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Abstract

In this paper, the authors present a method for controlling anonlinear system by using the ideas of
eigenvalues assignment. A time-varying approach to nonlinear exponential stability via eigenvalue placement
is studied based on an iteration technique that approaches anonlinear system by a sequence of linear time-
varying equations. The convergent behaviour of this methodis shown and applied to a practical nonlinear
example in order to illustrate these ideas.
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I. I NTRODUCTION

The aim of this paper is to design a feedback controller so that the original nonlinear system is
stabilized according to some requirements. The pole placement idea for linear time invariant systems
is extended to a general pole placement technique applicable to linear time-varying systems and with
the aid of an iteration technique presented in [Tomas-Rodriguez et al.(2003)], ultimately to nonlinear
systems in a general form. Several authors approached the pole placement idea for general nonlinear
systems in the past; Most of these techniques have in common the idea of linearizing the nonlinear
system about a countable set of equilibrium points and finding a single controller that will stabilize each
member of the finite countable set (see [Chow(1990)] for example). On the other hand, within the area
of nonlinear systems, and having its origins in the geometric control theory, exact feedback linerization
with pole placement is achieved by following a two-step design method as in [Isidori(1989)] and
[Sontag(1998)]. There have been as well attempts to obtain both feedback linearization and pole
placement objectives in just one step as in [Kazantzis et al.(2000)].

Pole placement for linear time invariant systems has been the object of diverse studies: Some of them
were based on Ackerman′s formula [Ackermanet al.(1972)], others approached the problem by using
a periodic output feedback ([Greschak et al.(1990)], [Aeyels et al.(1991)]) for second order systems
or even arbitrary order as in [Aeyels et al.(1992)].
The original pole placement method for linear time invariant SISO systems was first extended to
linear time-varying systems by [Silverman(1966)] using a canonical representation of the original
system. Since then, it had been several contributions by different authors to develop pole placement
techniques for linear time-varying systems (i.e. [Silverman(1966)], [Tuel(1967)], [Luenberger(1967)],
[Kailath(1980)], [Varga(1981)], [Miminis(1982)], [Petkov et al.(1985)], [Kautsky et al.(1985)], [Choi(1995)],
[Choi(1996)], [Choi(1998)] or [Bhattacharyya et al.(1982)]). More recently, Valaseket.al. initiated
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a series of publications related to the eigenvalue placement problem based on the extension of
Ackerman′s formula to linear time-varyingSISO and later to linear time invariant and linear time-
varying MIMO systems in which the eigenvalue placement was based on the equivalence of the
closed-loop original system via a Lyapunov transformationto a linear time invariant system with
poles at prescribed locations ([Valasek et al.(1995)], [Valasek et al.(1995b)], [Valasek et al.(1999)]).
It should be pointed out that an important limitation of the pole placement algorithm is the lack of
guaranteed tracking performance. This topic is treated in more general output feedback approaches.
A typical remedy for this involves the incorporation of theInternal Model Principleinto the control
law design ([Francis et al.(1976)] and [Bengtsson(1977)]) or the inclusion of integrators into the loop.
This issue will not be addressed in this paper, since pole placement design is the main interest here.

The contents of this article are based on the classical pole placement method for linear time invariant
systems and the iteration technique presented in [Tomas-Rodriguez et al.(2003)], [Tomas-Rodriguez et al.(2010)].
The objective is to develop a pole placement method for nonlinear systems of the form:

ẋ = f(x) = A(x)x(t) + B(x)u(t), x(0) = x0.

Replacing the nonlinear system above by a sequence of linear time-varying systems, a sequence of
feedback laws of the formu(i)(t) = K(i)(t)x(i)(t) can be generated: for each of them, the closed-loop
poles for theith linear time-varying system at each time of the time intervalare allocated to some
desired locationσ = (λ1d, · · ·λnd) where eachλi can be time-varying or constant. This iteration
technique is presented in Section II.
It is well-known that linear time-varying systems can be unstable despite having left half-plane poles;
that is, for linear time-varying systems, poles do not have the same stability meaning as in the time
invariant case, so the allocation of the pole in the left handside plane does not guarantee the stability
of the closed-loop system. In order to overcome this probleman approach to stability using Duhamel’s
principle is presented in Section III where conditions based on differentiability of the eigenvector′s
matrix are derived.
From the convergence properties of the sequence of linear time-varying solutions, [Tomas-Rodriguez et al.(2003)],
by choosing theK(i)(t) feedback gain corresponding to theith iteration and applying the limiting value
to the closed-loop nonlinear system, the pole placement andstability objectives are achieved for a wide
variety of nonlinear cases. This generalization to nonlinear systems is given in Section IV, followed by
a numerical example in Section V. Section VI contains the conclusions and further research guidelines.

