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Abstract. In this study, the PC-SAFT equation of state is used for vapour-liquid equilibrium calculations 11 

using as independent variables the mixture composition, density and temperature. The method is based 12 

on unconstrained minimisation of the Helmholtz Free energy via a combination of the successive 13 

substitution iteration and Newton-Raphson minimisation methods with line-search; the positive 14 

definiteness of the Hessian is guaranteed by a modified Cholesky decomposition. The algorithm consists 15 

of two stages; initially, the mixture is assumed to be a single-phase and its stability is assessed; in case of 16 

being found unstable, a second stage of phase splitting (flash) takes place, in which the pressure of the 17 

fluid and compositions of both the liquid and vapor phases are calculated. The reliability of two different 18 
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methods presented in the existing literature, (i) using mole numbers and (ii) using the logarithm of the 19 

equilibrium constants as iterative variables, is evaluated in terms of both iterations and computational 20 

time needed to reach convergence, for seven test cases. These include both single and multicomponent 21 

Diesel fuel surrogates, known to give incomplete density information when using pressure and 22 

temperature as independent variables. Results show that iterating with the logarithm of the equilibrium 23 

constants also reproduces this issue, while it requires a smaller number of iterations than using with 24 

mole numbers as independent variables. However, the total computational time needed for the latter 25 

case is vastly inferior. Pressure and vapor volume fraction fields are discussed for a range of 26 

temperatures and densities, apart from the number of iterations needed during the flash calculation 27 

stage. A performance comparison is obtained against the Peng-Robinson equation of state, showing 28 

similar number of iterations required but a computational time increasing with the number of 29 

components. While for a single component PC-SAFT needs around 3 times more CPU time, for 4 30 

components it is 6 times and for a mixture of 8 components it increases up to 14 times. Finally, the 31 

method is demonstrated to converge unconditionally for all conditions tested.  32 

1 Introduction 33 

The PC-SAFT equation of state (EoS)1 is a theoretically derived model, based on perturbation theory2-5, 34 

that requires five molecular-based parameters per component for associating fluids and only three for 35 

non-associating ones. Several advantages accrue when using the PC-SAFT EoS compared to a cubic EoS 36 

to calculate fluid properties. The PC-SAFT EoS more accurately predicts derivative properties, reducing 37 

errors by a factor of up to eight6, 7, as compared to predictions with a cubic EoS, such as the Peng-38 

Robinson8 (PR) or Soave-Redlich-Kwong9 (SRK) EoS. Density predictions with the PC-SAFT EoS exhibit six 39 

times lower error for a widely used surrogate such as dodecane10 and half the error of those made with 40 

improved cubic equations, such as volume-translated versions11. The PC-SAFT EoS provides satisfactory 41 

agreement between calculated and experimental properties of reservoir fluids12, natural gas13 and 42 

asphaltene phase behaviour14, 15.  43 
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There is a wide body of research comparing the accuracy of PC-SAFT against other EoS in multiphase 44 

problem, not exclusively on vapor-liquid equilibrium. Arya et al.16 and more recently Vieira de Melo et 45 

al.17 compared the PC-SAFT and Cubic-Plus-Association18 EoS for phase calculations of asphaltenes 46 

present in crude oils where although both EoS gave acceptable results, the authors drew different 47 

conclusions. Gong et al.19 compared Peng Robinson and PC-SAFT EoS while modelling the VLE of mixed 48 

refrigerants, with no clear advantage of using one EoS over another. The group of the authors (Vidal et 49 

al.20) used it to precisely model the volatility curves of Diesel surrogates up to eight components. Held et 50 

al.21 modelled the solubility of sugar and sugar alcohols in ionic liquids, with reasonable accuracy. 51 

Peyvandi et al.22 compared PC-SAFT, SAFT+CUBIC and PR EoS in the modelling of cryogenic fluids, with a 52 

clear disadvantage on the use of PR EoS. Economou et al.23 investigated the VLE of gaseous mixtures 53 

related to carbon dioxide capture technologies using several EoS: SRK, PR, SAFT, and PC-SAFT EoS, 54 

among them PC-SAFT showed to be the most accurate when no binary interaction parameters (BIP) are 55 

used, although comparable accuracy was observed with a fitted BIP. However, most of the studies focus 56 

on the modelling of the phase equilibria as ’static’ problems, without considering flowing systems, 57 

where the VLE problem is only part of the whole framework of Computational Fluid Dynamics 58 

simulations. Exceptions can be found on the latest work in Diesel sprays24 or Diesel injections25, however 59 

the fuel in these two cases is a single component or a pseudo-component and various techniques are 60 

used to work around the problem of density undefinition inside the saturation curve. Overall, there 61 

seems to be evidence to indicate that independent variables other than pressure and temperature are 62 

needed for complex computational fluid dynamics simulations. 63 

The use of flash with density (or specific volume), temperature and composition is particularly useful 64 

whenever the pressure is unknown in an enclosed fluid and the phase change is a possibility. This 65 

happens in storage tanks design, during the capturing process of acid gases within oil reservoirs, or 66 

compositional reservoir simulations as there is no balance equation for pressure26. Also, in most real 67 

fluid equations of state, e.g. PC-SAFT or cubic EoS, the formulation is given depending naturally on 68 

density, or volume, temperature and composition, which also makes the choice of these variables for 69 
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the VLE calculations the most straight-forward. However, the existing body of research has only 70 

employed pressure and temperature as independent variables for vapor-liquid equilibrium calculations 71 

(PT-VLE) with the PC-SAFT EoS. Moreover, this method shows its limitations when the phase change is at 72 

constant temperature and pressure, characteristic of single components. At constant pressure and 73 

temperature, the state of the substance is undetermined at saturation conditions. However, the volume 74 

(or density) changes provide the complete information. Lastly, this undefinition is not restricted only to 75 

single components as it also appears in multicomponent mixtures for three phase systems27 and those 76 

composed of similar components, as will be shown in the results section for a Diesel surrogate. 77 

A seminal study in this area is the one of Michelsen28, who proposed the use of volume and 78 

temperature as independent variables and the minimising the Helmholtz Free energy rather than the 79 

Gibbs free energy for the multiphase problem. In addition, for pressure-explicit EoS this approach would 80 

also avoid the need for an iterative process to find the density from pressure, as the pressure becomes 81 

then an output of the minimisation process. This approach was then implemented for the stability 82 

testing of hydrocarbon mixtures29 using the SRK and the PR EoS with the tunnelling method30. Following 83 

work used the successive substitution iteration (SSI) method and the PR EoS for the flash problem31. 84 

