

City Research Online

City, University of London Institutional Repository

Citation: Nickels, M. R., Aitken, L. M., Barnett, A. G., Walsham, J., King, S., Gale, N. E., Bowen, A. C., Peel, B. M., Donaldson, S. L., Mealing, S. T. J. & et al (2020). Effect of in-bed cycling on acute muscle wasting in critically ill adults: A randomised clinical trial. Journal of Critical Care, 59, pp. 86-93. doi: 10.1016/j.jcrc.2020.05.008

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/24419/

Link to published version: https://doi.org/10.1016/j.jcrc.2020.05.008

Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. City Research Online: <u>http://openaccess.city.ac.uk/</u> <u>publications@city.ac.uk</u>

Authors and Qualifications: Marc R Nickels, M.Physio.St. 1,2,3,6, Leanne M Aitken, RN, PhD. 4,5, Adrian G Barnett, PhD, GStat, BSc(Hons) 2, James Walsham, MBChB, MRCP, FJFICM, FCICM 6,7, Scott King, GDip MedUS 8, Nicolette Gale, BTech Radiog/Ultrasound 8, Alicia Bowen, BPhty, 1,6 Brent Peel, BPhty(Hons), 1,6 Samuel Donaldson, BPhty, 1,6 Stewart Mealing, Dip HE Nurs 6, Steven M McPhail, PT, PhD 2,3,9

Affiliations:

1 Physiotherapy Department, Princess Alexandra Hospital, Metro South Health, Brisbane, Queensland, Australia

2 Australian Centre for Health Services Innovation for Healthcare Transformation, School of Public Health & Social Work, Queensland University of Technology, Brisbane, Queensland, Australia
3 Centre for Functioning and Health Research, Metro South Health, Brisbane, Queensland, Australia
4 School of Health Sciences, City, University of London, London, United Kingdom
5 Menzies Health Institute Queensland, Griffith University, Brisbane, Queensland, Australia
6 Intensive Care Unit, Princess Alexandra Hospital, Metro South Health, Brisbane, Queensland, Australia
7 School of Medicine, University of Queensland, Brisbane, Queensland, Australia
8 Department of Radiology, Princess Alexandra Hospital, Metro South Health, Brisbane, Queensland, Australia
9 Clinical Informatics, Metro South Health, Brisbane, Australia

Email Addresses:

Marc R Nickels: <u>marc.nickels@hdr.qut,edu.au</u> Leanne M Aitken: <u>leanne.aitken.1@city.ac.uk</u> Adrian G Barnett: <u>a.barnett@qut.edu.au</u> James Walsham: <u>james.walsham@health.qld.gov.au</u> Scott King: <u>scott.king@health.qld.gov.au</u> Nicolette Gale: nicolette.gale@health.qld.gov.au Alicia Bowen: <u>alicia.bowen@health.qld.gov.au</u> Brent Peel: <u>brent.peel@health.qld.gov.au</u> Samuel Donaldson: <u>samuel.donaldson2@health.qld.gov.au</u> Stewart Mealing: <u>stewart.mealing@health.qld.gov.au</u> Steven M McPhail: <u>steven.mcphail@qut.edu.au</u>

Twitter handles:

Marc R Nickels: @marc_nickels Adrian G Barnett: @aidybarnett Leanne Aitken: @Leanne_Aitken

ORCID IDs

Marc Nickels	0000-0002-7064-9230
Leanne Aitken	0000-0001-5722-9090
James Walsham	0000-0001-6852-4378
Adrian Barnett	0000-0001-6339-0374
Steve McPhail	0000-0002-1463-662X

Study Location:

Princess Alexandra Hospital, Intensive Care Unit, Brisbane, Australia

Conflicts of interest: None to declare

Acknowledgements: We would like to thank physiotherapy management (especially Cherie Hearn, Peter Tonks and Tony Cassar) and radiology management (Angela McNeill) for their support and provision of clinical staffing to enable this study to be conducted. Intensive care management for actively supporting clinical research within the Princess Alexandra Intensive Care Unit. Research nurse Chelsea Davis, RN, for assistance with pre-trial governance, Rod Hurford, RN, Computer Information Systems Administrator, for assisting to set-up screening and data reports, Chantale Tremblay (sonographer) for data collection, and A/Prof. Jeremy Cohen (Intensivist) for safety monitoring.

We would also like to thank the dedicated staff of the Princess Alexandra Hospital Physiotherapy Department and Intensive Care Unit for supporting this study. We would like to acknowledge the support for this work from the Metro South Research Support Scheme (Small Grant and Postgraduate Scholarship), Centre for Functioning and Health Research, Metro South Health, and the Institute of Health and Biomedical Innovation and School of Public Health & Social Work, Queensland University of Technology.

Finally, we would like to thank all participants and their families and friends of those who were involved in this study, without your active participation and dedication to improving outcomes for critically ill patients this research would not have been possible.

Authors' contributions

Marc Nickels: Study design, participant screening and recruitment, intervention implementation, data collection, safety monitoring, analysis, manuscript preparation, critical review and approval of the manuscript.

Leanne Aitken: Study design, safety monitoring, analysis, manuscript preparation, critical review and approval of the manuscript.

Adrian Barnett[:] Study design, analysis, manuscript preparation, critical review and approval of the manuscript.

James Walsham: Study design (safety measures), safety monitoring, manuscript preparation, critical review and approval of the manuscript.

Scott King: Study design (sonography measures), data collection, critical review and approval of the manuscript.

Nicolette Gale: Study design (sonography measures), data collection, critical review and approval of the manuscript.

Alicia Bowen: Study design (physical outcomes), data collection, critical review and approval of the manuscript.

Brent Peel: Study design (physical outcomes), data collection, critical review and approval of the manuscript.

Samuel Donaldson: Study design (physical outcomes), data collection, critical review and approval of the manuscript.

Stewart Mealing: Study design (delirium), critical review and approval of the manuscript.

Steven McPhail: Study design, study oversight, safety monitoring, analysis, manuscript preparation, critical review and approval of the manuscript.

Provenance and peer review Not commissioned; externally peer reviewed.

Corresponding Author details:

Mr Marc Nickels Physiotherapy Department, Princess Alexandra Hospital, Metro South Health, Brisbane, Australia. 4102 marc.nickels@hdr.qut.edu.au Ph: +61 (0) 433272111 1 Effect of In-bed Cycling on Acute Muscle Wasting in Critically III Adults: A Randomised Controlled Trial

2

3 Abstract

4 **Purpose:** To examine whether in-bed cycling assists critically ill adults to reduce acute muscle wasting,

5 improve function and improve quality of life following a period of critical illness.

Materials and methods: A single-centre, two-group, randomised controlled trial with blinded assessment of the primary outcome was conducted in a tertiary ICU. Critically ill patients expected to be mechanically ventilated for 48-hours were randomised to 30-minutes daily in-bed cycling in addition to usual-care physiotherapy (n = 37) or usual-care physiotherapy (n = 37). The primary outcome was muscle atrophy of rectus femoris cross-sectional area (RF_{CSA}) measured by ultrasound at Day 10 following study enrolment. Secondary outcomes included manual muscle strength, handgrip strength, ICU mobility score, six-minute walk test distance and health-related quality of life up to six-months following hospital admission.

Results: Analysis included the 72 participants (mean age, 56-years; male, 68%) who completed the study.

14 There were no significant between-group differences in muscle atrophy of RF_{CSA} at Day 10 (mean difference

15 3.4, 95% CI -6.9% to 13.6%; p=0.52), or for secondary outcomes (p-values ranged p=0.11 to p=0.95).

