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Abstract

In this paper, the authors present a method for controllingoalinear system by using the ideas of
eigenvalues assignment. A time-varying approach to nealirexponential stability via eigenvalue placement
is studied based on an iteration technique that approacimeslaear system by a sequence of linear time-
varying equations. The convergent behaviour of this metisoshown and applied to a practical nonlinear
example in order to illustrate these ideas.
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. INTRODUCTION

The aim of this paper is to design a feedback controller so tthe original nonlinear system is
stabilized according to some requirements. The pole plaoéidea for linear time invariant systems
is extended to a general pole placement technique apmi¢adinear time-varying systems and with
the aid of an iteration technique presented in [Tomas-Radaget al.(2003)], ultimately to nonlinear
systems in a general form. Several authors approached tagla@ement idea for general nonlinear
systems in the past; Most of these techniques have in comh®idéa of linearizing the nonlinear
system about a countable set of equilibrium points and fmeisingle controller that will stabilize each
member of the finite countable set (see [Chow(1990)] for exam@n the other hand, within the area
of nonlinear systems, and having its origins in the geomewntrol theory, exact feedback linerization
with pole placement is achieved by following a two-step desinethod as in [Isidori(1989)] and
[Sontag(1998)]. There have been as well attempts to obtaih feedback linearization and pole
placement objectives in just one step as in [Kazantzis £040)].

Pole placement for linear time invariant systems has beembiect of diverse studies: Some of them
were based on Ackermanformula [Ackermanet al.(1972)], others approached tlodlpm by using

a periodic output feedback ([Greschak et al.(1990)], [A®y al.(1991)]) for second order systems

or even arbitrary order as in [Aeyels et al.(1992)].

The original pole placement method for linear time invariaid SO systems was first extended to
linear time-varying systems by [Silverman(1966)] using ananical representation of the original
system. Since then, it had been several contributions bgrdift authors to develop pole placement
techniques for linear time-varying systems (i.e. [Silvan{l966)], [Tuel(1967)], [Luenberger(1967)],
[Kailath(1980)], [Varga(1981)], [Miminis(1982)], [Petk et al.(1985)], [Kautsky et al.(1985)], [Choi(1995)],
[Choi(1996)], [Choi(1998)] or [Bhattacharyya et al.(1982)More recently, Valaselet.al. initiated
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a series of publications related to the eigenvalue placemesblem based on the extension of
Ackermars formula to linear time-varying /SO and later to linear time invariant and linear time-
varying MIMO systems in which the eigenvalue placement was based on theakpce of the
closed-loop original system via a Lyapunov transformatiora linear time invariant system with
poles at prescribed locations ([Valasek et al.(1995)]ld%ek et al.(1995b)], [Valasek et al.(1999)]).
It should be pointed out that an important limitation of th@lepplacement algorithm is the lack of
guaranteed tracking performance. This topic is treated anengeneral output feedback approaches.
A typical remedy for this involves the incorporation of threernal Model Principleinto the control
law design ([Francis et al.(1976)] and [Bengtsson(197®}he inclusion of integrators into the loop.
This issue will not be addressed in this paper, since poleepi@nt design is the main interest here.

The contents of this article are based on the classical gateement method for linear time invariant
systems and the iteration technique presented in [TomasiRied et al.(2003)], [Tomas-Rodriguez et al.(201C
The objective is to develop a pole placement method for neali systems of the form:

T = f(z) = A(z)z(t) + B(x)u(t), z(0) = xo.

Replacing the nonlinear system above by a sequence of limearvarying systems, a sequence of
feedback laws of the form® (t) = K®(¢)2()(¢) can be generated: for each of them, the closed-loop
poles for thei'* linear time-varying system at each time of the time interad allocated to some
desired locations = (A4, -+ A\yq) Where each\; can be time-varying or constant. This iteration
technique is presented in Section II.

It is well-known that linear time-varying systems can betahke despite having left half-plane poles;
that is, for linear time-varying systems, poles do not hdae game stability meaning as in the time
invariant case, so the allocation of the pole in the left hsidé plane does not guarantee the stability
of the closed-loop system. In order to overcome this proldemapproach to stability using Duhamel’s
principle is presented in Section Il where conditions lohea differentiability of the eigenvecter
matrix are derived.

