

City Research Online

City, University of London Institutional Repository

Citation: Wright, D. M., Konstantakopoulou, E., Montesano, G., Nathwani, N., Garg, A., Garway-Heath, D., Crabb, D. P. & Gazzard, G. (2020). Visual Field Outcomes from the Multicenter, Randomized Controlled Laser in Glaucoma and Ocular Hypertension Trial. Ophthalmology, doi: 10.1016/j.ophtha.2020.03.029

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/24492/

Link to published version: https://doi.org/10.1016/j.ophtha.2020.03.029

Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk/

Visual Field Outcomes from LiGHT: Laser in Glaucoma and Ocular Hypertension, a multicentre, randomised controlled trial

David M. Wright, Evgenia Konstantakopoulou, Giovanni Montesano, Neil Nathwani, Anurag Garg, David Garway-Heath, David P. Crabb, Gus Gazzard, on behalf of the LiGHT Trial Study Group

PII: S0161-6420(20)30313-4

DOI: https://doi.org/10.1016/j.ophtha.2020.03.029

Reference: OPHTHA 11182

To appear in: Ophthalmology

Received Date: 29 October 2019
Revised Date: 20 March 2020
Accepted Date: 23 March 2020

Please cite this article as: Wright DM, Konstantakopoulou E, Montesano G, Nathwani N, Garg A, Garway-Heath D, Crabb DP, Gazzard G, on behalf of the LiGHT Trial Study Group, Visual Field Outcomes from LiGHT: Laser in Glaucoma and Ocular Hypertension, a multicentre, randomised controlled trial, *Ophthalmology* (2020), doi: https://doi.org/10.1016/j.ophtha.2020.03.029.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Inc. on behalf of the American Academy of Ophthalmology

- 1 Visual Field Outcomes from LiGHT: Laser in Glaucoma and Ocular
- 2 Hypertension, a multicentre, randomised controlled trial.

- 4 Authors: David M. Wright^{1,2}, Evgenia Konstantakopoulou^{3, 4, 5}, Giovanni Montesano⁶, Neil Nathwani³,
- 5 Anurag Garg³, David Garway-Heath^{3,4}, David P. Crabb^{6*}, Gus Gazzard^{3,4}; on behalf of the LiGHT Trial
- 6 Study Group.
- 7 Affiliations:
- 8 1. Centre for Public Health, Queen's University Belfast, Belfast, UK
- 9 2. Health Data Research UK
- 3. NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, London, UK
- 4. Institute of Ophthalmology, University College London, UK
- 12 5. Division of Optics and Optometry, University of West Attica, Greece
- 6. Optometry and Visual Science, School of Health Science, City, University of London, London, UK
- * Corresponding author: David.Crabb1@city.ac.uk
- 15 Financial support: The LiGHT trial was funded by the National Institute for Health Research Health
- 16 Technology Assessment Panel (09/104/40) and was sponsored by Moorfields Eye Hospital NHS
- 17 Foundation Trust. The funding organisation or sponsor had no role in the design or conduct of this
- 18 research. This report presents independent research commissioned by the NIHR; the views and
- 19 opinions expressed by the authors in this publication are those of the authors and do not necessarily
- 20 reflect those of the NHS, the NIHR, MRC, CCF, NETSCC, the HTA or the Department of Health.
- 21 DW received funding through an MRC Innovation Fellowship (MR/S003770/1) affiliated with Health
- 22 Data Research UK, an initiative funded by UK Research and Innovation, Department of Health and
- 23 Social Care (England) and the devolved administrations, and leading medical research charities.
- Running head: Eye drops vs SLT: visual field progression in glaucoma.
- 25 Acronyms
- 26 GPA Guided progression analysis.
- 27 IOP Intra-ocular pressure.
- 28 MD Mean deviation.
- 29 OAG Open angle glaucoma.
- 30 OHT Ocular hypertension.
- 31 OR Odds Ratio.
- 32 PSD Pattern standard deviation.
- 33 PD Pattern deviation.
- 34 SLT Selective laser trabeculoplasty.
- 35 TD Total deviation.
- 36 VF Visual field.

- 37 Abstract
- 38 Objective
- 39 To compare visual field outcomes of ocular hypertensive and glaucoma patients treated with
- 40 Medicine-1st against those treated with selective laser trabeculoplasty (SLT, Laser-1st).
- 41 Design
- 42 Secondary analysis of patients from Laser in Glaucoma and Ocular Hypertension (LiGHT), a
- 43 multicentre randomised controlled trial.
- 44 Participants and controls
- 45 344 patients (588 eyes) treated with Medicine-1st, 344 patients (590 eyes) treated with Laser-1st.
- 46 Methods
- 47 Visual fields (VFs) were measured using standard automated perimetry and arranged in series
- 48 (median length and duration: 9 VFs over 48 months). Hierarchical linear models were used to
- 49 estimate pointwise VF progression rates, which were then averaged to produce a global progression
- 50 estimate for each eye. Proportions of points and patients in each treatment group with fast (< -1
- 51 dB/y) or moderate (< -0.5 dB/y) progression were compared using log-binomial regression.
- 52 Main outcome measures
- 53 Pointwise and global progression rates of total deviation (TD) and pattern deviation (PD).
- 54 Results
- A greater proportion of eyes underwent moderate or fast TD progression in the Medicine-1st group
- compared with the Laser-1st group (26.2% vs. 16.9%; Risk Ratio, RR = 1.55 [1.23, 1.93], P < 0.001). A
- similar pattern was observed for pointwise rates (Medicine-1st 26.1% vs. Laser-1st 19.0%, RR = 1.37
- 58 [1.33, 1.42], P < 0.001). A greater proportion of pointwise PD rates were categorised as moderate or
- fast in the Medicine-1st group (Medicine-1st 11.5% vs. Laser-1st 8.3%, RR = 1.39 [1.32, 1.46], P <

- 60 0.001). There was no statistical difference in the proportion of eyes that underwent moderate or
- fast PD progression (Medicine-1st 9.9% vs. Laser-1st 7.1%, RR = 1.39 [0.95, 2.03], P = 0.0928).
- 62 Conclusion
- 63 A slightly larger proportion of ocular hypertensive and glaucoma patients treated with Medicine-1st
- underwent rapid VF progression compared with those treated with Laser-1st.