II. I TERATION TECHNIQUE FORNONLINEAR SYSTEMS

This section recalls a recently introduced technique for nonlinear dynamical systems in which the
original nonlinear equation is replaced by a sequence of linear time-varying equations converging
in the space of continuous functions to the solution of the nonlinear system under a mild Lipschitz
condition [Tomas-Rodriguez et al.(2003)]. This method has also been used in optimal control theory
[Tomas-Rodriguez et al.(2005)], in the design of nonlinear observers [Navarro-Hernandez et al.(2003)]
or control of a super-tanker [Tayfun Cimen et al.(2004)] to cite a few. Any nonlinear system of the
form

ẋ = f(x) = A(x)x, x(0) = x0 ∈ Rn. (1)

whereA(x) is locally Lipschitz can be approximated by a sequence of linear time-varying equations:

ẋ(1) = A[x(0)]x(1), x(1)(0) = x(0)
...

ẋ(i) = A[x(i−1)]x(i), x(i)(0) = x(0)

(2)

for i ≥ 1. The solutions of this sequence of linear time-varying equations converge to the solution
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of the nonlinear system given in (1). The convergence of these sequence is stated in the following
theorem:
Suppose that the nonlinear equation (1) has a unique solution on the interval[0, τ ] denoted byx(t)

and assume thatA : Rn → Rn is locally Lipschitz. Then the sequence of functions definedin (2)
converges uniformly on[0, τ ] to the solutionx(t).

The convergence of Theorem II is proved in [Tomas-Rodriguez et al.(2003)] where global conver-
gence is extended to time intervalst ∈ [0,∞]. The application of this technique gives an accurate
representation of the nonlinear solution after a few iterations. Nonlinear systems satisfying the local
Lipschitz requirement can be now approached by common linear techniques. This is a very mild
assumption, and is already assumed for the uniqueness of solution in Theorem II.

III. E IGENVALUE ASSIGNMENT FORL INEAR TIME-VARYING SYSTEMS

A. General approach to pole placement

In this section the pole-placement method for linear time invariant cases will be extended to linear
time-varying systems of the form:

ẋ(t) = A(t)x(t) +B(t)u(t), x(0) = x0 (3)

wherex(t) ∈ Rn is the vector of the measurable states,u(t) ∈ Rm is the control signal andA(t),
B(t) are time-varying matrices of appropriate dimensions.
Given a set of desired stable eigenvalues,σ =

(
λ1d · · ·λnd

)
and a time interval[0, t], the aim is to

place the closed-loop eigenvalues of (3) at those desired points ∀t ∈ (0, t) by using a convenient state
feedback controlu(t) = −K(t)x(t) where the feedback gainK(t) is a time dependent function.

Given that the pair
[
A(t), B(t)

]
is controllable for allt ∈ [0, t], the eigenvalue placement theorem is

applied to (3):
det
∣∣∣λ · I − [A(t)− B(t)K(t)]

∣∣∣ = (λ− λ1d) · · · (λ− λnd) (4)

and by solving (4), a time-varying feedback gainK(t) can be determined so that the closed-loop form
of the system (3) will now be of the form

ẋ(t) = [A(t)−B(t)K(t)]x(t) = Ã(t)x(t) (5)

with stable eigenvalues on the left-half plane at
(
λ1 · · ·λn

)
=
(
λ1d · · ·λnd

)
. In order to guarantee

stability of the system (3), further issues should be taken into account as for linear time-varying
systems, the existence of negative closed-loop poles is nota sufficient condition for stability.
In the following sections, conditions for exponential stability of linear time-varying systems with
negative eigenvalues will be derived and these results willbe extended for the nonlinear case.

