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The charge transport and the noise of a quantum wire network, made of three semi-infinite external
leads attached to a ring crossed by a magnetic flux, are investigated. The system is driven away
from equilibrium by connecting the external leads to heat reservoirs with different temperatures
and/or chemical potentials. The properties of the exact scattering matrix of this configuration as a
function of the momentum, the magnetic flux and the transmission along the ring are explored. We
derive the conductance and the noise, describing in detail the role of the magnetic flux. In the case
of weak coupling between the ring and the reservoirs, a resonant tunneling effect is observed. We
also discover that a non-zero magnetic flux has a strong impact on the usual Johnson-Nyquist law
for the pure thermal noise at small temperatures.

Corresponding author: v.caudrelier@city.ac.uk, tel: +44(0)2070408498.

I. INTRODUCTION

In this paper we investigate the effect of ambient elec-
tromagnetic fields on quantum wire networks. We focus
on the network displayed in left hand side of fig. 1, com-
posed of a ring enclosing a magnetic flux φ, and three
semi-infinite leads. The one-body interactions at the ver-
tices Vj are described by local scattering matrices Sj ,
whereas along both the internal and external edges Ei
the charges interact with a time-independent ambient
electromagnetic field, generated by a classical potential
A(x). We show that all these interactions can be in-
corporated in a fully equivalent total scattering matrix
Sφ, leading to the effective Y-junction in the right hand
side of fig. 1. It is worth mentioning that the critical
(scale invariant) conductance properties of Y-junctions
and their phase diagram have been previously investi-
gated by different methods like bosonization1 -9, renor-
malization group and scattering techniques10 -16 and con-
formal field theory17,18. We concentrate below on some
off-critical aspects, establishing first the exact form of
Sφ. We discuss afterwards both the conductance and
the noise at finite temperature and discover some new
features, related to the finite size of the ring and the
non-trivial magnetic flux.

The system is driven away from equilibrium by attach-
ing to the external leads thermal reservoirs at (inverse)
temperatures βi and chemical potentials µi, as shown in
fig. 2. Our main goal is to study the transport proper-
ties and the noise of this configuration as a function of
the transmission t in the ring, the flux φ, the tempera-
tures βi and the chemical potentials µi. We show that
Aharonov-Bohm type oscillations with φ occur in both
the conductance and the noise. The period of these oscil-
lations equals the elementary flux quantum φ0 = 2π~c/e
associated with a single charge e. We find that the pure
thermal noise has a φ-dependent power law behavior at
small temperatures which interpolates between the usual
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FIG. 1: (Color online) Ring junction with local S-matrices
{Sj : j = 1, 2, 3} and magnetic flux φ (left) and its Y-junction
counterpart with equivalent total scattering matrix Sφ (right).
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FIG. 2: (Color online) Y-junction connected at infinity to
thermal reservoirs with temperature βi and chemical potential
µi.

linear Johnson-Nyquist behavior and a new, quadratic
behavior for values of φ greater than a critical value φc
which we quantify. Finally, as functions of µi, the cur-
rent and the shot noise show in the regime t ∼ 1 an
interesting plateaux structure, which is related to a res-
onant tunneling effect. The fundamental and essentially
unique input for deriving these results is the requirement
of self-adjointness of the Schrödinger Hamiltonian with
magnetic flux φ on the graph in fig. 1.
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We would like to mention also that the wires, displayed
in the figures of this paper, are planar and in most of the
cases have straight line edges. However, the discussion
below is completely general and applies to segments of
arbitrary smooth curves in R3 as well. What is essential
is to have a well defined tangent vector field along the
edges Ei, i = 1, 2, 3, in order to define the projection
Ax(x, i) of the ambient field A(x) on the graph.