16 Conclusions and relevance: In-bed cycling did not reduce muscle wasting in critically ill adults, but this study

17 provides useful effect estimates for large-scale clinical trials.

18 Trial Registration: anzctr.org.au Identifier: ACTRN12616000948493

19 Introduction:

Patients who experience critical illness often develop profound and persistent physical, cognitive and psychological deficits following an intensive care unit (ICU) admission [1-3]. Critically ill patients experience acute muscle wasting and have been reported to lose 17.7% of rectus femoris cross-sectional area (RF_{CSA}) in the first ten-days following ICU admission [4, 5]. This muscle atrophy is associated with a decline in functional independence and mortality in critically ill patients [6-8]. Consequently, interventions that reduce acute muscle wasting during critical illness are likely to benefit survivors of critical illness.

26 Randomised controlled trials (RCTs) designed to test exercise interventions with critically ill patients have 27 reported conflicting results [9-14]. A recent systematic review concluded that early rehabilitation may 28 improve mobility, strength, and increase the number of days alive and out of hospital over a six-month 29 timeframe [15]. However, the initiation of exercise interventions with critically ill patients is frequently 30 delayed [16]. In-bed cycling is a promising intervention that can be introduced before a patient can follow 31 commands [17]. Studies have reported that cycle ergometry introduced early during a patient's ICU 32 admission were safe and feasible [17-20]. The first RCT investigating the effectiveness of in-bed cycling with 33 critically ill patients reported that participants who completed cycle ergometry were able to walk further in 34 the six-minute-walk-test (6MWT), had significantly higher quadriceps force and reported better functional 35 well-being at acute-hospital discharge [9]. This trial did not incorporate measures of muscle size or quality to 36 provide insights regarding the effect of in-bed cycling on reducing muscle loss. An RCT by Fossat et al. (2018) 37 compared the Medical Research Council Sum Score (MRC_{SUM}) for participants who completed weekday in-38 bed cycling with additional sessions of functional electrical stimulation sessions while in ICU in comparison 39 to usual-care, reporting no between-group differences [20]. Recently, a preliminary trial analysed muscle 40 biopsy specimens from 18 patients and reported that in-bed cycling was effective at preserving muscle fibre 41 area, but did not measure functional or quality of life outcomes [21]. Before a large Phase III RCT is completed, 42 it is important to quantify the mechanism of action prior to assessing for efficacy. Hence, there is a need to 43 complete an early exercise intervention study with critically ill patients that incorporates both blinded 44 measures of muscle atrophy and patient-centred outcomes.

45 A single-centre RCT was designed to investigate if in-bed cycling in addition to usual-care (compared with

46 usual-care) in patients expected to require more than 48-hours of invasive mechanical ventilation was:

47 1. Effective in reducing muscle atrophy,

48 2. Associated with better functional and cognitive outcomes at ICU and acute-hospital discharge, and

- 49 3. Associated with improved quality of life measured at three and six-months following hospital admission.
- 50

51 Methods:

52 Ethical approval was obtained from the human research ethics committees of Metro South Health and the

53 Queensland University of Technology. The protocol for this study has been published, and this report follows

54 the template for intervention description and replication (TIDieR) and the CONSORT statement [22, 23].

55 Study Design

56 A parallel two-arm, RCT with 1:1 allocation and blinding of the primary outcome assessors, was conducted.

57 The setting was a 26-bed tertiary mixed medical, surgical and trauma ICU in Brisbane, Australia. Participants

58 were allocated to receive either usual-care or daily in-bed cycling in addition to usual-care (Figure 1).

59 Participants

60 Patients were eligible for the study if they were: (i) expected to be mechanically ventilated for more than 48-

61 hours, (ii) recruited within 96-hours of their ICU admission, and (iii) expected to remain in the ICU for more

62 than 48-hours from study enrolment.

Patients were excluded if they: (i) were under 18-years old, (ii) had pre-existing condition that impaired mobility, (iii) had a new neurological disorder, (iv) had injuries precluding in-bed cycling, (v) were over 135 kg (cycle ergometer maximum weight capacity), (vi) were pregnant, (vii) had uncontrolled seizures or status epilepticus, or (viii) were unlikely to survive the current hospital admission.

67 Randomisation and allocation concealment

Participants were individually randomised, using random block sizes, to either intervention or usual-care
 groups. Randomisation was not stratified by demographic or clinical factors. A computer-generated

randomisation sequence was created by an investigator (SMM) not involved in the screening, consenting, allocation or assessment processes. The randomised sequence was uploaded onto a secure web-based computer application, the Research Electronic Data Capture (REDCap) [24]. Group allocation was revealed to the intervention coordinating investigator (MRN) after informed consent (from the patient or surrogate decision-maker) was granted.

75 Interventions

The usual-care group received routine physiotherapy interventions that included a daily assessment of physical and respiratory status and treatment. Physical treatments were directed to functional task achievement including; sitting, standing and mobilising. In-bed cycling was not a routine intervention at the site prior to the study. Consequently, usual-care group participants were not scheduled to participate in the cycling intervention.

81 The cycling group received the same usual-care interventions; they also received once daily (up to six-days 82 per week) in-bed leg cycling using a MOTOmed Letto2 (RECK-Technik GmbH & Co. KG, Betzenweiler, 83 Germany) cycle ergometer either in the ICU or in an acute hospital ward. The intervention co-ordinator 84 (MRN) set-up and delivered the cycling sessions. Safety guidelines adapted from previous exercise intervention studies and recommendations were used to guide these sessions [9, 25-28]. Cycling sessions 85 86 were chosen as they could be delivered to participants passively and progressed to active or resisted exercise 87 depending on participants' ability and level of consciousness. Alert participants were encouraged to exercise 88 at a moderate to hard level of perceived exertion, with the cycle ergometer resistance added and adjusted 89 during the cycling session to achieve an appropriate level of exertion. Cycling sessions were delivered for a 90 maximum of 30-minutes. However, sessions could be ceased early on participant request or if safety concerns 91 arose.

92 Primary Outcome

The primary outcome was muscle atrophy at Day 10 post-study enrolment. Muscle atrophy was calculated as the percentage change from baseline (measured within 24-hours of study enrolment) in RF_{CSA} at Day 10. The scan point was on the anterior thigh one-third distance from the superior patella to the anterior superior iliac spine [29]. All ultrasound scans were performed by experienced registered sonographers blinded to the

97 group allocation. The investigators acknowledge prior evidence of inter-rater reliability of RF_{CSA} assessments 98 was preliminary in nature [4, 30]. It was not possible within the constraints of study resources to have 99 multiple sonographers perform each assessment to examine inter-rater reliability specific to this study's 100 sonographers. Instead, to minimise the risk of between-sonographer measurement error, follow-up scans 101 were completed by the same sonographer that had performed the baseline assessment where possible, and 102 only three sonographers completed scans in this study. Each of these three accredited, experienced 103 sonographers had received the same training and instruction in the study methodology. Scans were 104 measured in triplicate on the right thigh (unless inaccessible due to attachments and then the left thigh was 105 used throughout the participant's admission), and the mean value calculated.