Over the past decade, studies related to minimising the Helmholtz free energy have been focused on 85 

the Newton method32. Moreover, new frameworks have been published using variations of the 86 

independent variables or decoupling the pressure equality condition during the flash stage33. Recently, a 87 

framework using constrained minimisation has been also published Paterson et al.34 in a generalized 88 

form for specifications based on state functions other than pressure and temperature. There have been 89 

works using density and temperature as independent variables for the calculation of the saturation 90 

curves of single components in PC-SAFT35, 36. However, to author’s best knowledge, stability analysis and 91 

flash calculations using the this equation of state have been restricted to temperature T and pressure P 92 

as independent variables37. 93 

Following the above limitation when pressure and temperature are used as independent variables, 94 

the novelty of this work is the provision and assessment of the necessary numerical framework using 95 
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composition, density and temperature as input variables for the calculation of the vapor-liquid 96 

equilibrium within the structure of PC-SAFT, via the unconstrained minimisation of the Helmholtz Free 97 

energy. 98 

In this study, the minimum of the molar Helmholtz Free energy A is calculated, defined in terms of 99 

density 𝜌, temperature 𝑇 and composition 𝒛 as: 100 

𝐴(𝒛, 𝜌, 𝑇) =∑𝑧𝑖𝐴𝑖
𝑖𝑑(𝑃(𝒛, 𝜌, 𝑇), 𝑇)

𝑛𝑐

𝑖=1

 +  𝐴𝑟𝑒𝑠(𝒛, 𝜌, 𝑇) (1) 101 

Where the superscripts 𝑖𝑑 and 𝑟𝑒𝑠 refer to the ideal, given by the fundamental gas relation, and 102 

residual contributions of the Helmholtz Free Energy, modelled by PC-SAFT, respectively. This 103 

optimisation problem is solved via a combination of the successive substitution iteration (SSI) and the 104 

Newton minimisation method with a two-step line-search procedure, and the positive definiteness of 105 

the Hessian is guaranteed by a modified Cholesky decomposition38. The algorithm consists of two 106 

stages: first, the mixture is assumed to be in a single phase state and its stability is assessed via the 107 

minimisation of the Tangent Plane Distance (TPD); in case the minimum of the TPD is found to be 108 

negative, the mixture is considered unstable and a second stage of flash, i.e. phase splitting, takes place 109 

consisting on the search for the global minimum of the Helmholtz Free Energy. As a result, the pressure 110 

of the fluid and the compositions of both the liquid and vapor phases are calculated, from which every 111 

other thermodynamic property can be calculated, i.e. internal energy, enthalpy, entropy, speed of 112 

sound, etc, using the PC-SAFT1. The reliability of two different methods for the flash stage, NVL 39 and 113 

lnK33, are evaluated in terms of both iterations and computing time needed to reach convergence. 114 

Following the work of von Solmons et al in VLE calculations40, this work also assesses the computational 115 

time needed for its completion. The robustness of the algorithm is then tested with a mixture of 50 116 

components and several other examples often found in the literature in two-phase equilibrium 117 

calculations. Particular attention is paid to the case of a single component and a Diesel surrogate, known 118 

to reproduce the already highlighted incomplete density information when using pressure and 119 
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temperature as independent variables. The overall accuracy of the VT-VLE algorithm combined with PC-120 

SAFT is tested against experimental data for a selected number of examples. 121 

 122 

Following the above introduction, the second section provides the theoretical framework, describing 123 

the Newton method, the stability and flash stages, the strategy followed for the initialisation, the initial 124 

phase splitting in case the mixture is found unstable. The third section shows the results obtained for 7 125 

test cases, providing the number of iterations and the computational time needed for convergence for 126 

both the NVL and lnK methods. Then, the pressure and vapor volume fraction fields for selected 127 

examples are discussed for a range of temperatures and densities, apart from the number of iterations 128 

needed for convergence during the flash stage. A performance comparison is obtained against Peng-129 

Robinson, showing a substantial decrease in computational time when using the cubic than using the 130 

molecular based EoS.  Finally, validation cases against experiments are provided before concluding. The 131 

Supplementary Information provides detailed information regarding the components used in this study 132 

and the analytical derivatives needed for the algorithm. 133 

  134 
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2 Method 135 

Any isolated system at constant 136 

density and temperature tends 137 

spontaneously to an equilibrium state 138 

while decreasing the Helmholtz free 139 

energy of the system, until the global 140 

minimum is reached, i.e. equilibrium. 141 

However, it may be the case that the 142 

state at which the equilibrium occurs is 143 

that of vapor and liquid coexisting. 144 

Thus, the amount of each phase, their 145 

composition and pressure need to be 146 

calculated. 147 

 In this work, the presented 148 

algorithm studies the stability of the 149 

homogeneous mixture using the PC-150 

SAFT EoS for a given composition 151 

z1,...,znc with density ρ and at a certain 152 

temperature T; in case it is found to be 153 

unstable, the vaporized fraction of the 154 

substance, the compositions of both 155 

phases and the resulting pressure in 156 

equilibrium are calculated via flash.  157 

Both algorithms for the stability and 158 

flash stages have been already developed and published for the Peng Robinson EoS; only minor changes 159 

are needed for the PC-SAFT EoS regarding the convergence criteria in the iterations and constraints. 160 

Scheme 1. General diagram for multiphase calculations 
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Scheme 1 shows the general diagram of the algorithm used in the multiphase calculations. For 161 

consistency, the whole algorithm is described here, and any novelty introduced is clearly stated in the 162 

following subsections.  163 



9 

2.1 Newton method 164 

The Newton method 41 provides a good approximation for the root of an objective function. 165 

Essentially, the independent variables vector 𝛜 of the objective function is iteratively updated from step 166 

k to the following k + 1 by 167 

 𝛜(𝑘+1) = 𝛜(𝑘) + λ𝒑(𝑘) (2) 168 

where λ is the step length, which defines how far the next step moves along the Newton direction p(k). 169 

The step length is set in two stages. First, an initial value of 1 is given and it is continuously halved until 170 

𝛜(𝑘+1)  satisfies the variable constraints of each problem, specified in the following sections. These 171 

constrains may be related, for instance, to the feasible values of density or compositions. Then, an 172 

inexact line search is executed to obtain a step length that satisfies the Wolfe conditions42, which gives 173 

an efficient decrease of the objective function. 174 

The Newton direction p(k) is calculated by solving the system of equations: 175 

𝑯(𝑘)𝒑(𝑘) = −𝒈(𝑘) (3) 176 

where g and H are the gradient and Hessian of the objective function to be minimised. In case the use 177 

of successive substitution iterations (SSI) method is needed, the only difference with the Newton 178 

method is that the Hessian is equal to the identity matrix I. 179 

For the system (3) to have a solution, the Hessian H needs to be positive definite, i.e. its eigenvalues 180 

are all positive real numbers. To satisfy this condition, the modified Cholesky factorisation38 is applied in 181 

this study. The modifications introduce symmetric interchanges of rows and columns, via a permutation 182 

matrix P, and the addition of a non-negative diagonal matrix E which is zero if the Hessian H is positive. 183 

Therefore, the system of equations (3) gets transformed, for every iteration step k, into: 184 

[𝑷(𝑯+ 𝑬)𝑷𝑇](𝑷𝒑) = −𝑷𝒈 (5) 185 

Once the positive definiteness of the modified Hessian is satisfied, it is factorised as: 186 

𝑷(𝑯+ 𝑬)𝑷𝑇 = 𝑴𝑴𝑇 (6) 187 
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where M is a lower triangular matrix. Finally, the system is solved by performing backward and 188 

forward 189 

substitution with the triangular matrix, which consists in the following sequence of operations: 190 