II. BULK DYNAMICS AND LOCAL VERTEX
INTERACTIONS

The dynamics in each edge is defined by the
Schrödinger equation (we use natural units c = ~ = 1)[

i∂t +
1

2m
(∂x − ieAx(x, i))

2

]
ψ(t, x, i) = 0 , (1)

where (x, i) are local coordinates on Ei. Besides the bulk
dynamics, we have to introduce also the interaction at the
vertices Vj , which represents a subtle point. Some recent
developments19,21 in the spectral theory of operators on
graphs have shown that these two ingredients are not
independent22,23, if one requires unitary time-evolution
of the system. The reason is that the time evolution in
the bulk is described by a Hermitian Hamiltonian, which
becomes self-adjoint only by imposing special boundary
conditions at the vertices. These conditions generate
particular point-like interactions, which are described by
specific (and not arbitrary) scattering matrices Sj , asso-
ciated with each vertex Vj of the graph. Let us illustrate
the phenomenon using for simplicity the bulk Hamilto-
nian −∂2x corresponding to (1) with e = 0. Assume that
the vertex V with local coordinate x = 0 is the origin of n
edges Ei. The most general boundary condition ensuring
that −∂2x has a self-adjoint extension at x = 0 is19–21

n∑
j=1

[λ(I− U)ij ψ(t, 0, j)− i(I + U)ij(∂xψ)(t, 0, j)] = 0 ,

(2)
where U is an arbitrary n× n unitary matrix and λ is a
real parameter with the dimension of mass. U = I and
U = −I generalize to a vertex with multiple edges the
familiar Neumann and Dirichlet boundary conditions on
the half line. The point-like interaction, induced by (2),
generates19,21

S(k) = − [λ(I− U)− k(I + U)]

[λ(I− U) + k(I + U)]
, k ∈ R , (3)

which defines a family of unitary scattering matrices
parametrized by U ∈ U(n), with a special momentum
dependence. S(k) is a meromorphic function with simple
poles, all of which located on the imaginary axis and dif-
ferent from 0. It turns out8 that S(k) preserves time re-
versal invariance if and only if S(k) is symmetric. We will
use this information when discussing below the breaking
of time reversal symmetry caused by the magnetic flux.

The critical (scale-invariant, i.e. k-independent) points
Sc = S(k = λ) = U in the family (3) capture the uni-
versal features of the local vertex interactions and play
therefore a distinguished role. Furthermore, imposing
time-reversal invariance implies8 that Sc is a symmetric
matrix belonging to the orthogonal group O(n). Let us
consider the case n = 3, relevant for the Y-junction in fig.
1, and let us assume that the internal edges of each local
junction are equivalent as far as transmission and reflec-
tion are concerned. Labeling these edges by the indices 2
and 3, the matrix elements of Sc must be invariant under
the exchange 2↔ 3. These requirements fully determine
the solutions for Sc which are of two types. There are
two one-parameter families

Sc±(t) = ±

 1− 2t ε
√

2t(1− t) ε
√

2t(1− t)

ε
√

2t(1− t) t− 1 t

ε
√

2t(1− t) t t− 1

 ,

(4)
where ε2 = 1 and t ∈ (0, 1) is the transmission coeffi-
cient controlling the local tunneling between the edges
2 and 3 of the junction. And there are eight discrete
solutions which we discard in the following as they de-
scribe disconnected external leads. Since det(Sc±) = ±1,
the matrices (4) belong to the two disconnected compo-
nents of O(3). The matrix Sc−(t = 1/2) (with ε = 1)
has been introduced in Ref.33. In34 the matrices Sc±(t)
(with ε = 1) have been considered for generic t ∈ [0, 1].
We argued above that Sc±(t) are critical points in the set
of all scattering matrices ensuring the self-adjointness of
the Schrödinger Hamiltonian on the graph in fig. 1.

The above considerations can be extended to the case
e 6= 0, performing the shift ∂x 7−→ ∂x − ieAx(x, i) in eq.
(2). Introducing the magnetic flux

φ =

∮
C

A(x) · d` , (5)

where C is the ring in fig. 1, the shift generates eφ-
dependent phases that charges pick up traveling along
the edges. These phases are transferred29,35 by a kind of
“gauge” transformation to the matrix U and therefore to
S(k). We set for simplicity e = 1 in the rest of the paper.

