a given section deformation vector with mid-point integration 

rule and material state determination as described in Section 2.8.Also, 

determine bond forces𝜏𝑥
𝑏,𝑖+1

and bond stiffness𝑲𝒃
𝒊+𝟏from the bond 

constitutive relations. 
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Step 6: Determine the element residual deformation and flexibility matrix 

and update the element nodal forces with updated section deformation and 

forces for the next element iteration until the norm of element nodal energy 

becomes less than the specified tolerance value to dissipate the element 

residual deformation: 

 

𝒇𝒆𝒍𝒆
𝒋+𝟏

= ∑𝒃𝑻 [𝒌𝒔𝒆𝒄
𝒋+𝟏

]
−𝟏

𝒃 

 

𝒖𝑟,𝑗+1 = 𝒖𝑟,𝑗 + ∑𝒃𝑻 [𝒌𝒔𝒆𝒄
𝒋+𝟏

]
−𝟏

(𝒒𝒔𝒆𝒄
𝑗+1 − 𝒑𝒔𝒆𝒄

𝒋+𝟏
)(Update of element nodal 

residual deformation vector) 

 

𝒒𝑗+2 = 𝒒𝑗+1 − [𝒇𝒆𝒍𝒆
𝒋+𝟏

]
−1

𝒖𝑟,𝑗+1 

 

𝒅𝑗+2 = 𝒅𝑗+1 + [𝒌𝒔𝒆𝒄
𝒋+𝟏

]
−𝟏

(𝒒𝒔𝒆𝒄
𝑗+1 − 𝒑𝒔𝒆𝒄

𝒋+𝟏
) − [𝒌𝒔𝒆𝒄

𝒋+𝟏
]
−𝟏

(𝒃[𝒇𝒆𝒍𝒆
𝒋+𝟏

]
−1

𝒖𝑟,𝑗+1) 

 

𝒒𝒔𝒆𝒄
𝑗+2 = 𝒒𝒔𝒆𝒄

𝑗+1 − (𝒃[𝒇𝒆𝒍𝒆
𝒋+𝟏

]
−1

𝒖𝑟,𝑗+1) 

 

Step 7: Determine the element stiffness matrix and resistance vector in 

iteration counter 𝑖 for the given nodal element deformation upon the 

convergence of element compatibility at the basic frame of reference: 
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𝑲𝒆𝒍𝒆
𝒊+𝟏 = 𝑲𝒄+𝒔

𝒊+𝟏 + 𝑲𝑩
𝒊+𝟏 

 

𝑲𝒄+𝒔
𝒊+𝟏 = 𝑮𝑻[𝒇𝒆𝒍𝒆

𝒋+𝟏
]
−1

𝑮 

 

𝑲𝑩
𝒊+𝟏 = ∑𝑩𝒃

𝑻𝑲𝒃
𝒊+𝟏 𝑩𝒃 

 

𝑷𝒓,𝒊+𝟏 = 𝑷𝒄+𝒔
𝒓,𝒊+𝟏 + 𝑷𝒃

𝒓,𝒊+𝟏
 

 

𝑷𝒄+𝒔
𝒓,𝒊+𝟏 = 𝑮𝑻𝒒𝒆𝒍𝒆

𝒊+𝟏 

 

𝑷𝒃
𝒓,𝒊+𝟏 = ∑𝑩𝒃

𝑇𝜏𝑥
𝑏,𝑖+1

 

 

Step 8: Determine the element stiffness matrix and resistance vector in 

iteration counter 𝑖 at the global frame of reference: 

 

𝑲𝒆𝒍𝒆,𝒈𝒍𝒐
𝒊+𝟏 = 𝒂𝒄

𝑻𝑲𝒆𝒍𝒆
𝒊+𝟏𝒂𝒄 

 

𝑸𝒆𝒍𝒆,𝒈𝒍𝒐
𝒊+𝟏 = 𝒂𝒄

𝑻𝑷𝒓,𝒊+𝟏 
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Chapter 5 Correlation Studies – Shear Critical 

Steel-Concrete Composite Components 
 

 

5.1 Overview 
 

 

This chapter presents several correlation studies of the newly developed 

composite frame elements with partial interaction based on displacement 

and two-filed mixed formulation with the numerical and experimental 

results of shear critical steel-concrete composite members. 

 

Two different types of composite systems are considered for correlation 

studies i.e. steel-concrete-steel sandwiched systems and conventional steel-

concrete composite bridge deck systems to establish the versatility of the 

proposed composite beam elements. Steel-concrete sandwiched 

components have recently gained popularity as efficient and cost effective 

blast resistance systems because of their larger energy dissipation capacity 

compared to that of conventional reinforced concrete systems. For these 

sandwiched systems, the shear stress transfer mechanism between steel 

face plates and surrounding concrete through shear studs, and the resulting 

shear slip, play an important role in determination of resistance and 

deformation capacity. There are mainly two types of analysis procedures 

used in the previous research work. Many researchers have developed their 

own analytical formulations based on simple assumptions and tried to 
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simulate the experimental behaviour. However, the complex nature of load 

resisting process, which involves material nonlinearity with multi-axial 

stress interactions, prevents the analytical solution to predict the global and 

local response throughout the loading histories. Therefore, many 

researchers have used detailed finite element analysis with continuum 

elements by using available commercial software to reproduce the 

experimentally observed responses. However, there is no beam-column 

fibre element developed to simulate the structural performance of steel-

concrete sandwiched beams in the literature. 

 

The correlation studies starts with the numerical and experimental studies 

of sandwiched steel-concrete composite beams followed by steel-concrete 

composite bridge deck beams to demonstrate the capability of the 

composite element formulations with implemented multi-axial material 

models. 

 

5.2 SC Sandwiched Beam– Numerical Study 

 
In order to evaluate the accuracy and efficiency of the new element 

formulations, the comparison of the displacement vs. mixed formulation 

composite beam finite elements is conducted on a sample sandwiched 

beam problem (Figure 5-1). The beam span is 3000 mm. The beam is under 
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two points vertical loading 1000 mm away from each end. The shear span 

to depth ratio is 3.3. The top and bottom plate thickness is 8 mm each. 

Concrete section depth is 288 mm. The width of the beam section is 300 

mm. The diameter of tie bar is 9.5 mm and spaced 240 mm along the length 

of the beam and 200 mm along the section width. The headed stud diameter 

is 13 mm and spaced 120 mm along the length of the beam and 100 mm 

along the section width. The concrete compressive strength is 40 MPa. The 

yield strength of steel material is 350 MPa and bond strength of shear stud 

is considered to be150 MPa. 

 

 

 

 

 

Figure 5-1. Geometry of Sandwiched Beam 

 

It is to be noted that to model sandwiched members, the degrees of freedom 

at the section and element level need to be adjusted accordingly. Nine and 

three elements have been used to model the entire beam specimen for 

displacement and mixed based formulation respectively, with 5 section 

integration points in each element. For four point bending specimen, we 

need minimum three number of elements to represent two vertical point 

 

 

Concrete Steel Plate 

Tie Bar Shear Stud 
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loading on two respective nodes. For mixed based formulation, we have 

used one element in each span and total three number of elements are used. 

For displacement based formulation, in each span three number of elements 

are used i.e. total number of nine elements are used to achieve converged 

response. It should be noted that choice of number of elements depends on 

the boundary condition, applied loading condition, convergence and 

anticipated response information.  Figure 5-2 presents the point load versus 

vertical deflection response of the member with the proposed beam 

elements.  

 

The curvature distributions at different load stages, for both the minimum 

potential energy and mixed models are shown in Figure 5-3 and Figure 5-4 

respectively. The two load stages A and B are shown in Figure 5-2. The 

curvature distribution of the displacement-based finite element shows a 

steep variation in the inelastic zone in the region near the point of 

application of vertical loads. Since the minimum potential energy model 

assumes a linear curvature field along the length of the member, it fails to 

represent the curvature distribution in the inelastic zone with few elements 

as shown in Figure 5-3. However, the mixed finite element model 

successfully represents the curvature distribution as shown in Figure 5-4 

with just three elements, since section deformations are determined from 

equilibrated section forces. 
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Figure 5-2. Load-Deflection Response 

 

Figure 5-3. Curvature distribution (minimum potential energy principle) 
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Figure 5-4. Curvature distribution (HR variational principle) 

 

Figures 5-5 and 5-6 show the bending moment distributions for both 

models. The exact total resisting moment is linear in the absence of any 

distributed loads, irrespective of the presence of bond shear forces at the 

interface levels. The mixed model predicts the exact linear moment 

distribution as shown in Figure 5-5 at both elastic and inelastic zones, while 

the minimum potential energy model predicts a moment distribution which 

exhibits jumps at element boundaries as shown in Figure 5-6. 
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Figure 5-5. Bending moment distribution (HR variational principle) 

 

 

Figure 5-6. Bending moment distribution (minimum potential energy 
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However, both minimum potential energy and mixed sandwiched models 

represent the slip distribution very well as shown in Figure 5-7 and Figure 

5-8 respectively as both formulations determines slip values from 

displacement degrees of freedom. 

 

 

Figure 5-7. Slip distribution (minimum potential energy principle) 
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Figure 5-8. Slip distribution (HR variational principle) 

 

Figures 5-9 and 5-10 show the bottom plate axial force distributions for 
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Figure 5-9. Bottom plate axial force distribution (minimum potential 

energy principle) 

 

 

Figure 5-10. Bottom plate axial force distribution (HR variational 

principle) 
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This numerical example has established that the newly developed mixed 

element formulation is more accurate, efficient and computationally less 

expensive than the element formulation based on the principle of minimum 

potential energy. 

 

5.3 SC Sandwiched Beam by Leng and Song (2016) 
 

 

Leng et al. (2016) performed tests on a series of 9 steel-concrete-steel 

sandwiched beams with shear span to depth ratio ranging from 2.5 to 3.5 

under four point monotonic loading conditions to study the effect of shear 

span to depth ratio, the diameter and spacing of the vertical tie bars and 

stud connectors on the load-deformation response and failure modes of the 

composite beams. All beams failed in a vertical shear pattern, which was 

initiated from the tension plate failure near the critical crack, and tensile 

yielding of the tie bars after critical diagonal cracking.Slippage and 

separation between the bottom steel plate and concrete near the end of the 

critical diagonal crack has been observed in the experiment while the 

spacing of shear studs in the shear span is large.  

 

Out of these specimens, the sandwiched beam JZ3.5-1is chosen for the 

purpose of the correlation study. The beam span is 2600 mm. The beam is 

under two point vertical loading 1050 mm away from each end. The shear 

span to depth ratio is 3.5. The top and bottom plate thickness is 6 mm each. 
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The depth and width of the beam section is both 300 mm. The diameter of 

tie bar is 9.5 mm and spaced 240 mm along the length of the beam and 200 

mm along the section width. The headed stud diameter is 13 mm and 

spaced 120 mm along the length of the beam and 100 mm along the section 

width. The concrete compressive strength is 40 MPa. The yield strength of 

steel plate, tie bar and shear stud are 350 MPa, 295 MPa and 365 MPa 

respectively. Bond strength of shear studs is considered as 146 MPa. 

