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Abstract

Territorial behaviour is an important part of the lives of many animals. Once a territory has
been acquired, an animal may spend its entire life on it, and may have to repeatedly defend it from
conspecifics. Some species make great investments in the defence of a territory, and this defence
can be costly, in terms of time, energy and risk of injury. Time costs in particular have rarely
been explicitly factored into such models. In this paper we consider a model of territorial defence
which includes both population dynamic and time delay elements, building upon recent advances
in time constraint models. Populations may divide into two distinct types, where one type makes
no effort to control territories. We shall call this type nomads, and the other type territorials.
Here the territory owners must divide their time between patrolling and foraging, and this
balance is their only strategic decision. We show how to find the evolutionarily stable patrolling
strategy and the population composition of territorials and nomads, and consider some examples
demonstrating key situations. We see that both time constraints and population density pressure
are crucial to influencing behaviour. In particular we find cases with both territorial individuals
and nomads where a mixed, either pure or both pure patrolling strategies are evolutionarily
stable. In different conditions either nomads or territorials can be absent, and indeed for a
significant range of parameter combinations the population can exhibit tristability, with three
distinct ecologically stable population compositions: with both nomads and territorials, only
nomads or only territorials.
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1 Introduction

Territory is the sociographical area that an animal defends against conspecifics (Adams 2001,
Hinsch and Komdeur 2017, Owen-Smith 1977). The evolutionary success of territorial behaviour
is determined by the benefits and costs of occupying and defending the territory. Direct benefits
include: a) more or less exclusive access to food (Maher and Lott 1995); b) mating opportunities
(Sinervo and Lively 1996, Sinervo et al. 2000, Stamps 1987); c) the females deter infanticide (Ostfeld
1990); d) a refuge from predators (Cowlishaw 1997, Everett and Ruiz 1993, Maher and Lott 1995);
e) domiciles (e.g. a nest, burrows). There are also indirect benefits, such as the fact that non-owner
individuals have limited breeding capability (e.g. Boutin and Schweiger 1988, Stamps 1994) and
potentially limited access to food. The cost of territory ownership can be measured in the probability
of injury, energy loss and time duration of fighting (Grant et al. 1992) and patrolling. Patrolling
can include searching, fighting, scent marking (Schlägel et al. 2017) and any combination of these
(Corbet 2004, Golab 2017). Territorial patrolling is costly, requiring both energy and time. For
instance, 58% of the total travelling time of chimpanzees is patrolling (Amsler 2010) and dragonflies
devote about 20% of their total flight time to patrolling (Parr 1983).

Since all of the costs of territory ownership comes from interaction with conspecifics, only game-
theoretical models can give insight into the evolutionary stability of territoriality (for a review see e.g.
Hinsch and Komdeur 2017). Fights occur between neighbours and between owners and individuals
with no territory (“floaters”), and are often modelled using the Hawk-Dowe game (Hinsch and
Komdeur 2010, Kokko et al. 2006, Maynard Smith 1982, Mesterton-Gibbons and Adams 2003,
Pereira et al. 2003) including using explicit strategies related to ownership (e.g. the bourgeois
strategy, see Maynard Smith 1982, Eshel and Sansone 1995, Grafen 1987). The interaction between
neighbours is well studied (Hinsch and Komdeur 2017), for instance when the cost of interaction
is high enough, then fights between neighbours occur with low intensity and low cost compared
to interactions between owners and intruders (Morrell and Kokko 2005, see also the “dear enemy
hypothesis” Getty 1987, Temeles 1994). On the other hand, interactions between owners and
floaters can draw our attention to two components of territoriality. Firstly, if the density of floaters
is high enough, then irrespective of whether the floaters either avoid fights or are ready to fight, the
owner has to spend time and energy either chasing the non-fighter away or beating the aggressive
floaters out of its territory. In both cases the owner spends much time defending its territory,
consequently the owner has less time for mating and feeding, thus its fitness will be decreased by
too many interactions when the intrusion rate is high enough. Furthermore, patrolling also takes
extra, e.g. traveling, time. Moreover, territoriality as a competitive behaviour can decrease the
total density of the population when owners can monopolize more food than what they really need.
Thus, territoriality has a role in population regulation (Brown 1969). Secondly, the density of
the non-aggressive floaters depends on whether the owners can or cannot shut floaters out of their
territories, and consequently deprive floaters of the chance to breed (Stamps 1994). In this paper we
concentrate on these two components of territoriality: the time constraints of owning and defending
a territory and the density dependence of interactions (e.g. Both and Visser 2003, Houston and
McNamara 2006, Lopez-Sepulcre and Kokko 2005). We discuss these two concepts in turn below.

Time constraints in ecology have important consequences. For instance, in trophic interactions
the functional response takes account of time constraints (Holling 1959, Křivan et al. 2008, Garay
2019). Schoener (1987), in the framework of a detailed optimization model, calculates the optimal
territory size and patrolling time, as a function of food density and intrusion rate, calling our
attention to the importance of the time budget. More recently, time constraints have been considered
in game-theoretical models, especially in connection to food-stealing behaviour. Broom and Ruxton
(1998) developed a game-theoretic model of kleptoparasitism where individuals could strategically
challenge for food, but where contests took time that could be spent searching (e.g. see also
Broom et al. 2004, Broom and Rychtář 2011). This model was fitted to a population of foraging
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gulls in Spencer and Broom (2018). Such competition over food has similarities and differences to
territorial contests. In both cases there is an owner and a challenger (or indeed perhaps more than
one challenger, as in Broom and Rychtář 2011) competing for a resource. The value of a territory
is likely to be much greater than a food item, leading to more significant (longer, more violent)
contests. It may be logical to concede a food item rather than fight, as there is the possibility of
finding another uncontested item. For territories, however, there are unlikely to be uncontested
ones, and so it is more likely to be better to stay and fight (Morrell and Kokko 2005, Hinsch and
Komdeur 2017).

Furthermore, the theory of single-species matrix games under time constraints has been developed
(Garay et al. 2017, see also Křivan and Cressman 2017, Cressman and Křivan 2019). Here each
interaction has two consequences: a benefit and a waiting time (during which the players are not
able to interact) and the concept of a (monomorphic) evolutionarily stable strategy (ESS) in such
games was characterized. The common assumption of these game theoretical models is that the
individual actions (e.g. fights) exclude each other, e.g., at a particular time each individual is either
searching or fighting but cannot do these two activities simultaneously.

As mentioned above, a second important component of the model to understand territoriality is
density dependence and its relationship with evolutionary stability. Density dependent evolutionary
monomorphic stability for multi-species co-evolutionary ecosystems was introduced in Cressman
and Garay (2003a,b). This notion is strictly based on the dynamical perspective; here an ecological
equilibrium of a system remains stable when a rare mutant phenotype is introduced in each species
and subsequently eliminated according to the population dynamics.

The game theoretical literature of territorial behaviour (starting from the Hawk Dove game)
mainly concentrates on the aggressive interactions between owner and intruder (e.g. Morrell and
Kokko 2005, Hinsch and Komdeur 2017 and the references within). However, the evolutionary
stability of territoriality cannot be fully understood without considering an alternative type of
individual, which has no territory and pursues an alternative strategy without striving for territory
ownership, and consequently which is free from all costs of the acquisition or ownership of a territory.
Whilst the ownership of a territory can guarantee that a male can mate with the females in the
territory, the territory owner is not always able to exclude other males from mating with these
females.

Fighting over territories will lead to the evolution of enhanced fighting abilities, but these will
usually come at some cost, for example larger body size or heavy weapons which require greater
resources. Similarly, there can be a range of behaviours that an animal can use in defence of
its territory depending upon the value of the territory and the frequency or severity of potential
invasions. Often the alternative strategy that we mention above can then become viable; namely
not to compete for territories at all, and thus dispense with the extra resources required to be an
effective competitor. Some species can then diversify into different types with different physical
forms, adapted to either fighting for territories or obtaining resources in an alternative way.

For instance, a well-known example is that of the side-blotched lizard (Uta stansburiana). Ultra-
dominant orange-throated males establish and control large territories, but are not able to prevent
the yellow stripe-throated males (”sneakers”) from mating with “their” females (Sinervo and Lively
1996, Sinervo et al. 2000). Here the main point is that the yellow stripe-throated males do not, and
never will, have a territory. Similar phenomena take place in the case of sunfish and salmon (e.g.
Gross 1984 and references therein, Gross and Charnov 1980). Thus we will consider a non-territorial
phenotype, called a nomad, which has no territory and does not get involved in fights.

To summarise, in connection with territorial behaviour two questions arise: (i) How much time
and energy is necessary to keep a territory? (ii) Is it worth to keep a territory from the evolutionary
aspect at all? This article focuses on both questions and during the development of the model
we primarily imagine a territory which mainly provides food for the owner. We can also say that
territorial interactions can increase the growth rate of the territorial type through access to the
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resource in our model. The model therefore investigates the questions from the energetic aspect so
that we focus on two factors mentioned in the introduction during the development of the model:
time constraints and density dependence.

We follow the often used methodology of mathematical ecology of separating the time scale
of interactions between individuals from the time scale of the population process (e.g. Metz et
al. 1992, Geritz et al. 1998, Bolker et al. 2003, Werner and Peacor 2003, Cressman and Garay
2003a,b, Abrams 2005, Vincent and Brown 2005, Dercole and Rinaldi 2008, Abrams 2010)1. This
also implies that neither of the participants can die in a fight (albeit there are well-known cases of
this, for instance, fig wasps (Hamilton 1979) or ungulates (Clutton-Brock 1982)). The territorial
interaction (that is the fight for the territory) nevertheless decreases the fitness of both participants
in the model introduced in the present article too, but this is considered through loss in intake
(energy) and time. This presumption on mortality is realistic for several species. For instance,
among songbirds the main territorial behaviour is singing which is chiefly energetically costly (Berg
et al. 2005). It seems if there is a fight for the territory then the outcome is rarely death. For
example, in the collared flycatcher (Ficedula albicollis) males actively defend a small surrounding
area of their nesting holes during the mating period, but no mortal interaction has been experienced
in over 15 years of experiments in the Pilis Mountains (Hungary) (personal communication by János
Török). Numerous studies have shown that in territorial defence threats, song and scent marking
have a number of advantages over violent combat, because of e.g. elimination of the risk of injury,
and so death (Johnson 1973, Brown 1975, Maynard-Smith 1982, Gosling 2010), lower energetic costs
(Brown 1975) or less reduced predator vigilance (Dunn et al. 2004).

The paper is organised as follows. In Section 2 we explain our model. In Section 3 we find
the “right” strategy for our population, i.e. find the Nash equilibrium strategy. In Section 4 we
consider the stability of such a population against potential invading “mutants” of an alternative
type. Finally in Section 5 we discuss our results and future work.

2 The Model

In this section we consider the details of the model, introducing the biological scenario, the mathematical
details and the parameters and develop the analysis for a “resident” population where a single
strategy (as later defined) occurs.

2.1 The biological scenario

We consider a population in which there are two types of individual that we shall term territorials
and nomads. As previously described these could be male individuals who aim to secure mates
either by owning a territory which can support a group of females (the territorial individuals) or
by an opportunistic strategy which involves mating with females wherever the opportunity arises.
Alternatively the resources could be food, and it is the latter case that we shall use in the terminology
that follows. In any case, there can be at most one territory owner in a territory, and territories are
only left empty if there are insufficient territorials to occupy them all.

Nomad individuals wander through the field regardless of the territory borders looking for prey.
If they come across a territory owner they flee. The two styles of living exclude one another. A
territorial individual having a territory (i.e. an owner) lives on its territory which it never leaves. It
defends the territory against intruding territorials and nomads or hunts for prey inside the territory.
A territorial individual without a territory (i.e. an intruder) looks to challenge for a territory and

1There are now a number of models which do not have such a separation of timescales (Levin 1992, Argasinski
2012, 2013 and 2018, Argasinski and Rudnicki 2017), and where significant differences are demonstrated (Cressman
R. and Křivan V. 2013).

4



for prey to consume. If it comes across a territorial individual having a territory then they fight
over the territory and the winner gets the territory while the loser becomes/remains an intruder.

An owner can follow one of the two pure strategies:
The patroller strategy: the owner looks for intruders. It does not find any prey (if so, then it neglects
the prey). Then its intake derives only from a background intake which every owner has (this could
be a share of prey captured by subordinate groupmates within the territory). The patroller strategy
can be advantageous if the owner successfully defends its territory with a higher probability than the
owners following the predator strategy (see below), otherwise it is not worth following the patroller
strategy. Therefore we focus on the situation when a territory owner following the patroller strategy
wins with a higher probability than when following predator strategy.
The predator strategy: the owner looks not only for intruders but also for prey (the term “predator”
is used due to the latter). Therefore, an intake from the prey comes in addition to the background
intake but (we assume that) the owner successfully defends its territory with a lower probability
than when following the patroller strategy. This is, to say, the cost of the predator startegy.

