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Abstract

We study conditions for the existence of stable and (group)-strategy-
proof mechanisms in a many-to-one matching model with contracts if stu-
dents’ preferences are monotone in contract terms. We show that “equiva-
lence”, properly defined, to a choice profile under which contracts are sub-
stitutes and the law of aggregate demand holds is a necessary and sufficient
condition for the existence of a stable and (group)-strategy-proof mecha-
nism.

Our result can be interpreted as a (weak) embedding result for choice
functions under which contracts are observable substitutes and the observ-
able law of aggregate demand holds. JEL-classification: C78, D47
Keywords: Matching with contracts; College admission; Substitutes; Ob-
servable Substitutes; Strategy-Proofness; Deferred Acceptance

1 Introduction

Centralized clearing houses based on the deferred-acceptance mechanism are at
the heart of many successful matching markets (Roth, 1984a; Abdulkadiroglu and
Sönmez, 2003; Sönmez and Switzer, 2013; Sönmez, 2013). Deferred-acceptance

∗The current paper extends and supersedes a paper entitled ”Virtual Demand and Stable
Mechanisms”, an extended abstract of which appeared in the Proceedings of the 2016 ACM
Conference on Economics and Computation (EC’16). Chapter 4 of the original paper has been
published as an independent working paper with the title “Group-Strategy-Proof Mechanisms
for Job Matching with Continuous Transfers”. I am grateful to my adviser Bettina Klaus for
many useful comments that greatly improved the paper and to Sangram Kadam for many in-
sightful discussions. I thank Battal Doğan, Federico Echenique, Ravi Jagadeesan, Flip Klijn,
Fuhito Kojima, Maciej Kotowski, Jordi Massó, an anonymous referee, participants of the 2016
Meeting of the Social Choice and Welfare Society, the 17th ACM Conference on Economics and
Computation, the 2018 ASSA meetings, the 5th Match-UP workshop, the Lisbon game theory
meetings, seminar participants at Bocconi University, in Marseille, in Maastricht, at City Univer-
sity and at Hitotsubashi University for comments on a previous version of the paper. I gratefully
acknowledge financial support by the Swiss National Science Foundation (SNSF) under project
100018-150086.
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mechanisms are appealing because they produce stable outcomes, meaning that no
subgroup of agents can find a mutually beneficial deviation and, thus, would have
a reason to contract outside the market.1 Moreover, it is safe for the applying side
of the market to report true preferences to the mechanism. Thus, the mechanism
successfully aggregates the information in the market and levels the playing field
for both naive and sophisticated participants.

In some applications, the market does not only match agents, but determines
also the contractual details of the match. In a labor market, firms and workers
may have some discretion on how to set the salary. In a college admission prob-
lem, students can be admitted with or without a stipend. In the cadet-to-branch
match (Sönmez and Switzer, 2013), cadets can choose between different lengths of
service time in exchange for a higher priority in their branch of choice. These mar-
kets can be understood as hybrids between matching markets and auctions and
have first been analyzed in the seminal paper of Kelso and Crawford (1982), with
later important extensions by Roth (1984b); Fleiner (2003); Hatfield and Milgrom
(2005); Hatfield and Kojima (2009) among others. The central mechanism design
result in this context states that in a model of many-to-one matching with en-
dogenous contracting, a generalized version of the deferred-acceptance mechanism
can be defined, and is stable and group-strategy-proof under the assumption that
contracts are substitutes for colleges2 and the law of aggregate demand holds.3

Moreover, the deferred acceptance algorithm is outcome equivalent to the cumu-
lative offer algorithm which is a natural modification of the deferred acceptance
algorithm. In the cumulative offer algorithm not only acceptances, but also rejec-
tions are deferred; in each round of the algorithm, colleges are allowed to choose
among all applications they have received so far including those that they have
previously rejected.

In this paper, we study stable and (group)-strategy-proof mechanisms for
matching markets with contracts in which students have monotone preferences
in contract-terms,4 and explore how much the assumptions of substitutability and
the law of aggregate demand can be relaxed in this context. Our research ques-
tion is motivated by the observation that in many applications, there is a natural
ordering over contracts terms, and it is reasonable to assume that preferences
are monotone with respect to the ordering: In college admission problems with
stipends (Hassidim et al., 2017; Abizada and Dur, 2017), it is natural to assume
that students prefer being admitted with a stipend to being admitted without
a stipend at the same college, or more generally, being admitted with a higher
stipend than a lower stipend at the same college.5 In the cadet-to-branch match-

1Roth (1991) provides evidence that clearing houses using unstable mechanisms tend to fail
in practice.

2In the following we call the applying side of the market “students” and the admitting side
of the market “colleges” motivated by the application of college admission. However, the model
equally applies to the other applications mentioned in this introduction.

3This means that if we expend the choice set of a college, an equal or larger number of
contracts is chosen.

4Colleges’ preferences are not necessarily monotone in our analysis.
5There is empirical evidence that monotonicity is violated for reported preferences of some

participants in the Israeli psychology match, see Hassidim et al., 2020. But it seems likely
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ing model of Sönmez and Switzer (2013) the contract-term is the service time in
the military and it is natural to assume that cadets prefer a shorter to a longer
service in the same branch. This assumption is for example made in the analysis
of Jagadeesan (2019). For the medical match, mechanisms which allow for flex-
ible salaries have been proposed (Crawford, 2008), and it seems reasonable that
doctors in these mechanisms would prefer working for a higher salary rather than
a lower salary at the same hospital.

We study conditions on choice functions of colleges under which a stable and
(group)-strategy-proof matching mechanism exists for our model. Since we work
with monotone preferences for students, sufficient conditions on choice functions
of colleges are generally weaker. This is because certain preference manipulations
are ruled out by our model. A student must report monotone preferences. Thus,
a student cannot, e.g., rank being admitted to a college without a stipend above
being admitted to the same college with a stipend.6 Our main result is a charac-
terization of a sufficient and necessary (in the maximal domain sense) condition
for the existence of a stable and (group)-strategy-proof mechanism in terms of
“equivalence” of choice functions: Two choice functions are equivalent if the cu-
mulative offer algorithm yields the same outcome under either choice function, for

that these monotonicity violations can be attributed to students failing to play the weakly
dominant strategy of revealing preferences truthfully, rather than to them having non-monotone
preferences.

6Similarly, weaker conditions are sufficient to guarantee the existence of stable allocations
than those for markets with non-monotone preferences. To illustrate this point, consider a
college admission problem of the following kind: There are two colleges c1, c2 and three students
s1, s2, s3. Suppose there are two kinds of contracts: A student can be admitted with stipend
(represented by the contract term ”1”) or without stipend (represented by the contract term
”0”). The colleges have choice functions induced (in the usual way) by the following preferences

{(s1, 0), (s2, 0), (s3, 0)} �c1 {(s2, 0)} �c1 {(s2, 1)} �c1 ∅ �c1 . . .

{(s1, 0)} �c2 {(s3, 0)} �c2 ∅ �c2 . . .

Suppose student always prefer to be admitted at a college under a stipend to being admitted
at the same college without a stipend. Going through all different cases, one can show that, for
any preferences satisfying this monotonicity assumption, a stable allocation (in the matching
with contracts sense) exists. This changes if students can report non-monotonic preferences.
Consider the following preferences:

(c1, 1) �s1 (c2, 1) �s1 (c1, 0) �s1 (c2, 0) �s1 ∅
(c1, 0) �s2 (c1, 1) �s2 ∅ �s2 . . .