 

Sixteen and four elements have been used to model the entire sandwiched 

beam specimen for displacement and mixed based formulation 

respectively, with 5 section integration points in each element. Figure 5-11 

presents the vertical load versus mid deflection response of the member 

with the proposed composite beam elements.  
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Figure 5-11. Load-Deflection Response of SCS beam JZ3.5-1 

 

From the above plot, it can be observed that the proposed composite beam 

element formulations have reasonably reproduced the overall 

experimentally observed load-deflection response. However, it has 

produced stiffer response at the pre-peak shear strength slightly whereas, 

the ultimate shear resistance and shear deformation capacity have been 
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shear span aspect ratio, the width and thickness of the concrete flanges on 

shear resisting mechanisms and the strength of composite beams. It has 

been concluded that the concrete shear contribution by concrete flange is 

33% to 56% of the applied total ultimate shear, which motivated the 

development of composite beam element with partial interaction 

considering inelastic axial-flexure-shear interaction in both concrete and 

steel materials. Two types of shear failure modes in the concrete flange 

have been observed in the experiment i.e. diagonal tension failure and 

diagonal shear crushing. Shear yielding followed by local buckling in the 

web of steel sections has also been observed in the experiment for those 

specimens which failed in a shear mode. 

 

Out of these specimens, the composite beam CBS-2in which a shear failure 

mode has been observed in the experiment, is chosen for the purpose of the 

correlation study. The beam span is 2800 mm. The beam is under two point 

vertical loading 600 mm away from each end. The shear span to depth ratio 

is 2.0. Cross-section details of the composite beam are shown in Figure 5-

12. The width and depth of concrete flange is 680 mm and 100 mm 

respectively. Reinforcement in the concrete flange along the composite 

beam axial direction and section width direction are provided with 100 mm 

spacing and a diameter of 6 mm. 
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Figure 5-12. Cross-section of Composite Beam CBS-2 

 

The headed stud diameter is 8 mm and spaced 90 mm along the length of 

the beam and 80 mm along the section width. The concrete compressive 

strength is 30.06 MPa. The yield strength of steel material in the web and 

flange regions are 340 MPa and 273 MPa respectively. Bond strength of 

shear stud is considered as 346 MPa. 

 

Four elements have been used to model the entire composite beam 

specimen for mixed based formulation with 5 section integration points in 

each element. Figure 5-13 presents the vertical load versus mid deflection 

response of the member with the proposed composite beam element. 
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Figure 5-13. Load-Deflection Response of SC beam CBS-2 

 

From the above plot, it can be observed that the proposed composite beam 

element formulation with partial interaction has reasonably reproduced the 

overall experimentally observed load-deflection response. Shear stiffness, 

ultimate shear resistance and shear deformation capacity have been 

captured well. It is also to be noted that shear resistance capacity gets 

increased while shear deformation capacity gets decreased when we 

consider full interaction by increasing the bond stiffness of shear studs. An 

opposite behaviour can also be observed while we reduce the bond stiffness 
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again emphasize the necessity to the formulation of shear critical composite 
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accurately which in turn will help to develop an inelastic analysis-driven 

design process of composite members. It can also be observed that 4, 14 

and 28 elements with displacement based formulation and 4 elements for 

mixed based formulation produce essentially the same global load-

deflection response under four point loading conditions.  

 

Figure 5-14and 5-15 show the shear force and deformation distribution 

along the length of the beam in the inelastic zone of the load-deflection 

response i.e. point A in Figure 5-13 respectively. It can be observed that 

both displacement and mixed formulation have excellently produced a 

smooth variation of shear force and deformation along the length of the 

beam. Similar observation of shear force distribution has also been reported 

by Zona et al.(2011) with displacement based formulation. 

 

Figure 5-16 shows the interface slip distribution along the length of the 

beam in the inelastic zone of load-deflection response i.e. point A in Figure 

5-13. It can be observed that both displacement and mixed formulation has 

essentially produced almost same distribution of relative slip along the 

length of the beam as the slip field has been determined from nodal 

displacement degrees of freedom for both the formulations. 
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Figure 5-14. Shear Force distribution along the length of Beam 

 

 

Figure 5-15. Shear Deformation distribution along the length of Beam 
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Figure 5-16. Interface Slip Distribution along the Length of Beam 
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inelastic variation of axial deformation at the applied loading region as 

expected. However, the displacement based formulation has shown a 

reasonable performance when the number of elements has been increased 

to 28. It is to be noted that larger number of elements are required to 

successfully simulate the local response for displacement based 
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Figure 5-17. Axial Deformation distribution along the length of Beam in 

Steel Section 
 

 
 

Figure 5-18. Axial Deformation distribution along the length of Beam in 

Concrete Section 
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Figure 5-19 shows the shear crack angle distribution along the length of the 

beam in the inelastic zone of the load-deflection response i.e. point A in 

Figure 5-13 for the middle fibre of the concrete section. It can be observed 

that the mixed formulation has excellently produced the accurate variation 

of shear crack angle at the applied loading region as observed in the 

experiment. However, the displacement based formulation has shown a 

reasonable performance when the number of elements has been increased.  

 

 
 

Figure 5-19. Shear Crack Angle distribution along the length of Beam in 

Middle fibre of Concrete Section 
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linear variation of axial force along with exact equilibrium between steel 

and concrete axial section force. However the displacement based 

formulation has shown a jump at the element boundaries and reasonable 

performance has been achieved when the number of elements has been 

increased to 28. It is to be noted that larger number of elements are required 

to successfully simulate the local response for displacement based 

formulations compared to that of the global response. The aforementioned 

results have verified the superiority of mixed-based formulation relative to 

displacement-based formulation. 

 

 

Figure 5-20. Axial Force distribution along the length of Beam in Steel 

Section 
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Figure 5-21. Axial Force distribution along the length of Beam in Concrete 

Section 

 

 
 

Figure 5-22. Curvature-Loading Response at loading point 
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Figure 5-23. Principle Compressive Strain-Loading Response of top 

concrete fibre at loading point 

 

 
 

Figure 5-24. Axial Strain-Loading Response of bottom rebar of concrete 

deck at loading point 
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Figure 5-25. Axial Strain-Loading Response of top rebar of concrete deck 

at loading point 

 

 

 

Figure 5-22 shows the curvature-loading response at the loading point. It 

can be observed that mixed formulation with 4 elements excellently 

produced localized curvature distribution compared to that of displacement 
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From Figure 5-23, it can be observed that principle compressive strain of 

top concrete fibre in the concrete deck reach substantial amount value. 

Displacement based formulation is not able to produce the result even with 

28 elements compared to its counterpart. 
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Figure 5-24 shows the axial strain-loading response of bottom rebar in the 

concrete deck at loading point. It can be observed that strain does not 

exceed the yield limit and it gets unloaded at the later stage of loading. This 

signifies that flexural action does not dominate in the concrete deck. Shear 

energy resist the external input energy. This local behaviour has been 

excellently produced by the mixed formulation. Displacement based 

formulation is not able to reproduce this kind of local behaviour even with 

large number of elements. 

 

Figure 5-25 shows the axial strain-loading response in the compression 

rebar at the concrete section. It is to be noted from Figure 5-21 that 

concrete section remains under compressive stress condition. It should be 

realized that compressive strain in the top rebar gets unloaded at the later 

stage of loading. As a result, the rebar reaches in the tensile zone and also 

the peak amount of compressive strain is substantially less than that of top 

concrete fibre (Figure 5-23). This observation indicates that the flexure 

energy in the concrete deck does not play important role at the later stage 

of loading as the shear energy dominates and resists the external input 

energy. 

 

These results confirm that proposed mixed formulation is capable of 

simulating the global and local behaviour of shear critical composite beams 
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along with failure modes. Moreover, inherent limitations of displacement 

based formulation to reproduce local behaviour even with large number of 

elements is a warning sign. The need of mixed based shear composite 

element which can successfully reproduce local behaviour and will help to 

formulate inelastic analysis driven design process, has been established 

through this research work. 
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Chapter 6 Shear Critical Frame Element –

Mixed Formulation considering Geometric 

Nonlinearity 
 

6.1 Overview 
 

 

In this chapter, we are going to develop a new shear critical frame element 

based on distributed inelasticity approach considering large displacement 

effects. Experimentally it has been observed that under seismic loading 

condition, P-Delta effect is predominant after the peak shear strength 

softening zone. Also, for other loading scenario such as impact and blast 

loading conditions where flexurally-designed members fail in a shear 

mode, the effect of large displacement is inevitable on load-deformation 

response of members. Therefore, it is imperative to develop a frame 

element which can simulate large displacement effects with material 

inelasticity considering shear deformation. In the following, we will first 

discuss the element kinematics following the corotational approach and 

then section kinematics by adopting the degenerated form of Green-

Lagrange strain measures. Later on, we will discuss the variational 

formulation of the two-field mixed based formulation with the help of 

Hellinger-Reissner functional. Stability criteria needed for mixed 

formulation along with detailed state determination process will also be 

discussed. It is to be noted that the newly developed distributed inelasticity 

based frame element considering large displacement effects with shear 
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deformation is a one step forward to develop an inelastic analysis-driven 

design process such as the performance based design methodology for 

reinforced concrete and steel systems in a more rational way. 

 

The current research work aims to extend the newly developed two-filed 

mixed-based formulation for shear critical reinforced concrete members by 

implementing coupled multi-axial constitutive laws for materials, along 

with new stability criteria (Chapter 2) to account for geometric nonlinearity 

effect. To achieve this purpose, the described new shape function (Section 

2.1) for transverse displacement varying with cubic function along the 

length of the element has been used in our research work. 

 

 

6.2 Element Kinematics 
 

The axis of the proposed frame element is a straight line joined by nodes I 

and J in the statically determinate basic reference system in which rigid 

body displacements are removed by choosing the simple supported 

boundary conditions as shown in Figure. 6-1. The frame element is 

composed of several sections along its axis. Every section is composed of 

several fibres which are identified by their position from the reference axis 

and individual cross-section area. 
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Figure 6-1. Basic reference system without rigid body modes 

 

The section displacement vector 𝒖(𝑥) collects the two translations 

𝑢(𝑥), 𝑣(𝑥) in 𝑥 and 𝑦 directions respectively and one rotation 𝜃𝑧(𝑥) about 

𝑧axis. 

 

𝒖(𝑥) =  [𝑢(𝑥)𝜃𝑧(𝑥)    𝑣(𝑥)]𝑇       (1) 

 

The element nodal displacement vector 𝒖𝑰𝑱 collects the nodal displacement 

with respect to the global axes according to the section displacement vector 

in Equation (1). In the proposed frame element an additional middle nodal 

rotational degree of freedom is included which has been statically 

condensed out at the element level before the assembly process. 

 

𝒖𝑰𝑱 =  [𝑢𝐼𝑣𝐼𝜃𝑧𝐼   𝑢𝐽𝑣𝐽𝜃𝑧𝐽𝜃𝑧𝐾]
𝑇
       (2) 

 

I 

J

 

𝒚 

𝒙 

L 

𝛼 



254 

 

The element deformation vector 𝒗collects the relative translation 𝑢 at node 

J in 𝑥 direction, rotations 𝜃𝑧 at nodes I and J and middle node k with 

respect to the basic reference axes as shown in Figure. 6-2. 