1. Solve 𝑴𝒖 = −𝑷𝒈 to obtain u. 191 

2. Solve 𝑴𝑻�̃�  =  𝒖 to obtain �̃�. 192 

3. Calculate the gradient 𝒈 =  𝑷𝑻 �̃�. 193 

Convergence criteria 194 

The Newton method is assumed to have converged whenever one of the following criteria is 195 

achieved: 196 

1. The Euclidean norm of the change in the iteration variables ‖𝜆𝒑‖2 is less than 10−7. 197 

2. The Euclidean norm of the gradient ‖𝒈‖2 is less than 10−10. 198 

2.2 Stability stage 199 

The stability problem is solved in a similar fashion as that presented by Baker et al. 43for a mixture at 200 

constant temperature T and pressure P. A homogeneous mixture at a certain temperature T is in a 201 

stable state if the tangent plane to the Helmholtz free energy surface at composition z and density ρ 202 

does not intersect the Helmholtz free energy surface at any other point. The stability is tested by 203 

purposely dividing the homogeneous mixture in two phases, one of them in an infinitesimal amount and 204 

it is referred to as ’trial phase’. For any feasible two-phase mixture, if a decrease in the Helmholtz free 205 

energy is not achieved, then the mixture is stable. The so-called tangent plane distance (TPD) as function 206 

of the density times the composition of the trial phase 𝜌′𝑥𝑖′ is: 207 

𝑇𝑃𝐷(𝜌′𝑥𝑖
′) = −

𝑃′−𝑃∗

𝑅𝑔𝑇
+ ∑ 𝜌′𝑥𝑖

′(𝑙𝑜𝑔 𝑓𝑖
′ − 𝑙𝑜𝑔𝑓𝑖

∗)𝑛𝑐
𝑖=1 (7) 208 

where the tildes over the variables indicate those calculated at the trial conditions and the asterisk 209 

indicates those calculated at the feed conditions. Rg is the universal gas constant and fi is the fugacity of 210 
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the component i. Within the structure of PC-SAFT, it is advisable to write the expression in terms of the 211 

residual reduced Helmholtz free energy, having then: 212 

𝑃 = (1 + ρ𝑚
𝜕𝑎𝑟𝑒𝑠

𝜕ρ𝑚
)𝑘𝐵𝑇ρ𝑚 (10

10
Å

𝑚
)

3

(8) 213 

Where ρ𝑚  is the number density of molecules and 𝑘𝐵  is the Boltzmann constant. Regarding the 214 

fugacity, 215 

𝑙𝑜𝑔𝑓𝑖 = 𝑙𝑜𝑔(𝑥𝑖𝑃ϕ𝑖) (9) 216 

Where the logarithm of the fugacity coefficient ϕ of the component 𝑖 is defined as: 217 

𝑙𝑜𝑔𝜙𝑖 = 
1

𝑅𝑔𝑇
 (
𝜕𝐴𝑟

𝜕𝑁𝑖
)
𝑇,𝑉,𝑁𝑠≠𝑖

− log 𝑍 (10)218 

where 𝑍 is the compressibility factor and 𝐴𝑟 is the non-reduced Helmholtz free energy. This equation is 219 

used for the Peng Robinson EoS following the formulation of Nichita33. For PC-SAFT, the original 220 

formulation of Gross and Sadowski1 is used: 221 

𝑙𝑜𝑔ϕ𝑖 = 𝑎
𝑟𝑒𝑠 + 𝜌𝑚

𝜕𝑎𝑟𝑒𝑠

𝜕𝜌𝑚
+
𝜕𝑎𝑟𝑒𝑠

𝜕𝑥𝑖
−∑𝑥𝑗

𝜕𝑎𝑟𝑒𝑠

𝜕𝑥𝑗

𝑛𝑐

𝑗=1

(11) 222 

The derivation of the TPD function can be seen in the work of Mikyska and Firoozabadi44. The stability 223 

is assured if for any feasible solution 𝜌′𝑥𝑖′  the TPD function is non-negative. Therefore, the problem is 224 

reduced to the search of the global minima of the TPD function, subjected to the material constraints: 225 

 𝜌′𝑥𝑖
′ > 0 ∀𝑖 (12) 226 

∑𝜌′𝑥𝑖
′

𝑛𝑐

𝑖=1

≤ 𝜌𝑚𝑎𝑥(𝑥𝑖
′, 𝑇) (13) 227 

where ρmax refers to the maximum packing fraction at fixed composition 𝑥𝑖′  and temperature T. For 228 

the Newton method, the required gradient is given by: 229 

 
𝜕𝑇𝑃𝐷

𝜕(𝜌′𝑥𝑖)
= 𝑙𝑜𝑔𝑓𝑖

′ − 𝑙𝑜𝑔 𝑓𝑖
∗ (14) 230 

Nichita 45 studied alternatives to use as iteration variables such as log(𝜌′𝑥𝑖′) and 𝛼𝑖 = 2√𝜌′𝑥𝑖′ , in a 231 

similar manner as shown by Michelsen28. His study concluded that the αi ensured the most robust and 232 
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fast convergence for the stability problem and it is the one used in this work. For this case, the gradient 233 

is: 234 

∂𝑇𝑃𝐷

∂α𝑖
= √𝜌′𝑥𝑖(log 𝑓𝑖

′ − log 𝑓𝑖
∗) (15) 235 

and the Hessian is: 236 

∂𝑇𝑃𝐷

∂α𝑖 ∂α𝑗
= δ𝑖𝑗 + √𝜌

′𝑥𝑖√𝜌
′𝑥𝑗 [

∂ log 𝑓𝑖
∂𝑛𝑗

−
𝛿𝑖𝑗

𝜌′𝑥𝑖
] (16) 237 

In order to avoid unnecessary iterations when the Newton is converging to a trivial solution, i.e. TPD = 238 

0, in this work another stopping criterion is used, also first introduced but for the TPN case by  239 

Michelsen28. At every iteration the convergence variable r is checked: 240 

𝑟 =
2 𝑇𝑃𝐷(𝑘)

∑ (𝜌′𝑥𝑖 − 𝜌𝑧𝑖)(log 𝑓𝑖
′ − log 𝑓𝑖

∗)𝑛𝑐
𝑖=1

(17) 241 

which tends to 1 as the method converges to the trivial solution. Therefore, the iterations are stopped 242 

if |r − 1| < 0.2 and TPD(k) < 10−3. 243 

2.3 Initialisation 244 

The stability stage needs an initial condition to start the iterative process. Tipically, Wilson’s 245 

correlation 46 is used to guess the initial equilibrium constants Ki: 246 

𝐾𝑖 =
𝑃𝑐,𝑖
𝑃
exp [5.37(1 + ω𝑖) (1 −

𝑇𝑐,𝑖
𝑇
)] (18) 247 

where for every component i, Pc,i and Tc,i are the critical pressure and temperature and ωi is the 248 

acentric factor. These three values are used in most cubic EoS and are widely available in the literature, 249 

but not in PC-SAFT EoS. However, the exact critical values specific for the PC-SAFT EoS can be calculated 250 

following a published algorithm47, which comprises an iterative process in order to verify the three 251 

critical specifications: 252 

𝑃(𝑇𝑐 , ρ𝑐) − 𝑃𝑐 = 0 (19) 253 

𝜕𝑃

𝜕𝜌
= 0 at (𝑇𝑐 , 𝜌𝑐) (20) 254 
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𝜕2𝑃