III. THE TOTAL SCATTERING MATRIX Sφ

The problem now is to reconstruct the total scattering
matrix Sφ in fig. 1 from the local ones. Several equiva-
lent schemes24-28 exist for facing this problem. We follow
below the approach of28, which adapts better to the case
with ambient magnetic field and provides explicit expres-
sions. Since the form of Sφ for a generic ring junction
with general local scattering matrices is quite compli-
cated, we simplify the considerations by focusing on the
case of identical local scattering matrices given by (4)
and equidistant vertices, separated by a distance d along
the ring. In this case the system is invariant under cyclic
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permutations, implying that Sφ is a circulant matrix, i.e.

Sφ±(k) =

 σ±1 (k, φ) σ±2 (k, φ) σ±3 (k, φ)
σ±3 (k, φ) σ±1 (k, φ) σ±2 (k, φ)
σ±2 (k, φ) σ±3 (k, φ) σ±1 (k, φ)

 , (6)

where35

σ±j (k) =
1

3

3∑
`=1

ei
2π
3 (1−`)(j−1)λ±

(
k,
φ+ 2(`− 1)π

3

)
,

(7)
with

λ±(k, θ) = ∓t(cos θ ∓ cos kd)± i(t− 1) sin kd

t(cos θ ∓ cos kd)∓ i(t− 1) sin kd
. (8)

Although the local scattering matrices are k-independent
and ε-dependent, the total one depends on the parameter
kd, involving the size of the ring, but not on ε.

Equations (6, 7, 8) represent a fundamental point of
our investigation and determine the following set of total

scattering matrices {Sφ±(k; d, t) : d ≥ 0, t ∈ [0, 1]}. Since

Sφ±(k; 0, t) = ∓I , (9)

which describe three disconnected edges, we take in the
rest d 6= 0. Moreover, since

Sφ−(k; d, t) = −S(φ+π)+ (k; d, t) , (10)

without loss of generality we concentrate in what follows

on Sφ+, omitting for simplicity the index +. Observing
that

σ2(k, φ) 6= σ3(k, φ) , for φ 6= 3nπ , n ∈ Z , (11)

we conclude that time reversal invariance is broken (Sφ
is not symmetric), except for the fluxes φ = 3nπ.

We focus at this point on the transmission amplitudes

τ+(k, φ) ≡ |σ2(k, φ)| , τ−(k, φ) = |σ3(k, φ)| , (12)

and the reflection amplitude

%(k, φ) ≡ |σ1(k, φ)| , (13)

which satisfy (due to unitarity) the expected relation

%2(k, φ) + τ2+(k, φ) + τ2−(k, φ) = 1 , (14)

among probabilities. One can verify that both τ± and %
are periodic in φ with period φ0 = 2π. The period φ0 has
a deep physical meaning. In fact, recalling our conven-
tion c = ~ = e = 1, φ0 equals precisely the elementary
flux quantum 2π~c/e associated with a single charge e
and appearing36 in the context of Aharonov-Bohm type
oscillations in non simply connected mesoscopic systems.
Note also that

%(k, φ) = %(k,−φ) , τ−(k, φ) = τ+(k,−φ) (15)

Hence, we can restrict φ to [0, 2π] and even to [0, π]
when dealing with quantities involving only %. We em-
phasize that both % and τ± are k-dependent, in spite of
the fact that the local scattering matrices (4) are con-
stant. This dependence is a direct consequence of the
finite size of the ring. In fact, the momentum k enters %
and τ± only through the dimensionless combination kd.
It follows from (8) that % and τ± are 2π/d-periodic in
k, the shape of the oscillations being strongly influenced
by the transmission t and the flux φ. The behavior of
the probability τ2− for d = 1, shown in fig. 3, confirms
this statement. The dashed (black) and the continuous
(red) lines describe the oscillations for φ = 0 (left) and
φ = π/4 (right) for t = 0.5 and t = 0.99 respectively. As
already observed, for t ∼ 1 the external edges are almost
isolated. Accordingly, in this regime, one expects very
small transmission amplitudes. This is indeed the case
with the exception of the momenta k = ±φ+2πn

