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Abstract 15 

The present work examines numerically the breakup of water droplets exposed to gas flows at Mach 16 

numbers Ma>1, which resemble the ambient conditions encountered in the injection systems of 17 

scramjet (supersonic combustion ramjet) engines. A CFD model is utilized which solves the 18 

compressible Navier-Stokes equations, the energy equation, the mass conservation in volume fraction 19 

form (volume of fluid method) along with two equations of state to model the density variations of the 20 

two phases. In addition, a coupled VOF/Lagrange model is employed to capture the appearance of 21 

micro-droplets, which are smaller than the smallest grid cell. As a first step, a 2-dimensional planar 22 

simulation (water column) is performed at conditions of Ma=1.47 in order to validate the numerical 23 

model; its results are compared against published experimental and numerical data. Good agreement 24 



2 

 

is observed for the temporal evolution of droplet shape, the streamwise deformation, the leading-25 

edge displacement as well as the shock wave reflection. Subsequently, the validated model is utilized 26 

to perform a 3-D simulation at Ma=1.23, which corresponds to the conditions of previous experimental 27 

studies, and its results are compared against the experimental data as well as the results from previous 28 

numerical studies, showing good agreement. Furthermore, surface instabilities are observed at the 29 

droplet surface initiated by interfacial instabilities due to the shearing effect and the interaction with 30 

the shock-wave, pertaining to Kelvin-Helmholtz and Rayleigh-Taylor instabilities, despite the stabilising 31 

contribution of surface tension; viscosity effects are found to play an insignificant role.    32 

 33 
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 36 

Introduction 37 

The breakup of droplets exposed to Mach numbers >1 has received a lot of attention recently due to 38 

its application in supersonic combustion ramjet (scramjet) engines (Liu et al. 2018). These types of 39 

engines utilize the supersonic vehicle speed to compress the incoming airflow without the use of a 40 

compressor. Other non-dimensional numbers that are usually utilised for classifying the breakup of 41 

droplets are the Weber (We), Ohnesorge (Oh) and Reynolds (Re) numbers as well as the density (ε) 42 

and viscosity ratios (Ν) of the two phases (Guildenbecher et al. 2009); these are calculated based on 43 

the post-shock properties as: 44 

 45 

 
    (1) 

 46 
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The breakup timescale can be also approximated by the non-dimensional correlation proposed by 47 

(Nicholls and Ranger 1969) (t*=t/tshear): 48 

 49 

 (2) 

 50 

Experimental studies on the breakup of droplets at high Ma numbers were performed as early as 1958, 51 

when (Engel 1958) conducted experiments with water droplets exposed to an air flow of Mach number 52 

ranging from 1.3 up to 1.7. She observed the formation of a mist at the periphery of the droplet and 53 

also measured its breakup time. Later, Boiko and co-workers (Boiko et al. 1987; Boiko and Poplavski 54 

2009) performed experiments with droplets of various liquids (water, alcohol, glycerine, and tridecane) 55 

interacting with flows of Helium and air at Mach numbers ranging from 0.15 up to 4, and Weber 56 

numbers greater than 400. They observed that the disintegration of the droplets originates from their 57 

surface (core or periphery) and they attributed it to the appearance of Rayleigh-Taylor and Kelvin-58 

Helmholtz (KH) instabilities. The research group of K. Takayama (Wierzba and Takayama 1988; Yoshida 59 

and Takayama 1990) examined experimentally the breakup of water droplets in an air flow of Ma 60 

number ranging from 1.3 up to 1.56 and We number between 600 and 760. They divided the breakup 61 

process into four stages: i) disruption of the liquid surface, ii) droplet deformation and initiation of the 62 

formation of micro-droplets, iii) continuous stripping of micro-droplets until deformation reaches 63 

maximum, and iv) remaining parent droplet breaks into large fragments. Joseph and co-workers 64 

(Joseph et al. 2002; Joseph et al. 1999) examined experimentally the breakup of Newtonian and 65 

viscoelastic droplets due to the interaction with a shock-wave of Mach number from 2 up to 3.03, We 66 

number from 11700 up to 169000 and Oh number from 0.002 to 82.3. They encountered bag and bag-67 

and-stamen breakup modes even at such high We numbers, owing to the high Oh of the viscoelastic 68 

liquids. Moreover, they developed a simplified theory to predict the critical wave length and growth 69 

rate of the Rayleigh–Taylor (RT) instabilities.  70 
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Theofanous and co-workers (Theofanous and Li 2008; Theofanous et al. 2012) conducted experiments 71 

with water and viscous liquid droplets (silicon oil, glycerol and tri-butyl phosphate) suddenly exposed 72 

to supersonic gas streams. The examined Ma numbers ranged from 1.1 up to 3.5, the We numbers 73 

from 12 up to 2·105 and the Oh numbers from 0.0012 up to 540. They utilized the laser-induced 74 

fluorescence technique to visualize the droplets and questioned the results of the previous 75 

experiments, which used the shadowgraph method. Specifically, they attributed the breakup of the 76 

droplets at We numbers greater than 1000 to the shear induced entrainment (SIE) instead of the 77 

previously thought Rayleigh–Taylor piercing (RTP); they concluded that the latter occurs at We 78 

numbers in the range of 10 up to 100. In addition, they questioned the existence of the catastrophic 79 

breakup regime and stated that it is a mirage of the shadowgraph technique. Finally, they observed 80 

that Kelvin-Helmholtz instabilities play an important role in the breakup of viscous liquids. Later, (Yi et 81 

al. 2017) studied experimentally and numerically the early-stage deformation of water droplets in a 82 

supersonic air flow of Mach number ranging from 1.39 up to 1.90, and We number in the order of 103-83 

