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October 2019

xix



xx



Abstract

This dissertation describes a forecasting methodology that takes into account changes
in the connectivity of an air transportation system and assesses the impact at other
levels of the network, such as route demand and air traffic levels. To achieve this,
the modelling framework looks at city-pair demand generation, route demand assign-
ment and air traffic estimation. While generating air traffic forecasts, the resulting
model is also intended to highlight the most important factors driving air traffic
network growth. This is achieved by considering a larger set of drivers than those
considered in existing methodologies and research as well as exploring the use of
alternative modelling techniques.

Network evolution is incorporated in the method through an airport connec-
tivity model which identifies how and when airport-pairs across the network change
their connectivity status. The problem is split into two models: one identifying
those airport-pairs that are added to the network; and another one identifying those
airport-pairs that are removed from the network. The modelling approach explores
the use of network theory metrics along with other input variables, such as passen-
ger demand, to see whether existing models employing only network theory metrics
could be improved.

The impact of network evolution is assessed by the effect on air itinerary shares.
Two itinerary choice models are developed using two different modelling approaches:
multinomial logit and neural networks. While the multinomial logit formulation is
the most common approach used to model itinerary shares, only few studies have
looked at modelling itinerary shares at the network level. Neural networks have yet
to be explored in this field. In this research, air itinerary choice models have been
developed at the most aggregate level, using open-source booking data, for a large
group of city-pairs within the US Air Transportation System. The output of the
itinerary choice models, influenced by the consideration of network evolution, is then
used to project air traffic levels and assess the impact of network structure changes
in the number of operations in the US ATS.

The results reflect the complexity behind network evolution, especially for cases
when a mature system is considered (e.g. US ATS): comparisons between the case of
a static network and the case when network evolution is considered indicate that the
impact of network changes on overall system metrics is relatively minor in the US.
However, they indicate that changes in fossil fuel prices may influence changes in
the overall network characteristics, and consequently network evolution. The results
also prove the feasibility of estimating a single itinerary choice model at the network
level for an entire air transportation system. Although the multinomial logit model
results have better accuracy, the potential of neural networks for this purpose is also
demonstrated, the latter being more representative of the hub-and-spoke network
strategy.
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Chapter 1

Background and motivation

1.1 Introduction

Just over a century has passed since the first scheduled flight in history took place

between St. Petersburg and Tampa in the United States. Although the event was

an important milestone in aviation history, commercial aviation was not of interest

to the public. It was not until the World War I (WWI) when the military value

and strategic advantage of aircraft were identified, leading to technological advances

in the aviation sector. Thanks to these technological innovations, the first freight

services were born. However, people remained sceptical of the idea of travelling by

air, based on a combination of safety concerns and trust towards the service provided.

Larger, faster and safer aircraft were needed to change people’s aviation vision. It

was not until the 1930s when the aviation sector started to grow. Important aircraft

innovations led to the creation of the first modern airlines focused on the transport

of passengers, such as United Air Lines or Transcontinental and Western Air (TWA)

among others.

Advances in aviation technology during war time years along with governments’

post-war support helped to make the aircraft a leading mode of transport during the

1950s. In the late 1970s, deregulation opened up the aviation market in the Unites

States generating room for the expansion of the industry. Unconstrained compe-

tition, freedom to expand the route system and flexibility to develop innovative

pricing structures became the new norm with deregulation. As a result, new airline

business models came to the market, prompting a rapid aviation growth since the
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liberalisation of the skies in the late 1970s. In the last year of government regulation

(1977) in the US, the airline industry carried approximately 240 million passengers

in scheduled service, while in 2016 they carried 823 million passengers system wide

(BTS, 2017) against an economic growth (measured in real GDP1) of 184% during

the same period (BEA, 2019).

With the aim to accommodate this increase in demand capacity expansion was

accompanied by investing in new infrastructures (i.e. such as expansion of airports),

and new technological improvements for aircraft, air management systems and air

traffic systems.

The fast growth and expansion experienced by the aviation industry over the

years show how important this industry has become to society. Its influence on the

worldwide economy and connectivity has led aviation to be one of the key driving

factors of today’s society and economy. Globally, aviation has an economic impact

of $2.7 trillion equivalent to 3.6% of the global Gross Domestic Product (GDP) and

supports 62.7 million jobs worldwide 2

1.2 Importance of air travel forecasts

The air transportation industry is a large, complex sector involving numerous stake-

holders with different agendas all playing an important role. In order to maintain

the welfare and prosperity of the industry, it is essential to understand the behaviour

of what drives the industry’s demand, which involves both passengers and freight.

Consequently, not only the trends of passengers and freight of past years need to

be studied, but also the intrinsic reasons that explain such behaviour need to be

understood. This knowledge is used by stakeholders to produce air travel demand

forecasts, permitting them to plan ahead in an effort to maintain the well-being of

the industry. As Schäfer (2007) states, anticipating changes in air travel demand on

aggregated levels is critical for all the major players of the industry. Failing to do so

may end up not only in high economic losses but also in slowing down the society

and economic development of a region.

1Real GDP is a measurement of economic output that accounts for the effect of inflation or
deflation giving a more realistic assessment of growth than nominal GDP.

2These numbers are referred to 2016 according to ATAG statistic and include direct, indirect,
induced and tourism catalytic. Source: https://aviationbenefits.org/media/166344/abbb18 full-
report web.pdf
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Unexpected disruptions are another major concern for aviation if supply is

not ready for it, involving also major economic losses. For example, in 2010 the

eruption of the Icelandic volcano Eyjafjallajökull took Europe by surprise, leaving

the air traffic over Europe in a state of total collapse. This natural adversity caused

the closure of large portions of European air space for a week due to safety concerns

related to the effect that ashes blown over the European air space could have on

aircraft engines. According to the Air Transport Action Group (ATAG) (2014) not

being able to supply the air travel demand for about a week meant that around 10

million passengers were affected costing the global GDP about £3bn ($5bn).

Closer to home, the controversy that the UK air transport sector generates,

especially in the South East of England, is often broadcast in the news. Experts

in the aviation sector believe that if nothing is done to improve London airports’

capacity soon, the current level will not be able to meet the UK’s air travel demand

forecast for the medium- and long-term periods (Airports Commission, 2013). The

consequences of not being able to meet the requirements of air travel demand in the

future are believed to impact directly on the high economic and social competitive-

ness of London, one of the main gateway cities of the UK and Europe. For instance,

the Airports Commission (2013) suggests that failing to address the situation in the

South East of England would cost, over a sixty-year time period, between £21 to

£23 billion to users and providers of airport infrastructure and between £30 to £45

billion to the wider economy (Airports Commission, 2013).

1.2.1 The role of air travel forecasts

The aim of forecasting is to determine how patterns of demand will change over

time, reflecting external factors such as growth of income, demographic changes

and changes in transport prices. The use and scope of aviation forecasts can vary.

For example, airport developers will use air passenger demand forecasts to make

decisions regarding infrastructure expansion plans; whereas airlines will use them

when planning their network and fleet management taking into account demand

seasonality.

Air travel forecasts are also essential for governments and regulatory bodies,

who generate them to help take informed decisions when establishing policies. Those

policies are not only focused on maintaining the well-being of all industry stakehold-
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ers and to achieve a balance between industry and society, such as policies created

to reduce the environmental impact of aviation. Forecasting is therefore a key tool

for decision-making and is used across all industry players and Government in both

business planning and policy decision making.

1.2.2 Expected aviation growth

Although forecasts differ in scope and purpose by which they are produced, they all

agree in predicting significant aviation growth. For example, the two main manufac-

turers, Airbus and Boeing, have similar projections, forecasting a global annual air

traffic growth of just under 5% over the next 20 years. Airbus (Airbus, 2017) pre-

dicts that average annual traffic growth (measured in Revenue Passenger Kilometre,

RPK3) over the next 20 years will be 4.4% with a more rapid increase during the

first decade (4.9% growth p.a.) than the second (4.1% growth p.a.) (Airbus, 2017).

Similar to Airbus, Boeing predicts an annual world passenger growth of 4.7% over

the next 20 years (Boeing, 2017).

According to statistics from the International Civil Aviation Organitzation

(ICAO), the aviation industry has seen a dramatic growth over the past 20 years,

with passengers numbers rising from 1.46 billion in 1998 to 3.98 billion in 20174. Avi-

ation growth prospect is high, with forecasts of number of passengers is expected to

reach 8.2 billion in 2037 according to the International Air Transport Association

(IATA)5.

1.3 Motivation of the thesis

The literature review reveals the importance of forecasting within the air travel

industry. It is a key tool for decision-making used across all industry stakeholders.

Nowadays, issues to be addressed in air travel are much broader and complex than

in the past, affecting other areas outside air travel; today’s decision makers need to

consider not only the impact of aviation growth towards economy, but also social

and environmental effects, a wider range of options alternatively to building new

3RPK is the basic measure of passenger traffic and reflects how many available seats were actually
sold. RPK is defined as the product between number of passengers and kilometres they have flown.

4Source: https://data.worldbank.org/indicator/IS.AIR.PSGR
5This number is based on a 3.5% compound annual growth rate (CAGR). Source: https://www.

airlines.iata.org/news/passenger-numbers-to-hit-82bn-by-2037-iata-report
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infrastructures and resource limitations.

The constant evolution of the industry and increased complexity require con-

tinuous work on forecasting methodologies for air transportation. While significant

contributions have been made to date, existing research are typically based on the

assumption that the air transport system is static and therefore routes are neither

added or removed to/from the network. While network evolution is only considered

when airline information is available, this information is limited to the short-term

since airlines do not plan their network structure far ahead, and often network

changes information is not available to everyone. Considering the fact that air

transport network evolution occurs - e.g. in 2016, 20% of the schedule seats were

on routes that did not exist in 2000 (SABRE database, 2017) - this research focuses

specifically on modelling network evolution and the impact that this evolution might

have at different levels of the air transport system such as number of passengers per

kilometre, proportion of non-stop passengers or air traffic levels. By considering net-

work evolution, the impact of network changes to airport congestion, environment

and local and global emissions could be better understood. In order to do that, this

research explores two areas within aviation forecasting that are briefly introduced

below: airport connectivity; and air itinerary choice modelling approaches. Both

areas of research are presented within a single modelling framework that looks at

city-pair demand generation, itinerary demand assignment and air traffic estimation,

so that the impact of network evolution can be analysed at different levels across

the network (i.e. how it affects passengers’ choice of route and air traffic levels).

1.3.1 Airport connectivity

To study the evolution of the network, one requirement is to predict whether air-

port connectivity will develop, so if two airports will have a direct flight between

them in the future. Airport connectivity is investigated through the use of complex

network theory. Network theory is a way of representing networks through study-

ing the components that form them and the interactions and connectivity amongst

these components, since those are what shape and define the network as a whole6.

Therefore, network theory is used to form a better understanding of the structure

and dynamics of many real-world systems, such as the air transportation system,

6Further information regarding network theory is explained in Chapter 3.
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by characterising the system’s components and their interactions through a set of

mathematical metrics.

Initial studies using network theory looked at characterising the air transport

network through a set of mathematical metrics and understanding its character-

istics (Guimera et al., 2005; Cheung and Gunes, 2012). Research done by Che-

ung and Gunes (2012) showed that in general the US Air Transportation System

(ATS) exhibits similar network characteristics to the World-wide Airport Network

(WAN), which is characterised by showing a power-law distribution, meaning that

is a network formed of large amount of small airports (i.e. with a low number of

connections) and a small amount of large airports (i.e. with a large number of

connections). Results from Cheung and Gunes’ research highlighted that, similarly

to the WAN characteristics, the US ATS showed just a partial power law degree

distribution, by which it was suggested that within the US ATS highly densely pop-

ulated areas grow at a slower rate than those located in less populated areas. Their

work also showed that compared to earlier years, the US ATS is more vulnerable

to airport closures today than it was in the past due to the number of airports in-

creasing faster than the number of flight routes, prompting the network to become

less dense, and therefore more susceptible to failures. More recent studies (Lacasa

et al., 2009; Fleurquin et al., 2013) adopted network theory to explore and identify

the dynamics taking place in the aviation system and how these affect the efficient

functioning of the network, such as simulating congestion in the airspace (Lacasa

et al., 2009), and the spread of epidemics (2006). The work done by Lacasa et al.

(Lacasa et al., 2009) used network theory to simulate the dynamics of the network

when the diffusion of a given number of aircraft through that network occurs so

that congestion effects could be simulated. Results obtained from the simulation

were compared to those obtained when applying the model to real network data

from the European air transportation system, leading to similar results to those

previously obtained: above a certain threshold, the amount of airport queues and

operational efficiency sharply decreases due to congestion effects. The work done by

Colizza et al. (2006) studied how the characteristics of the world-wide air transport

network influences the global spread of diseases by combining network theory and

the susceptible-infectious-recovered (SIR) model, which describes mathematically an

influenza epidemic. Results showed that air transportation network properties are
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partly responsible for the global pattern of emerging diseases, with models having

an 80% accuracy at predicting pathways of epidemic diffusion during the early stage

of the epidemics. Being this stage the most relevant phase during epidemic surveil-

lance, such models could be used as a tool to test the effect of plans of actions to

avoid the spread of diseases such as travelling restrictions and vaccination policies.

These examples outline the potential of applying network theory to understand the

dynamics of an air transport system, and therefore, understand and characterise its

evolution.

Although the application of network theory as a method to model the response

of an existing air transport system to events has become a trend in the last decade,

few have used this technique to predict the future structure of an ATS. The main re-

search in this field is the work done by Kotegawa (2012), who applied network theory

to model the US ATS to analyse the evolution of airport connectivity. Kotegawa’s

research looked at the likelihood of airport-pairs changing their connectivity - i.e.

identification of which new airport-pairs would appear in the future and which of the

existing ones would disappear - by applying different modelling techniques in which

all input variables were only network theory metrics. The accuracy of these early

models ranged between 20% and 40%, leaving room for improvement and further

exploration of the subject. Inspired from Kotegawa’s results (2012), one of the main

motivations of this thesis is to explore whether these accuracies can be improved, in

particular by using a broader set of input variables beyond network theory metrics,

such as considering passenger demand; as well as considering the effect of the US

network evolution would have to other system-wide characteristics such as itinerary

shares and air traffic levels.

1.3.2 Air itinerary choice modelling

Air itinerary choice modelling is a representation of the proportion of passengers

choosing one itinerary out of several options - i.e. also called air itinerary share

models. Air itinerary share models aim to predict customer behaviour, helping to

understand what drives air passenger choices when it comes to travel. Itinerary

choice models can become crucial to support airlines in their network planning and

scheduling since important decisions on resources allocation and pricing are made

based on itinerary demand. One of the most common air itinerary share model
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used across the industry are the Quality of Service Indices (QSI), which base their

predictions on the relationship between itinerary share and frequency share as well

as itinerary level of service (i.e. whether itinerary is a direct route or involves a

connection). However, since QSI do not take into account other factors that might

influence itinerary shares, such as itinerary fares and time or characteristics of the

passenger (e.g. business/leisure passenger), there is a growing interest in developing

better itinerary choice models; consequently, for the last 15 years efforts have been

focused on shifting away from Quality of Service indices (QSI).

Most of the current research focused on predicting air itinerary shares centres

around discrete choice models, which use logit formulation to calculate the proba-

bility of a passenger choosing a specific itinerary based on its utility value7. Discrete

choice models are widely used in urban transportation, however, they are usually

built using disaggregate data and include information about the individual making

the decision (i.e. the passenger); whereas in air transport, data at the disaggregated

level as well as data accessibility are limiting factors.

Most of the early studies on demand assignment for air travel focus on studying

the distribution of demand across one single dimension. For example, analysis of air

travellers’ choice within multi-airport cities or regions (Hansen, 1995; Windle and

Dresner, 1995) or across airlines (Proussaloglou and Koppelman, 1995). Although

these research gave a deeper understanding of the relationship between airport at-

tributes and airport market shares, a more aggregated assignment of air travel vol-

umes is also needed. In recent years, efforts focus on modelling itinerary market

share across multiple dimensions (Adler, 2001; Coldren et al., 2003; Grosche and

Rothlauf, 2007; Atasoy and Bierlaire, 2012; Coldren and Koppelman, 2005; Hsiao

and Hansen, 2011). And only one research has attempted to model air itinerary

shares using a machine learning technique (Grosche and Rothlauf, 2007); the work

done by Grosche and Rothlauf was a comparative study between multinomial logit,

neural network and a custom model developed by the authors, with the latter being

the most accurate.

There is a growing trend in using discrete choice methodology in the aviation

industry and existing air itinerary share models are mostly focused on support-

7The utility value of an itinerary is calculated based on the characteristics of that itinerary. It
is expected that a passenger would choose the itinerary with the largest utility.
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ing carrier decision-making. Consequently, those studies define itineraries at a more

disaggregate level, using variables describing airline and travel time preferences (Col-

dren et al., 2003; Coldren and Koppelman, 2005; Grosche and Rothlauf, 2007; Atasoy

and Bierlaire, 2012). Also, data used in most of these studies is either proprietary or

from surveys which tend to only represent a small subset of passengers through sur-

veys and are time consuming and costly to complete, making its availability scarce.

Lastly, the computing power needed to handle discrete choice modelling estimation

is, in cases when the size of the dataset is large, a known limitation (Coldren et al.,

2003; Li et al., 2017).

With the aim of modelling demand at the network level -i.e. annual share of

passengers per each itinerary available in the entire network -, and therefore focus-

ing on developing a tool that models the network dynamics as a whole rather than

carriers share as current research, another main motivation of the present work is to

develop an effective air itinerary share model which uses aggregated data, such as

open-source booking data, for a large group of city-pairs within the US Air Trans-

portation System. This is done through the use of alternative techniques: a discrete

choice model and the use of an artificial neural network model, with the latter being

a line of research not seen in the literature at this level of aggregation and without

considering passenger preference information. Since the modelling framework pre-

sented in this dissertation considers the evolution of the network, the development

of a model at the network level will allow to assess the overall impact that evolution

has to the hub-and-spoke routing structure that characterises the US ATS and how

the change of it may affect passengers. An itinerary share model at the system level

can also capture the impact of airport capacity on passenger travel behaviour and

airport congestion, and it can be used to evaluate the benefit of airport expansion

projects. Lastly, by capturing the changes on travel behaviour that network evolu-

tion may influence, the impact of aviation has towards the environment can also be

captured through the relationship between aircraft movements and emissions.

1.4 Outline of the thesis

This dissertation is structured as follows: Chapter 2 presents a literature review

on existing forecasting methodologies that are of relevance regarding the work done
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in this dissertation; in particular the use of network theory used as modelling ap-

proach for evolution of the air transportation system and an overview on existing

methodologies used to determine air itinerary shares.

The literature reveals the potential of applying network theory to understand

the evolution of any air transportation system. From existing research, work has

been done on analysing how connectivity between airports changes over time based

on airport topology metrics. But this work has been limited to the use of network

theory variables. This has given a motivation to the current investigation, since con-

sideration of a broader set of variables to study airports’ connectivity may improve

existing modelling performance.

The research carried out in this dissertation is presented through a single mod-

elling framework that looks at city-pair demand generation, route demand assign-

ment and air traffic estimation. Modelling approaches used for each of these stages

of the framework are described in Chapter 3. For each of the sub-models within the

framework the estimation model results are presented and validated.

A predictive example application of the modelling framework is presented in

Chapter 4. In this section mid-term projections for domestic US air traffic levels are

produced for years from 2008 to 2025. Results are compared to actual data when

possible (i.e up to 2018).

Conclusions drawn from the research carried out are presented in Chapter 5

with a section outlining suggestion for future work and possible improvements steps.
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Chapter 2

Forecasting Models in the

Literature Review

Considering the important role that forecasting plays within aviation and that is

highlighted in Chapter 1, an overview of the existing methodologies used across the

industry and published research is presented in the following sections. This Chapter

is structured as follows. First, a classification of forecasting models most commonly

used to forecast air travel demand is presented. This is followed by a summary of

methodologies currently used by aviation stakeholders, such as aircraft manufactur-

ers or international agencies. Finally, a more detailed review of published research

that are of relevance regarding the work done in this dissertation is presented. The

latter section includes an overview on the use of machine learning techniques within

the topic of forecasting, a review on the use of network theory as a modelling ap-

proach for airport connectivity and an overview on methodologies used to determine

air itinerary shares.

2.1 Classification of forecasting methodologies in avia-

tion

Econometric modelling, which is the application of statistical methods to establish

quantitative relationships between a particular phenomenon and the economic vari-

ables affecting it, is one of the most common approaches used in aviation forecasting.

Econometric models establish the relationship between travel demand and income,
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which is one of the key variables explaining aviation growth. For example, Boeing

states that economic and income growth are key drivers of travel demand, especially

for emerging markets such as China and India (Boeing, 2017). Historical data is also

used to identify air travel demand trends which then are used to generate future pro-

jections. The majority of these approaches are characterised by their simplicity and

by the use of similar explanatory variables, such as socio-economic information or

airfares, with these often chosen based on the judgement of domain experts.

Several classifications of forecasting methods have been proposed over the years

(1971; 1995), with the most recent done by Swan (2008) who identified three com-

mon methods of forecasting air travel demand: trends, gravity models and simula-

tion. Trends are the most common forecast technique used for air travel demand,

which involves the use of econometric models in which passenger and freight de-

mand are regressed against economic activity over time periods, such as the change

in Gross Domestic Product (GDP). In turn, factors that induce economic growth

are sometimes also taken into account, for example, demographic variables such as

population or middle-class growth. Time-series is another type of econometric model

widely used in aviation, where the formulation of the model is based on the past

behaviour of a variable -i.e. air travel demand- in order to account for patterns in

the past movements of that variable (Pindyck and Rubinfeld, 1998). These method-

ologies clearly outline the close relationship between economic and aviation growth

highlighting the importance of considering such variable when modelling future air

travel demand.

Gravity models consider that the level of traffic between origin and destina-

tion city is based on the attraction and the spatial separation between both. The

attraction of the origin and destination city can be defined in many ways, all repre-

senting the importance of the two edges (i.e. cities) of the connection. Examples of

city-level attractiveness variables include population or GDP; whereas examples of

spatial separation are travel time or distance between the two cities.

Finally, simulation models are those which estimate the rise in traffic from

changes in fares and service levels. Additionally, it is worth briefly mentioning

qualitative techniques, which are based on the intuition and the subjective evaluation

of expert’s opinions (Teyssier, 2012). Surveys and questionnaires are two common

ways to collect data for this type of models. Often, qualitative techniques are used in
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conjunction with techniques mentioned above and help bring some clarity to explain

passenger and/or freight movement patterns. For example, the passenger interview

surveys conducted by the Civil Aviation Authority (CAA) feed the model’s base year

demand produced by the UK’s Department for Transport (DfT) (DfT, 2013). Among

several other purposes, these surveys are used to provide some information about

journey purpose, to supply time series for international-to-international interlining1

passengers and to account for the share of domestic interliners on domestic routes.

Surveys can help understand passenger behaviour, however they tend to represent

a small subset of passengers, are time consuming and costly to complete; making

surveys not an adequate resource when modelling the air travel demand at the

network level (i.e. where a large number of passengers and itinerary options are

considered) as this research does.

The above forecasting approaches are some of the most common techniques

currently used across the industry. Forecasts are derived in a range of ways depend-

ing on both the time and data available as well as the questions the forecasts are

trying to address. And although the choice of methodology depends on the use and

scope of aviation forecasts, approaches used amongst different aviation stakehold-

ers are quite similar. A summary of the forecasting methodologies used by several

industry stakeholders is introduced in the following sub-section.

2.1.1 Forecasting approaches used in aviation

Regression models

The most common methodology used across aviation stakeholders is regression mod-

els, mainly relating economic growth with air travel demand growth. For example,

Boeing, whose forecasts are focused on developing aircraft demand forecast for their

customers (i.e. the airlines), bases its methodology on a regression equation stating

the relationship between passenger traffic, measured by Revenue Passenger kilome-

tres (RPK), and a set of input variables that can be split in three groups: economic

activity, ease of travel and local market factors (Boeing, 2017). Economic activity

includes GDP development, per capita income, labour force composition and inter-

national trade and investment links. Within the ease of travel category examples

1Interlining, also known as interline ticketing or booking, is a commercial agreement between
airlines to handle passengers travelling on itineraries that require multiple flights on multiple airlines.

13



include market liberalisation effects, such as the arrival of low-cost carriers and the

consideration of new routes and/or greater frequencies of existing ones due to the

lifting of constraints that existed prior to liberalisation. And local market factors re-

late to any factor that is not directly connected to macroeconomic aspects or to ease

of travel, such as not having enough capacity growth to accommodate the demand.

Similarly to Boeing, The International Civil Aviation Organization (ICAO)

and Eurocontrol, which are two examples of international agencies that generate air

travel demand forecasts in order to set up the principles that will help maintain a

safe and orderly growth of the industry, use regression models based on economic

and non-economic factors, such as cost of travel and a set of dummy variables to take

into account random events, such as 9/11 (Teyssier, 2010; ICAO, 2016; Eurocontrol,

2017). Both organisations use a bottom-up approach starting with specific sub-

models and then combining the results of these sub-models to produce the final traffic

forecast for each country of the European Union (EU) for Eurocontrol (Eurocontrol,

2013, 2017), and globally for ICAO (Teyssier, 2010).

All forecasting approaches mentioned above have gone through improvement

phases over the years derived from the need of more accurate and compact econo-

metric models and aggregated air traffic forecasts from which more detailed forecasts

could be derived for various purposes and to better capture the dynamism of the

industry (Boeing, 2017; ICAO, 2016; Eurocontrol, 2017). Although improvements

have been made throughout the years, all models are characterised by their sim-

plicity, and in some cases by a perceived lack of impartiality (e.g. aircraft manu-

facturers’ forecasts tend to be less conservative since their purpose is to encourage

airlines’ spending on new aircraft), as well as similarities in methodology and input

variables. Moreover, none of these methodologies consider disaggregate evolution of

the air transport system -i.e. connectivity changes-, and therefore, are considered

to be a better fit for short-term forecasts.

Modular structure models

Other stakeholders, such as the Department for Transport (DfT) -i.e. which pro-

duces extensive aviation forecasts in the United Kingdom (UK)- or the Federal

Aviation Administration (FAA) -i.e. which is the national agency responsible for

the air traffic forecast in the US- use a more elaborated methodology based on a
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combination of regression models, splitting the forecasting process in several phases.

Both the FAA’s and UK DfT’s forecast estimates are produced in order to inform

policy making.

On the one hand, UK Aviation Forecasts are based on a top-down econometric

approach, split into three steps. First, the national air passenger demand at an

aggregated level is produced. This first stage is built on the basis of unconstrained

capacity. Secondly, introducing the effects of capacity constraints, the previous

demand predicted at the national level is broken down to compute air traffic demand

at airport level, which is measured by Air Transport Movements (ATMs) counted

as landing or take-off of an aircraft. Finally, the forecast air traffic levels are then

used to produce information regarding passenger movement, costs or to estimate

greenhouse emission levels (DfT, 2017).

UK DfT’s aviation forecasts are based on a set of regression equations, which

vary, in terms of model formulation and set of input variables, depending on the

stage of the modelling approach they are used at. For example, during the first

stage, which focuses on forecasting air travel demand at the national level, the set

of influencing factors are grouped into two separated contributions: the continuous

decrease in airfares, which is derived from the fuel price fluctuation, the decrease

on non-fuel related costs, the Air Passenger Duty (APD) - accounting for the tax

revenues paid by passengers- and the carbon costs; and a steady economic activity

growth, which is measured as a combination of the UK and foreign GDP, the UK

consumption and the imports and exports of the country (DfT, 2013).

Differently to stage one, UK DfT’s second stage, which focuses on breaking

down the aggregated demand from stage one to several sub-networks that form the

under layers of the system, uses a different formulation for the regression equation:

a multinomial logit. This model is used to forecast the volume of passengers across

UK airports and the factor driving that demand is the cost of travelling through a

specific airport. For this stage, input data used to obtain the parameter estimates

comes from the Civil Aviation Authority2 (CAA) airport choice data -e.g. using the

CAA Passenger Survey.

The sum of estimated forecasts for a given origin airport will give the total

unconstrained demand of that given airport. For the final stage, UK DfT’s method-

2The CAA is the specialist aviation regulator.

15



ology applies the current airport capacity levels in order to derive the constrained air

traffic forecast for each airport through an iterative process. In this iterative demand

re-allocation process, shadow costs3 - i.e. taking form of runway slot cost or terminal

cost - are added to the costs of using each over-capacity airport before repeating the

passenger allocation stage. After each re-calculation of the ATM numbers a check

is performed to see if those new predicted passenger and ATM numbers fit terminal

and runway constraints across all modelled airports. If they do the model is said to

have converged for that year, if not the iterative process continues until a solution is

found in which both types of capacity (i.e. terminal and runway) are not exceeded

at any airport. UK DfT’s methodology also does not consider connectivity changes,

unless previously announced by airlines, and therefore, the evolution of the network

is not considered.

On the other hand, in the US the FAA produces the Terminal Area Forecast

(TAF), which is the official FAA aviation demand forecast for the US air trans-

portation system. The TAF is based upon historical local and national measures

that influence aviation activity as well as drivers within the industry itself, such as

fossil fuel prices. A particular airport demand is derived independently of the ability

of that airport and its air traffic control system to furnish the capacity required for

meeting that specific demand. However, if the airport has been historically capac-

ity constrained, this would be reflected in the forecasts as the factors considered to

influence airport demand are embedded in historical data (FAA, 2016). The FAA’s

methodology is also based on regression models.

Similarly to the UK DfT methodology, the FAA’s forecasting approach follows

a top-down approach, split into three stages. The forecasting process starts by pro-

ducing the origin and destination (O&D) market demand forecasts; these forecasts

are then combined with the US Department Of Transport (DOT) T-100 segment

data4 in order to estimate the passenger demand by airport- and segment-pair; and

finally the segment-pair air traffic level forecasts are assigned to aircraft equipment

3Shadow costs refers to costs of using an airport that exceeds its capacity until its demand
falls within its maximum capacity and it is used to adjust the passenger demand considering a
scenario when capacity constraints exists. It is mainly represented in two ways and it is added to
the passenger cost of using a specific airport: as runway slot shadow cost; and as terminal shadow
costs. But it can also represent the value a marginal passenger would place on flying to/from that
airport if extra capacity were available.

4T-100 data (Form 41) is a database where commercial airlines report all passengers that flew
routed segments. T-100 data, which contains the most recent airline schedule, is used to identify
those available itineraries connecting a given airport-pair.
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so that segment-pair operation forecasts are produced.

The factors considered to influence the air travel demand include airfares, in-

come, distance and number of routes available between a given market. These

variables are similar to those used by the UK DfT, reflecting mainly on the cost of

travelling and capacity available.

In contrast to the UK DfT methodology, the allocation of air traffic across

airports (i.e. trip distribution model) does not use multinomial logit formulation

but instead a growth factor method is used. Growth factor methods are based on

the assumptions that the trip making pattern will remain the same in the future as

it was in the base year; while the volume will increase along with the growth in the

generating zones as well as with the growth in area attractiveness.

The itinerary assignment is done by the Fratar algorighm, a type of growth

factor method, which allocates the traffic previously forecast at the market level

across all possible routes of the network constructed from the airline schedule. This

allows to evaluate the connectivity between two trip ends is evaluated (Viken et al.,

2006) and as a result, the future daily airline schedule among O&D airport-pairs of

the current schedule is generated.

The air traffic allocation methodology used by the FAA, the Fratar algorithm,

bases its success on the fact that it is simple to use and understand as well as

that it conserves the observations as long as is consistent with the information on

growth rates available. However, those advantages become its drawbacks, making its

approach more reliable for short-term predictions (Ortuzar and Willumsen, 2001).

One of the main limitations is the fact that it does not consider changes in transport

costs and assumes that resistance to travel will remain the same, and therefore, the

addition of new facilities and/or routes is neglected. Consequently, FAA’s method-

ology does not consider the evolution of the network, unless information of airlines’

network changes is made previously available, reducing its reliability for medium-

and long- term forecasts. Moreover, growth factors methods are highly dependent

on the accuracy of the base year trip matrix, which is usually not that high, meaning

that the final matrix is not highly reliable.

The resulting passenger demand at segment-level is then compared and ad-

justed with T-100 segment passenger data (BTS-RITA, Bureau of Transportation
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Statistics. Research and Innovative Technology Administration, 2014). T-100 also

gives information regarding types of aircraft flown on those segments, and there-

fore, can be used along with the predicted passenger demand to project aircraft

departures by segment.

2.1.2 Discussion

As discussed in section 1.2, forecasting plays an important role across aviation, being

a key tool for decision-making processes in which stakeholders are involved. It is

clear that the constant evolution of the industry and increased complexity require

continuous work on forecasting methodologies for air transportation, and that often

current industry forecasting approaches are under review for further improvements,

as presented in the previous section (2.1.1).