3d , charac-
terized by the appearance of sharp peaks with maximum
close to 4/9 and corrections of order 1 − t. For φ 6= nπ,
there are six of them in each k interval of length 2π/d and
only three if φ = nπ. fig. 3 illustrates the phenomenon
for φ = 0 (left) and φ = π/4 (right). Because of (14), the
behavior of the reflection amplitude % is complementary.

0 1 2 3 4 5 6
0.0

0.1

0.2

0.3

0.4

k

Τ _
2

0 1 2 3 4 5 6
0.0
0.1
0.2
0.3
0.4
0.5
0.6

k

Τ _
2

FIG. 3: (Color online) τ2−(k, φ, d = 1) for t = 0.5 (dashed
black line) and t = 0.99 (continuous red line) for φ = 0 (left)
and φ = π/4 (right).

We stress that at t = 1 the amplitudes τ± become
actually discontinuous in k. One has indeed

lim
t→1

τ±(k, φ) =

{
2
3 , k = ±φ+2πn

3d , n ∈ Z ,
0 , k 6= ±φ+2πn

3d .
(16)

This special k-dependence of τ± for t ∼ 1 is at the ori-
gin of the resonant tunneling effect on the current and
the shot noise discussed below. Similar phenomena show
up in the other limit t ∼ 0. In both cases, the exter-
nal edges become almost disconnected, see (4). Thus,
the resonnant tunneling effect signals a kind of topology
change.

Another type of discontinuities of τ±, which involves
the magnetic flux and deserves attention, is described by

lim
k→ 2lπ

d

τ±(k, φ) =

{
2
3 , φ = nφ0 , l, n ∈ Z ,
0 , φ 6= nφ0 .

(17)

This behavior is at the origin of the effect on the pure
thermal noise at small temperatures discussed below.



4

IV. CURRENTS, CONDUCTANCE AND NOISE

To the end of the paper we study the non-equilibrium
transport properties of the Y-junction in fig. 2 with
thermal reservoirs at inverse temperatures βi and chem-
ical potentials

µi = kF − Vi , i = 1, 2, 3 , (18)

where kF defines the Fermi energy and Vi is the exter-
nal voltage applied to the edge Ei. In what follows we
keep kF fixed, varying eventually the gate voltages Vi.
The system is away from equilibrium if Sφ admits at
least one non-trivial transmission coefficient among edges
with different βi and/or µi. The corresponding non-
equilibrium dynamics is implemented by a steady state
Ωβ,µ, characterized by non-vanishing time-independent
charge and heat currents circulating along the leads.
The construction29 of Ωβ,µ involves the scattering ma-
trix Sφ and fully takes into account both the minimal
coupling with the external magnetic field and the ver-
tex interactions. We denote in what follows the expec-
tation values in the state Ωβ,µ by 〈· · · 〉β,µ and stress
that the current correlation functions 〈jx(t, x, i)〉β,µ and
〈jx(t1, x1, i1)jx(t2, x2, i2)〉β,µ used below are exact. No
approximations, like linear response theory, are adopted.

For the one-point function one finds the Landauer-
Büttiker30,31 expression

Ji ≡ 〈jx(t, x, i)〉β,µ =

∫ ∞
0

dk

2π

k

m

3∑
j=1

[
δij − |Sφij(k)|2

]
dj(k)

(19)
where

di(k) =
e−βi[ω(k)−µi]