104. They identified two mechanisms that are responsible for the droplet deformation at the early-84 

stages, namely: i) pressure mechanism, which is responsible for the droplet flattening, and ii) shear 85 

mechanism, which is responsible for the formation of the small rings and bulges.  Recently, (Hébert et 86 

al. 2019) studied experimentally and numerically in 2-dimensions, using an in-house code called 87 

Hesione, the breakup of water droplets exposed to gas flows of Ma=4.2-4.6 and We>105. They 88 

encountered the catastrophic breakup mode and divided the breakup process into three steps: i) 89 

droplet flattening, ii) fragmentation initiation at the outer rim of the droplet, and iii) droplet takes the 90 

shape of a filament aligned with the flow. 91 

Turning now to the numerical studies of droplet breakup at high Ma numbers, (Surov 1995) was one 92 

of the first to study numerically the interaction of a shock wave with a liquid droplet. He investigated 93 

water and glycerine droplets at Ma numbers ranging from 3 to 10 and observed that an increase in 94 

liquid viscosity leads to a slight decrease in the rate of deformation of the droplet, while the liquid 95 
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density affects substantially the droplet deformation and displacement. Chang and co-workers (Chang 96 

et al. 2013; Liou et al. 2009) performed 2-D axisymmetric simulations using the AUSM+- numerical 97 

scheme (Chang and Liou 2007) of water and glycerol droplets exposed to an airflow of Ma number in 98 

the range of 0.29 up to 3, We number from 520 up to 5.4·104 and Oh number up to 1.9. They identified 99 

the RTP and SIE breakup modes and attributed each breakup mode to the Rayleigh–Taylor and Kelvin-100 

Helmholtz instabilities, respectively, similar to the experimental studies of (Theofanous and Li 2008; 101 

Theofanous et al. 2012). (Xiao et al. 2017) used the coupled Level Set with Volume of Fluid (CLSVOF) 102 

interface tracking method to study the breakup of tributylphosphate droplets in supersonic flows. With 103 

a fixed Mach number equal to 3, they investigated the effect of density ratio, which ranges from 18,544 104 

up to 667,577 and We number in the range of 15 to 75. They encountered the bag, bag-and-stamen 105 

and multimode breakup modes and concluded that the Weber numbers separating the different 106 

breakup modes, as well as the breakup initiation time, are higher in supersonic flows compared to 107 

those of the subsonic ones. (Guan et al. 2018) used the five equation model (Euler equations coupled 108 

with the stiffened gas equation of state (EoS)) to study the axisymmetric breakup of water, gelatine, 109 

fat and dodecane droplets subjected to an air shock-wave. They examined Ma numbers in the range 110 

of 1.39 up to 3.9 and We numbers of the order of 103; they observed that there is a saddle point (point 111 

of zero velocity) inside the droplet; its position was found to depend on the Ma number and proposed 112 

a simplified theory to predict it. (Meng and Colonius 2018; Meng 2016) also used the five-equation 113 

model of (Allaire et al. 2002) to simulate in 3-dimensions the breakup of a water droplet exposed to 114 

an air flow of Ma=1.47 and We=780. They compared qualitatively their results with those of the 115 

experimental study of (Theofanous et al. 2004); good agreement was found regarding the initial 116 

droplet deformation into a muffin-like shape, as well as the following disintegration into two liquid 117 

sheets, in agreement with (Liu and Reitz 1997). Moreover, KH instabilities were observed pertaining to 118 

the SIE breakup mode, which was also reported in (Theofanous et al. 2004). Nevertheless, the micro-119 

mist appearing at the periphery of the droplet was not captured in that study. For the same conditions, 120 
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(Kaiser et al. 2017) used the Level Set (LS) method coupled with the compressible Euler equations and 121 

the stiffened-gas EoS to simulate the breakup of a water droplet exposed to an air flow. They 122 

performed 2-D (water column) and 3-D simulations and confirmed the results of (Meng and Colonius 123 

2018; Meng 2016) for the existence of two liquid sheets during the breakup of the droplet, while they 124 

also observed a third sheet upstream of the droplet; however, they stated that 3-D simulations with 125 

higher resolution are necessary to confirm this observation. Finally, (Liu et al. 2018) also utilized the 126 

five-equation model and performed 3-D simulations of water droplet breakup in an airflow of Ma 127 

number in the range of 1.2 up to 1.8. They presented qualitative and quantitative results for the droplet 128 

drift, velocity and acceleration and defined three stages of the breakup process in the SIE regime: i) 129 

surface instability, ii) droplet flattening, and iii) entrainment from the liquid sheet.   130 

The current work investigates the breakup of a water droplet exposed to a flow of Ma ranging from 131 

