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Decision-making is a fundamental human activity requiring explanation at the neurocognitive 26 

level. Current theoretical frameworks assume that, during sensory-based decision-making, 27 

the stimulus is sampled sequentially. The resulting evidence is accumulated over time as a 28 

decision variable until a threshold is reached and a response is initiated. Several neural 29 

signals, including the centroparietal positivity (CPP) measured from the human 30 

electroencephalogram (EEG), appear to display the accumulation-to-bound profile 31 

associated with the decision variable. Here, we evaluate the putative computational role of 32 

the CPP as a model-derived accumulation-to-bound signal, focussing on point-by-point 33 

correspondence between model predictions and data in order to go beyond simple summary 34 

measures like average slope. In two experiments, we explored the CPP under two 35 

manipulations (namely non-stationary evidence and probabilistic decision biases) that 36 

complement one another by targeting the shape and amplitude of accumulation respectively. 37 

We fit sequential sampling models to the behavioural data, and used the resulting 38 

parameters to simulate the decision variable, before directly comparing the simulated profile 39 

to the CPP waveform. In both experiments, model predictions deviated from our naïve 40 

expectations, yet showed similarities with the neurodynamic data, illustrating the importance 41 

of a formal modelling approach. The CPP appears to arise from brain processes that 42 

implement a decision variable (as formalised in sequential-sampling models) and may 43 

therefore inform our understanding of decision-making at both the representational and 44 

implementational levels of analysis, but at this point it is uncertain whether a single model 45 

can explain how the CPP varies across different kinds of task manipulation. 46 

 47 

Key words: decision-making, centroparietal positivity, decision bias, non-stationary evidence, 48 

accumulator model 49 
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1. General Introduction 62 

Both mathematical modelling of cognitive processes and the analysis of neural and 63 

behavioural data have generated important insights about human cognition. 64 

Recently, the importance of combining these approaches has become increasingly 65 

apparent. This triangulation of methods (sometimes referred to as model-based 66 

cognitive neuroscience; Forstmann, Wagenmakers, Eichele, Brown, & Serences, 67 

2011) provides several obvious advantages over traditional approaches, as neural 68 

data can inform mathematical models, while models can in turn break complex 69 

cognitive processes into separate mechanisms, which are easier to test using neural 70 

data (Turner, Rodriguez, Norcia, McClure, & Steyvers, 2016). 71 

 72 

A variety of approaches have now been suggested to combine cognitive 73 

neuroscience and mathematical modelling (Forstmann, Ratcliff, & Wagenmakers, 74 

2016; van Ravenzwaaij, Provost, & Brown, 2017). One field in which model-based 75 

cognitive neuroscience has been particularly fruitful is the study of perceptual 76 

decision-making (e.g. Mulder, van Maanen, & Forstmann, 2014). Perceptual 77 

decisions, in which we quickly categorise sensory stimuli, directly trigger some of our 78 

most basic but essential behaviour, and also provide a building block towards higher 79 

cognition. Such decisions can be described by sequential sampling models, a group 80 

of computational models which assume that to make a decision, we accumulate 81 

sensory evidence over time until a decision threshold is reached, at which point we 82 

typically initiate the corresponding motor response (Brown & Heathcote, 2008; 83 

Ratcliff & McKoon, 2008; Usher & McClelland, 2001). 84 

 85 
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Importantly, although these models were developed to explain behavioural data and 86 

have done so successfully in a large variety of paradigms (Huk & Shadlen, 2005; 87 

Milosavljevic et al., 2010; Ratcliff, 2002; Ratcliff, Thapar, College & Mckoon, 1992), 88 

they have been further validated by electrophysiological recordings in non-human 89 

primates, as several studies have reported accumulation-like neuronal activity while 90 

monkeys perform perceptual-decision tasks (e.g. Hanes & Schall, 1996; Shadlen & 91 

Newsome, 1996; for a review see Schall, 2002; Gold & Shadlen, 2007; Hanks & 92 

Summerfield, 2017). This connection between models and neural data has since 93 

been successfully used to directly compare electrophysiological signals with 94 

predictions made by mathematical models (e.g. Hanks, Kiani, & Shadlen, 2014; 95 

Purcell et al., 2010; Purcell, Schall, Logan, & Palmeri, 2012), and provided important 96 

insights into decision-making processes. For example, by analysing firing rates of 97 

frontal eye field neurons, Purcell and colleagues (2010) were able to evaluate 98 

different cognitive models, thereby highlighting the potential role of neural data as a 99 

model selection tool. 100 

 101 

The study of neural substrates of the decision variable (i.e. the decision-related 102 

accumulation profile) in the human brain, on the other hand, has been advancing 103 

more slowly. One method which is commonly used to study decision-making within 104 

model-based cognitive neuroscience is functional magnetic resonance imaging 105 

(fMRI). In this field, brain activity is analysed in reference to specific model 106 

parameters, which has led to the association of different brain regions with specific 107 

sub-processes of decision making (e.g. Forstmann et al., 2010; Heekeren, Marrett, 108 

Bandettini, & Ungerleider, 2004; for a review, see Mulder et al., 2014). 109 

 110 
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In order to track the decision variable in the human brain, however, 111 

electroencephalography (EEG) or magnetoencephalography (MEG, which produces 112 

comparable data) are commonly used, due to their greater temporal resolution. A 113 

variety of different signals have been proposed to be decision-related, ranging from 114 

event-related potentials (ERPs; Philiastides, Heekeren, & Sajda, 2014; Philiastides 115 

et al., 2006; Philiastides & Sajda, 2006; Pisauro, Fouragnan, Retzler, & Philiastides, 116 

2017; Ratcliff et al., 2009) to changes in theta-band power (van Vugt et al., 2012), 117 

and motor-related lateralised desynchronisation in beta power (Donner, Siegel, 118 

Fries, & Engel, 2009; Meindertsma, Kloosterman, Nolte, Engel, & Donner, 2017; 119 

Siegel, Engel, & Donner, 2011). 120 

 121 

A particularly promising approach was introduced by O’Connell, Dockree, and Kelly 122 

(2012). In a series of experiments, they identified the centroparietal positivity (CPP), 123 

an ERP component which shows several key properties of the decision variable. It 124 

displays a build-up over the course of the decision, reflecting the integration of 125 

sensory evidence, and its crossing of a stereotyped level was shown to predict 126 

reaction time (RT; Kelly & O’Connell, 2013; O’Connell et al., 2012). Importantly, the 127 

CPP was shown to be independent of sensory and motor signals, as it was fully 128 

dissociable from both steady-state visual evoked responses, which provide a readout 129 

of sensory input, and contralateral beta power, which reflects motor activation. 130 

Independence from motor signals was later confirmed in a study which directly 131 

compared the CPP to motor-related beta power, and showed that while both signals 132 

build up over the course of the decision, the CPP drops back to baseline levels after 133 

a given threshold is reached, while beta activity persisted until a delayed response 134 

(Twomey, Murphy, Kelly, & O’Connell, 2016). 135 
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 136 

Interestingly, the CPP was also observed in an auditory decision-making task, 137 

highlighting its putative role as a supramodal decision signal (O’Connell et al., 2012). 138 

Following their initial series of experiments, Kelly and O’Connell (2013) provided 139 

further evidence supporting the role of the CPP as a decision variable by exploring 140 

the CPP in a perceptual decision-making task with different levels of difficulty. This 141 

manipulation is known to affect the slope at which sensory evidence is accumulated, 142 

with easier stimuli leading to a steeper evidence accumulation rate. This was 143 

confirmed in Kelly and O’Connell’s study based on parameter estimates derived from 144 

the Diffusion model (Ratcliff & McKoon, 2008). The CPP build-up slope varied 145 

according to task difficulty level, qualitatively mirroring model predictions regarding 146 

accumulation rate. Hence, experimental evidence from previous studies consistently 147 

indicates that summary statistics describing the CPP (such as average slope over 148 

some arbitrary time window) correspond with the equivalent intuited or abstracted 149 

characteristics of a decision variable.  150 

 151 

Identifying the neural substrates of human perceptual decisions is an important goal, 152 

because a compelling explanation of behaviour should marry computational 153 

plausibility with biological reality (Krakauer, Ghazanfar, Gomez-Marin, MacIver, & 154 

Poeppel, 2017; Marr, 2010). To move forward, we must go beyond a broad-brush 155 

equivalence between brain signals and model predictions, and show that the 156 

quantitative precision of sequential sampling models extends to both behaviour and 157 

brain dynamics. Although the CPP appears to be a serious candidate for bridging 158 

this divide, few studies have formally compared CPP profiles with the decision 159 

variable exactly as predicted by sequential sampling models. Building on Kelly and 160 
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O’Connell’s approach, Twomey et al. (2015) added a critical step to their analysis to 161 

allow for a direct comparison between the model decision variable and the CPP. 162 

After fitting the Diffusion model, the resulting parameters were used to simulate the 163 

mean level of evidence accumulation across time predicted by the model. The 164 

simulated accumulation profile and the CPP were in close agreement. This finding is 165 

important, as it goes beyond comparing summary measures derived from a potential 166 

neural substrate of decision-making against a set of abstract characteristics derived 167 

from intuitions about model behaviour, and instead allows for a direct comparison of 168 

the entire accumulation profile. Indeed, with more complex sequential sampling 169 

models (e.g. those incorporating inhibition or leakage; Usher & McClelland, 2001) it 170 

becomes virtually impossible to intuit how accumulation profiles may change as a 171 

function of different experimental manipulations, making detailed modelling essential 172 

(Purcell & Palmeri, 2017). 173 

 174 

The current study fulfils this brief, going beyond previous work testing the role of the 175 

CPP as a decision variable through formal implementation of sequential sampling 176 

models. As outlined above, the CPP has only been tested in the context of a limited 177 

number of manipulations (O'Connell et al., 2012; Kelly & O’Connell, 2013), and until 178 

recently only the impact of decision difficulty has been compared to simulations 179 

based on behaviourally constrained sequential sampling models (Twomey et al., 180 

2015). Similar analyses have since been applied to investigate the speed-accuracy 181 

trade-off (Spieser et al., 2018) and under combined conditions of extreme time 182 

pressure and value-based bias (Afacan-Seref, Steinemann, Blangero, & Kelly, 2018) 183 

but comparisons with precise model predictions remain scarce. Hence here we 184 

compared the CPP profile to exact model predictions in two separate EEG 185 
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experiments. These experiments tested both probabilistic decision biases, which, to 186 

our knowledge, have not been previously assessed using the CPP, and non-187 

stationary evidence profiles, which we believe have not previously been examined 188 

for the CPP under conditions of speeded choice. In line with previous behavioural 189 

work (Mulder, Wagenmakers, Ratcliff, Boekel, & Forstmann, 2012; Spaniol, Voss, 190 

Bowen, & Grady, 2011; Summerfield & Koechlin, 2010; Voss, Nagler, & Lerche, 191 

2013), our estimation of model parameters revealed that decision bias affects the 192 

amount of evidence required to attain response threshold, while non-stationary 193 

evidence affects the detailed time-course of evidence accumulation. We then used 194 

the estimated parameter values to simulate the accumulation profiles as predicted by 195 

the models and compared them to the recorded CPP. 196 

 197 

We chose two types of race accumulator models (Brown & Heathcote, 2008; 198 

Heathcote & Love, 2012) to account for our behavioural data, namely, the leaky 199 

competing accumulator model (LCA; Usher & McClelland, 2001), suggested to be 200 

one of the most neurophysiologically plausible sequential sampling models, and a 201 

simplified independent race accumulator model. Contrary to random walk models 202 

such as the Diffusion model, in which evidence is integrated in a single accumulator 203 

(Smith & Ratcliff, 2004), and which are motivated more by mathematical optimality 204 

than neurobiological plausibility (Ratcliff et al., 2016; Usher & McClelland, 2001), 205 

what we here refer to as ‘race accumulator models’ assume that evidence for each 206 

response alternative is integrated in separate accumulators, which race to reach a 207 

common threshold. Assuming that processes similar to these occur in the brain, with 208 

each accumulator being associated with a neural population, and given the nature of 209 

EEG, which records the sum of all underlying electrical activity from the scalp, we 210 
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propose that the CPP should be best predicted by the summed activity of both 211 

accumulators in a two-choice task. Across experiments varying the two core 212 

characteristics of accumulation-to-bound activity, namely the shape of accumulation 213 

build-up and the extent of baseline-to-bound distance, our results show that CPP 214 

dynamics can indeed closely match time-varying predictions derived under a 215 

sequential-sampling modelling framework, but that this match partly reflects the 216 

flexibility we enjoyed as a result of having several candidate models available.  217 

 218 

2.  Experiment 1: Non-stationary Evidence 219 

 220 

Most research in the field of perceptual decision-making has focused on binary 221 

choices with stationary evidence, where information remains virtually unchanged in 222 

quality and intensity throughout the decision-making process (Gold & Shadlen, 2000; 223 

Kelly & O’Connell, 2013; Ratcliff & McKoon, 2008; Ratcliff et al., 2010). In everyday 224 

life, however, decisions typically occur in a dynamic environment, in which sensory 225 

evidence is continuously changing, and several studies have drawn attention to the 226 

fact that comprehensive models of decision-making have to be able to account for 227 

decisions with non-stationary evidence. Researchers have hence started to use 228 

decisions in response to non-stationary evidence in order to distinguish between 229 

different sequential sampling models (Bronfman, Brezis, & Usher, 2016; Nunes & 230 

Gurney, 2016; Tsetsos, Gao, McClelland, & Usher, 2012; Tsetsos, Usher, & 231 

McClelland, 2011; Zhou, Wong-Lin, & Philip, 2009), which often offer 232 

indistinguishable accounts of data from more traditional decision-making paradigms 233 

(Brown & Heathcote, 2008; Ratcliff & Smith, 2004; Teodorescu & Usher, 2013; 234 

Tsetsos et al., 2012). 235 
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 236 

Tsetsos et al. (2011, 2012), for example, conducted a series of experiments, using a 237 

paradigm in which the evidence for a given alternative changed dynamically 238 

throughout a trial to compare race accumulator (Brown & Heathcote, 2008; Usher & 239 

McClelland, 2001) and random-walk models (Ratcliff & McKoon, 2008). They found 240 

that the race accumulator model gave a better description of the data (Tsetsos et al., 241 

2011), and was able to account for various subtleties, including a primacy effect 242 

which showed that changes in evidence had a larger impact on decisions early on in 243 

the decision-making process (Tsetsos et al., 2012). Recently, Holmes, Trueblood, 244 

and Heathcote (2016) showed that a simplified race accumulator model labelled 245 