We are interested in which strategy will evolve in the population. To investigate this question
we have to calculate the fitnesses of our different types, which will depend upon their densities
within the population. We use two approaches, that operate on different timescales. The first is
a population dynamic model similar to the Lotka-Volterra equations which describes the evolution
of the nomads and territorials by differential equations (the slower process). This involves game-
theoretical fitness terms derived following the second approach using the methodology of Garay
et al. (2017), which considers a stochastic behavioural dynamics process of individuals moving
between population states for any given population composition (the faster process).

2.2 Population terminology and parameters

Here we consider the key terminology and parameters of the model, breaking it down into distinct
parts based upon the different aspects of the model.

2.2.1 Population densities

We assume that the population follows a stochastic process moving between a number of states.
We shall consider this in detail in Section 2.3. The population density of the nomads is denoted
by x and of the territorials is denoted by y, scaled to the number of territories, i.e. the population
density of territories is 1. Equivalently y is the number of territorial individuals per territory, and x
is the number of nomads per territory. Thus if y ≤ 1 there are enough territories for all territorials
to have one, but if y > 1 there are not, and they have to contest them. Then we assume that every
territory is possessed by a single territorial (i.e. owner) and the other territorials remained without
territory get to intruder position so the density of territorial owners is 1 while that of territorial
intruders is y − 1. It is x and y which evolve on the slow timescale (we shall see how to find the
values of x and y in Section 2.4), and for the purposes of the faster stochastic model, these can be
considered fixed.

2.2.2 Events and time constraints

Here we shall introduce some parameters and concepts. Each individual can be involved in a number
of different activites, which can provide some reward or cost, and in turn can lead onto other
activites. We first describe the activies and their (expected) durations below, before considering
the rewards and costs.

Time constraints: If an individual is busy with regeneration after fighting, handling a prey or
fleeing, respectively, then it cannot be involved in another activity (fighting or fleeing or hunting),
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Table 1: The model parameters and notation

Parameter Meaning

x, y, z Density of nomads, resident and mutant territorials

%n Proportion of active nomads among nomads

%o Proportion of active owners among owners

%a Proportion of active patrollers among patrollers

%r Proportion of active predators among predators

%i Proportion of active intruders among intruders

b Steady contribution in the intake rate of an owner

ih Benefit gained from a pray

cw, cl Cost of injury of the winner/loser in a fight

cf Cost of fleeing

tw, tl Duration of regeneration after winning/losing a fight

th Time necessary to handling a prey

tf Time necessary for a nomad to fleeing from a territory owner

αa, αr Probability that a patroller/predator wins a fight

d Cost rate of maintenance

cnn Nomads on nomads (density dependent Lotka-Volterra) competition coefficient

cnt Nomads on territorials (density dependent Lotka-Volterra) competition coefficient

ctn Territorials on nomads (density dependent Lotka-Volterra) competition coefficient

ctt Territorials on territorials (density dependent) competition coefficient

λi Rate of finding an active intruder

λo Rate of finding an active owner

λh Rate of finding a prey

λr Rate of reconsidering the state without fight

f Normalized rate of encountering a territory

p, q, r Probability of choosing the patroller state for residents/mutants at reconsiderations

F Fitness of an average nomad

G Fitness of an average resident territorial

H Fitness of an average mutant territorial

(The aim of the table is just to recall the notations but the definitions given here are necessarily

brief. For the precise definitions of the notations, see the relevant text.)
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and we assume that it is effectively invisible for individuals searching for a fighting partner or
prey. Such an individual is considered to be inactive while an individual in the searching state is
considered to be active. This, for example, means that if a territory owner looks for intruders then
it can only encounter those intruders or nomads which are active. Therefore the probability of an
encounter with territorial intruders or nomads is proportional to the density of active territorial
intruders and nomads rather than the total density of territorial intruders and nomads.

%o, %i, %n, %a, %r are the proportion of active (i.e. searching) individuals among the territorial
o wners, the i ntruder territorials, n omads, territorial owners in the p a troller state and territorial

owners in the p r edator state (see below for a detailed explanation), respectively. These are not
fixed parameters, but depend upon y in our model, and we shall evaluate them explicitly in Section
2.3.5.

Different encounters cost specific expected amounts of time (the so called “waiting time” which
might be 0). In each case we assume an exponentially distributed length of time with the following
means. We have:
th is the expected time length of handling the prey,
tf the expected time length for a nomad to flee from a territory owner,
tw (tl) the expected time length of regeneration after winning (losing) a territory owner versus
intruder fight, i.e. the time depends only upon the outcome of the fight, and not the initial state of
the individual concerned. For losing this could include some fleeing time, as above. For simplicity
the time of the fight itself is assumed to be zero (alternatively this could be non-zero and included
in the winning/losing regeneration times).

2.2.3 Rewards and costs

Depending upon whether an individual owns a territory and on what events occur, there are a
number of rewards and costs that they can receive. These are as follows:
b is a steady (baseline) contribution in the expected intake rate of an owner. This is the main benefit
of having a territory. This can derive from, for example, the fact that the owner knows its territory
better or one can imagine the owner as a leader of a group, for instance a male in a pride of lions,
and the group provide the significant benefit of a steady supply of food, giving the contribution b
in the expected intake rate. An alternative is where the reward is in terms of mating opportunities,
and an owning male has (almost) exclusive access to a group of females, and this also applies in the
lion example.
ih is the benefit gained from consuming a prey item.
cw is the cost of the injury to the winner in a fight.
cl is the cost of the injury to the loser in a fight.
cf is the cost of fleeing.

There are also indirect costs which do not relate directly to the interactions, but come about
through independent effects.
d is the cost rate (cost per time) of maintenance; all individuals consume resources simply to stay
alive, and these are then not available for reproduction.
cnn, cnt, ctn and ctt are the density dependent (Lotka-Volterra) competition coefficients depending
on the phenotypes; these are the costs of nomads on nomads, nomads on territorials, territorials
on nomads and territorials on territorials , respectively. This derives from the fact that the general
environmental resources, such as water, places (like the appropriate nest site, refuge etc. Rodenhouse
et al. 1997), used by the individuals are bounded. One can think that the more individuals
there are the harder it is to obtain the given environmental resources or the worse the quality of
the environmental resources are, and that different types of individuals can have different effects.
Moreover, in the case of territoriality, monopolising the resources of a territory can continue to
increase the negative effect of the territory owners on the fitnesses of the individuals excluded.

7



2.3 The stochastic process

In our model we consider an ecological system of two types which evolves over a considerable period
of time (following the differential equation model that we shall introduce in Section 2.4), so that
the values of x and y change as individuals are born and die. We assume that this process happens
on a much slower timescale than that involving interactions between individuals, where it can be
assumed that over the course of this process, x and y do not change.

To give the terms deriving from direct interactions we follow the Markov model of Garay et al.
(2017). Different events (hunting, fighting etc. depending on the interpretation) can happen to an
individual. The events have rates which give how often they can be expected to occur (as if the time
between two events of the same type were an exponential random variable) and after every event
there is some duration, the waiting time which the individual has to wait and the length of which
depends on the event. The waiting time is also assumed to be an exponential random variable;
it represents the regeneration time after a fight, the handling time necessary for handling a prey
and so on. The event itself is assumed to have zero, negligible duration or one can think that it is
included in the waiting time. During waiting time events cannot occur. Furthermore every event
leads to some (maybe negative or zero) intake for the individual.

An individual “searches” for events. During this searching state it experiences any given event
at some above mentioned rate (some time will elapse before an event occurs). After experiencing
an event the individual has to wait the waiting time related to the event and when the waiting
time finishes the individual starts to search again (Figure 1). It is important to note, though we
speak about “search”, it is just an intuitive terminology (and we use the terminology of Garay et
al., 2017) how can one interpret the time between two adjacent events. One can call it “waiting
for the next event” and so on. Accordingly, the “search” is not an event in our model. Since the
rate at which events occur, the duration of waiting times and the intakes derived from the events
vary with the events, we calculate an average time length for an event to happen and an associated
average intake per event. The expected intake rate is then calculated as the quotient of these two
values.

ttime:

intake:

k1
tk2

tk3
tk4

tk5
tk6

tk7

i k7
i k6

i k5
i k4

i k3
i k2

i k1

Events 

Figure 1: The diagram schematically depicts a part from a life of an individual. The nodes correspond to

the events following each other. The loops on the nodes represents the waiting time after the given event.

(If there is no loop then the waiting time is 0.) A section between two adjacent nodes corresponds to a

“search”. k1, . . . , k7 denotes the serial number of the events. If there are n different kinds of events with

rates λ1, . . . , λn then k1, . . . , k7 ∈ {1, 2, . . . , n} and the probability that kj = k is λk/(λ1 + · · · + λn). The

length of a section and a loop is an exponential variable but on the figure we use their expected values. This

is why the lengths of sections between nodes are equal.
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Formally, assume that there are n different events with rates λ1, . . . , λn with related waiting times
t1, . . . , tn and intakes i1, . . . , in. Denote by Λ the sum

∑
k λk. Then we calculate the fitness as the

expected intake per event divided by the expected time between two consecutive events (consisting
of the waiting time – the average length of a loop on Figure 1 – after the first event and the search
– the length of a section between two consecutive nodes on Figure 1) –), i.e.∑n

k=1
λk
Λ ik

1
Λ +

∑n
k=1

λk
Λ tk

=

∑n
k=1 λkik

1 +
∑n

k=1 λktk
. (2.1)

Note that the (expected) time duration between two adjacent events (not including the waiting
time) is just 1/Λ (the expected value of the sum of exponential random variables with parameters
λ1, . . . , λn). In our heuristic interpretation this corresponds to the average searching time and λk/Λ
is the probability of the k-th event occurring.

Accordingly, since we know the rewards/costs and times associated with each activity, we can
calculate the part of the fitness deriving from direct interactions (owning a territory, consuming
prey, fighting and fleeing), which we do in Section 2.4.

2.3.1 Transitions and rewards for territory owners

An owner chooses the patroller state with probability p in every reconsideration event (see below).
In this state, it only gains rewards through the steady background intake rate b. The value of p
is the only strategic element within the model. We consider the possible events which can occur
depending on the chosen strategy.

An active patroller can encounter the following events:
To find an active intruder with rate λi = f%i[y − min(y, 1)], where f is the rate at which any
given active intruder encounters a territory (we will call f the unit rate). Here we assume that if
y ≤ 1, all territorials have a territory and so there can be no intruder; if y > 1, the density of
territorials without territories is y − 1. When they meet, they fight for the territory. The defeated
individual will be without a territory and gets injured, which is considered as a negative intake
−cl. The winner obtains the territory but also potentially gets injured which means an intake −cw.
The waiting time after a fight event can be considered as the regeneration process which is tw after
winning a fight whilst it is tl after losing a fight (the duration of the fight itself is assumed to be 0).
After regeneration, the territory owner (either the original owner or the new owner if the intruder
wins) will reconsider its state with duration 0, and will select the patroller state with probability p.
We cannot distinguish the winner from the original owner (the owner before the fight). It can be
the original owner or the original intruder but this does not matter from the point of view of the
territorial population; the winner will always be the owner after the fight, and the loser will always
be an intruder. A patroller owner wins with probability αa.
To find an active nomad with rate λn = f%nx. For simplicity, we use the same unit rate f as in λi
(for more explanation see Section 2.3.4) and we assume that the waiting time after the event needs
no time and means zero intake for the owner, that is, nomads have no direct effect on territorial
owners. Accordingly, no term corresponding to this event occurs in the formula describing the
fitness deriving from direct interactions (see Section 2.4.1).
To reconsider the state: the owner can reconsider its search strategy (patroller or predator) with
rate λr, again choosing patroller with probability p. The waiting time after a reconsideration is 0.
We note that this is the second way a reconsideration can happen, as it also happens after a fight
(as described above). Hence, the reconsideration rate is λr +λi altogether. Note that with the term
“reconsediration” we refer to a situation where owner thinks again about its strategy in order to
decide if it should be changed or not. So it is not certain that the owner change its strategy even
if the word “reconsideration” may suggest that.
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An owner chooses the predator state with probability 1 − p. The word “predator” refers to
the fact that the owner searches not only for intruders but for prey which are a further positive
intake in addition to the steady background intake rate b. The disadvantage of the predator strategy
derives from the trade-off between vigilance and feeding/foraging/hunting (Lima 1990, McNamara
and Houston 1992, Lima and Bednekoff 1999). One can think that the hunt distracts the attention
of the owner from the defence of its territory, it is therefore easier to surprise it and so it loses its
territory easier than an owner following the patroller strategy. For example, a teal (Anas crecca)
often uses a feeding method with its eyes beneath the water and so becomes unable to perceive
potential attackers above the water (Pöysä H. 1987). Following this reasoning the value of winning
a fight is taken to be smaller for the predator state than for the patroller state in our examples (see
Section 2.5).