(c2, 1) �s3 (c1, 1) �s3 (c2, 0) �s3 (c1, 0) �s3 ∅

Student s2 prefers to go to college c1 without a stipend rather than a stipend. Thus, in a stable
allocation it will never be the case that s2 goes to college c1 with a stipend, because otherwise
c1 and s2 could block that allocation. This in turn implies that no stable allocation exists: The
allocation that matches all three students to c1 without stipend is blocked by student s3 and
college c2. Any allocation that matches s1 to c2 without stipend is blocked by students s1, s2 and
s3 being admitted to college c1 without stipend. Any allocation that matches s3 to c2 without
stipend is blocked by student s1 being admitted to college c2 without a stipend. Finally, all
other allocations are either not individually rational or blocked by students s1, s2 and s3 being
admitted to college c1 without a stipend.
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any preferences and choice functions for the other agents. If for each college an
equivalent choice function exists under which contracts are substitutes and the
law of aggregate demand holds, then the mechanism that assigns to each profile
of preferences the outcome of the cumulative offer algorithm, or equivalently the
outcome of the deferred acceptance algorithm, is group-strategy-proof, both under
the equivalent choice profile and, by definition of equivalence, under the original
choice profile.

We proceed as follows: First we show (Theorems 1 and 2) that an equivalent
choice function under which contracts are substitutes and the law of aggregate
demand holds exists, if and only if under the original choice function contracts are
observable substitutes (in the sense of Hatfield et al., 2020) and the observable law
of aggregate demand holds.7 The result crucially relies on our monotonicity as-
sumption on preferences: In independent work, Jagadeesan (2019) has considered
the corresponding notion of equivalence between choice functions for the general
preference domain. He shows that equivalence in that context implies unilateral
substitutability which is a much more stringent restriction than observable sub-
stitutability. Even if the notion of equivalence is relaxed, by allowing, as in the
construction of substitutable completions (Hatfield and Kominers, 2015), for non-
feasible equivalent choice functions, the corresponding result does not hold on the
general preference domain (Hatfield et al., 2020).

Our proof is constructive, by providing a natural construction of an equivalent
choice function that we call a ”virtual choice function”, and by showing that the
virtual choice function satisfies substitutability and the law of aggregate demand
if and only if the original choice function satisfies observable substitutes and the
observable law of aggregate demand. Importantly, the constructed virtual choice
function is monotone in contract terms, even if the original choice function is
non-monotone in contract terms.

Theorems 1 and 2 have several important consequences that are subsequently
spelled out: First, Theorem 1 implies (Corollory 1) that the deferred acceptance
mechanisms is group-strategy-proof if contracts are observable substitutes and the
observable law of aggregate demand holds. Second, combining the theorems with
a result of Hatfield et al. (2020), we obtain a maximal domain result (Corollary 2):
The domain of choice profiles that are equivalent to a choice profile under which
contracts are substitutes for colleges and the law of aggregate demand holds, form
a maximal Cartesian and unital8 domain for the existence of a stable and (group)-
strategy-proof mechanism. Equivalently this domain is the domain of profiles un-
der which contracts are observable substitutes and the observable law of aggregate
demand holds. Our results are stronger than the result obtained by Hatfield et al.
(2020) for monotone preferences: For monotone preferences, strategy-proofness
of the deferred acceptance mechanism can be strengthened to group-strategy-

7Importantly, observability is meant with respect to offer sequences consistent with monotone
preferences for students. Thus, the notions of observable substitutability and the observable law
of aggregate demand are weaker than the corresponding notions for the general model with
possibly non-monotone preferences.

8A domain of choice profiles is unital if it contains all profile in which each college has a unit
demand choice function, i.e. it chooses at most one contract from each set.
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proofness, and the axiom of “non-manipulability via contractual terms” in the
characterization of the maximal domain becomes redundant. Furthermore, the
notion of equivalence yields an easier and more interpretable condition on choice
functions: In particular, group-strategy-proof of the deferred acceptance mecha-
nism on the maximal domain now follows immediately from well-known previous
results due to Hatfield and Milgrom (2005) and Hatfield and Kojima (2009) applied
to the equivalent choice profile. Third, since an equivalent choice profile can be
constructed and the equivalent choice profile is monotone in contract terms (The-
orem 1), we obtain an embedding result (Corollary 3) in the sense of Jagadeesan
(2019) for the class of choice functions under which contracts are observable sub-
stitutes and the observable law of aggregate demand holds. Thus, if attention is
restricted to the case of monotone preferences for students, it is, in some sense
without loss of generality to work with the model of matching with salaries of Kelso
and Crawford (1982) rather than the full matching with contracts model.

1.1 Related Literature

Stable many-to-one matching mechanisms and their incentive properties have been
extensively studied (Hatfield and Kojima, 2010; Hatfield and Kominers, 2015;
Chen et al., 2016; Kominers and Sönmez, 2016; Hirata and Kasuya, 2017; Hatfield
et al., 2020). Most papers focus on the pure matching model or on the matching
with contracts model. Working with monotone preferences makes our model less
general than the full matching with contracts model. In particular, sufficient
conditions for stability and the existence of a stable and (group)-strategy-proof
mechanism from the literature on matching with contracts also apply to our model.
However, conditions that are necessary for the general model with contracts are
not necessary conditions for the model with monotone preferences. Thus, our
results are independent of previous results for the matching with contracts model.

In recent related work, Abizada and Dur (2017) consider a model of college ad-
missions with stipends where complementarities in contract terms are present for
colleges: In their model three contract terms {t+, t0, t−} are available, interpreted
as admission with stipend, admission without stipend but with tuition waiver, and
admission without either of the two, and the number of t−-contracts signed by a
college constraints the number of t+-contracts it signs. Importantly, students have
monotone preferences in these contract terms. The model is a special case of ours.
In particular, the result for “Max-Min Responsive” preferences can be obtained
as a special case of ours and for this case, their strategy-proofness result can be
strengthened to group-strategy-proofness. However, Abizada and Dur (2017) also
analyze pairwise-stable outcomes and this part of their analysis does not have a
counter-part in our paper.

Our original working paper (Schlegel, 2016) contained a version of our maximal
domain result for a model of matching with contracts where also colleges’ choice
functions are monotone in contract-terms. Technically the two maximal domain
results are independent. However, the adaption to obtain the previous version
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of the theorem from the current one are minimal.9 The current version of the
maximal domain result can also be obtained with a similar proof as the one in the
previous version. For the original version of the theorem, we refer the interested
reader to the original version of the working paper.

After, our original working paper (Schlegel, 2016), Hatfield et al. (2020) re-
leased a new version of their paper, where the authors extend their analysis to the
case of restricted preference domains for the applicant side and show that their
analysis of observable substitutes and the observable law of aggregate demand ex-
tends to restricted preference domains if the notion of “observability” is adjusted
to the domain restriction. Their additional work allows us to shorten the proof
of our maximal domain result, since we can now make use of their Theorem 5.
As remarked previously, our results in the current paper for monotone preferences
strengthen the results in Hatfield et al. (2020) by strengthening strategy-proofness
to group-strategy-proofness.