			- 1					
ır	١Ť	ro	n	11	\sim	П	\cap	n
- 11	ı	-	·u	u	_	LI	\sim	

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

Glaucoma is a progressive optic neuropathy, that left untreated can lead to loss of vision. Glaucoma can have significant implications for patients and is associated with worse vision related quality of life¹⁻⁴. Assessing visual function, typically done by visual field (VF) examination, is vital for clinical management, especially for assessing the effectiveness of treatment in controlling the disease. VF progression will usually drive treatment intensity, as lowering intra-ocular pressure (IOP) is the only currently available treatment to slow the progression of glaucoma⁵. Thus far, IOP lowering eye drops have been used as a 1st-line treatment for glaucoma and ocular hypertension (OHT), but a recent report from the Laser in Glaucoma and Ocular Hypertension (LiGHT) trial showed that selective laser trabeculoplasty (SLT), an outpatient laser procedure for the reduction of IOP, provides better clinical effectiveness and lower treatment intensity among newly diagnosed glaucoma and OHT patients compared to IOP lowering eye drops, and comparable health related quality of life, whilst also being cost-effective ⁶. Although the IOP lowering efficacy of SLT has been extensively compared to that of eye drops^{7–11} and despite a substantial body of research into VF progression in glaucomatous patients, little evidence exists comparing SLT and IOP lowering eye drops in terms of VF outcomes. This study aims to compare VF progression between patients who received SLT to those who received IOP lowering eye drops, as a 1st-line treatment for glaucoma and OHT in the LiGHT trial. Methods Analysis cohort

Details of the LiGHT trial design and baseline characteristics are described elsewhere 12,13. Briefly, the

LiGHT trial is a multi-centre, randomised controlled trial comparing IOP lowering eye drops to SLT. A

total of 718 newly diagnosed, previously untreated OHT or open angle glaucoma (OAG) patients

were randomised to one of two treatment pathways. Patients in the Medicine-1st group received

topical IOP lowering eye drops to reduce IOP, whereas patients in the Laser-1 st group received SLT
(followed by medication if required as the trial progressed). Subsequent treatment decisions
surrounding treatment escalations, repeated SLT or trabeculectomy were conducted according to
the study protocol with the aid of a computerised decision algorithm to avoid bias in clinical decision
making. The decision support algorithm used in the LiGHT trial has been described in detail
previously ^{12,14} . Patients were treated to eye-specific IOP targets that were determined according to
the computer algorithm. Recruitment lasted two years and ended in October 2014. Primary
outcomes were reported at three years and additional funding allowed the trial to extend for a
further three years.
At each study visit, visual fields (VFs) were measured using the Humphrey Field Analyzer (HFA) with
Swedish interactive threshold algorithm standard 24-2 programme (Carl Zeiss Meditec, Dublin, CA,
USA). VF measurements were used primarily as an input (along with IOP and optic disc imaging
measurements) into decision support software (DSS), which generated eye-specific treatment
recommendations at each study visit. The secondary analysis reported here used VFs extracted from
the DSS database on 13 th December 2018, as the trial approached the six-year mark. We constructed
a longitudinal series of VFs for each study eye and these formed the basis for all analyses. A total of
11,823 VFs were extracted from the database. Of these, we excluded 86 VFs with false positive rates
> 14% as potentially unreliable, and 56 eyes with very short series (< 5 VFs) as these contained little
information from which to estimate progression. Following these exclusions there remained 11,563
VFs, approximately equally distributed between treatment groups. A total of 1178 eyes from 688
patients (95.8% of those randomised) were included in this analysis; treatment groups had similar
patient baseline characteristics both to each other and to previously reported analyses ^{6,13} (Table 1).
Median follow-up time (Medicine-1 st 47 months, Laser-1 st 49 months) and VF series length
(Medicine-1 st 5630 VFs, 9 VFs per eye; Laser-1 st 5933 VFs, 10 VFs per eye) were similar across
treatment groups.

Statistical analysis

We compared VF outcomes between groups by constructing hierarchical linear models describing
change in VF measures over time using the visual field data described above. A trend based method
of comparison was chosen because it is potentially more sensitive than event based methods such as
Guided Progression Analysis (GPA) for detecting progression ^{15,16} , especially where the number of
events is expected to be small as in these early cases. We examined change at each of the 52
measured locations (excluding the blind spot) in each VF series, specifying a random effects
structure nesting locations within eyes, within individuals ¹⁷ . This accounted for variation in response
among locations, due to eye level variation and correlation between eyes within individuals,
respectively, whilst pooling information across the entire cohort to produce the most accurate
estimates. Fixed effects terms represented baseline values (equivalent to y-axis intercept [dB]) and
rate of change per year (slope; dB/year) in each treatment group, enabling us to simultaneously
evaluate (using the slope by group interaction term) the statistical evidence for a difference in
progression rates between groups and to estimate effect size (i.e. difference in slopes) ^{16,18} .
Two outcome variables were modelled. Total deviation (TD) is the difference of the measured
sensitivity at each location from that expected for a patient of that age with no pathology. Pattern
deviation (PD) is the TD value at each location adjusted for generalised depression of sensitivity
across the VF ¹⁹ . Both PD and TD values were extracted from the HFA. Generalised depression and
changes in TD may be caused by several non-glaucomatous conditions including cataract, whereas
PD is designed to highlight the more localised VF changes found in glaucoma. However, glaucoma
almost always has a diffuse component which is ignored by PD, so it is a less sensitive measure than
TD and is prone to underestimation of glaucomatous damage than TD^{20} . Models were fitted in R
version 3.5 (R Development Core Team, R Foundation for Statistical Computing, Vienna, Austria).
Alongside pointwise estimates, global estimates of TD and PD progression for each study eye were
extracted from the models. For each eye, the estimated rate at each location was extracted; the