It is also clear that econometrics is the most common approach used amongst

industry’s stakeholders, with model specifications that are somehow similar mainly

amongst them, showing the strong link between aviation and economic growth. With

aviation being a large and complex industry in continuous evolution, the need for a

modelling framework that considers the dynamics of the network (i.e. the consider-

ation of routes being added and removed from the air transportation system) and

the effect that these dynamics have at different levels of the network (i.e. passenger

choice, airport congestion, etc) is necessary. Focused on developing a sophisticated

and yet user-friendly model, -i.e. simple enough that there is a will to be used across

the industry stakeholders-, the work carried out in this research looks at providing

with a single modelling framework that models city-pair passenger demand, airport

connectivity changes, itinerary demand assignment and air traffic estimation. By

considering the possibility or airport connectivity changes (i.e. airport-pairs be-

ing added and removed to/from the network) the structure of the network and its

characteristics will change over time and the impact that these changes have into

itinerary choice and consequently to air traffic levels can be evaluated.

2.2 Research work in air travel demand forecasting

The tendency to use econometric models to estimate the air traffic demand forecasts

has been emphasised in the previous section. Moreover, it can be concluded that
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the majority of aviation stakeholders that produce air traffic forecasts use this type

of methodology based on analysing past data and trends.

Considering the important role that forecasting air travel demand plays for

the future of the aviation industry, as mentioned in section 1.2, a large amount of

research in this topic has been carried out in the past years. A large part of the

research has focused on improving existing methodologies (i.e. by using alterna-

tive econometric models), such as the research done by Evans (Evans, 2010) which

combined a gravity model with an agent-based model in order to model airlines’

operational responses to environmental constraints. However, there is a growing

trend towards the use of machine learning techniques with the aim of predicting

future air traffic levels. Technically speaking, machine learning is the field of study

that gives computers the ability to learn without being explicitly programmed, i.e.

a computer program is said to learn from experience E with respect to some task

T and some performance measure P, if its performance on T, as measured by P,

improves with experience E (Ng, 2013). In contrast to statistical models, which

are designed for inference about the relationships between variables, the purpose

of supervised machine learning is obtaining a model that can make repeatable pre-

dictions; and that can provide various degrees of interpretability depending on the

model, from highly interpretable such as lasso regression to non-interpretable, such

as neural networks (i.e. machine learning models generally sacrifice interpretability

for predictive power).

2.2.1 Machine learning within aviation

Machine learning has experienced an enormous development since its beginnings in

the 1930s with Ronald A. Fisher and in 1950s with Frank Rosenblatt’s linear per-

ceptron (Alexander, 2013). In the last decade, its range of applications has grown

extensively, especially for complex learning problems, partly because of increase in

data processing power and faster compilers. Therefore, what started as a simple at-

tempt to separate points in a plane evolved into, among other developments, solving

structured learning problems, such as speech recognition and medical diagnosis, and

learning with massive amounts of data. Machine learning models are designed to

make the most accurate predictions possible.

The range of fields in which machine learning is applied is vast, from biology
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to cognitive or sociological science. Aviation is a large, complex system involving

the generation of large scale and unstructured data in various data formats. This

makes air transportation an interesting system to apply machine learning techniques

aiming to transform those datasets into applied knowledge. From the application of

machine learning techniques to air transport data, several benefits can be obtained

across different areas, such as better optimisation of airlines’ fleet management,

advances in safety within the air transport system, as well as improving existing air

travel demand forecasts.

Focusing on airline’s performance, Lawson and Castillo (2012) employed large

amount of data available on flight punctuality to predict whether or not a flight will

be delayed.

In the area of safety, the extension in which machine learning techniques have

been applied covers mostly algorithms for anomaly detection, which consists of the

analysis of air safety data in order to identify general patterns that define the major-

ity of flights. As a result, approaches to identify possible anomalies that could lead

to an incident or accident during the riskiest phases of a flight have been developed,

producing a shift towards a more proactive safety management. Cluster analysis

on continuous flight parameters (Iverson, 2004), multiple kernel anomaly detection

which considers both discrete and continuous data streams (Das et al., 2010) and

text mining to predict and discover precursors to safety incidents (Smalley, 2012;

Srivastava, 2011) have all been applied.

2.2.2 Machine learning in air travel demand forecasting

Within the area of air travel demand forecasting, only a small number of studies

have used machine learning, such as the work done by Nam and Schaefer (1995) and

the work done by Cheung and Gunes (2012). The work done by Nam and Schaefer

(1995), one of the first studies in this field, used neural networks for forecasting inter-

national airline passenger traffic between the US and South Korea. Results showed

how the neural network model used to predict air travel demand outperformed in

terms of accuracy the more conventional statistical analysis used at that time. The

choice of neural network was driven by the need of an alternative technique free

of any distributional assumption about the model errors - as opposed to regression

modelling-; or reduced complexity of the model-building process that existed in some
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pattern recognition procedures.

Also, considering neural network models, Cheng et al. (2003), applied a hybrid

model consisting of neural network and statistical analysis to forecast traffic flows

in China’s air network. Their research was driven by the need to create a model to

predict air traffic flows at a network level using air traffic information from each Chi-

nese regional control centre as opposed to the then current system where a distinct

set of predictions was generated separately for each regional control center. The

aim of this research was to construct an air traffic model that would improve the

efficiency of the current air traffic flow management system, which directly depends

on the accurate predictions of the air traffic flow of each regional control center in-

dependently. And with a slightly different line of research Kotegawa et al. (2012)

explored the use of machine learning techniques, such as neural networks and sup-

port vector machines5, alongside network theory to study the evolution of the US

air transportation system (i.e. identification of airport-pairs that will be added and

removed to/from the network).

As the examples above show, there is great potential in applying machine learn-

ing techniques to those most commonly used within aviation to explore whether bet-

ter predictive accuracy can be obtained. As the air transportation system evolves,

the need for new techniques when trying to model different areas of the system

is proven - i.e. also shown through the continuous improvements that forecasting

methodologies used across the industry have undergone in order to adapt to the in-

crease complexity and factors influencing the air transport system. Within the work

presented in this dissertation, the two main contributors are: the use of network

theory to model the evolution of the air transportation system, which as highlighted

in the previous section (2.1), is a key aspect to understand the dynamics of the

network and the effect that this has on airport-, route- and system-level demand

and it is not currently considered in the existing forecasting methodologies; and a

comparison analysis of the predicting power of a discrete choice model and a neural

network model (i.e. machine learning model) to determine air itinerary shares and

assess how the consideration of network evolution affects the predicting power of

each of these methodologies. A summary of existing research related to these two

5Support vector machine (SVM) algorithm is a supervised learning model most commonly used
for classification problems and its objective is to find a hyperplane in an N-dimensional space (N -
number of features) that distinctly classifies the data points.
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areas is presented below.

2.2.3 Application of network theory within aviation

Understanding the underlying reasons of airport-pair connectivity and how these

can change throughout the years can benefit communities of all sizes and be used

to understand and predict network growth. For example, Wittman and Swelbar

(2013b) showed that small- and mid-sized airports6 have been largely affected by

cuts in commercial air service in the US by looking at the reduction of number of

scheduled domestic flights in US’s largest airports compared to the reduction at

smaller airports during the recession years (i.e. 2007 - 2012). Data showed that

while US’s largest airports lost 8.8% of their domestic scheduled services, smaller

airports suffered a reduction of 21.3%, which combined with the analysis of airline

behaviour at the time resulted on the conclusion that there was a trend towards

consolidating service at the nation’s largest airports.

In order to study airport-pair connectivity, Wittman and Swelbar (2013a) iden-

tify three categories of research approaches: network theory models; temporal sen-

sitivity models; and more simple models referred to as intuitive metrics by Arvis

and Sheperd (2011). Network theory models are those that provide a holistic per-

spective modelling the air transport system as a natural network that consists of

well-defined nodes (airports) and links (flights that connect those nodes or airports)

and by characterising these nodes through a series of mathematical quantities that

define their importance and the influence they have towards the network.

The temporal sensitivity models can be classified as the most robust method

within airport connectivity modelling. This type of model examines air transport

connectivity of only those connections that are reasonable or feasible for a passenger

to take. Consequently, itineraries involving lengthy layovers or unreasonably small

connection times should be excluded when computing any connectivity metric if

possible (Wittman and Swelbar, 2013a). To construct the set of feasible itineraries,

much more detailed schedule data is necessary, making these models harder to gen-

eralised to large networks (i.e. such as the US ATS) when hundreds of airports need

to be considered.

6The definition of small- and mid- size airports used in Wittman and Swelbar’s work refers to
medium-hubs, small-hubs or non-hubs as defined by the FAA.

22



Finally, the intuitive metrics are the simplest and easiest to understand of the

three categories and considers airport connectivity based on a score computed by the

product of those intuitive metrics. The most attractive intuitive metrics generated

are those that measure the quantity (i.e. such as available seats per annum) and

quality of available service (i.e. larger airport would tend to to be considered as

more valuable) and destination (Reynolds-Feighan and McLay, 2006; Pearce, 2007).

While the simplicity of the intuitive metrics makes this approach appealing, it has an

important limitation: it only consider non-stop itineraries; limiting its application

to those airports that are only served by airlines operating point-to-point (i.e. low-

cost carriers). Consequently, this methodology cannot be used within the US ATS,

where most of the major US carriers follow a hub-and-spoke network.

Considering the drawbacks of using temporal sensitivity models and intuitive

metrics -i.e. difficulty generalising to large networks and the limitation of only con-

sidering non-stop itineraries-, this dissertation focuses on the potential of network

theory to analyse the dynamics of the US air transport system. The application of

network theory to model the air transport system has attracted attention recently,

becoming a trend in the last decade. The great variety of tools developed for the

analysis of different topologies has helped form a better understanding of the struc-

ture and dynamics of many real-world systems (Zanin and Lillo, 2013). The study

conducted by Guimerà et al. (2005) was one of the first of many to have taken

into account this methodology applied into the air transportation system. It was

also one of the first studies that described measures of the mathematical qualities

of this network such as eigenvalue centrality, node weight or node degree among

others. Guimerà et al. (2005) concluded in defining the worldwide air transport

system as a small-world network in which (i) the number of non-stop connections

from a given city and (ii) the number of shortest paths going through a given city

has distributions that are scale-free. Surprisingly, the resulting analysis showed that

those nodes with more connections were not the most central ones -i.e. the nodes

through which most shortest paths go- which is characteristic of scale-free networks.

They suggested that this behaviour was due to the multi-community structure of

the network, which are influenced not only by geographical constraints but also by

geopolitical considerations.

Only focusing on the United States Air Transportation System (US ATS), Che-
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ung and Gunes (2012) used network theory to analyse the network and its evolution

from 1991 to 2011. In line with Guimera et al. (2005) work, results of this study

show how the US ATS exhibits small world characteristics - i.e. such as small aver-

age shortest path7 and a large clustering coefficient8; however, only a partial power

law degree distribution was observed, implying that airports in high densely popu-

lated areas grow at a slower rate than those located in less populated areas. The

study also showed that although most of the characteristics of the US Air Transport

network remained the same through those 2 decades, the network had become more

vulnerable to airport closures throughout the years.

Other research uses network theory to model the air transport system and

better understand its fundamental characteristics. Bonnefoy and Hansman (2007)

used network theory to analyse the Origin&Destination (O&D) routes flown by

existing light jets to understand the principles underlying this air transport system

and be able to assess how the introduction of very light jet traffic would affect the

network’s evolution. DeLaurentis et al. (2008) applied network theory to simulate

the contraction of the air transport network.

Nevertheless, network theory has not just been used for the assessment of the

topology (i.e. characteristics) and structure of the aviation system, but it has also

been adopted to explore and identify the dynamics taking place in it. For example,

Lacasa et al. (2009) proposed a network-based model for the ATS to simulate the

effect of traffic dynamics and showed the appearance of air traffic jams. In the same

line of research, Fleurquin et al. (2013) used network theory metrics to characterise

the delay propagation of the US airport network. Others -e.g. Colizza et al. (2006)-

used this research field to study the air transport system’s impact on spreading

epidemics.

Finally, the resilience and the vulnerability of the air transport system have

also been evaluated through the use of network theory. Resilience is defined as the

intrinsic ability of a system to adjust and quickly recover its functioning before,

during or after changes and disturbances, so that it can sustain required operations

under both expected and unexpected conditions (Hollnagel, 2013). Three studies

7The shortest path between airports i and j is the path with the fewest number of flights (i.e.
links)

8The clustering coefficient captures the degree to which the neighbours of a given node link to
each other. The higher the clustering coefficient is, the more robust the network is since in case of
a link failure alternative paths would exist.
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are worth mentioning. Chi et al. (2004) analyse how the main topological charac-

teristics of the US air transport network respond to random failures and attacks. A

similar analysis, performed by Wilkinson et al. (2012) focused on the European air

transport system, concluding that severe disruptions due to natural disasters such

as the eruption of the Icelandic volcano Eyjafjallajökull in 2010 are the result of

the geographical correlation of the disturbances and the geographical correlation of

hubs concentrated in central Europe. Finally, Kotegawa et al. (2010) studied the

impact that targeted and random attacks have on multiple stakeholders that form

the aviation system.

Even though many have used network theory as a method to study the topol-

ogy and structure of aviation and better understand the fundamental principles that

govern it, little research has been done to use network theory to predict the future

evolution of the Air Transportation System. The main work within this area of re-

search is the work done by Kotegawa (2012), who developed a network restructuring

model for improving air traffic forecasts using several machine learning techniques.

Kotegawa’s innovative approach used network theory metrics (i.e. quantitative

parameters that characterise the airports that formed the network) as explanatory

variables to constitute the input dataset that was used to train several algorithms in

order to predict future air travel demand. The main objective of his research was to

develop a model that captured the mechanisms of the US Air Transportation System

network evolution. In other words, an algorithm that predicted the likelihood of un-

connected city-pairs being connected by service in the future and the likelihood of

connected city-pairs being unconnected in the future.

The application of network theory defined the structure of the US ATS as a

network composed of nodes (i.e. represented by airport) and links connecting those

nodes between each other (i.e. represented by flights covering route segments). The

nodal network properties were used to characterise all existing connections between

the nodes and as input variables to the forecast algorithms that were considered.

The problem was separated into two different paths in order to focus on the link

addition and the link removal process separately9. Figure 2.1 shows the flowchart

of the ATS capacity network model used by Kotegawa (2012). In Figure 2.1 the

separated paths mentioned can be seen as the link addition (i.e. phase A) and the

9Note that link refers to flight.
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link removal (i.e. phase B) module. After the link addition module (i.e. phase A)

in which newly established links are identified, historical distribution based on the

distance between airports are used to assign number of operations (i.e. weights)

to those new links (i.e. phase C). Weights (i.e. number of operations) for all links

projected to exist in the network (i.e the sum of those added and those not removed)

are adjusted (i.e. phase D) so that the aggregated value matches the total air traffic

levels projected by the Terminal Area Forecast (TAF). This adjustment process is

done by using the Fratar algorithm. Two set of models were generated based on the

two tools used to assess the impact of the network structure changes would have to

system-wide metrics, such as the impact on flight delay. The two tools used are:

NASPAC, which is the FAA system using TAF and Fratar algorithm to allocate

the growth in air traffic; the NASA-Purdue Fleet-level Environmental Evaluation

Tool (FLEET) simulation, which is a tool set that investigates the airline fleet-level

environmental impact from new aircraft technologies and concepts (Zhao et al.,

2009). Different methodologies were used to generate the two sets of models, which

considered a different set of airports.

Figure 2.1: Flowchart on Kotegawa’s ATS capacity network model

The link addition module was developed using Support Vector Machine (SVM)

in combination with Logistic Regression for the model integrated with NASPAC;

whereas Random Forest10 (RF) was used for the model integrated with NASA-

Purdue FLEET simulation. The link removal module, where only existing connected

airport-pairs constitutes the input dataset, was developed using logistic regression.

Amongst all the network theory metrics -i.e. also defined as nodal properties or

topological parameters - that Kotegawa considered, four were identified as the ones

giving the best modelling performance results: node degree, node weight, eigenvector

centrality and clustering coefficient. Further explanation regarding those four nodal

10Random Forests is an ensemble method for classification (can also be used for regression) which
consists of a collection of three-structured classifiers.
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properties can be found in Chapter 3. These four nodal properties were used to

define several model specifications for the link addition and link removal modules.

The overall forecasting accuracy for the link addition and link removal modules were

around 20% and 40% respectively, which is considered quite low.

The potential of using network theory in order to simulate air transportation

system evolution is clearly shown through the literature presented in this section

(Guimera et al., 2005; DeLaurentis et al., 2008; Lacasa et al., 2009; Kotegawa, 2012).

With most of the existing research looking at the application of network theory as a

method to understand the system dynamics and to model the response of an existing

air transport systems to events (Colizza et al., 2006; Hollnagel, 2013; Kotegawa et al.,

2010; Fleurquin et al., 2013), only Kotegawa (2012) used network theory combined

with machine learning techniques to expand the air traffic demand forecasts pro-

duced by the FAA in an attempt to capture the mechanisms of the US ATS network

evolution (Kotegawa, 2012). This research used network theory metrics as input

variables, and only one demographic characteristic (i.e. distance between airports)

was taken into account, which omitted many parameters that are equally important

in underlying the ATS system behaviour, such as passenger demand. Moreover, the

accuracy obtained was quite low, leaving room for improvement and further explo-

ration of the subject. In addition, research focused on improving the allocation of

air traffic demand (i.e. itinerary choice model) was not carried out. Instead, the

FAA TAF’s methodology was implemented. This uses the Fratar algorithm which

is a type of trip distribution method using growth factors and has some important

drawbacks such as not considering changes in transport costs and the assumption

that resistance to travel will remain the same as the base year used as well as to be

more suitable for short-term forecasts. Focusing on the impact that the evolution of

the network would have for the air transport system, this dissertation also explores

different methodologies to assess the impact that changes in network structure would

have passenger behaviour at the aggregate level and that would help to determine

itinerary shares, and consequently air traffic levels at the network level.

2.2.4 Existing research in air itinerary choice models

There is a growing interest in developing better itinerary share models than those

already existing. Itinerary share models can become crucial to support airlines

27



in their network planning and scheduling since important decisions on resources

allocation and pricing are made based on itinerary demand.

Most of the current research centres on developing innovative approaches using

discrete choice modelling, which aims to model competition and customer behaviour

to determine air travel itinerary shares – also known as demand assignment models.

While most of the discrete choice models applied in urban transportation are built

using disaggregate data and include information about the individual making the

decision (i.e. the passenger); in air transport, data disaggregation as well as data

accessibility are limiting factors - i.e. disaggregated data consists of information at

the individual level only possible to gather through surveys which tend to be costly

and difficult to carry out for large aviation systems. The need to quickly adapt to

changes in demand makes flexibility crucial for carriers and other stakeholders in

the industry. For this reason, most of the models built, and found in the literature,

to support decision-making rely on booking data which is generally proprietary.

Furthermore, airlines do not typically record much of the passenger data that is

relevant to passenger decision making, such as age, gender and income. This data

is not typically available, except for a small subset of passengers which limits the

applicability of the model to small networks or subset of airports, and therefore it

cannot be used for the purpose of modelling itinerary shares at the network level

-i.e. at the most aggregated level.

Most of the early studies in demand assignment for air travel focus on study-

ing the distribution of demand across one single dimension, the choice to be made

affects only one aspect of an itinerary such as choosing the origin airport, or the

airline to fly with separately. These early models were mostly applied to analyse

air travellers’ choice within multi-airport cities or regions – i.e. airport choice mod-

els (Hansen, 1995; Windle and Dresner, 1995) – or across airlines – airline choice

models (Proussaloglou and Koppelman, 1995). Although the former is the most

widely studied topic in discrete choice modelling within air transport, and has given

a deeper understanding to the relationship between airport attributes and airport

market share, a more aggregated assignment of air travel volumes is also needed.

There are only few studies that present work for itinerary market share esti-

mation across multiple dimensions using discrete choice modelling. Some of these

studies used multinomial logit (MNL) formulation (Adler, 2001; Coldren et al., 2003;
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Grosche and Rothlauf, 2007; Atasoy and Bierlaire, 2012); others apply nested logit

(NL) formulation (Coldren and Koppelman, 2005; Hsiao and Hansen, 2011), mixed

multinomial logit (MMNL) formulation(Warburg et al., 2006) and other alternatives

methodologies (Grammig et al., 2005; Carrier, 2008). Also in this group the only

existing research using machine learning to model air itinerary shares can be men-

tioned. The work done by Grosche and Rothlauf (2007) is a comparative study of

three methods used for itinerary market share estimation: multinomial logit, neural

networks and a custom model developed by the authors; using booking data (i.e.

proprietary) and with the application example including markets between Germany

and European countries. Results obtained showed that the custom model developed

by the authors was the best performing model and disregarded the NN due to lack

of model interpretability.

The studies in choice behaviour modelling mentioned above can be classified

with respect to the type of data they are based on: revealed preference data (RP) or

booking data (Coldren and Koppelman, 2005; Hansen, 1995; Windle and Dresner,

1995); stated preferences (SP) data or survey data (Hess and Polak, 2005; Pathomsiri

and Haghani, 2005); and a combination of both (Atasoy and Bierlaire, 2012). Studies

using RP data do not usually provide full insight into passenger choice behaviour

since models are estimated based on real booking data, and no information regarding

other alternatives at the moment of booking is generally available. This limitation

might lead to RP models performing poorly due to the insufficient variability in the

observations. In contrast, SP data collected from surveys allows for modelling of

new alternatives - i.e. hypothetical situations that do not exist yet, as well as more

accurate estimation of the sensitivity of travellers to characteristics of their trips.

However, studies using SP data may be subject to bias due to the nature of the

experiment as tailored by the survey writer. These studies are also often limited to

a small range of markets, limiting their application to a small network set.

Most of the studies that focus on air itinerary choice models mentioned in this

section have been developed using disaggregate data, with information obtained di-

rectly from airlines or surveys (i.e. SP data) (Coldren et al., 2003; Coldren and

Koppelman, 2005; Atasoy and Bierlaire, 2012; Grosche and Rothlauf, 2007) contain-

ing preference information (e.g. airline preference and departure time preference),

which as mentioned is most often not available. Most of the existing work also fo-
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cuses on studying air travel demand mainly at the segment and market level. Little

research has been done in modelling air itinerary shares at the network level -i.e.

at the most aggregated level- on its own, rather than treating it as a summation of

the demand of individual markets involved. Some advantages of modelling aggregate

demand at the network level are the ability to capture the impact of airport capacity

on passengers’ travel behaviours as well as the impact of the hub-and-spoke routing

structure that characterises the US air transportation system.

External factors, such as software computational limitations during the esti-

mation process have also been a common issue encountered by some work in choice

modelling, forcing some studies to limit the number of city-pairs being analysed

(Weidner, 1996) or to split the problem into a set of sub-models estimated with a

smaller dataset (Li et al., 2017; Busquets et al., 2018) -i.e. other studies such as

Coldren (2003) Atasoy and Bierlaire (2012), or Ghobrial and Soliman (1992) also

analysed a reduced number of city-pairs although is not explicitly stated whether it

was a choice made due to software limitations.

At last, none of the existing research focused on itinerary choice modelling

considers the evolution of the network, but only those itineraries that are available

in the base year are considered as an option for future available choices.

2.2.5 Discussion

From the literature review presented above, it can be concluded that there is an

effort to explore the potential of alternative data mining and machine learning tech-

niques applied to improve air travel demand forecasts (Nam and Schaefer, 1995;

Cheung and Gunes, 2012; Kotegawa, 2012). The constant evolution of the industry

and increased complexity also require continuous work focused on improving fore-

casting methodologies for air transportation. And while significant contributions

have been made to date, there is still room for improvement. This research focuses

on exploring two areas within aviation forecasting: airport connectivity (i.e. net-

work evolution) which is not considered in existing forecasting methodologies used

across the industry; and air itinerary choice modelling at the network level.

When analysing the air traffic dynamics in the past changes in the air transport

network structure experienced over time are easy to identify. However, forecasts gen-
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erated by aviation stakeholders are based on the assumption that the future route

network structure will remain the same as the current network structure (FAA,

2016). Therefore, when trying to project the ATS evolution mechanism, the abil-

ity to reproduce the addition and/or removal of routes are not considered, unless

previously communicated by airlines that operate within an the air transportation

system. Since airlines do not plan their network structure far ahead, those network

changes would be only applicable to short-term forecasts and in addition this type

of information is usually not available to everyone.

Only one research focused on modelling network evolution (Kotegawa, 2012),

however accuracy obtained was measured at approximately 20% and 40% for the

link (i.e. airport-pair) addition and removal forecasts respectively, leaving room for

improvements. Kotegawa’s work (2012) only considered network theory metrics and

did not focused on improving the allocation of air traffic demand, and therefore

without considering the effect that network structure changes would have to the

overall system, such as itinerary shares or impact on aircraft operations. Inspired

from Kotegawa’s efforts and looking at providing a further understanding of the air

transportation system evolution, the work presented in this thesis further explores

the application of network theory to predict airport-pair connectivity within the US

domestic network. This is done by considering the use of input variables beyond

network theory metrics as opposed to existing research, which include passenger

demand, distance between airports and dummy variables characterising whether an

airport is a hub or not. By including O&D passenger demand as input variable, the

predicting capabilities of the connectivity models are extended to those links formed

by airports without any connection elsewhere.

Regarding itinerary choice modelling, there has been a lot of effort in the study

of air itinerary shares as presented in the literature review above. However, some

limitations can be identified: little research has been done in modelling air itinerary

shares at the network level -i.e. at the most aggregated level- on its own since most of

the existing work focuses on studying air travel demand at the segment and market

level; the applicability of some of the models is also limited -i.e. to specific markets-

and further model refinement and verification is still required to better capture

passenger choice effects, influenced by the fact that data used during the estimation

process is a representation of a small subset of passengers and might not be reflective
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of the entire population; computational limitations during estimation process have

also been a common issue limiting the predicting capabilities of the models to a

subset of cities; and none of the existing research considers the dynamics of the

network and therefore only itineraries available in the base year are considered as

an option for future choices.

Considering these limitations, this dissertation also centres on developing an

air itinerary share model at the network level (US ATS) considering non-stop and

one-stop services. Since the work done in this dissertation considers network evo-

lution, two different modelling methodologies are explored to assess how itinerary

choice is affected by network changes in the long term. The two modelling tech-

niques explored and compared are multinomial logit and neural network. In the

case of multinomial logit, Berkson-Theil approximation method - i.e. which trans-

forms the estimation process to a least square formulation - is used to overcome

the computational limitations that the maximum likelihood estimation process has

associated when considering large amount of data.

The interaction between both models (i.e. airport connectivity and itinerary

choice) is integrated within a single modelling framework where the response from

the system to network structure changes could be assessed, such as passenger choice,

air traffic levels, airport congestion and environmental impact.
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Chapter 3

Modelling Framework

Airline route planning decisions are a response mainly to changes in cost and pas-

senger demand, which in turn affects competition and airlines’ profitability. An

airline’s strategic decision to start operating a new route or cease an existing one is

generally down to a simple question of whether that route is profitable or not. Be-

cause passenger demand is not the only factor to be considered in the equation when

predicting air traffic levels - i.e. presence of competition or aircraft type operating

a given route can also influence air traffic levels -, the approach employed in this

research focuses on understanding the underlying principles driving demand. The

modelling framework presented in this dissertation has a modular structure looking

at city-demand generation, itinerary demand assignment and air traffic estimation.

Broadly, a demand module projects passenger demand between cities -i.e. O&D

passenger demand. Then, the itinerary demand assignment module is divided into

two parts: first, a connectivity model identifies which airport-pairs will be added

and removed from the network allowing the identification of available itineraries

serving each city-pair; second, considering the available routes previously identified,

an air itinerary choice model projects which airports and route the projected O&D

passenger demand will choose. Finally, the air traffic module projects the number

of operations between airport-pairs (i.e. air traffic levels between airport-pairs). A

simplified diagram of the structure of the modelling framework presented in this

dissertation is shown in Figure 3.1.
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Figure 3.1: Modelling framework.

The structure of the rest of this chapter is as follows. Section 3.1 discusses

the scope of the model in terms of geographic scope, types of flights, airports and

passengers covered in this study, as well as aggregation level at which the modelling

framework in Figure 3.1 refers to. Section 3.2 describes the different sources used to

compile all the necessary data to estimate the different models and generate projec-

tions. Section 3.3 gives an overview of the methodology and the detailed information

regarding each of the modules is presented in the following sections: O&D demand

model in Section 3.4; airport connectivity model in Section 3.6, which includes a

detailed description of network theory and an application example of this to char-

acterised the US air transportation system; Sections 3.7 and 3.8 describe the two

methodologies used to develop the itinerary choice models with Section 3.9 present-
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ing a comparison between those; and Section 3.10 for the air traffic model. And

Section 3.11 presents a brief summary of the findings associated with the modelling

framework used in this dissertation. At last, projections for future years using the

entire modelling framework will be presented in Chapter 4.

3.1 Scope

3.1.1 Geographic scope

The geographic scope of the model presented in this dissertation is the US Air

Transportation System (ATS) and only information regarding US domestic flights

has been used. The size of the network accounted in number of airports used in

this research considers 337 airports within the US ATS. This subset of airports is

aligned with the subset of US airports used by the AIM Project (Schäfer and Dray,

2015) which would enable to integrate both models if further research is done. The

set of 337 airports represents the US airport set included in the global 1,277 airport

set that contributes to the 95% of global RPK (Revenue Passenger Km). Airports

have been classified as hubs an non-hub airports.

Information regarding US cities in which these airports are located are also

aligned with the AIM project (Schäfer and Dray, 2015). In total, a set of 178

US cities account for the corresponding 337 airports. City characteristics include

information regarding city attractiveness (i.e. indicator to whether the city is a

major tourism or business destinations) and accessibility by other types of transport

(i.e. road and/or rail).

3.1.2 Types of flights

Flights can carry passengers and/or cargo, flights can be scheduled or unscheduled,

and they can be classified as commercial, general or military aviation. While a

large amount of data is available for commercial scheduled flights, information for

other types of flights can be scarce. Therefore, for the purpose of this research, only

scheduled flights from commercial aviation have been considered. This includes

flights in which aircraft carry only passengers and aircraft with mixed configuration

which carry passenger and cargo at the same time. No limit on aircraft size or type
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has been applied when processing the input data.

For the purpose of simplicity, only non-stop and one-stop itineraries, accounting

for more than 97% of the total passenger demand, have been considered in this study.

This high percentage is representative of the fact that the geographic scope of this

research is limited to the US domestic network and it is observed that a small amount

of passengers will be travelling through itineraries with more than one-stop. From

the literature, this is also a common practice for studies looking at US hub-and-

spoke network (e.g. the work done by Hsiao and Hansen (2011)). For one-stop

flights, the connecting airports are limited to a subset of 25 US hub airports1, which

still captures more than 96% of the total passenger demand of the original dataset.

3.1.3 Types of passenger

For the purpose of this study, passengers have not been divided according to the

purpose of their trip (e.g. business or leisure) nor by demographic characteristics

such as age or gender. Only one passenger category is used and all information

regarding passengers (e.g. airfares) is computed as a weighted average using the

number of passengers as weight across all the available data. This is due to data

linked to the US datasets on trip purpose or demographics is not available. As a

consequence, different responses of business and leisure passenger to changes in fare

-i.e. price elasticity- are not captured. Instead, a single response to fare changes is

tracked.

3.1.4 Aggregation level

The time-step considered in this study is annual. Consequently, both passenger

demand and air traffic levels projections generated by the estimated models will

refer to aggregated annual volumes. Similarly, input data used in the several models

is annually aggregated, either as a sum or as annual weighted average as in the case

of airfares. Models are estimated with 2007 data, and those will be used to model

the years after 2007. Each sub-model is being validated in isolation using actual

data from 2008 to 2013. Projections are generated from 2008 to 2025, with the first

1IATA codes for the 25 hub airports as considered and used in this research are as follows: 1-
ORD, 2-ATL, 3-DFW, 4-LAX, 5-IAH, 6-DEN, 7-DTW, 8-PHL, 9-CVG, 10-MSP, 11-PHX, 12-EWR,
13-CLT, 14-IAD, 15-JFK, 16-LAS, 17-MIA, 18-SFO, 19-SLC, 20-SEA, 21-BWI, 22-STL, 23-CLE,
24-MEM, 25-PIT. Source: https://www.iata.org/publications/pages/code-search.aspx
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10 years projections being used for validation of the modelling framework since they

can be compared to actual data. The decision to use 2007 data to estimate the

sub-models is due to data availability at the start of this research as well as 2007

being a relatively stable year not affected by any major external factor such as the

economic crisis, making the models more representative of the general trends. Due

to models being estimated with 2007 year data, all monetary-related variables (e.g.

airfares and mean household income) need to be converted to 2007 value of money.