𝜕ρ2
= 0 at (𝑇𝑐 , ρ𝑐) (21) 255 

 256 

Unlike for the PT-multiphase problem, the pressure of the mixture is unknown a-priori for VT 257 

specifications, so a different strategy must be used, as the one used by Nichita45. According to Raoult’s 258 

law: 259 

 260 

𝐾𝑖 =
𝑃𝑠𝑎𝑡,𝑖(𝑇)

𝑃
(22) 261 

where Psat,i(T) is the saturation pressure of the component i at a temperature T. From this law, follows 262 

that Psat,i(T) = P when Ki = 1, therefore from eq. (13) it follows: 263 

 264 

𝑃𝑠𝑎𝑡,𝑖(𝑇) = 𝑃𝑐,𝑖exp [5.37(1 + ω𝑖)(1 −
𝑇𝑐,𝑖

𝑇
)] (23) 265 

The strategy for the initial composition of the trial phase is slightly different if it is considered to be 266 

vapor-like or liquid-like. Michelsen 28 proposed the initial composition of the trial phase, for both cases, 267 

to be:  268 

𝑥𝑖
𝑣(0) = 𝑧𝑖𝐾𝑖

(0) and 𝑥𝑖
𝑙(0) =

1

𝑧𝑖𝐾𝑖
(0)

(24) 269 

which, using Raoul’s law (14) transform to: 270 

𝑥𝑖
𝑣(0) = 𝑧𝑖

𝑃𝑠𝑎𝑡,𝑖(𝑇)

𝑃𝑣(0)
 and 𝑥𝑖

𝑙(0) =
𝑧𝑖

𝑃𝑠𝑎𝑡,𝑖(𝑇)
𝑃𝑙(0) (25) 271 

where the initial pressures 𝑃𝑣(0) and is 𝑃𝑙(0) are first taken as that given by the EoS for the single 272 

phase system at 𝑇, 𝜌 and composition 𝒛. If the calculated pressure is negative, Mikyska and Firoozabadi 273 

44 estimated them as: 274 

 275 

𝑃𝑣(0) = ∑ 𝑧𝑖𝑃𝑠𝑎𝑡,𝑖(𝑇)
𝑛𝑐
𝑖=1  and 𝑃𝑙(0) = ∑

𝑃𝑠𝑎𝑡,𝑖(𝑇)

𝑧𝑖

𝑛𝑐
𝑖=1 (26) 276 

The initial density of the trial phase is then calculated iteratively using the EoS for both initial 277 

compositions 𝑥𝑖
𝑣(0) and 𝑥𝑖

𝑙(0)  at fixed temperature 𝑇 and at the corresponding initial pressures 𝑃𝑣(0) and 278 



14 

𝑃𝑙(0). As there may be two densities for every composition and pressure, there can be up to 4 initial 279 

estimates; all the initial estimates are used in the stability stage. 280 

2.4 Initial Phase splitting 281 

In case the mixture is found to be unstable, an initial splitting of the homogeneous phase is executed. 282 

From the stability analysis, the composition and density of the trial phase are fixed to ρ’ and 𝑥𝑖
, . With 283 

variations with respect to the method shown by Jindrova and Mikyska32, the initial density and 284 

composition of the second phase, i.e. 𝜌’’ and 𝑥𝑖
,,, are estimated in terms of the molar fraction of the trial 285 

phase over the feed, 𝛽 =  𝑁’/𝑁∗, from the material and volume constraints: 286 

𝛽𝑥𝑖
′ + (1 − 𝛽)𝑥𝑖

′′ = 𝑧𝑖 (27) 287 

𝛽
1

𝜌′
+ (1 − 𝛽)

1

𝜌′′
=
1

𝜌
(28) 288 

The initial amount of each phase is estimated in the following way: 289 

1. An arbitrary initial trial molar fraction β is chosen. In two phase systems, 𝛽 ∈ (0,1), thus the 290 

chosen initial value in this work is 0.99. 291 

2. The composition and density of the second phase are calculated from the material and volume 292 

constraints (19) (20) by: 293 

 𝑥𝑖
′′ =

𝑧𝑖−𝛽𝑥𝑖
′

1−𝛽
(29) 294 

and 295 

 𝜌′′ =
1−𝛽
1

𝜌
−𝛽

1

𝜌′

(30) 296 

3. The density of the second phase is checked to be lower than that given by the maximum packing 297 

fraction 298 

𝜌′′ < 𝜌𝑚𝑎𝑥(𝑥𝑖
′′ , 𝑇) (31) 299 

If not, a new lower molar fraction value is assumed (i.e. halving the previous value), and the algorithm 300 

returns to step 2. 301 

4. The variation in the Helmholtz free energy is calculated by: 302 
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𝛥𝐴 = 𝐴2 𝑝ℎ𝑎𝑠𝑒 − 𝐴∗ = (𝐴′(𝒙′, 𝜌′, 𝑇) + 𝐴′′(𝒙′′, 𝜌′′, 𝑇)) − 𝐴∗ (32) 303 

5. It is checked whether ∆A < 0, meaning that the current phase split produces a decrease in the 304 

Helmholtz free energy. If ∆A ≥ 0 the molar fraction is halved and step 2 is repeated. If ∆A < 0 the 305 

process is stopped, and the flash stage begins. The phase with the highest density is considered to be 306 

the liquid phase (l) and the other one the vapor phase (v). 307 

 308 

  309 
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2.5 Flash stage 310 

Following the initial phase splitting, the flash stage calculates the amount and compositions of both 311 

phases in equilibrium, in addition to the final equilibrium pressure. This calculation is done via the 312 

minimisation of the variation of the Helmholtz free energy, as in equation 24. Depending on the 313 

iteration variables, two methodologies have been tested. Firstly, the one described by Jindrova and 314 

Mikyska 39 uses the number of moles in both phases and the phase volumes. Secondly, the one 315 

described by Nichita 33 uses the natural logarithm of the equilibrium constants. The two methods have 316 

been coupled with the PC-SAFT framework and the derivatives needed can be found in the 317 

Supplementary Information. 318 

Number of moles and volume as iteration variables 319 

When using the number of moles and the volume of both phases, per mole of feed, the problem 320 

comprises (2 nc)+2 iteration variables 𝑛1
𝑣 , … , 𝑛𝑛𝑐

𝑣 , 𝑉𝑣 , 𝑛1
𝑙 , … , 𝑛𝑛𝑐

𝑙 , 𝑉𝑙. However, because of the material 321 

and volume balances: 322 

 323 

𝑛𝑖
𝑣 + 𝑛𝑖

𝑙 = 𝑧𝑖 (33) 324 

𝑉𝑣 + 𝑉𝑙 =
1

𝜌
(34) 325 

the variables of one phase are dependent on those of the other phase. Therefore, as described by 326 