139	mean of these pointwise rates was calculated to give the global estimate for that eye. Pointwise
140	estimates enable better detection of spatially localised changes, whereas global estimates are useful
141	for describing diffuse changes in sensitivity.
142	To assess the clinical importance of differences between treatment groups, we categorised
143	estimated progression rates of each location and eye into one of six categories (fast progression: -1 >
144	slope dB/y, moderate progression: -1 <= slope < -0.5 dB/y, slow progression: -0.5 <= slope < 0 dB/y,
145	slow improvement: 0 <= slope < 0.5 dB/y, moderate improvement: 0.5 <= slope < 1 dB/y, fast
146	improvement: slope >= 1 dB/y. Category boundaries in the progression end (i.e. slope < 0) of the rate
147	distribution were based on those previously reported in studies of glaucoma progression in clinical
148	populations ^{21,22} . A symmetrical set of boundaries were applied to the improvement end of the
149	distribution as a measure of variability. A tendency towards faster progression and also faster
150	improvement in one treatment group (i.e. a fatter tailed distribution) would indicate greater
151	variability in rates rather than a shift towards faster progression. We used log-binomial (relative risk)
152	regression to compare the proportion of locations and eyes in each group undergoing fast or
153	moderate progression, representing patients at the greatest risk of vision loss. These models were
154	non-hierarchical, with treatment group as the predictor and the outcome being a binary variable
155	indicating whether the estimated rates (from the hierarchical model) were above or below -0.5 dB/y.
156	At the other end of the rate distribution, the proportions of locations and eyes undergoing fast or
157	moderate improvement were compared in a similar manner.
158	We conducted a sensitivity analysis to further investigate the influence of cataract, refitting our
159	models to exclude eyes that underwent cataract removal. Similarly, eyes that underwent
160	trabeculectomy may have experienced a step increase in sensitivity after surgery. We censored VF
161	series for these eyes at time of surgery and refitted the models.
162	The study adhered to the tenets of the Declaration of Helsinki. Ethical approval was obtained from
163	local boards at each participating centre. All patients provided written informed consent before

- participation. The study is registered at controlled-trials.com (ISRCTN32038223) and the protocol is available online¹².
- 166 Results
- Total deviation 167 Estimated mean pointwise total deviation decreased in both the Medicine-1st and Laser-1st groups 168 over time (mean and 95%CI: Medicine- 1^{st} = -0.25 dB/y [-0.31, -0.19]; SLT = -0.19 dB/y [-0.25, -0.13]). 169 170 There was little evidence for a difference in mean rates of progression between groups (slope by group interaction term, t = 1.41, P = 0.157) but the distribution of estimated progression rates did 171 vary by group. Distributions of both pointwise and global estimates were more strongly left skewed 172 in the Medicine-1st group than in the Laser-1st group (Figure 1, global estimates), indicating that 173 greater proportions of locations and eyes in the Medicine-1st group showed evidence of more rapid 174 175 progression (Table 2). One in four eyes underwent moderate or fast progression in the Medicine-1st group compared with 176 177 approximately one in six eyes in the Laser-1st group (Risk Ratio, RR = 1.55 [1.23, 1.93], P < 0.001). Similarly, a greater proportion of locations was categorised as having moderate or fast progression 178 in the Medicine-1st group (RR = 1.37 [1.33, 1.42], P < 0.001). There was no evidence for a difference 179 between treatment groups in the proportion of eyes that underwent moderate or fast improvement 180 (RR 1.29 [0.83, 2.04], P = 0.266). A greater proportion of locations was categorised as having 181 moderate or fast improvement in the Medicine-1st group (RR = 1.31 [1.24, 1.39], P < 0.001). 182 183 Following exclusion of eyes that underwent cataract removal, the differences between treatment groups were attenuated: eyes that underwent moderate or fast progression (RR = 1.43 [1.11, 1.83], 184 P = 0.005); locations (RR = 1.25 [1.21, 1.29], P < 0.001). Censoring VF series at trabeculectomy had 185 186 almost no influence on estimated differences between treatment groups (RRs not shown).

187	Pattern deviation
188	The distribution of progression estimates was similar for pattern deviation but estimated rates were
189	lower and differences between treatment groups were less pronounced than for total deviation.
190	Estimated mean pointwise pattern deviation decreased in both the Medicine-1 st and Laser-1 st groups
191	over time (mean and 95%CI: Medicine-1 st = -0.12 dB/y [-0.16, -0.09]; Laser-1 st = -0.09 dB/y [-0.13, -0.09]
192	0.06]). There was no evidence for a difference in mean rates of progression between groups ($t =$
193	1.19, $P = 0.236$) but both pointwise and global estimates were more strongly left skewed in the
194	Medicine-1 st group than in the Laser-1 st group (Figure 2).
195	There was no evidence for a statistical difference between treatment groups in the proportion of
196	eyes that underwent moderate or fast progression (Table 3, RR = $1.39 [0.95, 2.03]$, $P = 0.0928$). A
197	greater proportion of locations was categorised as having moderate or fast progression in the
198	Medicine-1 st group (Table 3, RR = 1.39 [1.32, 1.46], $P < 0.001$). There was no evidence for a
199	difference between treatment groups in the proportion of eyes that underwent moderate or fast
200	improvement (RR 1.86 [0.75, 4.64], $P = 0.181$). A greater proportion of locations were categorised as
201	having moderate or fast improvement in the Medicine-1 st group (RR = 1.37 [1.24, 1.51], $P < 0.001$).
202	Following exclusion of eyes that underwent cataract removal, the differences between treatment
203	groups were attenuated: eyes that underwent moderate or fast progression (RR = 1.18 [0.78, 1.77],
204	P = 0.436); locations (RR = 1.29 [1.22, 1.35], $P < 0.001$). Censoring VF series at trabeculectomy had
205	almost no influence on estimated differences between treatment groups (RRs not shown).
206	Baseline sensitivity, IOP and progression rates
207	Eyes that underwent fast progression or improvement had lower average sensitivity at baseline than
208	those with intermediate progression or improvement rates (Figure 3). Similarly, eyes that underwent

fast progression or improvement had slightly lower IOP targets set at baseline than those with

intermediate rates (Figure 4). There was no evidence that the distributions of baseline sensitivity or IOP targets differed between treatment groups (Table 1).

Discussion

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

This study reports on the VF progression differences between glaucoma/OHT patients treated with Medicine-1st and patients treated with Laser-1st in the LiGHT trial. Using TD values, we estimated that one in four eyes had moderate or fast VF progression in the Medicine-1st group whereas in the Laser-1st group this value was about one in six. The difference between groups was less pronounced, with no statistical evidence for a difference, when using PD values. The proportion of pointwise rates that were moderate or fast was slightly greater in the Medicine-1st group using both PD and TD. These differences were not reflected at the upper ends of the rate distributions for either eyes or locations, indicating that our findings were not the result of greater variability in one or other treatment group. The results of this study suggest that treating patients with Laser-1st may delay VF progression in comparison to Medicine-1st. IOP control with eye drops may rely upon patient concordance with treatment; indeed IOP lowering drops have been reportedly available to patients only 69% of the time, whilst concordance may range between 76-86% with even lower figures reported for more complex instillation regimes^{23–25}. Although self-reported concordance in the LiGHT trial has been high¹⁴, the possibility of poor concordance having a significant adverse effect on disease control cannot be ruled out as actual dose monitoring was not carried out. However, patients in clinical trials are reported to have higher rates of concordance than those in routine care²⁶. Thus the true magnitude and clinical importance of the slowing of VF progression in the Laser-1st group may be much greater. SLT has also been proposed to provide better diurnal IOP stability, as a result of a continuous effect on the trabecular meshwork^{27–30}. This is in contrast to the episodic (and sometimes erratic) administration of medication that may allow greater diurnal fluctuation in IOP, and in turn