106 Secondary Outcomes

107 In addition to RF_{CSA}, rectus femoris thickness (RFT) and vastus intermedius thickness (VIT) were also measured 108 by sonographers at baseline, Day 3, Day 7, Day 10 post-study enrolment, and seven-days following ICU 109 discharge. Change in muscle thickness and RF_{CSA} at these timepoints were evaluated as secondary outcomes 110 for acute muscle wasting. The coefficient of variation of participants' ultrasound scans for each assessment 111 parameter (RF_{CSA}, RFT and VIT) at each assessment timepoint was calculated. Physical outcomes measured 112 by physiotherapy assessors blinded to group allocation were: i) manual muscle strength using the Medical 113 Research Council sum score (MRC_{SUM}) of 12 tested muscles with a score range of 0 to 60, ii) handgrip strength (HGS) using a Jamar Digital Dynamometer measured bilaterally with three attempts each hand, iii) functional 114 115 status measured using the Functional Status Score for the ICU, all measured at ICU discharge and one week 116 following ICU discharge, and iv) a single 6MWT [31] measured one week following ICU discharge.

Other outcomes were: i) participants' best level of function while admitted to the ICU using the ICU Mobility Score, ii) time from ICU admission until the participants achieved functional milestones of sitting out of bed, standing, assisted mobility, and independent mobility, iii) delirium incidence and days using routinely recorded nurse recorded Confusion Assessment Method (CAM)–ICU measures, iv) participants self-rated quality of life at Day 10, three- and six-months post ICU admission using the EQ5D-5L [32]. Data were collected on: demographic information including age, gender, diagnosis code, illness severity using the Acute Physiology and Chronic Health Evaluation III and Sequential Organ Failure Assessment [33], and admission 124 characteristics including the length of mechanical ventilation, ICU length of stay, acute-hospital length of stay

and discharge destination, mortality, and days alive and out of hospital to six-months [34].

126 Sample size considerations

A minimum sample size of 68 participants (34 per group) was based on a repeated measures design with 80% power to detect a between-group difference of 2.9% on the primary outcome, representing a relative reduction of muscle atrophy of RF_{CSA} by 16% if the absolute reduction in RF_{CSA} in the control group was 17.7%, as reported by Puthucheary et al. (2013). The following assumptions were made: type I error 0.05, a standard deviation (SD) of 6% and a within-patient correlation of 0.5 between assessments, after accounting for up to 20% drop-out rate including in-hospital mortality [28]. An unavoidable limitation was the absence of prior effect estimates from in-bed cycling interventions versus usual-care for informing this sample size calculation.

134 Statistical analyses

135 Analyses followed the intention-to-treat principle with participants analysed even if they did not complete 136 the cycling exercises. For the six participants that died prior to hospital discharge, data collected before death 137 were included in analyses. Participants unable to complete the 6MWT (i.e., physically incapable) scored zero 138 meters for this outcome. Descriptive statistics and generalised linear (mixed) models (with patients as a 139 random effect for repeated measures) were used to examine the effect of group allocation on the primary 140 and secondary outcomes, except for the use of Cox proportional hazards (time-to-event) analyses for time 141 to mobility milestones (stand, sit, mobilise with assistance, mobilise independently). For the generalised 142 linear models, the distributions were: Poisson for the counts of days with delirium (using a denominator of 143 days in ICU); Gaussian for all other continuous outcomes; and Binomial for the outcome of whether patients 144 were classified as having ICU acquired weakness. Due to an irregular distribution of 6MWT values owing to 145 the assignment of zero metres to patients unable to walk without assistance, bias-corrected confidence 146 intervals derived from Bootstrap resampling (2000 replications) were used. No adjustment for multiple 147 testing was made [35]. P less than 0.05 was considered to be statistically significant. Statistical analysis was 148 performed using Stata 13 (Stata Statistical Software: Release 13. College Station, TX: StataCorp LLC).

149

150 Results

151 Participants were recruited from July 2016 to May 2018, with six-month follow-up extending to November 152 2018. Of the 99 eligible patients, 74 consented and were randomised (Figure 1). One participant withdrew 153 from the study. An additional participant was withdrawn when it became evident that they had sustained an 154 unexpected ischemic spinal cord injury (and was therefore ineligible). To examine whether findings were 155 sensitive to the exclusion of the two participants who were withdrawn after randomisation, we repeated the 156 analysis including the two withdrawn participants. All findings were consistent regardless of the inclusion or 157 exclusion of withdrawn participants. Therefore, we have presented an intention-to-treat analysis for all 158 patients meeting the eligibility criteria. Except for one participant, all participants randomised to in-bed 159 cycling received the planned interventions as per the protocol. One participant in the intervention group and 160 five participants (7%) in the usual-care group died before hospital discharge. Participant mortality was 161 unrelated to the study interventions received.

The analysis included 72 participants who were eligible for the study. Participants were predominately male (68%) with a mean (SD) age of 56 (17) years. The most common reasons for admission to ICU were sepsis, trauma and cardiac surgery. Baseline characteristics of participants were similar between the groups (Table 1).

166 A total of 276-sessions of in-bed cycling were completed. Two minor transient adverse events were observed, 167 namely increased respiratory rate and decreased peripheral capillary oxygen saturation (SpO2) representing 168 less than 1% of completed sessions. Both groups received equivalent usual-care respiratory and rehabilitative 169 physiotherapy while they were acute hospital inpatients (Supplementary Table 1). In-bed cycling commenced 170 median [IQR] 2.3 [1.8 to 3.1] days following ICU admission, and participants completed median [IQR] 6 [4 to 8] 171 sessions. The mean (SD) duration of the cycling sessions was 27 (5) minutes. In-bed cycling sessions typically 172 progressed from passive to active assist to resisted exercise as the participant regained consciousness and 173 strength. Three cycling participants did not complete any active cycling sessions. Thirty-three cycling 174 participants completed 130 (130/276, 47%) in-bed cycling sessions that included active cycling for at least 175 100 metres.

Thirty-one participants in each group had ultrasound assessments completed at the Day 10 primary endpoint. At Day 10 both groups experienced muscle atrophy, with the cycling group losing 8.4% (19.7%)RF_{CSA} in comparison to the usual-care group who lost 14.7% (21.0%)RF_{CSA} (Table 2). There were no significant

179 between-group differences as shown by the group-by-time interaction in percentage change in RF_{CSA} at 180 Day 10 (mean difference 3.4, 95% Cl,-6.9 to 13.6, p=0.52) (Table 3). Both groups continued to experience 181 muscle atrophy after discharge from the ICU. Similar patterns of acute muscle wasting were found for RFT 182 and VIT (Figure 2). There were no statistically significant between-group differences in any of the secondary 183 outcomes (Table 3). Time from ICU discharge to acute hospital discharge was median [IQR] three-days 184 shorter (Table 2) in the cycling group 6.0 [3.9 to 12.4] versus usual-care group 9.0 [5.5 to 14.5]. Six-months 185 after hospitalisation, the in-bed cycling group participants, spent a median of an additional six-days alive and 186 out of hospital (Table 2). Quality of life outcomes were similar at Day 10, three- and six-months post-study 187 enrolment (Table 2).

188

189 Discussion

190 In this single-centre randomised controlled trial, there were no statistically significant between-group 191 differences across the primary and secondary outcomes. The variation in participants' RF_{CSA} measures was 192 larger than anticipated. Therefore, a sufficiently powered study with a larger sample size is required to 193 determine the effect of in-bed cycling on reducing acute muscle wasting and on patient-centred outcomes.