Jindrova and Mikyska39, it is possible to solve a reduced system in terms of the nc+1 vapor variables. For 327 

the reduced problem, the gradient of the system is given by: 328 

𝑔𝑖 =
𝜕Δ𝐴

∂𝑛𝑖
𝑣 =

log 𝑓𝑖
𝑣 − log 𝑓𝑖

𝑙

√2
 for   𝑖 = 1, 𝑛𝑐 (35) 329 

𝑔𝑛𝑐+1 =
∂Δ𝐴

∂𝑉𝑣
= −

𝑃𝑣 − 𝑃𝑙

√2𝑅𝑔𝑇
(36) 330 

and the Hessian: 331 
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𝑯 = 1/2

(

 
 

⋮
𝑩 ⋮ 𝑪

⋮
… … … ⋮ …

𝑪𝑇 ⋮ 𝐷)

 
 

(37) 332 

Where 333 

𝐵𝑖𝑗 =
𝜕 log 𝑓𝑖

𝑣

∂𝑛𝑗
𝑣 +

𝜕 log 𝑓𝑖
𝑙

∂𝑛𝑗
𝑙

(38) 334 

𝐶𝑖 = −

𝜕𝑃𝑣

𝜕𝑛𝑖
𝑣 +

𝜕𝑃𝑙

∂𝑛𝑖
𝑙

𝑅𝑔𝑇
(39)

 335 

𝐷  = − 

𝜕 𝑃𝑣

𝜕 𝑉𝑣
+
𝜕 𝑃𝑙

𝜕 𝑉𝑙

𝑅𝑔  𝑇
(40) 336 

In order to obtain the variation of the variables for both phases, the Newton direction p is 337 

transformed back into the full (2 nc)+2 dimension premultiplicating by the reducing matrix Z: 338 

𝒁 =
1

√2
(
𝐼𝑛𝑐+1
−𝐼𝑛𝑐+1

) (41) 339 

Finally, the composition and density of both phases are calculated by first obtaining the vapor mole 340 

fraction β = ∑ 𝑛𝑖
𝑣𝑛𝑐

𝑖=1  and then: 341 

  342 

𝑥𝑖
𝑣 =

𝑛𝑖
𝑣

β
 and 𝑥𝑖

𝑙 =
𝑛𝑖
𝑙

1 − β
(42) 343 

ρ𝑣 =
β

𝑉𝑣
 and ρ𝑙 =

1−β

𝑉𝑙
(43) 344 

Following the work of Paterson et al.34, the effect of initial Successive Substitution Iterations 345 

(SSI)during the flash stage were tested. However, no improvement was observed and on average more 346 

iterations were needed to reach convergence. 347 

Logarithm of equilibrium constants 𝐥𝐨𝐠𝑲𝒊 as iteration variables 348 

The use of the logarithms of equilibrium constants, log 𝐾𝑖 = log(𝑥𝑖
𝑣/𝑥𝑖

𝑙), as iteration variables in the 349 

flash problem is one of the most used methods when the multiphase problem is defined in terms of 350 

pressure and temperature. Nichita 33 applied it to the VT-Flash problem by decoupling the pressure 351 
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equality condition  𝑃𝑣(𝑥𝑖
𝑣 , ρ𝑣 , 𝑇) = 𝑃𝑙(𝑥𝑖

𝑙 , ρ𝑙 , 𝑇) = 𝑃𝑒𝑞, which is calculated at every iteration step. 352 

Therefore, the iteration variables are reduced to the 𝑛𝑐 components defining 𝑙𝑜𝑔 𝑲. Then, at every step 353 

the Rachford-Rice equation is solved to obtain the vapor mole fraction β using the Newton-Raphson 354 

method: 355 

 356 

∑
𝑧𝑖(𝐾𝑖−1)

1+𝛽(𝐾𝑖−1)
𝑛𝑐
𝑖=1 = 0 (44) 357 

Which allows to obtain the molar fractions of both phases for every iteration 𝑘 by: 358 

𝑥𝑖
𝑙 =

𝑧𝑖
1 + 𝛽(𝐾𝑖 − 1)

(45) 359 

and 360 

𝑥𝑖
𝑣 = 𝐾𝑖𝑥𝑖

𝑙 (46) 361 

Then, the equilibrium pressure 𝑃𝑒𝑞 is calculated iteratively by solving the volume distribution 362 

equation: 363 

 364 

𝛽
1

𝜌𝑣(𝑥𝑖
𝑣,𝑃𝑒𝑞,𝑇)

+ (1 − 𝛽)
1

𝜌𝑙(𝑥𝑖
𝑙,𝑃𝑒𝑞,𝑇)

=
1

𝜌
(47) 365 

When calculating the density at certain pressure, many roots may be encountered. In such a case, the 366 

density giving the least Gibbs free energy is chosen. The iterative method chosen is that of Brent48. The 367 

gradient in this case reads: 368 

 369 

∂Δ𝐴

∂ log 𝐾𝑖
= log 𝑓𝑖

𝑣 − log 𝑓𝑖
𝑙 (48) 370 

and the Hessian: 371 

𝐻𝑖𝑗 =  
𝜕  𝑙𝑜𝑔𝐾𝑖  

𝜕 𝑁𝑗
𝑣   +  

𝜕  𝑙𝑜𝑔 𝑓𝑖
𝑣  

𝜕 𝑁𝑗
𝑣   +  

𝜕  𝑙𝑜𝑔 𝑓𝑖
𝑙  

𝜕 𝑁𝑗
𝑙
  +  

1

𝑅𝑔  𝑇
 

(
𝜕 𝑃𝑣

𝜕 𝑁𝑖
𝑣 +

𝜕 𝑃𝑙

𝜕 𝑁𝑖
𝑙)(

𝜕 𝑃𝑣

𝜕 𝑁𝑗
𝑣 +

𝜕 𝑃𝑙

𝜕 𝑁𝑗
𝑙)

𝜕 𝑃𝑣

𝜕 𝑉𝑣 +
𝜕 𝑃𝑙

𝜕 𝑉𝑙

(49) 372 

  373 

As proposed in the original paper of Nichita33, a first iteration using the SSI method is applied. 374 
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3 Results and Discussion 375 

In this section, results for the VLE problem using composition, density and temperature are shown for 376 

a set of seven cases. Case 1 is a single component Diesel surrogate, (n-dodecane) widely used in the 377 

Diesel industry; this case will show the performance of the algorithm for single components where the 378 

PT FLASH fails. Cases 2 and 3 are binary mixtures, typically used as benchmark cases for testing 379 

multiphase equilibrium algorithms31. The composition for Case 2 is 0.547413 methane and 0.452587 380 

pentane, while for Case 3 is 0.547413 carbon dioxide and 0.452587 decane. Case 4 is another binary 381 

mixture used in the widely used database of the so-called ‘Spray A’49, 0.3 nitrogen and 0.7 dodecane. 382 