‘piecewise LBA’ could provide a good account of participants’ behaviour. In that 246 

study, participants were asked to discriminate between left and right motion in a 247 

random dot motion task, in which, halfway through the decision-making process, the 248 

motion direction switched. The best-fitting race model parameters confirmed that 249 

accumulation rates were affected by the motion switch. Interestingly, while the switch 250 

led to motion in the opposite direction but equal in magnitude, estimated changes of 251 

accumulation rates were not symmetrical between the two accumulators, indicating a 252 

difference in discrimination after the switch. Incorporating a delay between the switch 253 

in evidence and the resulting change in accumulation rates was shown to improve 254 

model fit, revealing that some time is necessary to take a modification of evidence 255 

into account.  256 

 257 

It is clear that dynamically changing evidence also has implications for any neural 258 

signal posited to reflect the decision-related accumulation of evidence. This was 259 

observed for instance in the firing rate of lateral intraparietal (LIP) neurons in non-260 
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human primates. Huk and Shadlen (2005) demonstrated that additional 261 

positive/negative motion pulses during a random dot motion task had persistent 262 

effects on LIP activity, which increased/decreased for several hundreds of 263 

milliseconds. In humans, O’Connell et al. (2012) explored the impact of changing 264 

evidence on the CPP and motor-related beta band power. In a detection task in 265 

which stimuli gradually decreased in contrast, the CPP (and, to a lesser extent, beta 266 

power) was shown to plateau for several hundreds of milliseconds when the gradual 267 

contrast decrease was interrupted by a 450 ms increase towards the baseline. In this 268 

study, however, no comparisons were made between a simulated accumulation 269 

profile and the recorded CPP waveform.  270 

 271 

Here, we instead utilise a choice RT task and provide detailed modelling/simulation. 272 

Participants performed a random dot motion task which required them to 273 

discriminate between motion to the left or to the right. In one third of the trials, dot 274 

motion remained unchanged throughout the trial (‘continuous’ condition), while in the 275 

rest of the trials, it was interrupted for a 200 ms period. In these interrupted trials, dot 276 

motion was replaced by either coherent motion in the opposite direction, before 277 

continuing in the original direction (‘reverse’ condition), or by random motion without 278 

any directional evidence (‘random’ condition; cf. Tsetsos et al., 2012). These 279 

changes in motion should affect the build-up of the accumulation profile, and be 280 

visible in any neural signal reflecting the decision variable. While we assumed that 281 

the decision variable will ‘plateau’ during the coherent motion interruption in the 282 

‘random’ condition, predictions regarding the impact of the reversal of evidence are 283 

less clear, and are likely to depend more on the specifications of the model, such as 284 

the presence or absence of reciprocal inhibition. To determine exactly how a signal 285 
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reflecting the decision variable is affected, we simulated accumulation profiles 286 

predicted by sequential sampling models. Importantly, in order to use model 287 

specifications best resembling the underlying decision processes, we tested several 288 

models and selected the one providing the best fit to our behavioural data. We then 289 

directly compared the selected model’s profiles to CPP waveforms. In so doing, we 290 

confirmed the impact of time-varying evidence on the CPP profile and showed that it 291 

corresponds closely to the modulations of evidence accumulation predicted by a 292 

leaky competing accumulator model. 293 

 294 

2.1. Methods  295 

2.1.1. Participants 296 

In line with commonly reported sample sizes in the CPP literature (e.g. Kelly & 297 

O’Connell, 2013; O’Connell et al., 2012; Twomey et al., 2015), a total of 21 298 

participants (eight males) were recruited. To ensure a reasonable and 299 

distinguishable task performance at two different difficulty levels, each participant 300 

completed a staircase procedure to establish the appropriate level of difficulty (see 301 

below, 2.1.2). In line with criteria defined prior to data collection, one participant was 302 

excluded from the experiment as the calibrated level of coherence exceeded 98% for 303 

the ‘easy’ condition, leading to a sample of 20 participants (seven males) with a 304 

mean age of 27.55 (SD = 8.83). The experiment was approved by the City, 305 

University of London Psychology Department Ethics Committee. 306 

 307 



14 
 

2.1.2. Stimuli and Procedure 308 

Participants were asked to complete a random dot motion task. The task was written 309 

in Matlab (The Mathworks, Natick, U.S.A.), making use of Psychtoolbox functions 310 

(Brainard, 1997; Kleiner et al., 2007; Pelli, 1997). In this task, an array of white dots 311 

was presented on a black screen. A proportion of dots moved coherently either to 312 

the left or to the right, while the rest of the dots moved in random directions. 313 

Participants were instructed to indicate the perceived motion direction by pressing a 314 

button in their right/left hand for movement to the right/left. For this, digital response 315 

buttons interfaced via a 16 bit A/D card (National Instruments X-series PCIe-6323, 316 

sample rate 100,000 Hz) were held between the thumb and index finger of each 317 

hand. Participants were seated 100 cm away from a cathode ray tube screen (size: 318 

41 x 30 cm), operating at a refresh rate of 85 Hz and with a resolution of 1240 x 786. 319 

A total of 300 dots, 0.04 x 0.04 degrees visual angle (dva) in size, were presented 320 

within a 5 dva circular aperture. During random motion, on each frame, each dot was 321 

displaced into a random direction. During coherent motion on the other hand, only a 322 

subset of dots followed this random motion, while the remaining dots (defined by the 323 

level of coherence, see below) moved uniformly either to the left or to the right, 324 

depending on the trial. Both random and coherent dot movements occurred at a 325 

speed of 3.3 dva per second. Additional to this motion, all dots were relocated to a 326 

random position on the array every five frames. This process was added so that 327 

participants could not determine the direction of the motion by following one specific 328 

dot, instead having to consider the entire motion array. 329 

 330 

Each trial began with a central fixation cross (size: 0.33 x 0.33 dva) for 500 ms (plus 331 

a jitter of up to 1000 ms, drawn from a uniform distribution), followed by a period of 332 
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random motion (1000 ms plus a jitter of up to 1500 ms, drawn from a gamma 333 

distribution with shape parameter 1 and scaling parameter 1501). Since the onset of 334 

moving dots on the screen is likely to produce a visual evoked potential which would 335 

interfere with the recording of the CPP, this period of random motion was introduced 336 

to allow for the evoked potential to occur before the onset of the decision-making 337 

process. The random motion was followed by the onset of coherent motion (left/right) 338 

which continued for up to 2000 ms or until the response (see Figure 1 a). 339 

 340 

Participants completed a minimum of 100 practice trials at high levels of coherence 341 

(i.e. > 80% of dots moving in one direction) to familiarise themselves with the task. In 342 

order to calibrate suitable levels of difficulty for ‘easy’ and ‘hard’ trials for each 343 

participant individually, a further 100 trials were completed in which the QUEST 344 

(Watson & Pelli, 1983) staircase procedure, implemented in Psychtoolbox, estimated 345 

the coherence level at which each participant responded correctly in 80% of trials. 346 

This coherence level was then used for the ‘hard’ condition. The ‘easy’ coherence 347 

level was set as 150% of the ‘hard’ coherence level. Participants had 1300 ms to 348 

respond, and no feedback was provided during staircase trials. Overall, the 349 

appropriate difficulty levels estimated for the remaining participants resulted in a 350 

mean of 27.70% (SD = 14.74) coherence for ‘hard’, and 40.15% (SD = 22.15) for 351 

‘easy’ trials.  352 

 353 

After the staircase procedure, participants were asked to complete a further 100 354 

practice trials which included all conditions of the main experiment, including the 355 

                                                
1 A gamma distributed foreperiod with a shape parameter of 1 was chosen as it is associated with a 

uniform hazard function (Luce, 1986). 
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different difficulties and evidence interruptions (see below). Like in the main task 356 

(described next) participants now had 2000 ms to respond. During this training, 357 

participants were given feedback in the form of their mean accuracy and RT every 358 

10 trials. In order to introduce a moderate speed pressure, participants were 359 

instructed to aim for a mean accuracy of at least 80% and a mean RT of less than 360 

1000 ms throughout the task.  361 

 362 

During the experiment, we manipulated the continuity of the evidence by introducing 363 

three motion conditions, in addition to the manipulation of difficulty (see Figure 1 a). 364 

One third of the trials, like the practice and staircase trials, were ‘continuous’ trials, 365 

i.e. the coherent motion began after a period of random motion and remained 366 

unchanged throughout the trial. In the ‘random’ condition, the coherent motion was 367 

interrupted 200 ms after motion onset and replaced by a 200 ms period of random 368 

motion (i.e., 0% coherence level), before being reinstated. Similarly, in the ‘reverse’ 369 

condition, the coherent motion was interrupted for the same time period, but 370 

replaced by coherent motion in the opposite direction (see Figure 1 a). Informal 371 

questioning of participants indicated that these interruptions were not perceived 372 

consciously. During the main task, the interruption condition (‘continuous’, ‘random’, 373 

or ‘reverse’), motion direction (left or right) and coherence level (‘easy’ or ‘hard’) 374 

varied randomly from trial to trial in an equiprobable factorial design. Each participant 375 

completed 16 blocks of 60 trials. After each block, participants were given feedback 376 

in the form of their mean accuracy and RT. No feedback was provided for individual 377 

trials. 378 
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2.1.3. EEG Recording and Pre-processing 379 

During the task, we recorded participants’ EEG using 64 active electrodes, placed 380 

equidistantly on the scalp (EasyCap, M10 Montage) and referenced to the right 381 

mastoid. Data were recorded through a BrainAmp amplifier (BrainProducts, sampling 382 

rate: 1000 Hz).  383 

 384 

The data were pre-processed in Matlab (The Mathworks, Natick, U.S.A.), using 385 

custom scripts and implementing functions from the EEGLAB toolbox (Delorme & 386 

Makeig, 2004). Data were re-referenced to the average reference and band-pass 387 

filtered from 0.1 (low cut-off) to 45 Hz (high cut-off), using a Hamming windowed 388 

finite impulse response filter. We then visually inspected the data to remove noisy 389 

channels and reject large artifacts, before applying independent component analysis 390 

to correct for eye blinks. Afterwards, the data were visually inspected a second time 391 

in order to manually remove any remaining noise. Lastly, we used spherical spline 392 

interpolation to reconstruct any channels that were previously removed. In line with 393 

the procedures used in previous CPP studies (Kelly & O’Connell, 2013; O’Connell et 394 

al., 2012), the data were converted to current source density (CSD) estimates to 395 

increase spatial selectivity. The CSD transformation was applied using the CSD 396 

toolbox, which uses a spherical spline algorithm, with the spline interpolation 397 

constant m set to its default value (m = 4; Kayser & Tenke, 2006). 398 

 399 

2.1.3.1. ERP Analysis 400 

For the ERP analysis, we extracted both stimulus-locked (-200 to 2000 ms, relative 401 

to coherent motion onset) and response-locked (-1000 to 100 ms, relative to the 402 

button press) epochs. All epochs were baseline corrected to the average over a 200 403 
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ms period preceding the coherent motion onset. As only medial electrodes were 404 

analysed, and initial observations revealed no difference depending on the direction 405 

of motion, we collapsed over ‘left’ and ‘right’ trials. Further, since high overall 406 

accuracy scores led to insufficient numbers of error trials to generate reliable ERP 407 

signals, error trials were excluded. 408 

 409 

The appropriate electrode to generate the CPP waveform was chosen individually, 410 

by visually inspecting each participant’s averaged ERP topography to identify the 411 

centroparietal region of maximum amplitude (chosen electrodes: 1, 5, or 14, roughly 412 

equivalent to electrodes Cz, CPz, and Pz in the 10-20 system; see Figure 1 d). The 413 

activity in the selected electrode was averaged for each condition and for stimulus 414 

and response-locked signals separately.  415 

 416 

2.1.4. Statistical Analysis 417 

Differences between conditions for behavioural data were inferred using ANOVAs 418 

and generalized linear mixed models (GLMMs) with logistic link functions, for RTs 419 

and error rates respectively. GLMMs were chosen for the analysis of accuracy data 420 

since the non-normal distribution of such data will, at a theoretical level, always 421 

violate the assumptions of ANOVA (Jaeger, 2008). They were implemented using 422 

the Matlab fitglme command; all effects of interest (e.g. ‘Difficulty’, ‘Interruption’, and 423 

their interaction) were clustered within participants and included as random effects in 424 

the model specifications (e.g. Wilkinson notation: Accuracy ~ 1 + 425 
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Interruption*Difficulty + (1+Interruption*Difficulty | 426 

Participant).2  427 

 428 

In order to test the effects of the difficulty and interruption manipulations on the ERP, 429 

we explored both the slopes and the amplitudes of the waveforms. First, we 430 

compared the slopes between the different conditions by fitting a straight line to the 431 

CPP for each participant and each condition and measuring its slope. The resulting 432 

slopes were then compared in an ‘Interruption’ (‘continuous’, ‘random’, ‘reverse’) x 433 

‘Difficulty’ (‘easy’, ‘hard’) repeated-measures ANOVA.  434 

 435 

We compared slopes during two different time intervals in the stimulus-locked data: 436 

an early interval between 100 and 300 ms and a late interval between 300 and 500 437 

ms relative to the onset of coherent motion. Given the interruption interval of 200 to 438 

400 ms and the assumption of a small lag between stimulus presentation and 439 

accumulation (typically observed in the CPP, see Kelly & O’Connell, 2013; Spieser et 440 

al., 2018), we assume that the early interval reflects accumulation mainly before the 441 

interruption and the late interval reflects accumulation mainly during the interruption. 442 

However, since these intervals were primarily chosen based on visual inspection, 443 

and Kelly and O’Connell (2013) suggested a longer 200 ms delay between the 444 

evidence and its visible effect on the CPP waveform, we also repeated the analysis, 445 

defining the interruption interval as a 400-600 ms time window. 446 

 447 

                                                
2 This represents the ‘maximal’ random effects structure (Barr, Levy, Scheepers, & Tily, 2014) which 

makes the model as equivalent as possible to a traditional repeated-measures ANOVA, whist properly 

respecting the nature of the data. 
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Additionally, we analysed the impact of difficulty and interruption on the amplitude of 448 

the waveform. Between 0 and 1000 ms in the stimulus-locked data, and 449 

between -1000 to 0 ms in the response-locked data, we compared conditions using 450 

an ‘Interruption’ (‘continuous’, ‘random’, ‘reverse’) x ‘Difficulty’ (‘easy’, ‘hard’) ANOVA 451 

at each time point. The results were controlled for multiple comparisons using the 452 

false discovery rate (FDR) approach (Benjamini & Hochberg, 1995)3. 453 

 454 

2.1.5. Model Fit 455 

To model the behavioural data, we used two sequential sampling models. Firstly, the 456 

independent race accumulator model which is, at least conceptually, one of the 457 

simplest sequential sampling models (Brown & Heathcote, 2008; Usher & 458 

McClelland, 2001). In this model, evidence for each response alternative is 459 

integrated in independent accumulators which race towards the decision threshold. 460 