194 Potential reduction in muscle atrophy was not detected in this study despite indications of the beneficial 195 effect of in-bed cycling on reducing acute muscle loss in a recent study [21]. This mechanistic RCT investigated 196 the differences in muscle mass of 18 critically ill patients with sepsis via muscle biopsy. Samples were taken 197 a week apart and reported that in-bed cycling assisted in preserving muscle fibre area [21]. There is some 198 initial evidence passive cycling increases strength [36] and that a greater acute loss of RF_{CSA} is associated with 199 knee extensor weakness [37]. However, further research is required to determine if passive or active cycling 200 is more effective at reducing muscle atrophy, and whether reductions in atrophy are associated with 201 improved patient outcomes such as strength or walking endurance. A recent multi-centre longitudinal study 202 found that lean muscle mass is associated with gait speed and 6MWT [7]. Consequently, if in-bed cycling does 203 help to reduce acute muscle wasting, then improvements in function should be seen. However, no between-204 group statistical differences were found for 6MWT in the present study. The 6MWT is a validated measure 205 of exercise capacity [38]. It may represent a more clinically useful marker of muscle function and 206 cardiovascular fitness, in comparison to the assessment of muscle strength (i.e. MRC_{SUM}, HGS) or muscle size. Therefore, 6MWT may be a more clinically relevant marker of response to exercise-based interventions in future studies. The present study also reported no between-group differences in MRC_{SUM} for participants who completed in-bed cycling, this result was consistent with findings from a recent RCT that coupled cycling with additional electrical stimulation sessions [20].

The present study complemented findings from previous studies that in-bed cycling is feasible and can be delivered safely to critically ill patients within 72-hours of ICU admission. Total session duration was less than an hour, including safety screening, set-up, intervention delivery (30-minutes), removal and cleaning of the cycle ergometer, and could be delivered by existing clinicians. Adverse events were minor, transient and occurred in less than 1% of the delivered interventions.

216 The optimal dose of cycle ergometry exercise remains unknown. Most studies have compared daily in-bed 217 cycling with variable durations of between 20- and 60-minutes [9, 14, 17-21, 27, 39]. The time to commence 218 the intervention is also variable, with studies commencing in-bed cycling between a median of two- and five-219 days following admission to the ICU [9, 14, 17-21, 27, 39]. The optimal intensity of in-bed cycling is also 220 unknown, with most studies incorporating early passive cycling and later progressing to active and resisted 221 cycling [9, 14, 18-21, 27]. Current clinical trials are assessing the effect of in-bed cycling in combination with 222 protein supplementation on participants' functional outcome measured by the 6MWT. Functional electrical 223 stimulation (FES) has been incorporated in some studies to reduce muscle atrophy. Determining the optimal 224 dose (commencement, frequency, duration, intensity) and type (standard versus FES) of in-bed cycling and 225 complementary nutritional supplementation remains a priority for future research [40]. Patients are typically 226 inactive throughout their hospital admission [41-43]. Cycle ergometry is an intervention that can be used to 227 initiate early rehabilitation before a patient can follow commands [17] and can be implemented following 228 ICU discharge to increase the activity levels of patients throughout their hospitalisation.

No between-group differences were found for quality of life at three- or six-months following hospital admission. Participants allocated to the in-bed cycling group received a median of six in-bed cycling sessions for an average duration of 27 minutes. The relatively short implementation of a single intervention may not have been enough to have a consistent clinically meaningful impact on the quality of life (and other study outcomes) several months after the cessation of this intervention. Quality of life is also influenced by factors 234 that may be unaffected by exercise; including non-physical-activity related health conditions, social support, 235 coping strategies, home environment, and adaptability [3, 44]. For long-term improvements in quality of life 236 among critical illness survivors, it is possible that multi-factorial intervention including reduced sedation, 237 early multi-modal exercise interventions and complementary optimisation of nutrition, especially protein, 238 may be more effective in reducing muscle wasting and loss of function underpinning negative impact on 239 health-related quality of life [44, 45], than early exercise intervention alone. It is also possible that patients 240 with particular clinical characteristics may have received a benefit from the in-bed cycling intervention, while 241 others did not. Identifying patients most likely to respond to early exercise interventions remains a priority 242 for future research, albeit that the present study was not designed for exploratory analyses of this nature.

The strengths of this study included adherence to a pre-specified study protocol [28]. All but one participant allocated to the intervention group were able to complete the minimum number of cycling sessions. Blinded assessment of the primary outcome was completed with over 85% of participants enrolled.

The study had some limitations, and as a single-centre clinical trial, results should be generalised with caution. The study was not powered to detect differences in secondary outcomes, and the greater than anticipated variability in the primary measure also meant the study was at risk of Type II error. The 6MWT was only completed once, without replication. Whilst this is common in studies involving critically ill patients [46], the potential feasibility or impact of learning effects of repeated 6MWT in hospital settings among critical illness survivors remains a priority for further research.

252 Another limitation was that only one sonographer completed the ultrasound assessment at each timepoint. 253 Therefore, the inter-rater reliability of the assessors could not be evaluated. Assessment of quadriceps 254 muscle mass with ultrasound in critically ill patients has been reported to be able to be reliably assessed 255 within observers, but not necessarily between observers [47]. To address this issue, this study used the same 256 accredited and experienced sonographers at follow-up assessments where possible who had received 257 consistent training in the ultrasound methodology, all ultrasound measurements were performed in triplicate 258 and sonographers were blinded to group allocation. The use of ultrasound in critical care studies is an 259 emerging field, and it is important that future studies adopt recommendations to standardise assessment 260 methods and measure the reliability and variability of assessors wherever possible [48-50]. The mean

- 261 difference in the primary outcome of percentage change in RF_{CSA} of 3.4% observed in this study was greater
- than the 2.9% difference that the study was initially planned to be able to detect. The substantially greater
- variability in muscle atrophy in this sample (in comparison to the a-priori sample size estimate) should be an
- 264 important consideration in the design of future studies.
- 265
- 266 Conclusions
- 267 In-bed cycling did not reduce acute muscle wasting in critically ill adults, but this study provides useful effect
- 268 estimates and learnings for large-scale clinical trials.
- 269

270 Funding: This is an investigator-initiated trial without external sponsors. Following a competitive peer review 271 process Metro South Health Study, Education and Research Trust Account (SERTA) awarded this study a grant 272 in 2015. MRN was awarded a competitive Metro South Health Research Support Scheme Postgraduate 273 Scholarship to conduct this study. SMM (#1090440, #1161138) and AGB (#1117784) are supported by 274 National Health and Medical Research Council (NHMRC) administered fellowships. This study also received 275 in-kind support in the form of personnel and administrative support from Metro South Health (Queensland). 276 No funding body had a role in study design, collection, management, analysis and interpretation of data; 277 writing of the report; and the decision to submit the report for publication.

278

279 Conflicts of interest: None to declare

280

Acknowledgements: We would like to thank physiotherapy management (especially Cherie Hearn, Peter Tonks and Tony Cassar) and radiology management (Angela McNeill) for their support and provision of clinical staffing to enable this study to be conducted. Intensive care management for actively supporting clinical research within the Princess Alexandra Intensive Care Unit. Research nurse Chelsea Davis, RN, for assistance with pre-trial governance, Rod Hurford, RN, Computer Information Systems Administrator, for assisting to set-up screening and data reports, Chantale Tremblay (sonographer) for data collection, and A/Prof. Jeremy Cohen (Intensivist) for safety monitoring.

We would also like to thank the dedicated staff of the Princess Alexandra Hospital Physiotherapy Department
 and Intensive Care Unit for supporting this study.