Case 5 is a four-component mixture, also widely used for testing of multiphase algorithms31, composed 383 

of 0.2463 nitrogen, 0.2208 methane, 0.2208 propane and 0.3121 decane. Case 6 is a hydrocarbon eight-384 

component mixture created also as a Diesel fuel surrogate50, composed of 0.202 octadecane, 0.027 385 

hexadecane, 0.292 heptamethylnonane, 0.144 1-methylnaphthalene, 0.154 tetralin, 0.055 trans-decalin, 386 

0.051 butylcyclohexane and 0.075 1,2,4-trimethylbenzene. Finally, case 7 explores the application of the 387 

presented method to a multi-component mixture consisting of 50 different hydrocarbons, with equally 388 

distributed composition ranging from methane to octadecane. The complete set of hydrocarbons is 389 

given in the Supplementary Information. Cases 3 and 4 are validated against experiments, apart from an 390 

additional synthetic mixture of 6 components, commonly named Y851. For all cases, the EoS parameters 391 

and binary interaction parameters are given in the Supplementary Information. Table 1 shows the 392 

density-temperature grids studied for each case, apart from the number of total points tested with the 393 

algorithms. 394 

A summary of the iterations needed for convergence for every stage and flash methodologies used in 395 

this work can be found in Table 2. The average values are calculated as the sum of the iterations needed 396 

until convergence for the whole domain and then divided for the number of points studied. As seen in 397 

the first row, the stability analysis grows with the number the components of the mixture. While for a 398 

single component (Case 1), the number of iterations needed for convergence in stability is around 4, for 399 

binary mixtures (Cases 2-4), it increases to around 7. For the 4 components mixture (Case 5), the 400 
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number of stability iterations needed are not much affected with respect to the binary mixtures. For the 401 

eight-component hydrocarbon mixture (Case 6), the average number of iterations needed grows around 402 

50%. Finally, for the 50-component mixture (Case 7), the number of iterations is higher but close to the 403 

previous case. 404 

Case 𝑛𝑐 𝑇(K) window 𝑇(K) no. 
points 

 𝜌 (Kmol/m3) 
window 

𝜌 no. 
points 

Total no. points 

1 1 [280-700] 400 [0.001-5] 400 160000 

2 2 [320-430] 110 [0.001-12] 1200 132000 

3 2 [250-600] 350 [0.001-9] 900 315000 

4 2 [250-650] 400 [0.001-10] 900 360000 

5 4 [250-600] 350 [0.001-12] 1200 420000 

6 8 [300-750] 450 [0.001-4.5] 450 202500 

7 50 [300-650] 400 [0.001-6] 400 160000 

Table 1: Density-Temperature window and total number of points. 

A case dependant result is found for the flash stage. For the NVL method (second row of Table 2), the 405 

binary mixture of Case 2 is the one with the lower number of flash iterations needed, followed by the 406 

single component Case 1 and the other two binary mixture Cases 3 and 4. A substantial increase is found 407 

for the 4-component mixture, which almost triples the iterations needed for the binary mixtures. 408 

Although doubling the number of components in Case 6, for the 8-component the flash iterations gets 409 

reduced by 10 for the conditions to converge. Finally, the 50-component mixture shows a doubled 410 

number of iterations with respect to Case 6, needing on average around 30 iterations until convergence 411 

during the flash stage.  412 

In the case of the lnK method (third row on Table 2), the number of iterations is significantly reduced 413 

by more than 40% with respect to the NVL method. However, as explained in the methodology section 414 

for the lnK independent variables, this method suffers from the same limitation of the PT-Flash problem 415 
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and it can’t be used for single components and mixtures of similar components, as Cases 1 and 6. 416 

Regarding the rest of cases, Case 2 is the one with the least iterations needed (up to 4), followed by the 417 

other binary mixtures Cases 4 and 3. For Case 5, the 4-component mixture needs between 3 and 4 times 418 

more iterations than for the binary mixtures. For the 50-component surrogate, the difference between 419 

the methods gets reduced to only 2 iterations less than those needed for the NVL-VLE algorithm. 420 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 

Stability 3.93 7.63 6.26 6.87 11.25 15.31 17.82 

Flash (NVL) 7.24 6.26 9.05 9.21 26.82 16.20 30.80 

Flash (lnK) - 3.99 5.32 4.24 15.12 - 28.33 

Table 2: Average number of iterations needed for convergence using every method studied here for 421 

both the stability and flash algorithms.  422 

Table 3 shows the average total convergence time, i.e. both stability and flash stages, for any ρ and T 423 

conditions, in ms. The CPU used during this study was an Intel(R) Xeon(R) CPU E5-2690 v3 at 2.60GHz 424 

and a memory of 128GB of RAM. From the number of iterations, it would seem clear that the lnK 425 

method was the best one to be used in processes needing fast but reliable calculations, such as those 426 

needed in CFD simulations. However, the time needed for convergence clearly points in the opposite 427 

way, as the lnK method lasts a minimum of 20 times longer than the time needed for convergence with 428 

the NVL. This difference in computational time is caused during the calculation of density in the pressure 429 

equality condition, as it needs to be obtained iteratively, while NVL only satisfies it once convergence is 430 

reached. For the single component Case 1, the NVL method needed 0.6 ms, while no results could be 431 

obtained for the lnK method as it fails. For the binary mixtures (Cases 2-4), around 1 ms was needed for 432 

the NVL method against the 20-25ms for the lnK. The computational time needed for the 4-component 433 

mixture of Case 5 was around 5ms for the NVL method and 135ms for the lnK method (25 times longer). 434 

Case 6 needed 15.6 ms with NVL while the lnK method failed to converge to the correct solution 435 

whenever the phase transition was isobaric-isothermal. For the 50-components mixture of Case 7, each 436 

complete VLE calculation took close to 2 seconds, while for the lnK flash procedure it took 10 times 437 

longer. Therefore, the NVL method is chosen in the following sections. 438 

Flash strategy Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 
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NVL 0.68965 1.0782 1.1203 0.77236 7.2450 35.401 1,955 

lnK - 19.933 24.141 23.72 135.48 - 18,378 

Table 3: Average time, in ms, per case needed for convergence using both flash methods studied here.  439 

In the following subsections, results from using NVL iterations are shown regarding the pressure field, 440 

vapor volume fraction and number of flash iterations for convergence. Finally, results are validated 441 

against experimental VLE data. All the calculation data can be found in the supplementary information.  442 
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3.1 Pressure Field 443 

   
(a) Case 1 (b) Case 2 (c) Case 3 

   
(d) Case 4 (e) Case 5 (f) Case 6 

 

  

(g) Case 7   
Figure 1. Pressure field for all cases studied in the paper, the black curve draws the saturation line. The 

colour scale is unique for every figure. 