234 faster disease progression. Even with exact concordance with instillation regimes, there are likely to be long gaps between doses overnight, during which IOP may rise. 235 236 We observed differences in VF progression between treatment groups despite the fact that both 237 groups were treated to similar IOP targets. This indicates that monitoring of IOP reduction alone (usually measured during office hours and so potentially unrepresentative of diurnal pressure 238 239 variation) may be insufficient to predict functional changes indicative of progression. This suggests 240 that clinical trials of new glaucoma treatments should include both IOP and VF related outcomes. 241 Greater differences were observed for TD, hinting that non-glaucomatous changes may have also 242 contributed towards differences between groups. Changes in TD may be caused by a number of nonglaucomatous conditions, such as cataract. Were there higher rates of cataract in the Medicine-1st 243 group it could partially explain the tendency towards faster TD progression. During the period 244 245 covered by this analysis, cataracts were removed from 10.9% of eyes in the Medicine-1st group and 246 7.1% of eyes in the Laser-1st group. Assuming that cataracts not yet requiring surgery follow this 247 distribution, generalised depression of sensitivity due to lens opacity have contributed towards the 248 differences in TD rate between the two treatment groups. This is consistent with the higher rates of cataract after topical medical treatment of glaucoma previously reported by landmark glaucoma 249 studies^{31–34} and itself may contribute to a significant clinical advantage of a Laser-1st compared to a 250 251 Medicine-1st protocol. Our sensitivity analysis showed that differences between treatment groups were narrowed when eyes that underwent cataract removals were excluded. PD models were as 252 253 strongly influenced by the exclusions as TD models. For example, following the exclusions there was 254 no statistical evidence for a difference in the proportion of eyes undergoing fast or moderate PD 255 progression (there remained strong evidence for a difference in the proportion of locations with moderate or fast progression). This may indicate that as well as having lower sensitivity than TD²⁰, 256 257 PD may not be immune to the influence of cataract. Alternatively, the similar responses of TD and PD following exclusions may indicate that cataract was not driving the between group differences. 258 Instead, cataract formation may be associated with faster glaucoma progression (with oxidative 259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

stress a potential biological basis for the association) and by excluding cataract removal eyes much of the glaucoma signal may have been excluded also. Considering that we still found clinically relevant differences between treatment groups following exclusion of eyes from which cataracts were removed, and recognising the limitations of both TD and PD, we conclude that greater incidence of both cataract-related and glaucomatous progression in the Medicine-1st group is likely to have contributed towards the observed differences between treatment groups. To our knowledge this is the first study to robustly compare VF outcomes between IOP lowering drops and SLT, as previous research has focused on IOP lowering alone as a surrogate for disease control. In the absence of a universally accepted, standardised classification of rates of visual field progression we have adopted that used by Chauhan et al.²¹: fast progressors as <-1dB/year (-1dB/year is approximately ten times faster than age related decay). Although statistical methods differ among studies, our estimates of global TD progression are broadly comparable with MD rates in clinical glaucoma populations, which report median progression rates ranging from -0.62dB/year to -0.05dB/year)^{21,35,36}. For the formal comparisons of Medicine-1st vs. Laser-1st we reported the proportion of eyes with moderate or fast progression, combining these categories to ensure reasonable data support for each outcome. These figures are not directly comparable with the number of VF progressions reported in the recent paper on the primary outcomes of LiGHT⁶, where progression was detected using GPA. The proportions reported here are larger, possibly because trend based methods are more sensitive for detecting progression than event based methods such as GPA¹⁵, especially given the relatively high upper threshold of the moderate/fast classification (-0.5dB/year). Also, this analysis covers a longer follow-up period, extending beyond the 36-month point reported previously and so a larger proportion of eyes would be expected to show evidence of VF progression in our study. Despite these methodological differences, both analyses report higher risks of VF progression in the Medicine-1st group, that may be related to the higher rates of disease deterioration previously reported⁶.