 

𝒗 =  [𝑢    𝜃𝑧𝐼𝜃𝑧𝐽𝜃𝑧𝐾]
𝑇

        (3) 

 

Figure 6-2. Element nodal deformations 

 

The relation between element nodal deformation 𝒗anddisplacements 𝒖𝑰𝑱can 

be uniquely determined by the compatibility matrix 𝒂𝒄under deformed 

geometry conditions where L is the deformed length of the element. 

 

𝒗 = 𝒂𝒄𝒖𝑰𝑱          (4) 

 

Where, 

 

𝑢 

𝜃𝑧𝐽 𝜃𝑧𝐼 𝜃𝑧𝐾  

I K J 
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𝒂𝒄 =

[
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Where, 

𝐿 = √((𝑥2 − 𝑥1) + (𝑢𝐽 − 𝑢𝐼))
2 + ((𝑦2 − 𝑦1) + (𝑣𝐽 − 𝑣𝐼))

2 

 

sin 𝛼 =
(𝑦2 − 𝑦1) + (𝑣𝐽 − 𝑣𝐼)

𝐿
 

 

cos 𝛼 =
(𝑥2 − 𝑥1) + (𝑢𝐽 − 𝑢𝐼)

𝐿
 

 

(𝑥1, 𝑦1) 𝑎𝑛𝑑 (𝑥2, 𝑦2) are initial co-ordinates of node I and J respectively. 

 

6.3 Section Kinematics 
 

Under the assumption of a Timoshenko beam theory, the displacements 

𝑢𝑚(𝑥, 𝑦) of a material point 𝑚 with coordinate 𝑦 at a section with distance 

𝑥 from the origin of the reference frame can be represented with the cross-

section generalized displacements 𝒖(𝑥) as follows: 
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𝑢𝑥
𝑚(𝑥, 𝑦) = 𝑢(𝑥) − 𝑦𝜃𝑧(𝑥)       (5) 

 

𝑣𝑥
𝑚(𝑥, 𝑦) = 𝑣(𝑥)         (6) 

 

The material strain displacement vector 𝜺(𝑥, 𝑦)following the degenerated 

form of Green-Lagrange strain measures, can be related with material 

displacement vector 𝑢𝑚(𝑥, 𝑦) as follows: 

 

𝜀𝑥𝑥 =
𝜕𝑢𝑥

𝑚(𝑥,𝑦)

𝜕𝑥
+

1

2
(
𝜕𝑣(𝑥)

𝜕𝑥
)2 =

𝜕𝑢(𝑥)

𝜕𝑥
+

1

2
(
𝜕𝑣(𝑥)

𝜕𝑥
)2 − 𝑦

𝜕𝜃𝑧(𝑥)

𝜕𝑥
  (7) 

 

𝜀𝑦𝑦 =
𝜕𝑣𝑥

𝑚(𝑥,𝑦)

𝜕𝑦
=

𝜕𝑣(𝑥)

𝜕𝑦
= 0       (8) 

 

2𝜀𝑥𝑦 =
𝜕𝑢𝑥

𝑚(𝑥,𝑦)

𝜕𝑦
+

𝜕𝑣𝑥
𝑚(𝑥,𝑦)

𝜕𝑥
= −𝜃𝑧(𝑥) +

𝜕𝑣(𝑥)

𝜕𝑥
    (9) 

 

By introducing the section deformation vector 𝒅(𝑥) which is a function of 

section displacement vector𝒖(𝑥), we can write down the following 

equation with the help of section compatibility matrix 𝒂𝑠(𝑦): 

 

𝜺(𝑥, 𝑦) = 𝒂𝑠(𝑦)𝒅(𝑥)        (10) 
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Where, 

 

𝒅(𝑥) = [
𝜕𝑢(𝑥)

𝜕𝑥
+

1

2
(
𝜕𝑣(𝑥)

𝜕𝑥
)2

𝜕𝜃𝑧(𝑥)

𝜕𝑥
           (−𝜃𝑧(𝑥) +

𝜕𝑣(𝑥)

𝜕𝑥
) ]

𝑇

 

 

𝒂𝑠(𝑦) = [
1 −𝑦 0
0 0 1

] 

 

6.4 Equilibrium 
 

 

The differential equilibrium equation of a segment of length 𝑑𝑥 as shown 

in Figure.6-3 can be written down as follows: 

 

 

 

 

 

 

𝑑𝑥 

Figure 6-3. Section differential equilibrium 

 

𝑑𝑁𝑥

𝑑𝑥
= 0                  (11) 

 

𝑁𝑥 
𝑁𝑥 + 𝑑𝑁𝑥 

𝑉𝑥  

𝑉𝑥 + 𝑑𝑉𝑥  

𝑀𝑥 
𝑀𝑥 + 𝑑𝑀𝑥 

𝑣(𝑥) 

Chord Axis 
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𝑑𝑀𝑥

𝑑𝑥
− 𝑉𝑥 = 0         (12) 

 

𝑑𝑉𝑥

𝑑𝑥
−

𝑑

𝑑𝑥
(𝑁𝑥

𝑑𝑣(𝑥)

𝑑𝑥
) = 0        (13) 

 

Where 𝑁𝑥 , 𝑀𝑥, 𝑉𝑥are axial force, bending moment and shear force 

respectively. 

6.5 Compatibility 
 

The components of generalized section deformation vector 𝒅(𝑥) are the 

axial strain 𝜀0 at the reference 𝑥 axis, the curvature ∅𝑧 about the 𝑧 axis and 

shear deformation 𝛾𝑦  in the 𝑦 direction respectivelyfollowing the 

degenerated form of Green-Lagrange strain measure: 

 

𝒅(𝑥) = [𝜀0∅𝑧𝛾𝑦]
𝑇

         (14) 

 

Where 

 

𝜀0 =  
𝑑𝑢(𝑥)

𝑑𝑥
+

1

2
(
𝜕𝑣(𝑥)

𝜕𝑥
)2 

 

∅𝑧 =
𝑑𝜃𝑧(𝑥)

𝑑𝑥
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𝛾𝑦 = −𝜃𝑧(𝑥) +
𝑑𝑣(𝑥)

𝑑𝑥
 

 

6.6 Constitutive Law 
 

 

The section constitutive law is as follows. 

 

𝑫(𝑥) = 𝑓𝑠𝑒𝑐𝒅(𝑥)         (15) 

 

Where 𝑓𝑠𝑒𝑐 is a nonlinear function that describes the section force 

deformation relation. The section force deformation relation is obtained 

through fibre integration as described in Section 2.8. 

 

6.7 Variational Formulation 
 

 

6.7.1  Mixed-based Formulation 

 
The formulation of the beam element in this section uses independent 

generalized stress and displacement interpolation functions in a two-field 

Hellinger-Reissner (HR) functional which is written in the basic frame of 

reference as follows: 
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∏ (𝒖, 𝝈)𝐻𝑅 =  −∫ 𝑊 (𝝈(𝑥, 𝑦)) 𝑑𝑣
𝑣

+ ∫ 𝝈𝑇𝜺𝒖
𝑣

𝑑𝑣 − ∏ (𝒖(𝑥))𝑒𝑥𝑡 −

∏ (𝒖)𝑏𝑐           (16) 

 

where 𝑊(𝝈) is the complementary energy function. 

 

In HR variational principle, strain-displacement relation 𝜺 = ∇𝑠𝒖(𝑥) on 𝑣 

and displacement boundary condition 𝒖 =  𝒖∗ on Γ𝑢, are satisfied in their 

strong differential form. Whereas, equilibrium conditions 𝒅𝒊𝒗 𝝈 + 𝒃𝒐 = 𝟎 

on 𝑣, constitutive relation 𝝈 = 𝝈(𝜺)on 𝑣 and traction boundary conditions 

𝒕 =  𝒕∗ on Γ𝑡 are satisfied in their integral weak form. 

 

HR energy functional of Eq. (16) can be written without body force and 

surface traction with section level variables in the following form: 

 

∏ (𝒖, 𝒑)𝐻𝑅 =  −∫ 𝑫𝑇𝒅(𝑫) 𝑑𝑥
𝐿

+ ∫ �̂�𝑇(𝒑)𝒅(𝒖)
𝐿

𝑑𝑥 − 𝒖𝑇𝑷∗    (17) 

 

In this formulation, beam section forces �̂�are independentlydetermined 

from element nodal forces 𝒑  as follows: 

 

�̂�(𝑥) = 𝒃(𝑥) 𝒑         (18) 

 

where 𝒃(𝑥) is the matrix of force interpolation functions.  
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The variation of HR energy functional in Eq. (17) can be written in the 

following form: 

 

𝛿 ∏ (𝒖, 𝒑)𝐻𝑅 = −∫ 𝛿𝑫𝑇𝒅(𝑫) 𝑑𝑥
𝐿

+ ∫ 𝛿(�̂�𝑇(𝒑)𝒅(𝒖))
𝐿

𝑑𝑥 − 𝛿𝒖𝑇𝑷∗ 

           (19) 

 

𝛿 ∏ (𝒖, 𝒑)𝐻𝑅 = −∫ 𝛿𝑫𝑇𝒅(𝑫) 𝑑𝑥
𝐿

+ ∫ 𝛿(�̂�𝑇(𝒑))𝒅(𝒖)
𝐿

𝑑𝑥 +

∫ (�̂�𝑇(𝒑))𝛿(𝒅(𝒖))
𝐿

𝑑𝑥 − 𝛿𝒖𝑇𝑷∗       (20) 

 

The solution of the variational in Eq. (20) is non-linear under inelastic 

material conditions, hence the problem needs to be linearized about a state 

of both principle arguments𝒖𝑖 and 𝒑𝑖 as follows: 

 

𝛿 ∏ (𝒑𝒊+𝟏, 𝒖𝒊+𝟏)𝐻𝑅 =  𝛿 ∏ (𝒑𝒊, 𝒖𝒊)𝐻𝑅 +
𝜕𝛿 ∏ (𝒑,𝒖)𝐻𝑅

𝜕𝑝
|𝒑𝑖,𝒖𝑖 ∆𝒑 +

𝜕𝛿 ∏ (𝒑,𝒖)𝐻𝑅

𝜕𝑢
|𝒑𝑖,𝒖𝑖 ∆𝒖         (21) 

 

Where ∆𝒖and ∆𝒑are the incremental nodal displacement and force vector 

respectively. 