B. Sufficient stability conditions for linear time-varyingsystems

Having in mind that the matrix̃A(t) already has negative eigenvalues by (4), some other conditions
for stability of the closed-loop system (5) should be satisfied, these conditions can be summarized
in the following theorem: Given the open loop linear time-varying systemẋ = A(t)x(t) + B(t)u(t),
x0 = x(0), whose closed-loop matrix̃A(t) = A(t)−B(t)K(t) has designed left hand-plane eigenvalues
σ = (λ1d, . . . , λnd) via the feedback signalu(t) = −K(t)x(t) and assuming the following conditions
to be satisfied:

I/ λ1d is the eigenvalue of̃A(t) with the greatest real part,
II/ The matrix of eigenvectorsP (t) is differentiable,

III/ ||P−1(t)Ṗ (t)|| < β,



4

then forβ < Re(λ1d) the closed-loop system

ẋ = [A(t)− B(t)K(t)]x(t) = Ã(t)x(t)

is exponentially stable.
Proof: The system (5) can be solved over any time interval[0, t], by dividing the interval intoN
subintervals of lengthh, such thath = t/N → 0 whenN → ∞, using Duhamel′s principle,

x(t) = limh→0

(
eÃ[Nh]h · eÃ[(N−1)h]h . . . eÃ[h]h · I · x0

)
(6)

Applying the similarity transformeÃ(t) = P (t)eΛ(t)P−1(t) to (6) yields:

x(t) =
(
PNe

Λ[Nh]hP−1
N

)
·
(
PN−1e

Λ[(N−1)h]hP−1
N−1

)
· · ·

(
P1e

Λ[h]hP−1
1

)
· I · x0 (7)

whereΛ(t) ∈ Cnxn is a diagonal matrix of desired eigenvalues andP (t) ∈ Cnxn is the time-varying
matrix of the corresponding eigenvectors.
PN is P (t) at time t = Nh.
Λ(t) is considered to be time-varying to generalize the results of Theorem III-B. In this particular
article it is considered to be constant as the desired eigenvalues were taken to be constant.
The second assumption was thatP (t) was differentiable, therefore its Taylor expansion will beof the
form:

P (t+ h) = P (t) + h
dP (t)

dt
+

h2

2!

d2P (t)

dt
+ · · · (8)

Neglecting high order terms and noting thatdP (t)
dt

= Ṗ (t):

P (t+ h) = P (t) + hṖ (t) (9)

By inverting both sides of equation (9), post-multiplying byP (t) and, using the approximation
(1 + a)−1 ≈ 1− a+ · · · , we obtain:

P (t+ h)−1P (t) ≈
[
I − P (t)−1hṖ (t)

]
(10)

and,
P (t+ h)−1 · P (t) ≈ I + ǫ(h) (11)

whereǫ = o(h), so thatǫ → 0 ash → 0.

Thus, (7) can be written as:

x(t) = PN · eΛ[Nh]h · (I + ǫ) · eΛ[(N−1)h]h · (I + ǫ) · · · eΛ[h]hP1 · I · x0 (12)

Taking norms of the above expression, a bound on the norm ofx(t) can be estimated by,

||x(t)|| ≤ ||PN || · ||(1 + ǫ)||N · ||P1|| · ||e
(Λt)|| · ||x0|| (13)

and taking into account that
||eΛt|| ≤ eRe(−λmax)t

whereλmax is the eigenvalue of the matrixΛ with largest real part, then forλmax = λ1d

||x(t)|| ≤ ||PN || · ||(I + ǫ)||N · ||P1|| · e
−λ1dt · ||x0||. (14)

Now, it was shown in (11) thatǫ(h) = −hP−1(t)Ṗ (t), so

||I + ǫ|| = ||I − hP−1Ṗ (t)|| ≤ 1 + h||P−1(t)Ṗ (t)||
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By AssumptionIII in Theorem III-B, ||P−1(t)Ṗ (t)|| is bounded byβ, and ||I + ǫ(h)|| ≤ 1 + hβ.