From the convergence properties of the sequence of limaariarying solutions, [Tomas-Rodriguez et al.(200:
by choosing the{ () (¢) feedback gain corresponding to tHeiteration and applying the limiting value

to the closed-loop nonlinear system, the pole placemenstatility objectives are achieved for a wide
variety of nonlinear cases. This generalization to nomlirsystems is given in Section 1V, followed by
a numerical example in Section V. Section VI contains thechmions and further research guidelines.

II. I TERATION TECHNIQUE FORNONLINEAR SYSTEMS

This section recalls a recently introduced technique farlinear dynamical systems in which the
original nonlinear equation is replaced by a sequence @alirtime-varying equations converging
in the space of continuous functions to the solution of thelinear system under a mild Lipschitz
condition [Tomas-Rodriguez et al.(2003)]. This method Has &een used in optimal control theory
[Tomas-Rodriguez et al.(2005)], in the design of nonlindesesvers [Navarro-Hernandez et al.(2003)]
or control of a super-tanker [Tayfun Cimen et al.(2004)] tee @ few. Any nonlinear system of the
form

= f(z) = A(zx)x, x(0)=x€ R". (1)

where A(x) is locally Lipschitz can be approximated by a sequence eflirtime-varying equations:
i = Alp(0)]aV,  20(0) = 2(0)
. (2)
7@ = A[lz0=V]2@ 20(0) = 2(0)

for + > 1. The solutions of this sequence of linear time-varying ¢éigua converge to the solution



of the nonlinear system given in (1). The convergence ofetrejuence is stated in the following
theorem:

Suppose that the nonlinear equation (1) has a unique solatiathe interval0, 7] denoted byz(t)
and assume thatl : " — R™ is locally Lipschitz. Then the sequence of functions defired2)
converges uniformly on0, 7] to the solutionz(t).

The convergence of Theorem 1l is proved in [Tomas-Rodriguedd.€2003)] where global conver-
gence is extended to time intervalss [0, c0]. The application of this technique gives an accurate
representation of the nonlinear solution after a few iterst Nonlinear systems satisfying the local
Lipschitz requirement can be now approached by common rlitezhniques. This is a very mild
assumption, and is already assumed for the uniquenessudiosoin Theorem II.

I1l. EIGENVALUE ASSIGNMENT FORLINEAR TIME-VARYING SYSTEMS
A. General approach to pole placement

In this section the pole-placement method for linear timaiiant cases will be extended to linear
time-varying systems of the form:

#(t) = AD)a(t) + Bt)u(t), 2(0) =g (3)

wherex(t) € R" is the vector of the measurable state§,) € R™ is the control signal andi(¢),
B(t) are time-varying matrices of appropriate dimensions.

Given a set of desired stable eigenvalues; (/\M---/\nd> and a time interval0, t|, the aim is to
place the closed-loop eigenvalues of (3) at those desiredsiet € (0,t) by using a convenient state
feedback controk(t) = — K (t)x(t) where the feedback gaiR'(¢) is a time dependent function.

Given that the pail{A(t),B(t)} is controllable for allt € [0,¢], the eigenvalue placement theorem is
applied to (3):
det|A- T —[A(t) = BOK®)]| = (A= Awa) -+ (A = Ana) ()

and by solving (4), a time-varying feedback gditit) can be determined so that the closed-loop form
of the system (3) will now be of the form

i(t) = [A(t) - BOK(1)]x(t) = A(t)z(t) (5)

with stable eigenvalues on the left-half plane(at --- \,) = (Ag- - \.q). In Oorder to guarantee
stability of the system (3), further issues should be tak#n account as for linear time-varying
systems, the existence of negative closed-loop poles is soifficient condition for stability.

In the following sections, conditions for exponential sli&p of linear time-varying systems with
negative eigenvalues will be derived and these resultsbeilextended for the nonlinear case.