 

At equilibrium, 
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𝛿 ∏ (𝒑𝒊+𝟏, 𝒖𝒊+𝟏)𝐻𝑅 = 0        (22) 

 

Therefore from Equation (21), we can write as follows, 

 

𝛿 ∏ (𝒑𝒊, 𝒖𝒊)𝐻𝑅 +
𝜕𝛿 ∏ (𝒑,𝒖)𝐻𝑅

𝜕𝑝
|𝒑𝑖,𝒖𝑖 ∆𝒑 +

𝜕𝛿 ∏ (𝒑,𝒖)𝐻𝑅

𝜕𝑢
|𝒑𝑖,𝒖𝑖 ∆𝒖 = 0  (23) 

 

By using Equations (14), (15), and (18), Equation (23) can be written in the 

following form: 

 

𝛿𝒖𝑇 [∫ 𝑩𝑠
𝑇(𝑥) 𝒃(𝑥) 𝑑𝑥 Δ𝒑 + ∫ 𝑩𝒔

𝑇𝑫(𝑥)𝑑𝑥
𝑳

+ ∫
𝝏

𝝏𝒖
(𝑩𝒔

𝑇𝒃(𝑥))𝒑𝑑𝑥Δ𝒖
𝑳

−
𝐿

𝑷∗] +  𝛿𝒑𝑇 [−∫ 𝒃𝑇(𝑥)𝒇𝒔(𝑥)𝒃(𝑥)𝑑𝑥Δ𝒑 + ∫ 𝒃𝑇
𝐿

(𝑥)𝑩𝒔(𝑥)𝑑𝑥Δ𝒖
𝐿

+

 ∫ 𝒃𝑇(𝑥)
𝐿

𝒅(𝑥)𝑑𝑥 − ∫ 𝒃𝑇(𝑥)
𝐿

�̂�(𝑥)𝑑𝑥 ] = 0    (24) 

 

Where 𝒇𝒔(𝑥) is the section flexibility matrix, 𝑩𝒔(𝑥)is the strain 

displacement matrixwhich is a function of𝒖(𝒙), and �̂�(𝑥) is the section 

deformation vector determined from section force vector �̂�(𝑥) with the 

help of the section flexibility matrix. 

 

From arbitrariness of 𝛿𝒖 and 𝛿𝒑, Equation (24) can be written in the 

following matrix form: 
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[
∫

𝝏

𝝏𝒖
(𝑩𝒔

𝑇𝒃(𝑥))𝒑𝑑𝑥
𝑳 ∫ 𝑩𝑠

𝑇𝒃𝑑𝑥
𝐿

∫ 𝒃𝑇𝑩𝑠𝐿
𝑑𝑥 −∫ 𝒃𝑇𝒇𝑠𝒃𝑑𝑥

𝐿

] (
∆𝒖
∆𝒑

) = (
𝑷∗ − ∫ 𝑩𝑠

𝑇𝑫𝑑𝑥
𝐿

∫ 𝒃𝑇(�̂�
𝐿

− 𝒅)𝑑𝑥
) 

           (25) 

 

Equation (25) can be written in the following concise form: 

 

[
𝑲𝑖𝑔 𝑮𝑇

𝑮 −𝑭𝒄+𝒔
] (

∆𝒖
∆𝒑

) =  (
𝑷∗ − 𝑷𝒄+𝒔

𝒓

𝒖𝑟 )     (26) 

 

Where 𝑭𝑐+𝑠 is the element flexibility matrix and 𝒖𝑟 is the element residual 

deformation vector and 𝑲𝑖𝑔is the internal geometric stiffness matrix. Here, 

 

𝑮

= [
(
19

180
LθzI −

11

180
𝐿𝜃𝑧𝐽 −

2

45
𝐿𝜃𝑧𝐾) 1 (−

11

180
LθzI +

19

180
𝐿𝜃𝑧𝐽 −

2

45
𝐿𝜃𝑧𝐾) (−

2

45
LθzI −

2

45
𝐿𝜃𝑧𝐽 +

4

45
𝐿𝜃𝑧𝐾)

1 0 0 0
0 0 1 0

] 

 

𝑲𝑖𝑔 =

[
 
 
 
 
 
 
 
19

180
𝐿𝑃𝑎 0 −

11

180
𝐿𝑃𝑎 −

2

45
𝐿𝑃𝑎

0 0 0 0

−
11

180
𝐿𝑃𝑎 0

19

180
𝐿𝑃𝑎 −

2

45
𝐿𝑃𝑎

−
2

45
𝐿𝑃𝑎 0 −

2

45
𝐿𝑃𝑎

4

45
𝐿𝑃𝑎 ]
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Here, 𝑃𝑎is the nodal axial force at node J in the basic frame of reference of 

deformation. It is important to note that at convergence, the element 

residual deformation vector 𝒖𝑟 reduces to zero inside each element 

satisfying compatibility.In this formulation, the force degrees of freedom 

are condensed out at the element level from Equation (26) resulting in a 

generalized stiffness matrix as follows: 

 

[𝑲𝑖𝑔 + 𝑮𝑇[𝑭𝑐+𝑠
−1 ]𝑮]∆𝒖 + 𝑮𝑇[𝑭𝑐+𝑠

−1 ][−𝒖𝑟] = 𝑷∗ − 𝑮𝑇𝑷𝒄+𝒔
𝒓   (27)

   

Once convergence is reached at the element level i.e. 𝒖𝑟 becomes zero,  

Equation (27) can be written as following: 

 

(𝑲𝑖𝑔 + 𝑮𝑇[𝑭𝑐+𝑠
−1 ]𝑮)∆𝒖 = 𝑷∗ − 𝑮𝑇𝑷𝒄+𝒔

𝒓      (28)

     

(𝑲𝒄+𝒔)∆𝒖 =  𝑷∗ − 𝑮𝑇𝑷𝒄+𝒔
𝒓        (29)

  

𝑲∆𝒖 =  𝑷∗ − 𝑷𝒓         (30) 

 

The nodal displacements of the structural model in the global frame of 

reference are collected in the displacement vector𝑼𝑔. Detailed procedure of 

mapping structural nodal displacements relative to global coordinates to the 

element nodal deformations at the basic frame of reference, transformation 
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of element stiffness matrix and resisting forces from the basic to the global 

level and assembling of global stiffness matrix and resistance forces of all 

elements to assembled structural stiffness matrix 𝑲𝑔 and structural 

resistance vector 𝑷𝑔𝑟are described in details in Filippou et al. (2004). 

 

6.7.1.1 Stability Criteria 

 

 

Stability criteria is similar to the section 2.9.1.  

6.7.1.2 State Determination 

 

 

A step by step summary of the state determination algorithm is presented 

below for a single element with large displacement effects. The summary 

focuses on a single global iteration 𝑖 at the structural degree of freedoms 

through the Newton-Raphson method with applied load counter 𝑘. 

 

Step 1 to Step 6 is similar to the section 2.9.2. However, concerned 

matrixes should be based on this chapter. 

 

Step 7: Determine the element stiffness matrix including internal geometric 

stiffness matrix and resistance vector in iteration counter 𝑖 for the given 

nodal element deformation upon the convergence of element compatibility 

at the basic frame of reference: 
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𝑲𝒆𝒍𝒆
𝒊+𝟏 = 𝑮𝑻[𝒇𝒆𝒍𝒆

𝒋+𝟏
]
−1

𝑮 + 𝑲𝑖𝑔 

 

𝑸𝒆𝒍𝒆
𝒊+𝟏 = 𝑮𝑻𝒒𝒆𝒍𝒆

𝒊+𝟏 

 

Step 8: Determine the element stiffness matrix including external geometric 

stiffness matrix 𝑲𝑜𝑔and resistance vector in iteration counter 𝑖 at the global 

frame of reference: 

 

𝑲𝒆𝒍𝒆,𝒈𝒍𝒐
𝒊+𝟏 = 𝒂𝒄

𝑻𝑲𝒆𝒍𝒆
𝒊+𝟏𝒂𝒄 + 𝑲𝑜𝑔 

 

𝑲𝑜𝑔 = [
𝝏𝒂𝒄

𝝏𝒖
]
𝑻
𝑸𝒆𝒍𝒆

𝒊+𝟏     (Provided in Appendix A) 

 

𝑸𝒆𝒍𝒆,𝒈𝒍𝒐
𝒊+𝟏 = 𝒂𝒄

𝑻𝑸𝒆𝒍𝒆
𝒊+𝟏 
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Chapter 7 Correlation Studies – Shear Critical 

RC Component considering P-Delta Effect 
 

 

7.1 Overview 
 

This chapter presents several correlation studies of the newly developed 

shear critical frame element with large displacement effects based on two-

filed mixed formulation with the experimental results of reinforced 

concrete members for monotonic and cyclic loading conditions. 

 

The correlation studies starts with flexure critical reinforced concrete 

columns under monotonic loading conditions followed by reinforced 

concrete columns under cyclic loading conditions. In the end, correlations 

studies extended to shear critical reinforced concrete columns under cyclic 

loading conditions to demonstrate the capability of the element formulation 

to simulate the post-peak softening region of load versus displacement 

response.  
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7.2 RC Columns 
 

 

7.2.1 Column by Barrera, Bonet, Romero and Miguel (2011) 
 

 

Barrera et al. (2011) performed tests on a series of 44 reinforced concrete 

columns (Figure 7-1) under constant axial compressive loading and 

monotonically increasing amplitude of lateral force to study the behaviour 

of slender (shear span ratio >6.5) columns by using high strength concrete. 

The effect of several variables such as strength of concrete (30 MPa, 

60MPa and 90 MPa), shear span ratio (7.5, 10.5 and 15), axial load level 

and longitudinal and transversal reinforcement ratio on the strength and 

deformation capacity of the columns were studied. Two types of failure 

modes are reported i.e. failure mode due to ultimate strength of the section 

and failure mode due to instability. Out of these specimens, column H60-

10.5-C0-2-30is chosen for the correlation study as this specimen (shear 

span to depth ratio 10.5) fails in flexural compression of concrete, and 

reinforcement bar buckling has not been observed in the experiment. The 

specimen has been subjected to a constant axial load of 432 kN. 

 

The cross-section details of this specimen are shown in Figure 7-2. The 

specimen has width and depth of 150 mm and 140 mm respectively. 
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Figure 7-1. Geometry of Column Specimen 

 

 

 

Figure 7-2. Cross-section of ColumnH60-10.5-C0-2-30 

 

6 longitudinal reinforcements of diameter 10 mm are uniformly spaced 

along the perimeter of the columns. Rectangular hoops of diameter 6 mm 

are placed at a spacing of 100 mm along the length of the columns. 

150 mm 

140 mm 

1.47 m 1.47 m 

𝒗(𝒙) 

Deformed Centre Line 

Undeformed Centre Line 

𝑷 𝑷 
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Concrete compressive strength of the column is 60.5 MPa. Yield strengths 

of longitudinal and transverse reinforcements are 537 MPa and 500 MPa 

respectively. Peak compressive strain and strain at crushing of concrete 

material has been considered as 0.0025 and 0.09 respectively. The tensile 

strength of concrete has been taken as 0.33*(𝑓𝑐́ )0.5. Unloading stiffness for 

concrete material is considered as 0.01. Similar values of these variables 

have also been considered by Gendy et al. (2018). 

Two elements have been used to model the entire column specimen with 5 

section integration points in each element. Figure 7-3 compares the shear 

force versus mid deflection response of the model using the proposed beam 

element with the experimental results of columnH60-10.5-C0-2-30. 