This monetary conversion is done based on the Consumer Price Index (CPI) to 2007

US dollar values (Bureau of Labour Statistics, US Department of Labour, 2014a).

Please refer to Appendix B for further information regarding CPI.

In all stages of the modelling framework at least 52 flights per year must operate

between an airport-pair for it to be considered operational. Based on the research

done by Dennis (2002) airlines would not normally start a service with less than

a double-daily frequency short-haul and close to a daily long-haul. The present

decision of 52 flights as the minimum number of flights for any given airport-pair to

be considered connected, rather than a daily service as suggested by Dennis (2002),

is due to several reasons: the US ATS is defined by a range of short-, medium- and

long-haul markets and a mix of different sized airports as opposed to Dennis’ (2002)

research which focused on medium-sized European airports; the level of aggregation

in this research is annual; and to be able to capture seasonal services that might be

only operating during holiday periods, or regional services that might operate less

frequently than other commercial services.

Further information regarding input variables used for each sub-model is ex-

plained in the following sections below.

3.2 Data sources

As mentioned in Section 3.1, the geographic scope of the modelling framework pre-

sented in this dissertation is the US Air Transportation System (ATS) and only

information regarding US domestic flights has been used. The list of the 337 air-

ports and 178 cities considered in this study are obtained from the AIM Project

(Schäfer and Dray, 2015). Information regarding whether other transport links ex-

ist and whether a city is a major tourism and/or business attraction is also extracted
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from there. Such information is considered to be static through the base (2007) and

projection years (2008-2025).

In terms of demographic data, the US Census Bureau (2014a) website is the

source where population data was obtained for the years up to 2016. The US pop-

ulation statistics are generated from decennial censuses. For the in-between years,

the US Census Bureau estimates population levels based on times series applied to

the most recent decennial census and considering population changes due to births,

deaths and migration numbers. The in-between years population estimates are up-

dated annually. For demographic data related to period years between 2017 and

2025, please refer to Appendix A.

For the economic data (mean household income), the Bureau of Economic

Analysis (2014) website has been consulted. This measure is computed by taking the

personal income of the residents of a given area divided by the resident population

of the same area, being the latter taken from the US Census Bureau (2014a).

Historical flight frequency data is extracted from the US Department of Trans-

port T-100 data (2014), while historical information on passenger demand data and

airfares is extracted from the Airline Origin and Destination Survey (2014) -i.e.

known as DB1B, which contains a 10% sample of airline tickets from reporting car-

riers. Variables used to develop the itinerary choice model are also extracted from

the DB1B. Flight delay information is obtained from the FAA Aviation System Per-

formance Metrics (ASPM) database (2014) and is considered constant throughout

the projection years (2008-2025). While this might be a poor assumption, especially

in the short-term, it is assumed that airport capacity is added to reduce delays or

maintain delays at existing levels.

Fuel prices have been extracted from the the US Bureau of Transportation

Statistics (BTS) (2019), which provides with information regarding monthly fuel

cost per gallon for domestic and international operations up to 2018. The monthly

fuel cost for domestic operations have been used and an annual average has been

calculated. Fossil fuel price projections have been obtained from the on-line database

provided by the Department of Energy & Climate Change (DECC). Actuals values

have been used up to 2015, while fossil fuel price projections up to 2025 have been

used to generate simulations.
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As mentioned in Section 3.1, the time-step considered in this study is annual.

Data from 2007 is used to estimate each sub-model, while validation of each of these

sub-models in isolation is done with data from 2008 to 2013. Projections using

the entire modelling framework (considering interactions between the different sub-

models) are generated for years from 2008 to 2025. Since models have been estimated

with 2007 data, any monetary data used for different years is converted to 2007 US

dollar values. This is done using the Consumer Price Index (CPI) (Bureau of Labour

Statistics, US Department of Labour, 2014a). Please refer to Appendix B for further

information regarding CPI and how the monetary conversion to 2007 US dollars has

been computed.

3.3 Methodology Overview

As shown in Figure 3.1, the model presented in this dissertation looks at city-pair

demand generation, itinerary demand assignment and air traffic estimation within

a single framework. The approach presented in this thesis is the result of a com-

prehensive analysis of a variety of frameworks and approaches which evolved to the

present work. Further information regarding those early modelling frameworks can

be found in Busquets et al. (2015; 2015).

As discussed in Section 2.2.5 the work presented in this thesis centres in: fur-

ther exploring the application of network theory to predict airport-pair connectivity

within the US domestic network, by considering the use of input variables beyond

network theory metrics as opposed to existing research (Kotegawa, 2012); and a

comparison study of two modelling approaches to estimate itinerary shares, and

that are used to assess the impact that network evolution would have for the air

transport system. Below the classification of the set of input variables considered

in this research, followed by a detailed description of each of the sub-models the

modelling framework consists of.

Classification of input variables used in this research

The decision to explore a larger set of explanatory variables than typically considered

is based on research showing that other inputs, apart from those typically considered

such as socio-economic factors, can be important to understand the growth of the
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air traffic system. Examples include the research done by Evans and Schäfer (2014),

which focused on simulating the operational responses of airlines to environmental

constraints and showed that airline response to any type of capacity constraints and

competitiveness is important when trying to understand the underlying principles

behind the evolution of the air transport system; or the work done by Guimera et

al. (2005) and Kotegawa (2012) which used network theory to characterise the air

transport system demonstrating the potential of this area to understand network

dynamics. This extended set of explanatory variables is expected to better capture

the underlying behaviour that drives the aviation industry, including the underlying

drivers of demand for air travel, and the underlying drivers of airline decision making

to supply flights to serve this demand.

The set of input variables used in the overall modelling framework can be

classified into the following three groups:

• Network theory quantitative measures. Their inclusion is based on a repre-

sentation of the air transportation system using topology and mathematical

graph theory, as by Kotegawa (2012) and Guimera et al. (2005) and discussed

in the literature (Section 2.2.3). Given this, the ATS is represented as a nat-

ural network that consists in well-defined nodes (airports) and links (flights

that connect these nodes or airports);

• Socio-economic variables, which are widely used in the literature across indus-

try stakeholders and existing research as discussed in the literature (Section

2.1);

• Aviation-related variables. These variables characterise the trip, and hence

have an influence on passenger decisions. Examples of widely used aviation-

related variables include journey fare and time or presence of other modes of

transports (i.e. competition) amongst others; as well as information regarding

whether an airport is a hub, and whether they are located in the US mainland.

The following sub-sections describe each of the sub-models presenting the method-

ology used for each of them and further information regarding the corresponding set

of input variables used. Each sub-section also includes the validation of the models

in isolation (i.e. without considering interaction amongst the other sub-models).
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3.4 Module 1: O&D passenger demand model

The first stage of the modelling framework looks at projecting passenger demand by

city-pairs. This is done by using an O&D demand model that projects true origin-

ultimate destination demand among a set of cities within the US Air Transportation

System (ATS). For this stage a gravity-type model, similar to that used by Dray et

al.(2019), is used. Passenger demand between cities o and d is calculated using a

simple one-equation linear regression model of the form of

lnNod = β0 + β1 ln (
√
PoPd) + β2 ln (

√
IoId)+

+ β3 ln (fod + vot ∗ tod + votdelay ∗ tdelay,od) +
∑
i

βiD
i
od

(3.1)

where Nod is the total passenger demand between cities o and d through any available

route, Po and Pd are the population related to cities o and d respectively, Io and

Id are the mean household income per capita related to cities o and d respectively,

fod is the average fare per passenger travelling from city o to city d, vot is the value

of time, tod is the average travelling time between cities o and d, votdelay is the

value of delay time, tdelay,od is the average delayed time that passengers encounter

when travelling between the two cities, Dod are a set of dummy variables capturing

other elements of the city-pair connection and the set of β are the parameters to be

estimated. Note that the coefficients associated to generalised cost and the income

variable are known as elasticities and measure the change in passenger demand as

a result of changes to these economic variables, providing a key insight into the

proportional impact of different economic actions and policy decisions.

Logarithmic transformation is used in both the dependent and independent

variables. This resulted in more accurate forecasts, while maintaining the simplicity

of the linear model (Benoit, 2011) (i.e. since OLS or WLS can be used to estimate

the log-transform model.

Weighted least squares (WLS), with the number of passengers used as weights,

is used as estimating process. Three sets of parameters are estimated, each one

for one distance group -i.e. short-, medium- and long-haul. The distance groups

have been derived by examining the distribution of distances between US cities

(Figure 3.22) and experimentally exploring different distance thresholds, choosing

2Distance distribution has been plotted considering all city-pairs with passenger demand during
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the thresholds that resulted into three models with the highest predictive power.

The decision of estimating three different models based on distance groups comes

after investigating one single model for the entire US ATS, which resulted in low

model accuracy. Consequently, one set of parameters is estimated for each of the

three distance groups as per Table 3.1 below. Model specification for each of the

three models is the same with the exception of the set of dummy variables included

for each distance group -i.e. set of variables D in Equation 3.1. Further information

regarding previous attempts to estimate a single O&D demand model is presented

in Appendix C. The literature review shows that considering several distance groups

when estimating O&D demand models is a common practice. Examples include the

work done by Dray et al. (Dray et al., 2014), which presents an O&D demand model

used within the Aviation Integrated Model (AIM) framework in which separate

parameters are estimated based on different world region-pairs and distance-groups.

Distance type
Distance Group
in Miles (km)

Number of city-pairs
in training set (undirected)

short-haul 186 - 400 miles (300-644 km) 279

medium-haul 400 - 2113 miles (644-3400 km) 2423

long-haul >2113 miles (>3400 km) 378

Table 3.1: Distance groups considered in O&D demand models.

2007 base-year, which adds to a total of 11670 undirected city-pairs.
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Figure 3.2: Distance distribution amongst city-pairs considered in this research.

Demand models for city-pairs that are less than 300km apart have been also

explored. These O&Ds are expected to have a strong competition from other type of

transport (e.g. public and/or private transport, such as rail services), and therefore

are most likely to have lower demand than modelled3. Because the models presented

here are developed at the aggregated level and applied to a large number of city-

pairs, estimated models had a large error for such close O&Ds which tend to behave

differently than the rest of the network, due to over-prediction. Consequently, these

O&Ds have been excluded from this study. Moreover, passenger demand linked

to O&Ds less than 300 km apart correspond to less than 2% of the total network

passenger demand.

Based on Equation 3.1, the set of input variables for the O&D demand model

can be split between socio-economic factors and aviation-related variables. In terms

of socio-economic factors, in line with industry practice, population and income

information have been included as input variables. Population is defined as the

3There is also some exceptions above 300km, such as the LAX-SFO corridor which is an O&D
about 540km apart and is considered one of the busiest US domestic airline routes (Source: https://
www.forbes.com/sites/ericrosen/2019/04/02/the-2019-list-of-busiest-airline-routes-in-the-world/)
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number of inhabitants that the Metropolitan Statistical Areas (MSA) of the US

around each airport has. The area defined in each case is sometimes the result of

the combination of few MSA and/or the addition of few micropolitan Statistical

Areas (mSA). In terms of economic information, the mean household income per

capita for the MSA considered has been used. The inclusion of these variables

amongst the input set is due to the proven relationship between economic/social

growth and aviation growth. Although other socio-economic indicators also exist,

this study limits their inclusion to the two variables mentioned above due to data

availability.

Given that each city-pair has associated two population and income values -i.e.

one associated to the origin city o and another one to the destination city d -, data

transformation for these two variables is performed by applying equation 3.2 below

where Pod refers to the population variable associated to the city-pair between cities

o and d, and Po and Pd refer to population of cities o and d respectively. Similarly,

for income the same data transformation is used.

Pod =
√
Po ∗ Pd (3.2)

In terms of aviation-related factors, generalised cost and a set of dummy vari-

ables have been considered. Generalised cost (GCod)) is referred as the cost a pas-

senger has to incur to travel from city o to city d. It considers airfare, the value of

travelling time and the value of delay time. Generalised cost is defined by Equation

3.34.

GCod = fod + (vot ∗ tod + votdelay ∗ tdelay,od) (3.3)

Passengers value travel time and delay time differently, with delayed travel time

being valuing three times more than the expected travel time as used by Evans and

Schäfer (2014). Appendix B presents further information regarding the calculation

of value of time. By including delay information, the generalised cost variable also

captures capacity constraints of specific airports. Delay is calculated through the

time-lag between the expected gate-to-gate time and the real time that a specific

airport-pair route service has related. Consequently, for those air routes involving

4Explanation of each of the terms for the generalised cost formulation is done when Equation 3.1
is presented. Data sources for the different variables used in this equation are presented in Section
3.2.
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airports or airspaces that are already operating nearly at or completely at capacity

a larger delay will be associated and therefore, a larger generalised cost is expected.

It is expected that, the higher generalised cost, the less likely people will be willing

to travel.

As discussed in Section 3.1.4 all variables (city-pair delay, airfare and travel

time) are computed as weighted average using number of passengers as weight. A

summary of the available sources used to obtain information regarding the input

variables is presented in Section 3.2.

As mentioned above, the three O&D demand models for the three distance

groups differ in the set of dummy variables used for each distance group, as per

Table 3.2. The inclusion of these dummy variables in the models is to be able to

capture other elements of the city-city connection that might not be a generalised

characteristic of the city-pairs within each of the models, such as whether a road

or high-speed rail link exists between cities or whether one of the cities is a major

tourist or business attraction.

Distance Group Dummy variable Symbol

short-haul

East Coast transport links REC

South transport links RSouth

LAX-SFO / LAX-LAS LAX

medium-haul

City attractiveness S1 and S2

Transport links R

Offshore territories I1 and I2

MIA-NYC holiday destination MIA

Presence of hub airports h1 and h2

long-haul

City attractiveness S1 and S2

Offshore territories I1

Presence of hub airports h1 and h2

Table 3.2: Dummy variables considered for each O&D demand model.

Dummy variables included in the short-haul O&D demand model are as follows:

• East Coast transport links - indicates whether high-speed rail links exist be-

tween cities located in the East Coast, such as NYC-Boston and NYC-Philadelphia.

It also includes San Antonio-Houston which has a large bus network connect-

ing both cities at low prices (e.g. less than $10), having a negative impact

on air passenger demand, resulting in lower air demand for this O&D due to
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ground transport competition.

• South transport links - indicates whether rail network exists amongst cities

located in Florida5.

• LAX-SFO and LAX-LAS - these city-pairs show a specially high demand al-

though they are less than 400 miles apart. The market between Los Angeles

and the Bay area is one of the largest O&D market in the US6.

Dummy variables included in the medium-haul O&D demand model are described

as follows:

• City attractiveness - indicates whether one or both cities in the pair are major

tourism or business destinations.

• Transport links - indicates whether high-speed rail links exist between cities

that fall within this distance group.

• Offshore territories - indicates whether one or both cities in the pair are located

in one of the US offshore territories or Alaska.

• MIA-NYC - similarly to LAX-SFO for short-haul, MIA-NYC corridor shows a

much larger demand compared to the majority of city-pairs within this group.

This is believed to be due the leisure attractiveness that Miami has as a city7.

• Presence of hub airports - two dummy variables indicating whether zero, one

or two hub airports are present on a O&D market.

Thirdly, dummy variables included in the long-haul O&D demand model are de-

scribed as follows:

• City attractiveness - indicates whether none or one of the cities in the pair is

a major tourism or business destination.

• Offshore territories - indicates whether one city in the pair is located in one of

the US offshore territories or Alaska.
5Amtrak runs the South Train Routes (https://www.amtrak.com/regions/south.html) with

Brightline working with Virgin Train USA having launched services across Florida last year
(https://www.virgin.com/richard-branson/introducing-virgin-trains-usa)

6Source: https://www.forbes.com/sites/ericrosen/2019/04/02/the-2019-list-of-busiest-airline-
routes-in-the-world/

7This route is also known as ’snowbird’ route from the many retirees who spend winter in Miami.
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• Presence of hub airports - the same as for the medium-haul demand model.

3.4.1 O&D demand models estimated results

To train the models, 2007 data has been used. During the estimation process city-

pair’s direction of travel is not considered - i.e. city-pair between cities o and d is

considered the same as city-pair between cities d and o. Consequently, input vari-

ables have also been defined by city-pair without considering direction - e.g. city-pair

airfare and flight time (included in the definition of generalised cost) are computed

as the weighted average of airfare and flight time of both directions using passenger

numbers as weight. The observed passenger demand for a specific city-pair, which

is used to compare the predicted passenger demand with, has also been computed

as a weighted average of passenger demand from both directions. The considera-

tion of directed city-pairs have been also explored, however, better results emerge

when model estimation process is done considering undirected city-pairs, which is

expected since the model does not include factors that account for directionality.

The total number of undirected pairs of cities used during training is 3,080.

Validation of the O&D demand model, estimated using 2007 data, is done

using actual data from the individual years between 2008 to 2013. Estimated model

results for the three O&D demand models are presented in Table 3.3. All estimated

coefficients are statistically significant at the 95% confidence level and are of the

expected sign. Adjusted R2 during training across the 3 models falls between 0.84

and 0.91. This is a significant improvement compared to the results obtained when a

single set of coefficients covering all distances were estimated, in which the adjusted

R2 obtained was 0.618. Estimated coefficients are also of the expected sign, with

all coefficients related to other transport modes competition negative (i.e. REC ,

RSouth, R). It is interesting to see how the set of dummy variables for the medium-

and long-haul models indicating whether zero, one or two airports are present on

an O&D-pair have opposite sign -i.e. h1 is 1 when there is at least a hub airport in

each of the cities forming the city-pair, 0 otherwise; h2 is 1 when none of the cities

have a hub airport, 0 otherwise. This might be caused by the fact that long-haul

markets tend to be one-stop itineraries between two small cities, which usually do

8A briefly summary of early modelling attempts can be found in Appendix C.
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not have a hub airport9.

short-haul medium-haul long-haul

(Intercept) 11.43 ∗∗∗ 13.29 ∗∗∗ 11.34 ∗∗∗

Population 0.94 ∗∗∗ 1.18 ∗∗∗ 1.47 ∗∗∗

Income 2.35 ∗∗∗ 1.04 ∗∗∗ 1.28 ∗∗∗

Generalised Cost −2.45 ∗∗∗ −2.56 ∗∗∗ −2.91 ∗∗∗

S1 0.67 ∗∗∗ 0.55 ∗∗∗

S2 −0.93 ∗∗∗ −0.74 ∗∗∗ −0.79 ∗∗∗

REC −0.63 ∗∗∗

RSouth −1.27 ∗∗∗

LAX 0.63 ∗∗∗

R −0.52 ∗∗∗

I1 0.84 ∗∗∗ 1.28 ∗∗∗

I2 −2.07 ∗∗∗

MIA 1.01 ∗∗∗

h1 0.22 ∗∗∗ −0.50 ∗∗∗

h2 −0.14 ∗∗∗ 0.25 ∗

Adj. R2 0.91 0.84 0.88

RMSE 151.2 142.8 130.3

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 3.3: Coefficient estimates obtained for the O&D demand models by distance group.

From results presented in Table 3.3, income and generalised cost elasticities can

be compared to those in the literature. In 2007, Intervistas Consulting Inc. (2007)

prepared a report for IATA, in which they studied air travel demand elasticities.

From this report the following is concluded:

• Generalised cost elasticity - Generalised cost elasticities obtained in this study

range from -2.45 to -2.91, which are comparable to those obtained by Dray et al.

(2014) for the Intra-North America O&D demand models (i.e. ranging between

-2.04 to -2.61 for the different distance groups). Also, results show passengers

in long-haul trips to be more fare-sensitive than on short-haul ones, which is

9Note that for this study the consideration of only 25 large hub airports has been used, and
therefore the inclusion of mid- and small- hub airports could potentially have an impact on the
results.
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expected as there is typically a higher proportion of business passengers on

short-haul trips, which are less fare-sensitive (2017, 2007). A more popular

measure used to evaluate the impact in passenger demand due to a change in

fares is fare-only elasticities which are typically slightly less negative as stated

by Dray et al. (2014). At the route/market level, airfare elasticities for the

US domestic network should be in the range of -1.2 to -1.5.

• Income elasticity - Income elasticities obtained in this study range from +1.04

to +2.35. The analysis performed by IATA (2007) found a wide range of income

elasticities in the literature, generally between +1.0 to +2.0, meaning that air

travel is generally found to be income elastic. Their analysis also produced

mixed results and stated that results of the models using US data generated

income elasticities between +1.6 and +1.8. These reference values are above

to what it is obtained in this research for the medium and long haul - i.e.

+1.04 and +1.28 respectively -. However, IATA (2007) report also states that

results are not robust and that any small change in model specification could

result in sizeable changes in these values. Nevertheless, income elasticities for

the three distance groups obtained in this research are positive as expected

from the literature review.

All models are also tested for multicollinearity. Multicollinearity, also known as

collinearity or ill-conditioned data, occurs when two or more variables are highly, but

not perfectly related, correlated with each other. This effect will make impossible

to define or interpret the regression coefficients as every time a given change to

one of the correlated variable occurs, the corresponding observation on other highly

correlated variables is likely to change in a similar manner. Consequently, it will be

impossible to measure any change on y (the independent variable) solely due to the

change of one of the correlated variables, while keeping the rest of variables equal.

The existence of multicollinearity can be discovered through several indicators,

such a relative high R2 value along with a few low t-statistics, or a high F -statistic

while none of the coefficients are significant at the 95% confidence level (i.e. low

t-statistics of the estimated parameters).

A formal test for multicollinearity is the calculation of a condition number

associated with the input variables, such as the Variance Inflation Factor (VIF). A
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VIF value of more than 20 indicates the presence of multicollinearity. VIF for a

given explanatory variable i (VIFi) is computed through Equation 3.4, where R2

is the multiple correlation coefficient of Xi regressed on the remaining explanatory

variables.

V IFi =
1

1 −R2
(3.4)

VIF values obtained across the three O&D models are lower than 5, hence

confirming absence of multicollinearity.

3.4.2 O&D demand models validation

Validation of the O&D demand models estimated with 2007 data is performed by

using annual data from years 2008 to 2013. By applying Equation 3.1 for each of

the corresponding distance groups, estimated number of passengers for the subset of

city-pairs in each distance group are generated. For each validation year, predicted

number of passengers are compared to observed ones in Figures 3.3, 3.4 and 3.5,

showing results for short, medium and long haul O&D demand models respectively.

Also, the total estimated passenger demand is compared to the total number of

passenger demand for each of the distance group O&D demand models as shown in

Figures 3.6, 3.7 and 3.8.

Overall, the models seem to have a good fit and although a similar trend to

those observed can be spotted some differences arise across the three distance group

models. For example, while the medium- and long- haul models seem to over-predict

passenger volumes in 2009 with an increase with respect to 2008; the short-haul

model captures the observed smooth declining trend for that year. This can be

explained by the fact that the economic recession led to a decrease in airfares, and

therefore generalised cost, prompting the model to generate over-predictions due to

the negative generalised cost elasticity. Secondly, estimated model results from the

three distance groups (Table 3.3) show that short-haul markets are slightly less in-

elastic to airfare changes, and hence the decline on airfares would have less influence

in short-haul passengers, which is expected as there is typically a higher propor-

tion of business passengers in this distance group, than those in long-haul trips. At

last, a further check is performed to verify whether airfares have changed differently

50



across the three distance groups, which is presented in Figure 3.9 confirming the

more steep decline in airfares for the mid- and long-haul distance groups. Figure 3.9

verifies that the combination of a larger decrease in airfares for the long and mid-

haul markets along with a more negative generalised cost elasticity these distance

group has, prompted the models to perform differently for this particular year (i.e.

2009).

Figure 3.3: Observed against predicted passenger demand for short-haul city-pairs.
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Figure 3.4: Observed against predicted passenger demand for medium-haul city-pairs.

Figure 3.5: Observed against predicted passenger demand for long-haul city-pairs.
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Figure 3.6: Observed and predicted total number of passengers throughout validation years
(i.e. 2008-2013) for short-haul city-pairs

Figure 3.7: Observed and predicted total number of passengers throughout validation years
(i.e. 2008-2013) for medium-haul city-pairs
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Figure 3.8: Observed and predicted total number of passengers throughout validation years
(i.e. 2008-2013) for long-haul city-pairs

Figure 3.9: Weighted average fare by distance group at the market level.
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System-wide passenger demand for the validation years is computed by aggre-

gating the predictions obtained for each of the three models. Figure 3.10 presents

the comparison between observed and predicted number of passengers throughout

validation years (i.e. 2008-2013) for all city-pairs considered in this study. Figure

3.11 presents the observed and predicted system-wide total number of passengers

throughout the validations years.

Table 3.4 shows the percentage error between predicted and observed total pas-

senger demand for the different distance groups and at the aggregated level through-

out the validation years (i.e. 2008-2013). Percentage error range from 2% to 10.6%

with the exception of 2009 data for medium-, long-haul O&D demand models and

at the aggregate level. As explained earlier, this can be explained by the economic

crisis taking place during 2009 and that lowered market airfares. Generalised cost

has a negative impact on passenger demand (i.e. as the model estimated results

show in Table 3.3 and specified in the literature (Dray et al., 2014)). Although the

economic recession also led to lower income levels, and therefore one would expect

a decrease in passenger demand, the reduction of fares, and therefore generalised

cost, has initially a greater impact on passenger demand. As seen in Figure 3.12

shows, in 2009 weighted average airfares lowered in comparison to the rest of vali-

dation years, prompting the models to estimate higher passenger volumes for 2009.

Another aspect to consider is that the models slightly over-predict especially low

demand O&Ds and particularly for the the long-haul markets (Figure 3.5), which is

expected because given the way the model is formulated demand cannot go below

0, i.e. a city-pair with yearly demand of 200 can only under-predict by 200, but can

over-predict by an unlimited amount.

Year short-haul medium-haul long-haul system-wide

2008 7.8% 6.3% 7.7% 6.8%

2009 8.8% 14.5% 17.7% 14%

2010 3.5% 9.0% 10.6% 8.4%

2011 2.0% 6.0% 7.0% 5.6%

2012 6.3% 7.2% 9.2% 7.3%

2013 4.0% 4.0% 10.4% 4.8%

Table 3.4: Percentage error between predicted and observed total passenger demand for
the different distance groups and at the aggregate level throughout the validation years (i.e.
2008-2013).
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Figure 3.10: Observed and predicted number of passengers throughout validation years (i.e.
2008-2013) for all city-pairs considered in this study.

Figure 3.11: Observed and predicted system-wide total number of passengers throughout
validation years (i.e. 2008-2013).

56



For each of the validation years adjusted R2 is computed when considering the

aggregated results (i.e. predicted system-wide passenger demand) (Table 3.5). As a

comparison, adjusted R2 obtained from a previous attempt in which a single O&D

passenger demand model was developed are also included in Table 3.5 to demonstrate

the significant improvement achieved by splitting the problem by distance groups.

Adjusted R2 obtained during training and validation are also higher that some of

those found in the literature (Dray et al., 2014), although model specification are

not like for like.

Model 2008 2009 2010 2011 2012 2013

3- distance group model 0.833 0.833 0.827 0.814 0.830 0.804

Single model 0.525 0.531 0.537 0.537 0.538 0.536

Table 3.5: Adjusted R2 obtained across the validation years (2008-2013) when considering
the aggregated results from the 3 O&D models developed by distance group. For comparison,
adjusted R2 from a previous attempt is also included.

Figure 3.12: Average and weighted average fares for the US domestic network from 2007 to
2013.
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3.5 Module 2: Airport connectivity model and itinerary

choice model

The second stage of the modelling framework looks at modelling the distribution

of passenger demand between city-pairs across the available itineraries serving each

city-pair. This stage is split into two sections. First, airport connectivity is analysed

so that all available itineraries between any given city-pair can be compiled. Second,

once all available itineraries are compiled, an air itinerary choice model is applied

so that passenger demand between city-pairs can be distributed across the available

itineraries (i.e. routes) serving each city-pair. Both these models are discussed

below.

3.6 Module 2: Airport connectivity model

The aim of the airport connectivity model is to estimate whether an airport-pair

would be connected by a scheduled flight in the future, with the results of this

connectivity model used to compile all available itineraries that can serve any specific

O&D. Studying airport connectivity allows to study the evolution of the network,

since it assumes that the US ATS is not static and therefore airport-links can be

added or removed to/from the network.

The work presented in this dissertation regarding airport connectivity is in-

spired by the work done by Kotegawa (2012) as discussed in the literature review

(Chapter 2.2.3). Kotegawa (2012) developed a network restructuring model using a

combination of Support Vector Machine and logistic regression as modelling tech-

niques and only considered network theory variables as input variables. Although

Kotegawa’s work (2012) was a leading research in the field, accuracy of the models

ranged between 20% and 40%. Taking his work as inspiration, this dissertation ex-

plores the application of a classification model to study the evolution of the US air

transport network using input variables that go beyond network theory metrics.

In order to predict whether an airport-pair would change their connectivity

status -i.e. whether they will be removed/added from/to the network- a classification

model is used, in particular a logistic regression model (explained in more detail

below). This will predict the likelihood of previously connected airport-pairs being
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disconnected in the future, as well as the likelihood of unconnected airport-pairs

being connected in the future. These input variables can be split into two groups:

network theory metrics; and aviation-related metrics.

3.6.1 Network Theory metrics to study airport connectivity within

the US

Network theory is the study of complex interacting systems which are usually repre-

sented by graphs that model the reality of the network. A graph G, representing a

network, consists of a set of nodes N, a set of links L and a mapping function f, which

maps links into pairs of nodes (Lewis, 2009). The complex theory bases its study in

the relationships among the social structure represented by G when a time-varying

element is considered. Therefore, it studies the dynamics of the network that affect

its behaviour.

The air transportation system fits perfectly into this description. When using

network theory to represent the air transport system, nodes are represented by

airports and links are represented by aircraft operations between airports10. The

study of the nodal properties defines what is known as the topology of the network,

which helps to understand the network dynamics affecting its behaviour. In the

air transportation system, these nodal properties characterise airports (i.e. nodes)

in terms of importance within the system, so that one would expect to have an

impact towards airport-pair connectivity. For estimation purposes, nodal properties

are computed using data from the previous year to the one being estimated.

In network theory, the full representation of the air transport system is done

through the adjacent matrix A and its weighted corresponding version (Aw). Ele-

ments for the adjacent matrix are binary - i.e. ’1’ if an airport-pair is connected by

a flight, ’0’ otherwise-; whereas its weighted version can take any natural number

- for example, number of aircraft operations between two airports. Practically, the

adjacent matrix is an indication of which airport-pairs are connected by air; while

the weighted adjacent matrix is an indication of the air traffic levels between those

connected airport-pairs.

For clarification purposes, given a set of 3 airports (e.g. JFK, LAX and IAD),

10For future reference airport and node are used indistinctly in the rest of the thesis. Similarly,
the use of ’links’ are also used to indicate airport-pairs connectivity.
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adjacent matrix (A) below indicates that flights operate between JFK and LAX

(and vice-versa11) and LAX-IAD; whereas JFK-IAD is not connected (i.e. there

are no airlines operating this route). If only considering the adjacent matrix, only

information regarding the number of connections an airport can be known. The

weighted adjacent matrix gives an idea of the frequency in which those operations

occur. The weighted adjacent matrix (Aw) below shows that number of operations

between JFK and LAX doubles those between LAX and IAD, prompting the belief

that JFK-LAX is a route with greater passenger demand than LAX-IAD.

A =


JFK LAX IAD

JFK 0 1 0

LAX 1 0 1

IAD 0 1 0



Aw =


JFK LAX IAD

JFK 0 100 0

LAX 100 0 50

IAD 0 50 0


From all possible nodal properties that exist, node degree, node weight, eigen-

vector centrality and clustering coefficient have been chosen for in this research. This

choice is made taking into account Kotegawa’s research (2012), in which those four

topological parameters gave the best results when used as input data for forecasting

connectivity likelihood among airport-pairs.

The degree of a node (k) gives a sense of importance and it is computed by

counting the total number of connections a node has with other nodes. Given the

assumption of undirected network, the node degree is calculated as described in

Equation 3.5.

ki =
∑
j

Aij (3.5)

where ki refers to the node degree of airport i, A is the un-weighted adjacent matrix

and j refers to the rest of airports apart from i that exist in the air transport system.

Considering the example above with the 3 airport set, JFK degree is 1 (kJFK = 1)

11Note, the US air transport system is assumed to be an undirected network; therefore if a
connection exist between airports i and j, a connection will also exist between j and i.

60



because it is only connected to LAX; whereas LAX degree is 2 (kLAX = 2) because

is connected to JFK and IAD.