We would like to acknowledge the support for this work from the Metro South Research Support Scheme (Small Grant and Postgraduate Scholarship), Centre for Functioning and Health Research, Metro South Health, and the Institute of Health and Biomedical Innovation and School of Public Health & Social Work, Queensland University of Technology.

Finally, we would like to thank all participants and their families and friends of those who were involved in this study, without your active participation and dedication to improving outcomes for critically ill patients this research would not have been possible. 297

298 <u>Authors and contributions:</u>

299 Marc Nickels: Study design, participant screening and recruitment, intervention implementation, data 300 collection, safety monitoring, analysis, manuscript preparation, critical review and approval of the 301 manuscript.

Leanne Aitken: Study design, safety monitoring, analysis, manuscript preparation, critical review and
 approval of the manuscript.

304 Adrian Barnett[:] Study design, analysis, manuscript preparation, critical review and approval of the 305 manuscript.

James Walsham: Study design (safety measures), safety monitoring, manuscript preparation, critical review
 and approval of the manuscript.

308 Scott King: Study design (sonography measures), data collection, critical review and approval of the 309 manuscript.

310 Nicolette Gale: Study design (sonography measures), data collection, critical review and approval of the 311 manuscript.

312 Alicia Bowen: Study design (physical outcomes), data collection, critical review and approval of the 313 manuscript.

Brent Peel: Study design (physical outcomes), data collection, critical review and approval of the manuscript.

Samuel Donaldson: Study design (physical outcomes), data collection, critical review and approval of themanuscript.

317 Stewart Mealing: Study design (delirium), critical review and approval of the manuscript.

318 Steven McPhail: Study design, study oversight, safety monitoring, analysis, manuscript preparation, critical

319 review and approval of the manuscript.

322	1.	Iwashyna TJ, Ely EW, Smith DM, Langa KM, (2010) Long-term cognitive impairment and functional
323		disability among survivors of severe sepsis. JAMA 304: 1787-1794
324	2.	Herridge MS, Tansey CM, Matte A, Tomlinson G, Diaz-Granados N, Cooper A, Guest CB, Mazer CD,
325		Mehta S, Stewart TE, Kudlow P, Cook D, Slutsky AS, Cheung AM, Canadian Critical Care Trials G,
326		(2011) Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med 364:
327		1293-1304
328	3.	Hodgson CL, Udy AA, Bailey M, Barrett J, Bellomo R, Bucknall T, Gabbe BJ, Higgins AM, Iwashyna TJ,
329		Hunt-Smith J, Murray LJ, Myles PS, Ponsford J, Pilcher D, Walker C, Young M, Cooper DJ, (2017) The
330		impact of disability in survivors of critical illness. Intensive Care Med 43: 992-1001
331	4.	Puthucheary ZA, Rawal J, McPhail M, Connolly B, Ratnayake G, Chan P, Hopkinson NS, Phadke R,
332		Dew T, Sidhu PS, Velloso C, Seymour J, Agley CC, Selby A, Limb M, Edwards LM, Smith K, Rowlerson
333		A, Rennie MJ, Moxham J, Harridge SD, Hart N, Montgomery HE, (2013) Acute skeletal muscle
334		wasting in critical illness. JAMA 310: 1591-1600
335	5.	Hayes K, Holland AE, Pellegrino VA, Mathur S, Hodgson CL, (2018) Acute skeletal muscle wasting
336		and relation to physical function in patients requiring extracorporeal membrane oxygenation
337		(ECMO). J Crit Care 48: 1-8
338	6.	Batt J, Herridge M, Dos Santos C, (2017) Mechanism of ICU-acquired weakness: skeletal muscle loss
339		in critical illness. Intensive Care Med 43: 1844-1846
340	7.	Chan KS, Mourtzakis M, Aronson Friedman L, Dinglas VD, Hough CL, Ely EW, Morris PE, Hopkins RO,
341		Needham DM, National Institutes of Health National Heart L, Blood Institute Acute Respiratory
342		Distress Syndrome N, (2018) Evaluating Muscle Mass in Survivors of Acute Respiratory Distress
343		Syndrome: A 1-Year Multicenter Longitudinal Study. Crit Care Med 46: 1238-1246
344	8.	Dinglas VD, Aronson Friedman L, Colantuoni E, Mendez-Tellez PA, Shanholtz CB, Ciesla ND,
345		Pronovost PJ, Needham DM, (2017) Muscle Weakness and 5-Year Survival in Acute Respiratory
346		Distress Syndrome Survivors. Crit Care Med 45: 446-453

347	9.	Burtin C, Clerckx B, Robbeets C, Ferdinande P, Langer D, Troosters T, Hermans G, Decramer M,
348		Gosselink R, (2009) Early exercise in critically ill patients enhances short-term functional recovery.
349		Crit Care Med 37: 2499-2505
350	10.	Kayambu G, Boots R, Paratz J, (2015) Early physical rehabilitation in intensive care patients with
351		sepsis syndromes: a pilot randomised controlled trial. Intensive Care Med 41: 865-874
352	11.	Morris PE, Berry MJ, Files DC, Thompson JC, Hauser J, Flores L, Dhar S, Chmelo E, Lovato J, Case LD,
353		Bakhru RN, Sarwal A, Parry SM, Campbell P, Mote A, Winkelman C, Hite RD, Nicklas B, Chatterjee A,
354		Young MP, (2016) Standardized Rehabilitation and Hospital Length of Stay Among Patients With
355		Acute Respiratory Failure: A Randomized Clinical Trial. JAMA 315: 2694-2702
356	12.	Moss M, Nordon-Craft A, Malone D, Van Pelt D, Frankel SK, Warner ML, Kriekels W, McNulty M,
357		Fairclough DL, Schenkman M, (2016) A Randomized Trial of an Intensive Physical Therapy Program
358		for Patients with Acute Respiratory Failure. Am J Respir Crit Care Med 193: 1101-1110
359	13.	Schweickert WD, Pohlman MC, Pohlman AS, Nigos C, Pawlik AJ, Esbrook CL, Spears L, Miller M,
360		Franczyk M, Deprizio D, Schmidt GA, Bowman A, Barr R, McCallister KE, Hall JB, Kress JP, (2009)
361		Early physical and occupational therapy in mechanically ventilated, critically ill patients: a
362		randomised controlled trial. Lancet 373: 1874-1882
363	14.	Eggmann S, Verra ML, Luder G, Takala J, Jakob SM, (2018) Effects of early, combined endurance and
364		resistance training in mechanically ventilated, critically ill patients: A randomised controlled trial.
365		PLoS One 13: e0207428
366	15.	Tipping CJ, Harrold M, Holland A, Romero L, Nisbet T, Hodgson CL, (2017) The effects of active
367		mobilisation and rehabilitation in ICU on mortality and function: a systematic review. Intensive Care
368		Med 43: 171-183
369	16.	Nickels MR, Aitken LM, Walsham J, Crampton LJ, Barnett AG, McPhail SM, (2019) Exercise
370		interventions are delayed in critically ill patients: an historical cohort study in an Australian tertiary
371		intensive care unit. Physiotherapy 10.1016/j.physio.2019.06.011
372	17.	Camargo Pires-Neto R, Fogaca Kawaguchi YM, Sayuri Hirota A, Fu C, Tanaka C, Caruso P, Park M,
373		Ribeiro Carvalho CR, (2013) Very early passive cycling exercise in mechanically ventilated critically ill
374		patients: physiological and safety aspectsa case series. PLoS One 8: e74182