 

 

Figure 7-3. Load-Deflection Response of Column H60-10.5-C0-2-30 
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From the above plot, it can be observed that the proposed element with 

large displacement effects excellently reproduced the overall 

experimentally observed load-deflection response. However, the element 

without P-Delta effects has overestimated the shear strength and stiffness 

as expected. Therefore, it is imperative to develop a beam element 

considering geometric nonlinearity to model the behaviour of slender 

reinforced concrete columns. It can also be noted that 2, 4 and 8 elements 

have produced almost same response except in the last stage of loading 

with little deviation. 

 

 

Figure 7-4. Load-Moment Response at Loading Point Section 
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Figure 7-5. Load-Curvature Response at Loading Point Section 

  

 

 

Figure 7-6. Load-Strain Response at Loading Point Section 
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Figure 7-7. Load-Stress Response of bottommost Longitudinal Rebar at 

Loading Point 

 

Figure 7-8. Stress-Strain Response of bottommost Longitudinal Rebar at 

Loading Point 
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Figure 7-9. Deformed Shape at 16.56 kN at post-peak region 

 

Figures 7-4 and 7-5 show the load- moment and load-curvature response at 

the loading point. It can be observed that under 20 Kn of loading both 

moment and curvature is larger when we consider P-Delta effect as 

expected. It can also be seen from Figure 7-6 that top concrete fibre and 

bottom rebar reaches higher strain values at 20 Kn loading stage while we 

consider P-delta effect. Also, at the last stage of loading, bottom tensile 

rebar and top concrete fibre reaches substantial amount of strain which 

makes the specimen fails in flexural compression. Similarly from Figure 7-

7 stress in the bottom tensile rebar has also reached higher stress value at 

20 Kn of loading stage. It can also be noted that during initial stage of 

loading, compressive strain gets induced in the bottom rebar due to applied 
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compressive loading. Figure 7-8 shows the stress-strain plot of the bottom 

tensile rebar where it can be observed that strain at constant stress gets 

increased at the later stage of loading while P-Delta effect becomes 

prominent. It can also be observed from the Figure 7-9 that the proposed 

mixed element has reasonably reproduced the variation of the vertical 

displacement along the length of the column at 16.56 Kn. 

 

7.2.2 Column by Legeronand Paultre (2000) 
 

 

 

Legeron et al. (2000) performed tests on a series of 6 large-scale cantilever 

reinforced high strength concrete columns (shear span ratio = 6.56) under 

constant axial compressive load and reverse cyclic lateral loading to 

investigate primarily the effect of axial load on seismic behaviour of 

slender columns. Out of these columns, Specimen 5is chosen for the 

correlation study. The specimen has been subjected to a constant axial load 

of 2400 kN. 

 

The specimen has width and depth both of 305 mm and length of 2000 mm. 

4 corner longitudinal reinforcements of diameter 19.5 mm and 4 

intermediate longitudinal reinforcements of diameter 16 mm are uniformly 

spaced along the perimeter of the columns. Square hoops of diameter 11.3 

mm are placed at a spacing of 130 mm along the length of the columns. 
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The concrete compressive strength of the column is 97.7 MPa. Yield 

strengths of corner and middle longitudinal and transverse reinforcements 

are 430 MPa, 494 MPa and 391 MPa respectively. 

 

One element has been used to model the entire column specimen with 5 

section integration points. Figure 7-10 compares the lateral load versus top 

end deflection response of the models using the proposed beam element 

with the experimental result.  

 

 

Figure 7-10. Load-Deflection Response of Specimen 5 

 

From the above plot, it can be observed that the proposed element without 

P-Delta effects overestimates the shear strength and stiffness as expected. 
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Whereas the proposed element with P-Delta effect has exceptionally 

reproduced the overall experimentally observed load-deflection response. 

Stiffness, shear resistance, shear deformation capacity along with hysteretic 

behaviour have been captured very well.  

 

7.2.3 Column by Caballero-Morrison, Bonet, Navarro-

Gregoriand Martí-Vargas (2012) 

 

Caballero-Morrison et al.(2012) conducted tests on a series of 14 reinforced 

concrete columns (Figure 7-11) under constant axial compressive loading 

and cyclic lateral force to study the behaviour of slender (shear span ratio 5 

to 10) columns. The effect of several variables such as slenderness, axial 

load level, transverse reinforcement ratio and volumetric steel-fibre ratio on 

the strength and deformation capacity of the columns was studied.  

 

Out of these specimens, column NF60L05V2S600is chosen for the 

correlation study as this specimen (shear span to depth ratio 5.77) has 

stirrups spacing of 600 mm along the length of the column. Shear failure 

occurred in this specimen after stirrup yielding, spalling of concrete cover 

and buckling of longitudinal bars. The specimen has been subjected to a 

constant axial load of 420.6 kN. 
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Figure 7-11. Geometry of Column Specimen 

 

The cross-section details of this specimen are shown in Figure 7-12. The 

specimen has width and depth of 150 mm and 260 mm respectively. 

 

 

 

Figure 7-12. Cross-section of ColumnNF60L05V2S600 
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6 longitudinal reinforcements of diameter 12 mm are uniformly spaced at 

the top and bottom perimeter of the column. Rectangular hoops of diameter 

8 mm are placed at a spacing of 600 mm along the length of the columns. 

Concrete compressive strength of the column is 32.12 MPa. Yield strengths 

of longitudinal and transverse reinforcements are 548.27 MPa and 541.57 

MPa respectively. 

 

Two elements have been used to model the entire column specimen with 5 

section integration points in each element. Figure 7-13 compares the shear 

force versus mid deflection response of the model using the proposed beam 

element with the experimental results of columnNF60L05V2S600. 

 

Figure 7-13. Load-Deflection Response of Column NF60L05V2S600 
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From the above plot, it can be observed that the proposed element with 

large displacement effect, reasonably reproduce the overall experimentally 

observed load-deflection response. Hysteretic energy and shear 

deformation capacity have been captured reasonably well. However, it has 

overestimated the shear resistance slightly at the last cycle as the proposed 

element does not include cover spalling and bar buckling observed in the 

experiment but predicted the failure at the correct displacement step. On 

the contrary, the proposed element without geometric nonlinearity effects, 

overestimated the shear strength, stiffness and hysteretic energy too. In 

addition, it has failed to detect the failure at the right displacement stage. 

 

7.2.4 Column by Bae and Bayrak (2008) 
 

 

 

Bae et al. (2008) performed tests on a series of 4 full scale cantilever 

reinforced concrete columns under constant axial compressive loading and 

reversed cyclic displacement excursions to investigate the effect of axial 

load and shear span to depth ratio on the plastic hinge length. The length of 

a plastic hinge depends on many factors such as the level of axial load, 

moment gradient, level of shear stress in the plastic hinge region, 

mechanical properties of longitudinal and transverse reinforcement, 

concrete strength and level of confinement and its effectiveness in the 

potential hinge region. The plastic hinge length is necessary to determine 
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the tip displacement of columns which consists of flexural deformation, 

fixed-end rotation resulting from the slip of longitudinal bars out of joints, 

shear deformation and additional displacement due to secondary moments 

generated by the P-∆ effect. In this study, column S17-3UT (shear span to 

depth ratio 7) has been chosen as large inelastic tie bar strains were 

observed in the experiment. The specimen has been subjected to a constant 

axial load of 4166.2 kN. 

 

The cross-section details of this specimen are shown in Figure 7-14. The 

square specimen has width and depth of both 440 mm. 

 

 

Figure 7-14. Cross-section of Column S17-3UT 
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mm are placed at a spacing of 86 mm along the length of the column. 

Concrete compressive strength of the column is 43.4 MPa. Yield strengths 

of longitudinal and transverse reinforcements are both 496 MPa. 

 

One element has been used to model the entire column specimen with 5 

section integration points. Figure 7-15 compares the lateral load versus top 

end deflection response of the model using the proposed beam element 

with the experimental results.  

 

 

Figure 7-15. Load-Deflection Response of Column S17-3UT 
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From the above plot, it can be observed that the proposed element with 

large displacement effects, reasonably reproduce the overall experimentally 

observed load-deflection response. Hysteretic energy and shear 

deformation capacity have been captured reasonably well. It is to be noted 

that the element has reasonably simulated the post peak shear strength 

softening region. On the contrary, the proposed element without geometric 

nonlinearity effects, overestimated shear strength and stiffness in both 

unloading and reloading conditions. It is also to be noted that the 

attainment of peak shear strength with the element considering P-Delta 

effect was reached earlier than that of its counterpart as expected.  

 

From the following Figure 7-16 of cyclic envelops, it can be observed that 

the drop of shear resistance in positive and negative regions at the end of 

loading stages is not in symmetry which is in synchronization with 

experimental results. 

 

From the following Figure 7-17, it can be also observed that the percentage 

drop of shear resistance is nonlinear with time and gets increased with the 

loading cycles. The contribution of P-Delta effects on shear strength 

degradation is huge in the later stage of loading i.e. after the attainment of 

peak shear resistance. Its effect again is higher in the negative region 

compared to that of the positive region during the last loading stage. It 
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signifies that the performance of the column in one direction depends on 

the experienced accumulated damage of the other direction in the later 

stage of lateral loading along with huge constant axial compressive load. 

 

 

Figure 7-16. Cyclic Envelops 
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Figure 7-17. Reduction of Peak Shear Resistance due to P-Delta Effect (%) 

 

 

Figure 7-18. Moment-Loading Response at base section 
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Figure 7-19. Moment-Peak Loading Response at base section for positive 

excursion 

 

Figure 7-20. Shear Force-Loading Response at base section 
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Figure 7-21. Shear Force-Peak Loading Response at base section for 

positive excursion 

 

 

Figure 7-22. Curvature-Loading Response at base section 
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Figure 7-23. Curvature-Peak Loading Response at base section for positive 

excursion 

 

Figure 7-24. Curvature-Peak Loading Response at 447 mm from base 

section for positive excursion 
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Figure 7-25. Stirrup Strain-Peak Loading Response at base section for 

positive excursion 

 

Figure 7-26. Stirrup Strain -Peak Loading Response at 447 mm from base 

section for positive excursion 
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Figure 7-27. Principle Strain-Peak Loading Response of Rightmost 

Concrete Fibre at base section for positive excursion 

 

Figure 7-28. Principle Strain-Peak Loading Response of Rightmost 

Concrete Fibre at 447 mm from base section for positive excursion 
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Figure 7-29. Axial Strain-Peak Loading Response of Rightmost vertical 

Steel Rebar at base section for positive excursion 

 

Figure 7-30. Axial Strain-Peak Loading Response of Rightmost vertical 

Steel Rebar at 447 mm from base section for positive excursion 

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0 50 100 150 200 250 300

R
eb

ar
 S

tr
ai

n

Peak Loading at positive excursion (kN)

With P-Delta Effect

Without P-Delta Effect

-0.006

-0.005

-0.004

-0.003

-0.002

-0.001

0

0 50 100 150 200 250 300

R
eb

ar
 S

tr
ai

n

Peak Loading at positive excursion (kN)

With P-Delta Effect

Without P-Delta Effect



292 

 

 

Figure 7-31. Axial Strain-Peak Loading Response of Rightmost vertical 

Steel Rebar at base section for negative excursion 

 

Figure 7-32. Axial Strain-Peak Loading Response of Rightmost vertical 

Steel Rebar at 447 mm from base section for negative excursion 
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Figure 7-18 shows the moment-peak loading response at positive 

excursion. It can be observed, the moment response is in 45 degree when 

we do not consider P-Delta effect as expected. However, if we consider P-

Delta effect moment response gets deviated from the 45 degree response 

line, which indicates that the proposed element is able to successfully 

reproduce the geometric nonlinearity effect. This observation can also be 

supported from the Figure 7-19 where it has been clearly shown the effect 

of geometric nonlinearity on the moment response. P-Delta does not affect 

only on bending moment, it also similarly effect on shear force which can 

be seen from the Figures 7-20 and 7-21. Figure 7-22 shows the curvature-

loading response at the base section. It can be observed that attainment of 

curvature is higher when we consider P-Delta effect in each loading cycle. 