An active predator can encounter the following events:
To find a prey with rate λh. The intake is ih and the (waiting) time necessary for handling the prey
is th.
To find an active intruder with rate λi. The scenario is the same for the patroller case except that
the owner wins with probability αr instead of αa.
There are two further events each of which occur in an identical way to those for the patroller.
Namely:
To find an active nomad with rate λn.
To reconsider the state with rate λr independently of finding something.

An inactive owner (being in patroller or predator state) is in a waiting time related to one of
the events (finding a prey, an active intruder or a reconsideration). Then the individual is invisible
for the other members of the population. After the waiting time elapsed the owner becomes active,
that is, starts searching.

2.3.2 Transitions and rewards for territory intruders

An active territorial intruder looks for prey and for the opportunity to acquire a territory. An
intruder encounters the following events:
To find an active owner with rate λo = f%o min(1, 1/y)y. The event is discussed above (see the
owner in the patroller state).
To find prey with rate λh. The intake is ih and the time necessary for handling the prey is th.
To find an active nomad/territorial intruder with rate λn and λi, respectively. For simplicity, the
waiting times are zero and the events mean zero intake for the intruder, that is, nomads/intruders
have no direct effect on territorial intruders (accordingly, no term corresponding to these events
occurs in the formula describing the fitness for intruders deriving from direct interactions).

An inactive territorial intruder is in a waiting time related to one of the events (finding a prey
or an active owner). Then the individual is invisible for the other members of the population. After
the waiting time elapsed the intruder becomes active, that is, starts searching.

2.3.3 Transitions and rewards for nomads

A nomad looks for prey. If it encounters a territory owner then it first flees, and only after that
starts a new searching phase. A nomad can encounter the following events:
To find an active owner with rate λo. Then the nomad flees. Fleeing takes a time tf and costs cf
To find prey with rate λh. The intake is ih and the time necessary for handling the prey is th.
To find an active nomad/territorial intruder with rate λn and λi, respectively. For simplicity, the
waiting times are zero and the events mean zero intake for the nomad, that is nomads/intruders
have no direct effect on nomads. Accordingly, no term corresponding to these events occurs in the
formula describing the fitness for nomads deriving from direct interactions.

10



An inactive nomad is in a waiting time related to one of the events (finding a prey or an active
owner). Then the individual is invisible for the other members of the population. After the waiting
time elapsed the nomad becomes active, that is, starts searching.

2.3.4 Pairwise interactions

In the above, there are a number of possible interactions; each of owners, intruders and nomads can
meet others who are owners, intruders or nomads (except that as owners never leave their territory,
owners cannot meet other owners). As described above, meetings between intruders or nomads with
intruders or nomads have no effect on the payoff. This leaves four key interactions. Owners meeting
intruders, owners meeting nomads, intruders meeting owners, and nomads meeting owners.

In the above we have used the same unit rate f in all four of these expressions. In fact this
is a natural (and in some cases necessary) assumption. Suppose that fi was the unit rate for the
intruders meeting owners and fo was the unit rate for the owners meeting intruders. Since the total
rate of active owners meeting active intruders must be the same as the total rate of active intruders
meeting active owners (if I meet you, you must meet me) we have

fi%i[y −min(1, y)]︸ ︷︷ ︸
λi

%o min(1, y) = fo%o min(1, y)︸ ︷︷ ︸
λo

%i[y −min(1, y)].

We infer that fi = fo.
A similar argument holds for the unit rates for owners meeting nomads and nomads meeting

owners. It could be that this meeting rate is different to that from above, but for simplicity we
assume that all four unit rates are the same.

2.3.5 Calculating the active state probabilities

We still need to calculate the probability that a given type of individual is active (i.e. is searching).
An individual is active with some probability, say %, and we assume if we take a glance at the
population then we find that the % part of the population is active as if the individuals were
active or inactive independently of each other (there is no synchronization in the population such as
everybody is inactive at night), and the size of the population is effectively infinite. This assumption
is a theorem (Theorem 1) in the model of Garay et al. (2017). Hence we have that the active
proportion of territorial owners being in the patroller state is

%a =
1

λr+λi
1

λr+λi
+ λi

λr+λi
tw

=
1

1 + λitw
, (2.2)

The numerator 1/(λr + λi) (of the middle expression) corresponds to the duration of the search
between two adjacent reconsiderations while the denominator (of the middle expression) corresponds
to the duration of the search between two adjacent reconsiderations (1/(λr + λi)) and the expected
waiting time after the first reconsideration ([λi/(λr + λi)]tw). To get this expected waiting time
one can argue as follows: since the waiting time is zero after a reconsideration not related to a fight
and tw after a reconsideration related to a fight and the probability of a reconsediration relating
to a fight is λi/(λr + λi) it follows that the expected/average waiting time after a reconsideration
is [λi/(λr + λi)]tw. Recall, furthermore, that the new owner and the original owner of a territory
cannot be distinguished (see Section 2.3.1). In this sense the owner always appears to win. If the
original owner is defeated, from that time it is not an owner any longer and the original intruder
becomes the owner. This may seem strange at first sight but we focus on the population of a given
phenotype and not a given individual. This approach of recording the cost of winning and losing
fights makes the formulas more trtansparent, but one can consider that this does not influence the
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formulas with respect for an “average” individual (e.g. (2.11)). Similarly, the active proportion of
territorial owners being in the predator state is

%r =
1

λr+λi
1

λr+λi
+ λi

λr+λi
tw + λh

λr+λi
th

=
1

1 + λitw + λhth
. (2.3)

The numerator is the same as for the patroller state but in the denominator the time necessary
for handling the preys, λh/(λr + λi) (the expected number of prey items caught between two
adjacent reconsiderations) appears in addition to the sum of the search time between two adjacent
reconsiderations and the waiting time after the first reconsideration. The active proportion of
territory owners is

%o =
p 1
λr+λi

+ (1− p) 1
λr+λi

p
(

1
λr+λi

+ λi
λr+λi

tw

)
+ (1− p)

(
1

λr+λi
+ λi

λr+λi
tw + λh

λr+λi
th

)
=

1

1 + λitw + (1− p)λhth
, (2.4)

the active proportion of territorial intruders is

%i =

1
λo+λh

1
λo+λh

+ λo
λo+λh

tl + λh
λo+λh

th
=

1

1 + λotl + λhth
, (2.5)

the active proportion of nomads is

%n =
1

1 + λotf + λhth
.

2.4 Population dynamics and the fitness functions

As stated in Section 2.2.1, x is the density of nomads (the number of nomad individuals per territory)
and y is the density of territorial individuals (the number of territorial individuals per territory).

We interpret the fitness as a reproductive rate. Consider the following model:

ẋ = xF (x, y) (2.6)

ẏ = yG(x, y)

where F and G, respectively, correspond to the fitness of an average nomad and an average
territorial, respectively. The fitness functions (F,G) above include the effect of direct interactions
(hunting, fighting, fleeing), indirect interactions (using common environmental resources) and maintenance.
Note that such a differential equation model focuses on only the biomass of the population but not
the different individuals. The individuals of the same type can not be distinguished from each other.
The death of an individual hence simply means a decrease of the biomass.

To calculate G and F we follow Garay et al. (2017). As previously stated, we assume that
the stochastic process governing direct interactions happens on a faster timescale to the population
dynamic process, so that we assume here that x and y are effectively constant. In this period (call
it the foraging season), the individuals gather/lose the energy which can be used to reproduce. This
time is long enough to reach a stationary state; moreover, the time when the population is not in
the stationary state is negligible. After this period comes a period (call it the breeding season)
when gained/lost rewards are transformed into births and deaths. The model (2.6) describes the
long-term evolutionary consequences of many foraging seasons and breeding seasons in turn. We
assume that the fitness of an individual (or the biomass of individuals of the same type) for a given
breeding season is determined in the previous foraging season.
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2.4.1 The direct interaction fitnesses

By formula (2.1), the term representing the direct interactions in the fitness of a nomad, a component
of fitness F , is:

λhih − λocf
1 + λotf + λhth

. (2.7)

Similarly, by (2.1) we get the following terms in the fitness G deriving from direct interactions:
The term representing the direct interactions of a territorial owner in the patroller state is

Da = b+
−λicw

1 + λitw
.

The term representing the direct interactions of a territorial owner in the predator state is

Dr = b+
−λicw + λhih

1 + λitw + λhth
.

Before giving the term representing the direct interactions of a territorial intruder we need
to know the proportion of patrollers and predators, respectively, among the territorial owners.
We know that an owner can reconsider its strategy only if there is a reconsideration event, or
at the end of a fight (recall that it does not matter who is defeated in the fight because the
winner is indistinguishable from the original owner for an outside observer). Hence the time from
a reconsideration event until the next reconsideration event in the patroller state is

Ta =
1

λr + λi
+

λi
λr + λi

tw =
1 + λitw
λr + λi

,

(cf. the denominator of expression (2.2) for ρa) whilst in the predator state, this is

Tr =
1

λr + λi
+

λi
λr + λi

tw +
λh

λr + λi
th =

1 + λitw + λhth
λr + λi

.

(cf. the denominator of expression (2.3) for ρr) Therefore, in the stationary state, a randomly
chosen owner is in the patroller state with probability

pTa
pTa + (1− p)Tr

=
p1+λitw
λr+λi

p1+λitw
λr+λi

+ (1− p)1+λitw+λhth
λr+λi

=
p(1 + λitw)

1 + λitw + (1− p)λhth
=: π (2.8)

and it is in the predator state with probability 1 − π. Hence the term representing the direct
interactions of a territorial intruder is

Di =
− λo
λo+λh

cl + λh
λo+λh

ih
1

λo+λh
+ λo

λo+λh
tl + λh

λo+λh
th

(2.9)

=
−f min(1, y)[%aπcl + %r(1− π)cl] + λhih

1 + λotl + λhth
. (2.10)

Note that λo = f min(1, y)%o = f min(1, y)[π%a + (1 − π)%r]. The first term in the denominator of
the middle expression is the expected duration between two consecutive events (fight or finding a
prey) that is the sum of the duration of search and the average waiting time after the first event
which is a fight (encountering an owner) with probability λo/(λo + λh) and finding a prey with
probability λh/(λo + λh). The numerator of the middle expression is just the expected intake from
an event.
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Now that we know Da, Dr and Di we can find the term representing the direct interactions in
the fitness of a “mean” territorial (which is in owner position with probability min(1, y)/y and in
intruder position with probability [y −min(1, y)]/y) as

D(y) =
1

y
{min(1, y)[πDa + (1− π)Dr] + [y −min(1, y)]Di}

=

πDa + (1− π)Dr if y ≤ 1
1

y
[πDa + (1− π)Dr + (y − 1)Di] if y > 1

(2.11)

After substitution (λi = f [y−min(1, y)]%i, λo = f [y−min(1, y)]%o = f [y−min(1, y)][π%a+(1−π)%r])
we get, if y ≤ 1 (note that λi = 0 now) then

D(y) = b+ (1− π)
λhih

1 + λhth
;

if y > 1 then

D(y) =
b

y
− f

y
(y − 1)%i%o(cw + cl) +

(1− π)%r + (y − 1)%i
y

λhih

=
1

y

(
b− f(y − 1)%i%o(cw + cl) + (1− π)%rλhih + (y − 1)%iλhih

)
, (2.12)

where b is the steady (baseline) contribution in the expected intake rate of an owner (the benefit
of having a territory), term f(y − 1)%i%o(cw + cl) describes the costs of fights for territories, term
(1 − π)%rλhih gives the benefit of hunting by territory owners in the predator state while term
(y−1)%iλhih gives the benefit of hunting by territorials in the intruder position. The multiplier 1/y
is a normalisation factor. It ensures that the expression (2.12) corresponds to the fitness rate of an
average territorial. Note when y ≤ 1 the term D is independent of y.

2.4.2 Evaluating G and F

The simpler part of the fitness derives from the indirect interactions and maintenance. The former
is considered as a term −cntx − ctty and −cnnx − ctny, respectively, the latter as term −d. These
terms are present both in F and G.

Now using the stochastic process described in Section 2.3 we can give the concrete shape of G.
Note that when we calculate G we would like to get the fitness of an average territorial individual
so G can be considered as the expected fitness of a randomly chosen territorial individual.