2 Model and Known Results

2.1 Model

There are two finite disjoint sets of agents, a set of colleges C and a set of
students S. There is a finite set of possible contract-terms T which are totally
ordered by B. Contract terms could, for example, be different amounts of stipends
that a college can pay a student, ordered from high to low stipends; in a labor
market, contract terms could be different possible wages ordered from high to low,
or working hours from short to long, etc.10 Colleges can accept students under
different bilateral contracts. The set of possible contracts is X ⊆ C×S× T . For
a contract x ∈ X, we denote by xC ∈ C the college involved in x, by xS ∈ S the
student involved in X, and by xT ∈ T the contract term involved in x. We write
xT D x′T whenever xT B x′T or x = x′. For Y ⊆ X and college c ∈ C we denote
by Yc = {x ∈ Y : xC = c} the set of contracts in Y involving c, and similarly for
a student s ∈ S we denote by Ys := {x ∈ Y : yS = s} the set of contracts in Y
involving s.

Each college c has a choice function Chc : 2Xc → 2Xc that from each set
Y ⊆ Xc chooses a subset of contracts. Each college can only sign one contract
with any given student, i.e. for each x, y ∈ Chc(Y ) with x 6= y we have xS 6= yS.
Throughout this paper, we assume that all considered choice functions satisfy the
irrelevance of rejected contracts (IRC) (Aygün and Sönmez, 2013), which

9One has to make sure that in the “necessity part” of the maximal domain proof, the profile
of unit demand choice functions for the other colleges can be chosen to be induced by monotone
preferences.

10More generally, we can deal with the case where the ordering is college-student pair specific,
i.e. for each college c ∈ C and student s ∈ S there is a total ordering Bc,s over contract terms. If
”Pareto separability” (Roth, 1984b) of contracts holds, the set T can be interpreted as the set of
”generalized salaries” in the sense of Roth (1984b) and Bc,s is derived from a parameterization
of the efficient contract frontier. Thus, also in this case, our results apply.
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means that for all Y ⊆ Xc, x ∈ Xc \ Y ,

x /∈ Chc(Y ∪ {x})⇒ Chc(Y ) = Chc(Y ∪ {x}).

We also define a rejection function Rc : 2Xc → 2Xc by Rc(Y ) := Y \ Chc(Y ). We
denote the set of all choice functions for college c ∈ C that satisfy IRC, by Cc.

Each student s has preferences �s over different contracts involving him, and
an outside option which we denote by “∅”. We make the following assumption on
students’ preferences:

1. Preferences are strict, for x, x′ ∈ X with x′S = xS, we have

x 6= x′ ⇒ x �xS x′ or x′ �xS x,

and
x �xS ∅ or ∅ �xS x.

2. Preferences are monotone in contract terms, for each x, x′ ∈ X with
xS = x′S and xC = x′C we have

xT B x′T ⇒ x �xS x′.

We denote the set of all strict and monotone preferences for student s ∈ S by Rs.
A problem is a pair (Ch,�) consisting of a choice profile Ch = (Chc)c∈C ∈
×c∈C Cc and a preference profile �= (�s)s∈S ∈×s∈SRs.

An allocation is a set Y ⊆ X that contains at most one contract per student.
We denote the set of allocations by A. For Y ∈ A, we write YS := {yS : y ∈ Y }.
An allocation Y is

individually rational in (Ch,�) if for each c ∈ C, we have Yc = Chc(Y ),
and for each y ∈ Y we have y �yS ∅,

blocked in (Ch,�) if there are c ∈ C and an allocation Z with Zc 6= Yc,
such that Zc = Chc(Y ∪ Z) and for each z ∈ Zc we have z �zS YzS ,

stable in (Ch,�) if it is individually rational and not blocked.

In the following, it will be useful to define for each set of contracts Y ⊆ Xc with
a college c the allocation

Y min := {y ∈ Y : @y′ ∈ Y, y′S = yS, yT B y′T}

of contracts that gives each student the worst contract among the contract in Y ,
and the set

U(Y ) := {x ∈ Xc : xT D yT for some y ∈ Y with xS = yS}

of contracts, not necessarily in Y , which are as least as good for the involved
student as his worst contract in Y .11 We call choice function Chc for college c ∈ C
monotone in contract-terms if for each Y ⊆ Xc we have

Chc(Y ) ⊆ Y min.
11Note that the definitions of Y min and U(Y ) only depend on B.
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2.2 Mechanisms

A mechanism (for the students) is a mapping from preference profiles to allo-
cations M :×s∈SRs → A. Mechanism M is strategy-proof if it is a weakly
dominant strategy for students to report their true preferences to the mechanism,
i.e. for each s ∈ S, �−s∈×s′∈S\{s}Rs′ and �s,�′s∈ Rs we have

M(�s,�−s) �sM(�′s,�−s).

Mechanism M is group-strategy-proof if for each S ′ ⊆ S, �−S′∈×s∈S\S′Rs

and �S′ ,�′S′∈×s∈S′Rs, there is a s′ ∈ S ′ with

M(�S′ ,�−S′) �s′ M(�′S′ ,�−S′).

Let Ch be a choice profile. Mechanism M is Ch-stable if for each �∈×s∈SRs

allocation M(�) is stable in (Ch,�).

2.3 Examples

Several examples from applied marked design fit into our model, such as the
model of cadet-to-branch matching of Sönmez (2013) with the preference restric-
tion of Jagadeesan (2019), the discrete version of the job matching model of Kelso
and Crawford (1982), the college admission models of Hassidim et al. (2017) and
of Abizada and Dur (2017). The job matching model of Kelso and Crawford (1982)
will play an important role in Section 3.3.

2.3.1 Job matching with salaries

A finite Kelso-Crawford economy consists of a finite set of firms F , a finite set of
workers W , a finite set of salaries Σ ⊆ R+ and a profile ui∈F∪W of utility functions,
where for each f ∈ F , utility is a functions uf : {(W ′, p) : W ′ ⊆ W, p ∈ RW ′

+ } → R
that is strictly decreasing in RW ′

+ for each W ′, and for each w ∈ W , utility is a
function uw : F × R+ ∪ {∅} → R that is strictly increasing in R+ for each f .

The model fits in our framework with C = F , S = W , T = Σ, xT B x′T ⇔
xT > x′T , X = F ×W × Σ, choice functions are defined by

Chc(Y ) = max
Y ′⊆Y min

uc(Y
′
S, (yT )y∈Y ′),

and preferences (�s)s∈S are induced by utility functions,

(c, s, t) �s (c′, s, t′)⇔ us(c, t) > us(c
′, t′), (c, s, t) �s ∅ ⇔ us(c, t) > us(∅).

Note that the constructed market with contracts (Ch,�) does not only satisfy
monotonicity of students’ preferences, but also monotonicity of colleges’ choice
function. We say that workers are gross substitutes for firm f if for each p, p′ ∈
ΣW such that p ≤ p′, if p′w = pw and w ∈ argmaxW ′⊆Wuf (W

′, p), then w ∈
argmaxW ′⊆Wuf (W

′, p′).
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2.4 Stable Allocations

In general, a stable allocation does not need to exist for our model. A sufficient
condition for stability is that contracts are substitutes for colleges, i.e. if a contract
is rejected from some set of contracts, then this contract is also rejected from each
superset of that set of contracts.

Substitutability (Roth, 1984b; Hatfield and Milgrom, 2005): For each Z ⊆
Y ⊆ Xc,

Rc(Z) ⊆ Rc(Y ).