1 + e−βi[ω(k)−µi]
, ω(k) =

k2

2m
, (20)

is the familiar Fermi distribution. The periodicity of
|σi(k)| in φ implies that Ji oscillate with period φ0. The
unitarity of Sφ leads to the t-independent bound

|Ji| ≤
1

2πβi
log
[
1 + e(kF−Vi)βi

]
, (21)

on the amplitude of the oscillations. Introducing the vari-
able ξ = k2/2m and using that the Fermi distribution
(20) approaches the Heaviside step function θ(µi − ξ) in
the zero temperature limit βi → ∞, one obtains from
(19)

Ji = θ(µi)
µi
2π
−

3∑
j=1

θ(µj)

∫ µj

0

dξ

2π

∣∣∣Sφij (√2mξ
)∣∣∣2 . (22)

We will compare below (22) to the shot noise.
In order to get a more precise idea on the dependence

of the current Ji on φ, the transmission t and the temper-
ature β, we concentrate on (19). The k-integration can
not be performed in a closed analytic form, but being well

defined, the integral can be computed numerically. The
plots in fig. 4 illustrate the result for d = 1, m = 1/2,
kF = 3, V1 = −V2 = −5 and V3 = 0. The first line
displays J1 as a function of t for φ = 0 (dashed line)
and φ = 2π/3 (continuous line) at β1 = β2 = β3 = 10
(left) and β1 = β2 = β3 = 0.1 (right). As expected, the
current vanishes at t = 0, 1, when the external edges are
isolated from each other. We see also that the position
of the maximum of J1 depends on the flux and the tem-
perature. In the second line of fig. 4 we report J1 as
a function of φ at t = 0.4 (dashed) and t = 0.7 (con-
tinuous), which show the expected oscillation in φ with
period φ0. The continuous (red) lines illustrate the im-
pact of the higher harmonics nφ0, which become relevant
for t > 0.5.
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FIG. 4: (Color online) J1(φ, t) for fixed φ (first line) and fixed
t (second line) at βi = 10 (left) and βi = 0.1 (right).

The zero frequency noise power is defined as usual32

by

Pij = lim
ν→0+

∫ ∞
−∞

dt eiνt 〈jx(t, x1, i)jx(0, x2, j)〉connβ,µ , (23)

where 〈jx(t1, x1, i)jx(t2, x2, j)〉connβ,µ is the connected
current-current correlation function in the state Ωβ,µ. It
turns out29 that Pij is x1,2-independent and is given by

Pij =
1

m

∫ ∞
0

dk

2π
k
{
δijDii(k)− |Sφij(k)|2Djj(k)

−|Sφji(k)|2Dii(k) +

3∑
l,m=1

Fijlm(k)[Dlm(k) +Dml(k)]
}
,(24)

where

Fijlm(k) =
1

2
Sφil(k)Sφjl(k)Sφjm(k)Sφim(k) (25)

and Dij(k) ≡ di(k)[1−dj(k)]. Pij is a symmetric matrix.
To study the thermal noise, we assume µi = µ and βi =
β. Using the Kirchhoff rule

∑3
i=1 Pij = 0, we get the

circulant matrix

Pij = P (3 δij − 1) /2 (26)
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where

P ≡ P (T, φ) =
2

m

∫ ∞
0

dk

2π
kD(k)

[
τ2−(k, φ) + τ2+(k, φ)

]
(27)

with D(k) ≡ d(k)[1 − d(k)] and T = 1/β. Like the con-
ductance, P oscillates in φ with period φ0. From (15),
P is an even function of φ so it is enough to study it
on [0, π]. The bound on the amplitude, following from
unitarity is now

0 ≤ P ≤ 2

m

∫ ∞
0

dk

2π
kD(k) =

1

πβ (1 + e−βµ)
. (28)

Define

g(T, φ) =
∂ lnP (T, φ)

∂ lnT
. (29)