Therefore,
||x(t)|| ≤ ||PN || · (1 + hβ)N · ||P1|| · e

−λ1dt · ||x0||

and

(1 + hβ)N =

(
1 +

βt

N

)N

→ eβt

so
||x(t)|| ≤ ||PN || · e

(β−λ1d)t · ||P1|| · ||x0||.

Analyzing the expression above for exponential stability,PN , P1, and x0 are constant values, so
et(β−λ1d) → 0 is required:

e(β−λ1d)t → 0, (β − λ1d) < 0 → β < |λ1d|. (15)

That is, for exponential stability, the closed-loop eigenvaluesλd should be chosen so that the greatest
of them λ1d satisfies (15) which represents a compromise between the upper bound of the rate of
change ofP (t) andλ1d.

C. A Necessary condition for the differentiability ofP (t)

In the previous section it was shown how the exponential stability properties of the closed-loop
system relied upon the satisfaction of conditionsI-III in Theorem III-B. These conditions were
sufficient conditions for stability. In this section a necessary condition for stability will be derived.
This condition is given in terms of a differential equation which places restrictions onΛ(t), K(t) and
P (t). The necessary condition for stability is stated as follows: The differentiability of the matrix of
eigenvectorsP (t) (andA(t), B(t), K(t) andΛ(t)) imply that the following equation is satisfied:
[
Ȧ(t)− Ḃ(t)K(t)−B(t)K̇(t)

]
= P (t)

[
Λ̇(t)− Λ(t)P−1(t)Ṗ (t) + P−1(t)Ṗ (t)Λ(t)

]
P−1(t), (16)

whereΛ(t) is the diagonal matrix of eigenvalues ofA(t) andK(t) is the feedback gain designed for
stable closed loop poles. Proof: Consider twonearby time pointst and t + h, and evaluate
the similarity transforms at those points keeping in mind that the matrixΛ(t) is a diagonal matrix
containing the eigenvalues of the matrix

[
A(t)− B(t)K(t)

]
= Ã(t):

P−1(t) [A(t)−B(t)K(t)]P (t) = Λ(t) (17)

P−1(t+ h) [A(t+ h)− B(t+ h)K(t+ h)]P (t+ h) = Λ(t+ h) (18)

as in (8) and the assumed differentiability ofA(t), B(t) andK(t). Then,

A(t+ h) = A(t) + hȦ(t) + · · ·

B(t+ h) = B(t) + hḂ(t) + · · ·

K(t+ h) = K(t) + hK̇(t) + · · ·

and by the differentiability ofP (t) and (10);

P−1(t+ h) = P−1(t)− hP−1(t)Ṗ (t)P−1(t)

it follows that (18) can be written as

Λ(t+ h) =
[
P−1(t)− hP−1(t)Ṗ (t)P−1(t)

]
·
[
A(t) + hȦ(t)−

(
B(t) + hḂ(t)

)
·
(
K(t) + hK̇(t)

)]
·

·
[
P (t) + hṖ (t)

]
= Λ(t) + hΛ̇(t).
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Expanding and rejecting high order terms yields:

Λ(t)+hΛ̇(t) =
[
P−1(t)−hP−1(t)Ṗ (t)P−1(t)

]
·
[
A(t)+hȦ(t)−B(t)K(t)−hḂ(t)K(t)−hBK̇(t)

]
·
[
P (t)+hṖ (t)

]

this is,

Λ(t) + hΛ̇(t) = P−1(t)
[
A(t)−B(t)K(t)

]
P (t) + P−1(t)h

[
A(t)−B(t)K(t)

]
Ṗ (t)

+P−1(t)h
[
Ȧ(t)− Ḃ(t)K(t)−B(t)K̇(t)

]
P (t)− hP−1(t)Ṗ (t)P−1(t)

[
A(t)−B(t)K(t)

]
P (t).

(19)
Taking into account thatP−1(t)

[
A(t)−B(t)K(t)

]
P (t) = Λ(t) andP−1(t)h

[
A(t)−B(t)K(t)

]
Ṗ (t) =

hΛ(t)P−1(t)Ṗ (t), now equation (19) can be written as:

Λ(t)+hΛ̇(t) = Λ(t)+hΛ(t)P−1(t)Ṗ (t)−hP−1(t)Ṗ (t)Λ(t)+hP−1(t)
[
Ȧ(t)−Ḃ(t)K(t)−B(t)K̇(t)

]
P (t).