At each time point, a given accumulator i accumulates the input evidence Ii 461 

supporting response alternative ‘i’, as well as noise N, drawn from a normal 462 

distribution with mean 0 and standard deviation σ, so that the quantity accumulated 463 

at each time point is described by:  464 

𝑑𝑥𝑖 ∝  𝐼𝑖 + 𝑁(0, 𝜎2)  (1) 

 

                                                
3 In this procedure, the uncorrected p-values are sorted from lowest to highest (pi refers to the ith 

lowest value out of m total p-values). The largest i for which 𝑝𝑖 < (
𝑖

𝑚
) ∝ is identified and all p-values 

associated with is smaller or equal to the identified i are considered significant. 
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The strength of input Ii depends on the mean accumulation rate vi, which reflects the 465 

quality of evidence. To remain physiologically plausible, the accumulation process is 466 

restricted to positive values at each time step4: 467 

  𝑥𝑖(𝑡 + 1) = max (0, 𝑥𝑖(𝑡) +  𝑑𝑥𝑖)  (2) 

 468 

Once either of the accumulators reaches the threshold A, the corresponding 469 

response (here response ‘i’) is initiated. Potential variations between trials’ starting 470 

states are introduced by varying accumulation starting point, which is drawn for each 471 

accumulator and each trial from a uniform distribution between 0 and Sz. The time 472 

taken to reach the threshold, in addition to a non-decision time which represents any 473 

time taken for sensory and motor processes before and after the accumulation 474 

process respectively, defines the modelled RT. The non-decision time is drawn from 475 

a uniform distribution with width STer, centred on Ter.  476 

 477 

In addition to the independent race accumulator model, we also used the more 478 

physiologically plausible LCA model (Usher & McClelland, 2001) which introduces 479 

interactions within and between accumulators. In this model, like the simpler 480 

independent race model described above, evidence for each response alternative is 481 

accumulated in separate accumulators which race towards response threshold A. 482 

Additionally, the LCA includes a leakage parameter k as well as a parameter β for 483 

                                                
4 Strictly, for physiological plausibility, the quantity accumulated should always be positive (as neurons 

cannot have negative firing rates) and also generally begin at a positive baseline (given spontaneous 

neural activity). Many of the models tested in this paper do begin at positive values, although this is 

not always the case for our LCA models (in line with conventional implementations of this model). 
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mutual inhibition between accumulators. Thus, in a binary decision involving the 484 

accumulators i and j, the change in activation in each accumulator is given by5: 485 

  𝑑𝑥𝑖 ∝  𝐼𝑖 − 𝑘𝑥𝑖 − 𝛽𝑥𝑗 + 𝑁(0, 𝜎2) 

𝑑𝑥𝑗 ∝  𝐼𝑗 − 𝑘𝑥𝑗 − 𝛽𝑥𝑖 + 𝑁(0, 𝜎2)  

(3) 

 486 

Where I is the input into the accumulator and N(0,σ2) is noise drawn from a normal 487 

distribution with a mean of 0 and a standard deviation of σ. Again, the accumulation 488 

process is limited to positive numbers:  489 

 𝑥𝑖(𝑡 + 1) = max(0, 𝑥𝑖(𝑡)  + 𝑑𝑥𝑖) 

𝑥𝑗(𝑡 + 1) = max (0, 𝑥𝑗(𝑡)  + 𝑑𝑥𝑗) 

(4) 

 490 

A decision is made when either of the accumulators reaches the threshold A, and the 491 

RT is made up of the time required to reach the threshold, and a non-decision time 492 

drawn from a uniform distribution centred on Ter with width STer, which accounts for 493 

sensory and motor processes before and after the accumulation process. 494 

 495 

To determine which model provided the best fit to our behavioural data, four 496 

independent race and four LCA models were tested. In all models, the response 497 

threshold A was chosen as the scaling parameter and fixed to 1. Apart from the 498 

periods of motion interruption, evidence supporting the correct response alternative 499 

was accumulated in the ‘correct’ accumulator at a mean accumulation rate vcorrect, 500 

while evidence for the incorrect response was integrated in the ‘incorrect’ 501 

                                                
5 In our code, these equations were implemented as: 

𝑑𝑥𝑖 = (𝑣𝑖 −  𝑘𝑥𝑖,𝑡−1 − 𝛽𝑥𝑗,𝑡−1)𝑑𝑡 + 𝑁(0, 𝜎2)√𝑑𝑡 

𝑑𝑥𝑗 = (𝑣𝑗 −  𝑘𝑥𝑗,𝑡−1 − 𝛽𝑥𝑖,𝑡−1)𝑑𝑡 + 𝑁(0, 𝜎2)√𝑑𝑡 

With dt = 0.01s. Hence a correction (by a factor of dt) may be required for comparison with 
parameters reported in some other papers based on finite difference equations. 
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accumulator at a mean rate vincorrect. All models implemented a change in 502 

accumulation rates during the interruption interval (from 200 to 400 ms relative to the 503 

decision onset), but each assumed different mechanisms (Holmes et al., 2016), as 504 

described below. For consistency, ‘correct’ and ‘incorrect’ accumulator labels 505 

remained constant throughout each trial, such that, during the evidence interruption, 506 

vcorrect and vincorrect still referred to the correct and incorrect responses according to 507 

the initial motion direction6. Finally, as trial difficulty influences evidence 508 

accumulation, accumulation rates were always estimated separately for easy and 509 

hard trials. 510 

 511 

Model 1 was an independent race model defined by eight parameters, assuming 512 

symmetrical changes in accumulation rates during motion interruption. In 513 

‘continuous’ trials, evidence was accumulated at mean rates vcorrect and vincorrect 514 

throughout the whole trial. In ‘random’ trials, in which the evidence becomes random 515 

during the interruption, we assumed that only noise was accumulated during this 516 

period, i.e., v-randomcorrect = v-randomincorrect = vincorrect from 200 to 400ms after 517 

decision onset. Outside of this interval, correct and incorrect rates were set to the 518 

initial values vcorrect and vincorrect. In the ‘reverse’ condition, the evidence changed 519 

direction during the interruption interval, but remained at its original strength, which 520 

may lead to a reversal of drift rates, i.e., v-reversecorrect = vincorrect, v-reverseincorrect = 521 

vcorrect. Again, outside for the interruption interval, evidence was accumulated at 522 

mean rates vcorrect and vincorrect. This describes a model with only four accumulation 523 

rates (vcorrect and vincorrect, estimated separately for easy and hard decisions), as well 524 

                                                
6 In the ‘reverse’ condition, evidence during interruption supports the incorrect response alternative, 

and is integrated in the ‘incorrect’ accumulator. 
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as the parameters Sz, Ter, STer, and σ2 which were fixed between conditions (see 525 

Table 1). 526 

 527 

Instead of symmetrical changes, model 2 assumed free variation in rates with 528 

changing evidence leading to a new set of accumulation rates for the ‘random’ and 529 

‘reverse’ intervals. This results in a total of 12 accumulation rates: for each difficulty 530 

condition, v-continuouscorrect, v-continuousincorrect, v- randomcorrect, v-randomincorrect, v-531 

reversecorrect, v-reverseincorrect. All other parameters (Sz, Ter, STer, σ2) were fixed 532 

between conditions, resulting in a model of 16 free parameters (see Table 1). 533 

 534 

Models 3 and 4 were identical to models 1 and 2 respectively, but also included a 535 

delay parameter d to account for a potential delay between the change in evidence 536 

and the change in the decision variable (Holmes et al., 2016). Note that the delay 537 

introduced here is different from simple sensorial delay, caught by the encoding part 538 

of non-decision time. It instead adds a time lag between the change in evidence and 539 

accumulation rate modulation to account for potential persistence of accumulation 540 

even when evidence has changed. 541 

 542 

Finally, Models 5, 6, 7, and 8, were LCA models implementing the same modulations 543 

as Models 1, 2, 3, and 4 respectively (see Table 1). 544 

 545 

For each participant, trials with RTs faster than 180 ms or slower than 2000 ms (less 546 

than 3%) were discarded. RT distributions in each condition were then summarized 547 

by five quantiles for correct trials, and by the median RT value for incorrect trials (the 548 

median was used due to the low number of incorrect trials in some cases). Best 549 
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fitting model parameters were then determined at an individual level. Modelled RTs 550 

were simulated based on the equations described above and compared to RT data 551 

using Quantile Maximum Probability Estimation (Heathcote et al., 2002). Parameter 552 

values were adjusted using a differential evolution algorithm implemented in Matlab 553 

(The Mathworks, Natick, U.S.A.; Price et al., 2005). 554 

 555 

We compared the goodness of fit of models by calculating the mean Bayesian 556 

information criterion (BIC, Schwarz, 1978) as well as the mean Akaike information 557 

criterion (AIC; Akaike, 1977). These measures take into account the likelihood of the 558 

model, but also penalise a model for the number of parameters used in order to 559 

resolve the problem of overfitting. For our data, AIC and BIC were not in agreement 560 

regarding the best overall model. We therefore made a (somewhat arbitrary) 561 

decision to favour BIC, but to also present AIC in all tables for transparency. The 562 

model which best fitted the data according to the BIC measure was then used to 563 

generate predictions of the accumulation profile. 564 

 565 

In addition, we also performed a recovery study to estimate the accuracy of our 566 

fitting procedure. This was done by simulating 20 RT datasets using Model 5 (LCA-567 

symmetric with no delay, i.e., the lowest BIC model, see results). The simulated 568 

datasets were constructed as per our empirical individual data with the 3 interruption 569 

conditions and 2 difficulty levels. The number of trials also corresponded to empirical 570 

data (160 trials per condition, i.e., 960 trials in total). Results of the recovery are 571 

presented in Appendix A. 572 
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2.1.6. Model Prediction (neurodynamics) 573 

Since EEG recordings reflect the summation of neural activity in a given area, we 574 

assumed that, if the CPP is a neural correlate of the decision variable, it represents 575 

the sum of all evidence accumulation. Although a binary choice may recruit separate 576 

neural populations to accumulate evidence, these neural populations would likely be 577 

in close proximity. An ERP component recorded at the scalp over these neural 578 

populations measures the summation of electrical activity and therefore most likely 579 

the sum of both accumulation processes. In order to compare the model prediction to 580 

the CPP, we therefore considered the sum of the correct and incorrect accumulation 581 

profiles of correct choices. 582 

 583 

Based on the model equations described above, a total of 10,000 accumulation 584 

paths (in 10 ms time steps) were computed using individual best-fitting parameters 585 

obtained for each condition. To account for sensory processes, accumulation started 586 

after a sensory delay (fixed to 50% of non-decision time). Evidence was then 587 

accumulated until the response threshold and continued to be accumulated for a 588 

short period after the threshold was reached to account for motor processes (50% of 589 

non-decision time; note that we assume that accumulation continues until the offset 590 

of the stimulus, i.e. during the time to reach the threshold plus the time taken to 591 

make the motor response and thus stop the stimulus in our paradigm).  592 

 593 

To match with EEG processing, the ‘sum of accumulations’ signal was baseline 594 

corrected by subtracting the first data point value from the whole trial. Finally, we 595 

averaged accumulation signals in each condition, locked to both the estimated onset 596 

of the decision process (stimulus-locked) and the response (response-locked). Since 597 
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the stimulus-locked signal includes varying time spans of post-decision stages, and 598 

we can only speculate about the behaviour of the accumulator after the response, 599 

we removed simulated trials from averaging after the response (i.e. after the crossing 600 

of the threshold plus 50% non-decision time). Both stimulus and response-locked 601 

individual predictions were then averaged across participants, to obtain “grand 602 

average” model predictions. 603 

 604 

To compare the EEG signal with these model predictions, we recomputed individual 605 

stimulus-locked CPPs, by removing trials from the average once they reached the 606 

associated RT, and then recomputed the corresponding grand average. EEG signals 607 

were then low-pass filtered with a cut-off of 5 Hz for better visualisation, and 608 

downsampled to match the 10 ms time steps used in the model predictions. To 609 

quantify the similarity between the two signals, we analysed the correlations between 610 

the model predictions and the downsampled, but not low-pass filtered EEG data for 611 

each difference between conditions (stimulus-locked time-window: 0 – 1000 ms, 612 

response-locked time-window: -1000 – 0 ms).  613 

 614 

2.2. Results 615 

2.2.1. Behavioural Results 616 

Behavioural data were collapsed over ‘left’ and ‘right’ trials. All trials with very short 617 

(< 180 ms) or very long (>= 2000 ms) RTs were excluded from the analysis (2.99% 618 

of trials). The remaining data are displayed in Figure 1 c.  619 

 620 
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As expected, ‘easy’ decisions were faster than ‘hard’ decisions, F(1, 19) = 134.96, p 621 

< .001, ηp
2 = .88. For the main effect of ‘Interruption’, Mauchley’s test indicated that 622 

the assumption of sphericity had been violated, χ2(2) = 18.77, p < .001. We therefore 623 

Greenhouse-Geisser corrected the degrees of freedom (ε = .61). There was a 624 

significant main effect of ‘Interruption’, F(1.21, 23.07) = 63.45, p < .001, ηp
2 = .77. 625 

Pairwise comparisons using Fisher’s Least Significant Difference (LSD) revealed that 626 

all three levels of ‘Interruption’ were significantly different from each other with 627 

'continuous' trials leading to shorter RTs than 'random' (p = .001) and 'reverse' (p < 628 

.001) trials, and 'random' trials showing shorter RTs than 'reverse' trials (p = .005). 629 

There was no significant interaction, F(2, 38) = 2.00, p = .15, ηp
2 = .10. 630 

 631 

Additionally, GLMMs showed that accuracy also differed significantly by ‘Difficulty’, 632 

F(1, 114) = 7.19, p = .008, with ‘easy’ conditions associated with higher accuracy 633 

than ‘hard’ conditions. ‘Interruption’ was also a significant predictor, F(2, 114) = 634 

108.88, p < .001. The ‘Interruption * Difficulty’ interaction was not significant, F(2, 635 

114) = 2.33, p = .10. In order to explore the differences between all three levels of 636 

‘Interruption’ (‘continuous’, ‘random’, ‘reverse’), we fitted the model a second time, 637 

but setting the reference level of ‘Interruption’ to ‘random’, rather than ‘continuous’. 638 

We found that both the ‘continuous’ and the ‘random’ conditions were associated 639 

with higher accuracy scores than the ‘reverse’ condition (p < .001). There was no 640 

significant difference between the ‘continuous’ and the ‘random’ conditions (p = .13).  641 

2.2.2. ERP Results 642 

The resulting ERPs are displayed in Figure 1 d. The CPP displays a build-up over 643 

the course of the decision, which seems disrupted by the interruption of evidence in 644 
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relevant conditions. 645 