B. Sufficient stability conditions for linear time-varyisgstems

Having in mind that the matrix?l(t) already has negative eigenvalues by (4), some other consliti
for stability of the closed-loop system (5) should be sa&sfithese conditions can be summarized
in the following theorem: Given the open loop linear timeywag systemi = A(t)x(t) + B(t)u(t),
zo = x(0), whose closed-loop matrik(t) = A(t)—B(t) K (t) has designed left hand-plane eigenvalues
o= (A, -- -, \a) via the feedback signal(t) = —K(t)z(t) and assuming the following conditions
to be satisfied:

I/ M4 is the eigenvalue ofi(t) with the greatest real part,

lI/' The matrix of eigenvectord>(¢) is differentiable,
W/ [P~ () P(1)]] < B,



then for 3 < Re(A14) the closed-loop system
i = [A(t) - BOK (1) «(t) = A(t)z(t)

is exponentially stable.
Proof: The system (5) can be solved over any time intef@at], by dividing the interval intoV
subintervals of lengtl, such thath =¢/N — 0 when N — oo, using Duhamé$ principle,

x(t) = limp_o (eA[Nh]h QAN=DhA AR T £E0> (6)

Applying the similarity transformeA® = P(¢)eA® P=1(¢) to (6) yields:
2(t) = (Pue®™Hpgt) - (Py_ AODLpSL Y (AP L g 7)

whereA(t) € C™" is a diagonal matrix of desired eigenvalues d@nd) € C™" is the time-varying
matrix of the corresponding eigenvectors.

Py is P(t) at timet = Nh.

A(t) is considered to be time-varying to generalize the resultEheorem I11-B. In this particular
article it is considered to be constant as the desired esdedsy were taken to be constant.

The second assumption was thatt) was differentiable, therefore its Taylor expansion will dfethe

form:
dP(t) h*d*P(t)

P(t+h)= P(t)+ hT + ST (8)
Neglecting high order terms and noting tlﬁ;l;i) = P(t):
P(t+h) = P(t) + hP(t) 9)

By inverting both sides of equation (9), post-multiplying B(¢) and, using the approximation
(1+a)'~1—a+---, we obtain:

P(t+h)"'P(t) ~ [I = P(t)"'hP(t)] (10)

and,
P(t+h)"'-P(t) =~ I+ eh) (11)

wheree = o(h), so thate — 0 ash — 0.

Thus, (7) can be written as:
z(t) = Py - AN (I+e)- AMN=Dh]R (I4€)--- AP LT g (12)

Taking norms of the above expression, a bound on the norm{tgfcan be estimated by,
e @I < 1Pyl - 11+ (12 - e - ol (13)

and taking into account that

HeAtH S eRe(_Amag:)t

where \,,... is the eigenvalue of the matrix with largest real part, then foX,,.. = A4

z@[] < [1Px]] - [+ [N - [|Pr]] - e - [z (14)
Now, it was shown in (11) that(h) = —hP~'(t)P(t), SO

1T +el| = |l =P P@)|| < 1+ A|[P7H (1) P()]



By Assumptionlll in Theorem IlI-B, [|P~'(¢)P(t)|| is bounded bys, and||I + e(h)|| < 1 + hp.

Therefore,
z(@)]] < [Pyl - (L+hB)N - ||Po] - €719 - |||
and N
(1+h3)N = (1 + /8t> — el
N
SO

le(@)]] < (1P| - @12 [Py - [|o |-

Analyzing the expression above for exponential stabilf®y;, P;, and x, are constant values, so
etf=Ma) 5 0 is required:

Bt 500 (B—Ag) <0— B < | Al (15)

That is, for exponential stability, the closed-loop eigdoes),; should be chosen so that the greatest
of them )\, satisfies (15) which represents a compromise between ther ijmund of the rate of
change ofP(t) and \,. [ ]

C. A Necessary condition for the differentiability Bft)

In the previous section it was shown how the exponentialilgtalproperties of the closed-loop
system relied upon the satisfaction of conditiorl in Theorem I1lI-B. These conditions were
sufficient conditions for stability. In this section a nes&y condition for stability will be derived.
This condition is given in terms of a differential equatiohieh places restrictions of(t), K (¢) and
P(t). The necessary condition for stability is stated as foltowée differentiability of the matrix of
eigenvectorsP(t) (and A(t), B(t), K(t) andA(t)) imply that the following equation is satisfied:

[A(t) = B)K(t) = BO)K ()] = P(H)[A(t) = A®)PTL () P(t) + P () PA®)| P (1), (16)
whereA(¢) is the diagonal matrix of eigenvalues dft) and K (¢) is the feedback gain designed for
stable closed loop poles. Proof: Consider twonearbytime pointst andt¢ + h, and evaluate
the similarity transforms at those points keeping in mindttthe matrixA(¢) is a diagonal matrix
containing the eigenvalues of the matl{ix(t) - B(t)K(t)} = A(t):

PH ) [A() — B()K(1)] P(t) = A(t) (17)
P Yt+h)[A(t+h) — Bt +h)K(t+ h)] P(t + h) = A(t + h) (18)
as in (8) and the assumed differentiability 4ft), B(¢) and K (¢). Then,
A(t 4 h) = A(t) + hA(t) + - -
B(t+h) = B(t) + hB(t) + - --
Kt+h)=K(@)+hK({t)+---
and by the differentiability ofP(¢) and (10);
P7Y(t+ h) = P7Ht) — hP~Y(t)P(t)P(t)
it follows that (18) can be written as
A(t+h) = [P7Y(t) = hPH &) P(t)PL(t)] - [A(t) + hA(t) — (B(t) + hB(t)) - (K () + hK(2))]-
[P(t) + hP(t)] = A(t) + hA(D).



Expanding and rejecting high order terms yields:
A()+hA(E) = [P () =hP () P(t) P (1) |- [A(t)+hA(t)— B(t) K ()~ hB(t) K ()~ hBK (t)|- [P(t)+hP(1)]
this is,

A(t) + hA(t) = P71(t) [A(t) — BH)K(1)| P(t +P10[Aﬂ B(t)K ()| P(t)

+P L (Oh[A(t) - Bt)K(t) — B)K ()| P(t) — hP~(t) upluﬁut B(t)K ﬂ (t).

(19)

Taking into account thaP~(t) [A(t) — B(t)K ()| P(t) = A(t) and P~1()h[ A(t) - B(t) K (t)| P(t) =
hA(t)P~1(t)P(t), now equation (19) can be written as:
A)+hA(t) = A#)+hAE) P~ (t)P(t)—hP~ (t)P(t)A(t)+hP~\(t) [A(t)—B(t)K (t)-B(t)K (t)}P(t).
Dividing by h on both sides a differential equation i{¢) is obtained:

At) = P7(t) [A(t) — B(t)K (t) — B(t)K(t)]P(t) +A({t)P L (t)P(t) — P~ Y (t)P(t)A(t)  (20)

P(t) [A(t) — B()K(t) — B(t)K(t)}P(t) = A(t) = A@)PL(t)P(t) + P~ (t)P(H)A(t).  (21)

Multiplying on the left by P~1(¢) and on the right byP(t), then:
[A(t) = Bt)K () — BO)K ()] = P(t)[A(t) = A@)P-L()P(t) + PTH ) POA®)| PA(1).  (22)

|
To summarize: IfP(t), A(t), B(t), K(t) and A(t) are differentiable (which we require in order to
prove Theorem IlI-B, then (22) must be satisfied. If it is ndtert Theorem I11-B does not strictly
apply. However, as shown in the following exampl&t) may not be differentiable at a discrete set
of points of the time intervat € [0, ¢] and the result will still hold.