Dividing by h on both sides a differential equation inΛ(t) is obtained:

Λ̇(t) = P−1(t)
[
Ȧ(t)− Ḃ(t)K(t)−B(t)K̇(t)

]
P (t) + Λ(t)P−1(t)Ṗ (t)− P−1(t)Ṗ (t)Λ(t) (20)

or

P−1(t)
[
Ȧ(t)− Ḃ(t)K(t)− B(t)K̇(t)

]
P (t) = Λ̇(t)− Λ(t)P−1(t)Ṗ (t) + P−1(t)Ṗ (t)Λ(t). (21)

Multiplying on the left byP−1(t) and on the right byP (t), then:
[
Ȧ(t)− Ḃ(t)K(t)−B(t)K̇(t)

]
= P (t)

[
Λ̇(t)− Λ(t)P−1(t)Ṗ (t) + P−1(t)Ṗ (t)Λ(t)

]
P−1(t). (22)

To summarize: IfP (t), A(t), B(t), K(t) andΛ(t) are differentiable (which we require in order to
prove Theorem III-B, then (22) must be satisfied. If it is not, then Theorem III-B does not strictly
apply. However, as shown in the following example,P (t) may not be differentiable at a discrete set
of points of the time intervalt ∈ [0, t] and the result will still hold.

D. Example

Given the following linear time-varying open loop system:

ẋ(t) =


 ecos(t) log

[
1

1+t2

]

t2 t


x(t) +

(
1

1

)
u(t),

with initial conditionsx(0) = [0.5, 0.5]T . The aim is to set the closed-loop poles atσ = (−8,−6).
When the pole placement method is applied, it can be seen in Figure 1.a that despite the poles being
successfully allocated at the designed location, the shapeof the response shows a jump along the
time interval and so does the designed controlu(t) = −K(t)x(t), (Figure 1.b). Plotting the profile
of ǫ(h), it can be seen it reflects the two discontinuities at timest = 1.1 secs andt = 2.68 secs,
where the condition for differentiability ofP (t) fails (Figure 2.a). In Figure 2.b an estimate of the
differentiability of P (t) is shown, it is represented by the quantityP (t+h)−P (t)

h
calculated at each step

h of the time interval. As expected it shows two discontinuities along the interval[0, tf ], the first one
happening att = 1.1 sec and the second one att = 2.68 sec. On the other hand, if now the location
of the poles is shifted to be i.e.σ = (−12,−10), Figures 3.a and 3.b show the components of the
response and the control law for this choice of left hand sidepoles.
This time it can be seen how the discontinuities in the stableresponses and the control after the pole
placement are smoother than in the previous case. The plot ofepsilonǫ(h) in Figure 4 clearly shows
two discontinuities too, verifying the existence of the relation betweenP (t), Λ(t), A(t), B(t) and
K(t) as indicated in (22). As the desired poles have changed, so did Λ(t) and consequentlyK(t) and
P (t) and its differentiability.
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Fig. 1: (a) Components of the responsex1(t), x2(t). The shape of the response shows a jump att = 1.1
seconds. (b) Control signalu(t) = −Kx(t) for the desired set of chosen polesσ = (−8,−6). The
shape ofu(t) shows a jump att = 1.1 seconds

IV. GENERALIZATION TO NONLINEAR SYSTEMS

In this section an approach to the problem of pole placement when the system under consideration
is nonlinear is presented. A nonlinear system of the form:

ẋ = A(x)x(t) + B(x)u(t), x(0) = x0 (23)

whereA(x) ∈ Rnxn, B(x) ∈ Rmxn, u(t) is the control signal andx(0) = x0 is the vector containing
the given initial conditions. (23) can be written as a sequence of linear time-varying systems:

ẋ(1) = A(x0)x
(1)(t) + B(x0)u

(1)(t), x(1)(0) = x0

... (24)