Figure 1 shows the pressure field for every case, marking with a black curve the saturation line. 444 

Depending on the components and composition, the pressure field varies significantly. Cases 1 and 6, 445 

those which are meant to model Diesel fuel, show similar horizontal isobaric lines when in the VLE 446 

region, where the PT-VLE algorithm is known to fail. Case 1 shows isobaric-isothermal phase transition 447 

by definition, as it is a single component. Case 6, the 8-component mixture, shows a similar trend due to 448 

the similarity between the components, although the small differences among them can be seen close 449 

to the dew curve, where the isobars bend upwards. Cases 2, 4 and 5 show isobars with significant slope 450 

which isobaric vapor-liquid transition comes with a massive decrease in temperature, typical of mixtures 451 
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exhibiting extremely different phase transition properties. For instance, from Case 2 the critical 452 

temperature of pentane is close to 2.5 times than that of methane, while more obviously in Case 4 the 453 

critical temperature of dodecane is more than 5 times higher than that of dodecane. Case 3 shows an 454 

intermediate field between Cases 1 and 2, where while at high temperatures the slope is sufficiently 455 

pronounced, at low temperatures and high densities the isobars become progressively flat, where the 456 

PT-VLE problem is expected to start failing. Regarding the 50-component hydrocarbon mixture, the 457 

isobars show significant slope as there are both very light and very heavy hydrocarbons, for instance 458 

methane and octadecane.  459 
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3.2 Vapor volume Fraction Field 460 

   
(a) Case 1 (b) Case 2 (c) Case 3 

   
(d) Case 4 (e) Case 5 (f) Case 6 

 

  

(g) Case 7   
Figure 2. Vapor volume fraction field for all cases studied in the paper, the black curve draws the 

saturation line. The colour scale is the same on every figure. 

Figure 2 shows the vapor volume fraction field for every case, marking with a black curve the 461 

saturation line. Cases 1 and 6 show the typical vapor volume fraction field for every single component, 462 

where the isolines converge at the critical point, being in this case the maximum temperature and 463 

pressure at which a two-phase state can be found. On the rest of cases, the critical point is not located 464 

on the maximum two-phase temperature or pressure, but on a lower value. This phenomenon gives rise 465 

to the retrograde vaporisation52, which accounts for the anomalous isothermal vaporisation of the 466 

mixture when the pressure is increased. Case 4, in addition, shows at 320K a liquid-liquid critical point, 467 
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where the equilibrium pressure is higher than 100MPa, clearly seen on the change in curvature of the 468 

saturation curve.  469 
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3.3 Flash iterations until convergence 470 

   

(a) Case 1 (b) Case 2 (c) Case 3 

   
(d) Case 4 (e) Case 5 (f) Case 6 

 

  

(g) Case 7   
Figure 3. Flash iterations field for all cases studied in the paper, the black curve draws the saturation 

line. The colour scale is unique for every figure.  

Figure 3 shows the number of flash iterations needed for convergence using the NVL-algorithm for 471 

every case, marking with a black curve the saturation line. Case 1 shows a reasonably homogeneous 472 

distribution, with maximum number of iterations of 10 at low temperatures and intermediate densities. 473 

The distribution of Case 2 iterations is as homogeneous as in Case 1, with a maximum iteration number 474 

of 10. For Case 3, the highest numbers are localised at temperatures lower than 350K and close to the 475 

bubble-point curve, where the number of iterations reach 15. Regarding Case 4, the higher number of 476 

iterations are found at temperatures lower than 350K and at densities higher than 9,000mol/m3, where 477 

the calculated equilibrium pressure reaches 1,000MPa. For the 4-component mixture in Case 5, more 478 
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than 50 iterations are needed along to the bubble point curve at high temperatures. High number of 479 

iterations are also observed for temperatures lower than 300K and close to the dew-point curve at high 480 

temperatures. Overall, at high temperatures the phase change needs a particularly high number of 481 

iterations for convergence. The 8-component surrogate in Case 6 the maximum number of iterations, 482 

which may reach 100, are found close to the critical point and at high temperatures close to the dew-483 

point curve. For the 50-component hydrocarbon mixture, the number of iterations grow considerably 484 

compared with the previous cases, where the threshold of 150 iterations is reached again at the critical 485 

point and the dew curve, in addition to localised high number of iterations at 1,000mol/m3 and 486 

temperatures lower than 350K.  487 



29 

3.4 Performance comparison against Peng Robinson EoS 488 

The performance of the algorithm can be influenced significantly by the chosen equation of state, as 489 

every iteration needs the calculation of many properties and its derivatives for the two phases. The use 490 

of PC-SAFT EoS has been already reported to increase the computational time needed for a single 491 

equilibrium calculation with respect to Peng Robinson53. Previous works, using a PT-VLE calculation, 492 

have obtained differences in CPU time of 2-3 times between the Peng Robinson EoS and PC-SAFT EoS40 493 

for a variety of mixtures. For some mixtures, even, the computational time was found smaller for the 494 

original PC-SAFT than for the cubic EoS. However, von Solms40 estimated that the CPU time needed for 495 

the calculation of all the derivatives involved in the PT-VLE was 4-5 times higher than for the SRK EoS, 496 

using the simplified PC-SAFT for a mixture of 15 components. The simplified PC-SAFT is known to be 497 

significantly more efficient in VLE calculations as some of the terms of the original version become 498 

composition-independent. Therefore, the difference between cubic EoS and the PC-SAFT is expected to 499 

be higher than 4-5 times, even if the number of function evaluations is similar. 500 

  

(a) (b) 

Figure 4. Flash iterations needed for Cases 5 and 6 at 300K using Peng-Robinson and PC-SAFT as 501 

Equations of State at 300K. 502 

Figure 4 shows two performance comparisons for Cases 5 (4 component mixture) and 6 (8 component 503 

mixture) regarding the iterations needed for calculating the equilibrium at 300K for a range of densities, 504 

using both Peng Robinson and PC-SAFT EoS. Flash iterations are both initialized from a previous stability 505 

analysis. As shown, for the 4-component mixture the iterations needed are quite similar for both 506 
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Equations of State, apart from particular conditions at which the cubic equation seems to spike. Overall, 507 

the iterations needed at lower densities than 5000mol/m3 are higher than those at higher densities. For 508 

the 8-component surrogate, the number of iterations needed at low densities are significantly higher for 509 

PC-SAFT, although at densities higher than 1500mol/m3 the convergence is achieved in a similar number 510 

of iterations. 511 

EoS Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 

PC-SAFT 629.79 1340.6 1143.8 1059.4 1878.1 13996 363270 

Peng Robinson 156.25 182.62 191.98 210.94 250.31 937.53 10332 

Ratio 4.03 7.34 5.96 5.02 7.5 14.9 35.16 

Table 4: Computational time in μs, per single VLE calculation, needed for all cases using Peng Robinson 512 

and PC-SAFT. The last row shows the ratio between both CPU times. 513 

Table 4 shows the computational time, per VLE calculation, needed for all cases using both Peng 514 

Robinson and PC-SAFT EoS. Results indicate a significant difference between both EoS, which increases 515 

with the number of components. While for a single component the CPU time for PC-SAFT is about 4 516 

times higher than for Peng-Robinson, for two components it grows to about 6 and up to 15 for the 8-517 

component surrogate of case 6. An extreme case is seen for case 7, where the computational time 518 

needed to calculate the VLE for a 50-component mixture increases to 35. These differences can be 519 

explained due to the high dependence on composition of the PC-SAFT EoS, which increases the number 520 

of calculations needed for the derivatives exponentially. The reader may acknowledge the extent of the 521 

derivations in the complete formulation of the algorithm found in the Supplementary Information. This 522 

can be also seen in Table 5, where the computational time per single calculation of the derivatives is 523 

shown. The range in temperature and density per case is the same as in previous chapters. As seen, the 524 

difference between the CPU time of Peng Robinson and PC-SAFT grows with the number of components 525 

in a similar fashion than for the complete VLE calculations. Discrepancies between the single EoS and 526 

complete VLE calculations can be explained because of differences in the number of iterations needed 527 

for the convergence, which is not necessarily the same, although similar as already seen in Figure 4. 528 