D. Example
Given the following linear time-varying open loop system:

ﬂw:(em@lwhﬂﬁ>ﬂo+<i>mm

2 t

with initial conditionsz(0) = [0.5,0.5]7 . The aim is to set the closed-loop polescat (-8, —6).
When the pole placement method is applied, it can be seen urd-iya that despite the poles being
successfully allocated at the designed location, the slodgbe response shows a jump along the
time interval and so does the designed contr@l) = —K (¢)z(t), (Figure 1.b). Plotting the profile
of ¢(h), it can be seen it reflects the two discontinuities at tirhes 1.1 secs and = 2.68 secs,
where the condition for differentiability of(¢) fails (Figure 2.a). In Figure 2.b an estimate of the
differentiability of P(t) is shown, it is represented by the quantt§*")="") calculated at each step
h of the time interval. As expected it shows two discontirestalong the intervdD, ], the first one
happening at = 1.1 sec and the second onetat 2.68 sec. On the other hand, if now the location
of the poles is shifted to be i.ec = (—12,—10), Figures 3.a and 3.b show the components of the
response and the control law for this choice of left hand pidles.

This time it can be seen how the discontinuities in the stadd@onses and the control after the pole
placement are smoother than in the previous case. The pkpone(h) in Figure 4 clearly shows
two discontinuities too, verifying the existence of theaten betweenP(t), A(t), A(t), B(t) and
K(t) as indicated in (22). As the desired poles have changed,dsa(dj and consequently (¢) and
P(t) and its differentiability.
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Fig. 1: (a) Components of the responsét), z»(t). The shape of the response shows a jump-atl.1
seconds. (b) Control signal(t) = —Kz(t) for the desired set of chosen poles= (—8,—6). The
shape ofu(t) shows a jump at = 1.1 seconds

IV. GENERALIZATION TO NONLINEAR SYSTEMS

In this section an approach to the problem of pole placemé&eivthe system under consideration
is nonlinear is presented. A nonlinear system of the form:

&= A(z)z(t) + B(x)u(t), z(0)=xg (23)

where A(z) € R™™, B(x) € R™", u(t) is the control signal and(0) = z, is the vector containing
the given initial conditions. (23) can be written as a segeeof linear time-varying systems:

i = A(zg)zW(t) + B(zo)uV(t), zM(0) =
(24)
#0 = A ()00 () + BE OO, 29(0) = x

Applying the methodology presented in Section lll, for sogixen choice of closed-loop poles, i.e.
o = (M, -~ ), @ Sequence of feedback control laws of the fauffi(t) = —K©(t)z"(t) is
obtained at each iteratioi each/K ) is the feedback gain obtained to ensure stability on eacheof t
iterates closed-loop forms:

2O = [A(zo(t)) — Blzo®) KO )2V (1), 2@(0) = 2o
(25)
# = [A@0(1) = B Y@0)) KV (@)W (), 29(0) = 2

Now, the eigenvalue placement theorem can be applied toaabtiese systems (25) being the set of
desired poles = (A4, - - A\q) Chosen to be the same for each iteration:

det[\- I — A(zo) + B(xo) KV )] = (A = Aa) - - (A = Ana)

(26)
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Fig. 2: (a) e(h) shows discontinuities at times= 1.1 seconds and = 2.68 seconds where the
condition for differentiability of P(¢) fails. (b) Differentiability of P(¢) is lost at the same times
wheree(h) is discontinuous.

det]\- T — Az V() + B Y#)KD ()] = (A= Aa) - (A = Ana)

Therefore, each of these linear time-varying closed loogtesys (25) will be exponentially stable
provided the conditions from Section 11I-C are satisfied.

After a finite number of iterations, the solutiof)(t) converges to the nonlinear solutiait). Then,
the last iterated feedback gaii()(¢) that stabilises thé&i”*” system, can be applied to the original
nonlinear system in order to satisfy the stability requieats for this nonlinear closed-loop:

@ = [A(2(1)) = Ba(t) KV (0)]x(t),  (0) = w

provided that the desired eigenvalues= (\q,--- \,) are chosen to be far on the left-half plane as
stated in Section IlI-C.