- 375 18. Kho ME, Martin RA, Toonstra AL, Zanni JM, Mantheiy EC, Nelliot A, Needham DM, (2015) Feasibility
 376 and safety of in-bed cycling for physical rehabilitation in the intensive care unit. J Crit Care 30: 1419
 377 e1411-1415
- 378 19. Kho ME, Molloy AJ, Clarke FJ, Reid JC, Herridge MS, Karachi T, Rochwerg B, Fox-Robichaud AE, Seely
- AJ, Mathur S, Lo V, Burns KE, Ball IM, Pellizzari JR, Tarride JE, Rudkowski JC, Koo K, Heels-Ansdell D,
- 380 Cook DJ, (2019) Multicentre pilot randomised clinical trial of early in-bed cycle ergometry with
- 381 ventilated patients. BMJ Open Respir Res 6: e000383
- 382 20. Fossat G, Baudin F, Courtes L, Bobet S, Dupont A, Bretagnol A, Benzekri-Lefevre D, Kamel T, Muller
- 383 G, Bercault N, Barbier F, Runge I, Nay MA, Skarzynski M, Mathonnet A, Boulain T, (2018) Effect of
- 384 In-Bed Leg Cycling and Electrical Stimulation of the Quadriceps on Global Muscle Strength in
- 385 Critically III Adults: A Randomized Clinical Trial. JAMA 320: 368-378
- 386 21. Hickmann CE, Castanares-Zapatero D, Deldicque L, Van den Bergh P, Caty G, Robert A, Roeseler J,
- 387 Francaux M, Laterre PF, (2018) Impact of Very Early Physical Therapy During Septic Shock on
- 388 Skeletal Muscle: A Randomized Controlled Trial. Crit Care Med 46: 1436-1443
- 389 22. Hoffmann TC, Glasziou PP, Boutron I, Milne R, Perera R, Moher D, Altman DG, Barbour V,
- 390 Macdonald H, Johnston M, Lamb SE, Dixon-Woods M, McCulloch P, Wyatt JC, Chan AW, Michie S,
- 391 (2014) Better reporting of interventions: template for intervention description and replication
- 392 (TIDieR) checklist and guide. BMJ 348: g1687
- Schulz KF, Altman DG, Moher D, Group C, (2010) CONSORT 2010 statement: updated guidelines for
 reporting parallel group randomised trials. BMJ 340: c332
- 395 24. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG, (2009) Research electronic data
- 396 capture (REDCap)--a metadata-driven methodology and workflow process for providing
- 397 translational research informatics support. J Biomed Inform 42: 377-381
- 398 25. Hodgson CL, Stiller K, Needham DM, Tipping CJ, Harrold M, Baldwin CE, Bradley S, Berney S,
- 399 Caruana LR, Elliott D, Green M, Haines K, Higgins AM, Kaukonen KM, Leditschke IA, Nickels MR,
- 400 Paratz J, Patman S, Skinner EH, Young PJ, Zanni JM, Denehy L, Webb SA, (2014) Expert consensus
- 401 and recommendations on safety criteria for active mobilization of mechanically ventilated critically
- 402 ill adults. Crit Care 18: 658

- 403 26. Kho ME, Molloy AJ, Clarke F, Herridge MS, Koo KK, Rudkowski J, Seely AJ, Pellizzari JR, Tarride JE,
- 404 Mourtzakis M, Karachi T, Cook DJ, Canadian Critical Care Trials G, (2016) CYCLE pilot: a protocol for
- 405 a pilot randomised study of early cycle ergometry versus routine physiotherapy in mechanically
- 406 ventilated patients. BMJ Open 6: e011659
- 407 27. Kho ME, Molloy AJ, Clarke FJ, Ajami D, McCaughan M, Obrovac K, Murphy C, Camposilvan L,
- 408 Herridge MS, Koo KK, Rudkowski J, Seely AJ, Zanni JM, Mourtzakis M, Piraino T, Cook DJ, Canadian
- 409 Critical Care Trials G, (2016) TryCYCLE: A Prospective Study of the Safety and Feasibility of Early In-

410 Bed Cycling in Mechanically Ventilated Patients. PLoS One 11: e0167561

- 411 28. Nickels MR, Aitken LM, Walsham J, Barnett AG, McPhail SM, (2017) Critical Care Cycling Study
- 412 (CYCLIST) trial protocol: a randomised controlled trial of usual care plus additional in-bed cycling

413 sessions versus usual care in the critically ill. BMJ Open 7: e017393

414 29. Tillquist M, Kutsogiannis DJ, Wischmeyer PE, Kummerlen C, Leung R, Stollery D, Karvellas CJ, Preiser

415 JC, Bird N, Kozar R, Heyland DK, (2014) Bedside ultrasound is a practical and reliable measurement

- 416 tool for assessing quadriceps muscle layer thickness. JPEN J Parenter Enteral Nutr 38: 886-890
- 417 30. Connolly B, Puthucheary Z, Montgomery H, Moxham J, Hart N, (2011) P66 Inter-observer reliability
- 418 of ultrasound to measure rectus femoris cross-sectional area in critically ill patients. Thorax 66:
- 419 A95-A95
- 420 31. Holland AE, Spruit MA, Troosters T, Puhan MA, Pepin V, Saey D, McCormack MC, Carlin BW, Sciurba
- 421 FC, Pitta F, Wanger J, MacIntyre N, Kaminsky DA, Culver BH, Revill SM, Hernandes NA,
- 422 Andrianopoulos V, Camillo CA, Mitchell KE, Lee AL, Hill CJ, Singh SJ, (2014) An official European
- 423 Respiratory Society/American Thoracic Society technical standard: field walking tests in chronic
- 424 respiratory disease. Eur Respir J 44: 1428-1446
- 425 32. Herdman M, Gudex C, Lloyd A, Janssen M, Kind P, Parkin D, Bonsel G, Badia X, (2011) Development
 426 and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L). Qual Life Res 20: 1727-
- 427 1736
- 428 33. Vincent JL, Moreno R, Takala J, Willatts S, De Mendonca A, Bruining H, Reinhart CK, Suter PM, Thijs

429 LG, (1996) The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ

- 430 dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European
- 431 Society of Intensive Care Medicine. Intensive Care Med 22: 707-710
- 432 34. Ariti CA, Cleland JG, Pocock SJ, Pfeffer MA, Swedberg K, Granger CB, McMurray JJ, Michelson EL,
- Ostergren J, Yusuf S, (2011) Days alive and out of hospital and the patient journey in patients with
 heart failure: Insights from the candesartan in heart failure: assessment of reduction in mortality
 and morbidity (CHARM) program. Am Heart J 162: 900-906
- 436 35. Sedgwick P, (2012) Multiple significance tests: the Bonferroni correction. BMJ 344: e509-e509
- 437 36. Machado ADS, Pires-Neto RC, Carvalho MTX, Soares JC, Cardoso DM, Albuquerque IM, (2017)
- 438 Effects that passive cycling exercise have on muscle strength, duration of mechanical ventilation,
- 439 and length of hospital stay in critically ill patients: a randomized clinical trial. J Bras Pneumol 43:
- 440 134-139
- 441 37. Puthucheary ZA, McNelly AS, Rawal J, Connolly B, Sidhu PS, Rowlerson A, Moxham J, Harridge SD,
- 442 Hart N, Montgomery HE, (2017) Rectus Femoris Cross-Sectional Area and Muscle Layer Thickness:
- 443 Comparative Markers of Muscle Wasting and Weakness. Am J Respir Crit Care Med 195: 136-138
- 444 38. Chan KS, Pfoh ER, Denehy L, Elliott D, Holland AE, Dinglas VD, Needham DM, (2015) Construct
- 445 validity and minimal important difference of 6-minute walk distance in survivors of acute
- 446 respiratory failure. Chest 147: 1316-1326
- 447 39. Parry SM, Berney S, Warrillow S, El-Ansary D, Bryant AL, Hart N, Puthucheary Z, Koopman R,
- 448 Denehy L, (2014) Functional electrical stimulation with cycling in the critically ill: a pilot case-
- 449 matched control study. J Crit Care 29: 695 e691-697
- 450 40. Morris PE, Montgomery-Yates A, (2017) Mastering the design for rehabilitation strategies in ICU
 451 survivors. Thorax 72: 594-595
- 452 41. Connolly BA, Mortimore JL, Douiri A, Rose JW, Hart N, Berney SC, (2019) Low Levels of Physical
 453 Activity During Critical Illness and Weaning: The Evidence-Reality Gap. J Intensive Care Med 34:
 454 818-827
- 455 42. Beach LJ, Fetterplace K, Edbrooke L, Parry SM, Curtis R, Rechnitzer T, Berney S, Denehy L, (2017)
- 456 Measurement of physical activity levels in the Intensive Care Unit and functional outcomes: An
- 457 observational study. J Crit Care 40: 189-196