ẋ(i) = A(x(i−1)(t))x(i)(t) + B(x(i−1)(t))u(i)(t), x(i)(0) = x0

Applying the methodology presented in Section III, for somegiven choice of closed-loop poles, i.e.
σ = (λ1d, · · ·λnd), a sequence of feedback control laws of the formu(i)(t) = −K(i)(t)x(i)(t) is
obtained at each iterationi, eachK(i) is the feedback gain obtained to ensure stability on each of the
iterates closed-loop forms:

ẋ(1) = [A(x0(t))− B(x0(t))K
(1)(t)]x(1)(t), x(1)(0) = x0

... (25)

ẋ(i) = [A(x(i−1)(t))− B(x(i−1)(t))K(i)(t)]x(i)(t), x(i)(0) = x0

Now, the eigenvalue placement theorem can be applied to eachof these systems (25) being the set of
desired polesσ = (λ1d, · · ·λnd) chosen to be the same for each iteration:

det[λ · I − A(x0) + B(x0)K
(1)(t)] = (λ− λ1d) · · · (λ− λnd)

... (26)
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Fig. 2: (a) ǫ(h) shows discontinuities at timest = 1.1 seconds andt = 2.68 seconds where the
condition for differentiability ofP (t) fails. (b) Differentiability of P (t) is lost at the same times
whereǫ(h) is discontinuous.

det[λ · I − A(x(i−1)(t)) + B(x(i−1)(t))K(i)(t)] = (λ− λ1d) · · · (λ− λnd)

Therefore, each of these linear time-varying closed loop systems (25) will be exponentially stable
provided the conditions from Section III-C are satisfied.
After a finite number of iterations, the solutionx(i)(t) converges to the nonlinear solutionx(t). Then,
the last iterated feedback gainK(i)(t) that stabilises the”ith” system, can be applied to the original
nonlinear system in order to satisfy the stability requirements for this nonlinear closed-loop:

ẋ = [A(x(t))−B(x(t))K(i)(t)]x(t), x(0) = x0

provided that the desired eigenvaluesσ = (λ1, · · ·λn) are chosen to be far on the left-half plane as
stated in Section III-C.

The exponential stability of the nonlinear system achievedas indicated here can be summarized as
follows: Given a nonlinear system of the form (23) where the matricesA(x) andB(x) are Lipschitz
and the pair(A,B) is controllable∀x(t), ∀t ∈ [0, T ], there exists a feedback controlu(t) given by:

limi→∞u(i)(t) = limi→∞K(i)(t)x(t) → u(t)

whereK(i)(t) is Lipschitz, such that the solutionx(t) of the nonlinear system is exponentially stable in
[0, T ]. Proof: We need to assume thatK(i)(t) satisfies the Lipschitz condition at each iteration,
(differentiability is a necessary condition for exponential stability of the linear time-varying systems
on the sequence) and also thatA(x) and B(x) are Lipschitz, then, the iteration technique can be
applied. By applying the pole placement algorithm, an algebraic equation is set and solved at each
iteration in order to obtain the elements of the corresponding feedback gain matrixK(i)(t);

λn + Γ
(i)
n−1λ

n−1 + Γ
(i)
n−2λ

n−2 + · · ·+ Γ
(i)
1 λ1 + λ0 = (λ− λ1)(λ− λ2) · · · (λ− λn) (27)

The coefficientsΓ(i)
j are a linear combination of the linear elements ofK(i)(t) =

[
k
(i)
1 (t), . . . , k(i)

n (t)
]
.
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Fig. 3: (a) Components of the responsex1(t), x2(t). The shape of the response shows a smoother jump
than in the previous case. (b) Controlu(t) = −Kx(t) when the poles of the close loop are shifted to
σ = (−12,−10).
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Fig. 4: ǫ(h) shows two discontinuities. This verifies the existence of the relation betweenP (t), Λ(t),
A(t), B(t) andK(t) as indicated in (22)

In order to solve this, identification of parameters needs tobe performed at this stage, simply by
equating the coefficients on both sides of equation (27):

Γ
(i)
n−1 = α

(i)
n−1 + β

(i)
n−1 · k

(i)
n−1(t) = φn−1(λ1, · · · , λn)

Γ
(i)
n−2 = α

(i)
n−2 + β

(i)
n−2 · k

(i)
n−2(t) = φn−2(λ1, · · · , λn)
...