The numerical study confirms that g = 1 at large tem-
peratures T → ∞, independently of the flux φ. In this
regime one recovers therefore the well-known Johnson-
Nyquist behavior P ∼ T . The situation changes drasti-
cally as T → 0. For µ = 0, the pure thermal noise has
the following power law type behavior as T → 0

g(T, φ) =


1 , φ = 0 ,

η(φ) , 0 ≤ φ ≤ φc ,
2 , φc ≤ φ ≤ π ,

(30)

where the critical value φc scales like (mT )
1
4 . We have

numerical evidence that η, as a function of φ/φc, is a uni-
versal T -independent profile, interpolating between the
linear (g = 1 at φ = 0) and quadratic (g = 2 for φ > φc)
behavior of P . This was checked over four orders of mag-
nitude in temperature and is shown in fig. 5.
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1.0
1.2
1.4
1.6
1.8
2.0

Φ

g!T,Φ
"

0.0 0.2 0.4 0.6 0.8 1.0
1.0
1.2
1.4
1.6
1.8
2.0

Φ!Φc

Η

FIG. 5: (Color online) Left: full behavior of g(T, φ) (for T =
10−5 and other parameters as before). Dashed line shows φc.
Right: universal profile η as a function of the rescaled flux
φ/φc (zoom of the interpolation region).

Therefore, we conclude that a nonzero magnetic flux
in the Y-junction implies a significant modification of the
Johnson-Nyquist law at small temperature. This new
feature provides an interesting signature of a physical
effect that hopefully can be observed experimentally.

Let us investigate finally the shot noise following from
eq.(24). For this purpose we set βi = β and take the

β → ∞ limit, keeping µi > 0 arbitrary. Adopting the
variable ξ = k2/2m one gets

Pij =

3∑
l 6=m=1

ε(µl − µm)

∫ µl

µm

dξ

2π
Fijlm

(√
2mξ

)
, (31)

ε being the sign function. Note that since Pij is symmet-
ric and satisfies the Kirchhoff rule, we only need to com-
pute the diagonal elements Pii in order to reconstruct the
complete matrix. Indeed, one has Pij = 1

2 (Pkk−Pii−Pjj)
for mutually distinct i, j, k and the diagonal elements
read

Pii = 2

3∑
l<m=1

ε(µl − µm)

∫ µl

µm

dξ

2π
Fiilm

(√
2mξ

)
. (32)

Assuming for definiteness that µ1 < µ2 < µ3, one obtains

P11 =

∫ µ2

µ1

dξ

2π
%2(1− %2) +

∫ µ3

µ2

dξ

2π
τ2−(1− τ2−) , (33)

P22 =

∫ µ2

µ1

dξ

2π
τ2−(1− τ2−) +

∫ µ3

µ2

dξ

2π
τ2+(1− τ2+) , (34)

P33 =

∫ µ2

µ1

dξ

2π
τ2+(1− τ2+) +

∫ µ3

µ2

dξ

2π
%2(1− %2) , (35)

where % and τ± are computed at k =
√

2mξ. Compared
to the pure thermal noise (26,27), the shot noise involves
the fourth order powers of % and τ± as well. Their de-
pendence on φ implies that Pii oscillate with period φ0.
The amplitude is subject to the obvious unitarity bound

0 ≤ Pii ≤ µ3 − µ1 . (36)

We study finally the behavior of the shot noise as a
function of the chemical potentials µi, or equivalently, the
voltages Vi in (18). It is instructive to do this, comparing
Pii with the zero-temperature steady current Ji given
by (22), and the transmission amplitude τ±. For this
purpose we fix m = 1/2, µ1 = µ2 = d = 1 and vary µ3.
In this regime

J1(φ) = −
∫ µ3

1

dξ

2π
τ2− , P11(φ) =

∫ µ3

1

dξ

2π
τ2−(1− τ2−) .