 646 

Figure 1: a) Experiment 1 random dot motion task trial procedure: in each trial, coherent motion (here: direction: 647 

right; coherence: 70%) was either continuous (‘continuous’ condition), or was interrupted by either random motion 648 

(‘random’ condition) or coherent motion in the opposite direction (‘reverse’ condition), before continuing in the 649 

original direction. b) Model fit: each participant’s quantiles from behavioural data (x-axis) and the LCA model 650 

(Model 5) simulations (y-axis) for easy (top, filled circles) and hard (bottom, circle outlines) decisions, as well as 651 

continuous (left), random (middle) and reverse (right) conditions. Increasing quantiles (10%, 30%, 50%, 70%, 652 

90%) are represented by increasingly dark colours. Small inserted panels show observed and simulated RT 653 

medians for error trials. c) Behavioural results: mean reaction time (left) and accuracy (right) in each condition. 654 

Error bars indicate 95% confidence intervals. d) CPP results: Stimulus-locked (left) and response-locked (right) 655 

CPP waveforms for easy (top), and hard (bottom) trials. Right panels show topography averaged over the 656 
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stimulus-locked 0 to 1000 ms interval. Electrodes used to generate the waveform are highlighted. Vertical dashed 657 

lines in the stimulus-locked CPP represent mean RTs per condition. Note that the mean RTs here are computed 658 

only from trials which were included to generate the waveform and therefore differ slightly from those displayed in 659 

c. Grey dots at the bottom of the waveforms indicate significance based on FDR-controlled comparisons of 660 

amplitude: dark grey dots indicate a significant effect of Interruption, while light grey ones indicate a significant 661 

effect of Difficulty. 662 

 663 

First, we compared the slopes of the ERP occurring in response to evidence 664 

accruing before and during the interruption period. In the first interval (100-300 ms), 665 

analysis revealed that the slope of the CPP associated with ‘easy’ waveforms was 666 

higher than ‘hard’ waveforms, F(1, 19) = 12.93, p = .002, ηp
2 = .40. There was no 667 

main effect of ‘Interruption’, F(2, 38) = 1.01, p = .38, ηp
2 = .05, and no interaction 668 

effect (p = .82). Conversely, in the second, interruption-driven, interval (300-500 ms), 669 

the slope of the CPP was affected by the ‘Interruption’ condition, F(2, 38) = 9.52, p < 670 

.001, ηp
2 = .33, but not by ‘Difficulty’, F(1, 19) = .19, p = .67, ηp

2 = .01, with no 671 

interaction between the two factors (p = .39).7 Investigating the interruption effect 672 

with Fisher’s LSD post-hoc tests showed that the slope was significantly higher in the 673 

‘continuous’ waveform than the ‘random’ and the ‘reverse’ waveforms, t(19) > 3.40, p 674 

                                                
7 We selected two windows for slope analysis based on the timing of our stimulus (and assumptions 

about the time course with which information feeds through to decision areas of the brain). This 

approach is consistent with previous work on the CPP, but incorporates no correction for familywise 

error, which might raise concerns in the absence of pre-registration for the analysis. For 

completeness, we attempted an analysis that varied the position of the 200 ms window used to 

assess slope (in steps of 1 ms) and incorporated an FDR correction for these multiple comparisons. 

Under this approach, the slope difference associated with difficulty (100-300 ms) remains significant, 

but the later slope difference associated with interruption condition (300-500 ms) fails to reach 

significance. However, subsequent FDR-corrected analyses of amplitude provide an alternative 

source of evidence regarding the impact of the interruption conditions on the CPP. 
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< .003. No significant difference between the ‘random’ and ‘reverse’ conditions was 675 

observed, t(19) = .76, p = .46. Since the interruption-driven time interval of 300-500 676 

ms was chosen primarily based on visual inspection, we repeated the analysis using 677 

a time window which assumes a 200 ms delay between the evidence and its visible 678 

effect on the CPP, as suggested by Kelly and O’Connell (2013). The analysis of this 679 

time window (400-600 ms) confirmed our findings (significant main effect of 680 

‘Interruption’, p = .005, no other effects p > .24). 681 

 682 

CPP amplitudes (as opposed to slopes) were also compared, by performing a series 683 

of FDR-controlled ANOVAs. For brevity, only results showing a corrected p-value of 684 

< .05 for at least 50 ms continuously are reported. In the stimulus-locked CPP, an 685 

‘Interruption’ effect was observed between 466 and 783 ms (corrected p < .049; see 686 

Figure 1 d, where asterisks denote statistical effects on amplitude, not the previously 687 

described analysis on slopes). Fisher’s LSD-corrected post hoc tests found that the 688 

‘continuous’ waveform displayed a higher amplitude than both the ‘random’ (between 689 

466 and 783 ms relative to the onset of coherent motion, corrected p < .02) and the 690 

‘reverse’ waveforms (between 488 and 783 ms, corrected p < .046). There was no 691 

significant difference in amplitude between ‘random’ and ‘reverse’ conditions 692 

(corrected p > .26). Further, we found a significant effect of ‘Difficulty’ in the time 693 

interval between 276 and 1000 ms relative to stimulus onset, with ‘easy’ waveforms 694 

reaching higher amplitudes than ‘hard’ waveforms (corrected p < .046). There was 695 

no significant interaction effect (corrected p > .34). 696 

 697 

In the response-locked CPP, we found only a ‘Difficulty’ effect on amplitude, with 698 

‘easy’ trials displaying a higher amplitude than ‘hard’ trials between -229 and 0 ms 699 
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relative to response. There was no main effect of ‘Interruption’ (corrected p > .07), 700 

and no interaction effect (corrected p > .9). 701 

2.2.3. Model Fit 702 

We fitted eight sequential sampling models (four independent race and four LCA) to 703 

the RT data. In each model type, models differ by assuming either symmetrical 704 

(models 1,3 and 5,7) or free modulations (models 2,4 and 6,8) of accumulation rates 705 

during the motion interruption period, which are applied either immediately (models 706 

1,2 and 5,6) or after a free delay (models 3,4 and 7,8). For most individual 707 

participants (90% by AIC; 85% by BIC) no model was strongly supported (AIC/BIC 708 

improvement > 10) relative to all others. We thus averaged individual BICs (Schwarz, 709 

1978) and AICs for each model to compare goodness of fit (see Table 1). It is clear 710 

that the exact ordering of models was criterion dependent, although the overall 711 

preference for the LCA class of model was not, with a pair of 2 (model class) x 2 712 

(presence of delay) x 2 (presence of asymmetry) repeated-measures ANOVAs on 713 

both AIC and BIC showing main effects of model class (F(1, 19) = 21.81, p < .001, 714 

ηp
2 = .53 and F(1, 19) = 13.11, p = .002, ηp

2 = .41, respectively).8 We elected to 715 

focus on BIC. The best (lowest) BIC was obtained for model 5, an LCA model with 716 

symmetric variation for the interrupted accumulation rate and no delay (see Table 1). 717 

Following Tukey correction, this model was reliably better than models 2, 4, 6 & 8 718 

(i.e. all models allowing free modulation of accumulation rates during the interruption 719 

                                                
8 For our purposes here, model comparison was a means to an end, in terms of finding a reasonable 

candidate for the subsequent generation of neurodynamic predictions, not an end in itself. Hence we 

do not present detailed results breaking down these ANOVAs, both of which included three-way 

interactions, but instead simply summarise all possible pairwise comparisons (see main text). 
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period; all p < 0.001). Without such correction, it additionally beat model 1 (p = 720 

0.018). 721 

 722 

Table 1: Model Comparison: BIC and AIC values for each independent race (IRA) and LCA model. The BIC and 723 

AIC values of the chosen model (Model 5) are displayed in bold. 724 
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 725 

As expected, mean accumulation rates (v) for the correct accumulator were higher in 726 

easy compared to difficult conditions. In this model, interruptions and reversals in 727 

evidence were modelled parsimoniously by substituting the appropriate parameters 728 

during this interval, rather than fitting new ones. Note that the exact parameter 729 

values returned should be treated with some caution, as a recovery study (Appendix 730 

A) suggested that this LCA model has issues with identifiability, i.e., some 731 

parameters can trade off to produce equally good fits (see discussion, below). Due to 732 

these identifiability issues, we do not report the parameter estimates for this model 733 

here, but have included them in the appendix (see Table A1). 734 

 735 

Figure 1 b shows the quality of the model fit by displaying each participant’s 736 

empirical (x-axis) and modelled (y-axis) RT quantiles (10%, 30%, 50%, 70%, 90%, 737 

increasing quantiles represented by increasingly dark colours) for each interruption 738 

condition as well as easy (top) and hard (bottom) trials (for behavioural fits for all 739 

other models, see Appendix B). The overlap between empirical and modelled 740 

quantiles indicates that the model fitted the data well.  741 
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2.2.4. Model Prediction 742 

The parameters of the chosen model were then used to estimate individual 743 

accumulation profiles for each condition. Figure 2 displays the mean resulting 744 

predictions (b) and the corresponding EEG data (a) for stimulus (left) and response-745 

locked (right) data. The model prediction was produced by summing correct and 746 

incorrect accumulators (see methods), and these contributory signals are shown 747 

separately as insets. Visual inspection shows that the EEG and predicted profiles are 748 

qualitatively very similar. With stimulus-locking, both profiles show an initial build-up 749 

which is slower (lower slope) in ‘hard’ (dashed lines) compared to ‘easy’ (solid lines) 750 

conditions, but similar across interruption conditions. Both profiles also show that the 751 

‘continuous’ waveforms continue the build-up, while ‘random’ and ‘reverse’ 752 

waveforms display a plateau at approximately the same time, before continuing to 753 

build up. A further similarity between the model prediction and the EEG signal is the 754 

unexpected finding of a near complete overlap of the ‘random’ and ‘reverse’ 755 

conditions during the interruption period.  756 



36 
 

 757 

Figure 2: Decision variable (empirical and simulated): a) CPP waveform for easy (top, solid) and hard (bottom, 758 

dashed) trials, as well as stimulus (left) and response-locked (right) data. The CPP here has been filtered and 759 

downsampled to match model predictions. b) Accumulation profile (correct and incorrect accumulator summed) 760 

per Interruption condition as predicted by the best-fitting LCA model, for easy (top, solid lines) and hard (bottom, 761 

dashed lines) trials, as well as stimulus (left) and response-locked (right) data. Correct and incorrect 762 
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accumulators were summed to form the prediction, so these contributory signals are shown separately as smaller 763 

insets.c) Accumulation profile as predicted by the best-fitting independent race accumulator (IRA) model. Details 764 

as in part b. 765 

While a degree of positive correlation over time between EEG signals and model 766 

predictions is to be expected for any ERP that grows across the RT period, the ability 767 

to predict differences between experimental conditions is more challenging and 768 

therefore more convincing. Hence, to quantify similarities between model predictions 769 

and neurodynamic data, we analysed the correlation between differences of 770 

conditions (differences between ‘continuous – random’, ‘continuous – reverse’, and 771 

‘random – reverse’, for both easy and hard, as well as stimulus-locked and 772 

response-locked signals, resulting in a total of 12 correlations between the model 773 

predictions and the downsampled EEG; see ‘Model Prediction (neurodynamics)’). 774 

We found that 9 out of 12 tests revealed significantly positive correlations (rmean(98) = 775 

.67 pmean < .001). All significant positive correlations remained significant after 776 

Bonferroni correction. Since ‘random’ and ‘reverse’ profiles largely follow the same 777 

trajectory, correlations between EEG and model signals reflecting the difference 778 

between these two conditions were naturally the lowest, and in fact, non-significant 779 

in some cases. The most meaningful correlations are therefore those between 780 

signals reflecting the difference between ‘continuous’ and ‘random’, and ‘continuous’ 781 

and ‘reverse’ conditions, specifically the stimulus-locked signals, as the manipulation 782 

in this experiment targeted the stimulus-locked trajectory of the accumulation. These 783 

correlations remained significant after Bonferroni correction (rmean(98) = .79, pmean < 784 

.001). 785 

 786 

For reasons of concision, with eight models, our main focus when assessing the 787 

overlap between model predictions and EEG was on the model which best predicted 788 
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the behavioural data. However, we also assessed the extent to which the winning 789 

model from the other broad category (independent race model 3) could predict 790 

accumulation signals resembling the CPP. Indeed, behaviourally, this model was 791 

almost indistinguishable from LCA model 5 in terms of its ability to capture RTs. 792 

Neurodynamic predictions for independent race model 3 are shown in Figure 2 (c). 793 

As can be seen, although the global accumulation pattern is present, the 794 

independent race model does not predict the empirical observation of no difference 795 

during the interruption period between the ‘random’ and ‘reverse’ conditions. 796 

However, although for this model the raw predictions looked rather less well matched 797 

to their corresponding EEG signals, correlations based on differences between 798 

conditions followed a broadly similar pattern to that observed for LCA model 5, i.e., 799 

the best fitting independent race model also did a good job of predicting the time-800 

varying ordering of EEG signals in different conditions (10 out of 12 tests revealed 801 

significant correlations after Bonferroni correction r(98) = .51, p = .001). This 802 

highlights that the correlations used here should not be used in isolation in order to 803 

evaluate different models. 804 

 805 

2.3.  Discussion Experiment 1 806 

In the first experiment, we tested the impact of non-stationary evidence on the CPP, 807 

a potential neural substrate of the decision variable. Assuming that a change in 808 

evidence must necessarily induce a change in the accumulation profile, the CPP 809 

waveform should display a similar time-varying build-up in order to support its role as 810 

a decision variable signal. To test this, we observed the CPP under three different 811 

conditions: a ‘continuous’ condition in which the evidence was constant throughout 812 

the trial, a ‘random’ condition in which the evidence was stopped for a brief interval 813 
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and replaced by random noise, and a ‘reverse’ condition in which the evidence was 814 

reversed to support the opposite response alternative for a brief period. We also 815 

added a more established manipulation (task difficulty) as a positive control. We 816 

expected that the continuous condition would lead to the stereotypical, smooth build-817 

up, while the random and reverse profiles should deviate from this build-up to 818 

varying extents. Critically, however, we went beyond intuitive predictions about the 819 

interrupted decision variable, by first using our RT data to identify and fine-tune a 820 

plausible behavioural model, and then using this model to formulate exact 821 

predictions for the CPP under the assumption that this spatially diffuse EEG 822 

component should represent a sum of accumulators within a race-model framework. 823 

As we expand below, the resulting correspondence between model predictions and 824 

CPP was striking. 825 

 826 

Both evidence interruption and difficulty manipulations had the expected effects on 827 

participants’ performance, with faster and more accurate responses in ‘easy’ than 828 