1.23 up to 1.47 with the aim to capture for the first time in CFD simulations (to the author’s best of 132 

knowledge) the appearance of micro-droplets stripped from the parent droplet. A numerical model is 133 

utilized which solves the compressible Navier-Stokes equations, the energy equation, the conservation 134 

of the volume fraction (VOF method) along with two equations of state to model the density variations 135 

of the two fluids. Furthermore, a coupled VOF/Lagrange model is employed to capture the appearance 136 

of micro-droplets, which switches from VOF to Lagrange models when certain user-defined criteria are 137 

met. 2-D planar and 3-D simulations are performed in the commercial software FLUENT v19.2 and 138 

qualitative and quantitative results are presented and compared with published experimental and 139 

numerical data.   140 

The paper is structured as follows: in the following chapter the numerical model is presented, followed 141 

by a chapter with the computational setup and examined conditions. Next, the results of the 142 

simulations are presented regarding the model validation with the 2-D planar domain as well as the 3-143 

D simulation using the VOF/Lagrange model. In the last section of the paper the main conclusions of 144 

the current work are presented.  145 
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 146 

Numerical model 147 

Flow equations and volume of fluid (VOF) method 148 

The CFD model for the aerodynamic breakup of droplets solves the mass and energy conservation 149 

equations as well as the Navier-Stokes equations coupled with the Volume of Fluid (VOF) methodology 150 

of (Hirt and Nichols 1981) for capturing the interface between liquid and gas.  151 

A single continuity equation is solved for both phases (no mass sources are taken into consideration) 152 

 153 

 
(3) 

 154 

, as also a single momentum equation; the resulting velocity field is shared among the phases: 155 

 156 

 (4) 

 157 

The surface tension forces are included in the momentum equation by using the Continuum Surface 158 

Stress (CSS) model of (Lafaurie et al. 1994). In the CSS model the volumetric force is calculated as 159 

 160 

 
(5) 

 161 

The volume fraction α is defined as: 162 

 163 
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(6) 

 164 

  , where the α-function is equal to:  165 

· 1, for a point inside liquid phase. 166 

· 0, for a point inside gas phase. 167 

· 0<α<1, for a point inside the transitional area of the two phases, the interface. 168 

 169 

The transport equation for the liquid volume fraction, since no mass sources are taken into 170 

consideration, is 171 

 172 

 
(7) 

 173 

The values of the density ρ and viscosity μ are calculated using linear interpolation between the two 174 

phases weighted with the volume fraction α: 175 

 176 

 
(8) 

 177 

 
(9) 

 178 

The energy equation is given in eq. (10) for a flow without species and negligible viscous energy 179 

dissipation; preliminary 2D simulations using the viscous heating option of FLUENT (viscous heating 180 

terms in the energy equation are enabled) have shown that the droplet deformation as well as the 181 

displacement experience negligible change when the viscous heating effect is taken into account. 182 

 183 
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(10) 

 184 

, where the energy E is given by 185 

 186 

 
(11) 

 187 

, with the sensible enthalpy h calculated in its general form (Sonntag et al. 2008) by  188 

 189 

 
(12) 

 190 

, where the specific volume is . For the ideal gas (air or nitrogen in this work) the second term 191 

of the right-hand-side of eq. (12) becomes equal to zero, while for an incompressible material it 192 

becomes equal to . In the case of weakly compressible materials, such as liquids, exposed to the 193 

pressure variations encountered here, the difference between incompressible and weakly 194 

compressible (e.g. Tait EoS eq. (13)) calculation of liquid enthalpy are negligible; preliminary 195 

calculations showed that the error is less than 1% for pressures up to 450 bar.  196 

 197 

 (13) 

 198 

, where B is a parameter and n is a material exponent equal to 7.15 for water (Ivings et al. 1998).  199 

 200 



10 

 

Equations of state (EoS) and rest of fluid properties 201 

For the cases with large density variations, such as those encountered at Mach numbers > 1, the 202 

density of each fluid is given as function of its temperature and pressure using an equation of state for 203 

each phase: i) for the gas phase the ideal gas law is utilized (ρ=PMWgas/RT), while for the liquid phase 204 

the Tait EoS is used (eq. (14)): 205 

 206 

 
(14) 

 207 

, where K is the bulk modulus, which is a measure of the compressibility of a liquid; it is given in its 208 

general form by: 209 

 210 

 
(15) 

 211 

For the examined conditions of the current work (T≈293.15K and P ranges from 1.01325 bar up to ~2.8 212 

bar - see section with the computational setup) the bulk modulus can be assumed to vary linearly with 213 

pressure (Gor et al. 2016): K=K0+nΔp, with Δp=p-p0 and n=7.15 for water (Ivings et al. 1998), with 214 

reference values as: Po=101325 Pa, ρ0=998.2 kg/m3, Κ0=2.2·109 Pa (Menon 2014). It should be noted 215 

that for such small changes in the temperature (ΔT<1 Κ) and pressure (ΔP~1.8 bar) the density of water 216 

changes less than 1% and therefore not much difference is expected in the results with the use of 217 

constant density; however, this was not known a priori. For the same reason, the rest of fluid 218 

properties (surface tension, viscosity, heat capacity and thermal conductivity) are taken constant for 219 

the liquid water at the initial temperature of 293.15 K. Preliminary CFD simulations using variable 220 

properties for water based on (Lemmon 2013; Wagner and Pruß 2002) and the tabulated method of 221 