- 458 43. Baldwin C, van Kessel G, Phillips A, Johnston K, (2017) Accelerometry Shows Inpatients With Acute
- 459 Medical or Surgical Conditions Spend Little Time Upright and Are Highly Sedentary: Systematic
- 460 Review. Phys Ther 97: 1044-1065
- 461 44. Heyland DK, Stapleton RD, Mourtzakis M, Hough CL, Morris P, Deutz NE, Colantuoni E, Day A, Prado
- 462 CM, Needham DM, (2016) Combining nutrition and exercise to optimize survival and recovery from
- 463 critical illness: Conceptual and methodological issues. Clin Nutr 35: 1196-1206
- 464 45. Heyland DK, Day A, Clarke GJ, Hough CT, Files DC, Mourtzakis M, Deutz N, Needham DM, Stapleton
- 465 R, (2019) Nutrition and Exercise in Critical Illness Trial (NEXIS Trial): a protocol of a multicentred,
- 466 randomised controlled trial of combined cycle ergometry and amino acid supplementation
- 467 commenced early during critical illness. BMJ Open 9: e027893
- 468 46. Parry SM, Nalamalapu SR, Nunna K, Rabiee A, Friedman LA, Colantuoni E, Needham DM, Dinglas
- 469 VD, (2019) Six-Minute Walk Distance After Critical Illness: A Systematic Review and Meta-Analysis. J
- 470 Intensive Care Med 10.1177/0885066619885838
- 471 47. Segers J, Hermans G, Charususin N, Fivez T, Vanhorebeek I, Van den Berghe G, Gosselink R, (2015)
- 472 Assessment of quadriceps muscle mass with ultrasound in critically ill patients: intra- and inter-
- 473 observer agreement and sensitivity. Intensive Care Med 41: 562-563
- 474 48. Mourtzakis M, Parry S, Connolly B, Puthucheary Z, (2017) Skeletal Muscle Ultrasound in Critical
- 475 Care: A Tool in Need of Translation. Ann Am Thorac Soc 14: 1495-1503
- 476 49. Parry SM, Burtin C, Denehy L, Puthucheary ZA, Bear D, (2019) Ultrasound Evaluation of Quadriceps
- 477 Muscle Dysfunction in Respiratory Disease. Cardiopulm Phys Ther J 30: 15-23
- 478 50. Weinel LM, Summers MJ, Chapple L-A, (2019) Ultrasonography to measure quadriceps muscle in
- 479 critically ill patients: A literature review of reported methodologies. Anaesth Intensive Care 47: 423-
- 480

434

482

483 Figure 1: CONSORT figure of participant flow through the study

484

485 Table 1. Patient baseline characteristics

Patient characteristics at baseline	In-bed cycling group, n= 36	Usual-care group, n =36
Age in years, mean (SD)	56 (18)	57 (16)
Males, n (%)	23 (64%)	26 (72%)
APACHE III score, median (IQR)	67 (48, 82)	65 (49, 81)
SOFA (worst score), median (IQR)	9 (8, 12)	9 (7, 11)
SOFA (most organs with dysfunction), median (IQR)	3 (3, 4)	4 (3, 5)
Height in centimeters, mean (SD)	171 (11)	173 (10)
Weight in kilograms, mean (SD)	85 (16)	88 (18)
BMI kg/m², mean (SD)	29 (5)	30 (8)
Primary Diagnosis on ICU Admission		
Sepsis	7 (19%)	6 (17%)
Trauma	8 (22%)	5 (14%)

Cardiac Surgery	3 (8%)	5 (14%)
Gastrointestinal	3 (8%)	3 (8%)
Pneumonia	3 (8%)	3 (8%)
Hemorrhage	2 (6%)	2 (6%)
Vascular surgery	1 (3%)	2 (6%)
Acute exacerbation of asthma	1 (3%)	2 (6%)
Airway obstruction	2 (6%)	1 (3%)
Overdose	2 (6%)	1 (3%)
Cardiac arrest	1 (3%)	1 (3%)
Malignancy	1 (3%)	1 (3%)
Other	2 (6%)	4 (11%)

486 SD, standard deviation, n, number; APACHE III = Acute Physiology and Chronic Health Evaluation III severity

487 of illness score (0-299); SOFA = Sequential Organ Failure Assessment; IQR, interquartile range; MV,

488 mechanical ventilation; ICU, intensive care unit.

489

490

491 Table 2. Ultrasound, secondary and clinical outcomes

Variable	In-bed cycling group	Usual care group	
Ultrasound			CV%ª
Rectus femoris cross-sectional area ^b			
Day 3	-0.3 (21.2)	-2.3 (26.2)	5.6
Day 7	0.9 (27.3)	-11.1 (23.6)	4.8
Day 10	-8.4 (19.7)	-14.7 (21.0)	5.2
7 days post ICU discharge	-12.1 (24.7)	-22.6 (23.4)	6.3
Rectus femoris thickness ^b			
Day 3	-0.04 (24.5)	2.5 (26.3)	4.7
Day 7	0.14 (23.5)	-3.0 (21.9)	4.3
Day 10	-2.7 (17.0)	-8.0 (22.9)	5.7
7 days post ICU discharge	-2.6 (14.2)	-7.5 (18.5)	5.5
Vastus intermedius thickness ^b			
Day 3	5.3 (37.1)	1.4 (34.1)	4.3
Day 7	-3.9 (19.3)	-4.3 (23.6)	4.8
Day 10	-0.6 (24.7)	-7.8 (28.8)	4.8
7 days post ICU discharge	-0.2 (22.3)	-11.6 (21.5)	4.6
Secondary Outcomes			
ICU Mobility Scale (ICU discharge)	6 (3, 7)	4 (3, 7)	
6-minute walk test (7 days following ICU discharge)	258 (30, 326)	225 (57, 324)	
Upper limb MRC sum score (ICU discharge)	26 (24, 28)	27 (24, 28)	