‘hard’ trials, and when evidence was ‘continuous’. The slowest and least accurate 829 

responses were observed in ‘reverse’ trials, while the ‘random’ condition lengthened 830 

RT compared to continuous trials, with a less clear impact on accuracy. Hence, 831 

interrupted trials led to worse performance, with evidence reversal disrupting the 832 

decision more than a simple pause. These findings are broadly in line with previous 833 

research (Holmes et al., 2016; Huk & Shadlen, 2005; O’Connell et al., 2012; Tsetsos 834 

et al., 2012).  835 

 836 

We infer that these changes in performance were caused by modulations of 837 

decision-related evidence accumulation. It is well-established that difficulty affects 838 
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the slope of accumulation, with easier stimuli leading to steeper evidence 839 

accumulation (Brown & Heathcote, 2008; Kelly & O’Connell, 2013; Ratcliff & 840 

McKoon, 2008; Ratcliff & Rouder, 1998). The interruption of evidence, on the other 841 

hand, should lead to an interruption in accumulation. To formalise this account of the 842 

behaviour we observed, we tested several LCA and independent race accumulator 843 

models, and found that an LCA model with symmetrical changes of accumulation 844 

rates during the epoch of interruption (and for different difficulty levels) provided the 845 

best account of our RT data (although other models were viable). 846 

 847 

We hypothesised that a pause in evidence would cause the accumulation to stop 848 

and plateau for the duration of the interruption interval. The impact of the ‘reverse’ 849 

condition on the accumulation profile is somewhat harder to predict intuitively, and is 850 

probably more dependent on the specifications of the model. For instance, the 851 

assumption of reciprocal inhibition between accumulators may attenuate the impact 852 

of evidence reversal. Specifically, the accumulator corresponding to the initial 853 

direction of dot motion may inhibit the accumulator receiving the reversed evidence 854 

in most trials, hence limiting accumulation growth during the reversal period. Issues 855 

like these led us to emphasise modelling in formulating predictions.  856 

 857 

We used the estimated parameters from our best-supported LCA model to simulate 858 

the accumulation profiles (and, in particular, their sum) associated with each 859 

condition, and directly compared the resulting patterns to the CPP. We found 860 

considerable overlap between the model predictions and the neural signal, even 861 

though these profiles were not fitted to one another directly. As previously reported 862 

(Kelly & O’Connell, 2013; Twomey et al., 2015), task difficulty affected the slope of 863 
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the CPP, with lower build-up rates in ‘hard’ decisions. A very similar difference 864 

appeared in model predictions. Furthermore, we obtained novel evidence that both 865 

model predictions and the CPP showed the same gradual build-up in the 866 

‘continuous’ condition, and interruption of this build-up (which plateaued before 867 

continuing to build up approximately 300 ms later) in the ‘random’ and ‘reverse’ 868 

conditions. Interestingly, model predictions also mimicked the CPP signal in terms of 869 

the unexpected similarity between the ‘random’ and ‘reverse’ waveforms. These 870 

patterns are particularly telling as they show an overlap between neural data and 871 

evidence accumulation which might not have been predicted based on intuitive 872 

reasoning alone. Our results build on previous research which found that the 873 

evolution of the CPP is sensitive to a brief interruption of evidence (O’Connell et al., 874 

2012) by testing additional conditions, in a choice rather than simple RT task, and 875 

making more precise model-derived predictions. Overall, the similarities we observed 876 

seem to support the role of the CPP as a neural substrate of decision-making. 877 

 878 

An additional finding worth noting is the delay in the disruption of the CPP build-up 879 

compared to the timing of the evidence interruption. While the interruption of motion 880 

took place between 200 and 400 ms after stimulus onset, the divergence in CPP 881 

amplitude between ‘continuous’ profiles and the two interrupted profiles was 882 

observed around 470-780 ms post stimulus. This finding supports the role of the 883 

CPP as an accumulation signal, rather than a mere sensory signal, which would 884 

arguably display a faster reaction in response to the change in evidence, suggesting 885 

that it represents a higher-level integration of evidence.  886 

 887 
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The details of our best-fitting model are somewhat suggestive regarding the way 888 

evidence accumulation follows from operations occurring in sensory regions of the 889 

brain. Holmes et al. (2016) found that a change in evidence was better explained by 890 

a new, independent accumulation rate, rather than a symmetric change of rates, 891 

even when the change in evidence itself was symmetric. We instead found that a 892 

change in evidence could be explained by a (more parsimonious) swap in 893 

accumulation rate during the interruption interval. Essentially, Holmes et al. (2016) 894 

found steeper accumulation rates after evidence reversal, while our results support a 895 

symmetrical rate change during the reversal period. In fact, some non-linearity in the 896 

sensory representation of a time-varying motion signal is to be expected (with the 897 

waterfall effect offering a well-known example of repulsive sensory after-effects, 898 

which are themselves complemented by assimilative tendencies; Addams, 1834; 899 

Yarrow, Minaei, & Arnold, 2015). However, the exact time-course of such effects are 900 

somewhat challenging to predict. The difference in findings here relative to Holmes 901 

et al. (2016) may perhaps be explained by the different task procedures, as we used 902 

brief perturbations while the evidence in their study remained reversed for the rest of 903 

the trial. It is conceivable that sensory evidence rebounds after a change, perhaps 904 

via sensory repulsion, and is thus accumulated faster, but only after some delay, 905 

which is why Holmes et al. observed it and we did not. It is interesting to note that 906 

even for our independent race models (which were more equivalent to Holmes et 907 

al.’s piecewise LBA) a symmetric change of rates proved sufficient in our 908 

experiment. Differences between our findings and those reported by Holmes et al. 909 

(2016) may further be due to methodological differences in the way the models were 910 

fitted to the data. While in the current study, we used Quantile Maximum Probability 911 

Estimation, Holmes et al. (2016) fitted reaction time distributions using hierarchical 912 
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Bayesian methods, which may be sensitive to different subtleties in the data, leading 913 

to different findings. 914 

 915 

Another divergence between the two studies is that while Holmes et al.’s best model 916 

introduced a delay between the presentation and the incorporation of the new 917 

evidence, explaining the temporal lag between the change in evidence and its 918 

behavioural consequences, positive evidence for this delay was not observed in the 919 

current study. This difference may be explained by the type of model used. The LCA 920 

model implements reciprocal inhibition between accumulators, which presumably 921 

smooths accumulation-rate variations and produces a slow response to the change 922 

in evidence without the need for a delay parameter. In the case of independent 923 

accumulators on the other hand, as in Holmes et al.’s piecewise LBA, a delay 924 

parameter is necessary to model the slow response to changing evidence (note that 925 

our results using independent race accumulator models were consistent with Holmes 926 

et al.’s findings). We hence confirm that a change in evidence is explained by 927 

change in accumulation rates, and that some time is necessary for those changes to 928 

feed through and become visible in the decision variable. However, while a delay 929 

parameter was previously introduced to account for this temporal lag, we propose 930 

that it could naturally arise from reciprocal inhibition between accumulators, as 931 

implemented in the LCA model. Note, however, that our conclusion favouring an 932 

LCA model without any delay was dependent on our decision to elevate BIC over 933 

AIC in model comparison, and that a model with delay performed similarly well. 934 

 935 

Finally, although LCA complexity seems advantageous in this case, it is also known 936 

to induce parameter recovery issues and has been described as a model in which 937 
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different combinations of parameters values result in similar reaction time 938 

distributions (Miletić et al., 2017). In a recovery study (Appendix A) we also observed 939 

poor recovery for several of the parameters, with the implied trade-off being 940 

consistent with that observed by Miletić et al.’s (2017). Presumably, the values of 941 

common fractions of accumulation rates, leakage and inhibition trade off, making 942 

accurate estimation of parameter values hard to achieve. Importantly, however, we 943 

additionally observed that this only had a moderate impact on CPP predictions 944 

derived from the fitted parameters, most probably because parameters also trade off 945 

in the accumulation signal. Hence, although difficulties of parameter estimation must 946 

be considered when one draws conclusions on parameter values, investigation of 947 

derived accumulation signals may be less affected.  948 

 949 

3. Experiment 2: Decision Bias 950 

 951 

Experiment 1 suggested that the CPP reflects the complex decision variable 952 

generated by a requirement to track time-varying sensory evidence. However, a 953 

viable neurodynamic correlate should respond appropriately to a wide range of 954 

manipulations known to affect the decision process. In Experiment 2, we went on to 955 

test the effects of decision biases on the CPP. Probabilistic decision biases are 956 

associated with strong behavioural effects, and can often be explained using 957 

sequential sampling models by varying just one parameter (Summerfield & de 958 

Lange, 2014; but see Rae, Heathcote, Donkin, Averell & Brown, 2014). In a 959 

sequential sampling process, evidence is accumulated from a given starting point 960 

towards a threshold. With the introduction of a bias towards a given alternative (e.g. 961 

a greater a priori likelihood that that alternative will be evidenced) the starting point 962 
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moves towards the respective threshold, thereby decreasing the amount of evidence 963 

required to make the choice in favour of the biased alternative (Bode et al., 2012; 964 

Gao, Tortell, & McClelland, 2011; Mulder et al., 2012; Spaniol et al., 2011; 965 

Summerfield & Koechlin, 2010; Teodorescu & Usher, 2013; Voss et al., 2013). In 966 

contrast to Experiment 1, in which the shape of the accumulation process was 967 

affected, here, we set out to investigate the impact of varying the magnitude of 968 

accumulated evidence required for a decision on the CPP waveform. To our 969 

knowledge, the impact of probabilistic decision biases on the CPP has not been 970 

tested so far. 971 

 972 

The neurodynamics of biased decisions have nonetheless been explored before in 973 

other ways. Rorie, Gao, McClelland, and Newsome (2010) presented monkeys with 974 

a binary motion-discrimination task in which the reward for the two choices was 975 

either equal or unequal. Rewards primarily influenced LIP firing rates prior to the 976 

motion onset, with unbalanced payoffs leading to a baseline shift towards the 977 

rewarded threshold. These findings support the notion of a starting point difference in 978 

accumulation for biased decisions. No difference in the slope of the build-up in firing 979 

rate throughout the decision was observed. The same finding of a shift in baseline 980 

activity and unaltered slopes in LIP firing rates was supported when instead of 981 

unequal payoffs, predictive directional cues were used in a motion discrimination 982 

task (Rao, DeAngelis, & Snyder, 2012). Similarly, it has been shown that firing rates 983 

in neurons which show a build-up to threshold profile associated with a given choice 984 

show a reduction in baseline activity with decreasing probability of this choice (Basso 985 

& Wurtz, 1998; Dorris & Munoz, 1998), further supporting the role of starting point 986 

activity in decision biases.  987 
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 988 

Evidence regarding biased neural correlates of evidence accumulation in humans 989 

remains somewhat scarce. EEG research has focused primarily on motor signals to 990 

track decision biases. Noorbaloochi et al. (2015) recorded human EEG during a 991 

decision task with either biased or unbiased payoffs and explored the lateralised 992 

readiness potential (LRP) as a signal reflecting evidence accumulation. In line with 993 

findings from non-human primates, it was found that in biased decisions, the LRP 994 

amplitude was shifted towards the alternative associated with the higher payoff prior 995 

to stimulus onset, suggesting a starting-point difference. Additionally, de Lange et al. 996 

(2013) concluded that it is a variation in accumulation starting point which accounts 997 

for bias-related activity. Using MEG, de Lange and colleagues found that motor-998 

related activity in the beta frequency range displayed a pre-stimulus bias in the 999 

direction associated with the biased alternative. Together, these data suggest that 1000 

biases push accumulation signals prior to the accumulation onset towards the 1001 

threshold, without affecting the accumulation slope. However, recently Afacan-Seref 1002 

et al. (2018) have reported somewhat different results in a study recording the CPP 1003 

and LRP during binary choice with strongly biased rewards and extreme time 1004 

pressure. They modelled an accelerating accumulator and found effects on the slope 1005 

of accumulation, with some specific predictions regarding slow, low-valued choices 1006 

mirrored in the CPP. We return to this study in the discussion. 1007 

 1008 

To our knowledge, the effects of probabilistic decision biases on CPP profiles have 1009 

not yet been explored. We therefore set out to explore the CPP waveform under 1010 

different bias conditions. We presented cues which either provided information 1011 

regarding the likely direction of subsequent motion or gave no directional 1012 
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information. Based on the literature summarised above, we expected that the 1013 

presence of a directional cue would lead to a shift in accumulation starting point, 1014 

decreasing the baseline-to-threshold distance in the accumulator corresponding to 1015 

the cued response. Regarding the CPP waveform, this baseline variation would 1016 

appear as a modulation in amplitude, since the CPP computation requires a baseline 1017 

correction (i.e. the decreased baseline-to-threshold distance in correctly cued trials 1018 

would translate to a decrease in the magnitude of the accumulation). However, if we 1019 

assume that the CPP reflects the sum of both accumulators, the CPP waveform 1020 

should also be affected by changes occurring in the accumulator opposed to the cue. 1021 

If a decreased starting point in the non-cued accumulator co-occurs symmetrically 1022 

with the increased starting point in the cued accumulator, it is possible that we would 1023 

observe no difference in the waveforms. Again, fitting a sequential sampling model to 1024 

the resulting behavioural data and directly comparing accumulation profiles 1025 

simulations to the recorded CPP waveforms is crucial to yield insights into the role of 1026 

the CPP as an accumulation signal. 1027 

3.1. Methods 1028 

Methods were, unless otherwise stated, identical to Experiment 1. 1029 

3.1.1. Participants 1030 

Twenty participants (five males), with a mean age of 30.15 (SD = 7.28) were 1031 

recruited. All participants met the pre-defined requirement to achieve an average 1032 

accuracy score of 80% in the random dot motion task at a coherence level no 1033 

greater than 90% (i.e. 90% of dots moving coherently). Each participant took part in 1034 

a session lasting between 2 and 2.5 hours.  1035 



48 
 

3.1.2. Stimuli and Procedure 1036 

All participants first completed a minimum of 50 practice trials at a coherence level of 1037 

80%. During the practice trials, feedback was provided after each trial 1038 

(‘correct’/‘incorrect’). Afterwards, each participant completed 100 trials without 1039 

feedback in order to establish an appropriate level of difficulty for the experiment via 1040 

a QUEST staircase procedure targeting 80% correct. The resulting average level of 1041 

coherence was 32.25% (SD = 27.92).  1042 

 1043 

For the main experiment, each participant completed 450 trials. The trial procedure 1044 

is displayed in Figure 3 a. In each trial, a fixation cross was followed by a cue (500 1045 

ms) that consisted of two arrows, one pointing to the left, and one pointing to the 1046 

right. In one third of the trials, both arrows were white, indicating no specific direction 1047 