Not only is substitutability sufficient for the existence of a stable allocation
but it also guarantees that the set of stable allocations has a lattice structure.
If contracts are substitutes for colleges, then the set of stable allocation forms a
lattice with respect to the preferences of students (Blair, 1988). In particular, there
is a unique stable allocation that is most preferred by all students among all stable
allocations. We call this allocation the student-optimal stable allocation. It
can be found by the cumulative offer (CO) algorithm that is defined as follows.

1. Each student applies under his favorite acceptable and unrejected contract
or stays alone if he finds no unrejected contract acceptable.

2. Each college tentatively accepts the contracts it chooses among the applica-
tions it has received so far and rejects all other contracts.

3. If no application has been rejected in the current round, the algorithm stops.
If some applications are rejected we repeat.

We denote the set of contracts chosen by the colleges in the final round of the
CO algorithm for problem (Ch,�) by CO(Ch,�). Alternatively, we can use the
deferred acceptance algorithm to find the student optimal stable allocation. In
the deferred acceptance (DA) algorithm rejections are permanent: Thus, in
2., colleges only choose among contracts that are proposed in the current round
of the algorithm, but not contracts that have been proposed and rejected in a
previous round. If contracts are substitutes for colleges, then the deferred accep-
tance and the cumulative offer algorithm yield the same outcome. The deferred
acceptance mechanism for Ch assigns to each �∈×s∈SRs the outcome of the
deferred acceptance algorithm in (Ch,�).12

Student-optimality is related to group-strategy-proofness. Under substitutabil-
ity and the following additional condition on the colleges’ choice functions the
deferred acceptance mechanism is group-strategy-proof.

12We use the deferred acceptance algorithm and not the cumulative offer algorithm to define
a mechanism, because it yields a well-defined mechanism even in situations where contracts are
not substitutes for colleges. The deferred acceptance algorithm always ends in a (potentially un-
stable) allocation where each student is accepted at at most one college, whereas the cumulative
offer algorithm can yield an outcome where multiple colleges accept a student.
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Law of Aggregate Demand (Hatfield and Milgrom, 2005): For each Z ⊆
Y ⊆ Xc:

Z ⊆ Y ⇒ |Chc(Y )| ≥ |Chc(Z)|.

The following proposition summarizes known results about side-optimal stable
allocations, the invariance of the set of matched students in stable allocations (the
rural hospitals theorem), and group-strategy-proofness of the deferred acceptance
mechanism.

Proposition 1 (Kelso and Crawford, 1982; Blair, 1988; Fleiner, 2003; Hatfield
and Milgrom, 2005; Hatfield and Kojima, 2009).

1. If contracts are substitutes for colleges, then the deferred acceptance and the
cumulative offer algorithm are equivalent and converge to a stable allocation
that is most preferred by all students among all stable allocations.

2. If choice functions satisfy, moreover, the law of aggregate demand, then

(a) the set of accepted students is the same in all stable allocations and each
college accepts the same number of students in each stable allocation,

(b) the deferred acceptance mechanism is group-strategy-proof.

3 Results

3.1 Equivalent Choice Functions

It is a natural question whether the conditions of Section 2.4 for the stability and
group-strategy-proofness of the deferred acceptance mechanism are also necessary.
Next we provide a counterexample that shows that substitutability and the law of
aggregate demand are not necessary for the deferred-acceptance mechanism to be
stable and group-strategy-proof. The example will have the following structure:
There is one college c for which contracts are not substitutes. For each college
except for c, contracts are substitutes and the law of aggregate demand holds.
However, c’s choice function can be replaced by another choice function, such that

1. under the replacing choice function, contracts are substitutes for c and the
law of aggregate demand holds,

2. the outcome of the cumulative offer algorithm (which here coincides with the
outcome of the deferred acceptance algorithm) is, for all monotone preference
profiles for students, the same under the original choice profile and the profile
where c’s choice function is replaced.

As the deferred acceptance mechanism is group-strategy-proof for the profile where
we have replaced c’s choice function by the other choice function, it is by outcome-
equivalence also group-strategy-proof for the original choice profile.

10
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Example 1. The original choice function is from Example 2 in Hassidim et al.
(2017). Consider a college admission problem with stipends where T = {0, 1},
with the interpretation that contract term ”0” corresponds to admission without
stipend, and contract term ”1” corresponds to admission with a stipend. Thus,
1 B 0. For simplicity, we assume that there are two students S = {s1, s2}.
The example can be generalized to more students. Consider a college c1 which
can admit up to two students but only has one stipend available. Students are
admitted based on merit, and student s1 is the higher merit student than s2. If
both students are available, the college prefers to allocate the stipend to student
s2 rather than s1, e.g. because s2 comes from a lower income background. The
choice function of the college Chc1 is induced by preferences

{(c1, s1, 0), (c1, s2, 0)} �c1 {(c1, s1, 0), (c1, s2, 1)} �c1 {(c1, s1, 1), (c1, s2, 0)}
�c1 {(c1, s1, 0)} �c1 {(c1, s1, 1)} �c1 {(c,s2, 0)} �c1 {(c1, s2, 1)}

in the usual way. Now consider the alternative choice function Ch′c1 induced by
preferences:

{(c1, s1, 0), (c1, s2, 0)} �′c1 {(c1, s1, 1), (c1, s2, 0)} �′c1 {(c1, s1, 0)}
�′c1 {(c1, s1, 1)} �′c1 {(c1, s2, 0)} �′c1 {(c1, s2, 1)}

Thus, the preferences differ only in so far as allocation {(c1, s1, 0), (c1, s2, 1)} where
s1 is admitted without stipend and s2 is admitted with stipend is unacceptable
under �′c1 . The ranking of all other allocations is the same under both preferences.

Note that under Chc1 contracts are not substitutes as

(c1, s2, 1) ∈ Chc1({(c1, s1, 0), (c1, s1, 1), (c1, s2, 1)}) = {(c1, s1, 0), (c1, s2, 1)}

but
(c1, s2, 1) /∈ Chc1({(c1, s1, 1), (c1, s2, 1)}) = {(c1, s1, 1)},

and that under Ch′c1 contracts are substitutes and the law of aggregate demand
holds.

Suppose colleges C \ {c1} have choice functions Ch−c1 = (Chc)c 6=c1 under
which contracts are substitutes and the law of aggregate demand holds. Define
Ch := (Chc1 , Ch−c1) and Ch′ := (Ch′c1 , Ch−c1). Let �∈×s∈SRs. We show that
the cumulative offer algorithm converges to the same allocation for the problems
(Ch,�) and (Ch′,�). Observe that for all sets Y ⊆ X with Chc1(Y ) 6= Ch′c1(Y )
we have {(c1, s1, 0), (c1, s2, 1)} ⊆ Y . In particular, for the cumulative offer algo-
rithm to differ for the two problems, student s1 must apply to c1 for admission
without stipend during the cumulative offer algorithm in (Ch,�). Note however
that before s1 applies to c1 for admission without stipend, he applies to c1 for
admission with stipend, as 1 B 0. But once college c1 tentatively accepts s1 with
a stipend, the college will not subsequently drop student s1, as s1 has higher merit
than s2. Thus, s1 will never apply to c1 for admission without a stipend during
the cumulative offer algorithm. Hence, the cumulative offer algorithm for the two
problems converges to the same allocation, which is the student-optimal stable
allocation in (Ch′,�).
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Note, moreover, that the equivalent choice function Ch′c prioritizes merit over
need in the following sense: From each set of contracts, an allocation is chosen,
where the stipend is either un-allocated or allocated to the higher merit student
s1; whereas under choice function, Chc the stipend would be allocated to student
s2, if both students are available and it is possible to admit student s1 without a
stipend.