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

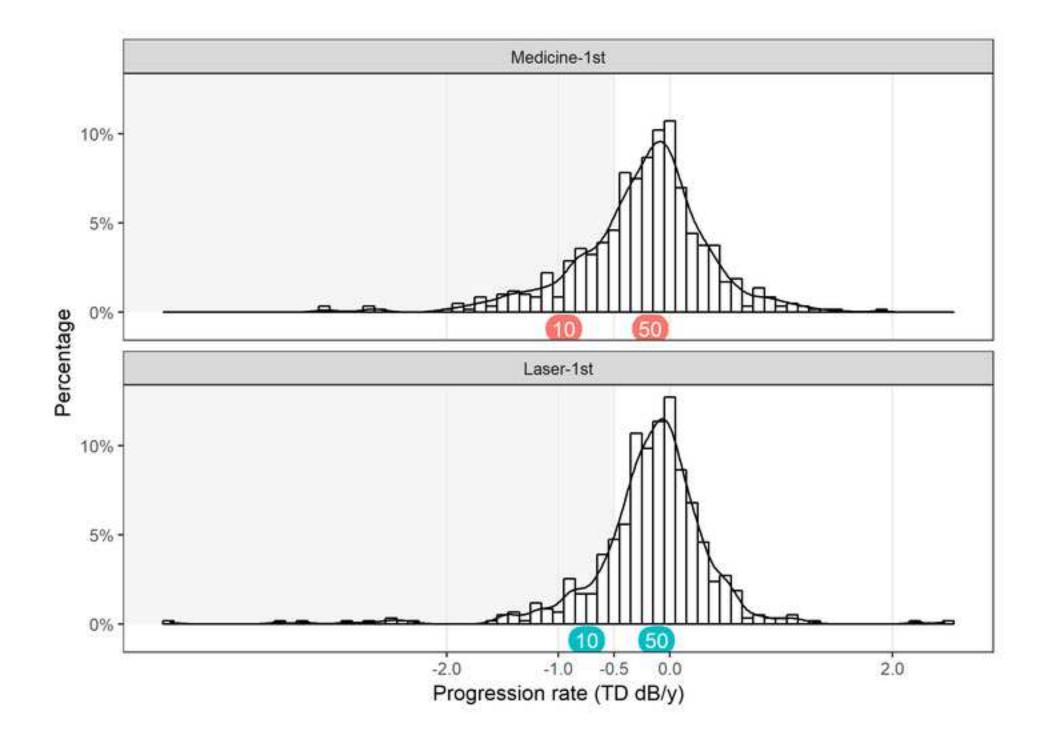
306

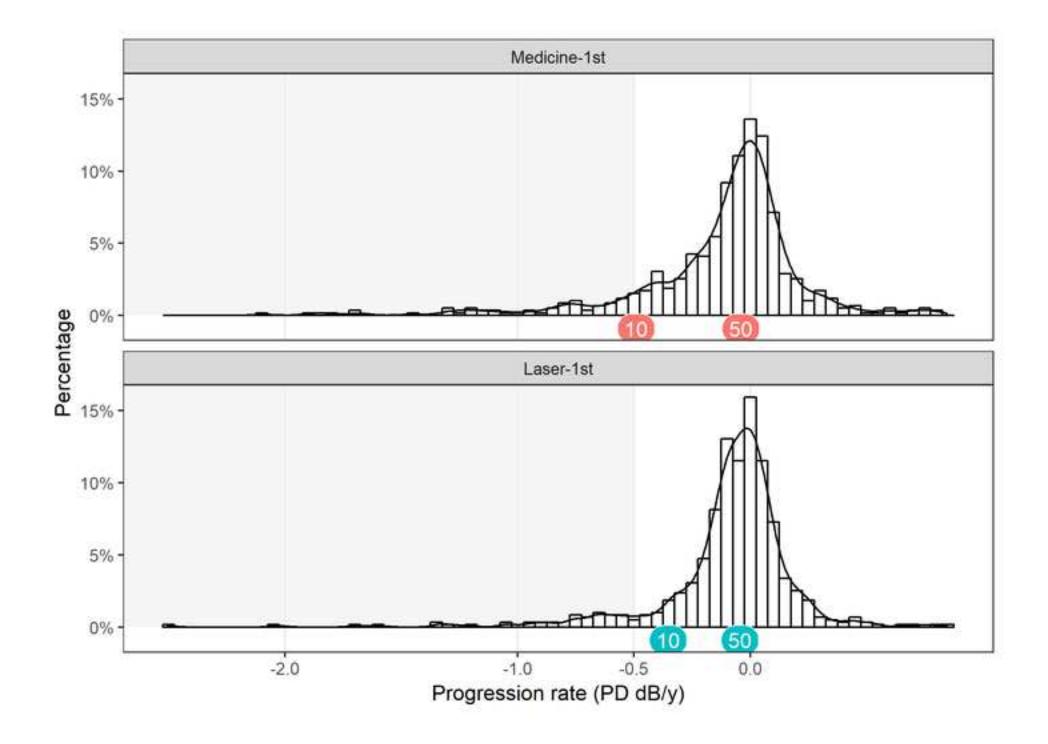
307

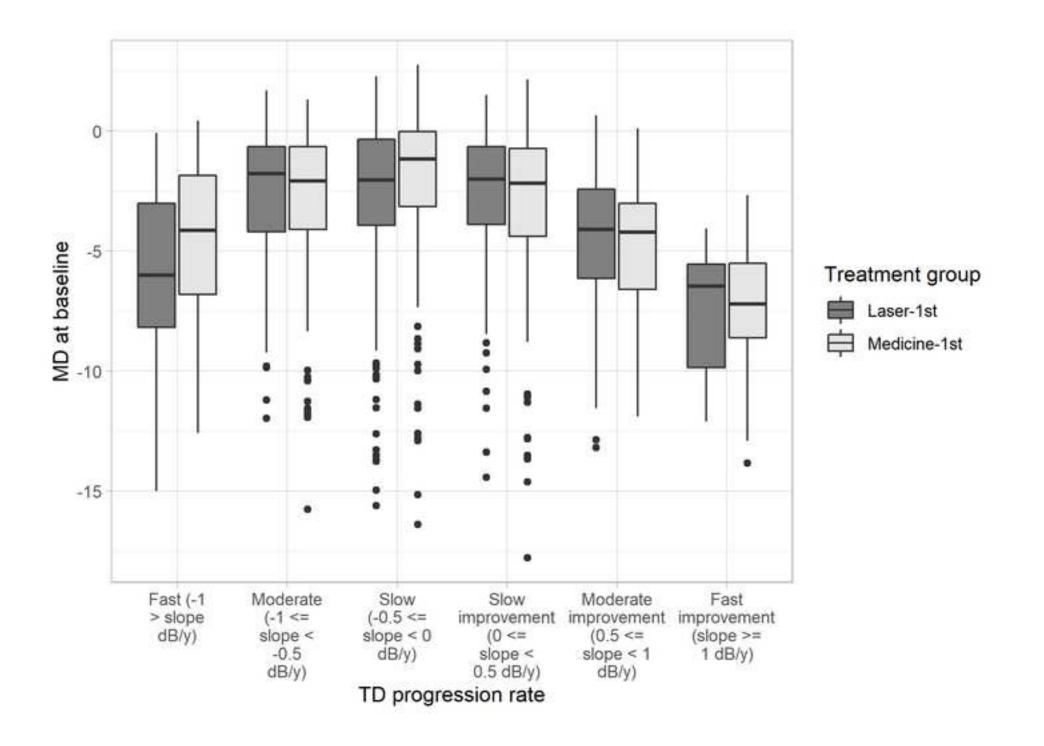
308

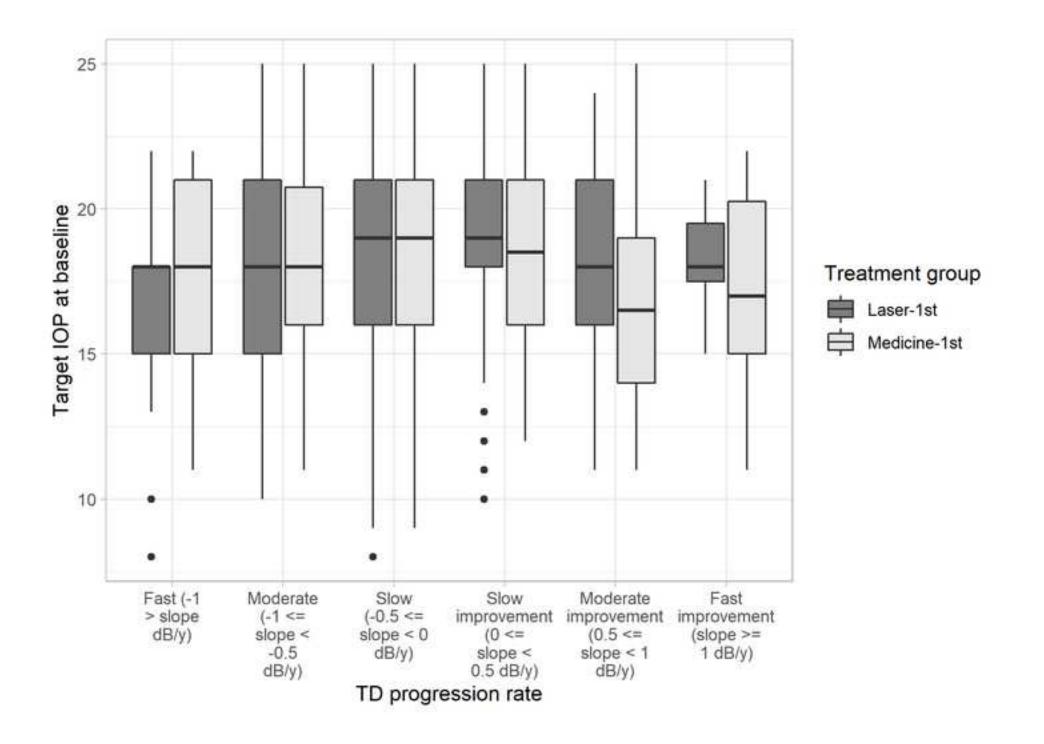
309

This VF analysis is more detailed than those previously reported for LiGHT 6,14,37 in that pointwise rates were modelled and then averaged to produce global rate estimates, retaining more information than if global VF measures such as MD or Pattern Standard Deviation (PSD) had been used. Furthermore, we considered the overall shapes of the progression rate distributions rather than using the mean of each distribution as the single point of comparison. We show that differences between treatment groups were manifest only towards the more rapidly progressing end of the rate distribution. If we had concentrated solely on mean TD and PD we would have found no differences between treatment groups, consistent with the MD and PSD results reported at 36months¹⁴. The data derived for this study were drawn from a carefully conducted, randomised controlled trial. Patients were monitored according to routine clinical care; the trial used eye specific IOP targets which were objectively defined and adjusted by a computerised decision algorithm to avoid bias¹². Similarly, to avoid bias in clinical decision making, treatment escalation decisions were initiated by the computerised decision algorithm, which followed a robust protocol developed according to international guidelines by the EGS, American Academy of Ophthalmology Preferred Practice Pattern and the and the South-East Asia Glaucoma Interest Group^{38–40}. The decision support algorithm used in the LiGHT trial has been described in detail before ^{12,14}. The success of this strategy is highlighted by the well matched distributions of baseline damage and IOP targets between treatment groups (Table 1, Figures 3 and 4). As a result, any differences in VF progression between treatment groups reflect genuine change, in the presence of identical IOP control practices between the two groups. Patients treated with Laser-1st exhibited slower VF progression, as shown in this study, in addition to better IOP control, less intense medical and surgical treatment and lower rates of disease deterioration⁶. The data presented here support the use of SLT as a first line treatment for glaucoma and OHT as suggested by the previously reported improved clinical outcomes, lower treatment intensity and


- 310 cost-savings for the NHS. With slower VF deterioration SLT may delay or completely avert the need
- 311 for more intense medical and surgical intervention in a significant proportion of patients.
- 312 Acknowledgements
- 313 We thank Dr Amanda Davis for supporting trial management, Emily Dowse and Karine Girard-
- 314 Claudon for clinical support. We also thank the LiGHT participants and all recruiting sites.


315	Re	ferences