Although node degree refers to node importance it does not provide with com-

plete information about the role of a node since it makes no differentiation between

two nodes with the same number of connections. In order to address this deficit,

node weight is computed. Node weight s gives an idea of the role of that node

within the network quantifying also its importance. For the case of the air transport

system, the node weight accounts for the total number of flights operated from a

specific node among all its connections with the rest of the nodes. It is computed by

adding all the columns entries through a given row in the weighted adjacent matrix

as described in Equation 3.6 .

si =
∑
j

Awij (3.6)

where si refers to the node weight of airport i, Aw refers to the weighted adjacent

matrix so that Awij corresponds to the number of operations performed between air-

port i and j ; and j refers to the rest of airports that exist in the air transport system.

In this case, JFK weight is 100 (sJFK = 100), as the sum of flights amongst all the

routes departing from JFK; whereas LAX weight is 150 (sLAX = 150), 100 from

LAX-JFK route and 50 from LAX-IAD. This example clearly shows the comple-

mentary information the adjacent matrix adds when studying the network. Looking

only at the adjacent matrix, one could conclude that JFK and IAD are airports

with the same level of importance since both have only 1 connection. However,

weighted adjacent matrix shows how JFK’s passenger demand doubles that of IAD,

and therefore JFK has a more influential role in the network than IAD.

Measures such as node degree and node weight give a sense of how well con-

nected an airport is. This is an effect of how many airlines operate in it. An airport

in which a higher number of airlines are operating will most likely serve a higher

number of routes. Consequently, this will reflect on higher values for these airport’s

topological properties, its degree and weight.

So far the nodal properties presented focus on the properties of the network

determined individually by the node itself. However, nodal properties can be also

computed at a collective level by taking into account the importance of the neigh-

bouring nodes, hence, their influence in the network. The two nodal properties
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computed at a collective level are eigenvalue centrality and clustering coefficient.

Considering the air transport system, eigenvector centrality (EVC ) assumes

that the importance or popularity of an airport is proportional to the sum of cen-

tralities of the neighbouring airports to which is connected to -i.e. EVC assumes

that an airport’s importance is not only based on its own connections but also on

the number of connections of the airports it connects to. Consequently, an airport,

whose connections have a high node degree, will have a higher eigenvalue centrality

than another airport whose connections have low node degree. This concept sup-

poses that centrality of node i is represented by a linear combination of its connecting

nodes’ degree and their respective weights. Equation 3.7 shows the mathematical

expression for eigenvector centrality where λ is a constant. The compact form of

expression 3.7 is Ax = xλ, which is equivalent to the familiar problem of finding

eigenvectors, where x refers to the eigenvector, λ to the eigenvalue and A to the

adjacent matrix.

xi = λ−1
∑
j

Aijxj (3.7)

where xi refers to the eigenvector centrality12 of airport i and j refers to the set of

other airports in the network.

Clustering coefficient (CC ) is the last topological metric considered in this

dissertation. CC is a measure that quantifies how many times a given node forms

triangular sub-graphs with their adjacent nodes. In other words, it is a measure of

local cliquishness of the network, giving an idea of the node robustness. The higher

the CC of a given node is, the more robust this node is since a higher number of

alternative paths are more likely to exist if any of the existing links fail. CC is

defined as expression 3.8 as the number of triangles centred on node i divided by

the number of triples centred on that node.

CCi =
1

ki ∗ (ki − 1)

∑
j,k

AijAikAjk (3.8)

where CCi is the cluster coefficient of node i, ki refers to the degree of node i, A

refers to the un-weighted adjacent matrix and j and k are the rest of the nodes in

12Note that to follow a naming convention and avoid confusion with reference to input variables,
EVC will be used to refer to eigenvector centrality in this dissertation.
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the network that are checked to form triangles centred on node i.

When computing nodal properties associated to a given airport-pair to be used

as explanatory variables, two specifications for these variables are used. The two

specifications are as follows: nodal properties have been input into the model as two

separate variables, one for each of the edge nodes forming a given airport-pair; or a

combined variable has been computed. The data transformation used to compute

the combined nodal property associated to airport-pair between airports i and j is

defined by Equation 3.9 using degree (k) as an example13.

kij =
√
ki ∗ kj (3.9)

3.6.2 Example application of network theory to characterise the

US Air Transport System

Before investigating the use of network theory metrics to study the evolution of the

US air transport network, the analysis of the topological properties of the US airport

transportation system is presented below. This analysis is done considering the four

nodal properties used in this research (i.e. node degree, node weight, clustering coef-

ficient and eigenvector centrality). In this study, the US ATS network is considered

an undirected network - i.e. links have no direction associated to them.

Figure 3.13 shows the degree distribution of the US ATS14. Figure 3.13 clearly

shows the US Air Transportation network following a power-law degree distribution,

by which most of the nodes have only few links while only few of the nodes have a

high degree. This is a clear representation of a hub-and-spoke network where the

majority of airports are small connecting to a low number of other airports; and very

few large airports acting as major hubs connect many smaller airports among them.

From this evidence one could suggest that the US ATS is a scale-free network15.

When looking at eigenvector centrality (EVC ) and node weight (si), Figures

3.14 and 3.15 show the relationship between node degree and node weight and eigen-

13Equation 3.9 shows the combined degree term between airports i and j for explanation purposes,
however the same expression is applied to the rest of network theory variables.

14Node degree (ki) is defined as the count of links that a given node has and a single link implies
one return flight.

15A scale-free network is characterised by links following a power-law distribution, by which
some nodes have a very high number of links while the rest of nodes have a low number of links
(http://eaton.math.rpi.edu/csums/papers/FoodWebs/barabasisciam.pdf).
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Figure 3.13: Degree distribution.

vector centrality respectively. As expected, the greater the degree of an airport is,

the greater its weight is. The same positive relationship can be seen between eigen-

vector centrality and degree of an airport. Weight of an airport is computed through

the weighted adjacent matrix (Aw), which refers to the number of flights going out-

wards from a given airport. As Figure 3.14 shows the more connections a given

airport has the larger number of flights can be expected to be operating from that

airport. As per EVC, an airport whose connections are in turn highly connected to

many other airports will incur a high eigenvector centrality. Therefore, the impor-

tance of an airport is not only based on its degree but on the degree of the airports

that is connected to. Similarly to weight, one could expect that the higher the de-

gree of a node, the higher the EVC.

In contrast to the positive relationship between node degree with node weight

and EVC, CC seems to have the opposite behaviour as shown in Figure 3.16. To

understand CC better, a walk-through example is presented below using Rick Hus-

band Amarillo International airport (i.e. IATA code is AMA) as node i. CC refers

to the number of triangles formed by a given node and its respective connecting
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Figure 3.14: Node weight (s) against node degree (k) .

Figure 3.15: Eigenvector centrality (EVC ) against node degree (k).
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Figure 3.16: Clustering coefficient against node degree for all the nodes considered in this
study.

nodes divided by the total number of possible triangles that could be formed. CC

captures the degree to which the neighbours of a given node link to each other. The

more densely interconnected the neighbourhood of a node is, the higher its local

clustering coefficient is.

Taking AMA airport as node example, data from 2007 shows five links exist

between AMA and other airports (Table 3.6), therefore degree of AMA airport is 5

(i.e. kAMA = 5). The numbers of possible triangles that AMA could form with its

neighbouring nodes -i.e. if all connected nodes that are linked to AMA airport would

at the same time be connected to each other - is computed by applying Equation

3.10. This results in 20 possible triangles.

Num trianglesi = ki ∗ (ki − 1) (3.10)

This is represented by the adjacent matrix AAMAj , where j is the set of airports

connected to AMA (3.17).
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ORIG DEST Connected?

AMA DFW 1

AMA DAL 1

AMA LAS 1

AMA IAH 1

AMA ABQ 1

Table 3.6: Airport-pairs with AMA as origin airport.

AAMA =



DFW DAL LAS IAH ABQ

DFW 0 0 1 1 1
DAL 0 0 0 1 1
LAS 1 0 0 1 1
IAH 1 1 1 0 1
ABQ 1 1 1 1 0


Figure 3.17: Adjacent matrix of AMA airport with its neighbouring nodes.

Figure 3.18: AMA airport’s network. Size of a node is representative of the node degree.

Considering only the nodes that AMA is connected to, the actual number

of triangles that currently exists need to be calculated. In order to do that, the

connectivity amongst the nodes connected to AMA need to be investigated. The

assumption taken of the US ATS being an undirected network implies that all nodes
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AMA is connected to will at the same time be connected to AMA airport. In order

to illustrate this, AMA connectivity is represented by its adjacent matrix (AAMAj)

(Figure 3.17, where j is the set of airports connected to AMA). Given Figure 3.17,

and the assumption that all nodes are connected to AMA airport, the total number

of existing triangles is 16. Therefore CCAMA = 16/20 = 0.8. Figure 3.18 shows a

graphic representation of the AMA airport network.

From the example above one could argue that CC might be capturing low-

costs’ point-to-point strategy, rather than hub-and-spoke flag carrier’s strategy. In

line with what is found when exposing the AMA airport example, Figure 3.16 (i.e.

which shows the relationship between clustering coefficient and node degree for all

airports considered in this study) clearly demonstrates the fact that nodes with

higher degrees do not necessarily have greater clustering coefficients.

3.6.3 Aviation-related variables to study airport connectivity within

the US

The set of aviation-related variables included in the airport connectivity models are

distance between airports and a set of two dummy variables indicating whether one,

two or none of a pair of airports are hub airports16.

Investigation with a larger set of variables was also performed. However the

inclusion of these 3 variables proved to be the best performing combination. Other

variables previously considered to influence airport connectivity include city-pair

characteristics such as population and O&D passenger demand, a dummy variable

capturing whether for a given O&D any airport-pair connection existed the previous

year or fuel price. City-pair characteristics were expected to capture the need for

new links (or vice-versa); information regarding previous years connectivity was

introduced to the modelling approach to capture competition since adding a new

connection to a city-pair with already existing connecting routes might imply added

difficulty to gain market share; and fuel price was included to capture external

factors that would influence airlines’ operational costs, and therefore airline decisions

regarding route planning. A brief summary on previous attempts can be found in

Appendix D.

16This set of dummy variables was also included in two of the O&D demand model and are noted
as h1 and h2
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3.6.4 Airport connectivity model specification

Initially, the actual airport-pair connectivity of the US ATS between years 2007 -

2013 is analysed to understand the evolution that the US network has experienced

throughout this year range. Table 3.7 gives a summary of the connectivity between

US airport-pairs from 2007 and 2013 as well as the average values across that same

period. In total a sample of 20,098 airport-pairs per year have been included in the

analysis presented in Table 3.7. The information presented in Table 3.7 is as follows:

• Connected airport-pairs is the number of airport-pairs considered to be con-

nected;

• Connected -> Connected refers to the number of airport-pairs that stayed

connected given that they were connected the previous year;

• Connected -> Unconnected refers to the number of airport-pairs removed from

the network with respect to the previous year; Unconnected airport-pairs is

the number of airport-pairs not connected;

• Unconnected -> Unconnected refers to the number of airport-pairs that stayed

unconnected given that they were not connected the previous year;

• Unconnected -> Connected refers to the number of new links that every year

are added to the network;

Year
connected

airport-pairs

Connected
->

Connected

Connected
->

Unconnected
Unconnected
airport-pairs

Unconnected
->

Unconnected

Unconnected
->

Connected

2007 2123 1936 56 18858 17070 187

2008 2130 2060 63 18851 17056 70

2009 1938 1891 239 19043 17072 47

2010 1954 1878 60 19027 17235 76

2011 1965 1895 59 19016 17225 70

2012 1994 1915 50 18987 17205 79

2013 1987 1911 83 18994 17179 76

Mean 2010 1926 87 18971 17148 86

Table 3.7: Airport-pair connectivity between 2007 and 2013. An airport-pair is considered
connected if there are at least 52 flights operating between them17.

17Walk-through example: in 2006 there were 1,992 connected airport-pairs (1936+56); from 2006
to 2007 the net airport-pairs added into the network were 131 (187-56) and therefore, the total
number of connected airport-pairs in 2007 were 2,123 (1,992 + 132).
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It is interesting to see that the number of new links is roughly the same as the

number of links being removed from the air transport system. The exception are two:

2007 when the number of links added is more than three times the number of links

being removed; and 2009 when there was the opposite effect (i.e. one could think

2009’s effect was due to the economic crisis). These results differ from Kotegawa’s

study (2012) because he had a different size of dataset and the number of years

used to compute those values were 1990-2009 as opposed to 2007-2013 used in this

research18 .

Since new links between airport-pairs are similar to the number of removed

links, one could assume that the same airport-pairs that get connected at one point

might be the same ones that get disconnected after certain period of time. The

presence of airport-pairs connected for a short period of time -i.e. 1 or 2 years-

could be the effect of airports launching special prices for airlines to start operating at

these airports. From all possible 20,098 airport-pairs in the network, a total of 1,985

airport-pairs are connected across the entire period (i.e. from 2007 to 2013); whereas

18,448 airport-pairs are unconnected across the same period. Consequently, only 848

links change their connectivity status throughout the period range considered.

Table 3.8 presents the number of times a link gets removed against the number

of times that link gets added to the network. The values presented in Table 3.8

are the aggregated number of airport-pairs that have had at least one change in

connectivity throughout the years between 2007 and 2013.

Unconnected -> Connected

# added links

0 1 2

Connected ->
Unconnected

#
re

m
ov

ed
li

n
k
s 0 NA 246 0

1 257 272 35

2 0 24 14

Table 3.8: Connectivity grid: removed links against added links. Number of airport-pairs
removed against number of airport-pairs added to the network. Numbers are computed across
the range years 2007 - 2013.

For example, between 2007 to 2013, 257 airport-pairs have gone from being

18Kotegawa (2012) developed two modelling frameworks, one integrated with the FAA Airspace
System Performance Analysis Capability (NASPAC) and another one to be integrated to the
NASA/Purdue Fleet-level Environmental Evolution Tool (FLEET). The former considered 140
and 94 links to be added and removed respectively; whereas the latter considered 89 and 50 links
to be added/removed respectively.

70



connected to disconnected. Similarly, 246 have gone from being unconnected to

connected at some point across the same period. Therefore, 503 (i.e. 246 + 257)

airport-pairs have changed their connectivity status only once between 2007 and

2013.

At the other extreme we have airport-pairs that kept connecting and discon-

necting throughout the period range. For example, 14 airport-pairs have been re-

moved and added from/to the network twice. This behaviour across a 6 year period

means that these links have been only connected on alternate years. Similarly, 24

airport-pairs have been removed twice and added once; 35 airport-pairs have been

added twice and removed once; and 272 were were removed and added once. One

would assume some of these airport-pairs might follow a behaviour in-line with the

special offers’ assumption aimed to increase the use of specific airports.

Looking into more in detail for the 272 subset of links removed and added once,

Table 3.9 shows the distribution of the number of years these 272 airport-pairs were

connected. From Table 3.9, the majority of airport-pairs are connected for 1 or 2

years across the 7 year period, which would be aligned with the assumption of some

of those links appearing into the network due to promotions to operate at those

airports.

Connected years

1 2 3 4 5 6 7

Number of airport-pairs 80 105 13 23 15 18 18

Table 3.9: Distribution of connected years for those links that change their connectivity
status twice between 2007 and 2013 -i.e. distribution of the 505 airport-pairs from Table 3.8-.

From the connectivity analysis of the US air transportation network presented

above the following considerations during the estimation process are drawn:

• Airport-pairs that have a high rate of connectivity change19 -for example, FLL

- CAL (Fort Laureldale, FL - Akron, OH) was connected intermittently across

the 7 year period between 2007 and 2013- are excluded from the estimation

process. Therefore, a total of 345 airport-pairs are excluded, which are those

shown in Table 3.8 that have at least two connectivity changes. Considering

the remaining 503 connectivity changes bring the average of links removed and

19One connectivity change is defined when the connectivity of an airport-pair is changed from
one year to the following. For example, an airport-pair going from being unconnected to being
connected the following year.
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added to the network down to 35 and 32 respectively as presented in Table

3.10.

• The small percentage of links removed from Table 3.8 (345/20,098) and the

residual network connectivity (Table 3.10) serve as evidence to assume the

US air transport network as a mature system with a relatively steady-state in

terms of connectivity changes.

Year
connected

airport-pairs

Connected
->

Connected

Connected
->

Unconnected
Unconnected
airport-pairs

Unconnected
->

Unconnected

Unconnected
->

Connected

2007 1916 1863 44 17006 16962 53

2008 1913 1892 24 17009 16985 21

2009 1864 1843 70 17058 16988 21

2010 1855 1833 31 17067 17036 22

2011 1860 1832 23 17062 17039 28

2012 1885 1843 17 17037 17020 42

2013 1892 1849 36 17030 16994 43

Mean 1886 1850 35 17036 17003 32

Table 3.10: Airport-pair connectivity summary after excluding the 345 airport-pairs due to
their unstable connectivity. Mean values across years 2007-2013.

Having eliminated one source of scatter, several modelling approaches are in-

vestigated, with the one presented in this section demonstrating the best accuracy

and performance. The modelling approach presented below splits the problem into

two and as such two different models are needed: one aiming to estimate links that

are added into the network the following year -i.e. named link addition model; and

another one aiming to estimate links that will be removed from the network the

following year -i.e. named link removal model.

The decision to have two different models (i.e. one for link addition and one for

link removal) follows an extensive attempt to use a single model for predicting con-

nectivity changes between airport-pairs. Other variants also included the exploration

of a larger set of aviation-related variables as inputs, for example the O&D passen-

ger demand, but this did not improve the modelling accuracy - rather the opposite.

Initial attempts using a single model aimed to predict whether airport-pairs would

be connected or not, rather than whether there would be a connectivity change, and

hence the models had a high accuracy on predicting disconnected airport-pairs (i.e.

the majority class) but failed to identify those connected well. Model formulation

had to be changed so that the aim of the model focused on predicting connectivity

72



changes rather than connectivity status. Since different factors might influence the

addition and removal of a link to/from the network having a single model with the

aim of predicting any type of connectivity change (i.e. addition and removal) would

not be able to capture both types of connectivity changes in one, and therefore the

problem was divided into two.

Removing O&D passenger demand from the model, however, introduces a

caveat on the predictive capabilities of the connectivity model, since links formed by

airports without any connection elsewhere would be impossible to predict. However,

given the assumption that the US ATS is a mature system with a relatively steady-

state demand as it was pointed out earlier -i.e. and shown by the low variability

of the network connectivity presented in Tables 3.7 and 3.10, the number of links

formed by completely unconnected airports is expected to be low. This assumption

goes in line with the assumption that airlines’ objective is to optimise their existing

networks, by which links between airports that have no existing connections would

be extremely rare.

The problem that represents the link addition and removal cases is considered

a classification problem. In the first case (i.e. link addition), the problem is whether

airport-pairs that are currently not connected would be connected in the future. In

the second case (i.e. link removal), the problem is whether airport-pairs that are

currently connected would be disconnected in the future. Both model responses can

be seen as a binary response: for the link addition model ’1’ if the link is added

into the network, ’0’ otherwise (remains unconnected); and for the link removal

model ’1’ if the link is removed from the network and ’0’ otherwise (the link remains

connected).

For both models (link addition and link removal), a logistic regression model

has been used. Logistic regression takes the form of Equation 3.11 in general form,

where hθ(x) represents a probability, Z is the linear combination of input variables,

θT (Eq. 3.12) represents the set of coefficients to be estimated and x is the set of

input variables. Logistic regression is a statistical technique that trains a probability

curve based on historical events, therefore the resulting value of applying Equation

3.11 in the area of airport connectivity is the probability of an airport-pair changing

its connectivity status (i.e. a value between 0 and 1, with values closer to 1 indicating

high probability of an airport-pair changing its connectivity status, either going from
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connected to unconnected or from unconnected to connected).

hθ(x) =
1

1 + exp−Z
(3.11)

Z = θTx = θ0 + θ1(x1) + θ2(x2) + ..+ θn(xn) (3.12)

Different sets of input variables have been investigated for both link addition

and link removal models. However, in this section only those with the highest

performance accuracy are discussed. For both models, link and addition model, a

logistic regression equation taking the general expression of Equation 3.11 has been

used, with the only difference being the set of input variables. For the link removal

model, only CC has been retained as input variable (as presented in Equation 3.13),

with this model specification producing the most accurate predictions amongst all

models investigated. In this case, the cluster coefficient term associated to a specific

airport-pair is added into the model as a combined variable by applying Equation

3.9.

Premoval,ij =
1

1 + exp−(θ
R
0 +θR1 (CCij,t−1))

(3.13)

where Premoval,ij refers to the probability of link between airports i and j being

removed from the network, CCij,t−1 refers to the cluster coefficient term associated

with the pair of airports i and j and computed applying Equation 3.9 related to the

previous year and θR is the set of coefficients to be estimated20.

Parameters estimated for the link removal model are presented in Table 3.11,

with all coefficients statistically significant at 95% confidence level21. From these

results, each one-unit change in clustering coefficient variable will increase the log

odds of an airport-pair being remove from the network (i.e. likelihood of an airport-

pair changing its connectivity from connected to unconnected) by 1.91. The log

odds is the logarithm of the odds ratio, which is the probability of the desired

outcome (i.e. in this case an airport-pair being removed from the network) being

20Note that since there are two logistic models the superscript R is used to indicate the set of
coefficients for the link removal model; while the superscript A is used for the link addition model.

21Link removal model cannot be tested for multicollinearity since the model contains only a single
variable and multicollinearity is an issue affecting two or more variables that are highly but not
perfectly correlated.
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true divided by the probability of desired outcome not being true. Since logistic

regression models generate a probability, log odds are used to interpret the constant

effect of the predictors variables (i.e. in this case only CC ) on the likelihood of an

outcome occurring -i.e. which for the case of the link removal model is an airport-pair

currently connected being removed from the network.

Coefficient

(Intercept) (θR0 ) −5.37 ∗∗∗

CC (θR1 ) 1.91 ∗∗∗

Num. obs. 1907

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01
‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 3.11: Estimated model results for the link removal model.

The positive coefficient associated with the clustering coefficient variable ob-

tained when estimating the link removal model is in line with the relationship seen

and discussed when analysing the US topological properties (Section 3.6.2) by which

nodes with higher degree will tend to have lower clustering coefficients. Conse-

quently, links between airports with low node degree (i.e. airports with a low num-

ber of connections) will typically have a higher probability of being removed from

the network than those airport-pairs between airports with high node degrees.

Airports with high clustering coefficients are typically small airports and con-

sidering the hub-and-spoke routing structure that characterises the US air trans-

portation system, links associated with small airports would be operationally easier

to remove than those links associated with larger hubs. Also, the profitability of

these small-airport links might not be enough to maintain operations in such air-

ports, especially during economic downturn. For example, Wittman and Swelbar

(2013b) showed that small- and mid-sized airports have been largely affected by

cuts in commercial aviation in the US, through looking at reductions in the number

of scheduled domestic flights in US’s largest airports compared to the reduction at

smaller airports during the recession years (i.e. 2007 - 2012). The reduction was

8.8% for larger airports whereas a reduction of 21.3% was seen in small- and mid-size

airports.

This results differ to those found by research done by Kotegawa (2012), by
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which node weight was found to be the variable resulting the highest accuracy.

Differences might arise due to the different set of airports used by Kotegawa (2012)

and that therefore would infer slightly different network characteristics.

For the purpose of predicting which links will be added to the network (i.e.

link addition model), EVC with respect to the previous year, distance between the

airport-pair and a set of two dummy variables indicating whether none, one or both

airports within an airport-pair are hubs proved to be the best combination of input

variables. In this case, EVC is added into the model as two separate variables, one

for airport i and one for airport j (e.g. EVCi and EVCj). Link addition model takes

the form of Equation 3.14 where Padd,ij refers to the probability of airports i and

j being added to the network, ECVi and ECVi refers to the eigenvector centrality

associated with airports i and j respectively, dij refers to the distance between

airports i and j, and h1 and h2 are a set of dummy variables indicating whether

both or none airports i and j are hub airports respectively.

Padd,ij =
1

1 + exp−(θ
A
0 +θA1 (EV Ci,t−1)+θA2 (EV Cj,t−1)+θA3 (dij)+θA4 (h1ij)+θA5 (h2ij))

(3.14)

The above results are broadly in line with the literature (Kotegawa, 2012).

Kotegawa’s link addition model used a combination of Support Vector Machine

(SVM) and logistic regression: the former was applied to find a subset pool of

possible new link candidates first (i.e. reducing the search space); while the latter

was applied in this subset of link candidates to obtained the probability of those

changing their connectivity status. Eigenvector centrality was used as input variable

in the first stage (i.e. SVM), whereas node degree was used in the logistic regression

model. Although the modelling approaches are different, results are in line with

existing work since eigenvector centrality is linked to a node’s degree, and a measure

associated with the influence of the node.

Estimated model results for the link addition model are presented in Table

3.12, with all coefficients statistically significant at 95% confidence level and no sign

of multicollinearity22. From results presented in Table 3.12, each one-unit change in

EVCi and EVCi will increase the log odds of an airport-pair being added into the

22VIF values computed for each of the variables is less than 2.7.
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network via a flight service by 1.99 and 1.53 respectively. In contrast, distance has a

negative effect to the log odds by -1.1. The interpretation of dummy variables within

a logistic regression model is slightly different than continuous variables: going from

only one of the airports (of an airport-pair) being a hub airport to none of the

airports being a hub will increase the log odds of an airport-pair being added to the

network by 0.69; whereas going from none or only one hub airport to both airports

being a hub will increase the log odds of an airport-pair being connected by 3.87.

Coefficient

(Intercept) (θA0 ) −8.19 ∗∗∗

EV Ci,t−1 (θA1 ) 1.69 ∗∗∗

EV Cj,t−1 (θA2 ) 1.53 ∗∗∗

dist ij (θA3 ) −1.10 ∗∗∗

hub1 (θA4 ) 0.69 ∗∗∗

hub2 (θA5 ) 3.87 ∗∗∗

Num. obs. 17015

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01
‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 3.12: Estimated model results for the link addition model.

Eigenvector centrality measures an airport’s importance while considering at

the same time the importance of the airports it is connected to. EVC reflects the

influence score for strategically connected airports, by which an airport with few

connections could have a very high eigenvector centrality if those few connections

were themselves very well connected, which would imply that there is a high flow of

passenger demand making the addition of a new link most likely to be profitable.

Results obtained associated with the dummy variables indicating whether within the

airport-pair none, one or both airports are hubs are in line with the well-established

hub-and-spoke network structure that characterises the US ATS; results show that

links between two hubs are more likely to be added than those between a hub and

no-hub airports or between two no-hub airports. In line with the mention finding

above regarding small- and mid-size airports being largely affected by cuts, airlines

will prefer to add a new route between airports in which resources are already in

place and high volumes of demand are expected. Finally, the negative relationship

between distance and the addition of a new link is again in line with the hub-and-
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spoke network structure in the US, in which long-haul markets would tend to be

served by one-stop itineraries rather than by adding a new non-stop flight. The

results obtained are in line with the characterisation of the US network as having

a mainly hub-and-spoke structure, which might mean that the model might fail to

predict the evolution of the sub-network structure that some of the low-cost carriers

in the US follow (i.e. point-to-point).

3.6.5 Airport connectivity model validation

To evaluate the predictive power of the link addition and link removal models, both

models are validated using actual data for years from 2008 to 2013. Considering

all possible airport-pairs that the set of 337 airports considered in this study can

form, along with their respective information used in both models (i.e. CC and

EVC from the previous year, distance and hub information), the set of airport-

pairs are split between connected and unconnected. Equation 3.13 is applied to the

subset of connected airport-pairs; whereas Equation 3.14 is applied to the subset of

unconnected airport-pairs.

Since applying Equations 3.13 and 3.14 results in a probability value (i.e. be-

tween 0 and 1), the resulting value needs to be mapped to a binary response (i.e. 0 or

1). In order to perform this mapping, a classification threshold (or decision thresh-

old) needs to be decided. This threshold is usually problem-dependent, and any

resulting value above that classification threshold would be classified as 1; whereas

resulting values below will be classified as 0.

Taking the consideration of the US ATS as a mature system, where only small

changes in network connectivity are expected, an alternative approach to that clas-

sification threshold has been used. From Tables 3.7 and 3.10 is clear that there

is little shift in airport-pair connectivity, with an average of 87 airport-pairs per

annum disconnecting and an average of 86 airport-pairs per annum forming new

connections for the year range 2007-2013. The models per-se would not have a limit

on link addition and/or removal. Therefore, an endogenous limit23 is used to decide

a limited number of airport-pairs changing their connectivity status instead of using

a probability threshold. The choice of the limit is described shortly. The reasoning

23Endogenous limit in this context is defined as a constant value threshold imposed on the number
of positive events that will be considered.
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behind this decision is based on:

• It is considered that there is a diminishing return by adding a new link in a

market that is already saturated. This assumes that an airline is less likely

to add a new link in a market in which already operates and that is already

generating a revenue. Note that the number of O&D markets served by an

airline takes into account all the O&D markets served by its alliance’s partner.

• Slow fleet growth limits the number of links that an airline can add to its

network, needing in most of the cases to remove an existing link to be able to

open a new one.

The consideration of using a limit value follows the same approach used by

Kotegawa (2012). Kotegawa’s work (2012) showed that on average 94 links are

removed every year within the US ATS, while 140 new links are added on average

every year into the US network when considering 304 nodes. These thresholds refer

to the average annual values for link removal and addition between 1990 and 2009.

As mentioned earlier, Kotegawa’s study (Kotegawa, 2012) differs from the study

presented in this document in the numbers of nodes considered as well as the years

in which the study is performed. The research presented in this dissertation considers

337 nodes and the number of links added and removed on average every year are 86

and 87 respectively (Table 3.7).

Another aspect to consider when studying the capacity network evolution is

the saturation within a given market, which refers to the city-pair as opposed to

a link which refers to one of the available airport-pairs serving that city-pair. A

market is assumed saturated when it reaches the maximum number of competitors

(i.e. airlines) for a profitable market. A theoretical study done by Hansen and Liu

(2015) shows that the number of airlines operating in a market is affected by the

form of frequency dependence (e.g. s-curve) which is assumed in itinerary utilities.

This consideration is based on the diminishing return of adding a new link in a

markets that is already saturated. Therefore, for those saturated market only the

action of link removal would be possible.

Similarly, link addition mainly occurs within markets in which no direct link

or only one link exists. To illustrate this, Figure 3.19 shows the number of links

that O&D markets had the year before a link was added, while Figure 3.20 shows
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the number of links that O&D markets had the year before a link was removed.

These figures include data between 2007 and 2013. As Figures 3.19 and 3.20 show

below, most of the capacity network evolution occurs within markets with no-direct

or one link, for link addition, and within markets with one or two links, for link

removal. Based in Figures 3.19 and 3.20 the threshold of saturated market for link

addition is set up at 3 connections for the previous year except for 2008 in which

the threshold is 5; while the threshold of saturated market for link removal is set up

at 5 connections for the previous year.

Figure 3.19: Distribution of number of links connected the previous year for those markets
that experienced a link addition.
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Figure 3.20: Distribution of number of links connected the previous year for those markets
that experienced a link removal.

The number of new links to be added into the system is set up to be 86 while

the number of links to be removed from the network is set up to be 87 (i.e. average

number of links added and removed annually between 2007 and 2013). The exception

is 2009, for which a 200 limit has been considered for links removed to take into

account the economic crisis and the effect it had on the aviation industry.

To evaluate the model accuracy for classification problems, a set of model

performance measures are considered as follows: specificity, sensitivity and precision

(i.e. metrics related to how well the model predicts positive or negative cases) plus

false positive rate and false negative rate (i.e. measures of the models’ error). Each

of these metrics are defined as per below:

• Specificity (True Negative Rate - TNR): measures the proportion (%) of actual

negatives that are correctly identified as such. For the case of link removal,

actual negatives will refer to those links that have not been removed from

the network -i.e. without a change on their connectivity-; for the case of link

addition, actual negatives will refer to those links that have not been added

to the network and instead remain unconnected.

• Sensitivity (True Positive Rate - TPR): measures the proportion (%) of actual
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positives that are correctly identified as such. For the case of link removal,

actual positive will refer to those links removed from the network; for the case

of link addition, actual positives will refer to those links that have been added

to the network.

• Precision: proportion (%) of predicted positives that are actually positive over

the total number of predicted being positive. Note that precision is used

for model evaluation rather than accuracy since in this case study, where the

connectivity changes is small and is limited to a threshold, accuracy (i.e. which

indicates the fraction of correct predictions) would tend to be high.

• False Negative Rate or Miss Rate (FNR): measures the proportion (%) of

actual positives that are incorrectly identified not as such.

• False Positive Rate or Fall-out (FPR): measures the proportion (%) of actual

negatives that are incorrectly identified as positive.

A summary of performance metrics from validation of the estimated link re-

moval model is presented in Table 3.13. TNR refers to True Negative Rate, and FPR

and FNR refer to false positive rate and false negative rate respectively. Similarly,

performance metrics summary for the estimated link addition model is presented in

Table 3.14. Performance metrics for link addition are the same as the ones for link

removal with the exception of computing true positives (i.e. TPR - is the number

of links predicted to be added into the network that are actually being added to the

network) instead of true negative rate.