The example motivates the following definition.13

CO-equivalence: Two choice profiles Ch and Ch′ are CO-equivalent if for each
�∈×s∈SRs we have CO(Ch,�) = CO(Ch′,�). Two choice functions Chc
and Ch′c are CO-equivalent if for each Ch−c ∈ ×c′∈C\{c} Cc′ profiles Ch and

Ch′ := (Ch′c, Ch−c) are CO-equivalent.

In the following, we use the term ”equivalent” instead of ”CO-equivalent”,
since we only consider one notion of equivalence throughout the paper. From the
definition and Proposition 1, we obtain the following result:

Proposition 2. If Ch is equivalent to a profile under which contracts are substi-
tutes and the law of aggregate demand holds, then the deferred acceptance mecha-
nism for Ch is Ch-stable and group-strategy-proof.

Proof. Let Ch′ be the equivalent profile. Let �∈×s∈SRs. Let Y1 ⊆ Y2 ⊆ . . . ⊆ Yτ
be the set of accumulated offers during the cumulative offer algorithm for (Ch′,�)
and Z1, Z2, . . . , Zτ be the set of proposed contracts during the deferred acceptance
algorithm for (Ch′,�). Since contracts under Ch′ are substitutes, Part (1) of
Proposition 1 implies Ch′c(Yt) = Ch′c(Zt) for t = 1, . . . , τ and each c ∈ C. Since
Ch and Ch′ are equivalent we have Chc(Yt) = Ch′c(Yt) for t = 1, . . . , τ and each
c ∈ C. Thus, Chc(Yt) = Ch′c(Yt) = Ch′c(Zt) ⊆ Zt for t = 1, . . . , τ and each c ∈ C.
By IRC for Ch this implies Chc(Zt) = Chc(Yt) = Ch′c(Zt) for t = 1, . . . , τ and
each c ∈ C, and the deferred acceptance algorithm in (Ch,�) and in (Ch′,�)
yield the same outcome. In particular, this implies the stability in (Ch,�) of
the outcome

⋃
c∈C Chc(Zτ ) of the deferred acceptance algorithm, since otherwise,

if college c ∈ C blocks, we would have Chc(Yτ ) * Zτ . Moreover, if under Ch′

contracts are substitutes and the law of aggregate demand holds, this implies by
Part 2(b) of Proposition 1 the group-strategy-proofness of the deferred acceptance
mechanism for Ch.

As our first main result, we show that for each choice function under which
contracts are observable substitutes and the observable law of aggregate demand
holds we can construct an equivalent choice function under which contracts are
substitutes and the law of aggregate demand holds. As an immediate corollary,
we will obtain the group-strategy-proofness of the deferred acceptance mecha-
nism under observable substitutes and the observable law of aggregate demand.

13A similar notion has been introduced independently by Jagadeesan (2019). However, since
Jagadeesan (2019) does not assume monotonicity on students’ preferences, his notion of equiva-
lence is much stronger. See our Remark 1.
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Importantly, we define observable substitutability and the observable law of ag-
gregate demand for monotone preferences by only requiring that the properties
hold for observable sequences that can occur under monotone preferences: In the
following, a sequence of contracts x1, x2, . . . , xτ is generated from monotone
preferences if for 1 ≤ t ≤ τ and each x ∈ X with xS = xtS and xT B xtT , we
have x ∈ {x1, . . . , xt−1}. A sequence x1, x2, . . . , xτ is observable under Chc if
for 1 ≤ t ≤ τ − 1 we have xt+1

S /∈ [Chc{x1, . . . , xt}]S. We call a set of contracts
Y ⊆ Xc observable under Chc, if there is a sequence of contracts x1, . . . , x|Y |

that is observable under Chc and that is generated from monotone preferences
such that Y = {x1, . . . , x|Y |}. We denote the set of all observable sets of contracts
under Chc by O(Chc). Observable substitutability for monotone preferences is
defined as follows:14

Observable Substitutability (for Monotone Preferences) (Hatfield et al.,
2020): Contracts are observably substitutes for monotone preferences under choice
function Chc if for each observable sequence x1, x2, . . . , xτ under Chc that is gen-
erated from monotone preferences, we have

Rc{x1, . . . xt} ⊆ Rc{x1, . . . , xt+1} for each 1 ≤ t < τ.

Similarly, we can define an observable version of the law of aggregate demand.

Observable Law of Aggregate Demand (for Monotone Preferences) (Hat-
field et al., 2020): A choice function Chc satisfies the observable law of aggregate
demand for monotone preferences if for each observable sequence under Chc that
is generated from monotone preferences, we have

|Chc{x1, . . . xt}| ≤ |Chc{x1, . . . , xt+1}| for each 1 ≤ t < τ.

Since we exclusively deal with monotone preferences, from now one we drop the
term ”for monotone preferences.” However, the reader should be aware that the
conditions are weaker than the corresponding conditions for general preferences.15

With the definition, we have the following result.

Theorem 1. For each choice function Chc under which contracts are observable
substitutes and the observable law of aggregate demand holds, there exists an equiv-
alent choice function Ch′c that is monotone in contract terms such that contracts
are substitutes and the law of aggregate demand holds.

To prove the result, we define for each choice function Chc a related choice
function Ch′c that we call the virtual choice function for Chc by

Ch′c(Y ) := Y min \
⋃

Ỹ⊆U(Y ),Ỹ ∈O(Chc)

Rc(Ỹ ).

14Alternatively, we could also define observable substitutabilty for monotone preferences, by
requiring that the substitutes condition holds for observable sets, i.e. by requiring that for
Y,Z ∈ O(Chc) and Z ⊆ Y we have Rc(Z) ⊆ Rc(Y ). See the first part of Lemma 2 in the
appendix. Note that this definition is only equivalent for the case of monotone preferences, but
is stronger on the general preference domain.

15In the example in Footnote 6, for example, college c1’s choice function satisfies the monotone
versions of the two conditions but not the general preference versions.
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The construction has the following intuition: The set of accumulated offers dur-
ing an instance of the cumulative offer algorithm is observable. Hence a suffi-
cient condition for equivalence between two choice functions Chc and Ch′c is that
Chc(Y ) = Ch′c(Y ) and therefore Rc(Y ) = R′c(Y ) for each Y ∈ O(Chc). If
contracts are substitutes under Ch′c, then, in particular, contracts that are re-
jected from an observable (under Chc) set are also rejected from each, potentially
unobservable, superset of that set. Hence assuming that choices agree on ob-
servable sets and contracts are substitutes under Ch′c for each Y ⊆ Xc we have⋃
Ỹ⊆Y,Ỹ ∈O(Chc)Rc(Ỹ ) =

⋃
Ỹ⊆Y,Ỹ ∈O(Chc)R

′
c(Ỹ ) ⊆ R′c(Y ). Thus,

Ch′c(Y ) ⊆ Y \
⋃

Ỹ⊆Y,Ỹ ∈O(Chc)

Rc(Ỹ ).

To guarantee feasibility, Ch′c(Y ) generally has to be a strict subset in the previous
expression. Choosing only contracts in Y min guarantees feasibility and monotonic-
ity of the choice function Ch′c. To guarantee the IRC condition for Ch′c on sets
with Y 6= U(Y ) we need in general to consider observable subsets of U(Y ) rather
than Y . The full proof of the theorem is in the appendix.