(Koukouvinis; et al. 2020) have shown that the droplet deformation in both axes changes less than 1%, 222 
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while the leading edge displacement is overestimated by a maximum of 10% at the final stages of the 223 

simulation with the constant properties approach, probably due to difference in the fluid viscosity. For 224 

the gas phase (air or nitrogen), which has large variations in the pressure and temperature, the heat 225 

capacity and thermal conductivity are taken as functions of temperature, using the polynomial 226 

functions of (Perry and Green 1999). Finally, the viscosity of gas is found using the Sutherland’s law 227 

(Sutherland 1893).  228 

 229 

VOF-to-DPM model 230 

In the VOF-to-DPM model the liquid volume fraction of a cell is converted into Lagrangian particles 231 

(droplets), when certain user-specified criteria are met. In order to avoid spurious momentum sources, 232 

an equal volume of gas is created in the VOF solution to maintain the volume conservation. The criteria 233 

for transition from VOF to DPM in a cell are: i) the volume-equivalent sphere diameter should be within 234 

a specified range, which for this work is chosen between zero and the diameter of a particle that would 235 

occupy half the volume of an interface cell; this ensures that the stripping of micro-droplets will initiate 236 

from the droplet interface when it is close to its initial spherical shape (a lower number would not 237 

allow that since the domain has a wedge-like shape and the volume of the cells increases radially). 238 

However, this choice affects the size of the stripped particles, as discussed in sub-section “Description 239 

of fluid flow” of the 3-D simulation. The second criterion (ii) is that the asphericity should be below 0.5 240 

(the value of zero corresponds to perfect spheres, while the higher it is the more the shape deviates 241 

from that of sphere); the higher the value of the asphericity the higher the number of cells that are 242 

elected for conversion (in (Bo Shen 2019) they found that a value of asphericity equal to 0.5 243 

corresponded to 95% of the mass of the spray being converted into Lagrangian particles). After the 244 

particles-droplets have been created, their trajectory is tracked using the force balance on each of 245 

them separately, as given by eq. (16): 246 

 247 
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(16) 

 248 

The first term on the right-hand side is the term of the drag force, the second term is the gravity force, 249 

which is negligible compared to the aerodynamic force, and the third one includes all other forces 250 

(virtual mass, pressure gradient etc), which in the current work of high density ratio (ρd/ρg >>1) are 251 

considered negligible. τr is the droplet relaxation time calculated by: 252 

 253 

 
(17) 

 254 

, with Re being the relative Reynolds number given by: 255 

 256 

 
(18) 

 257 

and Cd the drag coefficient, calculated using the spherical drag law as: 258 

 259 

 
(19) 

 260 

, where the coefficients α1, α2 and α3 are given in (Morsi and Alexander 1972).  261 

 262 

Computational setup and examined conditions 263 

2-D simulation of water column breakup (model validation) 264 
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The CFD model has been utilized and validated in previous works of the authors for a number of 265 

applications; among them are the free fall of a droplet (Malgarinos et al. 2015), the droplet 266 

impingement on a flat wall (Malgarinos et al. 2014) or a spherical particle (Malgarinos et al. 2016; 267 

Malgarinos et al. 2017; Malgarinos et al. 2017), the aerodynamic breakup of droplets and droplet 268 

clusters at low Ma numbers (G. Strotos 2015; Stefanitsis et al. 2017; Stefanitsis et al. 2017; Stefanitsis 269 

et al. 2018; Stefanitsis et al. 2019; Stefanitsis et al. 2018; Stefanitsis et al. 2019; Strotos et al. 2016; 270 

Strotos et al. 2016; Strotos et al. 2016) and the droplet evaporation (Strotos et al. 2016; Strotos et al. 271 

2016; Strotos et al. 2016).  In this work, its validation is extended to the case of droplet breakup at high 272 

Ma numbers. For this reason, a 2-D planar (column) simulation is performed in the computational 273 

domain of Figure 1. The shock wave is initialized as a step change in pressure, temperature and velocity 274 

(pink color in the figure), which are calculated based on the desired Ma number using a Riemann solver 275 

(Toro 1997). The liquid droplet (or column in 2 dimensions) is initially stagnant located at a distance 276 

equal to 1D0 from the shock wave, while the passage of the shock triggers its motion and deformation. 277 

The pressure outlet boundary condition at the top of the domain patches the value of the temperature 278 

and pressure of the neighbouring cell at the boundary, via a UDF, implying transmissive and partially 279 

reflective boundary. The computational mesh has increasing cell size in the Y-direction, therefore 280 

increasing the numerical diffusion when a wave moves towards the boundary, smoothing the gradients 281 

and minimising reflections, thus avoiding the need to move the top boundary at a very large distance.  282 

The pressure boundary condition at the right of the domain is non-reflecting, while the one on the left 283 

is not in order to avoid discontinuities in the velocity. The grid comprises of rectangular cells applied 284 

at two regions of the domain with different grid density (420000 cells in total): i) a rectangle of 8D0 285 

length and 3D0 height with a resolution of 50 cells per radius (cpR), starting from the front of the shock 286 

wave and extending 7D0 downstream of the droplet, and, ii) the rest of the domain, in which the cell 287 

size increases gradually as the distance from the droplet increases, similar to (Meng and Colonius 288 