316 317 318	1.	Haymes SA, LeBlanc RP, Nicolela MT, Chiasson LA, Chauhan BC. Risk of Falls and Motor Vehicle Collisions in Glaucoma. <i>Invest Ophthalmol Vis Sci.</i> 2007;48(3):1149-1155. doi:10.1167/iovs.06-0886
319 320	2.	Haymes SA, LeBlanc RP, Nicolela MT, Chiasson LA, Chauhan BC. Glaucoma and On-Road Driving Performance. <i>Invest Ophthalmol Vis Sci.</i> 2008;49(7):3035-3041. doi:10.1167/iovs.07-1609
321 322	3.	Bunce C, Wormald R. Leading causes of certification for blindness and partial sight in England & Wales. <i>BMC Public Health</i> . 2006;6(1):58. doi:10.1186/1471-2458-6-58
323 324	4.	Crabb DP. A view on glaucoma—are we seeing it clearly? <i>Eye</i> . 2016;30(2):304-313. doi:10.1038/eye.2015.244
325 326 327	5.	Garway-Heath DF, Crabb DP, Bunce C, et al. Latanoprost for open-angle glaucoma (UKGTS): a randomised, multicentre, placebo-controlled trial. <i>The Lancet</i> . 2015;385(9975):1295-1304. doi:10.1016/S0140-6736(14)62111-5
328 329 330	6.	Gazzard G, Konstantakopoulou E, Garway-Heath D, et al. Selective laser trabeculoplasty versus eye drops for first-line treatment of ocular hypertension and glaucoma (LiGHT): a multicentre randomised controlled trial. <i>The Lancet</i> . 2019;0(0). doi:10.1016/S0140-6736(18)32213-X
331 332 333 334	7.	Nagar M, Ogunyomade A, O'Brart DPS, Howes F, Marshall J. A randomised, prospective study comparing selective laser trabeculoplasty with latanoprost for the control of intraocular pressure in ocular hypertension and open angle glaucoma. <i>Br J Ophthalmol</i> . 2005;89(11):1413-1417. doi:10.1136/bjo.2004.052795
335 336 337	8.	Francis BA, lanchulev T, Schofield JK, Minckler DS. Selective Laser Trabeculoplasty as a Replacement for Medical Therapy in Open-Angle Glaucoma. <i>Am J Ophthalmol</i> . 2005;140(3):524 525. doi:10.1016/j.ajo.2005.02.047
338 339 340	9.	Patel V, El Hawy E, Waisbourd M, et al. Long-term outcomes in patients initially responsive to selective laser trabeculoplasty. <i>Int J Ophthalmol</i> . 2015;8(5):960-964. doi:10.3980/j.issn.2222-3959.2015.05.19
341 342 343	10.	Katz L, Steinmann W, Kabir A, Molineaux J, Wizov S, Marcellino G. Selective Laser Trabeculoplasty Versus Medical Therapy as Initial Treatment of Glaucoma: A Prospective, Randomized Trial. <i>J Glaucoma</i> . 2012;21(7):460-468. doi:10.1097/IJG.0b013e318218287f
344 345 346	11.	Lai JS, Chua JK, Tham CC, Lam DS. Five-year follow up of selective laser trabeculoplasty in Chinese eyes. <i>Clin Experiment Ophthalmol</i> . 2004;32(4):368-372. doi:10.1111/j.1442-9071.2004.00839.x
347 348 349	12.	Gazzard G, Konstantakopoulou E, Garway-Heath D, et al. Laser in Glaucoma and Ocular Hypertension (LiGHT) trial. A multicentre, randomised controlled trial: design and methodology <i>Br J Ophthalmol</i> . 2018;102(5):593-598. doi:10.1136/bjophthalmol-2017-310877
350 351 352	13.	Konstantakopoulou E, Gazzard G, Vickerstaff V, et al. The Laser in Glaucoma and Ocular Hypertension (LiGHT) trial. A multicentre randomised controlled trial: baseline patient characteristics. <i>Br. J. Ophthalmol.</i> 2018;102(5):599-603. doi:10.1136/biophthalmol-2017-310870