Using the equations (2.7) and (2.12) we get the following formulae for the fitnesses G and F :

G = G(x, y) = −d− cntx− ctty +D(y),

F = F (x, y) = −d− cnnx− ctny +
λhih − λocf

1 + λotf + λhth
, (2.13)

where d represents the cost of maintenance or, in other words, the background death rate, the
term −cntx − ctty and term −cnnx − ctny, respectively, describe the density dependent indirect
competitions (e.g. if the the density of nomads is x then the nomads decrease the fitness rate of
a territorial by cntx), D(y) is the contribution of direct interactions (benefit of having a territory,
hunting, fights) to the fitness rate of a territorial (for details see (2.12)) while (λhih − λocf )/(1 +
λotf +λhth) is the contribution of direct interactions (hunting, fleeing) to the fitness rate of a nomad
(see (2.7)).
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2.4.3 The steady states of the dynamical system

For any particular territorial strategy p, we can now follow the evolution of the system (2.6) to its
steady states. As we shall see in the examples in the next section, there can be more than one
steady state to the system. In any given steady state, (x∗, y∗), we will have specific values of x and
y that can be used in any of the components of the payoff function and we will thus be able to
consider the evolutionary stability of the strategy p which led to this steady state. We shall first
consider some examples.

2.5 Examples

In this section we consider some examples with a stable interior equilibrium in which both nomads
and territorials are present in the system with positive density and with stable equilibria when only
one of them are present with positive density. It is important to emphasize that there are no mutants
in the territorial population in the present section, the population of territorials is monomorphic
and we only investigate whether an ecological equilibrium of nomads and territorials is possible with
respect to the dynamics (2.6). Later (in Sections 3 and 4) we analyze what occurs if some mutants
appear in the territorial population at the interior equilibrium.

In each example the corresponding differential equation system given in (2.6) has a stable interior
ecological equilibrium and, in some cases, there are two further stable equilibria in which there are
no nomads or no territorials so these cases together show ecological tristability. In the equilibria
(both the interior and the boundary one) containing territorials the density of them is greater than
1 which means that there are both owners and intruders in the territorial population. In this paper
we principally focus on the “upper part” of the phase space, that is, when y ≥ 1. However, to get an
example for an equilibrium in which the density of the territorials is zero we have also investigated
the y < 1 case.

To find appropriate parameters we have used a computer algebra (Mathematica 11.3) which is
capable of symbolic calculations. Thus our results are exact. We consider six examples below, each
of which demonstrate a distinct situation:

1. Parameters: f = 1/10, λh = 4/25, th = tf = tw = tl = 0, cw = 1/15, cl = 1/4, cf = 1/10,
ctn = 1/100, ctt = 1/1000, cnn = 1/600, cnt = 1/250, ih = 3/10, d = 1/1000, αa = 9/10,
αr = 1/2 and b = 21/100. The patrolling strategy for this example is p = 15475/19208.

2. The parameters are the same as in Example 1, except that b = 205/1000 and p = 0.

3. The parameters are the same as in Example 1, except that b = 215/1000 and p = 1.

4. Parameters: f = 1/10, λh = 4/25, th = tf = tw = tl = 0, cw = 1/15, cl = 1/4, cf = 1/10,
ctn = ctt = cnn = cnt = 1/300, ih = 4/10, d = 1/500, αa = 9/10, αr = 1/2 and b = 1/10. The
patrolling strategy for this example is p = 25/128.

5. The parameters are the same as in Example 4, except that p = 0.

6. The parameters are the same as in Example 4, except that p = 1.

2.5.1 Examples for ecological tristability (Examples 1-3)

As stated above, most parameters for Examples 1-3 are identical. The only distinction in the
parameters is in the value of the steady contribution b (by the territory) in the expected intake
rate of an owner (although the strategies of the territorials also differ, as we discuss below). As we
see, there is no particular qualitative effect of this distinction in the present section in the sense
that the corresponding equilibrium points of Examples 1-3 and Examples 4-6, respectively are of
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the same stability type (see column “Stability” in Table 2) but the significance will be seen when
the resistance to mutants is investigated in Sections 4.3.1 and 4.3.2. Actually, b determines the
value of a territory. The larger the value of b the larger the value of the territory is. Therefore
one can expect that if b is large enough then the patroller strategy is evolutionary stable. This
conjecture is supported by Examples 1-3: as b varies from 205/1000 to 215/1000 the evolutionarily
stable strategy varies from the pure predator strategy to the pure patroller strategy through mixed
strategies (see Section 4.3.1).

The corresponding phase portraits are shown on Figure 2-4: Figure 2 belongs to Example 1,
Figure 3 belongs to Example 2 and Figure 4 belongs to Example 3. The strategy of the territorial
individuals p varies with the example considered, and has always been chosen in such a way that the
population of individuals following this strategy can, at the ecological equilibrium, resist mutants
of any kind (see Section 4.3.1).

The three diagrams are very similar, each having five hyperbolic2 equilibria (see Table 2):
an asymptotically stable equilibrium on the y-axis, two interior unstable equilibria, an interior
asymptotically stable equilibrium and an asymptotically stable equilibrium on the x-axis, so there
is an ecological tristability. We can see later (see Section 4.3.1), the stable interior equilibrium
(which is our main interest) remains stable with respect to the extended dynamics (4.4) in all of
the three examples.

5 10 15 20 25 30
x (nomads)

5

10

15

20

25
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y (territorials)

20 25 30

1

2

3

4

Figure 2: The phase portrait of the system (2.6) with parameters of Example 1 (see the main text) when

b = 21/100, p = 15475/19208 and where x is the density of nomads (average number of nomads per territory)

and y is the density of territorials (average number of territorials per territory). There are five equilibria

marked by black discs on the diagram; each of them is hyperbolic and three of them are stable, that is, there

is an ecological tristability. The coordinates of the equilibria in the ascending order of the first coordinates

are (0 , 23.85), (3.33 , 7.86), (19.51 , 1.12), (21.76 , 0.77), (28.2 , 0). At the stable interior equilibrium the

system mainly consists of nomads. Among the territorials, the owners are in the majority. In the other two

stable equilibria one of the two types (nomad and territorial) is missing. If there are no nomads, the density

of the territorial intruders is much greater than that of the territorial owners.
2Recall that an equilibrium is hyperbolic with respect to a dynamics if the Jacobian matrix of the dynamics at the

equilibrium has no eigenvalues with zero real parts. Then the stability of the equilibrium can simply be determined
from the signs of the real parts of the eigenvalues.
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Figure 3: The phase portrait of the system (2.6) with parameters of Example 2 (see the main text) when

b = 205/1000, p = 0 and where x is the density of nomads (average number of nomads per territory) and y

is the density of territorials (average number of territorials per territory). There are five equilibria marked

by black discs on the diagram; each of them is hyperbolic and three of them are stable, that is, there is an

ecological tristability. The coordinates of the equilibria in the ascending order of the first coordinates are

(0 , 24.85), (3.87 , 7.64), (18.97 , 1.35), (25.16 , 0.36), (28.2 , 0). The situation is similar to that of Figure 2.
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Figure 4: The phase portrait of the system (2.6) with parameters of Example 3 (see the main text) when

b = 215/1000, p = 1 and where x is the density of nomads (average number of nomads per territory) and y

is the density of territorials (average number of territorials per territory). There are five equilibria marked

by black discs on the diagram; each of them is hyperbolic and three of them are stable, that is, there is an

ecological tristability. The coordinates of the equilibria in the ascending order of the first coordinates are

(0 , 23.71), (3.26 , 7.89), (19.57 , 1.09), (21.32 , 0.82), (28.2 , 0). The situation is similar to that of Figure 2.
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Example Equilibrium density Eigenvalues Stability

x∗ y∗ λ1 λ2

1. 0 23.85 −0.77 −0.058 l.a.s.

3.33 7.86 −0.42 0.14 unstable

19.51 1.12 −0.64 −0.20 l.a.s.

21.76 0.77 −0.070 0.033 unstable

28.2 0 −0.067 −0.047 l.a.s.

2. 0 24.85 −0.85 −0.062 l.a.s.

3.87 7.64 −0.46 0.14 unstable

18.97 1.35 −0.60 −0.23 l.a.s.

25.16 0.36 −0.062 0.020 unstable

28.2 0 −0.047 −0.030 l.a.s.

3. 0 23.71 −0.76 −0.058 l.a.s.

3.26 7.89 −0.42 0.14 unstable

19.57 1.09 −0.64 −0.20 l.a.s.

21.32 0.82 −0.071 0.034 unstable

28.2 0 −0.068 −0.047 l.a.s.

4. 0 12.06 −0.60 0.012 unstable

10.1 5.5 −0.47 −0.085 l.a.s.

18.6 0 −0.062 0.0875 unstable

5. 0 12.31 −0.64 0.011 unstable

9.52 6.08 −0.47 −0.084 l.a.s.

18.6 0 −0.062 0.10 unstable

6. 0 10.95 −0.47 0.015 unstable

12.48 3.12 −0.56 −0.063 l.a.s.

18.6 0 −0.062 0.036 unstable

Table 2: The ecological equilibria (x∗, y∗) of Examples 1-6 in the non-negative quadrant with respect

to differential equation (2.6) with right-hand side defined in (2.13) with at least one types (nomad or

territorial) where x∗ is the equilibrium density (average number of nomads per territory) of nomads and

y∗ is the equilibrium density (average number of territorials per territory) of territorials. As we can see,

the linearization has non-zero eigenvalues at every equilibrium, that is, every equilibrium is hyperbolic.

Abreviation: l.a.s. – locally asymptotically stable.
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2.5.2 Ecologically stable coexistence of nomads and territorials (Examples 4-6)

Here again three examples are investigated. As stated above, the parameters are the same, even
in the case of parameter b, the only distinction being in the strategy of the territorial individuals.
The corresponding phase portraits of the differential equation system (2.6) with respect to these
parameters are depicted in Figure 5-7. The phase portraits essentially agree with each other. There
are three hyperbolic equilibria (see Table 2): two unstable equilibria on the axes and an interior
locally asymptotically stable equilibrium. In the stable equilibrium the proportion of territorials and
nomads is more balanced compared to Examples 1-3. Figure 5 shows the case when p = 25/128,
Figure 6 when p = 0 and Figure 7 when p = 1. The value of p gains more significance if we
investigate the resistance to mutants as we can see later (see Section 4.3.2).

5 10 15 20
x (nomads)

5

10

15

y (territorials)

Figure 5: The phase portrait of the system (2.6) with the parameters of Example 4. Here x is the

density of nomads (average number of nomads per territory) and y is the density of territorials

(average number of territorials per territory). There are three equilibria marked by black discs on

the diagram; each of them is hyperbolic. The coordinates of the equilibria in the ascending order

of the first coordinates are (0 , 12.06), (10.1 , 5.5), (18.6 , 0). The interior equilibrium is stable.

The density of territorials and nomads are similar compared to that in the stable equilibrium in

Examples 1-3 (see Figure 2-4). There is no interior unstable equilibrium. However, the equilibria

on the axes are unstable, contrary to Examples 1-3.
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Figure 6: The phase portrait of the system (2.6)

with parameters of Example 5. Here x is the density

of nomads (average number of nomads per territory)

and y is the density of territorials (average number of

territorials per territory). There are three equilibria

marked by black discs on the diagram; each of them

is hyperbolic. The coordinates of the equilibria in the

ascending order of the first coordinates are (0 , 12.31),

(9.52 , 6.08), (18.6 , 0). The situation is similar to that

of Figure 5.
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Figure 7: The phase portrait of the system (2.6)

with parameters of Example 6. Here x is the density

of nomads (average number of nomads per territory)

and y is the density of territorials (average number of

territorials per territory). There are three equilibria

marked by black discs on the diagram; each of them

is hyperbolic. The coordinates of the equilibria in the

ascending order of the first coordinates are (0 , 10.95),

(12.48 , 3.12), (18.6 , 0). The situation is similar to

that of Figure 5.

3 Finding the Nash equilibrium

In Section 2.5 we have considered a population where all territorial individuals play the strategy p in
the owning position which gives the probability of choosing the patroller state in a reconsideration
event. This is the only strategic element in the model (to be a nomad or territorial is not a strategic
choice) and it manifests itself only in territorial individuals in the owner position (it has no effect
in the intruder position). The fitness F of an “average” nomad and the fitness G of an “average”
territorial individual is then calculated by (2.13). With the fitnesses in hand one can investigate
the dynamics (2.6). This in turn leads to specific stable values for each of x and y (the three stable
equilibrium points of Examples 1-3 in Section 2.5.1 and the stable equilibrium point of Examples
4-6 in Section 2.5.2, furthermore, see Table 2). So far a single strategy (the strategy p which can
be called the resident strategy) has been shown in the population. We now consider invasion of
the population by a different type of territorial which selects strategy q. Recall that the strategy is
just the probability of choosing the patroller state in a reconsideration event. Since the probability
of winning a fight is generally distinct for the patroller and predator states, it follows that the
proportion of time spent in the owner position (thereby the benefit deriving from the territory)
varies with the strategy. Therefore the fitnesses of different strategies also differ in general leading
to the question: When can p resist invasion from such a q? A necessary condition for this to occur
is for p to be a Nash equilibrium, a concept we discuss in more detail in Section 3.4.
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3.1 The mutant fitness function

We consider the fitness of a p individual and a q individual in an infinitely large population of
resident p individuals in which a q individual appears.