(‘uncued’ trials), while in two thirds of the trials, one arrow was yellow, providing a 1048 

cue towards a given direction. Left-pointing and right-pointing cues were 1049 

equiprobable. In each trial, the cue was followed by random dot motion, i.e. at a 1050 

coherence level of 0%. After the random motion, the coherent motion started 1051 

(left/right) and lasted up to 1300 ms or until the response. Note that the deadline is 1052 

shorter here than in experiment 1, due to the decreased difficulty of the task. If a 1053 

directionally specific cue was given, the subsequent dot motion corresponded with 1054 

the cue direction 80% of the time (‘congruent’ trials), and opposed it in 20% of trials 1055 

(‘incongruent’ trials). No feedback was provided after each trial, but every 60 trials, 1056 

participants took self-timed breaks during which they were provided with feedback in 1057 

the form of mean accuracy scores and RTs over that period. 1058 

 1059 
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3.1.3. Statistical Analysis 1060 

In order to analyse the impact of the different cue conditions on the ERP waveform, 1061 

we again compared both the slope and the amplitude between conditions. Like in 1062 

Experiment 1, we compared the build-up rate by fitting a straight line to the 1063 

waveform. The chosen time intervals to which we fitted a line were 200 to 350 ms for 1064 

the stimulus-locked CPP, and -200 to -150 ms for the response-locked CPP (Kelly & 1065 

O’Connell, 2013). The resulting slopes were then compared using a one-way 1066 

ANOVA to compare ‘congruent’, ‘incongruent’, and ‘uncued’ waveforms. 1067 

3.1.4. Model Fit 1068 

Again, independent race accumulator and LCA classes of models were used to 1069 

model RT data. Within each class we tested a total of five different models, all 1070 

accounting for bias conditions using starting point modulations, but assuming 1071 

different mechanisms in order to account for different bias conditions.  1072 

 1073 

Model 1 was an independent race model assuming that cues induced changes of 1074 

accumulation starting point in the accumulator corresponding to the cued response. 1075 

In ‘cued’ trials, the lower limit of the starting point distribution, Z, was increased by 1076 

the bias parameter in the cued accumulator, and was set to 0 in the accumulator 1077 

opposite to the cue. In ‘uncued’ trials, the value of Z was fixed to 0 in both 1078 

accumulators. Trial-to-trial starting point variability was introduced, such that each 1079 

accumulator starting point was drawn from a uniform distribution on the interval [Z 1080 

Z+Sz]. Hence, on average, the starting point was higher in the cued accumulator 1081 

than the accumulator opposite to the cue, and both accumulators in the neutral 1082 

condition. Note that this results in starting point changes in the ‘correct’ accumulator 1083 

in congruent trials and the ‘incorrect’ accumulator in ‘incongruent’ trials. Specifically, 1084 
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the bias parameter should favour the ‘correct’ accumulator in ‘congruent’ trials and 1085 

the ‘incorrect’ accumulator in ‘incongruent’ trials. All other parameters were fixed 1086 

between conditions, resulting in a model with a total of seven parameters (see Table 1087 

2). 1088 

 1089 

Models 2 and 3 were also independent race models implementing starting point 1090 

variations, but now impacting both cued and opposite accumulators. Model 2 1091 

assumed symmetrical changes while model 3 assumed free variations. In model 2, 1092 

again, the lower limit of the starting point distribution Z was fixed to 0 in the 1093 

accumulator opposite to the cue, and was increased by the bias parameter in the 1094 

cued accumulator. In this case however, in ‘uncued’ trials, the value of Z was fixed in 1095 

both accumulators to half of the bias parameter value. Again, each accumulator 1096 

starting point was drawn from the interval [Z Z+Sz]. Therefore, on average, starting 1097 

point variations of equal magnitude but opposed sign were applied in the cued and 1098 

the opposite accumulators compared to the neutral condition, leading to opposite 1099 

effects on the ‘correct’ and ‘incorrect’ starting point in ‘congruent’ and ‘incongruent’ 1100 

trials. Model 3 assumed similar mechanisms, with free rather than symmetrical 1101 

changes in ‘cued’ compare to ‘uncued’ trials. Here again, Z was fixed to 0 in the 1102 

accumulator opposite to the cue, and increased by the bias parameter in the cued 1103 

accumulator. In this case however, Z was also free to vary in ‘uncued’ trials. As such, 1104 

free variations of the lower limit of starting point interval occurred in ‘cued’ compared 1105 

to ‘uncued’ trials. Again, note that this translated into inverse effects on ‘correct’ and 1106 

‘incorrect’ accumulators between ‘congruent’ and ‘incongruent’ trials (see Table 2) 1107 

but without assuming that uncued accumulators started (on average) midway 1108 

between congruent and incongruent ones. All other parameters were fixed between 1109 
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conditions, resulting in a total of seven parameters in model 2 and eight parameters 1110 

in model 3 (see Table 2). 1111 

 1112 

Finally, models 4 and 5 tested whether cues also influenced the rate of evidence 1113 

accumulation, again assuming either symmetrical or free variations. Model 4 1114 

implemented symmetrical starting point variation as in model 2, plus symmetrical 1115 

changes in accumulation rates. Vcued was added to the cued accumulator rate, and 1116 

was subtracted from the opposite accumulator rate. In model 5, assuming free 1117 

changes, starting point variations were implemented as in model 3, and vcued was 1118 

added to the cued accumulator rate while vopp was subtracted from the opposite rate. 1119 

Again, note that the ‘cued’ accumulator was ‘correct’ in ‘congruent’ trials and 1120 

‘incorrect’ in ‘incongruent’ trials. These manipulations resulted in a total of eight and 1121 

ten parameters in models 4 and 5, respectively (see Table 2).  1122 

 1123 

Model 6 to 10 were LCA implementations of Model 1 to 5 respectively (see Table 2). 1124 

Like in Experiment 1, best-fitting model parameters were determined at the individual 1125 

level. Trials with RTs faster than 180 ms or slower than 1300 ms (less than 6%) were 1126 

discarded.  1127 

3.2. Results 1128 

3.2.1. Behavioural Results 1129 

The data remaining after trimming outlying RTs (5.34%) are displayed in Figure 3 c. 1130 

Statistical analyses revealed RT differences between cue conditions, F(2, 38) = 1131 

42.72, p < .001, ηp
2 = .69. Fisher’s LSD corrected follow-up t-tests showed that all 1132 

conditions differed from each other, with faster RTs in ‘congruent’ than in ‘uncued’, 1133 
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t(19) = 6.21, p < .001, and ‘incongruent’ trials, t(19) = 7.38, p < .001, and in ‘uncued’ 1134 

than ‘incongruent’ trials, t(19) = 5.17, p < .001. 1135 

 1136 

Additionally, a GLMM revealed that the ‘Cue’ condition affected accuracy scores, 1137 

F(2, 57) = 18.56, p < .001. To explore the differences between all three levels, we 1138 

fitted the model a second time, but setting the reference level of ‘Cue’ to 1139 

‘incongruent’, rather than ‘congruent’. Results showed that accuracy was higher in 1140 

‘congruent’ compared to ‘uncued’ trials, with both being higher than accuracy of 1141 

‘incongruent’ trials (all p < .001).  1142 

 1143 

3.2.2. ERP Results 1144 

The CPP waveform for each condition is displayed in Error! Reference source not 1145 

found. 3 d. In both the stimulus-locked and the response-locked CPP, the waveform 1146 

associated with ‘incongruent’ trials displays the highest amplitude, followed by the 1147 

‘uncued’ and ‘congruent’ waveforms. Note that the interpretation of the CPP, when 1148 

related to the predictions of sequential-sampling models, requires that we keep in 1149 

mind the baseline correction applied to ERPs. Higher end points are consistent with 1150 

greater excursions, which may be implemented in models as lower starting points, 1151 

and vice versa. 1152 
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 1153 

Figure 3: a) Random dot motion task trial procedure: in each trial, a cue consisting of two arrows was presented. 1154 

If both arrows were white (‘uncued’), no directional information was given. If one of the arrows was yellow, this 1155 

cue correctly described the direction of the upcoming motion in 80% of trials (‘congruent’), and was false in 20% 1156 

of trials (‘incongruent’). Here, the right side is cued, and the coherent motion following the random motion is to 1157 

the right (‘congruent’). Note that the size and number of dots have been adjusted for illustration. b) Model fit: each 1158 

participant’s quantiles estimated from behavioural data (x-axis) and race model simulations (y-axis) for each cue 1159 

condition (from left to right: congruent, incongruent, uncued). Increasing quantiles (10%, 30%, 50%, 70%, 90%) 1160 

are represented by increasingly darker colours. Small inserted panels show observed and simulated RT medians 1161 

for error trials.c) Behavioural results: reaction time (left) and accuracy (right) averages for ‘congruent’, 1162 

‘incongruent’, and ‘uncued’ trials. Error bars indicate 95% confidence intervals. d) CPP results: Stimulus-locked 1163 

(left) and response-locked (right) CPP waveforms. Electrodes used to generate the waveforms are highlighted on 1164 

the topography (which shows the averaged signal over the stimulus-locked 0 to 1000 ms interval). Vertical 1165 

dashed lines in the stimulus-locked CPP indicate mean RTs per condition. Note that the mean RTs are based 1166 

only on trials which were included in the generation of the waveform and differ slightly from the ones displayed in 1167 

c. Black dots at the bottom of the waveform indicate time points at which FDR-controlled comparisons of 1168 

amplitude showed a significant ‘Cue’ effect. 1169 
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No difference in the CPP slopes was observed across the different conditions, in 1170 

either the stimulus-locked, F(2, 38) = .39, p = .68, ηp
2 = .02, or the response-locked 1171 

CPP, F(2, 38) = .40, p = .67, ηp
2 = .02. We also tested the variation of amplitudes in 1172 

the CPP using a series of FDR-controlled ANOVAs and found a significant effect of 1173 

‘Cue’ between 518 and 873 ms relative to the onset of coherent motion (corrected p 1174 

< .049). Follow-up t-tests revealed that ‘incongruent’ amplitudes were higher than 1175 

both the ‘congruent’ (for the entire duration of the main effect, corrected p < .02), and 1176 

the ‘uncued’ ones (between 542 and 863 ms relative to stimulus onset, corrected p < 1177 

.05). There was less difference between ‘congruent’ and ‘uncued’ amplitudes 1178 

(corrected p < .05 only between 639 and 645 ms). 1179 

 1180 

In the response-locked CPP, we found a significant main effect between -198 and -1181 

104 ms relative to the response (corrected p < .047). Post-hoc tests showed the 1182 

same patterns as the stimulus-locked data, with higher amplitudes in ‘incongruent’ 1183 

than ‘congruent’ trials (during the entire duration of the main effect, corrected p < 1184 

.018) and in ‘incongruent’ than ‘uncued’ trials (between -198 and -108 ms, corrected 1185 

p < .049). There was no difference between ‘congruent’ and ‘uncued’ trials (p > .09). 1186 

3.2.3. Model Fit 1187 

Ten models assuming changes in starting point across bias conditions were fitted to 1188 

the data. We once again focussed on BIC to help us discriminate between them. For 1189 

individual-level fits, there were no cases where a participant’s data were strongly 1190 

supportive of one model over all others (BIC or AIC difference > 10). The best 1191 

(lowest) group-average BIC was obtained for Model 2, an independent race model 1192 

with a symmetrical cuing bias affecting start points of accumulation (see Table 2). 1193 

Tukey-corrected contrasts suggested that this model significantly outperformed 1194 



55 
 

models 3, 5 and 10. Without correction, it additionally beat models 1, 4, 8 and 9, but 1195 

not models 6 or 79. This is somewhat suggestive that the additional bias and/or 1196 

inhibition/leak parameters of many of the other models did not increase the quality of 1197 

the fit enough to warrant the increased model complexity. However, model 6, a 1198 

simple LCA model with only a positive cuing bias, performed best based on AIC. 1199 

Somewhat arbitrarily, we begin by discussing accumulation profiles for model 2, but 1200 

go on to consider them for model 6 as the best performer from the other model class 1201 

(for behavioural fits for all models, see Appendix B). 1202 

 1203 

Table 2: Model Comparison: BIC and AIC values for each independent race (IRA) and LCA model. The BIC and 1204 

AIC values of the chosen model (Model 2) are displayed in bold. 1205 
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9 A 2 (model class) x 5 (model details) repeated-measures ANOVA gave little evidence that 

independent race models were generally better supported than LCA models (with no main effects) for 

either AIC or BIC, but did yield interactions in both cases. 
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 1207 

 1208 

Table 3: Mean estimated parameter values for the chosen model (Model 2): note that the response threshold A 1209 

was set to 1 as a scaling parameter, and that all lower limits of the starting point distributions were generated with 1210 

just two free parameters. Note that, due to the raised starting point in the uncued condition, these parameters are 1211 

not directly comparable to the ones displayed in Experiment 1 (Table A1). 1212 

Model 2: Parameters     

Lower limit starting point  

 

‘congruent’ 

correct 0.2598 

incorrect 0 

‘incongruent’ 

correct 0 

incorrect 0.2598 

‘uncued’ 

correct 0.1628 

incorrect 0.1628 

Starting point variability (SZ) 0.3389 

Response threshold (A) 1 

Accumulation rate  

(v) 

correct 1.6709 

incorrect 0.2867 

Non-decision time (Ter) 0.300 

Non-decision time interval (STer) 0.220 

Gaussian noise SD (σ2) 0.5698 

 1213 

 1214 

1215 



58 
 

  1216 

The parameter estimates of the chosen race model are displayed in Table 3. 1217 

Figure 3 b shows the quality of the model fit by displaying each participant’s 1218 

empirical (x-axis) and modelled (y-axis) RT quantiles in each condition. It indicates 1219 

that independent race accumulator model 2, with varying starting points, can account 1220 

well for our biased decision-making. 1221 

3.2.4. Model Prediction (neurodynamics) 1222 

Model parameters were used to compute the predicted accumulation profile for each 1223 

condition. Figure 4 displays the resulting predictions (b) and the corresponding CPP 1224 

(a) for stimulus (left) and response-locked (right) signals. Components of the 1225 

prediction (correct and incorrect accumulators) are shown as insets. Visual 1226 

inspection shows some qualitative similarities between the best independent race 1227 

accumulator model predictions and the EEG signals. Importantly, both the model 1228 

prediction and the CPP display an amplitude difference in the response-locked 1229 

signal, with ‘incongruent’ decisions being associated with the highest values. 1230 

However, this pattern is not visible in the stimulus-locked prediction, despite 1231 

appearing in the corresponding EEG signal. Furthermore, the amplitude variations 1232 

appear far more pronounced in the EEG signals than in the model predictions.  1233 