(37)
An interesting resonant tunneling effect, depending on

φ, is observed for t ∼ 1. This corresponds to the sit-
uation where the external edges are weakly coupled to
the ring. The peaks in the transmission amplitudes τ±,
shown in fig. 3, can be interpreted as resonances corre-
sponding to eigenstates of the ring. A similar situation
was discussed in3,34 in the case of the ring with two ex-
ternal edges and the same physical interpretation holds
here. As the voltage is increased, these resonances gener-
ate plateaux in the shot noise Pii and the current Ji. This
fact is illustrated in fig. 6, where we plotted τ2−(

√
µ3)/2π

(continuous red curve), P11(µ3) (dashed black curve) and
J1(µ3) (dotted blue curve). Switching on the magnetic
field changes the location of the peaks and hence the lo-
cation of the jumps from one plateau to the next.
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FIG. 6: (Color online) Plots of P11 (black dashed), J1 (blue
dotted) and τ2−/2π (red continuous) at t = 0.99 for φ = 0
(left) and φ = π/4 (right).

V. CONCLUSIONS

The transport properties of fermions in a Y-junction
with a finite size ring, connected to thermal reservoirs
and crossed by magnetic flux φ, have been investigated.
The bulk dynamics is described by the Schrödinger equa-
tion with the minimal coupling to an ambient electro-
magnetic field. At the vertices, the most general scale
invariant local interactions, compatible with a unitary
time evolution, are considered. The exact expression for
the total scattering matrix Sφ of the system is funda-
mental for our investigation. The non-equilibrium dy-
namics, generated by the contact to the heat baths, is

captured by steady states Ωβ,µ incorporating Sφ. It is
essential that our framework does not rely on conformal
symmetry, thus allowing us to investigate directly a fi-
nite size ring. The conductance and the noise power are
extracted from the current correlation functions in the
state Ωβ,µ. We find a resonant tunneling effect when the
ring is weakly coupled to the external leads. Another in-
teresting phenomenon concerns the influence of the mag-
netic flux on the noise (and conductance). For φ 6= 0,
we found a drastic departure from the linear Johnson-
Nyquist law for small temperatures. Let us mention in
this respect that the same analysis applies to a Dirac
Y-junction which shows an interpolation between linear
and cubic (instead of quadratic) power law behavior, the
difference being a consequence of the linear dispersion re-
lation of the Dirac equation35. To investigate dephasing
effects37 in the transport along the ring, one should intro-
duce electron-electron bulk interaction in the framework.

All the physical information about the Y-junction has
been extracted in our discussion from the one-point and
two-point current correlation functions. It will be inter-
esting to extend the above analysis to the higher corre-
lators, thus investigating the effect of the magnetic flux
on the full counting statistics38, which provides further
details about the system.
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16 D. N. Aristov and P. Wölfle, Phys. Rev. B 84 (2011)

155426.
17 M. Oshikawa, C. Chamon, and I. Affleck, J. Stat. Mech.

(2006) P02008.
18 A. Rahmani, C.-Y. Hou, A. Feiguin, M. Oshikawa, C. Cha-

mon and I. Affleck, Phys. Rev. B 85 (2012) 045120.
19 V. Kostrykin and R. Schrader, J.Phys. A: Math. Gen. 32

(1999) 595; Fortschr. Phys. 48 (2000) 703.

20 V. Kostrykin and R. Schrader, Commun. Math. Phys. 237
(2003) 161.

21 M. Harmer, J. Phys. A 33 (2000) 9015.
22 B. Bellazzini and M. Mintchev, J. Phys. A 39 (2006) 11101.
23 B. Bellazzini, M. Burrello, M. Mintchev and P. Sorba,

Proc. Symp. Pure Math. 77 (2008) 639.
24 V. Kostrykin, R. Schrader, J. Math. Phys. 42 (2001) 1563.
25 M. Mintchev and E. Ragoucy, J. Phys. A 40 (2007) 9515.
26 E. Ragoucy, J. Phys. A 42 (2009) 295205.
27 S. Khachatryan, A. Sedrakyan and P. Sorba, Nucl. Phys.

B 825 (2010) 444.
28 V. Caudrelier, E. Ragoucy, Nucl. Phys. B 828 (2010) 515.
29 M. Mintchev, J. Phys. A 44 (2011) 415201.
30 R. Landauer, IBM J. Res. Dev. 1 (1957) 233; Philos. Mag.

21 (1970) 863.
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