Unlike bending moment and shear force, from Figure 7-23, it can be noted 

that curvature gets increased at later stage of loading which is consistent 

with the experimental observation. However, from Figure 7-24 it can be 

seen that curvature at 447 mm above the base section, gets unloaded which 

signifies that external input energy gets resisted almost fully by the shear 

energy i.e. failure gets controlled by shear mode. This phenomena can be 

again substantiated from the Figures 7-25 and 7-26 where stirrup strain gets 

increased at both base section and the section located 447 mm from the 

base section, which indicates that shear energy resists the external input 
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energy. It can also be observed from Figure 7-27 that concrete fibre reaches 

substantial amount of principle compressive strain. However, concrete 

compressive strain gets unloaded at the section located at 447 mm from the 

base section, which signifies that flexural action gets ceased i.e. shear mode 

fully controls the failure mode. This observation can also be supported 

from the Figures 7-29 and 7-30 where rightmost vertical rebar reaches 

substantial amount of strain at the base section but in the nearest section, 

the axial strain gets unloaded. Similar observations can also be seen from 

the Figures 7-31 and 7-32 for negative loading excursions. 

 

From the above results, it can be concluded that the proposed mixed based 

shear beam element including geometric nonlinearity effect, successfully 

reproduce global and local behaviour along with the flexure and shear 

failure modes under both monotonic and cyclic loading conditions. 
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Chapter 8 Summary and Conclusions 
 

 

8.1 Summary 

 
The objective of this research work was the development of two 

dimensional frame finite element models for the analysis of shear critical 

reinforced concrete, steel and steel-concrete composite structural members 

considering the interaction of axial force, bending moment and shear force 

under monotonic and cyclic loading conditions. The frame elements are 

based on a two-field mixed formulation following Hellinger-Reissner 

variational principle where both section forces and displacements are 

simultaneously approximated within the element through independent 

interpolation functions. Force interpolation functions satisfy the differential 

section equilibrium equations in its strong form i.e. nodal equilibrium 

equations with externally applied concentrated loads in an internally 

statically determinate system under small deformation assumptions. The 

composite frame elements with partial interaction are based on both 

displacement and two-field mixed formulations where the slip field has 

been determined from the independent nodal displacement degree of 

freedoms to solve the governing differential equations of statically 

internally indeterminate system. Shear deformation has been considered 

through the Timoshenko based section kinematics. Distributed inelasticity 
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at the element level is considered through the integration of section 

response of various section integration points along the length of the 

element by Gauss-Lobatto integration scheme. Section response in a 

particular section integration point has been obtained by integration of 

material response of fibre discretization across the cross-section through 

the midpoint integration rule. The interaction between normal and shear 

stress has been considered through 2D material model at a single material 

point in a section. Response in the vertical direction of 2D material model 

has been statically condensed out by satisfying the vertical stress 

equilibrium equation. 

 

For the analysis of reinforced concrete members, a fixed crack smeared 

softened membrane model which is based on the stress equilibrium, the 

strain compatibility and the constitutive relationships of materials, has been 

used to account for multi-axial stress states due to crack-induced anisotropy 

in reinforced concrete fibres. Softening effect on compressive strength of 

concrete due to perpendicular tensile strains, tension stiffening effects on 

concrete due to longitudinal reinforcement and effect of concrete on 

reinforcement stress-strain relations have been considered in the material 

constitutive models. Transverse equilibrium between concrete and stirrups 

of 2D material fibre has been used considering no bond-slip along the 

vertical direction, to constrain the vertical stress component to synchronize 
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the stress field of the frame element. The proposed frame element has been 

validated by comparing the numerical response with experimental 

measurements of different types of reinforced concrete members under 

monotonic and cyclic loading conditions. Different failure modes of 

reinforced concrete beams, columns and shear walls i.e. flexure, flexure-

shear and shear modes have been simulated. The good agreement between 

experimental and numerical results validates the proposed element 

formulation. 

 

For the analysis of steel members, 2D J2 plasticity and generalized 

plasticity models with radial return mapping algorithm are implemented for 

structural steel fibres under monotonic and cyclic loading conditions 

respectively to accommodate the interaction among the multi-axial stress 

states. The proposed frame element has been validated by comparing the 

numerical response with experimental measurements of shear critical shear 

links of eccentrically braced frame systems under monotonic and cyclic 

loading conditions. The good agreement between experimental and 

numerical results validates the proposed element formulation. 

 

For the analysis of shear critical steel-concrete composite members with 

deformable shear connectors, the above mentioned material models are 

implemented to consider the multi-axial stress states. The transfer of forces 
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between steel and concrete due to partial interaction has been modelled by 

distributed spring elements. The element is validated through correlation 

studies with experimental results of shear critical SC composite beams for 

monotonic loading conditions. The good agreement between experimental 

and numerical results validates the proposed composite element 

formulations with partial interaction. 

 

This research work concludes with the development of frame element 

under large displacements which is based on two-field mixed formulations 

following Hellinger-Reissner variational principle. The corotational 

formulation has been used to describe the large displacement at the element 

nodal level which has generated the external geometric stiffness matrix. 

Degenerated form of Green-Lagrange strain measure in the generalized 

section deformation has been used at the basic element level which has 

produced the internal geometric stiffness matrix. The proposed frame 

element has been validated through correlation studies with experimental 

results of flexure and flexure-shear critical slender reinforced concrete 

columns (shear slenderness ratio > 5) under both monotonic and cyclic 

loading conditions. The good agreement between numerical and 

experimental results validates the proposed frame element considering both 

material inelasticity and geometric nonlinearity. 
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The proposed frame element formulations are not able to account for 

various experimentally observed limit states such as local buckling, the 

dowel actions of reinforcing steel and rebar fracture at the cracks. 

8.2 Conclusions 

The strength and deformation capacity depend on cumulative damage 

experienced by the components under seismic loading excursions.  Thus 

cyclic loading protocols used in the experiments should be able to create 

accurate cumulative damage in the component, to become the 

representative of the anticipated seismic time history (Krawinkler et al. 

(2001)). The proposed finite element models used memory or history 

dependent cyclic material constitutive laws, thus are able to capture the 

cumulative damage effect. Experimentally observed strength, deformation 

and energy dissipation capacity along with strength and stiffness 

degradation of various components have been reasonably reproduced by 

the proposed finite element models under cyclic loading conditions. 

Therefore, it can be concluded that the proposed frame elements 

formulations based on two-field Hellinger-Reissner functional, are suitable 

for seismic analysis of structures. 

 

The following conclusions can be drawn from this research work. 
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Element Formulation 

• Consistent variational framework of frame element formulations for 

determining element tangent stiffness and resistance matrix has been 

developed by following four critical steps: 

 

1. Choosing of variational principle and development of 

 functional at the section level 

 

2. Variation of chosen functional based on independent 

 arguments 

 

3. Discretization of section level generalized degrees of 

 freedom 

 

4. Linearization of variation of functional with respect to 

 principle nodal arguments 

 

• New stability criteria for two-field mixed based frame element 

formulations considering shear deformation have been proposed. 

• Axial-flexure-shear interaction has been successfully captured by the 

proposed frame elements through the implementation of 2D material 

models. 
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Reinforced Concrete and Steel Members 

 

• Load deformation response of flexure-shear and shear critical 

reinforced concrete beams with various shear span to depth ratio, 

which fails in flexure compression and shear compression, has been 

simulated rationally well. 

 

• The proposed frame element can reasonably simulate the load-

deflection response, unloading and reloading stiffness, shear 

resistance and deformation capacity and pinching effect of reinforced 

concrete columns with various aspect ratios under cyclic loading 

conditions. 

 

• The load deflection response of flexure-shear critical reinforced 

concrete shear walls along with hysteretic energy with pinching 

effect has been captured by the proposed frame element very well. 

 

• The implemented J2 plasticity and generalized plasticity material 

models of steel have excellently simulated the monotonic and reverse 

cyclic load deformation response of shear critical shear links. 
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Composite Members with Partial Interaction 

 

• The numerical studies of the proposed composite frame element with 

partial interaction have proved the superiority of mixed based 

formulations over displacement based elements. 

 

• The proposed composite elements with deformable sear connectors 

have successfully captured the load deflection response of steel-

concrete-steel sandwiched beams under monotonic loading 

conditions. 

 

• Various global and local response variables for steel-concrete 

composite decks such as the load-deflection response, inelastic 

curvature and shear deformation distribution along the length of the 

beam has been excellently captured by the proposed mixed based 

composite element. 

 

• To represent the local behaviour of composite beams, displacement 

based formulations need a large number of elements compared to 

that for the global response simulation. In both cases, the number of 

required elements is much larger compared to the mixed based 

formulation to achieve a similar degree of convergence. 
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Reinforced Concrete Members with Geometric Nonlinearity 

 

• The proposed frame element considering both material and 

geometric nonlinearity can capture the load-deflection response and 

hysteretic behaviour of slender flexure critical reinforced concrete 

columns under both monotonic and cyclic loading conditions 

successfully. 

 

• A consistent state determination process has been developed for 

mixed based frame element with large displacement effects through a 

corotational formulation. 

 

• The experimentally observed post-peak softening region of shear 

force-shear deformation curve of slender reinforced concrete 

columns which fails in a flexure-shear mode has been simulated by 

the proposed frame elements satisfactorily. 

 

• Shear strength degradation due to P-Delta effect in both positive and 

negative regions of reinforced concrete columns subjected to 

simultaneous axial compressive and lateral loading, has successfully 

been captured by the proposed frame element. 

8.3 Recommendations for Future Research 
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The following directions for future research work can be adopted to extend 

the capabilities of the proposed frame element formulations: 

 

• The frame element formulations can be extended to enhance the 

material models by including longitudinal bar buckling, dowel 

actions, low cyclic fatigue and fracture, mechanisms related to the 

behaviour before and after the onset of axial failure, cyclic damage, 

robust crack opening and closing phenomena under cyclic loading 

condition. 