Year
Actual links

connected
Actual links

removed
TNR Precision FPR FNR

2008 2060 63 7% 11.1% 88.9% 4%

2009 1891 238 70% 29.4% 70.6% 6.9%

2010 1878 60 6% 10% 90% 4.5%

2011 1895 59 6% 10.2% 89.8% 4.4%

2012 1915 50 16% 32% 68% 3.9%

2013 1911 83 16% 19.3% 80.7% 3.9%

Mean 1925 92.2 20.2% 18.7% 81.3% 4.6%

Table 3.13: Performance metric summary from the validation of the estimated link removal
model.
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Year
Actual links
disconnected

Actual links
added

TPR Precision FPR FNR

2008 17056 70 13% 18.6% 81.4% 0.5%

2009 17070 47 9% 19.1% 80.9% 0.5%

2010 17232 76 11% 14.5% 85.5% 0.5%

2011 17225 70 12% 17.1% 82.9% 0.5%

2012 17204 79 14% 17.7% 82.3% 0.4%

2013 17179 76 13% 17.1% 82.9% 0.4%

Mean 17161 69.70 12% 17.4% 82.7% 0.5%

Table 3.14: Performance metric summary from the validation of the estimated link addition
model.

Results of both models present an improvement compared to when a single

model was applied, increasing precision levels to just below 20% for link addition and

about 20% for the link removal model. Although these results are an improvement

from previous attempts, precision levels are still significantly low. Since results from

the literature show a similar trend of relatively low precision levels -i.e. Kotegawa’s

(2012) results had an accuracy of just under 20% and 40% for the link addition

and removal respectively -, it is believed links may have individual random factors

affecting the connectivity that might be impossible to formulate mathematically.

Given the fact that the number of connectivity changes in the US is relatively low

and that external factors might not affect the entire network in the same way, such

as small airports being typically affected more than large ones by cuts in commercial

aviation, the complexity of the problem might not be possible to formulate with these

two aggregate models looking at the entire network, but different sub-networks, such

as the point-to-point network structure followed by LCC, might need a more specific

model linked to their dynamics24. A comparison with Kotegawa’s work can be also

done based on the FPR, by which his work obtained 90% and 60% for the link

addition and link removal models respectively; with an achieved FPR of 82.3% and

81.7% for the link addition and removal models in this research, an improvement

can be found for the former model, which suggests the potential of including a set

of variables beyond those associated with network theory, as done by Kotegawa, to

improve these type of models aim to predict connectivity changes.

24Figures in Appendix D.2, which show a graphic representation of the links added and removed
in 2011 and 2012 as example, clearly show there is not an obvious trend on link addition and removal
but rather a quite even distribution of those links changing connectivity across the entire network.
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A further analysis is performed to check whether the combination of these two

models allows the prediction of the evolution trend of the entire network, with the

caveat that these models are poor at predicting the exact airport-pairs connectivity

change. However, if the models are able to predict at least the development of

the network structure, they will be useful at the aggregate level when studying the

network evolution trend. In order to test this hypothesis, a second validation is

performed by applying the estimated models to the entire network and generate

predictions of the US Air Transport network evolution, starting off from actual data

in 2007 and then using the generated predictions up to 2013.

The predicted network degree and network eigenvector centrality evolution be-

tween years 2008 and 2013 are compared to their actual values in Figures 3.21 and

3.22. Predicted and actual network topology metrics seem to follow similar trends,

which would confirm that the models presented in this study could be useful for

the purpose of predicting the development of the network structure at the aggregate

level over time.

Figure 3.21: Actual and predicted network degree evolution between 2008 and 2013.
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Figure 3.22: Actual and predicted network eigenvector centrality evolution between 2008
and 2013.

3.7 Module 2: Itinerary choice model using multinomial

logit

The aim of the itinerary choice model (or passenger choice model) is to estimate

the number of passengers that choose each of the available itineraries between two

cities. Two methodologies have been used in this study: multinomial logit and

neural network. In this section the first methodology is described. For the purpose

of simplicity, it is referred to as MNL (i.e. multinomial model) in the rest of the

thesis.

3.7.1 MNL model specification

The multinomial logit model is based on the random utility theory such as that the

probability of decision maker n of choosing alternative i in a choice set m = 1,2,3,..,j

is defined as Equation 3.15 (Ben-Akiva et al., 1985).

Pin =
eVin∑
jεm e

Vj
(3.15)
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where V is the utility function for choice i. Vi is a linear function of the input

variables and assumes that each vector of attributes characterising an alternative can

be reduced to a scalar value, which expresses the attractiveness of each alternative.

Consequently, it is expected that the choice maker will choose the alternative with

the highest value, maximising his/her utility. Expression 3.16 shows the general

expression of V where X is the vector of K explanatory variables and β represents

the set of parameters to be estimated.

Since in this research, the choice making problem is at the aggregate level -i.e.

the objective is to estimate the aggregate passenger demand for any itinerary - the

probability estimated is at the same time the itinerary share for that given itinerary.

And therefore there is not a specific decision maker n.

Vi =
K∑
k=1

βik ·Xik = β1 ·Xi1 + β2 ·Xi2 + β3 ·Xi3 + · · · + βk ·Xik (3.16)

Multinomial logit models are usually estimated using a maximum likelihood

estimation (MLE) process. However, in choice behaviour modelling software capa-

bility becomes a critical concern when dealing with a significant number of choice

sets and when only an aggregated demand for each choice is available. In the case

of itinerary choice modelling within air transport, the number of choice sets is large

(i.e. more than a thousand for this study case), making the number of modelling

tools available to deal with such problems scarce. Consequently, most of the studies

that have dealt with this type of data have limited their scope to a small number of

choice sets (Weidner, 1996; Coldren et al., 2003; Atasoy and Bierlaire, 2012; Gho-

brial and Soliman, 1992), early work from this dissertation also being one of them

(Busquets et al., 2018).

Previous effort done on topic, which used a MLE estimation process, divided

the US network in to 5 different regions, as done by Coldren et al (2003): four

Continental time zones (Central, East, Mountain and West) and a region for Alaska

and Hawaii. This specific O&D market grouping was an attempt to capture sim-

ilarities among all city-pairs and to resolve the software limitation issue that was

encountered when attempting to analyse the entire US network at once.
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Given these regions, 18 entities25 were defined, and one model was produced for

each of this combinations. Each of these models would estimate the itinerary share

of all city-pairs within that specific region combination. Even considering these city-

pairs subsets, computational capabilities became an issue for region combinations

with a large number of city-pairs and model estimation results were poor.

To overcome software limitations and with the aim of achieving a workable

single discrete choice model applied to the entire US network (i.e. all O&D consid-

ered in this study), an alternative solution for the estimation process is used: the

Berkson-Theil approximation method. The Berkson-Theil method offers an alter-

native solution for such problems by transforming a logit choice model using MLE

to a least square regression model. Least square regression models can be estimated

with any statistical software and any data size without having to limit the scope of

the problem.

This transformation was initially proposed by Berkson (1953) only consider-

ing the case of two choices, and was further developed by Theil (1969) to cover

those cases when more than two choices are available (a multinomial logit model).

Examples in the literature (using this methodology to estimate itinerary shares at

the aggregate level) are limited. Hsiao and Hansen (2011) used the Berkson-Theil

approximation method to model itinerary shares for 213,917 city-pairs; Carrier and

Weatherford (2014) also used this methodology applied to aggregated booking data,

with results obtained using the Berkson-Theil method being very close to those

estimated when using MLE; and finally Li et al. (2017) performed a comparison

analysis between the Berkson-Theil and MLE methods in aggregated choice data

with multiple choice sets, showing that the Berkson-Theil method is an effective

approach in dealing with this type of aggregation level and big data.

Considering the itinerary choice problem in this research, Berkson-Theil defines

expression 3.17 for itinerary i in a city-pair:

ln(Pi) − ln(Pj) = ln

(
Pi
Pj

)
(3.17)

where itinerary j is the reference itinerary in this specific city-pair. Selection of

25Considering all 16 possible combinations of the Continental time zones – e.g., Central-Central
(C-C), Central-East (C-E), Central-Mountain (C-M), Central-West (C-W), [..], West-Mountain (W-
M), West-West (W-W) –; as well as an entity for Alaska and Hawaii to Continental US and an entity
for the Continental US to Alaska and Hawaii.
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the base itinerary is arbitrary, consequently the itinerary with the highest passen-

ger demand is selected as the base itinerary in each city-pair. The probability of

choosing any given itinerary is its itinerary share - i.e. ratio between the number

of passenger choosing that itinerary and the total number of passengers in the city-

pair-. Consequently, the probabilities of choosing itineraries i and j can be easily

calculated. According to Equation 3.15, expression 3.17 is equal to Vi - Vj, which

can be re-written as expression 3.18. From expression 3.18, β can be estimated

by a least squares regression model. WLS is the estimation technique used in this

research for applying the Berkson-Theil method and the models are estimated in R.

The numbers of passengers are used as weights.

ln

(
Pi
Pj

)
= Vi − Vj =

K∑
k=1

βik · (Xik −Xjk) (3.18)

Several model specifications are tested for the itinerary choice model, and even-

tually three input variables are included in this model: journey fare (the average fare

paid in dollars by passengers on a given itinerary); journey time (the average journey

time in hours including connection times on a given itinerary); and the number of

airlines serving a specific itinerary; all for the year 2007.

Besides the computational limitation concern within the area of itinerary choice

modelling, journey fare has proven to be the most problematic of explanatory vari-

ables. This is due to the large number of fares available and the difficulty of deter-

mining fares available to individual choice makers. Consequently, some studies omit

fares as input variables and others use average fares, with the later resulting in most

cases in endogeneity bias (Hsiao and Hansen, 2011).

Endogeneity occurs when a correlation exists between an explanatory variable

and the error term -i.e. unobserved factors- in a model. In the case of air itinerary

choice models, prices are endogenous because they are influenced by demand, which

is itself influenced by prices. This may lead to higher average fares on more popular

routes as a result of airline pricing-and-yield management systems adjusting fares

based on changing demand, which are not captured when average fares are used.

Omitting the simultaneity of supply and demand systems may result in erroneous

results. As a result, estimated coefficients might be biased upward leading to values

of times that are too high (2011; 2017). Previous attempts in the present research to
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model passenger choice without considering fare endogeneity also led to erroneous

results, with estimated coefficients being too high (see Appendix E).

One of the methods used to correct fare endogeneity is to use a 2-stage control-

function (2SCF) using instrumental variable (IV ). A instrumental variable is a vari-

able that does not belong in the demand equation, but is correlated with the en-

dogenous variable. The instrumental variable used in this research is the product

of distance and unit jet fuel cost (in 2007 dollars per gallon) as done by Hsiao and

Hansen (2011). This variable captures the cost of offering the service, and therefore

has an effect on airfares, but it is expected not to have a direct effect on market

shares.

As the name indicates, the two-stage control function (2SCF) method is split

into two. The first-stage of the model is an ordinary least-square regression with

airfare as the dependent variable, represented by Equation 3.19.

farei = αIVi + γ′xi + µi (3.19)

where farei is the airfare associated with alternative i ; IVi is the instrumental vari-

able for alternative i ; α is the coefficient associated with the instrumental variable;

γ is the vector of coefficients associated with all exogenous variables, excluding air-

fares; xi is the vector of explanatory variables used in stage 2 with exception of

airfares; and µ is the error term for stage 1 regression.

Explanatory variables for this first stage regression model include the instru-

ment variable -i.e. product of distance and unit jet fuel cost- along with the set of

all other exogenous variables used in the itinerary share model, with exception of

airfare. The second-stage of the model (Equation 3.20) uses as input variables the

forecast airfare predicted during the first stage of the 2SCF methodology, the other

exogenous regressors excluding airfares as well as the residuals from the first stage

of the method -i.e. difference between the actual and the predicted airfare from the

first stage regression.

Vi = δi + βfarefarei + β′ixi + εi (3.20)

where δi is the residual from stage 1, the difference between actual and predicted

airfares from stage 1; βfare is the coefficient associated with airfare from stage 2;
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β′ is the vector of coefficients associated with all exogenous variables for stage 2,

excluding airfare; xi is the vector of explanatory variables used in stage 2 with

exception of airfares; and ε is the error term.

Note that at the second stage, we use the Berkson-Theil method (Equation 3.18)

therefore all variables are differences at the attribute level between the alternative

and the reference alternative. The model specification for the second stage is as

presented in Table 3.15, which includes as input variables journey fare, journey time

and number of airlines.

Note that due to the characteristics of the input data, in which a large number

and distinct choice sets exists - i.e. one for each city-pair - but only an aggregate

demand for each choice is available, a set of alternative specific constants (ASC )

are also included in the model. The ASCs relate to the itinerary’s level of service

and consist of one ASC corresponding to non-stop itineraries and 25 ASCs each

corresponding to one of the connecting hub airports for the one-stop itineraries26.

Note that in Table 3.15, HUB input variable is represented as a character vector that

takes the IATA code of the connecting airport for one-stop itineraries and Non-stop

value for non-stop itineraries.

During the estimation process, the first-stage of the 2-stage control function

(2SCF) model, which aims to project itinerary fares, is an ordinary least-square

(OLS) regression; whereas the second stage, following the Berkson-Theil method, is

a weighted least-squares (WLS) regression using number of passengers as weight.

The validity of the instrument used in this research (i.e. in this case the product

between itinerary distance and jet fuel cost) depends on two requirements:

• Instrument relevance: Instrument variables need to be highly correlated with

the endogenous regressors.

• Instrument exogeneity: instrument variables need to be uncorrelated with the

error term generated in the second outcome of the 2-stage control function

model. This requirement requires 3 strong theoretical arguments to be true:

– Exclusion restriction: no direct effect of the instrument variable on the

26Following the scope of this dissertation (Section 3.1.2) only non-stop and one-stop itineraries
are considered in this study. One-stop itineraries are limited to be connecting in one of the 25 hub
airports considered in this study.
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Variable Coefficients Explanatory variables

constant

ASCNS 1 x HUBi==”Non-stop”

ASCATL 1 x HUBi==”ATL”
...

...

ASCk 1 x HUBi==”k”

Journey fare βfare farei

Journey time βtime timei

Num. of airlines βairlines num airlinesi

Residual δi farei - ˆfarei

Table 3.15: Specification table of the utility function for stage two of the 2SCF model
estimated using Berkson-Theil method.

dependent variable, which in the case of this research would mean no

effect on itinerary shares.

– Rule out any reverse effect of the dependent variable on the instrument

variables.

– Convincingly describe why the instruments influence the endogenous re-

gressors.

The first requirement can be empirically tested during the first stage of the

regression by t-testing the null hypothesis that there is no relation between the

instrument variable and journey fare - i.e. α from Eq. 3.19 is equal to 0. The second

requirement needs a strong theoretical argument and can generally not be tested,

especially in the case when the number of instrument variables (L) used is the same

as the number of endogenous variables (k) (i.e. L=K ), case known as just-identified

model (Schmidheiny, 2018). For the case when there are more instrumental variables

than endogenous variables (i.e. L>K ), known as an over-identified model, different

methodologies exist to test the validity of the models27.

27Sargan (1958) noted that for linear models the residuals of the instrumental variables regression
can be used to test for instrument exogeneity; Amemiya (1978) proposed a two-stage minimum-chi
squared estimator for the simultaneous equations Probit model; Guevara (2006) proposed a simpler
test for discrete choice models based on ratio log-likelihood testing called Direct Test.
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Input data set characteristics

The base year to train the model is 2007. The input dataset is formed of 2007’s air

itinerary choices for the US air transportation network that serve the set of city-pairs

considered in this study. For any given city-pair, an itinerary is defined as the flight

or combination of flights that connect the origin city with the destination city. The

choice for each itinerary is computed by the aggregated passenger demand for that

itinerary - i.e. annual number of passengers - and each itinerary has associated a

number of attributes as defined in the previous section.

The dataset also contains a large proportion of low-demand itineraries, which

may skew the results if included in the model. Two selection criteria are being

applied to exclude these less important itineraries while retaining the representa-

tiveness of the sample, similar to the criteria also applied by Li et al. (2017). First,

for city-pairs with a large set of available itineraries, only the top 9 itineraries are

included in the estimation process. Secondly, any itinerary that accounts for less

than 1% of the total city-pair demand is also omitted. The application of these crite-

ria reduces the number of passengers considered by 5.9%. For estimation purposes,

city-pairs with only 1 choice itinerary are also omitted since there are no alternative

options.

For training purposes, the US network is considered undirected and therefore

the aggregated passenger demand for any itinerary is computed as the average num-

ber of passengers between both directions of the same itinerary - i.e. given an

itinerary i serving a city-pair between city o and city d, number of passengers would

be the mean between Ni,od and Ni,do (N denotes number of passengers).

Dataset

No. of city-pairs 2,641

No. of itineraries 17,859

Maximum city-pair passenger demand 3,590,010

Minimum city-pair passenger demand 5,790

Table 3.16: Key characteristics of the input dataset.

Given the data processing applied, the key characteristics of the dataset used to

estimate the itinerary share model are presented in Table 3.16. Note the character-

istics presented in Table 3.16 only consider those city-pairs used to train the model.
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Since only a subset of 25 airports are considered a feasible option to form one-stop

itineraries, the distributions of journey fare and time across the several itinerary op-

tions are presented in Figures 3.23 and 3.24 respectively. Surprisingly, the average

journey fare for non-stop itineraries is not one of the most expensive, with most of

the one-stop itineraries having an average journey fare higher. With the majority

of markets within the domestic US network being of a medium-haul distance (Table

3.1) it is expected that most of the passengers would travel non-stop28, suggesting

higher competition brings airfares to lower levels. Also, long-haul flights tend to

be more expensive than those of a short and medium range. As expected, journey

time is much smaller for the case of non-stop itineraries; with one-stop itineraries

connecting at LAX airport having one of the highest average journey time, which is

expected since this airport would be typically used as connecting hub for long-haul

itineraries such as those that connect Hawaii with mainland US.

Figure 3.23: Journey fare distribution across the feasible itineraries based on the connecting
airport.

28Considering the data used in this research around 80% of the domestic passengers choose non-
stop itineraries.
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Figure 3.24: Journey time distribution across the feasible itineraries based on the connecting
airport.

3.7.2 MNL model results

Results from the estimation process for the itinerary choice model using a 2-stage

control function model with the Berkson-Theil approximation method are presented

in Table 3.17 for the 1st stage OLS regression modelling journey fare, and Table

3.18 for the 2nd stage WLS regression modelling itinerary shares.

Coefficients

Itinerary Cost (α) 0.013 ∗∗∗

Journey time (γ1) 4.346 ∗∗∗

Number of airlines (γ2) −1.168 ∗∗∗

Adj R-squared 0.27

F-statistic 2255 (p-value: < 2.2e-16)

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 3.17: Estimation results for the 1st stage of the control function model aim to predict
journey fares.

The results of the first-stage OLS regression aimed to model journey fare

show that the estimate for the parameter associated with the instrument variable
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(Itinerary Cost) used to control endogeneity is statistically significant at the 99%

confidence level and no presence of multicollinearity29. This allows us to reject the

null hypothesis that there is no relationship between the instrument variable and

journey fare. In addition, the 1st-stage F-statistic is well above the critical value of

10 indicates having a sufficiently strong instrument variable. The threshold of 10 is

recommended as a rule of thumb by Staiger and Stock (1994) when using 2-SLS. And

research done by Guevara and Navarro (2013) also suggest that similar threshold

can be used in the case of control function models in logit models.

The residuals ( δ) from Equation 3.19 are retained and included, without trans-

formation, as an additional variable in the utility function of the itinerary choice

model. As shown in Table 3.18 (under the “Control Function” model), the pa-

rameter estimate associated with this residual is statically significant at the 99%

confidence level, which confirms the presence of endogeneity, and specifically that

the instrument variable is correlated with journey fare and is thus valid.

Results obtained for the second stage show all estimated parameters to be sta-

tistically significant at the 99% confidence level with the exception of the alternative

specific constant refer to SEA airport as connecting hub. The model is also tested

for multicollinearity, with all VIF values lower than 3 apart from journey time (9.57)

and journey fare (11.7), which are still well below the threshold.

29VIF values obtained for each variable are less than 5.9.
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Coefficients

None (ASCNone) −0.161 ∗∗∗

ATL (ASCATL) −0.407 ∗∗∗

BWI (ASCBWI) −0.650 ∗∗∗

CLE (ASCCLE) −1.106 ∗∗∗

CLT (ASCCLT ) −0.618 ∗∗∗

CVG (ASCCV G) −1.110 ∗∗∗

DEN (ASCDEN ) −0.550 ∗∗∗

DFW (ASCDFW ) −0.263 ∗∗∗

DTW (ASCDTW ) −0.664 ∗∗∗

EWR (ASCEWR) −1.176 ∗∗∗

IAD (ASCIAD) −1.115 ∗∗∗

IAH (ASCIAH) −0.375 ∗∗∗

JFK (ASCJFK) −0.372 ∗∗∗

LAS (ASCLAS) −1.029 ∗∗∗

LAX (ASCLAX) −0.657 ∗∗∗

MEM (ASCMEM ) −1.073 ∗∗∗

MIA (ASCMIA) −0.427 ∗∗∗

MSP (ASCMSP ) −0.492 ∗∗∗

ORD (ASCORD) −0.622 ∗∗∗

PHL (ASCPHL) −0.920 ∗∗∗

PHX (ASCPHX) −0.764 ∗∗∗

PIT (ASCPIT ) −1.729 ∗∗∗

SEA (ASCSEA) −0.124
SFO (ASCSFO) −0.693 ∗∗∗

SLC (ASCSLC) −0.789 ∗∗∗

STL (ASCSTL) −1.342 ∗∗∗

Journey fare’ (βfare) −0.013 ∗∗∗

Journey time (βtime) −0.527 ∗∗∗

Number of airlines (βairlines) 0.136 ∗∗∗

Residual (δ) −0.001 ∗∗∗

Adj R-squared 0.7

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘
’ 1

Table 3.18: Estimation results for the second stage of the control function model, when
applying Berkson-Theil method.

All estimated coefficients are of the expected sign with coefficients obtained for

journey fare and time being negative and the parameter related to number of airlines

positive. More expensive and longer journeys would tend to attract less passengers

if competing with other itineraries that are cheaper and/or shorter. The presence of

a higher number of airlines could reflect a higher frequency on that specific itinerary,

making it more attractive for passengers to choose against other itineraries. It is also

an indicator of more popular routes where competition amongst airlines may result

on lower journey fares, attracting a higher number of passengers. Overall, results
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show that most of the variation will come from journey fare and time, followed by

number of airlines, with the set of ASCs accounting for everything else that fare and

time cannot capture.

Coefficients obtained for the set of ASCs show how non-stop itineraries would

attract most of the passengers compared to other itineraries. For one-stop itineraries

the most attractive is DFW; whereas connecting airports PIT and STL have the two

highest negative estimated parameters, suggesting that these are the least attractive

connecting hubs amongst the available one-stop itineraries. This results would be

in line with the fact that PIT used to be a major hub for US airways but in the

early 2000s the airline began scaling down its operations, shifting towards PHL and

CLT (i.e. with results in Table 3.18 showing these connecting airports as more

attractive). STL airport is a focus city, which is defined as a destination from which

an airline operates limited point-to-point routes to serve local markets rather than

connecting passengers, for Southwest airlines and therefore it is expected to have

less attractiveness for one-stop routes than other connecting hubs.

3.7.3 MNL model validation

In order to validate the model and assess its predictive powers, input data for years

between 2008 and 2013 is used to generate output predictions of number of passen-

gers across all available itineraries. Following the 2SCF model, parameter estimates

in Table 3.17 are used to estimate journey fares for each itinerary available. The

journey fares estimated along with the residuals, journey time and number of air-

lines are then used as input variables for the 2nd-stage model. For the second-stage,

model estimation results in Table 3.18 are used as coefficients in equation 3.16, so

that the utility and the probability of choosing each itinerary can be calculated. Con-

sequently, the total number of passengers choosing each itinerary can be obtained

by multiplying that probability and the total number of passengers of a city-pair.

The adjusted coefficient of determination (adjusted R2), which indicates how close

predictions of passenger numbers are from the observed passenger demand, is then

calculated.

Figure 3.25 shows observed against predicted number of passengers through-

out the validation years (2008-2013). Average adjusted R2 across all years is 0.857,

which are relatively higher than those obtained in the literature (Li et al., 2017) and
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comparable to those obtained when using the most common formulation (i.e. multi-

nomial logit using maximum likelihood estimation) to estimate air itinerary shares.

The work done by Li et al. (2017), who used Berkson-Theil approximation method

combined with a 1-stage OLS regression model, obtained R2 values just above 0.6.

The results obtained in this research (R2 > 0.8) highlight the potential of using

WLS over OLS when this approximation method is used as well as demonstrating

that this methodology can be used to simplify some of the issues encounter when

developing an air itinerary choice model using a multinomial logit formulation with

maximum likelihood estimation process (e.g. computational limitations might lead

to a decline in predicting capabilities of such models to a subset of cities).

Another way of assessing the model is through calculating value of time (VOT ).

VOT is the willingness of passengers to pay for the reduction of one hour of travel.

The generalised formula to compute VOT is presented in Equation 3.21. VOT ob-

tained from the 2nd-stage 2SCF model is presented in Table 3.19. VOT obtained is

$41.3/h, which is within the range of those found in the literature (Hsiao and Hansen,

2011; Atasoy and Bierlaire, 2012; Li et al., 2017). As a comparison, VOT computed

from a previous modelling attempt using multinomial logit and the Berkson-Theil

approximation method but without considering fare endogeneity, is also presented

in Table 3.19 (noted as 1-stage WLS). As mentioned earlier, previous modelling

attempts that did not consider fare endogeneity resulted in erroneous parameter

estimates, leading to VOT values that are too large compared to those in the litera-

ture, which are expected to be under $100/h (Hsiao and Hansen, 2011; Atasoy and

Bierlaire, 2012; Li et al., 2017).

V OTi =
∂Vi/∂timei
∂Vi/∂farei

(3.21)

2SCF 1-stage WLS

VOT $41.3/h $296/h

Table 3.19: Comparison of Value of Time obtained for the itinerary share model using 2SCF
model and using WLS regression
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Figure 3.25: Observed against predicted number of passengers throughout the validation
years.

3.8 Module 2: Itinerary choice model using neural net-

works

Artificial neural networks (ANN), also known as neural networks (NN), is the second

technique investigated within the area of itinerary choice modelling. NN has not fea-

tured in existing research into air itinerary share modelling at an aggregate level and

without using booking data. NN is a variety of deep learning and part of artificial

intelligence (AI). Neural networks can be described as a parallel distributed proces-

sors made up of simple processing units, which has a natural propensity for storing

experiential knowledge and making it available for use (d’Avila Garcez, 2014). As

they currently exist, NN perform small, highly specific tasks. The neural network

concept derives from the study of the human brain, which is in turn a biological

neural network (BNN). The structure of an artificial neural network resembles that

of a human brain. Besides the structure, two aspects enhance the similarity between

ANN and the brain: knowledge is acquired through a learning process; inter-neuron

99



connectivity strength, known as synaptic weights, are used to store the acquired

knowledge.

Resembling the brain, neural networks consist of neurons inter-connected be-

tween them. They are structured in layers of similar neurons and most have at least

an input layer and an output layer. Figure 3.26 shows a typical neural network ar-

chitecture, consisting of an input layer, one hidden layer and one output layer. The

strength of a neural network arises from the effects of the interconnection amongst

the neurons. However, what happens throughout the hidden layers is not exactly

known, which is one of the reasons why it is sometimes referred as a black box

(Heaton, 2015).

Figure 3.26: Example of a Neural Network.

In order to estimate the passenger choice model using neural networks, the

topology of the neural network as well as the types of neurons need to be decided.

Figure 3.26 shows the architecture of a neural network similar to the one used in

this study to develop an itinerary choice model. The neural network in Figure 3.26

is formed of the following components:

• Input layer - formed of input neurons which accept data from the program

into the network. There is one neuron for each input variable.

• Hidden layers - formed of hidden neurons, which process the input to form the

output, however they are not directly connected to the incoming input data

nor to the eventual output data. Therefore, hidden neurons can only receive

input from other neurons and can only output to another neuron.

• Output layer - formed of output neurons, which provide data back onto the
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program once it has processed the input data throughout the network. With

the purpose of estimating the share of an itinerary i there is only need for one

output neuron taking a value from 0 to 1.

Figure 3.27: An artificial neuron.

Figure 3.27 presents a schematic of a single artificial neuron. As shown, the

artificial neuron receives an input from one or more sources, denoted by ii(t). This

input vector may be directly fed from the input neurons -i.e. input layer- or come

from other neurons -i.e. a previous hidden layer-. Each of these inputs are mul-

tiplied by a weight. There must be one weight for each input. The neuron then

calculates the weighted sum and supplies it into an activation function. Equation

3.22 summarises the calculation of a neuron’s output, where x represents the value

of input variable i, w is the weight corresponding to neuron i and φ is the activation

function. The activation function aims to establish the bounds for the output of the

neuron.

f(xi, wi) = φ

(∑
i

(wixi)

)
(3.22)

3.8.1 NN model specification

In order to define the topology, also known as architecture, of the neural network,

several decisions need to be made. These include: defining the input vector, choosing

an activation function, how many hidden neurons to use and the layer structure as

well as deciding which learning algorithm to use to estimate the weights of the

neural network model. The best way of choosing the most adequate architecture to

generate a neural network is through an experimental process (i.e. trial and error)
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(Heaton, 2015). For this stage, the software used to generate the neural network

model to predict itinerary shares is Matlab, specifically the Deep Learning Toolbox.

First of all, the input layer is formed by as many input neurons as input vari-

ables. For the purpose of comparing both methodologies, the same model specifi-

cation as chosen for the passenger choice model developed using the multinomial

logit 2-stage control function is used for the neural network model. Therefore, 31

input neurons are used in total: 26 referred to the level of service -i.e. one for non-

stop itineraries, plus 25 for one-stop itineraries through one of the considered hub

airports; one referred to the predicted journey fare associated to an itinerary and

one referred to the residual; one referred to the journey time; one referred to the

number of airlines; and an extra one for the number of competing itineraries within

a city-pair.

Regarding the hidden layer structure, according to the universal approximation

theorem, a single-hidden-layer neural network can theoretically learn any pattern

(Hornik, 1991). However, this was stated when deep learning was not available, and

therefore neither were more complex representation of patterns in data (Heaton,

2015). Instead, two hidden layers are expected to allow more complex representa-

tion of patterns in data than a single hidden layer, while maintaining the training

simplicity. Consequently, the chosen configuration for the neural network presented

in this research is two hidden layers.

The number of hidden neurons for each of the hidden layers is decided through

an experimental process. However, Heaton (2015) states a few rule-of-thumb meth-

ods that can be considered when designing this experimental process. The set of

rules-of-thumb are as follows:

• The number of hidden neurons should be between the size of the input layer

and the size of the output layer.

• The number of hidden neurons should be 2/3 the size of the input layer, plus

the size of the output layer.

• The number of hidden neurons should be less than twice the size of the input

layer.

Considering the rules above, the experimental process is designed as follows:
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for the first hidden layer a range between 10 to 30 neurons, in steps of 5 are tried;

while for the second hidden layer, which always contains a smaller or equal number

of hidden neurons than the first hidden layer, a range between 5 to 30 neurons is

evaluated. In total a combination of 20 NN structures are evaluated. Each NN

architecture is noted as NN(n1st/n2nd), where n1st denotes the number of hidden

neurons in the first hidden layer and n2nd denotes the number of hidden neurons for

the second hidden layer. Table 3.20 shows the different neural network topologies

that have been considered during the development of an air itinerary share model

using artificial neural networks.

Hidden layer
Notation

Hidden layer
Notation

1st 2nd 1st 2nd

N
u

m
b

er
of

h
id

d
en

n
eu

ro
n

s

10 5 NN10/5 25 10 NN25/10

10 10 NN10/10 25 15 NN25/15

15 5 NN15/5 25 20 NN25/20

15 10 NN15/10 25 25 NN25/25

15 15 NN15/15 30 5 NN30/5

20 5 NN20/5 30 10 NN30/10

20 10 NN20/10 30 15 NN30/15

20 15 NN20/15 30 20 NN30/20

20 20 NN20/20 30 25 NN30/25

25 5 NN25/5 30 30 NN30/30

Table 3.20: Neural Network topologies considered during the estimation process of an air
itinerary choice model using artificial neural networks.