2015). The pressure equation is spatially discretized using the body force weighted scheme, while for 289 
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the momentum equation the second order upwind scheme (Barth and Jespersen 1989) is utilized. The 290 

temporal discretization of all equations is done with the first order implicit scheme, while the time step 291 

is such that the acoustic Courant number is equal to 0.8, i.e. below 1, which is common for flows with 292 

shock waves (Koukouvinis et al. 2016; Meng and Colonius 2015). Moreover, the VOF equation is solved 293 

implicitly and is spatially discretized using an equal blending between first and second order schemes, 294 

which gives the best agreement with the results of (Igra and Takayama 2001; Meng and Colonius 2015). 295 

The liquid droplet is water with diameter based on (Meng and Colonius 2015), while the surrounding 296 

gas is air. The properties of both have been described in equations section and the resulting non-297 

dimensional numbers are presented in Table 1, calculated based on the post-shock properties. In the 298 

following sub-sections, the results of the simulation are compared with the experimental data of (Igra 299 

and Takayama 2001; Igra and Takayama 2001) and the simulation of (Meng and Colonius 2015). 300 

 301 

3-D simulation of water droplet breakup 302 

Apart from the well-known 3-D flow features appearing in the aerodynamic breakup of droplets, such 303 

as surface instabilities, vortex shedding and formation of liquid sheets (Kaiser et al. 2017; Liu et al. 304 

2018; Meng and Colonius 2018), a 3-D simulation is necessary in order to apply the VOF-to-DPM model, 305 

which tracks the particles in 3-dimensions following the Lagrangian approach Figure 2 illustrates the 306 

3-D computational domain that is utilized for the simulation of droplet breakup at high Ma number. 307 

Similar to the domain used in the 2-D simulation (Figure 1), at the top and right boundaries of the 308 

computational domain, pressure outlet boundary conditions are applied; while at its left boundary a 309 

pressure inlet is assigned. Only 1/8 of the droplet is simulated (45o), while periodic boundary conditions 310 

are applied at the front and back of the computational domain. The choice of solving the 1/8 of the 311 

droplet using periodic boundary conditions has been made in order to reduce as much as possible the 312 

computational resources to make it possible to simulate the examined case with the current numerical 313 

tools. Regarding the effect of this choice on the results, limitations of assuming symmetry of the flow 314 
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field appear in the deformation and breakup of droplets due to turbulence and vortex shedding; 315 

nevertheless, these limitations do not affect much the shape of the main droplet (Jain et al. 2018; Liang 316 

2016; Stefanitsis et al. 2017). However, as it has been observed in the experiments of (Achenbach 317 

1974; Sakamoto and Haniu 1990) and the simulations of (Stefanitsis et al. 2017) vortices in flows 318 

around spherical shapes detach periodically from a point at the wake of the droplet that rotates 319 

periodically at 45o around an axis that passes through the centre of the sphere; this can possibly affect 320 

the trajectory and timing of detachment of the micro-droplets, something that requires the solution 321 

of half the droplet in order to fully resolve it. The shock wave is initialized as a step change in the 322 

temperature and pressure located at a distance of 1D0 from the centre of the droplet. In order to 323 

introduce some necessary randomness in the process, the field is initialized with a small “random” 324 

instantaneous velocity (<1/100Ush), which is calculated based on the turbulent kinetic energy 325 

estimated from the κ-ε model. The grid cells have a wedge like shape (similar to that of the domain) 326 

and it has been created using the 2-D grid of the previous section revolved around the X axis (36 327 

partitions in total); this gives a resolution at the interface close to 50cpR. The convective Courant 328 

number is equal to 0.5, while the acoustic is 7.85; preliminary 2-D runs have shown that the temporal 329 

evolution of droplet shape and velocity do not change much when a smaller time step is used 330 

(Couacoustic<1), therefore saving a lot of computational time in the current 3-D simulation. The spatial 331 

discretization of the VOF equation is done using the geo-reconstruct scheme (sharp interface) in 332 

contrast to the more diffusive schemes used in the simulation of water column, due to restrictions of 333 

the VOF-to-DPM model of FLUENT; the rest of the discretization schemes are the same as in the 2D 334 

case. 335 

The liquid droplet is water, while the surrounding gas is nitrogen, instead of air in the 2-D case, with 336 

properties calculated as described in the sub-section “2-D simulation of water column breakup (model 337 

validation)”; the diameter of the droplet is based on (Theofanous et al. 2012). The resulting non-338 

dimensional numbers are calculated based on the post-shock properties and are presented in Table 2. 339 
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 340 

Results and discussion 341 

2-D simulation of water column breakup (model validation) 342 

Description of fluid flow  343 

In the numerical simulations of multiphase flows with shock waves, schlieren is commonly used for 344 

visualization of the process (Quirk and Karni 1996). The schlieren function is utilized to visualize the 345 

density variations of the flow field and is calculated, using eq. (20), as the exponential of the negative, 346 

normalized density gradient: 347 

 348 

 
(20) 

 349 

, where k is a scaling parameter equal to 40 for air and 400 for water (Johnsen 2008).   350 

The pressure and schlieren contours, as predicted by the simulation, are presented in Figure 3 for 351 

various time instances. At the time instance of t*=0, the shock wave front touches the surface of the 352 

water droplet, while at t*=0.017 it passes over it and part of it is reflected radially. The droplet starts 353 

to deform after some time from the pass of the shockwave, at approximately t*=0.171, taking initially 354 

a mushroom-like shape (t*=0.444) and followed by a deformed disk-like shape (t*=0.808). Eventually 355 

the breakup occurs with liquid stripping from the periphery of the droplet, which is not clearly visible 356 

due to the diffusion of the volume fraction, attributed to the selection of the lower order discretization 357 

scheme. This scheme, however, gives results closer to those of (Igra and Takayama 2001; Igra and 358 