Γ
(i)
1 = α

(i)
1 + β

(i)
1 · k

(i)
1 (t) = φ1(λ1, · · · , λn)

(28)

Therefore, the elements ofK(i)(t) of the feedback gain can be obtained by solving each of the
equations in (28):

k
(i)
n−1(t) =

φ
(i)
n−1(λ1,··· ,λn)−α

(i)
n−1

β
(i)
n−1

, · · · · · · , k
(i)
1 (t) =

φ
(i)
1 (λ1,··· ,λn)−α

(i)
1

β
(i)
1

(29)
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The functionsα(i) andβ(i) at each iteration depend on those elements ofA(x(i−1)(t)) andB(x(i−1)(t))
which are nonzero due to the pole placement, so thatK(i)(t) is a Lipschitz function. Therefore,
provided thatK(i)(t), A(x) andB(x) are Lipschitz functions, then by Theorem II, the sequence of
exponentially stable solutions of (25) converges to the exponentially stable solution of the original
nonlinear problem.

V. A PPLICATION TO F-8 CRUSSADERA IRCRAFT

In this section this pole placement technique will be applied to the nonlinear equations of the F-8
aircraft in a level trim, unaccelerated flight at Mach=0.85 and altitude of30.000 ft (9000m). The
nonlinear equations are taken from ([William et al.(1977)]) and represent the dynamics of such an
aircraft:

ẋ1 = −0.877x1 + 0.47x2
1 + 3.846x3

1 − 0.019x2
2 − x3x

2
1 − 0.088x3x1 − 0.215u1(t)

ẋ2 = x3

ẋ3 = −4.208x1 − 0.47x2
1 − 3.564x3

1 − 0.396x3 − 20.967u3(t)

(30)

wherex1(t) is the angle of attack (rad),x2(t) the pitch angle (rad),x3(t) the pitch rate (rad s−1) and
u(t) = [u1(t), u2(t), u3(t)] is the control input vector.

The control objective in here is to place the desired poles ofthis nonlinear system on the left hand side
of the complex plane by applying simultaneously the iteration technique and the placement algorithm
introduced in Section3 for linear time-varying plants.
The set of desired poles isσ =

(
− 10,−1.7108,−0.5129

)
. This choice of poles corresponds to the

closed-loop poles of the linearized and stabilized system when the controlµ = −0.053x1 + 0.5x2 +
0.521x3 is applied (see [William et al.(1977)] for details).

The first step was to write in Matlab equation (30) in the formẋ(t) = A(x)x(t) + B(x)u(t), this is:




ẋ1

ẋ2

ẋ3


 =




−0.877 + 0.47x1 + 3.846x2
1 −0.019x2 −x2

1 − 0.088x1

0 0 1

−4.208− 0.47x1 − 3.564x2
1 0 −0.396







x1

x2

x3


+




−0.215

0

−20.967


u(t)

(31)
and generate a sequence of30 linear time-varying systems:

ẋ(1)(t) =




α
(1)
11 α

(1)
12 α

(1)
13

0 0 1

α
(1)
31 0 −0.396


x(1)(t) + B · u(1)(t)

...

ẋ(i)(t) =




α
(i)
11 α

(i)
12 α

(i)
13

0 0 1

α
(i)
31 0 −0.396


x(i)(t) + B · u(i)(t)
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Fig. 5: (a) Closed Loop response. Statesx1(t), x2(t) andx3(t). (b) Control lawu(t).

with

α
(1)
11 = −0.877 + 0.47x1(0) + 3.846x2

1(0), α
(1)
12 = −0.019x2,

α
(1)
13 = −x2

1(0)− 0.088x1(0), α
(1)
31 = −4.208− 0.47x1(0)− 3.564x2

1(0),

α
(i)
11 = −0.877 + 0.47x

(i−1)
1 + 3.846

(
x
(i−1)
1

)2

, α
(i)
12 = −0.019x

(i−1)
2 ,

α
(i)
13 = −

(
x
(i−1)
1

)2

− 0.088x
(i−1)
1 , α

(i)
31 = −4.208− 0.47x

(i−1)
1 − 3.564

(
x
(i−1)
1

)2

,

B = [−0.215, 0,−20.967]T

where the initial conditions arex(0) = [x1(0), x2(0), x3(0)] = [0.5253, 0, 0]T . At each iteration”i” a
feedback lawu(i)(t) = −K(i)(t)x(i)(t) is designed following the specifications: this is, the closed-loop
poles at each iteration should be allocated atλd =