In terms of propagation function for all the neurons a weighted sum (Eq. 3.22),

which is one of the most commonly used propagation function, is used. As activa-

tion function for the input and hidden layers the hyperbolic tangent (tanh) function,

presented in Equation 3.23 is used over other activation functions as recommended

by Heaton (2015) and because through the exploration phase this activation func-

tion resulted in the lowest mean square error when compared to a sigmoid function

(further information regarding the exploration phase to determine the the NN model

specification can be found in Appendix E). The hyperbolic tangent function is also

sigmoidal (s-shaped), however output values range between -1 and 1, allowing more
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differentiation between negative input values than the logistic sigmoid function. The

logistic sigmoid function will map all negative inputs close to zero, without differen-

tiation; this might result in model parameters being updated less regularly than ex-

pected during training, and consequently, the neural network might get stuck during

training. By allowing further mapping differentiation through using the hyperbolic

tangent function (i.e. strong negative inputs will be mapped to more negative values

and only near-zero inputs will be mapped to near-zero outputs), the neural network

is less likely to get stuck during training.

φ(x) = tanh(x) (3.23)

This is one of the most widely used activation functions and outputs values in

the range between -1 and 1. The hyperbolic tangent function is applied in the input

and hidden layers. Therefore, input variables are normalised to take values between

[-1,1] for continuous variables, and discrete values of -1 or 1 for dummy variables.

For the output layer a single neuron is defined (no). Since the output is the

passenger share for a given itinerary (i.e. a value between 0 and 1) a sigmoid

activation function is used so that no transformation is needed. The sigmoid function

is represented by Equation 3.24 and the output values range from 0 to 1.

φ(x) =
1

1 + e−x
(3.24)

Training a NN model is an iterative process in which the weights set feeding

into the neurons will commonly start with random values until the optimal solu-

tion is found. To compare the different architectures and find the optimal neural

network configuration, 10-fold cross validation is performed for each of the different

neural network architectures (Table 3.20) and then compared. The best performing

configuration will be the one chosen.

From previous exploration of NN application to air itinerary share models,

Levenberg-Marquart algorithm (LMA) is chosen as training algorithm. Previous

exploratory analyses include backpropagation and backpropagation with momentum

as alternative training algorithm30. However, results with LMA outperformed those

30For further information regarding the exploratory study of NN using backpropagation and
backpropagation with momentum, please refer to Appendix E

104



from the other two algorithms in terms of low mean square error during validation,

low number of epochs taken to complete the training process and lowest training

time.

LMA is a hybrid algorithm that is based on Newton’s method and on gradient

descent (backpropagation), hence it combines the strengths of both, making it a

very efficient training method for neural networks. Gradient descent is guaranteed

to converge to a local minimum, however it is slow. Newton’s method is fast but it

often fails to converge. LMA introduces a damping factor (λ) to interpolate between

the two, creating the hybrid method.

The training parameters to be adjusted for this purpose are a learning rate (ε)

and momentum (α). Learning rate determines how quickly the model is adapted

to the problem (i.e. smaller learning rate will require more training iterations given

the smaller changes made to the weights each update). A learning rate between

0.2 and 0.9 is the most commonly used in the literature (Kamiyama et al., 1992).

Momentum is a learning property that causes the weight change to continue in its

current direction, even if the gradient indicates that the weight change should reverse

direction. A high momentum might help to move away from a local optimum and

most likely find a different optimum. For the damping factor (λ), an initial value of

0.001, a decrease factor of 0.1 and an increase factor of 10 with a maximum λ value

of 1e10 is used as suggested in the literature (Heaton, 2015).

3.8.2 NN model results and validation

During the training, the dataset is divided into training data (70%), validation data

(15%) and test data (15%). For each topology and training algorithm 10 training

runs are computed (i.e. 10-fold cross validation), for which training, validation

and test datasets are chosen randomly. From the experimental process, the best

performing NN configuration is then estimated using all input data. There are three

criteria for selecting the best performing NN architecture: mean square error during

training; number of epochs taken to complete the training process31; and time taken

to train the algorithm.

Figures 3.28, 3.29 and 3.30 present the average training time, number of epochs

31The number of epochs refers to the number of complete passes through the training dataset
during training.
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and mean squared error obtained during the validation process across the 10-fold

runs when training the 20 different NN models for air itinerary share estimation.

From these 3 figures one can see there is not much difference across the different NN

topologies, with exception of few of them taking more time to train. Consequently,

the neural network architecture chosen to estimate an air itinerary share model is

NN30/10, which seems to have a slightly lower mean square error than the rest.

Figure 3.28: Comparison of average training time for all neural network topologies.
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Figure 3.29: Comparison of average number of epochs during training for all neural network
topologies.

Figure 3.30: Comparison of average Mean Square Error (MSE) of the validation dataset for
all neural network topologies.

107



Figure 3.31: Observed against predicted number of passengers throughout the validation
years using the estimated neural network model i.e. NN30/10.

Similarly to the rest of models presented in this dissertation, validation for

this model is done using data for years from 2008 to 2013. Figure 3.31 presents

observed passenger demand per itinerary against predicted passenger numbers across

the validation years -i.e. between 2008 and 2013-. Overall, predictions from the

NN model seem to be slightly more scattered than those obtained from the MNL

model, especially for those itineraries with lower demand, which the NN model

seem to predict a higher share. Adjusted R2 is also computed as a measure of

predictive power for the neural network model. The average Adjusted R2 obtained

across all the validation years is 0.691, which is lower than that obtained for the

multinomial logit model (0.857). However, considering this is a leading research

in this topic, results obtained show the potential that machine learning techniques

could have when applied for the purpose of estimating itinerary shares. Further

exploration of this results is done in the following section through a comparison of

both methodologies (i.e. multinomial logit and neural network).
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3.9 Module 2: Comparison of the multinomial logit model

and the neural network model

Comparison of predictive powers of both models is done by comparing the adjusted

R2 obtained for each of the validation years (2008-2013) (Table 3.21). Overall, the

MNL model outperforms the NN model, which can be also seen when comparing

Figures 3.25 and 3.31, with predictions closer to the observed values for the MNL

model. It is interesting that, for 2012, performance of the NN model seems to be

improved with respect to the rest of the years; however, for the MNL model the

predictive power for 2012 is the second lowest obtained throughout the validation

years. This might be an indication that the NN model is influenced differently by the

input variables than the MNL model, and therefore a different specification might

be needed, such as considering a different input set of variables.

Models are also compared at the aggregate level by calculating annual revenue

passenger kilometres (RPK). Comparison for the validation years is shown in Figure

3.32 where actual RPK are also included. Results in Figure 3.32 show how both

models follow the same trend as actual RPK throughout the year range considered.

However, both model predictions are slightly higher than the observed trends, with

the MNL results slightly closer to those actuals than the NN results. Since the

input data is the actual data for all the years, the difference in output is assumed

to be due to both models predicting a smaller proportion of non-stop passengers

than observed, with the MNL model being slightly better at getting this proportion

correct. This hypothesis is confirmed through Figure 3.33, which clearly shows the

differences between both models, with the NN model tending to forecast a larger

proportion of one-stop passengers. It might be the case that the NN model is more

susceptible to changes in journey fares and time than the MNL model, which follows

a smoother trend more in line with the observed proportion of non-stop passengers.

These results highlight a potential line of research for further work32, by which

different model specifications could be investigated to understand which are the most

influencing factors that affect the neural network model as well as whether any other

factors that have not being taken into account might also influence the NN model

32Neural network models function as ’black boxes’ and do not have the degree of interpretability
that statistical models have, and therefore at this stage it is not possible to identify which factors
influence the most the NN model.
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results, such as the inclusion of fuel prices.

Model 2008 2009 2010 2011 2012 2013 Average

MNL 0.849 0.870 0.874 0.867 0.846 0.838 0.857

NN 0.730 0.709 0.713 0.619 0.722 0.657 0.691

Table 3.21: Comparison of adjusted R2 obtained for each of the validation years when using
the MNL model and the NN model.

Figure 3.32: RPK computed for the validation years (2008-2013) based on validation results
obtained from the MNL and the NN model. Actual RPK values are also included.
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Figure 3.33: Predicted and actual proportion of non-stop passengers throughout the valida-
tion years (2008-2013).

3.10 Module 3: Flight frequency model

The third and last stage of the modelling framework is to estimate air traffic levels

between airport-pairs (i.e. at the segment level). This is done by using a model that

projects the number of flights between two airports within the US ATS, given the

segment passenger demand estimated in the second stage of the modelling framework

presented in this dissertation. Since the output from the itinerary choice model is

number of passengers choosing a specific itinerary, which in turn might be formed

of more than one flight (in the case of one-stop itineraries), an intermediate step is

necessary to convert itinerary passenger demand into segment passenger demand.

For non-stop itineraries, the compilation process is straightforward, since all

passengers will be assigned to a single flight segment. For one-stop itineraries the

compilation process breaks down the itinerary into the two flight segments forming

that itinerary and assigns the total number of passengers predicted for that itinerary

to both legs. Once all itineraries are broken down to segment level, passenger de-

mand is aggregated at the airport-pair level.
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An early attempt developed within this research to model air traffic levels

considered a model specification that included an auto-regressive term (i.e. the

number of flights that were operating on a segment the previous year) as one of

the input variables. Following this previous attempt, the investigation has been

extended to an alternative model specification without an auto-regressive term. In

this section both specifications will be presented and validated. For reference, in the

following sections the model containing the auto-regressive term as one of the input

variables is referred as Model 1-2SLS, whereas the model without the auto-regressive

term is referred as Model 2-OLS.

3.10.1 Model specification: Model 1-2SLS

For the model including the auto-regressive term (Model 1) the estimation process

used is a 2-stage least squares (2SLS). The use of a 2-stage estimator is due to

possible endogeneity issues arising from the inclusion of the auto-regressive term,

since it is expected that there will be correlation between this variable and the error

term. This is because there is an issue of simultaneity, where the auto-regressive

term influences a change to the dependent variable (i.e. flight frequency), but at the

same time a change in the dependent variable also influences a change to the auto-

regressive term. The 2SLS estimator with instrumental variables (IV ) methodology

is a widely used method to correct endogeneity, as previously proved when used to

estimate the itinerary choice model to solve fare endogeneity. Instrumental variables

are chosen so that they do not belong in the main equation, but are correlated with

the endogenous variable. In this case, the selected instrumental variables are airport-

pair degree and eigenvector centrality, which are two of the network theory metrics

presented in Section 3.6 and which capture the importance and the influence of an

airport-pair.

As the name indicates, the two-stage least squares method is split into two.

The first-stage of the model is an ordinary least-square (OLS) regression, with the

traffic from the previous year (traffict-1) as the dependent variable, represented by

Equation 3.25.

Trafficij,t−1 = αIVij + γ′ẋij + µij (3.25)
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where trafficij,t−1 is the air traffic levels associated with airport-pair ij for period

t-1, IVij refers to the set of instrumental variables associated with the airport-pair

ij, α is the set of coefficients associated with the instrumental variables, γ is the

vector of coefficients associated with all exogenous variables, excluding traffic and µ

is the error term for stage 1 regression.

Explanatory variables for this first stage regression model include the instru-

ment variables -i.e. airport-pair’s degree and eigenvector centrality- along with the

set of all other exogenous variables with exception of traffic from the previous year.

Trafficij,t = βtraffic,t−1traffic
′
ij,t−1 + β′xij + εij (3.26)

where βtraffic,t−1 is the coefficient associated with traffic from stage 1, traffic′ij,t−1

is the predicted traffic between airport-pair ij for period t-1 during stage 1, β′ is

the vector of coefficients associated with all exogenous variables, excluding traffic

for period t-1 and xij is the vector of all exogenous variables excluding traffic for

period t.

The second-stage of the model (Equation 3.26) uses, as input variables the

traffic from previous year predicted during the first stage of the 2-SLS methodology

and the other exogenous regressors, excluding actual flight frequency from previous

year.

Tables 3.22 and 3.23 presents the model specification for stage 1 and 2 to

estimate air traffic levels between airport-pairs33. Note Traffic′ij,t−1 in stage 2 has

a prime to indicate that it is not the observed value for traffic but the predicted

one. Explanatory variables are normalised using equation 3.27. As presented in

Table 3.22, along with the auto-regressive term the rest of input variables used at

this stage are: passenger demand difference with respect the previous year between

airports i and j ; and the total number of airports in the cities where the origin (o)

and destination d airports are located.

Passenger demand corresponding to the current year for the pair of airports i

and j was also considered, but results were not as good as when using passenger

demand difference year-on-year. Also, when considering a different data transfor-

33Note that Number Airportsod,t refers to the sum of number of airports in the pair of cities o
and d where the pair of airports i and j are located.
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mation for the number of airports, such as product or square root of the product

of number of airports, these alternatives yielded similar results as when using the

simple sum of the number of airports.

Coefficients Explanatory variables

γNY oY
ij Passengerij, t - Passengerij, t -1

γNumArptsod,t Number Airportsod,t

αDEGij,t−1 DEGij, t-1

αEV Cij,t−1 EVCij, t-1

Table 3.22: 1st stage model specification.

Coefficients Explanatory variables

βTraffic
′

ij,t−1 Traffic’ij, t-1

βNY oY
ij Passengerij, t - Passengerij, t -1

βNumArptsod,t Number Airportsod,t

Table 3.23: 2nd stage model specification.

xnew =
x− xmin

xmax − xmin
(3.27)

To test for endogeneity and to check the validity and relevance of the instrument

variables used during the 2-SLS estimation process, a set of specification tests are

performed: a test for weak instruments; a Hausman test for endogeneity; and a test

for the validity of the instruments.

To test for weak instruments in the 2-SLS equation, the joint significance of the

instruments in the 1st stage model (Equation 3.25) is tested. The null hypothesis is

that coefficients of the instrument variables are equal to 0 (i.e. H0: α = 0 ). If the

p-value obtained is large enough to reject the null hypothesis, it can be confirmed

that the instrument variables used are not weak. Another way of looking at instru-

ment weakness is through the F-statistic, which if being greater than 10, allows the

null hypothesis to be rejected as explained in Section 3.7 (Staiger and Stock, 1994;

Guevara and Polanco, 2013).

To check for the validity of the instruments used, a Sargan test (1958) for

over-identifying restrictions is performed. Note that this test can be performed

only because the number of instruments (L) used is greater than the number of
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endogenous variables (k) (i.e. L>K ) as opposed to the case when the itinerary

choice model was presented (Section 3.7). The null hypothesis is that the covariance

between the instruments z and the error term e is zero (H0: cov(z,e) = 0 ). Therefore,

rejecting the null hypothesis indicates that at least one of the extra instruments is

not valid.

Without the presence of endogeneity, ordinary least squares will be efficient

and consistent whereas IV-estimation will be efficient but inconsistent. However,

in the presence of endogeneity, IV-estimation will be both efficient and consistent,

while OLS will be inefficient. Consequently, it is necessary to test that the variable

assumed to be endogenous is indeed endogenous. This problem is addressed by

the Wu-Hausman test for endogeneity which checks the consistency of the OLS

estimates under the assumption that the IV-estimates is consistent. Rejecting the

null hypothesis means that OLS is not consistent, suggesting that endogeneity is

present. This is equivalent to looking at whether the residual obtained in the first

stage (i.e. the difference between the predicted and actual flight frequency for the

previous year) is statistically significant if added into the second stage equation

as was done in Section 3.7 for the multinomial logit model estimated using 2-SCF

methodology.

The obtained coefficient estimates for the Model 1-2SLS, specified through

Equations 3.25 and 3.26 are presented in Tables 3.24 and 3.25 corresponding to

results for the first and second stage respectively. Stage 1 estimation model results

(Table 3.24) show that coefficients associated with the two instrument variables

used to predict flight frequency from previous year (i.e. airport-pair degree and

eigenvector centrality) are statistically significant at the 95% confidence level. This

allows the null hypothesis to be rejected, that there is no relationship between the

instrument variables and flight frequency from previous year. In addition the F-

statistic obtained at this 1st stage is well above the critical value of 10, a sign of

having sufficiently strong instrument variables.
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Coefficients

(Intercept) (β0) 0.056 ∗∗∗

NYoY (γNY oY
ij ) −0.037 ∗∗∗

Num. Airports (γNumArps
′

od,t ) 0.057 ∗∗∗

DEGij (αDEGij,t−1) 1.075 ∗∗∗

EVCij (αEV Cij,t−1) −0.550 ∗∗∗

Adj R-squared 0.37

F-statistic 319

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1
‘ ’ 1

Table 3.24: Coefficient estimates obtained for the first stage of the Model 1-2SLS.

Coefficients

(Intercept) (β0) −0.086 ∗∗∗

Traffic’t-1 (βTraffic
′

ij,t−1 ) 0.913 ∗∗∗

NYoY (βNY oY
ij ) 0.229 ∗∗∗

Num. Airports (βNumArpsod,t ) 0.009 ∗∗∗

Adj R-squared 0.988

Tests p-value

Weak instruments test <2e-16***

Wu-Hausman test 1.4e-06***

Sargan test 0.6

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1
‘ ’ 1

Table 3.25: Coefficient estimates obtained for the second stage of the Model 1-2SLS.

The inability to reject the null hypothesis of the Sargan test allows us to con-

firm that the instruments used are valid, while rejecting the null hypothesis of OLS

consistency in the Wu-Hausman test suggests that endogeneity is present, related to

flight frequency from previous year. All VIF tests indicate absence of multicollinear-

ity34. Coefficient estimates obtained for the second stage of the 2-SLS regression

show that the auto-regressive term is the most significant variable on the number

of flights an airport-pair has associated, followed by the difference in number of

passengers year-on-year.

34VIF values computed for all the variables are less than 1.5.
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3.10.2 Model specification: Model 2-OLS

Predictive power for the model described above (i.e. Model 1- 2SLS) is expected

to be high as the adjusted R2 obtained during training shows. Considering the low

variability of flows on a mature system like the US, air traffic levels are expected to be

similar to those from the previous year and therefore predictions will tend to be quite

accurate. Even in edge cases, such as when a new segment is added to the network,

the model might be able to identify air traffic levels well (i.e. because the previous

year flight frequency is done via 2SLS the estimate of previous year frequency in

this case is not zero and the prediction may not actually be that bad). However,

the model fails to identify the influence that other factors might have to air traffic

levels, such as aircraft type restrictions or competition, due to the strong influence

the auto-regressive term has. In order to further investigate other factors that might

influence the air traffic levels amongst airport-pairs within the US air transportation

system, a model specification that does not contain the auto-regressive term is also

investigated.

In this case the set of input variables defining the model specifications are as

follows:

• Passenger demand - Passenger demand associated with a specific airport-pair,

airports i and j.

• Hub information - two dummy variables that capture whether origin and/or

destination airports are hubs or not. The naming convention used is as follows:

– hub1 - 1 if both airports are not hubs; 0 otherwise.

– hub2 - 1 if both airports are hubs; 0 otherwise.

• Longest runway length (feet) - given the longest runway for each of the airports

forming the airport-pair, the shortest is taken. This variable represents the

limitation of aircraft types that can operate in a given segment-pair because

larger aircraft types require longer runways.

• Distance (miles) - distance between airport-pairs.

• Load Factor - Average load factor associated to a specific segment.
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Different combinations of input variables have been considered, as well as the

option of including the number of low-cost carrier operations on a given segment.

However, only the best performing model is presented in this section. Flight fre-

quency between airport i and j is calculated using a simple one-equation linear

regression model of the form of

Trafficij = β0 + β1Nij + β2RWij + β3distij + β4LFij +
∑
d

βiD
d
ij (3.28)

where Trafficij is the total number of flights between airports i and j, Nij is the

passenger demand between airports i and j, RWij is the shortest runway between

the two longest ones of airport i and j, distij is the distance between airport i and

j, LFij is the average load factor for the airport-pair ij, Dod are the set of 2 dummy

variables capturing whether airport i and/or j are hub airports or not, and the set

of β are the parameters to be estimated.

An OLS estimator us used for this model, and (similarly to Model 1-2SLS), all

continuous variables are normalised by using Equation 3.27.

Coefficient estimates obtained (Table 3.26) show all coefficients statistically

significant at the 95% confidence level and no sign of multicollinearity. Results also

show how passenger demand at the segment level is the most influencing factor.

It is interesting to see how runway length and distance seem to have a negative

influence in terms of number of flights in a segment. Regarding length of runways,

this might be influenced by the fact that long runway can handle large aircraft

operations, decreasing the need for frequency since they can carry a larger number

of passengers. In terms of distance, the further a segment is, the longer the flight

time will be, and hence, less flight frequency is expected. It is also the case that

longer distances will usually need aircraft with higher range which tend to be those

that can carry a larger number of passengers. This will consequently decrease the

number of flights needed to serve all the passenger demand. Finally, load factor

coefficient is negative, which is a reflection of the fact that for the same number of

passengers higher load factor means fewer flights.
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Coefficients

(Intercept) (β0) 0.132 ∗∗∗

N (β1) 0.845 ∗∗∗

RW (β2) −0.018 ∗∗∗

dist (β3) −0.204 ∗∗∗

LF (β4) −0.074 ∗∗∗

hub1 (β5) −0.019 ∗∗∗

hub2 (β6) 0.015 ∗∗∗

AdjustedR2 0.877

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01
‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 3.26: Coefficient estimates obtained for the Model 2-OLS.

3.10.3 Model validation: Model 1-2SLS and Model 2-OLS

As done with previous stages, in order to validate the models and assess their pre-

dictive powers, actual data between 2008 and 2013 is used to generate predictions

of air traffic levels across airport-pairs. For the Model 1-2SLS, estimated results

presented in Tables 3.24 and 3.25 are applied as coefficients for Equations 3.25 and

3.26 respectively, so that air traffic levels between airport-pairs are predicted. For

the Model 1-OLS, estimated results presented in Table 3.26 are used in Equation

3.28 to generate predictions of flight frequency for pair of airports within the US

ATS.

The adjusted coefficient of determination (adjusted R2), which indicates how

close the predictions of air traffic levels are to the observed air traffic levels, is

calculated and presented in Table 3.27. As expected, the Model 1-2SLS has a higher

adjusted R2 since the US air transportation system is a mature system and most

of the routes are expected to be at steady-state and similar to those from previous

years. However, results for the Model 2-OLS also show a good predictive power with

an average adjusted R2 of 0.884.

Figures 3.34 and 3.35 show the comparison between predicted and observed

number of flights across the validation years for Models 1-2SLS and 2-OLS respec-

tively. Comparing both Figures (3.34 and 3.35), one can again notice that Model

1-2SLS results are more accurate than those when Model 2-OLS is used since values

are more spread horizontally.
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Model 2008 2009 2010 2011 2012 2013 Average

Model 1-2SLS 0.985 0.980 0.985 0.986 0.989 0.989 0.986

Model 2-OLS 0.880 0.877 0.877 0.889 0.891 0.891 0.884

Table 3.27: Comparison of adjusted R2 obtained for each of the validation years when using
the Model 1-2SLS and the Model 2-OLS.

Figure 3.34: Comparison between observed and predicted air traffic levels across validation
years.

Finally, the predictive powers of these 2 models have been compared for the edge

case when a new link is added into the network. In such cases, the observed flight

frequency from the previous year is 0; however, because this value is computed via

the 2-stage formulation, in the Model 1-2SLS the flight frequency from the previous

year value used is not 0. Considering only those edge cases (i.e. a new link is

added), which are in total 264 data points across all the validation period, the mean

square error is calculated as metric for comparison. MSE obtained from both models

associated to this edge cases is presented in Table 3.28 and, surprisingly, the Model

1-2SLS has a lower MSE, which would suggest that the predicted flight frequency

from the previous years helps to obtain a more accurate estimation of the number

of flights for those new links being added into the network. However, the Model 1-

2SLS offers the caveat of being over-influenced by the auto-regressive term, making
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Figure 3.35: Comparison between observed and predicted air traffic levels across validation
years for model OLS-3.

it difficult to highlight which other factors might affect air traffic levels.

2-SLS OLS

MSE 29,113 108,515

Table 3.28: MSE obtained from applying Model 1-2SLS and Model 2-OLS to those cases
were a new link is added into the network.

3.11 Summary

The modelling framework presented in this dissertation looks at city-demand genera-

tion, itinerary demand assignment and air traffic estimation. This chapter describes

the methodology and validation behind the main contributions contributions of this

research: the use of network theory, with other variables, to analyse the evolution

of the US air transportation system and the effect that such changes has to the rest

of the network; the study of alternative techniques to develop an air itinerary share

model at the most aggregate level; and to develop a single modelling framework

including both airport connectivity and air itinerary share modelling. Findings ob-
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tained through the estimation process of the modelling framework presented in this

chapter can be summarised as follow.

O&D passenger demand model

• As expected and widely stated in the literature, demographic characteristics

(i.e. income and population) correlate strongly with O&D passenger demand.

Although income elasticities obtained in this research are not as high as those

reported in the literature, a lot of the variation in income elasticity has been

found depending on specific model formulation, which is supported by the

literature (2017, 2007).

• High generalised cost elasticity obtained is in line with those obtained in the

literature and shows how higher fares will have a negative impact on O&D

passenger demand.

• O&D passenger demand for different distance groups needs to be modelled

differently. Previous attempts to model O&D passenger demand with a single

model to fit all city-pairs within the US ATS yielded in poorer results. Splitting

city-pairs into three distance groups (i.e. short-, medium- and long-haul) and

estimating a set of model parameters for each of these distance groups has

improved the predictive power of the models quite significantly and relatively

larger R2 (>0.8) than those found in the literature for the US ATS have been

obtained (Dray et al., 2014).

Airport connectivity model

• Historical data shows a low variability of the US network connectivity, serving

as evidence that the US air transport network is a mature system and relatively

in steady state in terms of connectivity changes.

• From the application of network theory metrics to study the US air trans-

portation system few conclusions can be drawn. The US ATS follows clearly

a power-law degree distribution, by which most of the nodes have only few

links while only few of the nodes have a high degree. This is clearly in-line

with a hub-and-spoke network. Clustering coefficient (CC ), which measures
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the density of the connections, is in most of the cases inversely proportional

to node degree.

• Although several approaches have been explored, and link addition and re-

moval models presented in this chapter represent an improvement with re-

spect previous attempts, precision levels are still relatively low. Because the

system is in steady state, the influence of hard-to-measure factors, such as air-

port incentives to airlines, is relatively greater than it would be in a growing

system.

• With precision levels obtained of just below 20% for both link addition and

removal models, results are in line with the literature (2012) for the link ad-

dition model and slightly worse for the link removal model (i.e. results in the

literature show 40% accuracy). However, a lower false positive rate for the

link addition model to that in the literature (i.e. 82.3% as opposed to 90%)

suggests the potential of including a set of variables beyond those associated

with network theory, as done by Kotegawa (2012), to improve these type of

models aim to predict connectivity changes.

• Although the predictive powers of the estimated link addition and removal

models predictive power are low, and therefore they are not suitable for pre-

dicting the exact airport-pair connectivity changes, results show that the mod-

els seem to be able to capture the evolution of the network at an aggregate

level.

Itinerary choice model

• Two issues can strongly affect itinerary share models: computational limita-

tions and fare endogeneity. The Berkson-Theil approximation has proved to be

a good solution to solve the problem of computational limitations. The imple-

mentation of this methodology has allowed the development of an air itinerary

share model without any run-time issues. Moreover, the use of this method-

ology with WLS estimation process, not yet used in the literature, implies an

improvement of the predictive power (adjusted R2 of 0.85) of this technique

when used to model itinerary shares, becoming comparable to the most com-

monly used technique of multinomial logit with maximum likelihood estimation
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process. Fare endogeneity led to much higher value of times (VOT) than those

found in the literature in previous attempts to model itinerary shares. The

2-stage control function method has proved to be a good methodology to solve

fare endogeneity, reducing the VOT to a level comparable to those found in

the literature ($41.3/h).

• A neural network has been used as an innovative and alternative technique to

model itinerary shares at the network level. Validation results for this model

show an average adjusted R2 value of 0.69, slightly lower than those obtained

with more commonly used techniques, such as multinomial logit; however,

results also show the potential of further investigating the application of this

machine learning technique to model air itinerary shares since the NN model

presents a slightly different response to changes in journey fare and times than

those seen from the multinomial logit model.

Air traffic level model

• Including the auto-regressive term as one of the input variables to model the air

traffic levels between two airports yields a model with high predictive powers

(average adjusted R2 of 0.99). However, in a steady-state network air traffic

levels are expected to be similar to those from the previous year.

• Comparison between the Model 1-2-SLS, which includes the auto-regressive

term, and the Model 2-OLS shows that the former outperforms the latter.

However, predictive power for the Model 2-OLS is only slightly lower (0.885).

• Surprisingly, in the edge case of new links added into the network, the model

with the auto-regressive term yields with a lower MSE, which would justify

the selection of this model for future use. However, the 2-SLS model offers the

caveat of being over-influenced by the auto-regressive term, making it difficult

to highlight which other factors might influence air traffic levels.
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Chapter 4

Example application of the

modelling framework: US Air

Transportation System

In the previous chapter (3) the validity of each of the sub-models within the mod-

elling framework presented in this dissertation has been demonstrated. However, the

validation process was performed in isolation without considering the interactions

amongst the different models and using actual data for all validation years (between

2008 and 2013). In this chapter, the integrated modelling framework is validated by

projecting air traffic levels from 2008 to 2025 and considering interaction amongst

the sub-models (i.e. predicted O&D passenger demand will be used to generate

predictions of itinerary shares).

Obtained projections are evaluated and assessed in two ways: first, to test the

integrated model predictive power, projections generated for years between 2008

and 2018 are compared to actual values; second, overall projections (i.e. up to 2025)

are analysed to look at how the modelling framework presented in this dissertation

projects air traffic levels into the future and how sensitive it is to the influencing

factors that have been considered within the modelling framework, such as changes

in airfares. Projections are generated up to 2025 so that they are aligned with the

FAA’s projections generated in 2008 and the comparison can be made. However, it

is theoretically possible to use this model to project to later time horizons.

Results for each stage of the modelling framework are presented separately
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along with a description of all considerations and assumptions taken to produce these

projections. Two different set of projections are produced: one without considering

the modelled evolution of the network -i.e. it does not consider the results of the

airport connectivity model (case 1); and another set of projections where the results

from the airport connectivity model are taken into account (case 2). Note that for

this example application of the modelling framework, the model does not consider

the impact of flight time changes due to network evolution to the overall demand

(O&D passenger demand). This means that network evolution in case 2 will only

have an impact in itinerary shares and traffic levels. Considering the amount of

uncertainty on how other factors will also change (e.g. airfares) and that flight

time is introduced in the model through generalised cost, it is assumed the impact

might not be significant (i.e. a new shorter route might have a lower flight time

but might imply a greater airfare, which would balance the changes). For example,

adding a direct route between Arcata (north of California) and Los Angeles would

decrease the average flight time by about 1.3 hours (i.e. current one-stop itineraries

take approximately 4 hours via SFO); if market fare is assumed to balance the

decrease in flight time in the generalised cost term from the demand equation, in

this example airfare should increase by around $52/h, which is well within the range

of uncertainty in fare changes for moving to a direct route (i.e. value of time obtained

in this dissertation was $41.3/h); note that the current difference between average

market fare of one-stop routes and when direct routes are added in the Arcata-Los

Angeles market is actually $45.3/h, which is consistent with the $52/h obtained

above. Besides, because most of the new links added are in city-pairs which have

existing direct links already, the change in fare and time over existing links will only

be small (most of the passengers on the new link would be expected to have shifted

from other carriers).

For each of the cases two subsets of projections are generated based on the two

models developed to model itinerary shares: the multinomial logit model and the

neural network model. Also, for case 1 (without considering the modelled network

evolution) air traffic levels are projected using both models developed to estimate

flight frequency between airport-pairs: the Model 1-2SLS and the Model 2-OLS. For

illustration purposes, Table 4.1 shows the different sets of projections that are being

presented in this Chapter.
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The rest of this chapter is structured as follows: projections for the O&D model

are presented in Section 4.1, while Section 4.2 presents projections obtained from

the airport connectivity model; Case 1 projections, without considering network

evolution, are presented in Section 4.3, with information regarding projections for

the itinerary share model and air traffic levels. Case 2 projections are presented

in Section 4.4, which also includes projected itinerary shares and air traffic levels.

Finally, a comparison between case 1 and case 2 projections is presented in Section

4.5.

Network evolution
Itinerary

choice model
Airfare scenario Air traffic model used

Case 1:
No network
evolution

MNL

Low Model 2-OLS

Medium Model 2-OLS

High Model 2-OLS

Low Model 1-2SLS

Medium Model 1-2SLS

High Model 1-2SLS

NN

Low Model 2-OLS

Medium Model 2-OLS

High Model 2-OLS

Low Model 1-2SLS

Medium Model 1-2SLS

High Model 1-2SLS

Case 2:
Network
evolution

MNL

Low Model 2-OLS

Medium Model 2-OLS

High Model 2-OLS

NN

Low Model 2-OLS

Medium Model 2-OLS

High Model 2-OLS

Table 4.1: Set of projections presented in this Chapter.