		Journal Pre-proof
353 354 355	14.	Gazzard G, Konstantakopoulou E, Garway-Heath D, et al. Selective laser trabeculoplasty versus drops for newly diagnosed ocular hypertension and glaucoma: the LiGHT RCT. <i>Health Technol Assess</i> . 2019;23(31):1-102. doi:10.3310/hta23310
356 357 358	15.	Garway-Heath DF, Zhu H, Cheng Q, et al. <i>Combining Optical Coherence Tomography with Visual Field Data to Rapidly Detect Disease Progression in Glaucoma: A Diagnostic Accuracy Study</i> . NIHR Journals Library; 2018.
359 360 361	16.	Wu Z, Crabb DP, Chauhan BC, Crowston JG, Medeiros FA. Improving the Feasibility of Glaucoma Clinical Trials Using Trend-Based Visual Field Progression End Points. <i>Ophthalmol Glaucoma</i> . 2019;2(2):72-77. doi:10.1016/j.ogla.2019.01.004
362 363 364	17.	Bryan SR, Eilers PHC, Lesaffre EMEH, Lemij HG, Vermeer KA. Global Visit Effects in Point-Wise Longitudinal Modeling of Glaucomatous Visual Fields. <i>Invest Ophthalmol Vis Sci</i> . 2015;56(8):4283-4289. doi:10.1167/iovs.15-16691
365 366 367	18.	Liu X, Kelly SR, Montesano G, et al. Evaluating the Impact of Uveitis on Visual Field Progression Using Large-Scale Real-World Data. <i>Am J Ophthalmol</i> . 2019;207:144-150. doi:10.1016/j.ajo.2019.06.004
368 369	19.	Sample PA, Dannheim F, Artes PH, et al. Imaging and Perimetry Society Standards and Guidelines. <i>Optom Vis Sci.</i> 2011;88(1):4. doi:10.1097/OPX.0b013e3181fc3735
370 371 372	20.	Artes PH, Nicolela MT, LeBlanc RP, Chauhan BC. Visual Field Progression in Glaucoma: Total Versus Pattern Deviation Analyses. <i>Invest Ophthalmol Vis Sci.</i> 2005;46(12):4600-4606. doi:10.1167/iovs.05-0827
373 374 375	21.	Chauhan BC, Malik R, Shuba LM, Rafuse PE, Nicolela MT, Artes PH. Rates of Glaucomatous Visual Field Change in a Large Clinical Population. <i>Invest Ophthalmol Vis Sci.</i> 2014;55(7):4135-4143. doi:10.1167/iovs.14-14643
376 377	22.	Bryan SR, Crabb DP. A New Graphical Tool for Assessing Visual Field Progression in Clinical Populations. <i>Transl Vis Sci Technol</i> . 2018;7(1):22. doi:10.1167/tvst.7.1.22
378 379 380	23.	Robin AL, Novack GD, Covert DW, Crockett RS, Marcic TS. Adherence in Glaucoma: Objective Measurements of Once-Daily and Adjunctive Medication Use. <i>Am J Ophthalmol</i> . 2007;144(4):533-540.e2. doi:10.1016/j.ajo.2007.06.012
381 382	24.	Robin AL, Covert D. Does Adjunctive Glaucoma Therapy Affect Adherence to the Initial Primary Therapy? <i>Ophthalmology</i> . 2005;112(5):863-868. doi:10.1016/j.ophtha.2004.12.026
383 384	25.	Schwartz GF, Quigley HA. Adherence and Persistence with Glaucoma Therapy. <i>Surv Ophthalmol</i> . 2008;53(6 SUPPL.):S57-S68. doi:10.1016/j.survophthal.2008.08.002
385 386 387	26.	Henson DB, Shambhu S. Relative Risk of Progressive Glaucomatous Visual Field Loss in Patients Enrolled and Not Enrolled in a Prospective Longitudinal Study. <i>Arch Ophthalmol</i> . 2006;124(10):1405-1408. doi:10.1001/archopht.124.10.1405
388 389 390 391	27.	Prasad N, Murthy S, Dagianis J, Latina M. A Comparison of the Intervisit Intraocular Pressure Fluctuation After 180 and 360 Degrees of Selective Laser Trabeculoplasty (SLT) as a Primary Therapy in Primary Open Angle Glaucoma and Ocular Hypertension. <i>J Glaucoma</i> . 2009;18(2):157-160. doi:10.1097/IJG.0b013e3181752c97