Takayama 2001; Meng and Colonius 2015).  359 

Figure 4 presents the holographic interferograms from the experiment of (Igra and Takayama 2001) as 360 

well as the schlieren contours as predicted by the simulation of the current work along with that of  361 

(Meng and Colonius 2015), for two time instances. As it is observed from the figure, the shock wave 362 



17 

 

reflection is very similar in the three works for both time instances. The curved black lines correspond 363 

to the reflection (R) of the shock-wave in the droplet as well as its diffraction (D). Finally, it should be 364 

noted that the time in the experiments is higher compared to both simulations, probably due to a 365 

reporting error in (Igra and Takayama 2001) or a misunderstanding of the phrase “time after the 366 

interaction between the incident shock wave and the water column” of the original work of (Igra and 367 

Takayama 2001), as already discussed thoroughly in (Meng and Colonius 2015).  368 

Results on droplet quantities  369 

Figure 5 presents the temporal evolution of the non-dimensional streamwise and  cross-stream 370 

deformation, as well as the leading-edge displacement of the droplet, as predicted by the experiment 371 

of (Igra and Takayama 2001), the simulation of (Meng and Colonius 2015) and the simulation of the 372 

current work (a=0.5). As the droplet deforms into an ellipsoid shape, the streamwise deformation 373 

gradually decreases with time, while the cross-stream one increases. The leading-edge displacement 374 

increases as the droplet moves in the streamwise direction. There is a good agreement between the 375 

results of both simulations and the experiment for the streamwise deformation and leading-edge 376 

displacement, while a discrepancy is observed with the experiments for the cross-stream deformation; 377 

however, the results of the two simulations are close. 378 

3-D simulation of water droplet breakup 379 

Description of fluid flow  380 

Figure 6 illustrates the temporal evolution of droplet deformation as predicted by the experiment of 381 

(Theofanous et al. 2012), the simulation of (Meng and Colonius 2018) and the simulation of the current 382 

work. It should be noted that the conditions of this work and those of the experiment are identical, 383 

while in the simulation of (Meng and Colonius 2018), the Ma is equal to 1.47 instead of 1.23. Also, the 384 

shape in the simulation of (Meng and Colonius 2018) corresponds to the VOF iso-value of 0.01, while 385 

in the current work the iso-value of 0.5 is presented. The exact time of the experimental images is not 386 
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known since they originate from a video, while the time instances of the simulations have been chosen 387 

such as to best match the images of the experiments.  388 

Similar to the 2-D simulations, the droplet initially deforms into a mushroom-like shape (t*=0.274 and 389 

t*=0.314 in the simulation of this work), followed by a disk-like shape (t*=0.634). However, their main 390 

difference lies in the breakup initiation time, which is much faster for the 3-D simulation, since mirco-391 

droplets are stripped from its periphery as early as t*=0.274. This is attributed to the high velocities at 392 

the periphery of the droplet, as shown in Figure 7, which presents in the X-Y plane (Z=0) the contour 393 

of non-dimensional pressure (P*=P/Psh) at different time instances. The maximum value of the velocity 394 

is equal to 1.5, in agreement with the potential flow theory and the simulation of (Meng and Colonius 395 

2018). The liquid stripping continues until a large part of the parent droplet has been converted into 396 

micro-mist (t*=0.634), something that is also visible in the experiment of (Theofanous et al. 2012). The 397 

diameter of these micro-droplets ranges from approximately 25 μm up to 52 μm, which corresponds 398 

to the volume equivalent droplet diameter of an interface cell, and it is an input for the model. 399 

Nevertheless, in the simulation micro-droplets appear also at the core of the droplet, owing to a conical 400 

protuberance appearing axially at the leading edge of the droplet at t*=0.234 and remaining up to 401 

t*=0.634, as shown in Figure 8, which presents an enlarged image of the time instance t*=0.314. The 402 

latter is attributed to the waves that appear at the surface of the droplet, due to the interaction with 403 

the shock wave, as shown in the dimensionless pressure P*=P/Psh contour of Figure 7: at the time 404 

instance of t*=0.234, the pressure is higher at the outer part of the droplet compared to its core, which 405 

is the case for the rest of the images, therefore creating the aforementioned protuberance. This is also 406 

present in the experiments, starting from the image corresponding to t*=0.314 simulation time and 407 

being more visible at t*=0.634, but to a smaller extent. Finally, “wrinkles” appear at the surface of the 408 

droplet visible in the simulation at time instance of t*=0.234, which are also present in the experiments, 409 

but to a smaller extent.  410 
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To further understand the procedural deformation and disintegration of the droplet due to the 411 

accumulation of interfacial instabilities, as presented in Figure 6 and Figure 7, an analysis and 412 

explanation of the mechanisms of the droplet break-up is presented in the following section, 413 

examining the sources of vorticity generation on a 3-D slice of the geometry depicted in the previous 414 

section. In particular, the vorticity evolution equation can be expressed as (Green 1995):  415 