Lower limb MRC sum score (ICU discharge)	26 (24, 28)	28 (23, 29)
MRC sum score $^{\circ}$ (ICU discharge)	54 (47, 57)	54 (47, 56)
Upper limb MRC sum score (7 days following ICU discharge)	28 (25, 30)	29 (27, 30)
Lower limb MRC sum score (7 days following ICU discharge)	28 (26, 30)	29 (28, 30)
MRC sum score ^c (7 days following ICU discharge)	57 (52, 60)	58 (53, 59)
Handgrip strength ^d (ICU discharge)	16.3 (10.6, 21.2)	16.7 (10.9, 20.1)
Handgrip strength ^d (7 days following ICU discharge)	21.1 (16.8, 30.8)	22.2 (16.6, 31.3)
FSS ICU (ICU discharge)	23 (18, 31)	23 (15, 29)
FSS ICU (7 days following ICU discharge)	35 (32, 35)	35 (32, 35)
Functional milestones ^e (days)		
Sitting out of bed	8.4 (5.0, 13.0)	7.8 (5.5, 11.1)
Standing	8.4 (4.9, 14.8)	7.4 (5.0, 10.7)
Mobilised with assistance	9.1 (5.0, 19.7)	8.8 (5.9, 12.7)
Mobilised independently	12.8 (7.8, 26.1)	13.4 (8.6,19.7)
Quality of life (EQ-5D VAS), Day 10 post admission, mean (SD)	52 (22)	53 (23)
Quality of life (EQ-5D VAS), 3-months post admission, mean (SD)	67 (19)	70 (17)
Quality of life (EQ-5D VAS), 6-months post admission, mean (SD)	75 (18)	73 (17)
Clinical outcomes		
Length of MV, days	6.3 (3.9, 9.5)	5.5 (3.5, 10.1)
Delirium		
Participant with delirium, n (%)	9 (25%)	13 (36%)
Delirium positive days, n (%)	14 (3.7%)	26 (7.0%)
Delirium positive days	0 (0, 0.3)	0 (0,1)
ICU length of stay ^f , days	8.4 (5.0, 13.1)	7.7 (4.9, 11.1)
ICU admit to acute hospital discharge ^f , days	14.9 (9.2, 31.2)	17.2 (12.2, 26.5)
ICU discharge to acute hospital discharge ^g , days	6.0 (3.9, 12.4)	9.0 (5.5, 14.5)
Acute hospital stay ^g , days	17.2 (10.5, 29.7)	17.9 (13.0, 29.4)
ICU discharge destination, n (%)		
Acute hospital ward	35 (97%)	33 (92%)
Died in ICU	1 (3%)	3 (8%)
Acute hospital discharge destination, n		

Home	31 (86%)	27 (75%)
Died in Hospital	1 (3%)	5 (14%)
Transferred to a rehabilitation facility	4 (11%)	4 (11%)
Days alive and out of hospital		
Days	162 (145, 169)	156 (126, 166)
% days	90 (81, 94)%	87 (70, 92)%

492 ^a Coefficient of variation reported as a percentage

493 ^b Ultrasound calculated as the percentage change from baseline, reported as mean (standard deviation)

^c MRC Sum Score: reported for participants who completed all twelve muscle tests.

495 ^d Handgrip strength calculated as the average of left and right tests. If one side was unable to be tested the

496 value of the tested side was utilized.

497 ^e Functional milestones calculated in days from ICU admission till first achieved functional task,

498 ^f Length of stay for participants who survived ICU admission

499 ^g Length of stay for participants who survived acute hospital admission

500 Participants who passed away prior to the assessment timepoint were excluded from the analysis.

501 Quality of life measured by EQ5D-5L Visual Analogue Scale.

502 CV: Coefficient of variation, ICU: intensive care unit, IQR: interquartile range, MRC: medical research

503 council, FSS ICU: Functional status score for the intensive care unit.

504 Unless otherwise stated variables reported as median (interquartile range).

505

506 Table 3. Findings from generalised linear (mixed) models expressing coefficient (beta, odds ratio, incidence 507 rate ratio) for group effect (or group by time interaction when repeated measures) or time-to-event analyses 508 (hazard ratio) for primary and secondary outcomes.

Model dependent variable	Coefficient ^a	95% confidence intervals	<i>p</i> value
Change in rectus femoris cross-sectional area ^b			
Day 3	Referent		
Day 7	b=8.52	-2.01 to 19.04	0.11
Day 10	b=3.39	-6.86 to 13.64	0.52
Change in rectus femoris thickness ^b			
Day 3	Referent		
Day 7	b=4.84	-6.96 to 16.63	0.42
Day 10	b=6.60	-4.90 to 18.10	0.26
Change in vastus intermedius thickness ^b			
Day 3	Referent		
Day 7	b=-3.89	-18.88 to 11.10	0.61
Day 10	b=0.83	-13.79 to 15.46	0.91
6-minute walk test ^{cd}	b=16.44	-60.54 to 94.07	0.68
ICU acquired weakness ^e	OR=1.79	0.13 to 25.62	0.67
Handgrip strength ^f	b=-0.22	-2.45 to 2.01	0.85
ICU mobility scale °	b=0.92	-0.24 to 2.07	0.12
Functional status score ICU	b=-1.53	-4.84 to 1.77	0.36
Functional milestones ^{cg}	Hazard ratio		
Sit out of bed	HR=1.14	0.70 to 1.85	0.59
Standing	HR=1.06	0.65 to 1.72	0.81
Mobilised with assistance	HR=1.05	0.65 to 1.70	0.84

Mobilised independently	HR=1.23	0.74 to 2.03	0.43
Delirium incidence ^c	OR=0.59	2.13e ⁻⁸ to 1.64e ⁷	0.95
Delirium days ^h	IRR=0.61	0.25 to 1.46	0.27
Health-related quality of life (EQ5D-5L) ⁱ			
Day 10	Referent		
3-months	b=0.05	-0.09 to 0.20	0.47
6-months	b=0.10	-0.04 to 0.25	0.17

509 ^a Coefficients are reported for the group variable when only one assessment, or for group by time interactions when 510 repeated measures; ^b Ultrasound calculated as a percentage change from baseline (repeated assessments), ^c Single 511 assessment or timepoint, therefore, no coefficient for assessment and group by time, ^d Bias corrected confidence 512 intervals generated via bootstrapping used due to irregular distribution of 6-minute walk test, ^e ICU acquired weakness: 513 reported for participants who completed all twelve muscle tests of the Medical Research Council sum score, ^f Handgrip 514 strength calculated as the average of left and right tests. If one side was unable to be tested the value of the tested side 515 was utilised, ^g Functional milestones calculated in days from ICU admission till first achieved functional task, ^h Delirium 516 days calculated for days when participants were able to be assessed while in ICU, ICU: intensive care unit, ⁱ EQ5D-5L: 517 EuroQual 5-dimensions 5-levels utility score (reference: Norman R, Cronin P, Viney R. A pilot discrete choice 518 experiment to explore preferences for EQ-5D-5L health states. Applied health economics and health policy.

519 2013;11(3):287-298),

520 ICU: intensive care unit, b: beta coefficient, OR: odds ratio, HR: hazard ratio, IRR: incident rate ratio.

524 Supplementary Material 1. Physiotherapy care received according to group allocation

Physiotherapy Intervention	In-bed cycling group	Usual Care Group
ICU		
Respiratory session	10 (7, 15)	10 (6, 15)
Passive range of motion	3 (1, 5)	3 (1, 6)
Active rehabilitation session	3 (2, 5)	3 (2, 5)
Acute medical or surgical ward ^a		
Respiratory session	4 (1, 5)	3 (2, 4)
Rehabilitation session	4 (3, 6)	4 (2, 6)

^a Number of interventions occurring in the first week following ICU discharge,

526 ICU, intensive care unit.