The exponential stability of the nonlinear system achieasdndicated here can be summarized as
follows: Given a nonlinear system of the form (23) where thetnmesA(z) and B(z) are Lipschitz
and the pair(A, B) is controllableVz(t), vt € [0,T], there exists a feedback contralt) given by:

iMoot (1) = limi_oo KD (1) z(t) — u(t)

where K () () is Lipschitz, such that the solutiar(t) of the nonlinear system is exponentially stable in
[0,T7. Proof: We need to assume that(”)(t) satisfies the Lipschitz condition at each iteration,
(differentiability is a necessary condition for exponahstability of the linear time-varying systems
on the sequence) and also th&tr) and B(z) are Lipschitz, then, the iteration technique can be
applied. By applying the pole placement algorithm, an algebequation is set and solved at each
iteration in order to obtain the elements of the correspagdeedback gain matri¥ @ (¢);

AT An=1 7O An=2 4 PO L X = (A=A A= Xa) - (A= \) (27)

The coefficientd’\” are a linear combination of the linear elementsidt) (t) = [kﬁ” (t),..., k:fj)(t)}.
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Fig. 3: (a) Components of the responsét), z»(t). The shape of the response shows a smoother jump
than in the previous case. (b) Contrglt) = — Kz(t) when the poles of the close loop are shifted to
o = (—12,-10).
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Fig. 4: ¢(h) shows two discontinuities. This verifies the existence efitlation betwee® (), A(t),
A(t), B(t) and K(t) as indicated in (22)

In order to solve this, identification of parameters needddoperformed at this stage, simply by
equating the coefficients on both sides of equation (27):

% =a® + 89 kD () = dna My )

T, =, + 89, kD (#) = ¢polM, ;A
2 o+ By knlo(t) = dna(M ) 28)

Therefore, the elements d&()(¢) of the feedback gain can be obtained by solving each of the
equations in (28):

, () ) —a® ; @ (A1 An)—al?
B (1) = Sty L B (1) = PO (29)

ﬁr(:ll ) ) 1 55”
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The functionsa™ and 3% at each iteration depend on those elementg(@f~")(¢)) and B(z~1(t))
which are nonzero due to the pole placement, so figt(¢) is a Lipschitz function. Therefore,
provided thatK(t), A(z) and B(z) are Lipschitz functions, then by Theorem II, the sequence of
exponentially stable solutions of (25) converges to theoaeptially stable solution of the original
nonlinear problem. [ |

V. APPLICATION TO F-8 CRUSSADERAIRCRAFT

In this section this pole placement technique will be agpte the nonlinear equations of the8F-
aircraft in a level trim, unaccelerated flight at Maéh85 and altitude of30.000 ft (9000m). The
nonlinear equations are taken from ([William et al.(197@hd represent the dynamics of such an
aircraft:

iy = —0.877x; + 0.472% + 3.846x3 — 0.01923 — w327 — 0.088x37; — 0.215u4 (¢)
Tg = T3 (30)
fy = —4.2082, — 0.472% — 3.5642% — 0.39625 — 20.96Tus(t)

wherex, (t) is the angle of attack (rad),,(¢) the pitch angle (rad)ys(¢) the pitch rate (rads) and
u(t) = [ui(t),us(t), us(t)] is the control input vector.

The control objective in here is to place the desired polgkisfnonlinear system on the left hand side
of the complex plane by applying simultaneously the iteratechnique and the placement algorithm
introduced in Sectio for linear time-varying plants.

The set of desired poles tis= ( — 10,—1.7108,—0.5129). This choice of poles corresponds to the
closed-loop poles of the linearized and stabilized systdranathe controly = —0.053z; + 0.5z +
0.521x3 is applied (see [William et al.(1977)] for details).

The first step was to write in Matlab equation (30) in the foitn) = A(x)xz(t) + B(z)u(t), this is:

T —0.877 + 0.47x1 + 3.84622 —0.0192z5, —a? — 0.0887; T —0.215
Ty | = 0 0 1 xo | + 0 u(t)
T3 —4.208 — 0.47x; — 3.5642% 0 —0.396 T3 —20.967
31)
and generate a sequence3oflinear time-varying systems:
an) oy afy
iVey=1 0 0 1 zM(#) + B-u ()

ol 0 —0.396
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Fig. 5: (a) Closed Loop response. Staigét), x5(t) andxs(t). (b) Control lawu(t).