 416 

 
(21) 

 417 

The first term in the right-hand side represents vortex stretching/tilting, the second term represents 418 

vortex dilation, the third term represents the baroclinic torque, the fourth term expresses vortex 419 

diffusion due to viscous stresses, as defined in eq. 4 and the last term expresses the influence of body 420 

forces. Vortex stretching or tilting is due to the effect of velocity gradient on vorticity; it is a crucial 421 

mechanism in the generation of complex vortical structures and is considered responsible for the 422 

kinetic energy cascade process in turbulence (Wu et al. 2015). Vortex dilation is due to the volumetric 423 

expansion/contraction (the velocity divergence), which describes how fluid compressibility affects the 424 

vorticity. The baroclinic torque occurs due to the different alignment of density and pressure gradients 425 

and is responsible for the formation of Rayleigh-Taylor instabilities. The last term in the present 426 

simulation is only due to the influence of surface tension.  Interestingly, as will be shown later, despite 427 

the high Weber number, influence of surface tension is non-negligible, although it contributes to 428 

stabilise the interface.  429 

In Figure 9 a comparison of the strength of different factors affecting vorticity evolution is shown, on 430 

a z-slice, similar to the views used in Figure 7, showing the cross-section of the droplet. As observed 431 

from the values of the terms involved, viscous stresses have the lowest contribution in vorticity, being 432 

at least one order of magnitude lower than the other terms. Next, is the contribution of baroclinic 433 

torque, which is entirely located at the near interface region, mainly at the gas side due to the influence 434 
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of lower gas density in the baroclinic term. The strongest terms are due to manifestation of 435 

compressibility effects (vortex dilation), the turbulent cascade (vortex stretching/tilting) and surface 436 

tension, all terms having a similar order of magnitude. Indeed, based on a similar analysis by (Zandian 437 

et al. 2018), surface tension effect on vorticity scales as    , which is in the order of 1011 s-2 for 438 

the present case, assuming a max. curvature of κ=106 m-1, density in the order of 103 and mesh sizing 439 

of ~25μm. 440 

An important outcome of this analysis is that viscosity plays a marginal role in the development of the 441 

droplet break-up; indeed, inviscid simulations also confirm this observation (not show in the present 442 

work). Hence, the phenomenon is practically entirely interfacial driven, due to combined Kelvin-443 

Helmholtz, similar to (Theofanous et al. 2012), and Rayleigh-Taylor instabilities. Another observation 444 

is that, despite the droplet We is ~1000, surface tension will have an effect in stabilising locally 445 

interfacial instabilities, although the destabilising influence of the other terms is much stronger, 446 

contributing to the disintegration of the droplet.   447 

Results on droplet quantities  448 

Figure 10 illustrates the temporal evolution of the dimensionless droplet velocity, displacement and 449 

acceleration, as well as the unsteady drag coefficient, as calculated in the current work and in the 450 

simulation of (Meng and Colonius 2018). The unsteady drag coefficient is calculated using the 451 

momentum balance on the droplet and is given in equation (22). The droplet frontal area is calculated 452 

by assuming a circular area based on the droplet’s deformed diameter Dcr (assumed equal to Dz), 453 

similar to (Meng and Colonius 2018). 454 

 455 

 (22) 

 456 
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Both the velocity and the displacement of the droplet increase with an exponential fashion as the shock 457 

wave and the gas flow behind it crosses the droplet and forces it to move. The droplet acceleration 458 

starts from zero value, since the droplet is initially stagnant, while it increases rapidly due to the droplet 459 

being in motion from stagnation; after a small fluctuation at the initial stages of the simulation owing 460 

to the unsteady flow field, it eventually increases gradually as the droplet accelerates steadily. The 461 

drag coefficient experiences a similar decline at the initial stages of the simulation; however, it 462 

increases only slightly followed by a decrease at the later stages of the simulation. This is attributed to 463 

the increase of the frontal area of the droplet (Af(t)/Af(0)) as it deforms in the cross-stream direction. 464 

The results from the simulation of (Meng and Colonius 2018) follow a similar trend, while being slightly 465 

higher compared to the simulations of this study, probably due to the higher Ma number (1.47 466 

compared to 1.23).  467 

Finally, the temporal evolution of droplet deformation in both axes (streamwise and cross-stream) and 468 

surface area are presented in Figure 11. The cross-stream deformation and surface area increase as 469 

the droplet takes an ellipsoid shape, while the streamwise deformation decreases followed by a slight 470 

increase at the final stages of the simulation; this is attributed to the liquid sheets formed at the 471 

periphery of the droplet (Figure 6 at t*=0.634), which are also reported in the works of (Kaiser et al. 472 

2017; Meng and Colonius 2018). The fluctuation in the value of cross-stream deformation at the time 473 

instance of approximately 0.5 is attributed to the stripping of the micro-droplets from its periphery, 474 

something that results in the decrease of the size of the parent droplet.  475 

Conclusions 476 

In the current work 2-D planar (column) and 3-D simulations were performed for droplets exposed to 477 

gas flows of Ma numbers ranging from 1.23 up to 1.46. The CFD model solves the compressible Navier-478 

Stokes equations, the energy equation, the VOF equation along with two equations of state to model 479 

the density variations of the two phases. In addition, in the 3-D simulation the VOF-to-DPM model of 480 
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FLUENT was utilized, which switches from VOF to DPM when certain user-defined criteria are met, in 481 

order to capture the appearance of micro-droplets detached from the parent droplet. 482 