 529 
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EoS Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 

PC-SAFT 8.844 13.37 13.70 14.66 31.20 100.0 25380 

Peng Robinson 1.800 2.323 2.341 2.342 3.421 7.046 58.75 

Ratio 4.91 5.76 5.84 6.25 9.12 14.19 43.2 

Table 5: Computational time in μs, per single calculation of all the needed derivatives, for all cases using 530 

Peng Robinson and PC-SAFT. The last row shows the ratio between both CPU times. 531 

 532 

These results show why when computational power is the main restriction in simulations, past works 533 

tend to choose the Peng-Robinson over more accurate EoS such as the PC-SAFT. For instance, in 534 

Computational Fluid Dynamics, equilibrium calculations may be needed in more than 1 million cells per 535 

timestep, making the EoS choice the main decision criterion regarding the trade-off between accuracy 536 

and computational efficiency.  537 
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3.5 Validation against experiments 538 

Figure 6 shows validation cases to assess the accuracy of the model when compared to experimental 539 

data. The data was collected and compared for Case 254, Case 4 55 and the Y8 synthetic mixture51. The Y8 540 

mixture is composed of 6 components with composition: 0.8097 methane, 0.0566 ethane, 0.0306 541 

propane, 0.0457 n-pentane, 0.0330 n-heptane and 0.0244 n-decane. The binary interaction parameters 542 

were set to 0 for the Y8 mixture. As it can be seen, there exists good agreement for every case using the 543 

corresponding binary interaction parameters. The first two figures show the typical binary phase 544 

diagram at different constant temperatures, while the first figure shows the equilibrium constants for 545 

every component in the mixture at fixed temperature. 546 

 547 

 548 

 (a) (b) (c) 549 

Figure 6: Predicted vapor-liquid equilibrium compared with experimental data for (a) Case 2, (b) Case 4 550 

and (c) the Y8 mixture [37]. 551 

Table 5 shows the Average Absolute Deviation (AAD [%]) of the calculations with respect to the 552 

experimental values for the above cases and it is defined as: 553 

𝐴𝐴𝐷[%] =
100

𝑁𝑝
∑|

(𝑥𝑖 , 𝑦𝑖)
𝑒𝑥𝑝 − (𝑥𝑖 , 𝑦𝑖)

𝑐𝑎𝑙𝑐

(𝑥𝑖 , 𝑦𝑖)𝑒𝑥𝑝
|

𝑁𝑝

𝑖

(50) 554 

Where 𝑁𝑝 is the number of compared experimental data points. 555 

 556 

 557 
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 Case 2 Case 4 Y8 Mixture 

𝐴𝐴𝐷[%] 2.7901 0.9281 3.6289 

Table 5: Average Absolute Deviation (AAD [%]) of the three cases shown in Figure 6. 558 

As observed in the table, the agreement with experiments is good even for the 6-component mixture, 559 

where the average deviation is lower than 4%. However, it is necessary to notice that this agreement is 560 

significantly dependent on the binary interaction parameter 𝑘𝑖𝑗  which is obtained by fitting with 561 

experimental VLE data. 562 

  563 
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4 Conclusions 564 

In this study, the PC-SAFT EoS was used for Vapor Equilibrium calculation at specified composition, 565 

density and temperature. The presented algorithm was tested on several cases of both single and 566 

multicomponent substances. The calculation utilised the Newton iterations to reach the global minimum 567 

of the Helmholtz free energy in two stages, namely stability analysis and flash. As a result, the pressure 568 

of the fluid and the compositions of both the liquid and vapor phases were calculated. The reliability of 569 

two different methods for the flash stage, one based in number of moles and volume (NVL) and another 570 

based in the logarithm of the equilibrium constants (lnK), were evaluated in terms of both iterations and 571 

computer time needed to reach convergence. 572 

Results showed that although the lnK method needs less iterations until convergence, the total 573 

computational time needed is considerably longer. This difference in computational time is caused 574 

during the calculation of density in the pressure equality condition, as it needs to be satisfied iteratively. 575 

The NVL method does not need to satisfy this condition at every iteration, therefore no inner iterative 576 

loops are needed, and faster convergence was obtained. Moreover, the lnK method cannot be used for 577 

single components, as its value is unity during all iterations, and it fails continuously for mixtures with 578 

similar components, as the 8-component Diesel surrogate studied in Case 6. A performance comparison 579 

was obtained against the Peng-Robinson EoS, showing a substantial decrease in computational time 580 

when using the cubic compared to the molecular based EoS. Validation against experiments show good 581 

agreement of the numerical model. 582 

Future work should be headed towards more complex mixtures, resourcing to the latest applications 583 

of PC-SAFT introducing associating56, multipolar 57 58 and/or aqueous ionic liquid solutions59, as the 584 

accuracy of this molecular-based EoS is of great value for academic and industrial applications.   585 
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6 Nomenclature 591 

𝐴 Helmholtz free energy Greek letters 
𝒛 pressure α transformed stability 

variables 
𝜌 molar density σ segment diameter 
𝑇 temperature 𝛿𝑖𝑗 Kronecker delta 

𝑬 modified Cholesky diagonal matrix λ step length 
𝑷 permutation matrix ϵ energy parameter 
𝑃 pressure 𝛜 variables vector 
𝒑 search direction ω acentric factor 
𝑴 Cholesky lower triangular matrix 𝛽 Vapor fraction 
𝑩 Hessian submatrix Subscripts  
𝑪 Hessian submatrix 𝑖, 𝑗 component index 
𝐷 Hessian submatrix 𝑐 critical property 
𝒈 gradient vector 𝑠𝑎𝑡 saturation 
𝑯 Hessian matrix 𝑚𝑎𝑥 maximum 
𝑰 identity matrix Superscripts  
𝑅𝑔  universal gas constant ∗ feed property 

𝑥𝑖  mole fraction of component 𝑖 in a phase 𝑣 vapor phase 
𝑧𝑖  mole fraction of component 𝑖 in the 

feed 
𝑙 liquid phase 

𝒁 reducing matrix (𝑘) iteration number 
𝑛𝑐 number of components ′ trial phase 
𝑛𝑖  number of moles of component 𝑖  𝑒𝑞 equilibrium 
𝑓𝑖  fugacity of component 𝑖 res residual contribution 
𝑚 number of segments id ideal contribution 
𝑘𝐵  Boltzmann constant   
𝐾𝑖  equilibrium constant   
�̃� intermediate Cholesky vector   
𝒖 intermediate Cholesky vector   
𝑉 volume   
𝑇𝑃𝐷 Tangent Plane Distance   

 592 

  593 
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