 

• Integration of anchorage-slip phenomena following bond 

stress/strain variation inside the joints based on equilibrium, 

compatibility and constitutive law, with the proposed frame elements 

considering numerical and physical shear localization will help to 

accurately determine the load deformation response. 

 

• The proposed frame elements can be extended for other loading 

scenarios such as impact, blast, temperature, creep and fatigue etc. 

 

• 3D element formulations considering both material and geometric 

nonlinearity with section distortion and warping will certainly 

enhance the capability of the proposed frame elements to reach an 

esteemed level. 
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Appendix A 
 

 

The elements of external geometric stiffness matrix 𝑲𝑜𝑔 were first 

developed by Alemdar (2001). Here, the matrix has been modified to 

consider the effect of the middle degree of freedom. 

 

𝑲𝑜𝑔 =

[
 
 
 
 
 
 
 

𝐺11 𝐺12 0 𝐺14 𝐺15 0 0

𝐺21 𝐺22 0 𝐺24 𝐺25 0 0

0 0 0 0 0 0 0

𝐺41 𝐺42 0 𝐺44 𝐺45 0 0

𝐺51 𝐺52 0 𝐺54 𝐺55 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 ]
 
 
 
 
 
 
 

 

 

𝐺11 = −(𝑄𝑒𝑙𝑒(2) + 𝑄𝑒𝑙𝑒(3) + 𝑄𝑒𝑙𝑒(4))
−(𝑦21 + 𝑣21)2𝐿

𝜕𝐿

𝜕𝑢𝐼

𝐿4
− 𝑄𝑒𝑙𝑒(1)

−𝐿 − (𝑥21 + 𝑢21)
𝜕𝐿

𝜕𝑢𝐼

𝐿2
 

 

𝐺12 = (𝑄𝑒𝑙𝑒(2) + 𝑄𝑒𝑙𝑒(3) + 𝑄𝑒𝑙𝑒(4))
−𝐿2 − (𝑥21 + 𝑢21)2𝐿

𝜕𝐿

𝜕𝑢𝐼

𝐿4
− 𝑄𝑒𝑙𝑒(1)

−(𝑦21 + 𝑣21)
𝜕𝐿

𝜕𝑢𝐼

𝐿2
 

 

𝐺14 = (𝑄𝑒𝑙𝑒(2) + 𝑄𝑒𝑙𝑒(3) + 𝑄𝑒𝑙𝑒(4))
−(𝑦21 + 𝑣21)2𝐿

𝜕𝐿

𝜕𝑢𝐼

𝐿4
+ 𝑄𝑒𝑙𝑒(1)

−𝐿 − (𝑥21 + 𝑢21)
𝜕𝐿

𝜕𝑢𝐼

𝐿2
 

 

𝐺15 = −(𝑄𝑒𝑙𝑒(2) + 𝑄𝑒𝑙𝑒(3) + 𝑄𝑒𝑙𝑒(4))
−𝐿2 − (𝑥21 + 𝑢21)2𝐿

𝜕𝐿

𝜕𝑢𝐼

𝐿4
+ 𝑄𝑒𝑙𝑒(1)

−(𝑦21 + 𝑣21)
𝜕𝐿

𝜕𝑢𝐼

𝐿2
 

 

𝐺21 = −(𝑄𝑒𝑙𝑒(2) + 𝑄𝑒𝑙𝑒(3) + 𝑄𝑒𝑙𝑒(4))
−𝐿2 − (𝑦21 + 𝑣21)2𝐿

𝜕𝐿

𝜕𝑣𝐼

𝐿4
− 𝑄𝑒𝑙𝑒(1)

−(𝑥21 + 𝑢21)
𝜕𝐿

𝜕𝑣𝐼

𝐿2
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𝐺22 = (𝑄𝑒𝑙𝑒(2) + 𝑄𝑒𝑙𝑒(3) + 𝑄𝑒𝑙𝑒(4))
−(𝑥21 + 𝑢21)2𝐿

𝜕𝐿

𝜕𝑣𝐼

𝐿4
− 𝑄𝑒𝑙𝑒(1)

−𝐿 − (𝑦21 + 𝑣21)
𝜕𝐿

𝜕𝑣𝐼

𝐿2
 

 

𝐺24 = (𝑄𝑒𝑙𝑒(2) + 𝑄𝑒𝑙𝑒(3) + 𝑄𝑒𝑙𝑒(4))
−𝐿2 − (𝑦21 + 𝑣21)2𝐿

𝜕𝐿

𝜕𝑣𝐼

𝐿4
+ 𝑄𝑒𝑙𝑒(1)

−(𝑥21 + 𝑢21)
𝜕𝐿

𝜕𝑣𝐼

𝐿2
 

 

𝐺25 = −(𝑄𝑒𝑙𝑒(2) + 𝑄𝑒𝑙𝑒(3) + 𝑄𝑒𝑙𝑒(4))
−(𝑥21 + 𝑢21)2𝐿

𝜕𝐿

𝜕𝑣𝐼

𝐿4
+ 𝑄𝑒𝑙𝑒(1)

−𝐿 − (𝑦21 + 𝑣21)
𝜕𝐿

𝜕𝑣𝐼

𝐿2
 

 

𝐺41 = −(𝑄𝑒𝑙𝑒(2) + 𝑄𝑒𝑙𝑒(3) + 𝑄𝑒𝑙𝑒(4))
−(𝑦21 + 𝑣21)2𝐿

𝜕𝐿

𝜕𝑢𝐽

𝐿4
− 𝑄𝑒𝑙𝑒(1)

𝐿 − (𝑥21 + 𝑢21)
𝜕𝐿

𝜕𝑢𝐽

𝐿2
 

 

𝐺42 = (𝑄𝑒𝑙𝑒(2) + 𝑄𝑒𝑙𝑒(3) + 𝑄𝑒𝑙𝑒(4))
𝐿2 − (𝑥21 + 𝑢21)2𝐿

𝜕𝐿

𝜕𝑢𝐽

𝐿4
− 𝑄𝑒𝑙𝑒(1)

−(𝑦21 + 𝑣21)
𝜕𝐿

𝜕𝑢𝐽

𝐿2
 

 

𝐺44 = (𝑄𝑒𝑙𝑒(2) + 𝑄𝑒𝑙𝑒(3) + 𝑄𝑒𝑙𝑒(4))
−(𝑦21 + 𝑣21)2𝐿

𝜕𝐿

𝜕𝑢𝐽

𝐿4
+ 𝑄𝑒𝑙𝑒(1)

𝐿 − (𝑥21 + 𝑢21)
𝜕𝐿

𝜕𝑢𝐽

𝐿2
 

 

𝐺45 = −(𝑄𝑒𝑙𝑒(2) + 𝑄𝑒𝑙𝑒(3) + 𝑄𝑒𝑙𝑒(4))
𝐿2 − (𝑥21 + 𝑢21)2𝐿

𝜕𝐿

𝜕𝑢𝐽

𝐿4
+ 𝑄𝑒𝑙𝑒(1)

−(𝑦21 + 𝑣21)
𝜕𝐿

𝜕𝑢𝐽

𝐿2
 

 

𝐺51 = −(𝑄𝑒𝑙𝑒(2) + 𝑄𝑒𝑙𝑒(3) + 𝑄𝑒𝑙𝑒(4))
−𝐿2 − (𝑦21 + 𝑣21)2𝐿

𝜕𝐿

𝜕𝑣𝐽

𝐿4
− 𝑄𝑒𝑙𝑒(1)

−(𝑥21 + 𝑢21)
𝜕𝐿

𝜕𝑣𝐽

𝐿2
 

 

𝐺52 = (𝑄𝑒𝑙𝑒(2) + 𝑄𝑒𝑙𝑒(3) + 𝑄𝑒𝑙𝑒(4))
−(𝑥21 + 𝑢21)2𝐿

𝜕𝐿

𝜕𝑣𝐽

𝐿4
− 𝑄𝑒𝑙𝑒(1)

𝐿 − (𝑦21 + 𝑣21)
𝜕𝐿

𝜕𝑣𝐽

𝐿2
 

 

𝐺54 = (𝑄𝑒𝑙𝑒(2) + 𝑄𝑒𝑙𝑒(3) + 𝑄𝑒𝑙𝑒(4))
𝐿2 − (𝑦21 + 𝑣21)2𝐿

𝜕𝐿

𝜕𝑣𝐽

𝐿4
+ 𝑄𝑒𝑙𝑒(1)

−(𝑥21 + 𝑢21)
𝜕𝐿

𝜕𝑣𝐽

𝐿2
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𝐺55 = −(𝑄𝑒𝑙𝑒(2) + 𝑄𝑒𝑙𝑒(3) + 𝑄𝑒𝑙𝑒(4))
−(𝑥21 + 𝑢21)2𝐿

𝜕𝐿

𝜕𝑣𝐽

𝐿4
+ 𝑄𝑒𝑙𝑒(1)

𝐿 − (𝑦21 + 𝑣21)
𝜕𝐿

𝜕𝑣𝐽

𝐿2
 

 

𝑥21 = (𝑥2 − 𝑥1) 

 

𝑢21 = (𝑢𝐽 − 𝑢𝐼) 

 

𝑦21 = (𝑦2 − 𝑦1) 

 

𝑣21 = (𝑣𝐽 − 𝑣𝐼) 

 

𝐿 = √((𝑥2 − 𝑥1) + (𝑢𝐽 − 𝑢𝐼))
2 + ((𝑦2 − 𝑦1) + (𝑣𝐽 − 𝑣𝐼))

2 

 

𝜕𝐿

𝜕𝑢𝐼
= −

𝑥21 + 𝑢21

𝐿
 

 

𝜕𝐿

𝜕𝑢𝐽
=

𝑥21 + 𝑢21

𝐿
 

 

𝜕𝐿

𝜕𝑣𝐼
= −

𝑦21 + 𝑣21

𝐿
 

 

𝜕𝐿

𝜕𝑣𝐽
=

𝑦21 + 𝑣21

𝐿
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Appendix B 
 

 

The Uniaxial material models for concrete and steel have been briefly 

described below. 

 

The monotonic stress strain curve envelop of the concrete is represented by 

a parabolic curve as shown in Figure B-1. 

 

 

Figure B-1. Monotonic non-softened and softened stress–strain curve 

 

The following equations are used for equivalent uniaxial strength 𝑓𝑐 and 

tangent stiffness 𝐸𝑡 at different regions of compressive stress-strain curve 

shown in Figure 2-6: 

 

For region OA, 
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𝑓𝑐 = 𝜁�́�𝑐 [2 (
�̅�𝑐

𝜁𝜀0
) − (

�̅�𝑐

𝜁𝜀0
)
2
]                 (1) 

 

𝐸𝑡 = 
2�́�𝑐

𝜀0
(1 −

�̅�𝑐

𝜁𝜀0
)                   (2) 

 

For region AB, 

 

𝑓𝑐 = 𝜁�́�𝑐 [1 − 0.8 (
�̅�𝑐−𝜁𝜀0

𝜀20−𝜁𝜀0
)
2
]               (3) 

 

𝐸𝑡 = −1.6𝜁�́�𝑐(
�̅�𝑐−𝜁𝜀0

(𝜀20−𝜁𝜀0)2
)                (4) 

 

For region BC, 

 

𝑓𝑐 = 0.2𝜁�́�𝑐                   (5) 

 

𝐸𝑡 = 0                   (6) 

 

For reverse cyclic loading condition, unloading and reloading behaviour 

represented by straight lines (Figure B-2), developed by Zulfiqar et al. 