We have found the fitness G(x, y) of a p individual above. We get the fitness of a q individual
if %a and %r with respect to p are replaced by %a and %r with respect to q which are denoted by %̂a
and %̂r throughout this section. Generally, we use the notation “ˆ” if the given function belongs to
the q territorials, e.g. Ĝ(x, y) denotes the fitness of a q territorial.

The distinction between Ĝ andG derives from the fact that the time spent in the patroller/predator
state is distinct for a q and a p territorial. Note that we again calculate an expected fitness for the
q territorial in a foraging season because the q individual spends a part of the foraging season in
intruder position and the other part in the owner position.

For our q individual, its mean fitness will be determined by the proportion of time that it
spends in the owner and intruder positions, and its mean payoff rate in each of these positions. A
q territorial and a p territorial are indistinguishable in the intruder position, so the fitness of a q
territorial in the intruder position is the same as that of a p territorial in the intruder position.
However, the ratio of time spent in the intruder position to that spent in the owner position can
be different with respect to p and q territorials. Therefore we calculate the expected duration from
becoming an intruder until acquiring a territory and the expected duration from becoming an owner
until losing the territory.

Specifically we have: the fitness of a q territorial:

Ĝ(y) =
T̂iĜi + T̂oĜo

T̂i + T̂o
, (3.1)

where:
T̂i is the expected length of time a q-individual spends in the intruder position from becoming an
intruder after losing a fight in the owner position until the first winning fight, that is, getting to
the owner position again. This time includes the waiting time after losing the fight in the owner
position but the waiting time after the first winning fight is already assigned to the owner position
(recall the text after the formula for %a in Section 2.3.5).
T̂o is the expected length of time a q-individual spends in the owner position from becoming an
owner after winning a fight in the intruder position until the first losing fight, that is, getting to the
intruder position again. This time includes the waiting time after winning the fight in the intruder
position but the waiting time after the first losing fight in the owner position is already assigned to
the intruder position (recall the text after the formula for %a in Section 2.3.5).
Ĝi is the expected payoff per unit time for a q-individual in the intruder position;
Ĝo is the expected payoff per unit time for a q-individual in the owner position.

3.2 The four fitness components

Accordingly, we calculate the expected time spent in the intruder position from losing a territory
until acquiring a new territory and the time that passes from acquiring a territory until losing it.

3.2.1 Time in the intruder position

An intruder searches for an (active) owner or a prey item. It encounters an owner (call this an
owner event) with rate λo and finds a prey item (call this prey event) with rate λh so it encounters
an owner or finds a prey item with rate λo+λh. Hence the probability that the intruder encounters
an owner is λo/(λo + λh) and the probability that the intruder finds a prey item is λh/(λo + λh).
Recall that an intruder can only experience owner or prey events and not other kinds of event (see
Section 2.3.2). Therefore, if we consider an intruder just after losing a fight then the probability
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that the first owner event is the n-th event (after losing the fight) is [λh/(λo + λh)]n−1λo/(λo + λh)
(since before the owner event has to occur (n− 1) prey events). So the expected number of events
until the first owner event is

∞∑
n=1

n

(
λh

λo + λh

)n−1 λo
λo + λh

=
λo + λh
λo

.

Since every event is a prey event until the first owner event the expected length of time that passes
until the end of the first owner event is

∞∑
n=1

(
λh

λo + λh

)n−1 λo
λo + λh

[
n

λo + λh
+ (n− 1)th + tl

]
=

1

λo
+
λh
λo
th + tl.

Here, n/(λo + λh) corresponds to the duration of n “searches”, that is, n sections from Figure 1;
(n− 1)th corresponds to n waiting times after finding n prey items, that is, n− 1 loops with length
th on Figure 1 and tl is the waiting time after the losing fight from which we start to consider the
intruder position. Whereas the waiting time after the first owner event in which the intruder wins,
so becoming an owner, is not considered here (cf. the text after the formula for %a in Section 2.3.5).
Note that this result is natural: If we start a clock when the territorial becomes an intruder the
owner event happens on average at time 1/λo. During the length of time 1/λo a prey event occurs
λh/λo times.

Recall that λo is the rate of encountering an active owner (see Section 2.3.2). An active owner
is in the patroller state with probability π%a/[π%a + (1 − π)%r] which is just p by (2.8), (2.2) and
(2.3). It is therefore in the predator state with probability (1 − p). Accordingly, the probability
that the intruder wins is

p(1− αa) + (1− p)(1− αr),

so the intruder has on average 1/[p(1−αa)+(1−p)(1−αr)] fights until its first win. Then it becomes
an owner. Therefore, the time (denoted by T̂i) spent in the intruder position from becoming an
intruder until becoming an owner is

T̂i =
1

p(1− αa) + (1− p)(1− αr)

(
1

λo
+
λh
λo
th + tl

)
.

3.2.2 Time in the owner position

In the owner position, the territorial can be in the patroller or in the predator state, respectively.
First, we have to determine the time spent in the different states. The probability of winning a
fight in the patroller state is αa while, in the predator state, it is αr. If a q-territorial is active (so
is searching) then it is in the patroller state with probability q. Accordingly, when it gets involved
in a fight, it loses its territory with probability q(1 − αa) + (1 − q)(1 − αr) and, consequently, the
expected number of fights until this occurs is 1/[q(1 − αa) + (1 − q)(1 − αr)]. A reconsideration
event is due to a fight with probability λi/(λr + λi) (recall that reconsideration can occur not only
spontaneously with rate λr but a reconsideration is always related to every fight so the total rate
of reconsideration is λr + λi, see Section 2.3.2), so there are on average

R̂ :=

(
λr + λi
λi

)
1

q(1− αa) + (1− q)(1− αr)

reconsiderations from becoming an owner until losing the territory.
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We now calculate the time taken from becoming an owner until losing the territory. The expected
time between two reconsiderations is 1/(λr+λi) if the owner is in the patroller state and there is no
fight, and 1/(λr + λi) + λhth/(λr + λi) if the owner is in the predator state and there is no fight (if
there is a fight then the expected duration tw of the regeneration should be added to the previous
durations). Since there are R̂ reconsiderations until losing the territory from which on average qR̂
end up with a choice of the patroller strategy and there are on average 1/[q(1−αa)+(1−q)(1−αr)]
fights, the expected time T̂o from becoming an owner until losing the territory is

T̂o = qR̂
1

λr + λi
+ (1− q)R̂1 + λhth

λr + λi
+

1

q(1− αa) + (1− q)(1− αr)
tw

=
R̂

λr + λi
+ (1− q)R̂ λhth

λr + λi
+

tw
q(1− αa) + (1− q)(1− αr)

=
1

q(1− αa) + (1− q)(1− αr)

[
1

λi
+ (1− q)λh

λi
th + tw

]
. (3.2)

Here, qR̂/(λr + λi) corresponds to the time of searching in the patroller state until losing the
territory; (1 − q)R̂(1 + λhth)/(λr + λi) corresponds to the time of searching in the predator state
including the handling (waiting) times after finding prey items until losing the territory; tw/(q(1−
αa) + (1− q)(1− αr)) corresponds to the waiting times related to the winning fights before losing
the territory.

3.2.3 Fitness in the intruder position

Since there is no distinction between a p and a q territorial in the intruder position their fitnesses
are identical. So, by (2.9) and (2.13), we have

Ĝi = −d− cntx− ctty +Di.

3.2.4 Fitness in the owner position

In this case the distinctions between the fitnesses of p and q individuals derive from the distinctions
in the direct interactions. The cost of maintenance and indirect interactions is the same for both
strategies, −d− cntx− ctty.

To get the term in the fitness deriving from the direct interactions we should only repeat the
calculation made for the p territorials but with respect to the time that passes from becoming an
owner until losing the territory. The constant background intake rate b is present now too. We have
seen previously there are 1/[q(1 − αa) + (1 − q)(1 − αr)] winning fights with negative intake −cw.
When a territorial owner is defeated, the negative intake of the defeat is already considered in the
intruder position; also, when an intruder wins a fight, the negative intake of the winning fight is
considered in the owner position. In addition to this negative intake the intake from hunting in the
predator position must be considered; this is

(1− q)R̂ λhih
λr + λi

.
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So the fitness in the owner position is

Ĝo =− d− cntx− ctty + b+
− 1
q(1−αa)+(1−q)(1−αr)cw + (1− q)R̂ λhih

λr+λi

1
q(1−αa)+(1−q)(1−αr)

[
1
λi

+ (1− q)λhλi th + tw

]
=− d− cntx− ctty + b+

−cw + (1− q)λhihλi
1
λi

+ (1− q)λhλi th + tw

=− d− cntx− ctty + b+
−λicw + (1− q)λhih

1 + (1− q)λhth + λitw
.

Observe that Ĝo+d+cntx+ctty agrees with πDa+(1−π)Dr if q is replaced by p in Ĝo+d+cntx+ctty.

3.3 Calculating the fitness

We now substitute the above four terms into the fitness function (3.1) to obtain (3.3). We note that
this is a linear rational function in q. Indeed,

Ĝ = −d− cntx− ctty +
T̂iDi

T̂i + T̂o
+

T̂o

T̂i + T̂o

(
b+

−λicw + (1− q)λhih
1 + (1− q)λhth + λitw

)

= b− d− cntx− ctty +
T̂i(Di − b) + T̂o ·

(
−λicw+(1−q)λhih
1+(1−q)λhth+λitw

)
T̂i + T̂o

= b− d− cntx− ctty +
T̂i(Di − b)[q(1− αa) + (1− q)(1− αr)] +

[
−cw + (1− q)λhλi ih

]
T̂i[q(1− αa) + (1− q)(1− αr)] +

[
1
λi

+ (1− q)λhλi th + tw

] , (3.3)

which immediately shows that Ĝ is a linear rational function in q.

3.4 Nash equilibria

In what follows we write Ĝ(q, p) instead of Ĝ defined in the previous section where p denotes the
resident strategy and q denotes the mutant strategy.

Consider a strategy p. Let (x∗, y∗) be an asymptotically stable equilibrium of the dynamics (2.6)
with territorials following strategy p. Then the triplet (p, x∗, y∗) or, by abuse of notation, p, is a
(density dependent) Nash equilibrium (NE for short) if Ĝ(q, p) ≤ Ĝ(p, p) for every q 6= p close
enough to p (cf. the last paragraph on p.527 in Cressman and Garay (2003b)). If the inequality
is strict, then p is said to be a strict NE. (Note that Ĝ(q, p) = Ĝ(q, p, x∗, y∗), that is, Ĝ should
be considered at x = x∗ and y = y∗ when the relation between Ĝ(q, p) and Ĝ(p, p) is investigated.)
Table 3 summarizes the type of evolutionary stability of the strategies with the corresponding
densities in Examples 1-6.

The Nash equilibrium is a central notion of game theory. It is a best response to itself. If
the players are rational then they can retain their strategies. Therefore if one of the players uses
a Nash equilibrium strategy then its opponent is forced to use a best response in order to have
maximal profit. Generally, the best response can be the Nash equilibrium strategy or an alternative
best response. If there is no alternative best response we speak about a strict Nash equilibrium.
From the biological aspect when the players’ strategy is not a result of a rational decision but an
inheritable property and the opponent is generally an individual randomly chosen from a population,
a non-strict Nash equilibrium is not necessarily stable because small perturbation by mutation can
dislodge the population from the Nash equilibrium strategy (for example p = 25/128 at densities
x∗ = 101/10 and y∗ = 11/2 is an unstable NE of Example 4, see Table 3). Thus the Nash equilibrium
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strategy is not sure to be the most remunerative in the population any longer. However, a strict
Nash equilibrium can resist small perturbations giving it biological significance. Nevertheless, the
strictness often proves a strong condition which is rarely satisfied. This leads to the weaker (but
more complicated) conditions of evolutionary stability (see Section 4).