with
al}) = —0.877 + 0.472,(0) + 3.84622(0), aly) = —0.019z,
aly) = —22(0) — 0.088z,(0), aly) = —4.208 — 0.472,(0) — 3.56422(0),

j , , 2 A }
of) = ~0877 + 047 + 3.816(a{ "), al) = ~0.010{ ",

' -0 ‘ ; , N2
ol = - <x§1_1)> — 0.08821", of) = —4.208 — 0.472{ — 3.564 (ﬁ‘”) ,
B = [~0.215,0,—20.967]T

where the initial conditions are(0) = [z,(0), z2(0), z3(0)] = [0.5253,0,0]*. At each iteratior’i” a
feedback law (1) = — K@ ()" (t) is designed following the specifications: this is, the ctb&eop
poles at each iteration should be allocated\ at= (— 10, —1.7108, —0.5129),

20(t) = AV ()29(1) - BV () KV (0)29(t) = A"V (1)2"(1)
where A(z(~1)(t)) is the closed-loop matrix for thé" iteration. Using Ackermaa formula:
det| N T— A" 0@)] = (A=) (A= A2) (A= Xs), (32)

in this way, a feedback matrik 1) (¢) at each iteration is obtained. The simulations for eaclatiien
were carried out; = 15 sec with a time step of = 0.01. After 30 iterations, the sequence of linear
time-varying systems converges to the nonlinear systekimgahe 30" feedback control and applying
this to the nonlinear system,

() = A(x)z(t) — Blz)K® (t)z(t)

it can be seen how the states of the nonlinear system contergero, Figure 5.a. The control law
applied to the nonlinear system is shown in Figure 5.b, is@nés an isolated discontinuity in the
differentiability of the matrix of eigenvalueB(t); this does not affect the states as shown in Figure
5.a.

It is shown how the pitch angle variable;(¢) and the pitch rater;(¢) go beyondr radians, which



12

is a non realistic scenario. In spite of this, both statesire=ponential stability within the working
time interval, this is the main purpose of this numericalregke, to demonstrate convergence of the
presented method and exponential stability achievemdrg. Stenario in spite of being represented
by a highly nonlinear equation is not intended to be a real@te, in fact, the full set of equations of
motion of a fighter aircraft is nat-dimensional like in this case. Issues such as robustndsguacy

of the methodology, minimization of overshoot maximum alietc, have not being dealt with as
they are not under study in this work. All these issues areeotly investigated by the authors and
the findings will be presented in a future contribution.

VI. CONCLUSIONS

In this article a pole-placement algorithm for nonlineastsyns has been presented. The method is
based on the application of an iteration technique thatassd the nonlinear system by a sequence
of linear time-varying systems.

Once this sequence of linear time-varying systems has bb@ined, a standard pole-placement
procedure is applied for each of the linear time-varyingays by dividing the interval inV steps

of length h and applying Duhaméd principle. It has been shown how this method alone does not
guarantee stability for linear time-varying systems aretd¢fore additional requirements for stability
were developed in Section 3:

If the matricesA(t), B(t), P(t) and K(t) are differentiable, then, writing equation (22) in the form

A= P11 (A(t) — Bt)K(t) — B(t)K(t)) P(t)+At)P Y (t)P(t) — P Y #)P(H)A(t)  (33)

gives a coupled equation relating(¢), K (t) and A(t) which states that these are not independent.
Hence, in general, it may not be possible (in some cases)dosel\ constant. Thus, equation (33)
is an important condition for the exponential stability betalready pole placed linear time-varying
system.

The restriction it places o (t), K(t) and A(t) at the moment are the object of further research.
These results were extended to nonlinear systems by theeigence of the iteration technique, thus
the feedback gain designed for the last of the linear tinmging iterated systems is applied to the
nonlinear system and achieving in this way exponentialiltialbDue to the accurate approach of the
iteration technique to the original nonlinear plant, thidepplacement method results in a more robust
method than those relying on the linearization of the oagsystem, at least the uncertainties of the
unmodelled original dynamics do not exist in this case.

Some numerical examples were presented showing how thaigeehworks and showing that, even
in the case where differentiability dP(¢) is not satisfied at every point of the time intery@lt|, the
nonlinear system can be stabilized using this technique.
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