(1990) has been used in this research work with the above mentioned 

softened stress-strain relationship. It has been observed from the 

experimental tests (Sinha et al. (1964) and Karsan et al. (1969)) of cyclic 
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compressive loading of concrete that the envelope curve for cyclic loading 

coincided with the stress-strain curve of monotonic loading. 

 

 

Figure B-2. Cyclic Softened Compression Stress-Strain Relation 

 

Successive degradation of stiffness with increasing compressive strains is 

represented by projecting all reloading lines into the intersection point R 

which is determined by the intersection of the tangent to the monotonic 

envelope curve at the origin and the projection of the unloading line from 

point B that corresponds to the concrete strength of 0.2�́�𝑐 . 

 

Strain and stress at the intersection point R is: 

 

𝜀𝑟 =
0.2𝜁�́�𝑐−𝐸20𝜀20

𝐸𝑐−𝐸20
                  (7) 
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𝑓𝑟 = 𝐸𝑐𝜀𝑟                   (8) 

 

𝐸𝑐 =
2�́�𝑐

𝜀0
                    (9) 

 

𝐸20 is determined from experimental data. 

 

Stress at any point of unloading lines can be determined as follows. 

 

On HD branch, 

 

𝑓ℎ𝑑 =  𝑓𝑚 + 𝐸𝑟(𝜀�̅� − 𝜀𝑚)                 (10) 

 

On HE branch, 

 

𝑓ℎ𝑒 =  0.5𝐸𝑟(𝜀�̅� − 𝜀𝑡)                 (11) 

 

Where 

 

𝐸𝑟 =
𝑓𝑚 − 𝑓𝑟
𝜀𝑚 − 𝜀𝑟
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𝜀𝑡 = 𝜀𝑚 −
𝑓𝑚
𝐸𝑟

 

 

Where 𝑓𝑚 and 𝜀𝑚 are the stress and strain at the unloading point on the 

compressive monotonic envelope. It is to be noted that in this model, after 

reloading to compressive region, the reloading line re-joins the starting 

unloading point. 

 

For partial unloading and reloading cycle, the model follows a straight line 

with modulus 𝐸𝑐. The following rules are adopted to determine the stress 

and stiffness of these branches: 

 

For 𝑓ℎ𝑒 ≤ 𝑓𝑐
𝑡 ≤ 𝑓ℎ𝑑 

 

𝑓𝑐 = 𝑓𝑐
𝑡                   (12) 

 

𝐸𝑡 = 𝐸𝑐                   (13) 

 

For 𝑓𝑐
𝑡 < 𝑓ℎ𝑒 

 

𝑓𝑐 = 𝑓ℎ𝑒                   (14) 

 

𝐸𝑡 = 0.5𝐸𝑟                    (15) 
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For 𝑓𝑐
𝑡 > 𝑓ℎ𝑑 

 

𝑓𝑐 = 𝑓ℎ𝑑                    (16) 

 

𝐸𝑡 = 𝐸𝑟                    (17) 

 

Where 𝑓𝑐
𝑡 is the trial stress determined from strain increment ∆𝜀�̅�: 

 

𝑓𝑐
𝑡 𝑎𝑡 (𝑡 + 1) =  𝑓𝑐

𝑡 𝑎𝑡 (𝑡) + 𝐸𝑐∆𝜀�̅�                (18) 

 

The tensile unloading and reloading rules are independent of the 

compressive ones. It can be seen from Figure B-3 that model can simulate 

tensile stiffening, stiffness degradation for unloading and reloading 

branches. The tensile stress-strain relation is controlled by three points i.e. 

J, K and M. 
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Figure B-3. Cyclic Tensile Stress-Strain Relation (Ayoub, 1999) 

 

Stress and stiffness in various branches can be found as follows: 

 

On JK branch 𝜀𝑡 < 𝜀�̅� ≤ 𝜀𝑛  

 

𝐸𝑡 =
𝜎𝑛

𝜀𝑛−𝜀𝑡
                    (19) 

 

𝜎𝑐 = 𝐸𝑡(𝜀�̅� − 𝜀𝑡)                            (20) 

 

On KM branch 𝜀𝑛 < 𝜀�̅� ≤ 𝜀𝑢 

 

𝐸𝑡 = −𝐸𝑡𝑠                    (21) 
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𝜎𝑐 = 𝜎𝑛 + 𝐸𝑡(𝜀�̅� − 𝜀𝑛)                  (22) 

 

On MN branch 𝜀�̅� > 𝜀𝑢 

 

𝐸𝑡 = 0                    (23) 

 

𝜎𝑐 = 0                    (24) 

 

Here, 𝜀𝑛 and 𝜎𝑛 are the strain and stress at the peak of the tensile stress-

strain relation: 

 

𝜀𝑛 = 𝜀𝑡 + ∆𝜀𝑡                   (25) 

 

𝜎𝑛 = �́�𝑡 (1 +
𝐸𝑡𝑠

𝐸𝑐
) − 𝐸𝑡𝑠∆𝜀𝑡                 (26) 

 

∆𝜀𝑡 is determined as follows: 

 

∆𝜀𝑡 =
�́�𝑡

𝐸𝑐
before cracking                (27) 

 

After cracking: 
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∆𝜀𝑡 =   previous maximum differential between tensile strain and εt

           (28) 

 

𝜀𝑢 is the point where tensile stress is zero. 

 

𝜀𝑢 = 𝜀𝑡 + �́�𝑡(
1

𝐸𝑡𝑠
+

1

𝐸𝑐
)                (29) 

 

�́�𝑡 = 0.31√�́�𝑐(𝑀𝑃𝑎)                (30) 

 

Here, 𝐸𝑡𝑠 is the tension stiffening modulus and 𝐸𝑐 is the initial compressive 

modulus. 

 

Uniaxial steel model is used for the rebars in the reinforced concrete 

members. There are many types of uniaxial models available. The bilinear 

steel model is the simplest one but is suitable for monotonic loading 

conditions only. In this study, nonlinear model developed by Menegotto et 

al. (1973) and later modified by Filippou et al. (1983) to include isotropic 

strain hardening has been adopted (Figure B-4). This model has been used 

by many researchers for modelling reinforcing stress-strain hysteretic 

behaviour under cyclic loading conditions as with this model through 

single equation both loading and unloading states can be described and it is 

computationally efficient and agrees very well with cyclic experimental 
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results on reinforcing bars. Rebar buckling and fracture has not been 

included in this research work. Interested readers are referred to Dhakal et 

al. (2002), Zong et al. (2014) and Kenawy et al. (2018). 

 

The stress-strain relationship of the model is: 

 

𝜎∗ = 𝑏𝜀∗ + 
(1−𝑏)𝜀∗

(1+𝜀∗𝑅)1/𝑅
                (31) 

 

Where: 

 

𝜀∗ = 
𝜀 − 𝜀𝑟

𝜀0 − 𝜀𝑟
 

 

𝜎∗ =
𝜎 − 𝜎𝑟

𝜎0 − 𝜎𝑟
 

 

𝑅 = 𝑅0 −
𝑎1𝜉

𝑎2 + 𝜉
 

 

𝜉 =  |
(𝜀𝑚 − 𝜀0)

𝜀𝑦
| 

𝑏 =
𝐸ℎ

𝐸
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𝐸ℎ =
𝜎𝑢 − 𝜎𝑦

𝜀0 − 𝜀𝑦
 

 

𝜀𝑦 =
𝜎𝑦

𝐸
 

 

The tangent modulus can be determined as: 

 

𝐸𝑡 = (
𝜎0−𝜎𝑟

𝜀0−𝜀𝑟
)

𝑑𝜎∗

𝑑𝜀∗
                 (32) 

 

Where, 

 

𝑑𝜎∗

𝑑𝜀∗
= 𝑏 + (

(1−𝑏)

(1+𝜀∗𝑅)
1
𝑅

)(1 −
𝜀∗𝑅

1+𝜀∗𝑅
) 
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Figure B-4. Menegotto-Pinto model 

 

Filippou et al. (1983) has modified this model to account for isotropic 

hardening by imposing a shift in stress through moving the yield asymptote 

through the following relation: 

 

𝜎𝑠𝑡 = 𝑎3(
𝜀𝑚𝑎𝑥

𝜀𝑦
− 𝑎4)𝜎𝑦               (33) 

 

Here, 𝐸0 and 𝐸ℎ are elastic modulus and strain hardening modulus. The 

point (𝜎𝑟 , 𝜀𝑟) corresponds to the last reversal. The point (𝜎0, 𝜀0) 

corresponds to the interaction point of initial and strain hardening modulus 

lines after strain reversal. Curvature of transition asymptote and 

Bauschinger effect is represented by the parameter R. The points (𝜎𝑟 , 𝜀𝑟) 

and (𝜎0, 𝜀0) are updated after each strain reversal. 𝜀𝑚 is the strain at the 

previous maximum or minimum strain reversal point depending on whether 

the current strain is increasing or decreasing and 𝜀0 is the strain at the 

current intersection point of two asymptotes. Therefore, 𝜉 needs to be 

updated following a strain reversal. 𝜀𝑚𝑎𝑥is the absolute strain at the 

maximum strain reversal point if the stress shift is applied to the negative 

yield asymptote or at the minimum strain reversal point if the stress shift is 

applied to the positive yield asymptote. The fixed parameters 

𝜎𝑦, 𝐸, 𝑏, 𝑅0, 𝑎1, 𝑎2, 𝑎3, 𝑎4 are determined from experimental data. 
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The effect of concrete on rebar needs to be accounted for as proposed by 

Belarbi et al. (1994, 1995): 

 

For 𝜀�̅� ≤ 𝜀�́� 

 

𝜎𝑠 = 𝐸𝑠𝜀�̅�                  (34) 

 

𝐸𝑡 = 𝐸𝑠                  (35) 

 

For 𝜀�̅� > 𝜀�́� 

 

𝜎𝑠 = (0.91 − 2𝐵)𝑓𝑦 + (0.02 + 0.25𝐵)𝐸𝑠𝜀�̅�             (36) 

 

𝐸𝑡 = (0.02 + 0.25𝐵)𝐸𝑠                (37) 

 

For 𝜀�̅� < 𝜀�̅� during unloading 

 

𝜎𝑠 = 𝑓𝑝 − 𝐸𝑠(𝜀�̅� − 𝜀�̅�)                (38) 

 

𝐸𝑡 = 𝐸𝑠                  (39) 

 

Where, 
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Smeared yield strain 𝜀�́� = �́�𝑦𝐸𝑠 

 

Smeared yield stress �́�𝑦 = (0.93 − 2𝐵)𝑓𝑦 

 

𝐵 =
1

𝜌𝑠𝑖
(
�́�𝑡
𝑓𝑦

)1.5 
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