Rearranging the numerator and the denominator of the quotient in (3.3) according to the powers
of q we can re-write expression (3.3) as

Ĝ(q, p) =
a11(p) + a12(p)q

a21(p) + a22(p)q
+ a3 (3.4)

where a11(p) = T̂i(Di− b)(1−αr)− cw + λhih/λi, a12(p) = T̂i(Di− b)(αr −αa)− λhih/λi, a21(p) =
T̂i(1−αr) + 1/λi + tw +λhth/λi, a22(p) = T̂i(αr−αa)−λhth/λi and a3 = b− d− cntx− ctty. (Note
that a11, a12, a21 and a22 all depend on p since T̂i, Di, λi depend on p.)

A Nash equilibrium is a best response to itself, and so equation (3.4) must be maximised over
q at q = p. We thus have:
p = 0 is a Nash equilibrium if a12(0)a21(0)− a11(0)a22(0) ≤ 0,
p = 1 is a Nash equilibrium if a12(1)a21(1)− a11(1)a22(1) ≥ 0,
0 < p < 1 is a Nash equilibrium if a12(p)a21(p) − a11(p)a22(p) = 0. This condition is equivalent
to having ∂

∂q Ĝ(q, p)q=p = 0 due to the fact that Ĝ is a linear rational function in q so that the

derivative w.r.t q can be 0 only if the numerator of Ĝ is a constant multiple of the denominator.
The potential problem of the denominator of Ĝ having a root on [0, 1] does not arise, since from
(3.3) we see that the denominator of Ĝ is positive for any q ∈ [0, 1].

4 Evolutionary stability

Below we consider two concepts of stability for our solutions, which we introduce in Section 4.1.
The second of these, in terms of its definition and assumptions, is more realistic for our system.

4.1 Mixed solutions

All mixed strategy solutions p must satisfy

a12(p)a21(p)− a11(p)a22(p) = 0. (4.1)

4.1.1 Convergence stability

We borrow the first concept for evolutionary stability from adaptive dynamics (Metz 2012, Chapter
13 in Broom and Rychtář 2013) which describes the evolution of a population through small
mutation. One of the important stability concept of adaptive dynamics is convergence stability.
If the average strategy of the population is close enough to a convergence stable strategy then only
the strategies closer to the convergence stable strategy than the average strategy have an advantage,
thereby one can expect that the average strategy of the population (moreover the strategy of the
individuals) of the consecutive generations tends to the convergence stable strategy. Therefore, if
some mutants appeared in a population of individuals following a convergence stable strategy it can
be expected that the average strategy of the population returns to the convergence stable strategy.
For differentiable fitness functions convergence stability can be characterised by the help of first and
second order derivatives (Eshel 1983, Meszéna et al. 2001). We use this characterisation (see (4.2)
below) for our model.

Consider a mixed strategy p. Let (x∗, y∗) be an interior equilibrium of the dynamics (2.6) with
respect to the strategy p, that is, x∗ > 0, y∗ > 0 and F (p, x∗, y∗) = G(p, x∗, y∗) = 0. Then by the
implicit function theorem (see e.g. Theorem 9.28 (p. 224) in Rudin 1976) there is a neighbourhood
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N of p and a unique (continuously differentiable) function (x∗(q), y∗(q)) defined on N such that
x∗(p) = x∗, y∗(p) = y∗ and F (x∗(q), y∗(q)) = G(x∗(q), y∗(q)) = 0 for every q ∈ N (Lemma 2 in
Cressman and Garay, 2003b). In our context, the function (x∗(q), y∗(q)) is called the stationary
density surface3.

The mixed strategy p (more precisely the triplet (p, x∗, y∗) if we emphasize the density dependence)
is convergence stable if and only if the equilibrium condition (4.1) is satisfied, together with

d

dr

(
∂

∂q
Ĝ(q, r)

∣∣∣∣q=r)
r=p

< 0. (4.2)

This is equivalent to having (4.1) satisfied and

d

dr
(a12(r)a21(r)− a11(r)a22(r))r=p < 0. (4.3)

This means that within some neighbourhood the population strategy would evolve towards any
strategy that satisfies the above conditions, and so in any case with a unique NE which is convergence
stable, evolution would take a population starting from any strategy other than p to p.

It is important to emphasize when we investigate the convergence stability of a strategy p that we
consider the function Ĝ on the stationary density surface (x∗(r), y∗(r)) defined in a neighbourhood
of p even if this is suppressed in the notation, that is, Ĝ(q, r) = Ĝ(q, r, x∗(r), y∗(r)) in (4.2).

We shall consider an alternative definition of resistance to invasion by mutant strategies.

4.1.2 Density dependent ESSs (DDESS)

In the above definitions, we have not considered the population dynamics explicitly, only through
the stationary density surface. We do this below.

The definition of density dependent ESS is a dynamic approach to stability. Our definition here
follows the work of Cressman and Garay (2003b) in which a possible extension of the notion of
the one species frequency dependent ESS (Maynard Smith, 1982) is discussed for the multi species
density dependent system.

Consider a resident system of nomads and territorials. Let p be the strategy of the resident
territorials. As before, denote by x and y, respectively, the density of nomads and resident
territorials, with fitness functions F and G, respectively. Assume that some mutant territorials
using strategy q appear in the population with density z and fitness function H (see the definition
of F , G and H for z > 0 in Appendix A.1). Then the evolution of this system is described by the
extended dynamics

ẋ = xF (x, y, z), (4.4)

ẏ = yG(x, y, z),

ż = zH(x, y, z).

From this point of view, the dynamics (2.6) can be called the resident system. Let x∗ = x∗(p), y∗ =
y∗(p) be a positive equilibrium of the resident system (2.6). (p, x∗, y∗) is a density dependent
evolutionarily stable strategy (DDESS) if

(i) (x∗, y∗) is an asymptotically stable state of the resident dynamics (2.6) and

(ii) whenever q is a strategy close enough to p but different from p, then (x∗, y∗, 0) is an asymptotically
stable rest point of the extended dynamics (4.4),

3There is in general more than one equilibrium for a given p and parameters. The stationary density surface can
be considered at any of the equilibria (if the condition of the implicit function theorem are satisfied) but it is clear
from the context where the stationary density surface is considered.
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where “close enough to p” means the existence of a δ > 0 such that |q−p| < δ. Thus an equilibrium
density (x∗, y∗) is always associated with a DDESS but if this density is clear from the context we
often suppress it and only say that p is a DDESS. We demonstrate how to show that a strategy is
a DDESS in Appendix A.2.

4.2 Pure solutions

For the pure strategies p = 0 and p = 1 we have the following conditions for a strict Nash equilibrium.
Strict Nash equilibra are also convergence stable and DDESS solutions as described above. Note
that for pure strategies the non-strict equilibria are non-generic (see e.g. Broom and Rychtář, 2013)
and so we do not consider these here further. p = 0 is a strict Nash equilibrium if

a12(0)a21(0)− a11(0)a22(0) < 0. (4.5)

p = 1 is a strict Nash equilibrium if

a12(1)a21(1)− a11(1)a22(1) > 0. (4.6)

It is possible to have one, both or neither of these solutions, as we see in Section 4.3.

4.3 Examples

Here we return to the examples given in Section 2.5. We have seen that each of the examples have
an interior equilibrium. We investigate what occurs if a small amount of mutant territorials appear
in the ecosystem of nomads and territorials at the interior equilibrium. We calculate the fitness of
mutants according to Section 3.1. This intuitively describes the case when the resident population is
infinitely large compared to the mutant subpopulation, so the density of mutants is practically zero.
Furthermore, we get a suggestion of what one should expect in relation to the stability introduced
in Section 4.1.1 and 4.1.2.

4.3.1 Evolutionary stability of a strategy in the ecologically stable interior equilibrium
(Examples 1-3)

We proceed as follows. We investigate each example at three values of the resident strategy, namely,
when the resident strategy is either of the two pure strategies (p = 0 or 1, that is, the pure predator or
the pure patroller strategy, respectively) and when the resident strategy is a mixed strategy suitably
chosen in the sense that the strategy will be a DDESS in Example 1. Then we plot the mutant
fitness calculated according to Section 3.1 as a function of the mutant strategy q. Consequently, a
figure related to a given example depicts three graphs. Comparing the slope of the graphs we can
infer the stability property of a given resident strategy from the evolutionary viewpoint. We get
that depending on the value of b (note that Examples 1-3 differ from each other only in the value
of b) either the mixed strategy (Example 1) or pure strategy p = 0 (Example 2) or pure strategy
p = 1 (Example 3) proves to be evolutionarily stable.

In Example 1 (when b = 21/100) the chosen mixed resident strategy is p = 15475/19208. At
this value of the resident strategy any mutant proves neutral since its fitness agrees with the fitness
of a resident, that is, the graph of the mutant fitness as a function of q is constant (the green solid
line on Figure 8). Actually, starting from the formula (3.3) we have solved an equation for p to
find a resident mixed strategy for which the mutant strategies are neutral if the residents are at the
interior ecological equilibrium found in Section 2.5. This also means that p is a (density dependent)
NE.

If the resident strategy is the pure predator strategy, that is, p = 0 then the graph of the mutant
fitness increases in q as shown in Figure 8 (the blue dashed graph). So any kind of mutant can
invade into the population of pure predators.
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If the resident strategy is the pure patroller strategy, that is, p = 1 then the graph of the mutant
fitness decreases in q as it shown on Figure 8 (the orange dotted graph). So any kind of mutant can
invade into the population of pure patrollers.

Comparing the three values of the resident strategy one can expect that the resident population
of individuals following the mixed strategy p can resist (a small amount of) mutants. Indeed this
is the case as the line slopes of any p smaller (larger) than this critical value are positive (negative)
in q, so that we have convergence stability. We can also check formally that the strategy is both
convergence stable and a DDESS. To see convergence stability we substitute appropriate values into
(4.2) to get

d

dr

(
∂

∂q
Ĝ(q, r)

∣∣∣∣q=r)
r=p

≈ −0.0010 < 0,

that is, the condition of convergence stability is satisfied. As regards density dependent stability
we follow the process described after Lemma A.1 in the Appendix and get that

∂

∂q
B(q)|q=p = 0 and

∂2

∂q2
B(q)|q=p ≈ −0.018 < 0,

that is, strategy p is also a DDESS (see Table 3).
We remark that the stable equilibrium with no nomads proves unstable from an evolutionary

point of view. It can be invaded by any mutant with strategy q > p (see Table 3).
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Figure 8: The fitness of mutants in the resident monomorphic population of individuals following
strategy p at the stable interior ecological equilibrium of Example 1 (b = 21/100, see Section 2.5
and Figure 2). The fitness of a mutant following strategy q is calculated by formula (3.3). If
the strategy of resident individuals is p = 15475/19208 then every kind of mutant has the same
fitness, that is, every mutant type is neutral against the resident phenotype. Therefore the fitness
is constant in q (green solid graph). If the strategy of the resident population is the pure predator
strategy then the fitness of mutants is increasing in q (blue dashed graph) which shows that any
mutant type can invade the resident population. Also, if the strategy of the individuals of the
resident population is the pure patroller strategy then the fitness of mutants is decreasing in q
(orange dotted graph), so the resident population cannot resist any kind of mutant again. The
three graphs together suggest that the mixed strategy p is an evolutionarily stable strategy.

In Examples 2 and 3 as well, the fitness of the mutants as a function of q has been compared
with respect to the previous three values of the resident strategy. The only distinction in Example
2 compared to Example 1 is that the value of parameter b is a little smaller, being 205/1000. This
means that the steady contribution of having a territory is smaller than in Example 1. Therefore
it seems rewarding to hunt more and this conjecture is supported by the three graphs on Figure
9. Every graph is decreasing in q. Consequently, the predator strategy always proves the most
remunerative independently of the strategy of the resident individuals.
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The situation in Example 3 is similar in form to that in Example 2, but yielding the reverse
outcome. Here b = 215/1000, that is a bit greater than in Example 1. Therefore one can expect
that it is worth hunting to a lesser extent and patrolling instead. Indeed, the graphs on Figure 10
support this expectation, for the fitness of mutants as a function of q increases in q independently
of the strategy of the resident individuals. As a consequence, the highest fitness always belongs to
the pure patroller strategy.

Accordingly, Examples 2 and 3 are examples when a pure strategy resists mutants. As Table 3
shows both equilibria are not only convergence stable and DDESS, but strict NE.

We remark that the stable equilibrium with no nomads is unstable in Example 2 (it can be
invaded by any mutants following a strategy q > 0) while it is a strict NE in Example 3.
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Figure 9: The fitness of mutants in the resident

monomorphic population of individuals following

strategy p at the stable interior ecological equilibrium

of Example 2 (b = 205/1000, see Section 2.5 and Figure

3). The fitness of a mutant following strategy q is

calculated by formula (3.3). The fitness of mutants

is a decreasing function of q independently of the

strategy of individuals of the resident population.