4.1 O&D passenger demand model

The O&D demand model projects true origin-ultimate destination passenger demand

between a set of US domestic city-pairs. Based on the distance between the city-
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pairs, a model has been estimated for each of the three subsets defined as per below:

• City-pairs between 186 and 400 miles apart;

• City-pairs between 400 and 2113 miles apart;

• City-pairs more than 2113 miles apart;

In order to generate projections only those O&D with more than 1,000 pas-

senger a year are considered, making an average of 4,238 city-pairs per year. From

2018 onwards, the set of city-pairs to have passenger demand projected has been

considered to be the same as those in 2018.

For all the three O&D passenger demand models a linear regression model with

logarithmic transformation is used (Equation 3.1). Model specification for each of

the three models is the same with the exception of the set of dummy variables

included for each distance group. Based on Equation 3.1, the input variables in-

fluencing changes in passenger demand for which projections are also needed are:

population, mean household income per capita and generalised cost. The set of

dummy variables included in each model are assumed to remain the same through-

out all the projections years (2008-2025).

For population, projection estimates (Figure 4.1) have been extracted from

the US Census Bureau (2014a) for years up to 2017 and from the several state

governments websites for further years (see Appendix A for further details on the

several sources consulted). While economic growth (Figure 4.2), which is defined

as mean household income per capita, has been sourced from the US Bureau of

Economic Analysis (BEA) (2014).
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Figure 4.1: Population projections.

Figure 4.2: Mean household income projections.

Generalised cost is formed by the following information: airfares, flight time,

delay and value of time. Flight time and delay are considered to not change through-
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out the years. The assumption of a constant delay assumes that airport capacity is

added to maintain delays at existing levels in line with Dray et al. (2009). While

this may be a poor assumption in the short term, it can be considered a better

assumption in the long term. Value of time and value of delayed time is assumed

to have an annual growth rate of 0.5% from 2015 onwards. This corresponds to

the average annual growth rate between 2009 and 20141. Finally, different scenarios

have been considered for airfares.

Between 2008 and 2015, actual airfares data are used, which are obtained from

DB1B (2014). To generate projections into the future, airfares have been linked to

oil fossil fuel price projections2 to create 3 different scenarios (i.e. low, central and

high). Figure 4.3 shows actual oil fossil fuel prices up to 2015 and projections across

the 3 different scenarios from 2016 up to 2040.

Figure 4.3: Oil fossil fuel price actuals and projections.

Figure 4.4 presents the comparison between airfares weighted mean and oil

fossil fuel price between 2007 and 2013, which clearly shows that although airfares

are affected by oil fossil fuel prices, the percentage change year on year in airfares

is not as steep as it is in fossil fuel prices. Rate of change year on year for fares

1For further information regarding how the value of time and value of delayed time is calculated,
please refer to Appendix B.

2Oil fossil fuel price projections have been obtained from DECC (2015) which are assumed global.
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and oil fossil fuel prices is presented in Table 4.2. In order to project airfares for

the three scenarios considered (and presented in Figure 4.4), a simple relationship

between oil fossil fuel price change year-on-year and airfare change year-on-year has

been assumed since airline economics are not part of the scope of the thesis and

the underlying relationship between oil price and fares depends on multiple factors

related to airline economics, such as level of competition, hedging strategies, non-fuel

costs, etc. The simple relationship between airfare and oil fossil fuel prices, which is

based on historical oil and fuel price variation over the modelling period, considers

three cases associated with the impact that the year-on-year change on oil fossil fuel

price has in airfares; these three cases are as per below (i.e. projected airfares for

the period 2007-2013 have also been added into Figure 4.4):

• Positive Year-on-Year (YoY) change - Fares have been assumed to increase by

1/7 of the oil fossil fuel price change;

• No YoY change - Fares have been assumed also without a YoY change;

• Negative YoY change - Fares have been assumed to decrease by 1% with respect

to the previous year fare.

Figure 4.4: Comparison between airfare weighted mean and oil fossil fuel price between 2007
and 2013.

131



Years

2008 2009 2010 2011 2012 2013

Fares weighted mean 3.2% -6.9% 6.6% 4.2% 0.9% 0.96%

Oil fossil fuel price 38.2% -3.6% 17.4% 34.6% -1.1% -4.1%

Table 4.2: Rate of change year on year comparison between oil fossil fuel and average airfares.

Figure 4.5: Mean airfare projections for low, central and high scenarios. Actual mean airfare
up to 2015.

To generate projections, city-pairs are split into 3 groups based on the dis-

tance group they belong to (i.e. short-, medium- or long-haul). For each of the

city-pairs within each subset O&D passenger demand is projected up to 2025. To

obtain system-wide passenger demand, passenger projections for each city-pair are

aggregated. Table 4.3 shows the percentage difference between predicted and ob-

served total passenger demand for each of the models by distance group. From

results shown in Table 4.3, it is clear that the economic crisis in 2009 has an impact

on the models’ results, as seen and discussed in Chapter 3 during the validation of

this sub-model. During 2009’s economic crisis, average airfares suffered a decrease

(Figure 4.4) most likely to promote air travel amongst the population. Since pas-

senger demand is inversely proportional to airfares, and in this case to generalised

cost (Section 3.4), a decrease in airfares prompted the models to forecast a higher
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passenger demand than expected.

short-haul medium-haul long-haul

Year Low Central High Low Central High Low Central High

2008 7.8% 6.3% 7.7%

2009 8.8% 14.5% 17.7%

2010 3.5% 9.0% 10.6%

2011 2% 6.0% 7.0%

2012 6.3% 7.2% 9.2%

2013 4% 4.0% 10.4%

2014 5.4% 9.9% 10.1%

2015 6.2% 12.0% 12.2%

2016 8.1% 4.2% -5.7% 9.1% 5.6% -3.4% 11.2% 7.5% -2.3%

2017 11.8% 5.5% -6.1% 9.1% 3.5% -6.8% 14.0% 7.9% -3.5%

2018 19.6% 10.7% -2.8% 10.9% 2.7% -8.8% 15.8% 7.7% -4.9%

Table 4.3: Difference between projected and observed total passenger demand by distance
group for years between 2008 and 2018.

Figures 4.6, 4.7 and 4.8 show the total projected O&D demand for city-pairs

considered for each distance group model (short-, medium- and long-haul) respec-

tively. Actual passenger demand levels are also included up to 2018.

Figure 4.6: Projected O&D passenger demand for city-pairs that are between 186 and 400
miles apart for years between 2008 and 2025. Actual passenger demand levels up to 2018.
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Figure 4.7: Projected O&D passenger demand for city-pairs that are between 400 and 2113
miles apart for years between 2008 and 2025. Actual passenger demand levels up to 2018.

Figure 4.8: Projected O&D passenger demand for city-pairs that are more than 2113 miles
apart years between 2008 and 2025. Actual passenger demand levels up to 2018.
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As mentioned earlier, projections obtained from the three models presented

above are aggregated to obtain the projected O&D passenger demand of the total

US network system. Figure 4.9 shows the total projected passenger demand for the

US domestic network for the three different scenarios considered based on airfares

projections. Figure 4.10 shows the total observed passenger demand for the US

domestic network against the projected passenger demand for years 2008, 2010, 2012,

2014, 2016 and 2018 and Table 4.4 shows the percentage error between projected

and observed passenger demand up to 2018.

As seen with the projections obtained for each of the O&D demand passenger

model by distance group, 2009 predictions tend to be much higher than those ob-

served. In general models slightly over predict passenger demand, because given the

way the model is formulated demand cannot go below 0, i.e. for a city-pair with

annual demand of 1,000 can only under-predict by 1,000, but can over-predict by

an unlimited amount leading to aggregate over-predictions for low-demand routes.

However, results shown in Figure 4.9 show that predicted trend is similar to the

one observed with exception of 2009. Results also show the models being sensible

to changes in economy and airfares. For example, one could notice the slight peak

of passenger demand in 2018, which could be the result of a combination between

a peak in mean household income projections (Figure 4.2) in 2018 along with quite

flat airfares projections for that same year (Figure 4.5).

Projections obtained imply an average yearly growth of passenger demand of

2% throughout the entire period (2008-2025); which are in line with recent forecasts

published by the FAA (FAA, 2019), by which domestic passenger growth in the

next 20 years is expected to average 1.8% per year. However, FAA’s 2007 forecast

projected a yearly average growth of 3.8% (FAA, 2007) for the years between 2008

and 20203.

3Note that the comparison might not be like for like, since FAA forecasts includes a larger
number of airports as well as regional services.
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Year Low Central High

2008 6.8%

2009 14.0%

2010 8.4%

2011 5.6%

2012 7.3%

2013 4.8%

2014 9.43%

2015 11.4%

2016 9.3% 5.7% -3.6%

2017 10.0% 4.3% -6.4%

2018 11.9% 4.3% -7.6%

Table 4.4: Difference between projected and observed total passenger demand for the US
domestic network for years 2008-2018.

Figure 4.9: Projected O&D passenger demand for the US domestic network. Actual values
up to 2018.
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Figure 4.10: Observed against predicted O&D passenger demand for the US domestic net-
work for years 2008, 2010, 2012, 2014, 2016 and 2018.

As stated earlier, for this example application of the modelling framework, the

impact of network evolution, such as changes on average flight times (i.e. if a direct

link is added in a market where only one-stop itineraries were available, flight time

will most likely decrease) to the overall passenger demand is not considered and

therefore this module is the only one that does not receive feedback from the other

modules of the modelling framework. Considering the amount of uncertainty on how

other factors will also change (e.g. airfares) and that flight time is introduced in the

model through generalised cost, it is assumed the impact might not be significant

(i.e. a new shorter route might have a lower flight time but might imply a greater

airfare, which would balance the changes).

For example, the market Chicago-New York sees its average flight time being

reduced by about 13 minutes in 2008 (i.e. compared to the actual value used) when

considering the results obtained from the network evolution model for that year (due

to changes in the connectivity of the available airport-pairs serving that market).

This reduction of average flight time would imply passenger demand for this market

to increase by 5% with respect to the currently predicted levels if and only if the

rest of variables are kept the same. However, as mentioned earlier, the uncertainty
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around how the other factors affecting the overall demand, such as airfares or delay,

would need to also be taken into account; as well as the fact that flight times for

previously non-existing links is calculated by computing the product between average

speed and market distance, which might be a too simple assumption. In this case

example the reduction of flight time by 13 minutes is due to the new links added

being associated with smaller airports (e.g. SWF-ORD), which are expected to have

lower delay than those existing links between large airports (e.g. JFK-ORD); and

therefore the overall passenger demand would be expected to not grow as much.

In this study, only scenarios regarding fares have been considered. However, it

is known that also income would have an impact on passenger demand. Total num-

ber of passengers projected by 2025 for the US ATS is 543.8 million of passengers

for the central scenario. This is equivalent to an increase of 39.1% with respect to

2008. Projected mean household income per capita used as input variable shows

that mean household income in 2025 is 1.32 times that of 2008. On the one hand, if

mean household income in 2025 would have been 1.2 times that of 2008, total O&D

passenger demand would have been projected to be 466.6 million, considering the

rest of variables unchanged. This would imply a decrease of 14% with respect to

the initial projection and an increment of passenger demand with respect to 2008

of 19.3%. On the other hand, if mean household income in 2025 would have been

1.4 times that of 2008, total O&D passenger demand would have been projected to

be 596,261,692 considering the rest of variables unchanged. This would imply an

increase of 9.6% with respect to the initial projection and an increment of passen-

ger demand with respect to 2008 of 52.5%. This calculations have been computed

considering the linear relationship between mean household income and passenger,

which is specific to the 3 distance group considered (i.e. short, medium and long)4.

4.2 Airport connectivity model

The airport connectivity model projects evolution of US ATS network by projecting

which airport-pairs (i.e. links) will be added to the network year-on-year and which

will be removed from it. The problem is split between two models: one for link

addition and one for link removal. The link addition model predicts airport-pairs

4Percentage of O&D demand by distance group is found to be as follows: short-haul holds 9.1%;
medium-haul holds 78.3%; and long-haul holds 12.6%.
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that are currently disconnected (i.e. there are not flights operating between airports

i and j ) and that will be added into the network the following year. The link

removal model predicts airport-pairs that are currently connected (i.e. there are

flights operating between airports i and j ) and that will be remove from the network

the following year (i.e. the operations will cease).

Both models use logistic regression as a model specification but they differ on

the set of input variables considered for each. While the link addition model con-

siders eigenvector centrality of the origin and destination airport, distance between

the pair of airports and information regarding whether the origin and destination

airport is a hub or not; the link removal model uses only a combined clustering

coefficient representative of the airport-pair being under study.

Projections for input variables are not necessary at this stage since hub in-

formation and distance between airport-pairs are considered to remain the same

throughout the projections years. Eigenvector centrality and clustering coefficient

are computed from actual data for the base year (2007) and then computed from

the projected connectivity from 2008 onwards since those two metrics only depend

on airport degree - i.e. total sum of airports that an airport i is connected to.

To generate predictions of airport connectivity changes within the US ATS all

possible airport-pairs that can be formed considering the 337 airports used in this

study are split based on their connectivity status in the base year (2007). The two

groups are: airport-pairs that are connected in 2007; and airport-pair that are not

connected in 2007.

Based on the analysis of the evolution of the US air transportation system

presented in Section 3.6, two thresholds in terms of number of links added and

removed to/from the system are considered. Both thresholds are set to 87 up to

2013, with the threshold for link addition to increase to 108 from 2014 onwards and

the threshold for link removal to decrease to 40 from 2014 afterwards. This decision

is taken based on the average number of links added and removed from 2014 to

2018 (Table 4.5) which clearly shows a more differentiated pattern than those in

the previous set of years (2007-2013) and presented in Table 3.7, which might be

reflecting the start of the recovery from the economic recession that occurred in

2009.
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Year
connected

airport-pairs

Connected
->

Connected

Connected
->

Unconnected
Unconnected
airport-pairs

Unconnected
->

Unconnected

Unconnected
->

Connected

2014 1,946 1,852 57 17,303 17,246 94

2015 1,942 1,863 83 17,307 17,224 79

2016 2,013 1,906 36 17,236 17,200 107

2017 2,074 1,970 43 17,175 17,132 104

2018 2,199 2,038 36 17,050 17,014 161

Mean 19,14 55 17,228 17,171 108

Table 4.5: Airport-pair connectivity between 2014 and 2018. An airport-pair is considered
connected if there are at least 52 flights operating between them.

Similarly, the other aspect to consider when studying the capacity network

evolution is the saturation within a given market. Based on Figures 3.19 and 3.20

(Chapter 3), which show the number of links that O&D markets had the previous

year a link was added and removed respectively, one could agree that most of the

capacity network evolution occurs within markets with no-direct or one link for link

addition and within markets which one or two links for link removal. Based on this,

the threshold of saturated market for link addition is set up to 2 and to 3 for link

removal after 2013.

Considering the above assumptions, projections for airport-pair connectivity

changes are generated from 2008 up to 2025. Table 4.6 presents the confusion ma-

trix, which is used to visually compared observed number of airport-pair connected

and disconnected against predicted number of airport-pair connected and discon-

nected, for years 2008, 2010, 2012, 2014, 2016 and 2018. Values presented in Table

4.6 are the cumulative values of the results obtained after applying the link addition

and removal models. Although errors might seem low - i.e. number of predicted

airport-pairs being connected which are actually not connected, and number of pre-

dicted unconnected airport-pairs which are actually connected -, number of allowed

connectivity changes was limited, and therefore the error increase that can be seen

through the years is a clear sign of low model precision as presented in Section 3.6.

This is the result of error propagation, since from 2009 onwards input data for CC

and EVC, which are part of the explanatory variables set, are being computed from

projected values which as shown in Table 4.6 have low precision.

Similarly as done in Section 3.6 a further analysis is performed to check whether

the results obtained by combining the link addition and removal model results allow
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Predicted

Connected Unconnected

Year = 2008

Observed
Connected 14119 102

Unconnected 139 1905

Year = 2010

Observed
Connected 13239 195

Unconnected 349 1622

Year = 2012

Observed
Connected 12794 204

Unconnected 417 1632

Year = 2014

Observed
Connected 12414 227

Unconnected 486 1630

Year = 2016

Observed
Connected 12009 268

Unconnected 563 1638

Year = 2018

Observed
Connected 11848 365

Unconnected 613 1681

Table 4.6: Observed number of airport-pair connected and disconnected against Predicted
number of airport-pair connencted and disconnected for years 2008, 2010, 2012, 2014, 2016
and 2018.

the prediction of the evolution trend of the entire network. In order to do that the

projected network degree, network eigenvector centrality and network average path

length5 evolution are computed, with values for years between 2008 and 2018 being

compared to their actual values (Figures 4.11, 4.12 and 4.13).

Projections for network degree, eigenvector and average shortest path (Figures

4.11, 4.12 and 4.13) are quite close to actuals up to 2015, where projections seem

to diverge towards smaller values for all three metrics. Considering external factors,

in 2015 there was a quite steep drop of fossil fuel prices, which in turn affected also

airfares. This suggests that connectivity changes within the US network might be

influenced by changes in fuel prices, making the study of how fossil fuel price changes

5The average path length in a system is calculated based on the shortest paths between all pairs
of airports.
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affect network evolution a potential line of research for future work.

Results obtained for the system-wide network theory metrics are slightly higher

than the ones presented by Kotegawa’s work (2012) for network degree (e.g. network

degree was found to be about 17.1 in 2009 as opposed as around 20 in this research);

but quite similar in terms of network eigenvector centrality (i.e. 0.28) and average

shortest path (i.e. 2.29). The observed increment on average network degree would

be a sign that the new links added to the network are associated with already well-

connected airports, and therefore favouring a hub-and-spoke strategy. In contrast,

the link addition and removal model projections seem to balance out by keeping

a similar network structure across all the projections years, suggesting that other

external factors, such as the mentioned changes in fuel prices or government cuts

might also be influencing how connectivity changes occur.

Figure 4.11: Projections for the US Air Transportation average network degree between 2008
and 2025. Actuals for years between 2008 to 2018.
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Figure 4.12: Projections for the US Air Transportation network average eigenvector centrality
between 2008 and 2025. Actuals for years between 2008 to 2018.

Figure 4.13: Projections for the US Air Transportation network average path length between
2008 and 2025. Actuals for years between 2008 to 2018.
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4.3 Case 1: Evolution of the US network not considered

In this case results obtained from the airport-pair connectivity model presented

in the above section are not considered and therefore itinerary availability will be

considered to remained unchanged from 2018 onwards. This case involves generat-

ing projections from the itinerary choice model using both approaches presented in

Chapter 3 (i.e. multinomial logit and neural network models) and to produce air

traffic level projections up to 2025.

In order to generate projections for itineraries serving any O&D, two method-

ologies are used and presented in the following sub-sections: itinerary choice model

using a multinomial logit through a 2-SCF methodology (Sections 4.3.1); and neural

networks (4.3.2); both sets of projections will be compared and discussed in Section

4.3.3. The results of those two sets of projections will be used as one of the input vari-

ables for the third stage of the modelling framework which aims to project air traffic

levels. In this case (i.e. only when evolution is not considered), two sets of results

are also generated when projecting air traffic levels based on the model used: the

2-SLS model with auto-regressive term; and the OLS model without auto-regressive

term; both presented in Sections 4.3.4 and 4.3.5 respectively.

4.3.1 Case 1 - Itinerary choice model: multinomial logit model

As input set, each O&D for which passenger demand has been projected during the

first stage will be considered. For each of these O&D a maximum of 9 itineraries is

compiled up to 2018, with itineraries afterwards considered to remain the same as

2018.

Similarly to the O&D passenger demand stage, 3 different scenarios have been

estimated: low, medium, high; which are defined by itinerary fares projections. The

same simple relationship between airfares and oil fossil fuel price changes that has

been considered for the O&D demand module has also been considered for this

model. Note that scenario results from the O&D passenger demand module are

matched to the same scenario at this stage (e.g. market passenger demand from low

scenario will be used in the low scenario when computing itinerary shares). Figure

4.14 shows the average itinerary fare throughout projections years (i.e. 2008-2025)

for the 3 scenarios.
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To generate projections at this stage, itinerary fares are first projected by using

Equation 3.17. Then, the model estimation results from the second stage of the

itinerary choice model are applied as the set of coefficients for equation 3.16, so that

the utility and the probability of choosing each itinerary can be calculated. Input

dataset for this second stage will include the estimated itinerary fares from stage 1

as well as the residual value.

To evaluate the results a system-wide metric is computed: Revenue Passenger

Kilometre (RPK). RPK is the basic measure of passenger traffic and reflects how

many available seats were actually sold. RPK is defined as the product between

number of passengers and kilometres they have flown. Figure 4.15 shows the com-

parison and projections for RPK, whereas Table 4.7 presents RPK for years 2008,

2018 and 2025.

Figure 4.14: Itinerary fares actuals and projections.
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Figure 4.15: RPK actuals and projection values.

Scenario 2008 2018 2025 Change 2025 vs 2008

Actual 368,828 495,347

Low 437,908 603,251 630,936 44.1%

Central 437,908 562,039 611,005 39.5%

High 437,908 498,498 564,428 28.9%

Table 4.7: RPK actuals and projected (in millions) for years 2008, 2018 and 2025 for the
itinerary choice model estimated using multinomial logit.

4.3.2 Case 1 - Itinerary choice model: neural network

When considering the itinerary choice model built using neural network, the input

dataset is the same as the one used for the itinerary choice model estimated using

multinomial logit model. To evaluate results the same metric is used, i.e. RPK. Fig-

ure 4.16 shows the comparison and projections for RPK, whereas Table 4.8 presents

RPK for years 2008, 2018 and 2025.
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Figure 4.16: RPK actuals and projection values.

Scenario 2008 2018 2025 Change 2025 vs 2008

Actual 368,828 495,347

Low 444,394 620,495 630,936 44.1%

Central 444,394 571,390 618,651 39.2%

High 444,394 504,563 571,324 28.6%

Table 4.8: RPK actuals and projected (in millions) for years 2008, 2018 and 2025 for the
itinerary choice model estimated using neural networks.

4.3.3 Case 1 - Itinerary choice model: comparison

To evaluate both models together, adjusted R2 is computed for years in which actual

data exist (i.e 2008-2018) for both sets of projections. Also, Figure 4.17 presents the

comparison between RPK projected up to 2025 for the two models and actual RPK

up to 2018. Overall, it is clear that results from both models are higher than those

actuals. Two possible reasons could explain the over-prediction of RPK by the two

models. First, itinerary shares are predicted based on city-pair passenger demand

predicted during the first stage of the modelling framework and as presented in Sec-
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tion 4.1, models at that stage slightly over-predicted passenger demand, prompting

error propagation through the itinerary share models. Secondly, a further check is

done by computing the proportion of non-stop passengers that each of the models

project (Figure 4.18), and it is compared to actuals’ non-stop passenger proportions

since a model predicting a larger number of one-stop passengers would tend to in-

crease the system-wide RPK. From Figure 4.18 it is clear that both itinerary choice

models tend to predict a greater proportion of one-stop passengers, especially the

neural network model which shows a much more sharp fluctuation. This is likely be-

cause the demand over-predictions is from routes with small numbers of passengers

(as these routes can be wrong upwards by more than they can be wrong downwards

in absolute terms). These routes are more likely to be the one-stop ones. Therefore

the RPK over-prediction is likely much stronger for one-stop routes. Also, it is worth

to notice that neural network model projections seem to be more affected by airfares

fluctuation, with a clear drop of non-stop passengers numbers in 2015 and a clear

difference amongst the three scenarios, suggesting that other factors not considered

in the model might be influencing the predictive power of this model. Overall, re-

sults for the multinomial logit model show a similar trend to those observed and a

smoother curve; and adjusted R2 values above 0.66 for the period 2008-2018, which

considering the error propagation from the O&D demand model is relatively high.

Year

Model 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

MNL 0.707 0.705 0.731 0.726 0.712 0.713 0.711 0.687 0.676 0.663 0.661

NN 0.578 0.559 0.564 0.589 0.626 0.600 0.608 0.463 0.586 0.583 0.566

Table 4.9: Adjusted R2 computed from the projections generated from both models up to
2018. Values referred to the Central scenario.
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Figure 4.17: RPK actuals and projection values for both models: multinomial logit and NN.

Figure 4.18: Comparison of percentage proportion of non-stop passengers obtained from the
MNL and NN models up to 2025. And actual proportion of non-stop passengers up to 2018.
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4.3.4 Case 1 - Air traffic levels model: Model 2-OLS

The third stage of the modelling framework projects air traffic levels per airport-

pair (i.e. segment). In this case, the projected passenger demand by itinerary

obtained during the previous stage is used as one of the explanatory variables of the

model. In this sub-section projections generated using the Model 2-OLS without

auto-regressive term are presented.

For projections, 3 different scenarios have been considered based on the passen-

ger demand projections obtained for each scenario (i.e. low, medium, high). Load

factor (LF) values are considered to be maintained as 2018’s levels afterwards. Also,

two sets of results have been computed: one considering the results obtained from

the itinerary choice model using multinomial logit; and another one for the neural

network results. Figures 4.19 and 4.20 show the comparison between predicted and

actual values for years 2008, 2010, 2012, 2014, 2016 and 2018 for the set of MNL

results and for the NN results respectively. Figure 4.21 shows traffic level projections

up to 2025 for the two sets of results (i.e. MNL and NN) as well as actuals up to

2018. Table 4.10 presents the traffic levels from 2008, 2018 and 2025 for the different

scenarios. As expected, results obtained from the application of the air traffic model

to data obtained when the MNL model is used are closer to those observed air traffic

levels; trends for this set of results are also smoother due to smoother itinerary share

results (Figure 4.17).
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Figure 4.19: Comparison between predicted and observed traffic levels for years 2008, 2010,
2012, 2014, 2016 and 2018. Predicted values are obtained using segment passenger demand
obtained from applying the MNL model. Model used: Model 2-OLS.

Figure 4.20: Comparison between predicted and observed traffic levels for years 2008, 2010,
2012, 2014, 2016 and 2018. Predicted values are obtained using segment passenger demand
obtained from applying the NN model. Model used: Model 2-OLS.
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Figure 4.21: Total traffic level projections up to 2025 for the 2 sets of results: MNL and NN.
Actual traffic levels up to 2018. Model used: Model 2-OLS.

Model Scenario 2008 2018 2025 Change 2025 vs 2008

Actual 3,885,429 3,570,238

MNL

Low 3,359,747 3,787,203 3,927,787 16.9%

Central 3,359,747 3,602,729 3,837,636 14.2%

High 3,359,747 3,320,844 3,628,929 8%

NN

Low 3,472,379 4,118,369 4,051,668 16.7%

Central 3,472,379 3,736,944 3,916,614 12.8%

High 3,472,379 3,383,964 3,694,722 6.4%

Table 4.10: Air traffic levels projections for 2008, 2018 and 2025 for the two sets of results
and scenarios. Actuals for 2008 and 2018.
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4.3.5 Case 1 - Air traffic levels model: Model 1-2SLS

In this sub-section projections generated using the Model 1-2SLS which includes

the auto-regressive term amongst the explanatory variable set are presented. To

evaluate projections generated by this model, the total number of flights in the US

ATS is plotted and compared against actuals for years up to 2018. Figures 4.22

and 4.23 show the comparison between predicted and actual values for years 2008,

2010, 2012, 2014, 2016 and 2018 for the set of MNL results and for the NN results

respectively. Figure 4.24 shows traffic level projections up to 2025 for the two sets

of results (i.e. MNL and NN) as well as actuals up to 2018. Table 4.11 presents the

traffic levels for 2008, 2018 and 2025 for the different scenarios. From the results

obtained few aspects can be highlighted: both sets of results generate less smooth

trends than observed, with MNL set of results being slightly closer to those observed

air traffic level; as expected NN set of results show a higher number of flights at the

system-level since those results predicted higher proportion of one-stop passengers,

this difference being much higher for years when the difference in non-stop passengers

was much greater (i.e. 2015 as presented in Figure 4.18); and projected values for

years 2018 onwards from both models do not show any clear difference across the

different scenarios suggesting that this model has a high dependency on previous

year’s number of flights6 omitting any other factor that could impact air traffic levels,

and therefore making this model’s applicability somehow limited. To illustrate the

latter point better, Figure 4.25 shows the comparison between the projected total

number of flights when the Model 2-OLS and the Model 1-2SLS are used, clearly

showing the influence that other factors (e.g. such as airfares fluctuations) have

towards air traffic levels for the former model.

6Note that for Case 1 results, the network is assumed to be static from 2018 onwards.
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Figure 4.22: Comparison between predicted and observed traffic levels for years 2008, 2010,
2012, 2014, 2016 and 2018. Predicted values are obtained using segment passenger demand
obtained from applying the MNL model. Model used: Model 1-2SLS with auto-regressive
term.

Figure 4.23: Comparison between predicted and observed traffic levels for years 2008, 2010,
2012, 2014, 2016 and 2018. Predicted values are obtained using segment passenger demand
obtained from applying the NN model. Model used: Model 1-2SLS with auto-regressive term.
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Figure 4.24: Total traffic level projections up to 2025 for the 2 sets of results: MNL and NN;
and using Model 1-2SLS with auto-regressive term. Actual traffic levels up to 2018.

Figure 4.25: Total traffic level projections up to 2025 for the 2 sets of results: MNL and NN;
and using Model 1-2SLS with auto-regressive term. Actual traffic levels up to 2018.

155



Model Scenario 2008 2018 2025 Change 2025 vs 2008

Actual 3,570,238 3,885,429

MNL

Low 3,199,070 3,717,904 3,515,873 9.9%

Central 3,199,070 3,655,594 3,523,311 10.1%

High 3,199,070 3,605,952 3,538,469 10.6%

NN

Low 3,315,464 3,793,214 3,490,422 5.3%

Central 3,315,464 3,719,219 3,520,000 6.2%

High 3,315,464 3,625,661 3,539,673 6.8%

Table 4.11: Air traffic levels projections for 2008, 2018 and 2025 for the two sets of results
and scenarios; when using Model 1-2SLS with auto-regressive term. Actuals for 2008 and 2018.

4.4 Case 2: Evolution of the US network considered

Another set of simulations are produced when considering the airport-pair connec-

tivity results presented in Section 4.2. Similarly to when network evolution is not

considered, two sets of results are generated based on the itinerary choice model

used: multinomial logit or neural network. In this case, the Model 1-2SLS with

auto-regressive term to predict air traffic levels is not used and only results obtained

when using the Model 2-OLS are presented.

4.4.1 Case 2 - Itinerary choice model: multinomial logit model

When considering network evolution, to be able to generate projections of itinerary

shares available itineraries need to be compiled since routes that were not possible

may become available and routes that were once possible may become unavailable.

In order to compile the different itineraries the following rules apply:

• A non-stop itinerary between city o and d would be possible if any airport-pair

serving those two cities has been predicted as connected;

• A one-stop itinerary between city o and d would be possible only if both legs

of a one-stop itinerary serving that city-pair (i.e. O&D) have been predicted

as connected;
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• For each O&D, new possible itineraries will be checked against existing ones.

Only if a new itinerary has a shorter flight time than the maximum flight time

of those existing itineraries, this will be added.

• For each O&D a maximum of 2 new itineraries can be added each year and

the maximum number of available itineraries per O&D considered is 10. The

most restrictive rule will apply.

• In the case when more than 2 new itineraries can be added, those would be

ordered by journey time and only those top 2 will be added.

Journey times for those new itineraries are calculated by multiplying average

speed with the market distance of the new itinerary. Average speeds are computed

by hub airport used and group distance7. Itinerary fares for those new itineraries

are computed in a similar way -i.e. product of average fare per mile times market

distance-; and average fare per mile is also computed based on hub airport used and

group distance.

To evaluate the results the same metric used when network evolution is not

considered (Section 4.3.3) is computed (i.e. RPK). Projections are generated for

the 3 scenarios considered: low, central and high. Figure 4.26 presents RPK pro-

jected values for the MNL set of results with Table 4.12 presenting the RPK values

(in millions) for years 2008, 2018 and 2025. Results obtained (Figure 4.26) when

applying the multinomial logit model show a similar trend to those obtained when

the network evolution was not considered, suggesting that such model is not largely

affected but network structure changes and tends to predict more towards non-stop

passengers. A slight difference is noticeable in the fact that projected RPKs growth

(change between 2008 and 2025) - i.e. from Table 4.12: 43.3% for the low sce-

nario, 38.9% for the central scenario and 28.3% for the high scenario - are slightly

softer than those obtained when the model was considered static - i.e. from Table

4.7: 44.1% for the low scenario, 39.5% for the central scenario and 28.9% for the

high scenario. Overall, differences to those RPK levels observed are slightly higher

than when considering a static network, which can be explained by the fact that

new itineraries added to the network tend to be one-stop itineraries and therefore a

further share of passengers would travel through such itineraries.
7Group distances are: 1 - 0 to 500 miles; 2- 500 to 750 miles; 3- 750 to 1000 miles; 4- 1000 to

1250 miles; 5- 1250 to 1500 miles; 6- 1500 to 1750; 7- 1750 to 2000; 8- more than 2000 miles.
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Figure 4.26: RPK actuals and projection values when applying the MNL model and consid-
ering evolution of the US ATS. Model used: MNL.