(
− 10,−1.7108,−0.5129

)
,

ẋ(i)(t) = A(x(i−1)(t))x(i)(t)−B(x(i−1)(t))K(i)(t)x(i)(t) = Ã(x(i−1)(t))x(i)(t)

whereÃ(x(i−1)(t)) is the closed-loop matrix for theith iteration. Using Ackerman′s formula:

det
[
λ · I − Ã(x(i−1)(t))

]
=
(
λ− λ1

)(
λ− λ2

)(
λ− λ3

)
, (32)

in this way, a feedback matrixK(i−1)(t) at each iteration is obtained. The simulations for each iteration
were carried outtf = 15 sec with a time step ofh = 0.01. After 30 iterations, the sequence of linear
time-varying systems converges to the nonlinear system; taking the30th feedback control and applying
this to the nonlinear system,

ẋ(t) = A(x)x(t)−B(x)K(30)(t)x(t)

it can be seen how the states of the nonlinear system convergeto zero, Figure 5.a. The control law
applied to the nonlinear system is shown in Figure 5.b, it presents an isolated discontinuity in the
differentiability of the matrix of eigenvaluesP (t); this does not affect the states as shown in Figure
5.a.
It is shown how the pitch angle variable,x2(t) and the pitch ratex3(t) go beyondπ radians, which
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is a non realistic scenario. In spite of this, both states reach exponential stability within the working
time interval, this is the main purpose of this numerical example, to demonstrate convergence of the
presented method and exponential stability achievement. The scenario in spite of being represented
by a highly nonlinear equation is not intended to be a realistic one, in fact, the full set of equations of
motion of a fighter aircraft is not3-dimensional like in this case. Issues such as robustness, adequacy
of the methodology, minimization of overshoot maximum value...etc, have not being dealt with as
they are not under study in this work. All these issues are currently investigated by the authors and
the findings will be presented in a future contribution.

VI. CONCLUSIONS

In this article a pole-placement algorithm for nonlinear systems has been presented. The method is
based on the application of an iteration technique that replaces the nonlinear system by a sequence
of linear time-varying systems.
Once this sequence of linear time-varying systems has been obtained, a standard pole-placement
procedure is applied for each of the linear time-varying systems by dividing the interval inN steps
of length h and applying Duhamel′s principle. It has been shown how this method alone does not
guarantee stability for linear time-varying systems and therefore additional requirements for stability
were developed in Section 3:
If the matricesA(t), B(t), P (t) andK(t) are differentiable, then, writing equation (22) in the form:

Λ̇ = P−1(t)
(
Ȧ(t)− Ḃ(t)K(t)−B(t)K̇(t)

)
P (t) + Λ(t)P−1(t)Ṗ (t)− P−1(t)Ṗ (t)Λ(t) (33)

gives a coupled equation relatingP (t), K(t) andΛ(t) which states that these are not independent.
Hence, in general, it may not be possible (in some cases) to chooseΛ constant. Thus, equation (33)
is an important condition for the exponential stability of the already pole placed linear time-varying
system.
The restriction it places onP (t), K(t) andΛ(t) at the moment are the object of further research.
These results were extended to nonlinear systems by the convergence of the iteration technique, thus
the feedback gain designed for the last of the linear time-varying iterated systems is applied to the
nonlinear system and achieving in this way exponential stability. Due to the accurate approach of the
iteration technique to the original nonlinear plant, this pole placement method results in a more robust
method than those relying on the linearization of the original system, at least the uncertainties of the
unmodelled original dynamics do not exist in this case.
Some numerical examples were presented showing how the technique works and showing that, even
in the case where differentiability ofP (t) is not satisfied at every point of the time interval[0, t], the
nonlinear system can be stabilized using this technique.
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