Consequently, the most rewarding strategy is always

the pure predator strategy suggesting not only the

evolutionary stability of this strategy but that it is a

strict NE.
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Figure 10: The fitness of mutants in the resident

monomorphic population of individuals following strategy

p at the stable interior ecological equilibrium of Example 3

(b = 215/1000, see Section 2.5 and Figure 4). The fitness

of a mutant following strategy q is calculated by formula

(3.3). The fitness of mutants is an increasing function of q

independently of the strategy of individuals of the resident

population. Consequently, the most rewarding strategy is

always the pure patroller strategy suggesting not only the

evolutionary stability of this strategy but that it is a strict

NE.

4.3.2 Evolutionarily instability of a mixed strategy in an ecologically stable interior
equilibrium (Examples 4-6)

As in Examples 1-3, the fitness of mutants is investigated with respect to three distinct values of the
strategy of resident individuals: for the two pure strategies and for the mixed strategy p = 25/128.
The mixed strategy has again been chosen in such a way that every kind of mutants proves neutral
against the resident population of individuals following p at the ecological equilibrium found in
Section 2.5 (green horizontal graph on Figure 11). This also means that strategy p = 25/128 is
a (density dependent) NE. However, contrary to Example 1, if the resident strategy is the pure
predator strategy (p = 0) then the fitness of the mutant as a function of q is decreasing in q
(blue dashed graph on Figure 11), so the resident pure predators have the highest fitness showing
that the population of pure predators resists small amount of mutants. This is also true for all
resident strategies below the critical value of 25/128. Also, if the resident strategy is the pure
patroller strategy (p = 1) then the fitness of mutants as a function of q is increasing in q (orange
dotted graph on Figure 11), so the resident pure patrollers have the highest fitness showing that the
population of pure patrollers resists small amount of mutants. This is again also true for all resident
strategies above the critical value. In summary, Examples 4-6 provide a set of parameters with a

29



Example Strategy Equilibrium density ∂
∂q

Ĝ(q, p)|q=p
d
dr

(
∂
∂q

Ĝ(q, r)
∣∣∣
q=r

)∣∣∣
r=p

∂2

∂q2
B(q)|q=p Evolutionary stability

p x∗ y∗

1. 0.806 0 23.85 0.0019 > 0 - - us. from the right

0.806 19.51 1.12 0 −0.010 < 0 −0.018 < 0 CSS, DDESS

2. 0 0 24.86 0.00026 > 0 - - us. from the right

0 18.97 1.35 −0.0037 < 0 - - strict NE

3. 1 0 23.71 0.0045 > 0 - - strict NE

1 19.57 1.09 0.041 > 0 - - strict NE

4.
25

128

101

10

11

2
0 0.0020 > 0 0.0012 > 0 unstable NE

5. 0 9.52 6.08 − 1

1975
< 0 - - strict NE

6. 1 12.48 3.12
103

5075
> 0 - - strict NE

Table 3: Investigation of the evolutionary stability of the stable ecological equilibria (x∗, y∗) in which the

density of territorials is positive where x∗ is the equilibrium density (average number of nomads per territory)

of nomads in the resident system (2.6) and y∗ is the equilibrium density (average number of territorials per

territory) of territorials in the resident system (2.6). p denotes the strategy of the resident territorials. We

recall that in Example 1 b = 21/100, in Example 2 b = 205/1000 while in Example 3 b = 215/1000. We note

that in all cases above we have y∗ > 1, as otherwise there are no contests between territorials, and the value

of p, and any corresponding mutant q, would be irrelevant. Abbreviations: NE – Nash equilibrium, CSS –

convergence stable strategy, DDESS – density dependent evolutionary stable strategy. “us. from the right”

means that the resident system can only be invaded by mutants following a strategy q > p (us. - unstable). )
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mixed strategy which is unstable from an evolutionary perspective; its stable resident equilibrium
can be invaded by any mutants following a strategy q distinct from 25/128, and pure strategies
which are evolutionarily stable (see Table 3).
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Figure 11: The fitness of mutants in the resident monomorphic population of individuals following

strategy p at the stable interior ecological equilibrium values of Examples 4-6 (see Section 2.5 and

Figures 5-7). The fitness of a mutant following strategy q is calculated by formula (3.3). If the

strategy of resident individuals is p = 25/128 then every kind of mutant has the same fitness, that

is, every mutant type is neutral against the resident phenotype. Therefore the fitness is constant

in q (green solid graph). If the strategy of the resident population is the pure predator strategy

then the fitness of mutants is decreasing in q (blue dashed graph) contrary to Examples 1-3 which

shows that the resident population can resist any kind of mutant. If the strategy of the individuals

of the resident population is the pure patroller strategy then the fitness of mutants is increasing

in q (orange dotted graph) contrary to Examples 1-3, so the resident population again resists

any kind of mutant. The three graphs together suggest that the mixed strategy p = 25/128 is

evolutionarily unstable while the pure strategies are both evolutionarily stable, moreover, strict

NE. Indeed this is so, as any resident strategy below (above) the critical value p = 25/128 is also

decreasing (increasing) in q.

5 Discussion

In this paper we have considered a model of territorial behaviour, where territory owners must
defend their territories from intruders who in turn wish to take over the territory. A territory has
a value to its owner while it is occupied, but defence comes at a cost both in terms of time and
risk of injury/energy cost. Owners have a choice of a more active patrolling defence, which was
more costly, but have a greater chance of repelling intruders, or a less active defence, the ”predator”
state, where their priority is foraging. The effectiveness of each strategy depends upon the rewards
available compared to the different costs, but also crucial is the density of the population, influenced
by indirect intractions caused by underlying environmental quality. The population also consists of
an alternative type of individual, nomads, who do not fight for territories, but nonetheless have an
important indirect impact through their use of resources.

We note that the nomad phenotype resembles the dove strategy in the classical Owner-Intruder
game (e.g. Maynard-Smith and Parker 1976, Chapter 8 in Maynard Smith 1982) in the sense
that a nomad never fights against a territory owner though encountering a territorial owner can
decrease the nomad’s fitness (the cost of fleeing). The analogy between nomads and doves is not
perfect though, because a nomad can never have a territory even if there are territories without an
owner. The nomad (not keeping a territory) way of life is an alternative to the territorial (keeping or
striving to have a territory) way of life and depending on the assumptions either of the two ways can
be eliminated from the ecological system. In our model, territorials represent different ”hawkish”
strategies depending on how an individual divides its time between hunting and patrolling, thereby
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influencing the frequency of fights and the probability of winning a fight. Hence, in future works, the
territorial behaviour can be extended incorporating dove and bourgoies strategies (Maynard-Smith
and Parker 1976, Chapter 8 in Maynard Smith 1982) or a probaility pair indicating the probability
of playing hawk in the owner position and in the intruder position, respectively (“aggressiveness”
in Kokko et al. 2006).

We have seen that the strategies adopted by the owners affect the population size (see Figures
4-6), caused by a reduction in their resource intake level, and thus has an indirect influence on the
effectiveness of the owner strategy. Depending upon the parameters, we thus saw cases where there
is a stable pure defensive strategy, where both pure strategies are stable, or where a mixed defensive
strategy, sometimes patrolling and sometimes not, is stable. Similarly, there are cases where the
nomads are extinct, and others where there is a large population of this type.

The main novelty of our work is that in the framework of game theoretical modelling, we
take account not only of energetic cost of the defence of a territory but also the time constraints of
different activities and the density dependence of the interactions, as well. The time constraints and
the density dependence of fitness are linked, since the time duration of territory defence depends
upon the density of intruders. For instance, European Jays (Garrulus glandarius L.) in Sweden
occupy territories which exhibit the highest breeding success (Henrik 1990), but in the Maremma
Natural Park in Italy this species is non-territorial. In the latter case the resources are very
abundant, and the density of birds is high, thus the cost of defending the territory against all
intruders would be higher than the benefit of owning a territory (Rolando et al. 1995).

In each of the following paragraphs we introduce a scenario, and give real biological cases for
which it applies.

Territorials outperform nomads: In the ecological tristable examples, one of the locally asymptotically
stable rest points of the population density dependent dynamics is an equilibrium where there are
no nomads (Figure 2-4). This occurs, for example, when the territory is necessary for reproduction,
like the spotted hyena (Kruuk 1972), Tengmalm’s owl (Korpimaki 1988) and eurasian beaver (Rosell
et al. 1998).

Nomads outperform territorials: Territoriality is only shown by a minority of species, for instance
some well-known examples from non-territorial animals are migratory ungulates (e.g. wildebeest,
reindeer), herding fish (e.g. herring) and colony breeding birds (Burger and Gochfeld 1994).
Moreover, the home range is not always defended, for instance Grant et al. (1992) reported 11
undefending carnivores species from 23 species and 23 undefending ungulates from 62 species. So
territoriality is not always evolutionarily stable behaviour.

Coexistence of territorials and nomads: In the ecological tristable examples and in the example
with a single stable equilibrium there is a locally asymptotically stable interior rest point of the
population density dependent dynamics, where the territorial and nomad phenotypes coexist. We
already mentioned some biological examples for this situation, namely the side-blotched lizard (Uta
stansburiana) (Sinervo and Lively 1996, Sinervo et al. 2000), sunfish and salmon (e.g. Gross 1984
and references therein, Gross and Charnov 1980). In each case the territorial phenotype belongs to
our patroller phenotype, moreover in these species the nomads have different genetically determined
phenotypes to the territorials ones. For instance, male bluegill sunfish has two alternative mating
strategies: cuckoldry or parental care. Cuckolder males first mature at age two and follow a
developmental sequence of sneaking and then mimicking female behavior to deceptively gain access
to spawnings. Males who become parental (construct and defend nests) delay maturation until
age seven (Gross and Charnov 1980). Although common cuckoos (Cuculus canorus) do not show
parental care, the males are territorial and aggressively defend their territories. According to the
“dear enemy phenomenon” (Fisher 1954) the territory owners tolerate familiar male neighbours
living on adjacent territories more than unfamiliar “floating” males. Here the owners are the
older males and floaters younger males who try to copulate with the females living on the owners’
territories (Moskát et al. 2017).
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From the perspective of evolution, we point out that in these cases in the interior equilibrium,
there are either mixed territorial ESS, i.e. the ESS is a mixture of the patrolling and predator
strategy, see Figure 8, or a unique pure territorial ESSs, i.e. either patrolling see Figure 9 or
predator see Figure 10). Moreover, it can be possible to have evolutionary bistability when both
the pure patroller and the pure predator strategies are strict NE. There are many biological examples
for the case of the mixed ESS, e.g. lions (Schaller 1972) wolves (Hayes 2010), and damselflies (Golab
et al. 2017). As regards the pure ESSs, from a biological point of view, the difference between our
patroller and predator pure strategies is that the former has an extra cost in territorial defence such
as birds’ song, which has various behavioural patterns, depending upon the ecological conditions.
For example, tropical birds use song for breeding and non-breeding territorial defence. But in other
species the song has two different functions: Song restricted to males is used for the defense of
breeding territories and to attract females (females may be unable to range male song). Different
songs are used to defend non-breeding territories. Moreover, where songs are used for non-breeding
territorial defense both sexes sing (Morton and Stutchbury 2012). Finally, we mention an example
which corresponds to our “predator” strategy: the red-footed falcon (Falco vespertinus) defends its
territory, but does not sing (Purger 2001).

In our model the fitness is the average growth rate of the different phenotypes, which is defined
by the average energy intake and energy lost per unite time. We use real life examples to show
that some predictions of our model (considering the time constraints and density dependence of the
phenotypes) are not artificial, calling the attention of other researchers to the fact that this kind
of model has some biological insight to understand evo-ecological phenomena such as territoriality.
Of course, as a starting step (when considering time constraints and density dependence of the
phenotypes) in this direction we must use several simplifying assumptions, but for a more concrete
example one can build more mechanistic models taking more details into account in the future.

Our theoretical model draws attention to the fact that we should take time constraints and
the density dependence of fitness into account to gain a deeper understanding of territoriality.
In future work there are two potential main directions. Firstly a more detailed adaptive dynamic
analysis could be applied to our model. Indeed, the exact relationship between convergence stability
and density dependent stability for the model is still an open question. Secondly, in the second
direction, more detailed mechanistic models based on the fact that a territory can provide benefits
of different types for owner (e.g. food, mating opportunities) could be developed, potentially with
different consequences. Using these biological details in a framework of mechanistic models, the
competitive feature of territoriality can be investigated more fully. Three possible generalizations
are: allowing the mortality rate of a non-owner to depend upon the ability of an owner to defend
food; considering the classic side-blotched lizard population incorporating density-dependence;
incorporating signalling behaviour of the owner, such as scent-marking and singing. In this latter
case, there is the possibility of intruders being discouraged, depending upon the signal and if they
trust that it is “honest”; this thus introduces strategic decisions for the intruders. There are a
number of other possibilities, so there is much opportunity to develop the model further.
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A Appendix

A.1 The definition of the fitness functions with respect to a population with
mutants

To investigate density dependent evolutionary stability one needs to investigate the extended equation
(4.4) in which the following functions can be found: F (x, y, z), G(x, y, z) and H(x, y, z) where F is
the fitness of a nomad individual, G is the fitness of a resident territorial individual and H is the
fitness of a mutant territorial individual in an ecological system in which the density of the nomads
is x, the density of the resident territorials is y and the density of the mutant territorials is z. We
shall assume that every mutant individual follows the same strategy. We give the definitions of
the three functions here, which are similar to those when there are no mutants, the functions in
dynamics (2.6); in particular, they are the extensions of those to z ≥ 0.