 1234 

As in Experiment 1, we analysed the correlation between differences of conditions in 1235 

both the EEG data and the model predictions (differences between ‘congruent – 1236 

incongruent’, ‘congruent – uncued’, and ‘incongruent – uncued’, for both stimulus-1237 

locked and response-locked signals, resulting in a total of 6 correlations). We found 1238 

that 3 out of 6 tests revealed significant positive correlations, all of which remained 1239 

significant after Bonferroni correction (rmean(98) = .44, pmean < .001). Since this 1240 
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experiment targeted the amplitude of the accumulation, which is visible primarily in 1241 

the response-locked profiles, the correlations between response-locked signals, 1242 

which were all significant (rmean(98) = .44, pmean < .001), are arguably most 1243 

meaningful.  1244 

 1245 

Finally, as in Experiment 1, we looked at predictions from the best-performing model 1246 

in the alternative class (LCA model 6, Figure 4c). Here, predictions were noticeably 1247 

less consistent with the EEG signal. In fact, an identical correlation analysis run on 1248 

differences between conditions showed an equal tendency towards both positive and 1249 

negative significant correlations after Bonferroni correction (three correlations 1250 

revealed positive results, rmean(98) = .46, pmean < .001, and two showed negative 1251 

results, rmean(98) = -.46, pmean < .001), i.e. a failure to properly order the EEG signals 1252 

from the three conditions across time. 1253 

 1254 
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 1255 

Figure 4: Decision variable (empirical and simulated): a) CPP waveform for stimulus (left) and response-locked 1256 

(right) data. The CPP here has been filtered and downsampled to match model predictions. b) Accumulation 1257 

profile per cue condition as predicted by the best-fitting independent race accumulator model (IRA), for stimulus 1258 

(left) and response-locked (right) data. Correct and incorrect accumulators were summed to form the prediction, 1259 

so these contributory signals are shown separately as smaller insets.c) Accumulation profile as predicted by the 1260 

best-fitting LCA model. Details as in part b. 1261 

 1262 
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3.3. Discussion Experiment 2 1263 

In Experiment 2, we tested how decision biases affect the CPP waveform and, like in 1264 

Experiment 1, compared its profile to model predictions. To this end, we asked 1265 

participants to complete a motion discrimination task in which cues prior to each trial 1266 

either gave no information about the direction of the upcoming trial (‘uncued’), or 1267 

indicated the upcoming direction either correctly (‘congruent’) or incorrectly 1268 

(‘incongruent’). In accordance with previous research (de Lange et al., 2013; Mulder 1269 

et al., 2012; Teodorescu & Usher, 2013), we observed that participants’ choices 1270 

were biased towards the cued direction. Compared to ‘uncued’ trials, ‘congruent’ 1271 

cues resulted in faster RTs and less errors, while ‘incongruent’ cues led to lower 1272 

accuracy and longer RTs. Note that in order to avoid the co-occurrence of visual 1273 

evoked potentials (associated with a sudden stimulus onset) with the accumulation 1274 

profile, we added a period of random dot motion prior to the coherent motion but 1275 

following the directional cue (Figure 3 a). This means that there was a short period of 1276 

time where participants were presented with a stimulus which was potentially 1277 

inconsistent with the cue, even in congruent trials, which may have weakened the 1278 

effect of the cue. However, since we observed strong behavioural differences 1279 

between all three conditions, we do not believe that this had a qualitative impact on 1280 

our conclusions. Nevertheless, we note that this may hinder the direct comparison 1281 

with versions of decision-making tasks in which the evidence immediately follows the 1282 

cue.  1283 

The observed changes in behaviour were well captured by an independent race 1284 

model with varying start points, and this model predicted some of the trends we 1285 

observed in the CPP as decisions were being made, albeit imperfectly. However, this 1286 

result may be viewed as somewhat fortuitous. Although generating predictions for 1287 
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the independent race model followed a natural logic, because this model (just about) 1288 

won at a behavioural level, the other class of models we considered here, with 1289 

inhibition and leakage, failed to capture nuances in the CPP. 1290 

 1291 

Based on previous research, we hypothesised that prior cues would affect the 1292 

starting point of each accumulator (Bode et al., 2012; Gao et al., 2011; Rorie et al., 1293 

2010; Teodorescu & Usher, 2013)leading to a change in the baseline-to-threshold 1294 

distance, and incorporated free parameters capable of capturing this change. For the 1295 

best-fitting model, the mean starting point was higher in the corresponding cued 1296 

accumulator and lower in the opposite non-cued accumulator compared to the 1297 

neutral, uncued, condition. By modifying the baseline-to-threshold distance, starting 1298 

point variations affect both the time required for accumulation to reach the decision 1299 

threshold and the probability of attaining the threshold due to noise. In incongruent 1300 

trials, for example, where the incorrect response was cued, errors occurred 1301 

frequently due to the small baseline-to-threshold distance in the cued, but incorrect, 1302 

accumulator, and correct RTs were slower due to the larger baseline-to-threshold 1303 

distance in the opposite non-cued accumulator10. In line with many, but not all, 1304 

previous studies, our results hence confirmed that decision biases can be accounted 1305 

for by simply varying accumulation starting point (Basso & Wurtz, 1998; de Lange et 1306 

al., 2013; Rao et al., 2012; but see Rae et al., 2014). 1307 

 1308 

                                                
10 In the case of the best LCA model, which incorporated a change to only the cued starting point, 

correct RTs would instead be slower due to the extra inhibition flowing from the boosted correct 

accumulator towards the non-cued accumulator. 
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The exact pattern these changes would evoke in the CPP waveforms however is 1309 

difficult to predict intuitively. Firstly, due to the baseline correction applied to compute 1310 

the CPP waveform, a starting point difference would not be observed directly, but 1311 

would instead lead to a difference in amplitude, with higher starting points leading to 1312 

lower ERP peaks. Secondly, and as confirmed by model parameters, prior cues 1313 

induced both an increased accumulation starting point for the cued response, and a 1314 

decreased starting point for the non-cued response. Since the EEG signal recorded 1315 

from the scalp is the sum of all underlying neural activities, the CPP presumably 1316 

reflects the sum of all accumulation in a race model. It is hence unclear how opposite 1317 

effects on the activity of ‘correct’ and ‘incorrect’ accumulators affects the global 1318 

activity amplitude. There are a number of possible outcomes which could, at least 1319 

conceptually, be considered in line with sequential sampling models. It is therefore 1320 

particularly important to directly compare a signal to predictions made through model 1321 

fits, in order to comment on its similarity to an accumulation process. However, it is 1322 

worth bearing in mind that the relative nature of the CPP may make it an inherently 1323 

less informative signal (relative to single-cell firing rates, with meaningful zero points) 1324 

for the evaluation of experimental manipulations affecting the start point of 1325 

accumulation. 1326 

 1327 

The pattern we observed in the CPP was somewhat similar to what might be 1328 

expected for just a correct accumulator. We found a clear difference in amplitude 1329 

between the conditions, but no difference in slope. The waveform associated with 1330 

‘incongruent’ decisions showed a greater excursion than ‘congruent’ or ‘uncued’ 1331 

profiles in both the stimulus and the response-locked data. The ‘uncued’ CPP also 1332 

seemed to build up to a slightly higher plateau than the ‘congruent’ waveform, 1333 
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although this difference was not significant in our analysis. However, it is difficult to 1334 

conceive how a non-lateralised EEG signal could represent only one accumulator – 1335 

only a sum, or perhaps absolute difference of accumulators makes sense. In order to 1336 

evaluate to what extent this observed CPP pattern resembled the sum of 1337 

accumulation processes as predicted by sequential sampling models, we simulated 1338 

accumulation profiles predicted in each condition, based on the estimated 1339 

parameters of the best-fitting (independent race) model. The resulting waveforms 1340 

showed that all three conditions are predicted to follow a very similar trajectory, but 1341 

do differ slightly in amplitude. For response-locked signals, the order in which the 1342 

amplitudes differ is identical to the one described by the CPP, with the highest 1343 

amplitude seen for ‘incongruent’ decisions, followed by ‘uncued’ decisions, and 1344 

‘congruent’ waveforms showing the lowest amplitude.  1345 

 1346 

Although both the (race-model) simulated accumulation profiles and the CPP display 1347 

similar patterns, it is not immediately clear what caused them. As outlined above, 1348 

while we expected this pattern for the correct accumulator, summing over the 1349 

accumulators would presumably cancel differences between the conditions. To aid 1350 

our interpretation, we explored the accumulation profiles in more detail. First, we 1351 

found that dividing correct and error trials had an impact. In Figure 4, only correct 1352 

trials are averaged to match with the CPP analysis. However, in the incongruent 1353 

condition in which the mean starting point is higher in the incorrect accumulator, 1354 

correct trials are primarily trials in which noise has favoured the correct accumulator, 1355 

such as trials in which, by chance, the cued incorrect starting point was at the lower 1356 

limit of the distribution, leading to a larger baseline-to-threshold distance.  1357 

 1358 
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Nonetheless, averaging the accumulation profiles over all correct and error trials still 1359 

resulted in a pattern qualitatively similar to the one for correct trials alone, indicating 1360 

that some additional mechanism/s must help generate the observed differences. 1361 

Inspecting correct and incorrect accumulation traces separately (see figure insets) 1362 

confirmed that starting-point differences resulted in opposing amplitude modulations 1363 

in correct and incorrect accumulators. For correct accumulation, the highest 1364 

amplitude was obtained for incongruent trials, and the lowest trace in congruent 1365 

trials. The reversed pattern was observed in the incorrect accumulator. However, 1366 

differences between conditions were more pronounced on correct than incorrect 1367 

traces, particularly in response-locked signals. We presume that this divergence 1368 

arises from the accumulation rate difference between the accumulators, which 1369 

implies that correct accumulation is less affected than incorrect accumulation by 1370 

noise. Accordingly, incorrect traces are flatter overall and diverge less between 1371 

conditions, such that differences in the correct accumulator contribute more to the 1372 

summed signal.  1373 

 1374 

Regardless of the computational specifics that generate differences between our 1375 

conditions, the CPP and the simulated accumulation profiles display somewhat 1376 

similar patterns, suggesting similar underlying mechanisms, and supporting the role 1377 

of the CPP as an accumulation signal, at least when certain classes of model are 1378 

used to describe the decision process. Furthermore, these findings again emphasise 1379 

the importance of a direct comparison between the CPP and model predictions, as 1380 

the patterns reported here are difficult to predict based on intuitive reasoning alone. 1381 

However, it is also clear that our conclusion was dependent on the models we 1382 

included, and on the particular model that won at a behavioural level (although we 1383 
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gave our models no capacity to adjust to the neurodynamic data, a point we return to 1384 

in the general discussion). 1385 

 1386 

Our findings also contrast in some respects with a very recent but highly relevant 1387 

CPP study, investigating the effect of a decision bias induced through manipulating 1388 

the reward value of different choices under extreme time pressure (Afacan-Seref et 1389 

al., 2018). Their overall conclusion is similar to ours – both studies successfully 1390 

modelled RTs via sequential sampling, and showed correspondence between 1391 

predicted accumulation profiles and the CPP. However, their data supported a non-1392 

standard model incorporating sensory-level dynamics (a linearly increasing 1393 

accumulation rate for a constant stimulus) and a bias affecting accumulation rates 1394 

rather than starting points (leading to an initially negative relative accumulation rate 1395 

for a low valued but strongly evidenced choice). We did not test such a model, which 1396 

may have specific relevance in their somewhat unusual experimental context. The 1397 

extreme time pressure used in their experiment is likely to influence the decision 1398 

dynamics, as the urgency of the choice may accelerate the accumulation in a way 1399 

that is qualitatively different from the decisions made in our experiment. In any case, 1400 

we make no claims that the model we have fitted and illustrated predictions from is 1401 

the only (or best) possible implementation. We do, however, argue that it is a 1402 

plausible choice, and one that is consistent with both the behaviour and, to some 1403 

extent, the neurodynamics that we observed.  1404 

 1405 

4. General Discussion 1406 

 1407 
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Model-based cognitive neuroscience, which combines the analysis of neural data 1408 

with mathematical modelling, has gained momentum in recent years. However, the 1409 

field of human perceptual decision-making has oftentimes not made full use of this 1410 

approach. Here, we aimed to explore decision-related evidence accumulation in the 1411 

human brain by directly comparing predictions made by different behavioural models 1412 

to the dynamics of the CPP. The CPP is a centroparietal ERP component which has 1413 

previously been suggested to display decision-related accumulation of evidence 1414 

independent of sensory and motor processes (Kelly & O’Connell, 2013; O’Connell et 1415 

al., 2012; Twomey, Kelly, & Connell, 2016). We aimed not only to explore the effect 1416 

of previously untested manipulations on the CPP, but also to evaluate the resulting 1417 

waveforms using sequential sampling modelling. Neural correlates of accumulation 1418 

are often evaluated by deriving summary measures, such as slope of accumulation, 1419 

and comparing them with expectations made with reference to sequential sampling 1420 

models. However, the dynamics of even simple models are difficult to intuit. We 1421 

therefore used sequential sampling models to fit the behavioural data and compared 1422 

neural data to the predicted accumulation profiles based on the estimated 1423 

parameters. The CPP showed a marked degree of correspondence with certain 1424 

model predictions – perhaps fortuitously, the very predictions made by the models 1425 

which best explained the behavioural data in each experiment. 1426 

 1427 

In Experiment 1, we investigated the impact of non-stationary evidence on the CPP 1428 

waveform, under the assumption that changing evidence should affect evidence 1429 

accumulation dynamics. In Experiment 2, we explored the impact of decision bias on 1430 

CPP patterns. We expected that decision biases induced by predictive cues would 1431 

result in shifts of accumulation starting points, hence changing the baseline-to-1432 
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threshold distance. In both experiments, we observed the anticipated behavioural 1433 

changes. Furthermore, sequential sampling model fits confirmed that accumulation 1434 

rates were affected during evidence interruption, while starting point shifts could 1435 

account for decision biases effects. It is worth noting however that when considering 1436 

only behavioural data (for which free parameters in the models could be tuned to 1437 

enhance goodness of fit), Experiment 1 and Experiment 2 supported two different 1438 

model architectures. While a simple independent race accumulator model provided 1439 

the best fit to biased decision data, the LCA model was superior in the case of non-1440 

stationary evidence, although in neither case were the differences between models 1441 

entirely compelling. 1442 

 1443 

We believe that this apparent discrepancy might be explained by the nature of each 1444 

task manipulation, and the universal preference for simpler models. This preference 1445 

is expressed in goodness-of-fit indices such as BIC or AIC by penalising models for 1446 

a higher number of model parameters. Simple independent race models may 1447 

therefore be favoured compared to the more complex LCA (which has a similar basic 1448 

architecture but additional parameters to capture plausible physiological processes), 1449 

especially in the case of fast RTs as observed in Experiment 2, in which the 1450 

influence of inhibition and leakage may be limited. Conversely with longer decisions, 1451 

especially associated with dynamical modulations of each accumulator’s activity as 1452 

in Experiment 1, both reciprocal inhibition and leakage potentially play an important 1453 

role. In this case, a model incorporating these phenomena may be preferred. In other 1454 

words, inhibition and leakage may always be present to some extent, but including 1455 

these parameters in the decision models improves model fit only when decisions are 1456 
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slow and potentially more sensitive to interactions between accumulators11. Indeed, 1457 

in some cases, patterns of behavioural data emerge which seem to demand the 1458 

inclusion of parameters capturing crosstalk between accumulators. For example, we 1459 

have recently found that when up to four manual actions are instructed by a stimulus 1460 