Remark 1. A corresponding result to Theorem 1 does not hold for the case of non-
monotonic preferences. Without monotonicity, equivalence requires that choices
coincide on all sets of contracts which contain at most one contract per student
(see Theorem 1 of Jagadeesan, 2019), and equivalence to a choice function under
which contracts are substitutes and the law of aggregate demand holds implies
unilateral substitutability and the law of aggregate demand. These properties are
much stronger than observable substitutability and the observable law of aggregate
demand.

Remark 2. One can show that, for the job matching model with salaries, if the
choice function in Theorem 1 is generated from maximizing preferences that are
quasi-linear in salaries, then the choice function and the equivalent virtual choice
function are the same. Combining this observation with the maximal domain
results of Hatfield et al. (2020), one can show that for quasi-linear preferences,
choice profiles under which contracts are substitutes form a maximal domain of
choice profiles generated from quasi-linear preferences for the existence of a stable
(and strategy-proof) mechanism. This yields an alternative way of proving a result
due to Hatfield and Milgrom, 2005; Hatfield and Kojima, 2008.

Immediately from Theorem 1 and Proposition 2 it follows that the deferred ac-
ceptance mechanism is stable and group-strategy-proof if contracts are observable
substitutes and the observable law of aggregate demand holds.

Corollary 1. For each choice profile under which contracts are observable substi-
tutes and the observable law of aggregate demand holds, the deferred acceptance
mechanism is stable and group-strategy-proof.

Remark 3. Hatfield et al. (2020) prove that observable substitutability, the ob-
servable law of aggregate demand and ”non-manipulability via contractual terms”
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are sufficient conditions for the stability and strategy-proofness of the deferred ac-
ceptance mechanism. Non-manipulability via contractual terms requires that for
each profile in the domain and each college c ∈ C the deferred-acceptance mech-
anism is strategy-proof on the domain of preference profiles where only contracts
with c are acceptable for students. For the case of monotone preferences, Corol-
lary 1 strengthens the result in two directions: First, strategy-proofness can be
replaced by the stronger property of group-strategy-proofness. Second, whereas
non-manipulability via contractual terms is in general independent of the other
two properties, Corollary 1 implies that this property is implied by observable
substitutability and the observable law of aggregate demand for monotone prefer-
ences.

The assumption of observable substitutability turns out to be necessary for
Theorem 1, as we show in the following theorem.

Theorem 2. If Ch is equivalent to a profile Ch′ under which contracts are substi-
tutes, then contracts are observable substitutes under Ch. If, moreover, the law of
aggregate demand holds under Ch′, then the observable law of aggregate demand
holds under Ch.

3.2 A Maximal Domain Result

Next, we derive several implications of Theorems 1 and 2. Combining the results
with Theorem 5 of Hatfield et al. (2020) we first characterize a maximal domain of
choice profiles for the existence of a stable and strategy-proof mechanism using our
notion of equivalence. In the following a choice domain is a set of choice profiles
D ⊆×c∈C Cc. A choice domain D is Cartesian if D =×c∈C Dc where Dc ⊆ Cc
for each college c ∈ C. A choice function Chc for college c is unit demand if
|Chc(Y )| ≤ 1 for all Y ⊆ Xc. A choice domain is unital if it includes all profiles
of unit demand choice functions. We obtain the following corollary of Theorems 1
and 2.

Corollary 2. For a domain D of choice profiles the following statements are
equivalent:

1. D is a maximal Cartesian, unital domain of choice profiles such that a stable
and strategy-proof mechanism is guaranteed to exist,

2. D is the domain of choice profiles that are equivalent to a choice profile under
which contracts are substitutes and the law of aggregate demand holds.

Proof. Let D1 be a maximal Cartesian, unital domain of choice profiles such that
a stable and strategy-proof mechanism is guaranteed to exist. Let D2 he domain
of choice profiles that are equivalent to a choice profile under which contracts are
substitutes and the law of aggregate demand holds. By Theorems 1 and 2, D2

is the domain of choice profiles under which contracts are observable substitutes
and the observable law of aggregate demand holds. By Theorem 5 of Hatfield
et al. (2020), D1 is a subdomain of the domain of profiles under which contracts

15

Electronic copy available at: https://ssrn.com/abstract=3306009



are observable substitutes and the observable law of aggregate demand holds, thus
D1 ⊆ D2. By Proposition 2, for each Ch ∈ D2, the deferred acceptance mechanism
is stable and strategy-proof. Thus, by maximality D1 = D2.

Remark 4. Combining the result with Proposition 2, the maximal domain result
also holds if strategy-proofness is replaced by group-strategy-proofness.

3.3 An embedding result

As a third corollary of Theorem 1, we obtain an embedding result. In recent
work Jagadeesan (2019) shows that for each BfYC choice profile as introduced
by Sönmez (2013) there is an equivalent choice profile such that the equivalent
problem can be embedded into a Kelso-Crawford economy. Formally, an isomor-
phism between a matching market with contracts (Ch,�) and a Kelso-Crawford
economy (Σ, u) is a one-to-one mapping (f, w, σ) : X → F ×W × Σ such that

1. for each x, x′ ∈ X, f(x) = f(x′) if and only if x′C = xC , and w(x) = w(x′) if
and only if xS = x′S,

2. for each x, x′ ∈ X we have

x �xS x′ ⇔ uw(x)(f(x), σ(x)) > uw(x)(f(x), σ(x))

and
x �xS ∅ ⇔ uw(x)(f(x), σ(x)) > uw(x)(∅),

3. for each c ∈ C, Y ⊆ Xc and f ∈ F such that f(x) = f for each x ∈ Y we
have

Chc(Y ) = argmaxY ′⊆Y minuf ({(w(x), σ(x)) : x ∈ Y ′}),

4. for each w ∈ W, f ∈ F and σ ∈ Σ \ {σ(x) : x ∈ X, f(x) = f, w(x) = w}, we
have uw(f, σ) < uw(∅).16

Remark 5. The above notion of an isomorphism is due to Jagadeesan (2019). It
is different from the notion introduced by Echenique (2012), and used by Komin-
ers (2012), and Schlegel (2015): Utility function in the Kelso-Crawford economy
satisfy stronger regularity conditions in Jagadeesan (2019). In Echenique (2012),
monotonicity of utility functions is only required for salaries corresponding to “un-
dominated” contracts (see the discussion in Schlegel, 2015), whereas in Jagadeesan
(2019) monotonicity can be achieved for all salaries.

To guarantee that utility functions satisfy the stronger regularity condition, Ja-
gadeesan (2019) first constructs an equivalent choice profile. The embedding is
then performed for a problem where the original choice profile is replaced by the
equivalent choice profile. In contrast to this, the embedding result of Echenique
(2012) establishes an isomorphism (with his weaker notion of isomorphism) for

16This item is not required in Jagadeesan (2019), as he only considers situations in which
there is the same number of contracts between any college and student.
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the original market with contracts, without the need to first construct an equiv-
alent choice profile. Put differently, the embedding result of Jagadeesan (2019)
establishes an isomorphism between the cumulative offer algorithm in the origi-
nal problem and the salary adjustment process in the Kelso-Crawford economy,
whereas the embedding result of Echenique (2012) establishes an isomorphism be-
tween the sets of stable allocations in the original problem and the Kelso-Crawford
economy, but under a weaker notion of an isomorphism.