Consider an ecological system in which the density of nomads is x, the density of territorial
individuals following strategy p is y while those following strategy q is z. One can think of p as the
resident strategy and q as the mutant strategy but their roles from a mathematical point of view
are symmetric.

The case with more territorials than territories

First, we deal with the case where there are more territorial individuals than available territories,
i.e. y + z > 1.

Denote by yo the density of territorial owners following strategy p in the stationary state (we
give below how to calculate yo). Then the density of territorial owners following strategy q is
1 − yo because the density of territories is 1 and it is assumed that every territory is possessed by
a territorial if the density of territorials is greater than 1 (see Section 2.2.1).

The probability γ that a randomly chosen active owner loses in a fight is

γ =
yo%o,p

yo%o,p + (1− yo)%o,q
[p(1−αa)+(1−p)(1−αr)]+

(1− yo)%o,q
yo%o,p + (1− yo)%o,q

[q(1−αa)+(1−q)(1−αr)]

where (yo%o,p)/(yo%o,p + (1 − yo)%o,q) is the probability that an active owner is a resident while
((1−yo)%o,q)/(yo%o,p+(1−yo)%o,q) is the probability that an active owner is a mutant. Consequently,
an intruder has expectation of being involved in 1/γ losing fights before it wins (this 1/γ includes
the fight in which the intruder gets to intruder position when losing the territory in owner position).
The expected time passing from a losing fight until the next fight is

tl +
1

λo
+
λh
λo
th

where tl is the waiting time after a losing fight, 1/λo is the expected time necessary to encounter
an active owner and λh

λo
th is the expected additional time which is spent handling prey items found

before this encounter.
Hence the expected time passing from becoming an intruder until the first win is

Ti =
1

γ

(
1 + λhth

λo
+ tl

)
.

Recall that the waiting time after a defeat in the owner position (which implies that the owner
loses its territory and becomes an intruder) is already allocated to the intruder position while the
waiting time after a win in the intruder position is already allocated to the owner position. (In
the intruder position there is no distinction between the two strategies so it is not necessary to
introduce separate functions Ti,p and Ti,q. They are both equal to Ti.).
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Similarly, we get the expected time passing from becoming an owner until the first defeat is

To,p =
1

p(1− αa) + (1− p)(1− αr)

(
1 + (1− p)λhth

λi
+ tw

)
if the owner follows strategy p and

To,q =
1

q(1− αa) + (1− q)(1− αr)

(
1 + (1− q)λhth

λi
+ tw

)
if the owner follows strategy q (the factors (1− p) and (1− q) before λh are derived from the fact
that the owner reconsiders its state (λr + λi)/λi times during the search for an active intruder and
decides to be a predator in proportions (1− p) and (1− q), respectively, of the reconsiderations).

The value of yo, if y + z > 1, is determined by the following equation:

To,p
To,p + Ti

y +
To,q

To,q + Ti
z = 1. (A.1)

Recall that Ti depends on yo through γ so the previous equation is really an equation in yo.
Since the active proportion of a population agrees with the quotient of the time spent in the

active state and the sum of the times spent in the active and inactive states we have

%i =

1
γ

1
λo

1
γ

(
1
λo

+ λh
λo
th + tl

) =
1

1 + λotl + λhth
, (A.2)

%o,p =
1

1 + λitw + (1− p)λhth
, (A.3)

%o,q =
1

1 + λitw + (1− q)λhth
, (A.4)

where

λo = f · (yo%o,p + (1− yo)%o,q),
λi = f · (y + z − 1)%i.

(Thus we have an equation system of equations (A.1)-(A.4) with the four unknowns yo, %i, %o,p,
%o,q.)

The expected intakes during the times Ti, To,p and To,q in turn are

Ii =
1

γ

(
λh
λo
ih − cl

)
,

Io,p =
1

p(1− αa) + (1− p)(1− αr)

(
(1− p)λh

λi
ih − cw

)
,

Io,q =
1

q(1− αa) + (1− q)(1− αr)

(
(1− q)λh

λi
ih − cw

)
.

Hence the fitness of a territorial following strategy p is

G(x, y, z) = −d− cntx− ctt · (y + z) +
yo
y

Io,p
To,p

+
y − yo
y

Ii
Ti

while the fitness of a territorial following strategy q is

H(x, y, z) = −d− cntx− ctt · (y + z) +
1− yo
z

Îo,q
To,q

+
1 + z − yo

z

Ii
Ti
.
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As regards the nomads we get the same formula as in (2.13), though λo depends not only on y,
but also now z. In particular,

F (x, y, z) = −d− cnnx− ctn(y + z) +
λhih − λocf

1 + λotf + λhth
.

We remark that one can easily check that H(x, y, 0) = Ĝ in (3.3), F (x, y, 0) = F (x, y) and
G(x, y, 0) = G(x, y) in (2.13).

The case where there are not more territorials than territories

Here we consider the simpler case when y + z ≤ 1. Then every territorial is in the owner position
and, consequently, there is no direct interactions among the territorial individuals, i.e. λi = 0. We
have

%o,p =
1

1 + (1− p)λhth
,

%o,q =
1

1 + (1− q)λhth
,

λo = (y%o,p + z%o,q)f,

F (x, y, z) = −d− cnnx− ctn(y + z) +
λhih − λocf

1 + λotf + λhth
,

G(x, y, z) = −d− cntx− ctt(y + z) + b+
(1− p)λhih

1 + (1− p)λhth
,

H(x, y, z) = −d− cntx− ctt(y + z) + b+
(1− q)λhih

1 + (1− q)λhth
.

A.2 Investigation of the evolutionary stability of a strategy

To check that a strategy is a DDESS means that we should investigate the asymptotic stability of
infinitely many equilibria (to check that (x∗, y∗) is an asymptotic stable rest point of the resident
system (2.6) and that (x∗, y∗, 0) is an asymptotic stable rest point of the extended system (4.4)
for any q close to p). The simplest case is when the resident ecological equilibrium (x∗, y∗) is
hyperbolic with respect to the resident dynamics (2.6) while the equilibrium (x∗, y∗, 0) is hyperbolic
with respect to the extended dynamics (4.4). In our case this just means the hyperbolicity of (x∗, y∗)
with respect to the resident dynamics and that H(x∗, y∗, 0) < 0.4 The situation is somewhat more
difficult if the hyperbolicity does not hold somewhere. In this paper, we will meet such cases when
the equilibrium (x∗, y∗) is hyperbolic with respect to the resident dynamics but (x∗, y∗, 0) is not
hyperbolic with respect to the extended dynamics any longer because H(x∗, y∗, 0) = 0, that is, the
invading mutant strategy is selectively neutral with respect to the resident population. Then we
can appeal for help to the following lemma.

Lemma A.1 (Lemma 2, Cressman and Garay (2003b)) Assume that (x∗, y∗) is a locally asymptotic
stable hyperbolic equilibrium with respect to the resident system (2.6) and H(x∗, y∗, 0) = 0. If

∂zH −
(
∂xH, ∂yH

)
·
(
∂xF ∂yF
∂xG ∂yG

)−1

·
(
∂zF
∂zG

) ∣∣∣∣
(x,y,z)=(x∗,y∗,0)

< 0, (A.5)

then (x∗, y∗, 0) is also asymptotic stable with respect to the extended dynamics (4.4).
If the direction of the inequality in (A.5) is reversed, then (x∗, y∗, 0) is unstable.

4One can readily check that the eigenvalues of the Jacobian matrix of the extended dynamics (4.4) at the equilibrium
(x∗, y∗, 0) is just the two eigenvalues of the Jacobian matrix of the resident dynamics (2.6) at the equilibrium (x∗, y∗)
and the value of H(x∗, y∗, 0).
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We can use the lemma to prove that a hyperbolic equilibrium (x∗, y∗) is a DDESS. Denote by
B(q) the left-hand side of formula (A.5) for a given q. (p, x∗, y∗) is a DDESS, if B(p) = 0 and
B has a strict maximum in q = p. To see this, it is enough to check that ∂qB(q)q=p = 0 and
∂2

∂q2
B(q)q=p < 0. If ∂2

∂q2
B(q)q=p > 0, then (p, x∗, y∗) is evolutionarily unstable in the sense that any

kind of mutant with strategy close enough to p can invade the resident population. We proceed this
way in our examples.

If one of the densities in the resident equilibrium (x∗, y∗) is zero and the other is not, that is,
x∗ = 0 and y∗ > 0 or x∗ > 0 and y∗ = 0, then the previous lemma changes as follows.

Lemma A.1’ Assume that (0, y∗) is a hyperbolic equilibrium of the resident dynamics (2.6) that is
F (0, y∗) < 0 and ∂yG(0, y∗) < 0. If

∂zH −
∂yH∂zG

∂yG

∣∣∣∣
(x,y,z)=(0,y∗,0)

< 0,

then (0, y∗, 0) is a locally asymptotic stable rest point of the extended dynamics (4.4). (The case
(x∗, 0) is similar, with only the role of x and y and the role of F and G, respectively, exchanged.)

The relationship between convergence stability and density dependent evolutionary stability is
partially investigated in Section 3.3 in Cressman and Garay (2003b). However, in their assumptions
there is an essential distinction to those of this article. To explain this distinction denote the
stationary density surface defined in Section 4.1.1 as being of type I. We define the stationary
density surface of type II as follows. Fix strategy p and strategy q such that q 6= p. Let (x∗, y∗)
be an interior equilibrium of dynamics (2.6) with respect to p, that is, F (x∗, y∗) = 0, G(x∗, y∗) = 0
and introduce some mutants of strategy q with density z(≥ 0) into this resident system. If the
equilibrium (x∗, y∗) is hyperbolic, then, by the implicit function theorem, there is a δ = δ(q) > 0
and a unique function

(
x∗q(z), y

∗
q (z)

)
on (−δ, δ) such that F

(
x∗q(z), y

∗
q (z), z

)
= G

(
x∗q(z), y

∗
q (z), z

)
= 0

for any z ∈ (−δ, δ) (Lemma 2 in Cressman and Garay, 2003b). This function is the stationary density
surface of type II with respect to q. Note that this function depends on q as emphasized by the
subscript. While there is a single stationary density surface of type I which is a function of q,
there is a continuum of stationary density surface of type II (namely one for every possible strategy
different from the resident strategy) and each of them is a function of z.

Cressman and Garay (2003b) fixed a mutant strategy q and considered the polymorphic population
of resident individuals following strategy p and mutant individuals following strategy q. Denote by
y the density of the residents and by z the density of the mutants. Depending on the densities the
mean strategy of the population is r = r(y, z). Our function Ĝ in the definition of convergence
stability (in Section 4.1.1) measures the fitness of a mutant individual following strategy q in the
monomorphic population of individuals following strategy r at the density pair (x∗(r), y∗(r)) where
(x∗(r), y∗(r)) is the stationary density surface of type I. Conversely, the function of Cressman and
Garay (2003b) measures the fitness of a mutant individual following strategy q in the polymorphic
population of resident individuals following strategy p and mutant individuals following strategy q
at the density triplet (x∗q(z), y

∗
q (z), z) where (x∗q(z), y

∗
q (z)) is the stationary density surface of type

II with respect to strategy q. So their function in convergence stability agrees with our function H
on the stationary density surface of type II with respect to strategy q. They showed that in this
case convergence stability is equivalent to the asymptotic stability of (x∗, y∗, 0) with respect to the
extended dynamics (4.4) when the strategy of invaders is q. But this does not prove the equivalence
of the convergence stability defined in Section 4.1.1 and density dependent evolutionary stability,
since our function in convergence stability is distinct from that of Cressman and Garay (2003b).
In addition, we would like (x∗, y∗, 0) to be stable with respect to the extended dynamics (4.4) with
respect to a continuum of q-s instead of a single q which is fixed in advance. So, the relationship of
convergence stability and the density dependent evolutionary stability is an open question for our
model.
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