The results of the 2-D simulation are compared against published experimental (Igra and Takayama 483 

2001) and numerical (Meng and Colonius 2015) data and good qualitative agreement is observed for 484 

the pressure and numerical schlieren contours. In addition, the quantitative results for the streamwise 485 

deformation and the leading-edge displacement are also in good agreement with experiments. 486 

However, a discrepancy was observed for the cross-stream deformation.  487 

Regarding the 3-D simulation, the predicted temporal evolution of droplet shape was similar to that of 488 

the experiments of (Theofanous et al. 2012). The simulation predicted the appearance of micro-489 

droplets at the periphery of the droplet as well as surface instabilities (K-H and R-T) similar to the 490 

experiments. Finally, results for the droplet deformation and surface area were presented and a steady 491 

increase in the surface area and cross-stream deformation was observed, as the drop takes an ellipsoid 492 

shape, while the streamwise deformation initially decreases followed by an increase at the later stages 493 

of the simulations, due to the formation of liquid sheets at the periphery of the droplet.   494 
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Roman symbols ρ Density [kg/m3] 

Af Frontal area [m2] σ Surface tension [N/m] 

c Speed of sound [m/s] τr Droplet relaxation time [s] 

Cd Drag coefficient [-] 
φ Schlieren function [-] 

Cou Courant number [-] 
Subscripts/Superscripts 

CP Specific heat [J/kgK] * Non-dimensional quantity 

D Droplet diameter or deformation [m] 0 Initial 

E Energy [J] cm Center of mass 

F Force [N] cr Cross-stream  

h Enthalpy [J/kg] d Droplet 

K Bulk modulus [bar] g Gas 

k Scaling parameter [-] L Liquid 

Ma Mach number [-] mag Magnitude 

m Mass [kg] sh Post-shock quantity 

 Free-surface unit normal [-] str Streamwise 

Oh Ohnesorge number [-]  press Pressure 

P Pressure [Pa] ref Reference 

Re Reynolds number [-]  vol Volumetric 

S Surface area [m2] Abbreviations 

T Temperature [K] CLSVOF Coupled Level-Set with VOF 

t Time [s] DPM Discrete phase model 

tshear Shear breakup timescale [s]  EoS Equation of state 

U, u Velocity [m/s] KH Kelvin-Helmholtz 

V Volume [m3] LE Leading-edge 

 Specific volume [m3/kg] LS Level set 
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  655 

Table 1: Droplet diameter and non-dimensional numbers of the 2-D simulation of droplet breakup. 656 

D0 (m) We Re Oh ε Ma 

4.8·10-3 7355 107069 0.0017 831 1.47 

 657 

 658 

Table 2: Droplet diameter and non-dimensional numbers of the 3-D simulation of droplet breakup. 659 

D0 (m) We Re Oh ε Ma 

2.4·10-3 780 191169 0.0024 617 1.24 

 660 

  661 
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List of figures 662 

Figure 1: Computational domain utilized for the 2-D planar simulation of column breakup. 663 

Figure 2: Computational domain utilized for the 3-D simulation of droplet breakup. 664 

Figure 3: Pressure and Schlieren contours from the 2-D simulation of droplet breakup (α=0.5). Flow is 665 

from left to right. 666 

Figure 4: a) Holographic interferograms from the experiment of (Igra and Takayama, 2001a) and 667 

numerical schlieren images from the simulations of b) (Meng and Colonius, 2015) and c) the current 668 

study, at two time instances. Flow is from left to right. 669 

Figure 5: Temporal evolution of the non-dimensional a) streamwise deformation, b) cross-stream 670 

deformation and c) leading-edge displacement of the droplet, as predicted by  the experiment of (Igra 671 

and Takayama, 2001a), the simulation of (Meng and Colonius, 2015) and the simulation of the current 672 

work (a=0.5). 673 

Figure 6: Temporal evolution of droplet deformation as predicted by a) the experiment of (Theofanous 674 

et al., 2012), b) the simulation of (Meng and Colonius, 2018) (α=0.01) and c) the simulation of the 675 

current work (α=0.5). Flow is from left to right. 676 

Figure 7: Contour in the X-Y plane (Z=0) of the non-dimensional pressure. Flow is from left to right. 677 

Figure 8: Conical protuberance visible at the leading edge of the droplet (t*=0.314). 678 

Figure 9. Contribution of different vorticity generation mechanisms at a slice showing the droplet 679 

cross-section. (a) vortex stretching/tilting, (b) vortex dilation, (c) baroclinic torque, (d) viscous stresses 680 

and (e) body forces due to surface tension. All values are in the same units of vorticity generation rate 681 

(s-2). Note that the body force term actually contributes to dampen interfacial instabilities. The thick 682 

black line shows the droplet interface (volume fraction 0.5). 683 

Figure 10: Temporal evolution of the dimensionless droplet a) velocity, b) displacement and c) 684 

acceleration, as well as d) the unsteady drag coefficient, as calculated in the current work and in the 685 

simulation of (Meng and Colonius, 2018). 686 
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Figure 11: Temporal evolution of droplet a) deformation in both axes (streamwise and cross-stream) 687 

and b) surface area.  688 
