In the following, we will establish an embedding result in the sense of Ja-
gadeesan (2019). An embedding result in the sense of Echenique (2012) does not,
in general, hold in our setting.

Corollary 3. For each choice profile Ch such that contracts are observable substi-
tutes and the observable law of aggregate demand holds, there exists an equivalent
choice profile Ch′, such that for each preference profile �, the market (Ch′,�)
is isomorphic to a Kelso-Crawford economy (Σ, u) such that workers are gross
substitutes for firms.

Proof. By Theorem 1, there exist an equivalent profile Ch′ under which contracts
are substitutes and the law of aggregate demand holds. Moreover, Ch′ can be
chosen to be monotone in contract-terms for each college. For each c ∈ C, Ch′c can
be rationalized (see Theorem 1 in Alva, 2018) by a strict preference relation�′c over
Ac. The preference relation �′c can be chosen to be monotonic in contract terms.
Let (�s)s∈S be a preference profile for students. For the preference profile ((�′c
)c∈C , (�s)s∈S), we can construct as in the proof of Theorem 1 in Echenique (2012)
a corresponding Kelso-Crawford economy (Σ, u) such that Gross Substitutability
for firms hold. Since �′c is monotonic in contract terms for each c ∈ C there are
no undominated contracts in (Ch′,�). Thus, the embedding is one-to-one and
satisfies our definition of an isomorphism, in particular monotonicity of the utility
functions in the Kelso-Crawford economy is satisfied.

Remark 6. While we use the same notion of isomorphism as Jagadeesan (2019),
we do not assume quasi-linearity of firm utility functions in the Kelso-Crawford
economy. In this sense, our result is weaker. However, our result applies to a
larger domain of choice functions.

4 Conclusion

We have studied a model of matching with contracts with a natural monotonicity
condition on applicants’ preferences that is satisfied in many practically impor-
tant matching markets, e.g., for the matching of students to colleges with different
stipends or fees, the medical match with flexible salaries, or the cadet-to-branch
match if cadets rank branch-of-choice contracts monotonically. Our domain re-
striction allowed us to obtain a characterization of a maximal domain of choice
profiles for which a stable and strategy-proof mechanism exists, which - arguably
- is simpler than the corresponding characterization for the general model with
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non-monotone preferences (Hatfield et al., 2020). This indicates that the domain
restriction to monotone preferences removes some complexity from the matching
model with contracts and, hence, simplifies its analysis while practical relevance
is maintained since the monotonicity assumption is satisfied in many real-world
matching markets. We hope that these features will make the model with mono-
tone preferences also a useful tool for future research on matching markets with
contracts.

Our results also raise interesting questions for the general matching model with
contracts: For our model and choice domain, strategy-proofness of the deferred
acceptance mechanism implies its group-strategy-proofness. This is established
through the construction of an equivalent choice profile under which contracts
are substitutes. Substitutability implies a lattice structure for the set of stable
allocations under the equivalent choice profile, and with the lattice structure it is
easy to show that strategy-proofness implies group-strategy-proofness (see e.g. the
discussion in Barberà et al., 2016). For the general matching model with contracts
similar constructions, such as the substitutable completion procedure of Hatfield
and Kominers (2015), are known. For the same reason as before - the set of
stable allocations forms a lattice under the substitutable completion of the choice
profile - strategy-proofness of the deferred acceptance mechanism implies its group-
strategy-proofness. However, in contrast to our model, for the general model
with non-monotone preferences, a substitutable completion does not exist for each
profile in the maximal domain of Hatfield et al. (2020). It, thus, remains an
interesting open question under which conditions the strategy-proofness of a stable
matching mechanism for the general model of matching with contracts implies its
group-strategy-proofness.
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A Proof of Theorem 1

The proof relies on the following two lemmata that we prove first.

Lemma 1. If contracts are observable substitutes under Chc, then for each
Y ⊆ Xc and for any two maximal sequences x1, . . . , xτ and y1, . . . , yτ

′
in Y

that are observable under Chc and generated from monotone preferences we have
{x1, . . . , xτ} = {y1, . . . , yτ ′}.

Proof. The proof strategy is due to Hirata and Kasuya (2014). We use induction
on the size of the set Y .
Induction Basis: If |Y | = 0, then Y = ∅ and trivially the empty sequence is
the only observable sequence under Chc generated from monotone preferences in
Y .
Induction Assumption: For each Y ⊆ Xs with |Y | ≤ n for any two maximal
sequences x1, . . . , xτ and y1, . . . , yτ

′
in Y that are observable under Chc and gen-

erated from monotone preferences we have {x1, . . . , xτ} = {y1, . . . , yτ ′}.
Induction Step: Let |Y | = n + 1. Consider two maximal sequences x1, . . . , xτ

and y1, . . . , yτ
′

in Y that are observable under Chc and generated from mono-
tone preferences. Suppose {x1, . . . , xτ} 6= {y1, . . . , yτ ′}. Then w.l.o.g. there is a
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1 ≤ t ≤ τ ′ with yt /∈ {x1, . . . , xτ}. Choose the smallest such t and consider the set
Y ′ := Y \{yt}. The sequence y1, . . . , yt−1 is contained in Y ′, generated from mono-
tone preferences and is observable under Chc. Extend y1, . . . yt−1 to a maximal
sequence y1, . . . , yt−1, ỹt, . . . , ỹτ̃ in Y ′ that is observable under Chc and generated
from monotone preferences. Since yt /∈ {x1, . . . , xτ}, sequence x1, . . . , xτ is a max-
imal sequence in Y ′ that is observable under Chc and generated from monotone
preferences. By the induction assumption, we have {y1 . . . , yt−1, ỹt, . . . , ỹτ̃} =
{x1, . . . , xτ}. Moreover, ytS ∈ Chc{x1, . . . , xτ}S, as otherwise x1, . . . , xτ , yt would
be observable under Chc and generated from monotone preferences, contradict-
ing the maximality of x1, . . . , xτ in Y . Since y1, . . . , yt is observable and gener-
ated from monotone preferences, we have y ∈ Rc{y1, . . . , yt−1} for each y ∈ Xc

with yS = ytS and yT B ytT . By observable substitutability, we have y ∈
Rc{y1 . . . , yt−1, ỹt, . . . , ỹτ̃} for each y ∈ Xc with yS = ytS and yT B ytT . As yt /∈
{y1, . . . , yt−1, ỹt, . . . , ỹτ̃} this implies ytS /∈ Chc{y1 . . . , yt−1, ỹt, . . . , ỹτ̃}S. Since
ytS ∈ Chc{x1, . . . , xτ}S, as previously observed, this contradicts

{y1 . . . , yt−1, ỹt, . . . , ỹτ̃} = {x1, . . . , xτ}.

Lemma 2. If contracts are observable substitutes under Chc, then

1. for Y, Z ∈ O(Chc) with Z ⊆ Y we have

Rc(Z) ⊆ Rc(Y ).

If moreover, the observable law of aggregate demand holds for Chc, then

|Chc(Z)| ≤ |Chc(Y )|,

2. for Ch−c ∈×c′∈C\{c} Cc and �∈×s∈SRs the sets of contracts Y1 ⊆ Y2 ⊆
. . . ⊆ Yτ ⊆ Xc proposed to c during the cumulative offer algorithm in (Ch,�)
are observable under Chc.