(left/right hand pinch/power grip responses), gross differences in error rates emerge 1461 

based purely on the anatomical adjacency of responses (i.e. without any correlate in 1462 

the stimulus; Kohl, Spieser, Forster, Bestmann, & Yarrow, 2019).  1463 

 1464 

Experiments 1 and 2 were designed to be complementary, because the two types of 1465 

manipulation tested two different predictions about the decision process, each 1466 

realised as a different aspect of evidence accumulation. In Experiment 1, we used 1467 

non-stationary evidence to affect the accumulation process. In their initial CPP 1468 

description, O’Connell et al. (2012) observed that the CPP was susceptible to a 1469 

change in evidence. Our results confirmed that the CPP profile is affected by a time-1470 

varying input, a necessary feature of a signal which could reflect the accumulation of 1471 

evidence, and extended this result to choice-RT settings. While continuous evidence 1472 

led to a gradual build-up of the CPP waveform, interrupted evidence caused a 1473 

disruption in this build-up. Surprisingly, the two different interrupted conditions, one 1474 

in which evidence was stopped, and one in which evidence was reversed, gave rise 1475 

to very similar waveforms, even though they were associated with different 1476 

behavioural patterns. Nevertheless, the pattern of the CPP closely resembled our 1477 

best-fitting model predictions. In other words, our LCA model, combined with realistic 1478 

                                                
11  Another perspective would be that these models are all describing the same fundamental model 
architecture, but with certain strategies requiring additional parameters, as when a non-stable 
environment demands the presence of leak parameters to discount the past (Kilpatrick, Holmes, Eissa 
& Josić, 2019). 
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assumptions about the origin of the CPP signal, successfully predicted the absence 1479 

of an effect that might have been expected based on intuition alone. 1480 

 1481 

In Experiment 2, we used predictive cues to manipulate decision biases. Previous 1482 

research mainly suggests that biases affect the starting point of accumulation, with 1483 

the resulting effect on the EEG signal requiring further clarification (Bode et al., 2012; 1484 

Gao et al., 2011; Rorie et al., 2010, but see Afacan-Seref et al., 2018). We found that 1485 

the CPP differed in amplitude across bias conditions. In particular, decisions in which 1486 

a directional cue was incongruent with subsequent motion were associated with 1487 

higher amplitudes than both decisions in which the cue was congruent with the 1488 

motion and decisions in which there was no directional cue. Once again, a 1489 

sequential sampling model was able to account for all behavioural data, in this case 1490 

by varying the starting points across bias conditions. Furthermore, for the best-fitting 1491 

independent race model, both real and model-predicted EEG signals displayed a 1492 

pattern in which profiles associated with different bias conditions differed only in 1493 

amplitude, with decisions with incongruent cues showing the highest amplitude, 1494 

followed by uncued decisions, and trials with congruent cues showing the lowest 1495 

amplitude, at least for response-locked signals. Hence here, an independent race 1496 

model successfully predicted the presence of an effect that might not have been 1497 

predicted intuitively. The simulations revealed that these differences in amplitude 1498 

were not strictly the result of baseline differences, which in fact largely cancelled out 1499 

on average, but were instead caused by mechanisms such as a biased 1500 

representation of variability parameters in correct trials, or interactions between 1501 

accumulation rate and noise parameters. 1502 

 1503 
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However, a problematic feature of our results emerges when looking across 1504 

experiments. In our first experiment, an LCA model best fitted the behavioural data, 1505 

and provided a good match to the CPP. A simpler independent race model was 1506 

slightly less successful, but nonetheless showed qualitative agreement on both 1507 

counts. In Experiment 2, an independent race model best fitted the behavioural data, 1508 

and provided a reasonable match to the CPP. However, the more complex LCA 1509 

model failed to predict the precise ordering of conditions in the CPP signal. What are 1510 

we to conclude across both experiments? 1511 

 1512 

When considering this disparity, we would emphasise that our approach gave the 1513 

models leeway to fit the behavioural data, but not the CPP. By exploiting free 1514 

parameters to capture nuances (and even noise) in the behavioural data, models 1515 

may end up producing neurally unrealistic accumulation patterns. The approach we 1516 

apply here has some clear strengths – by fitting only to behaviour, a model’s success 1517 

in predicting the associated neurodynamics becomes all the more striking, because 1518 

no flexibility is provided for achieving this match (a situation somewhat akin to cross 1519 

validation, but on a second form of data). However, it is only one of several ways in 1520 

which model-based cognitive neuroscience might be applied (see e.g. Turner, 1521 

Forstmann, Love, Palmeri, & Van Maanen, 2017, for discussion) and it is not clear 1522 

whether a subsequent comparison of models on this (unfitted) neurodynamic data is 1523 

a fair one. If we accept that signals like the CPP do indeed represent evidence 1524 

accumulation, an important goal for future research will be to produce a consensus 1525 

method for simultaneously fitting models to both RT and EEG data (cf. Turner et al.’s 1526 

“integrative” approach). This is by no means trivial, because EEG data are 1527 
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autocorrelated (to an uncertain extent) which greatly complicates the estimation of 1528 

likelihood when matching model predictions to data.  1529 

 1530 

In fact, one might argue that our observation here, that specific sequential sampling 1531 

models can predict the CPP under a particular manipulation, but that a single model 1532 

may not apply under different manipulations, is the norm in a fragmented literature. 1533 

Thus far, where specific models have been compared to the CPP in terms of the full 1534 

time-varying profile of accumulation, researchers have tended to capture only a 1535 

small subset of possible manipulations. For example, a difficulty manipulation has 1536 

been modelled via a drift-diffusion model (Twomey et al., 2015); a speed-accuracy 1537 

trade-off has been captured via a (reconfigured) race model (Spieser et al., 2018), 1538 

albeit with an unusual take on how the brain might implement this strategic 1539 

adjustment; and value-based biasing under extreme time pressure has been 1540 

modelled via an accelerating accumulation model (Afacan-Seref et al., 2018). 1541 

Whether one views the primary question as “does the CPP represent evidence 1542 

accumulation”, or, having accepted this predicate, as “which model best captures 1543 

both behaviour and neurodynamics”, it seems clear that finding a single (class of) 1544 

model(s) that explains the CPP across multiple experimental manipulations should 1545 

be of central concern in future research. 1546 

 1547 

In line with research which is increasingly emphasising the advantages of combining 1548 

behavioural data, mathematical modeling, and neural dynamics (Ditterich, 2010; 1549 

Forstmann et al., 2011; Mulder et al., 2014; Purcell & Palmeri, 2017), our findings 1550 

also highlight the importance of combining behavioural modeling and neuroimaging 1551 
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methods and directly comparing the dynamics of the neural signals and the model 1552 

predictions, as neither are easily predictable based on conceptual reasoning alone.  1553 

Despite the substantial similarity between the CPP and the predicted accumulation 1554 

profiles observed here, there were also differences worth noting. For example, in 1555 

Experiment 2, the amplitude differences between the conditions are far more 1556 

pronounced in the CPP than in the model predictions even in the response-locked 1557 

signals. This is likely to represent some degree of error in either our choice of 1558 

models or assumptions regarding exactly how accumulators combine to form the 1559 

CPP (something about which there is currently no consensus). However, it is 1560 

important to note that the CPP is unlikely to ever replicate model predictions exactly 1561 

for a number of reasons. Firstly, any model can, at best, be an approximation of true 1562 

biological processes. A second reason for differences between the CPP and the 1563 

model predictions lies in the nature of EEG recordings. EEG is measured from the 1564 

scalp and can only record the sum of all electrical activity underneath each 1565 

electrode, which has presumably been subject to complex filtering by intervening 1566 

biological substrates. Furthermore, since the brain is constantly performing 1567 

computations unrelated to accumulation, the signal-to-noise ratio is low. Most of 1568 

these computations are unlikely to be time-locked to the decisions and are therefore 1569 

averaged out, and the impact of conducted activation from more distal sources is 1570 

reduced using the current source density transform which increases the spatial 1571 

selectivity of the data. Nevertheless, noise and systematic distortions likely remain. 1572 

For reasons like these, the degree of similarity between the CPP and predicted 1573 

accumulation profiles derived from a class of models originally intended to predict 1574 

only behaviour remains remarkable. 1575 

 1576 
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4.1. Conclusions 1577 

In summary, we provide further support for the role of the CPP as a neural substrate 1578 

of the decision variable, but also highlight how researcher flexibility regarding which 1579 

models to consider and apply might give a false degree of assurance on this front. 1580 

We have shown that the CPP is sensitive to two manipulations which influence 1581 

decision-making behaviour, namely non-stationary evidence and decision biases. 1582 

Importantly, we fitted sequential sampling models to the behavioural data and 1583 

simulated the resulting accumulation profiles. We found that the CPP waveform 1584 

resembled the modelled accumulation in important ways when models were selected 1585 

in a principled, but perhaps somewhat fortuitous, manner. In our opinion, the CPP 1586 

probably reflects the accumulation of evidence and remains a highly plausible 1587 

correlate of the decision variable. Indeed, it may now be time to move beyond mere 1588 

validation of the CPP, to a point where we can instead use it as an additional metric 1589 

to help differentiate competing models of speeded choice.  1590 
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Appendix A 1875 

Parameter identifiability issues have been reported in the LCA model (Miletić et al., 1876 

2017). Hence, we conducted a recovery study to assess the accuracy of parameter 1877 

estimation in Experiment 1. The mean parameter estimates of the chosen LCA 1878 

model (Model 5, LCA-symmetric with no delay) are displayed in Table A112. Based 1879 

on this model, we simulated 20 RT datasets with all 3 interruption conditions and 2 1880 

difficulty levels. We simulated 160 trials in each condition, leading to 960 trials in 1881 

total (i.e., corresponding to the size of one participant’s RT data). Parameters values 1882 

for each of the 20 simulated datasets were drawn from a uniform distribution around 1883 

mean empirical values.  1884 

 1885 

Table A1: Mean estimated parameter values for the chosen model (Model 5), note that the response threshold A 1886 

was set to 1 as a scaling parameter. 1887 

Model 5: Parameters 

Decision threshold (A) 1 

Accumulation rate  

(v) 

easy 

correct 6.0154 

incorrect 1.4110 

hard 

correct 5.0199 

incorrect 1.5039 

Leakage (k) 5.2706 

Inhibition (β) 65.7646 

Non-decision time (Ter) 0.3574 

Non-decision time interval (STer) 0.2763 

                                                
12 Parameter values are only comparable across studies if the same scaling parameter is used. Here 

we fixed the decision threshold but let noise vary, yielding a larger than typical Gaussian noise SD 

(and thus amplified values for many parameters). 
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Gaussian noise SD (σ2) 1.2502 

 1888 

 1889 

 1890 

Figure A1: a) Parameter recovery: fitted parameter values as a function of true values, for 20 simulations of 1891 

individual RTs. Dots show the 20 individual fit values and asterisks show mean fitted value as a function of mean 1892 

true value. Dotted lines show ideal recovery of fitted from true parameters. Red lines show linear regressions 1893 

between true and fitted values. Rate parameters are decomposed in delta-v and common-v (see details in text), 1894 

and both easy (dark) and hard (light) conditions are shown. Circles and squares identify parameter sets used to 1895 

compute predictions in b and c. b) and c) CPP predictions for 2 sets of parameters, computed based on true 1896 

values (b) and fitted values (c). Both parameters sets are identified in a) by circles (predictions on left panel) and 1897 

squares (predictions on right panel). Stimulus-locked (left) and response-locked (right) predictions are shown. 1898 

 1899 

Figure A1 shows the obtained fitted values as a function of true values for each 1900 

parameter. Note that accumulation rates are decomposed into delta-v and common-1901 
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v, corresponding respectively to the difference and the common components of 1902 

correct and incorrect rates (i.e., delta-v equals vcorr minus vinc, and common-v equals 1903 

vinc). Ideally, values recovered from the fit would equal the true parameters, falling on 1904 

the black dotted line. Red lines show best-fitting linear regressions between true and 1905 

fitted parameter values. To assess the accuracy of parameter estimation at a group 1906 

level, we also represented the average of fitted values as a function of the mean true 1907 

value. Consistent with a previous report (Miletić et al., 2017), we observed good 1908 

recovery for delta-v, Ter and σ2, as well as STer, and poor recovery for common-v, k 1909 

and β parameters. At the group level, however, the mean fitted parameter values 1910 

were still a good estimation of mean true values (asterisks in Figure A1a). 1911 

 1912 

Finally, and critically, in order to assess the impact of parameter estimation accuracy 1913 

on derived CPP predictions, we computed predictions based on true and fitted 1914 

parameters values. Predictions are shown for two sets of parameters in Figure A1. 1915 

They have been selected as being both representative of our general findings 1916 

(across all 20 simulations) and illustrative of cases where recovered parameters 1917 

appear to have traded off, and thus differ from true parameters. As can be seen, the 1918 

global pattern is retrieved in fitted parameter predictions, even in those cases where 1919 

common-v and beta parameters were not estimated accurately. 1920 

 1921 

Appendix B 1922 

In both experiments, many of the models performed somewhat similarly. For 1923 

completeness, the behavioural fits of all models are displayed in Figures B1 1924 

(Experiment 1, see Figure 1 b), and B2 (Experiment 2, see Figure 3 b). 1925 

 1926 
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 1927 

Figure B1: Experiment 1, Behavioural fits for all models: RT quantiles from behavioural data (x-axis) and 1928 

simulations (y-axis) in seconds for each independent race (IRA, 1 to 4) and LCA (5 to 8) model for easy (filled 1929 

circles, top rows) and hard (empty circles, bottom rows) decisions. Small inserted panels show observed and 1930 

simulated RT medians for error trials. 1931 

 1932 
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 1933 

Figure B2: Experiment 2, Behavioural fits for all models: RT quantiles from behavioural data (x-axis) and 1934 

simulations (y-axis) in seconds for each race (IRA, 1 to 5) and LCA (6 to 10) model. Small inserted panels show 1935 

observed and simulated RT medians for error trials. 1936 

 1937 
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