392 393	28.	Elsås T, Junk H, Johnsen H. Diurnal Intraocular Pressure After Successful Primary Laser Trabeculoplasty. <i>Am J Ophthalmol</i> . 1991;112(1):67-69. doi:10.1016/S0002-9394(14)76215-4
394 395 396	29.	Greenidge KC, Spaeth GL, Fiol-Silva Z. Effect of Argon Laser Trabeculoplasty on the Glaucomatous Diurnal Curve. <i>Ophthalmology</i> . 1983;90(7):800-804. doi:10.1016/S0161-6420(83)34479-1
397 398 399	30.	Tojo N, Oka M, Miyakoshi A, Ozaki H, Hayashi A. Comparison of Fluctuations of Intraocular Pressure Before and After Selective Laser Trabeculoplasty in Normal-tension Glaucoma Patients. <i>J Glaucoma</i> . 2014;23(8). doi:10.1097/IJG.000000000000000
400 401 402	31.	Leske MC, Heijl A, Hussein M, Bengtsson B, Hyman L, Komaroff E. Factors for Glaucoma Progression and the Effect of Treatment: The Early Manifest Glaucoma Trial. <i>Arch Ophthalmol</i> . 2003;121(1):48-56. doi:10.1001/archopht.121.1.48
403 404 405	32.	Heijl A, Leske MC, Bengtsson B, Hyman L, Bengtsson B, Hussein M. Reduction of Intraocular Pressure and Glaucoma Progression: Results From the Early Manifest Glaucoma Trial. <i>Arch Ophthalmol</i> . 2002;120(10):1268-1279. doi:10.1001/archopht.120.10.1268
406 407 408	33.	Wu S-Y, Nemesure B, Hennis A, Schachat AP, Hyman L, Leske MC. Open-angle Glaucoma and Mortality: The Barbados Eye Studies. <i>Arch Ophthalmol</i> . 2008;126(3):365-370. doi:10.1001/archophthalmol.2007.77
409 410	34.	Stewart WC, Stewart JA, Nassar QJ, Mychaskiw MA. Cost-effectiveness of Treating Ocular Hypertension. <i>Ophthalmology</i> . 2008;115(1):94-98. doi:10.1016/j.ophtha.2007.01.040
411 412 413	35.	Heijl A, Buchholz P, Norrgren G, Bengtsson B. Rates of visual field progression in clinical glaucoma care. <i>Acta Ophthalmol (Copenh)</i> . 2013;91(5):406-412. doi:10.1111/j.1755-3768.2012.02492.x
414 415	36.	Moraes CGVD, Juthani VJ, Liebmann JM, et al. Risk Factors for Visual Field Progression in Treated Glaucoma. <i>Arch Ophthalmol.</i> 2011;129(5):562-568. doi:10.1001/archophthalmol.2011.72
416 417 418 419	37.	Garg A, Vickerstaff V, Nathwani N, et al. Primary Selective Laser Trabeculoplasty for Open-Angle Glaucoma and Ocular Hypertension: Clinical Outcomes, Predictors of Success, and Safety from the Laser in Glaucoma and Ocular Hypertension Trial. <i>Ophthalmology</i> . 2019;126(9):1238-1248. doi:10.1016/j.ophtha.2019.04.012
420 421	38.	European Glaucoma Society. Terminology and Guidelines for Glaucoma 3rd Ed. 2008. http://www.eugs.org/eng/EGS_guidelines.asp. Accessed May 12, 2015.
422	39.	SEAGIG. South East Asia Glaucoma Interest Group. Asia Pacific Glaucoma Guidelines. 2003.
423 424	40.	American Academy of Ophthalmology. Primary Open-Angle Glaucoma: Preferred Practice Pattern. 2005.
425		

426	Figure legends
427	Figure 1. Distribution of estimated global total deviation progression rates by treatment group.
428	Histogram with median and 10 th percentiles indicated. Curved line represents a smoothed density
429	estimate to the histogram.
430	Figure 2. Distribution of estimated global pattern deviation progression rates by treatment group.
431	Histogram with median and 10 th percentiles indicated. Curved line represents a smoothed density
432	estimate to the histogram.
433	Figure 3. Distribution of mean deviation (MD) at baseline by estimated total deviation progression
434	rates.
435	Figure 4. Distribution of target IOP at baseline by estimated total deviation progression rates.

<u>Table 1. Distribution of cohort characteristics by treatment group. Values given are frequencies</u> unless otherwise marked.

	Medicine-1st	Laser-1st
Patients	344	344
Male	180 (52.3%)	193 (56.1%)
Female	164 (47.7%)	151 (43.9%)
Age in years, mean (SD)	62.9 (11.6)	63.4 (12.0)
OAG	271 (78.8%)	266 (77.3%)
OHT	73 (21.2%)	78 (22.7%)
Eyes	588	590
Bilateral cases	245 (71.2%)	249 (72.4%)
Follow up duration in months, median (IQR)	47 (39, 54)	49 (42, 56)
Visual fields	5630	5933
Visual fields per eye, median (IQR)	9 (8, 11)	10 (8, 12)
Interval between fields in days, median (IQR)	135 (83, 189)	140 (94, 189)
Visual field mean deviation at baseline in dB, median (IQR) -2.0 (-4.5, -0.5) -2.2 (-4.4, -0.6)
IOP target at baseline in mmHg, median (IQR)	18 (16, 21)	18 (16, 21)
Number of cataract removals performed	64	42

Table 2. Distribution of estimated total deviation progression rates by treatment group.

	Locations		Eyes	
Progression rate	Medicine-1st	Laser-1st	Medicine-1st	Laser-1st
Fast (-1 > slope dB/y)	10.2% (3115)	6.0% (1848)	9.5% (56)	5.4% (32)
Moderate (-1 \leq slope \leq -0.5 dB/y)	15.9% (4864)	13.0% (3980)	16.7% (98)	11.5% (68)
Slow $(-0.5 \le slope < 0 dB/y)$	40.3% (12336)	43.4% (13311)	41.5% (244)	48.1% (284)
Slow improvement (0 <= slope < 0.5 dB/y)	25.7% (7863)	31.6% (9705)	25.5% (150)	29.7% (175)
Moderate improvement (0.5 <= slope < 1 dB/y)	5.9% (1798)	4.7% (1442)	5.1% (30)	4.1% (24)
Fast improvement (slope >= 1 dB/y)	2.0% (600)	1.3% (394)	1.7% (10)	1.2% (7)

Table 3. Distribution of estimated pattern deviation progression rates by treatment group.

	Locations		Eyes	
Progression rate	Medicine-1st	Laser-1st	Medicine-1st	Laser-1st
Fast (-1 > slope dB/y)	4.6% (1403)	3.2% (967)	3.4% (20)	1.7% (10)
Moderate (-1 \leq slope \leq -0.5 dB/y)	6.9% (2103)	5.1% (1565)	6.5% (38)	5.4% (32)
Slow $(-0.5 \le slope < 0 dB/y)$	46.6% (14234)	48.9% (14990)	51.7% (304)	55.6% (328)
Slow improvement (0 <= slope < 0.5 dB/y)	38.9% (11900)	40.6% (12471)	36.2% (213)	36.1% (213)
Moderate improvement (0.5 <= slope < 1 dB/y)	2.6% (805)	1.8% (557)	2.2% (13)	1.0% (6)
Fast improvement (slope >= 1 dB/y)	0.4% (131)	0.4% (130)	- (0)	0.2% (1)