Proof. For the first part let Y, Z ∈ O(Chc) with Z ⊆ Y . Since Z is observable,
we can find a sequence x1, . . . , x|Z| generated from monotone preferences with
Z = {x1, . . . , x|Z|} that is observable under Chc. Maximally extend the sequence
in Y to obtain a sequence x1, . . . , x|Z|, x|Z|+1, . . . , xτ generated from monotone
preferences that is observable under Chc. By Lemma 1 and observability of Y
we have Y = {x1, . . . , xτ} and τ = |Y |. The result follows by applying observable
substitutability (resp. the observable law of aggregate demand) to the sequence
x1, . . . , x|Y |.

For the second part, note that for t = 1 the result holds trivially: by the
definition of the cumulative offer algorithm each contract in Y1 is the unique most
preferred contract for the involved agent among all contracts. Thus, ordering
the contracts in Y1 arbitrarily yields an observable sequence under Chc generated
from monotone preferences. Next let 1 < t ≤ τ and suppose that Y1, . . . , Yt−1 ∈
O(Chc). Take an observable sequence x1, . . . , x|Yt−1| under Chc generated from
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monotone preferences such that Yt−1 = {x1, . . . , x|Yt−1|} and enumerate contracts
in Yt \ Yt−1 = {x|Yt−1|, . . . x|Yt|} arbitrarily. By the definition of the CO algorithm,
for each x ∈ Yt \ Yt−1 each x′ ∈ Xc with x′S = xs and x′ B x has been rejected in
some previous round of the algorithm, i.e. there is a t′ < t with x′ ∈ Rc(Yt′). By
observable sustitutability and the second part applied to Z = Yt′ and Y = Yt−1,
we have x′ ∈ Rc(Yt−1) = Rc{x1, . . . , x|Yt−1|}. Thus, for each x ∈ Yt \ Yt−1 we have
xS /∈ Chc(Yt−1)S. Observe furthermore that Yt\Yt−1 contains at most one contract
per student. Thus, repeated application of observable substitutability shows that
the sequence x1, . . . x|Yt| is observable.

With the two lemmata we can prove the theorem.

Proof. For each Y ⊆ Xc, let Y ∨ ∈ O(Chc) be defined by Y ∨ := {x1, . . . , xτ} where
x1, . . . , xτ is a maximal observable subsequence under Chc of U(Y ) generated by
monotone preferences. By Lemma 1, Y ∨ is well-defined and Ỹ ⊆ Y ∨ for each
Ỹ ∈ O(Chc) with Ỹ ⊆ U(Y ). Thus, by the first part of Lemma 2,⋃

Ỹ⊆U(Y ),Ỹ ∈O(Chc)

Rc(Ỹ ) = Rc(Y
∨),

and therefore the virtual choice function is given by

Ch′c(Y ) = Y min \Rc(Y
∨).

First note that Ch′c satisfies our assumptions on choice functions: By definition
Ch′c(Y ) ⊆ Y min ⊆ Y , and since Y min contains at most one contract per student,
also Ch′c(Y ) contains at most one contract per student. The IRC condition for
Ch′c will follow from substitutability and the law of aggregate demand (see Aygün
and Sönmez, 2013) for Ch′c which we will establish next.

Let Z ⊆ Y ⊆ Xc. First we show substitutability, i.e. R′c(Z) ⊆ R′c(Y ). Let
x ∈ R′c(Z). If x ∈ Y \Y min, then x ∈ R′c(Y ), as Ch′c(Y ) ⊆ Y min. If x ∈ Y min, then
x ∈ Zmin and therefore x ∈ Rc(Z̃) for a Z̃ ∈ O(Chc) with Z̃ ⊆ U(Z) ⊆ U(Y ).
Thus, also x ∈ R′c(Y ).

By definition of Ch′c and Y ∨ (resp. Z∨) we have Ch′c(Y )S = Chc(Y
∨)S and

Ch′c(Z)S = Chc(Z
∨)S. Lemma 1 implies that Z∨ ⊆ Y ∨. Thus, by the first part

of Lemma 2 we obtain the law of aggregate demand for Ch′c, as

|Ch′c(Z)| = |Ch′c(Z)S| = |Chc(Z∨)| ≤ |Chc(Y ∨)| = |Ch′c(Y )S| = |Ch′c(Y )|.

To show that Ch′c is equivalent to Chc, let Ch−c ∈×c′ 6=c Cc and �∈×s∈SRc.
By the second part of Lemma 2, the sets of proposed contracts Y1 ⊆ Y2 ⊆ . . . ⊆ Yτ
to c during the CO-algorithm in (Ch,�) are observable. Now note that for each
Y ∈ O(Chc) we have Y = Y ∨ and, moreover, by observable substitutability
Chc(Y ) ⊆ Y min. Thus, Ch′c(Y ) = Y min \ Rc(Y ) = Y \ Rc(Y ) = Chc(Y ). As Ch′c
and Chc agree on observable sets, we have Ch′c(Yt) = Chc(Yt) for t = 1, . . . , τ .
Hence Ch′c and Chc are equivalent.
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B Proof of Theorem 2

Proof. Let c ∈ C and consider a sequence x1, . . . , xτ that is observable under
Chc and generated from monotone preferences. We show that Ch′c{x1, . . . , xτ} =
Chc{x1, . . . , xτ}. Since contracts are substitutes under Ch′c this will imply that
contracts are observable substitutes under Chc. Moreover, if the law of aggregate
demand holds under Ch′c, then this will imply the observable law of aggregate
demand for Chc. In the following, we denote by �0∈×s∈SRs a profile such that

no contract is acceptable, and for 1 ≤ t ≤ τ we denote by �t∈×s∈SRs a profile
such that x �txS ∅ for x ∈ {x1, . . . , xt} and ∅ �txS x for x /∈ {x1, . . . , xt}. First
note that

∅ = Ch′c(∅) = CO(Ch′,�0) = CO(Ch′,�0) = Chs(∅).

Next we show that if for 0 ≤ t < t′ ≤ τ we have

Ch′c{x1, . . . , xt} = CO(Ch′,�t) = CO(Ch,�t) = Chc{x1, . . . , xt}

then

Ch′c{x1, . . . , xt
′} = CO(Ch′,�t′) = CO(Ch,�t′) = Chc{x1, . . . , xt

′}.

Since Chc{x1, . . . , xt} = Ch′c{x1, . . . , xt} for 0 ≤ t < t′, observability of x1, . . . , xt
′

under Chc implies observability of x1, . . . , xt
′

under Ch′c.
Let Y be the set of proposed contract during the CO-algorithm in (Ch′,�t′).

By (observable) substitutability of Ch′c, the second part of Lemma 2 applied to
(Ch′,�t′) implies that Y is observable under Ch′c. Thus, there is a sequence
y1, . . . , yt

′′
that is observable under Chc and generated from monotone preferences

such that Y = {y1, . . . , yt′′} ⊆ {x1, . . . , xt′}. Note furthermore that y1, . . . , yt
′′

is
a maximal such sequence in the set {x1, . . . , xt′}, since otherwise not all students
who are unmatched in the outcome of the CO algorithm in (Ch′,�t′) have pro-
posed under all acceptable contracts. Since x1, . . . , xt

′
is observable under Ch′c

this implies Y = {y1, . . . , yt′′} = {x1, . . . , xt′}. By equivalence of Ch and Ch′, we
have

Ch′c{x1, . . . , xt
′} = CO(Ch′,�t′) = CO(Ch,�t′) = Chc{x1, . . . , xt

′}.
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