Scenario 2008 2018 2025 Change 2025 vs 2008

Actual 362,573 458,642

Low 441,096 607,091 632,622 43.3%

Central 441,096 565,587 612,641 38.9%

High 441,096 501,595 565,913 28.3%

Table 4.12: RPK actuals and projected (in millions) for years 2008, 2018 and 2025 for the
itinerary choice model estimated using multinomial logit and considering evolution of the US
ATS.

4.4.2 Case 2 - Itinerary choice model: neural network model

When considering the itinerary choice model built using neural network, the input

dataset is the same as the one used for the itinerary choice model estimated using

multinomial logit model and the same rules apply to compile the available itineraries.

Also, to evaluate results the same metric is used, i.e. RPK. Figure 4.27 shows the

comparison and projections for RPK, whereas Table 4.13 presents RPK for years

2008, 2018 and 2025. Similarly to MNL results, results obtained when applying the
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NN model (Figure 4.27) present a similar trend to those obtained when network

evolution was not considered. Also, RPK growth between 2008 and 2025 is softer

when network evolution is considered - i.e. from Table 4.13: 42.7% for the low

scenario, 38.1% for the central scenario and 27.5% for the high scenario -, than

when it is not - i.e. from Table 4.8: 44.1% for the low scenario, 39.2% for the central

scenario and 28.6% for the high scenario. Overall, the difference between predicted

and observed RPK levels is larger when considering network evolution as well as

when comparing it to the results obtained when using the MNL model.

Figure 4.27: RPK actuals and projection values when applying the NN model and considering
evolution of the US ATS.

Scenario 2008 2018 2025 Change 2025 vs 2008

Actual 362,573 458,642

Low 458,469 626,452 654,277 42.7%

Central 458,469 584,171 633,439 38.1%

High 458,469 517,917 584,791 27.5%

Table 4.13: RPK actuals and projected (in millions) for years 2008, 2018 and 2025 for the
itinerary choice model estimated using neural networks and considering evolution of the US
ATS. Model used: NN.
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4.4.3 Case 2 - Itinerary choice model: comparison

To evaluate both models together, adjusted R2 is computed for years in which actual

data exist (i.e 2008-2018) for both set of projections (Table 4.14). Also, Figure 4.28

presents the comparison between RPK projected up to 2025 for the two models and

actual RPK up to 2018. A similar picture than the one obtained when considering

a static network is obtained (Figure 4.17) when considering network evolution. NN

results show higher values of RPK levels than those obtained through the MNL

model; and overall predicted RPK tend to be on the over-prediction side, however,

trends are smoother and quite in line with actuals up to 2018, specially for central

and low scenario. Two main reasons are believed to be causing over-prediction: first,

projected city-pair passenger demand obtained in stage 1 are slightly over-predicting

prompting to error propagation; and both MNL and NN model tend to under predict

the proportion of non-stop passengers in the network as shown in Figure 4.29, with

differences to those actuals being larger than when the network was assumed to be

static.

Year

Model 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

MNL 0.689 0.668 0.689 0.680 0.648 0.662 0.658 0.626 0.626 0.625 0.620

NN 0.417 0.419 0.406 0.365 0.415 0.415 0.346 0.329 0.485 0.516 0.506

Table 4.14: Adjusted R2 computed from the projections generated from both models up to
2018 when considering network evolution (Case 2). Values referred to the Central scenario.
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Figure 4.28: RPK actuals and projection values comparison for both models (MNL and NN)
when considering evolution of the US ATS.

Figure 4.29: Comparison of percentage proportion of non-stop passengers obtained from the
MNL and NN models up to 2025. And actual proportion of non-stop passengers up to 2018.
Case when considering the evolution of the US ATS.
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4.4.4 Case 2 - Air traffic levels: considering Airport-Pair connec-

tivity

The results from the itinerary choice models are then used as input variables for

the air traffic model. Two sets of results are produced: one regarding the MNL

results; and one regarding the NN results. Note that projections are generated

only using the Model 2-OLS. Amongst the set of explanatory variables, load factors

have been considered to be constant from 2018 onwards; for new itineraries historical

values have been assumed for the same itinerary; and for those new itineraries where

historical information does not exist, load factors have been assumed to be equal to

the average network load factor.

Figure 4.30 and 4.31 shows the comparison between predicted and observed

traffic levels for years 2008, 2010, 2012, 2014, 2016 and 2018 when using segment

passenger demand obtained from the MNL and NN model respectively. Whereas

Figure 4.32 shows traffic level projections up to 2025 for the two sets of results (i.e.

MNL and NN). Table 4.15 presents the traffic levels fro 2008, 2018 and 2025 for the

different scenarios. Since MNL results are closer to those observed, better accuracy

is expected to be obtained from applying the air traffic model to MNL results as seen

when comparing Figures 4.30 and 4.31 specially in the long-term. Interesting to see,

however, that total number of flights in the US ATS predicted when considering the

set of NN results are quite close to those observed levels up to 2015, suggesting that

the increase on one-stop passengers would tend to be mitigated by larger aircraft.

Considering the results presented in Figure 4.32 a simple check on average number

of passengers per aircraft can be done by simply dividing the the total number

of passengers in the network at the segment level by the number of total predicted

flights (Figure 4.33). Results show how the set of NN results assume a higher average

number of passenger per aircraft which could suggest a shift towards the use of larger

aircraft. In both set of results similar trends are however observed.
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Figure 4.30: Comparison between predicted and observed traffic levels for years 2008, 2010,
2012, 2014, 2016 and 2018. Predicted values are obtained using segment passenger demand
obtained from applying the MNL model. Case when considering the evolution of the US ATS.

Figure 4.31: Comparison between predicted and observed traffic levels for years 2008, 2010,
2012, 2014, 2016 and 2018. Predicted values are obtained using segment passenger demand
obtained from applying the NN model. Case when considering the evolution of the US ATS.
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Figure 4.32: Total traffic level projections up to 2025 for the 2 sets of results: MNL and NN.
Actual traffic levels up to 2018. Case when considering the evolution of the US ATS.

Figure 4.33: Average LF over time obtained up to 2025 for the 2 sets of results: MNL and
NN. Actual traffic levels up to 2018. Case when considering the evolution of the US ATS.
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Model Scenario 2008 2018 2025 Change 2025 vs 2008

Actual 3,885,429 3,570,238

MNL

Low 3,354,295 3,602,085 3,674,856 9.6%

Central 3,354,295 3,422,943 3,590,924 7.05%

High 3,354,295 3,149,278 3,396,427 1.36%

NN

Low 3,673,772 3,985,713 4,139,997 12.7%

Central 3,673,772 3,783,158 4,034,515 9.8%

High 3,673,772 3,459,970 3,792,052 3.2%

Table 4.15: Air traffic levels projections for 2008, 2018 and 2025 for the two sets of results
and scenarios. Actuals for 2008 and 2018.

4.5 Comparison between Case 1 and Case 2

In order to assess the impact that network evolution has to the US ATS system

results obtained from Case 2 are compared to those obtained in Case 1 (i.e. when

the network was considered static). This is done considering results obtained only

for the Central scenario, however results for the Low and High scenario yield a

similar behaviour8. In order to performed the comparison, the following system-

wide metrics for Case 1 and 2 are plotted: RPK; proportion of non-stop itineraries;

and total number of flights. These metrics are shown in Figures 4.34, 4.35 and 4.36

respectively.

8Since the behaviour of the results from the low and high scenario are similar to those obtained
in the central scenario, only the latter is plotted to help illustrate the differences.
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Figure 4.34: RPK projections for the Central scenario and considering no-evolution (Case
1) and evolution (Case 2) of the network.

From the comparison of RPK values obtained (Figure 4.34) it can be seen

that in both cases (i.e. considering network evolution and without considering it)

projected RPK values follow the same trend. As expected, results for the case

when the NN model is used to estimate itinerary shares are higher than when using

the MNL models since the former tends to predict a higher proportion of one-

stop passengers than the latter, specially for the case when evolution is considered

as it can be seen in Figure 4.35. From the comparison of proportion of non-stop

passengers (Figure 4.35) it can be seen how NN models have a higher variability than

the MNL models, suggesting that the former might be affected by external factors

that have not been taken into account, such as the composition of the connections

formed -i.e. the trend of proportion of non-stop passenger for the Case 2-NN model is

smoother than those obtained for the Case 1-NN model -; or that the influence from

factors such as fossil fuel prices might be larger than that experienced by the MNL

models. Overall, results obtained by the MNL models are more in line with those

observed currently in the network as seen in Sections 4.3.3 and 4.4.3. Considering

that results obtained from the NN models tend to be larger than those obtained by

the MNL models, results for the total number of flights are in line with expectations
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(Figure 4.36). for example results obtained for Case 2 - NN show a peak in flight

numbers in 2015 in line with the decrease of non-stop passengers predicted for this

set of projections in 2015 (4.35); and a similar behaviour can be seen for the rest of

years.

Results from the NN suggest that influencing factors towards itinerary choice

are valued differently that in the MNL model, since the NN model favours stopping

routes so much more than the MNL one - e.g. it might be that for the NN model

journey time is less important. However, the characteristics of neural networks do

not allow a direct interpretation of the influences of the input variables as it can be

done with the MNL model (i.e. reason why neural networks are sometimes referred

to as ’black box’). One way in which this could be done, and can be investigated

in future work, is through LIME, which is a technique that attempts to understand

the model by perturbing the input of data samples and understanding how the

predictions change. Overall, results show that in a mature system such as the US

ATS, air traffic flows are expected to not drastically change if network evolution

occurs.

Finally, forecast trends obtained seem to be in line with those published by

the FAA (2019), which forecasts that RPM will grow in the domestic market by

1.9% a year between 2019 and 2039. Considering the overall results for the Central

scenario and for the entire period, yearly forecast RPK growth for Case 1 is 1.9% and

1.88% for the set of MNL and NN results respectively; whereas for Case 2, yearly

forecast RPK growth is 1.87% and 1.84% for the set of MNL and NN projections

respectively. Note that FAA’s 2007 (2007) forecast expected a yearly average RPM

growth of 2.5% for mainline carriers for the period between 2008 and 20209.

9Note that the comparison might not be like for like, since FAA forecasts includes a larger
number of airports as well as regional services.
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Figure 4.35: Proportion of non-stop passengers projections for the Central scenario and
considering no-evolution (Case 1) and evolution (Case 2) of the network.

Figure 4.36: Air traffic levels projections for the Central scenario and considering no-
evolution (Case 1) and evolution (Case 2) of the network.
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Chapter 5

Conclusions and future work

5.1 Overall achievements compared to objectives

The work presented in this dissertation has studied the connectivity changes of an

air transportation system and assessed the effect that those changes have on the

rest of the network, such as route-level demand and air traffic levels. An airport

connectivity model that predicts route addition and removal has been created and

combined with an air itinerary choice model and an air traffic model to better reflect

the impact of that evolution at the network level.

The review of forecasting models within aviation, discussed in Chapter 2, re-

vealed that the latest forecasting methodologies do not consider the evolution of

connectivity changes in the network, nor the impact that such changes have on

the rest of the network. The current work has attempted to address this gap in

modelling.

The development of an airport connectivity model has proved challenging, es-

pecially when the example application is a mature air transportation system (i.e.

US) as discussed in Chapter 3. Model precision (percentage of correctly predicted

connectivity changes over those that have been predicted as connectivity changes)

achieved is low (i.e. 20%), which is believed to be due to the existence of factors

that are impossible to model, specially for a mature network such as the US ATS,

such as anticipating subsidies from airports to airlines to open new routes. However,

some insights obtained from using network theory to understand network connec-

tivity changes prove the potential of this area being applied to understand network
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evolution.

In the topic of air itinerary choice modelling, little research has been done at

the network level on its own, with most of those existing using proprietary data

and having their application limited to a subset of city-pairs mainly due to data

availability and/or computational limitations during the estimation process, which

limits the predictive capabilities of such models to a subset of cities; moreover, none

of the existing research considers the dynamics of the network and therefore only

itineraries available in the base year are considered as an option for future choices.

In the present work, a single itinerary choice model for an entire air transporta-

tion system has been created based on two alternative techniques, multinomial logit

and neural network. This has allowed a comparative analysis of their predictive

power when network evolution is considered.

A single model has been created using multinomial logit by using an approxima-

tion method to reduce the computational limitations; with accuracy levels compara-

ble to those existing methodologies found in the literature, as discussed in Chapter 3.

The single neural network model did not encounter the computational limitations,

but the accuracy levels achieved were not as good as the multinomial logit model.

It is expected that developing the neural network beyond the basic level explored

in this thesis could improve the performance of the model; however further insight

into why this model achieved poorer results than the MNL model would be required

prior to such development.

For the air traffic model, the methodology used follows the widely used ap-

proaches found in the literature.

Overall, the objectives drawn at the start of this research have been met and, to

the author’s knowledge, this integrated research project, considering both network

connectivity changes as well as the impact that these have at route- and segment-

level is an original and valuable contribution to the body of knowledge.
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5.2 Modelling framework

5.2.1 O&D demand model

An O&D passenger demand model has been developed using linear regression with

logarithmic transformation. This research showed that O&D passenger demand

for different distance groups is best modelled differently, as found in some cases

in the literature. Splitting city-pairs by three different distance groups (i.e. short-,

medium- and long-haul) and estimating a set of parameters for each of these distance

groups improved the predicting power of the models, compared to a single model

including all distance groups, from 0.5 to 0.8 as presented in Section 3.4.2; results

that are in some cases higher than those found in the literature.

5.2.2 Airport connectivity model

Network evolution has been incorporated into the modelling framework through an

airport connectivity model which predicts which airport-pairs would change their

connectivity (i.e. either from connected to unconnected or vice-versa). The problem

is split into two parts: a link addition model, which aims to predict those airport-

pairs that are added to the network; and a link removal model, which aims to predict

those airport-pairs that are removed from the network. The modelling approach ex-

plores the use of network theory metrics but, in contrast to previous work reported

in the literature, additional input variables, such as passenger demand and demo-

graphic characteristics, are considered to improve the accuracy of the connectivity

prediction. From these several possible input variables, the clustering coefficient is

the main driver for the link removal model; whereas for link addition the important

parameters are eigenvector centrality, distance between airport-pairs and whether

neither or both airports are hubs. Other variables, such as O&D passenger demand,

did not improve the models and therefore were disregarded.

The application of network theory metrics to study the connectivity of the US

ATS produces similar results to those found in the literature: the US ATS follows

a power-law degree distribution, by which most of the nodes have only few links

while only few of the nodes have a high degree (consistent with a hub- and-spoke

network); airport clustering coefficient is, in most cases, inversely proportional to
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node degree, which is a sign that some large airports might not be as robust to

disruption (e.g. a link suddenly removed from the network or sudden closure of

an airport) as other mid- and small- airports. The conclusion drawn is that the

clustering coefficient might be capturing low-cost carriers’ point-to-point strategy,

rather than hub-and-spoke flag carrier’s strategy, and therefore that the US ATS

might be better modelled as a combination of distinct sub-networks.

The percentage of correctly predicted connectivity changes from both models

is about 20%, which is quite low although consistent with results from the litera-

ture; however, the false positive rate (i.e. the percentage of actual negatives that

are incorrectly identified as positive) for the link addition model is lower than those

found in the literature, which shows the benefit of including a wider set of variables,

beyond those associated with network theory, to improve this type of model. More-

over, the results showed that, although these models are not suitable for predicting

airport-pair connectivity changes at the individual level, they seem to be able to

capture the evolution of the network at the aggregate level (i.e. system-wide) in

the short-term. This suggests that the incorrectly predicted individual connectivity

changes predicted by the models nevertheless capture some of the characteristics

observed in the wider system.

Overall, the airport connectivity work has revealed the much greater complexity

needed to model network evolution, especially for cases when a mature system is

considered. The comparison between observed and predicted system-wide network

characteristics (discussed in Section 4.2) suggests that changes in fossil fuel prices

may influence overall network characteristics, and consequently network evolution:

for example, an increase of fossil fuel prices might lead to a decrease in connected

links, due to the impact on airline’s operational costs. Government expenditure

in commercial aviation can also influence how the network develops, this being a

reflection of the country’s economy; and further consolidation in the industry would

also lead to an increase in links removed, especially in small airports which are

typically associated with less profitable routes.

5.2.3 Itinerary choice model

The impact of network evolution is first assessed by considering changes to air

itinerary shares. Since the consideration of network dynamics in air itinerary choice
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modelling is a new area of research, this assessment is done by developing two

itinerary choice models using two different modelling approaches to allow for a com-

parison: multinomial logit (MNL) and neural networks (NN). The work done in this

topic appears to be a new contribution to this area, since a comparable research was

not found in the literature.

A single MNL model applicable to the entire US ATS was successfully devel-

oped, overcoming computational limitations and endogeneity issues (associated with

journey fare). Computational limitations were solved by applying the Berkson-Theil

approximation method which transforms the maximum likelihood estimation pro-

cess to a simple least-squares method. The endogeneity problem was solved by using

a 2-stage control function method, by which predicted airfares are used as one of the

input variables rather than actual fares; this is a common solution approach reported

in the literature and described in Chapter 3. The combination of the two approaches

is another significant contribution to the field of air itinerary choice modelling, since

the high model accuracy obtained demonstrates the validity of using the Berkson-

Theil approximation method with WLS, making this methodology comparable to

the most common methods in the literature but with a higher degree of simplicity.

A single NN model was also successfully developed; however, results were not

as good as those obtained from the MNL model and further work needs to be done to

understand the reasons behind the respectable (but inferior to the MNL) accuracy

achieved. The development and test of the NN model has shown the potential of this

alternative methodology, which does not suffer from the computational limitations

of MNL, and highlights that such models are have different sensitivities to the more

commonly used MNL, for example sensitivity to journey time, fare and network

changes. This suggests that other factors than those used in this study, such as fuel

price, might yield a better fit when using neural networks.

5.2.4 Air traffic model

A linear regression model estimated using OLS estimator is used to model air traffic

levels, as widely adopted in the literature. The set of input variables include the

predicted passenger demand for a given airport-pair, longest runway length, distance

between the airport-pair, load factor and hub information. Results are consistent

with those found in the literature. The Model 2-OLS has also been compared with
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an earlier model using 2SLS as estimator with an auto-regressive term (i.e. Model

1-2SLS). In a mature system, such as the US, air traffic flows are expected not to

change drastically, and therefore results from the Model 1-2SLS were unsurprisingly

better. However, by using the auto-regressive term, the influence on air traffic levels

from other variables, such as such as aircraft type limitation, is weakly captured,

therefore limiting the applicability of this model; this was clear when projections of

air traffic levels were generated for the US example and presented in Chapter 4.

5.3 Projections

Two sets of annual projections of passenger demand and air traffic levels at the

US ATS level have been generated for the years 2008 to 2025: one considering a

static network and the other considering network evolution. Overall projections

show similar trends to actual observations; however, passenger demand is slightly

over-predicted, leading to error propagation across the several models. Within the

itinerary choice modelling stage, the MNL model has proved to generate projections

more in line with observations; whereas the NN model shows greater sensitivity to

input factors, since the variability of the results is greater.

Overall, the results have shown that changes in the structure of the network

lead to a higher proportion of one-stop passengers being estimated, especially when

the NN model is used. In reality, because the US has a relatively static structure,

the proportion of non-stop passengers is not expected to change much over time (as

the study of the US with the use of network theory metrics has shown). However,

because the NN model seems to favour the hub-and-spoke network strategy, the

predicted number of one-stop passengers is greater. Greater differences in results

could be potentially seen if the model is applied to data from other regions of the

world or if considering international flights, in which one-stop itineraries are needed

to cover longer distances.

In addition, the comparison of results for a static network and for an evolving

network have shown how certain characteristics of the network are more impacted

by network evolution, such as the proportion of one-stop passengers; whereas the

effect in others is softer, such as air traffic levels. However, all results showed that

network changes have a relatively minor impact on overall system metrics in the
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case of the US ATS.

5.4 Suggestions for further work

Recommendations for further development of the research presented in this disser-

tation are presented below.

5.4.1 Airport connectivity

• Modelling airport connectivity of a mature system has proved challenging,

since connectivity changes are relatively low. Better insight might be gained

if network theory was applied to a less mature network, such as China, India

or Brazil.

• For the specific case of the US, in which most of the airlines follow a hub-and-

spoke strategy, the problem could be split based on the different sub-networks

that exist since factors might be influencing those differently. Examples include

between the point-to-point and the hub-and-spoke strategy; or considering the

so-called community structure, in which groups of nodes have a high density of

links amongst them but have a lower density of links between different groups.

• Comparison of the projected network characteristics (at the aggregated level)

with those actually observed suggest that some other external factors, not

captured by network theory metrics and not tested in this research, might

influence the evolution of the network. While keeping the problem split into

two models (link addition and link removal) the inclusion of additional factors

could be explored, such as fossil fuel price changes or government expenditure.

Also, the search space, especially for the link addition model (there being a

large number of unconnected airport-pair candidates that could be added to

the network) could be first narrowed down by using another classification tech-

nique such as support vector machine, random forest or even neural network,

for example. This would reduce the level of data imbalance in the input dataset

(i.e. a small percentage of unconnected airport-pairs changing to connected)

and might help the logistic regression algorithm achieve better precision.
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5.4.2 Itinerary choice modelling

• Although the results have shown the potential of using neural networks for

modelling itinerary shares, it is clear that the neural network model is more

susceptible to changes in airfare and/or time. In this study the neural network

model specification was the same as the one used for the multinomial model,

so it would be interesting to see whether considering a different set of input

variables would improve model accuracy as well yielding insight into which

factors have most influence on itinerary share within the neural network model.

• In this study one of the basic forms of neural network has been used; further in-

vestigation of regularization, optimization and loss could potentially lead to an

improvement of performance accuracy of the neural network model. However,

since the characteristics of the neural network do not allow a straightforward

interpretation of the influences of the input variables, investigation could be

first done through LIME, which is a technique that attempts to understand

the model by perturbing the input of data samples and understanding how the

predictions change. This would allow a better understanding of the strength

and weaknesses of the current model and whether a better model refinement

is needed.

5.4.3 Modelling framework

• The results obtained could be used to evaluate the impact of network dynamics

at different levels of the network, such as airport congestion, flight delays and

environmental impact through local and global emissions. For example, based

on projected air traffic levels, the breakdown to aircraft type could be done, so

that aircraft emissions could be calculated (e.g. the T-100 domestic segment

dataset (2014) offers aircraft type information).

• Results presented in this dissertation are computed at the network level and

referred to an annual timestamp. Further work could look at breaking down

those aggregated projections to a smaller timestamp to see the impact of sea-

sonality on those system-wide metrics, which is important for understanding

flow patterns and which would help the resource planning of industry stake-

holders. This could be done at the quarterly level, since information regarding
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airline tickets is quarterly provided by the US Bureau of Transportation Statis-

tics (2014; 2014).

• In this research the impact of flight schedule changes due to network evolu-

tion on overall demand (i.e. passenger demand between city-pairs) has not

been considered. Further work could address the level of passenger sensitivity

to flight schedule and the potential effect that changes to overall passenger

demand would have on itinerary shares. In this research, journey fares and

flight times for those new links have been simply calculated by multiplying

average fare or flight time by the flight distance; further enhancement could

be achieved by including a fare model into the framework which would allow a

better assessment of the impact of network evolution on the overall passenger

demand.
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Appendix A

Socio-economic data sources

As mentioned in Chapter 3, socio-economic information for years between 2008 and

2016 is taken from the US Census Bureau (2014a) and the Bureau of Economic Anal-

ysis (2014) websites. For population projections corresponding to further years, the

different state governmental websites have been consulted since the above mentioned

source only provides a country growth rate for years after 2016. Since socio-economic

information has been compiled for each of the cities considered in this research, in

an attempt to capture a more accurate evolution of this information, a large set

of sources have been used. The following list gathers the several state websites

that have been consulted. For those states in which no population information by

city existed a flat overall growth/decline rate for the overall state has been applied.

Economic growth information by city is available only for the first set of years (i.e.

2008-2016). From 2017 onwards, state annual growth/decline rate has been assumed.

This was extracted from the economic tables produced by the FAA, in order to be

line with their forecasts (FAA, 2018).

• Alabama: https://cber.cba.ua.edu/edata/est prj.html

• Alaska: http://live.laborstats.alaska.gov/pop/projections/pub/popproj.pdf

• Arizona: https://population.az.gov; https://population.az.gov/sites/default/

files/documents/files/pop-estimates2014-04pla.pdf

• California: http://www.dof.ca.gov/Forecasting/Demographics/Projections/

• Colorado: https://demography.dola.colorado.gov/population/population-
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totals-colorado-substate/#population-totals-for-colorado-and-sub-state-

regions

• Connecticut: https://ctsdc.uconn.edu/2015 2025 projections/

• Delaware: https://stateplanning.delaware.gov/information/dpc projections.

shtml

• District of Columbia: https://planning.dc.gov/sites/default/files/dc/sites/op/

publication/attachments/District%20of%20Columbia%20QuickFacts 2016.

pdf; https://planning.dc.gov/node/1212966

• Florida: http://edr.state.fl.us/Content/population-demographics/data/

index.cfm; http://edr.state.fl.us/Content/population-demographics/data/

CountyPopulation 2016.pdf

• Georgia: State annual population growth rate has been applied as fol-

lows: 1.06% between 2016 and 2010 and 1.05% between 2020 and 2025.

Sources: http://www.georgialibraries.org/lib/stategrants accounting/pop-

projections.php; http://www.georgialibraries.org/lib/construction/

georgia population projections march 2010.pdf

• Guam: Several sites have been consulted as follows: http://www.investguam.

com/public-finance-opportunities/economic-indicators/; http://population.

city/guam/; https://www.livepopulation.com/population-projections/guam-

2020.html

• Hawaii: https://dbedt.hawaii.gov/economic/databook/2012-individual/ 01/;

http://files.hawaii.gov/dbedt/economic/data reports/2040-long-range-

forecast/2040-long-range-forecast.pdf; http://www.hiloagent.com/images/

Hawaii%20County%20Population%20by%20District.pdf

• Iowa: http://www.iowadatacenter.org/browse/projections.html

• Idaho: State annual population growth rate has been applied as follows: 1.09%

between 2016 and 2010 and 1.08% between 2020 and 2025.

• Illinois: https://www2.illinois.gov/sites/hfsrb/InventoriesData/Pages/

Population-Projections.aspx
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• Indiana: http://www.stats.indiana.edu/pop proj/

• Kansas: https://www.ipsr.ku.edu/ksdata/ksah/population/

• Kentucky: http://www.ksdc.louisville.edu/wp-content/uploads/2016/

10/projection-report-v16.pdf; http://www.ksdc.louisville.edu/data-

downloads/projections/

• Louisiana: http://louisiana.gov/Explore/Population Projections/

• Maine: https://www.maine.gov/economist/projections/index.

shtml; https://www.maine.gov/economist/projections/pub/

MaineCityTownPopulationProjections2034.pdf

• Maryland: http://www.mdp.state.md.us/msdc/S3 Projection.shtml

• Massachusetts: https://pep.donahue-institute.org

• Michigan: http://www.michigan.gov/documents/8515 26106 7.pdf

• Minnesota: https://mn.gov/admin/demography/data-by-topic/population-

data/our-estimates/; https://mn.gov/admin/demography/data-by-

topic/population-data/our-projections/

• Mississipi: http://www.mississippi.edu/urc/downloads/PopProjections/

PopulationProjections.pdf

• Missouri: https://oa.mo.gov/budget-planning/demographic-information/

population-projections/2000-2030-projections

• Montana: http://ceic.mt.gov/Population/PopProjections StateTotalsPage.

aspx

• Nebraska: https://www.osbm.nc.gov/demog/county-projections

• Nevada: http://nsla.nv.gov/Library/StateDataCenter/NVProjections

Links/; http://nvdemography.org/wp-content/uploads/2014/06/2013-

Nevada-Summary-Workbook-ASRHO-Estimates-and-Projections-REV-

051614-B.pdf; https://tax.nv.gov/uploadedFiles/taxnvgov/Content/

TaxLibrary/2017-20-Year-Total-Population-Projections-Report.pdf

• New Jersey: https://www.commerce.nd.gov/census/Demographics/
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• New Mexico: https://gonm.biz/site-selection/census-data/

• New York: http://pad.human.cornell.edu/che/BLCC/pad/data/projections.

cfm; http://pad.human.cornell.edu/counties/projections.cfmf

• North Carolina: https://www.osbm.nc.gov/demog/county-projections

• North Dakota: https://www.commerce.nd.gov/census/Demographics/

• Ohio: https://development.ohio.gov/reports/reports pop proj map.htm

• Oklahoma: https://okcommerce.gov/data/demographics/

• Oregon: http://www.oregon.gov/das/OEA/Pages/forecastdemographic.aspx

• Pennsylvania: https://pasdc.hbg.psu.edu/Data/Projections/tabid/1013/

Default.aspx

• Puerto Rico: http://ddec.pr.gov/es/blog/wp-content/uploads/2016/

12/Estudio-economico-2016-2030.pdf; https://www.politico.com/f/?id=

00000152-57f8-dad1-a977-77fd856b0000

• Rhode Island: http://www.planning.ri.gov/planning-areas/demographics/

data/population-projections.php; http://www.planning.ri.gov/documents/

census/tp162.pdf; http://www.dlt.ri.gov/lmi/census/pop/townest.htm

• South Carolina: http://sccommunityprofiles.org/census/proj c2010.html

• South Dakota: https://www.sdstate.edu/sociology-rural-studies/census-data-

center/age-and-sex-structure

• Tennesse: http://tndata.utk.edu/sdcpopulationprojections.htm

• Texas: http://txsdc.utsa.edu/data/TPEPP/Projections/Index

• Utah: https://gomb.utah.gov/budget-policy/demographic-economic-

analysis/

• Vermont: http://accd.vermont.gov/sites/accdnew/files/documents/CD/

CPR/ACCD-DED-VTPopulationProjections-2010-2030.pdf

• Virginia: https://demographics.coopercenter.org/virginia-population-

estimates; http://demographics.coopercenter.org/virginia-population-

projections/
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• Washington: https://ofm.wa.gov/washington-data-research/population-

demographics/population-forecasts-and-projections/growth-management-

act-county-projections/growth-management-act-population-projections-

counties-2010-2040-0

• West Virginia: http://busecon.wvu.edu/bber/pdfs/BBER-2014-04.pdf

• Wisconsin: https://doa.wi.gov/DIR/FinalProjs2040 Publication.pdf; https:

//doa.wi.gov/Pages/LocalGovtsGrants/Population Estimates.aspx; https://

www.wisconsin-demographics.com/counties by population
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Appendix B

Value of time and CPI

calculation

B.1 Value of Travel Time

Value of travel time is an important factor to consider when evaluating the benefits

of new transport infrastructure and a tool used to aid the decision making process

on transportation investments and rule making initiatives. Travel time is seen as

having a negative impact on demand, and directly related to traveller’s willingness

to pay to reduce it. There is not a standard value of travel time as it depends on

different factors such as the purpose of the trip, the traveller, the circumstances

of the trip, etc. However, research shows that a large part of trips share similar

purposes and characteristics - e.g. commuting to work- (U.S. DoT, 2014).

For the purpose of this dissertation a generic and broadly representative value

of time has been used, since predictions in this study are evaluated at an aggregate

level and because of the infeasibility of calculating an individual’s value of time. For

these reasons, in order to calculate the value of time in this dissertation, the US

Department of Transportation methodology (2014) has been used. The US DoT

methodology consists of a weighted average between the value of travel time for

business purposes and the value of time for personal/leisure purposes. In Table B.1

business and personal trip weights used to calculate the value of time for years 2000,

2009 and 2013 are shown (U.S. DoT, 2014). Weights for the in-between years have

been calculated by linearly extrapolating.
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Trip Purposes 2000 2009 2013

Business 31.7% 40.4% 44.4%

Personal 68.7% 59.6% 55.6%

Table B.1: Business and personal/leisure travel weights used to calculate value of time.

Following the US DoT methodology for air travel (2014), business’ value of

time (VOTbusiness) is calculated by multiplying a factor of 2.5 times the median

gross wage for all occupations - Eq. B.1-. The factor 2.5 is derived from using

distinct wage information and calculated through dividing household income of air

travellers by median household income as shown in Equation B.2. Values used are

extracted from the BTS National Household Travel Survey (NHTS) of 2001, since

no other survey of such type has been conducted since 2001-. This factorbusiness is

assumed to be constant across the entire period considered in this dissertation.

V OTbusiness = factorbusiness ∗ Median Gross Wage

= 2.5 ∗ Median Gross Wage
(B.1)

factorbusiness =
Household income of air travellers

median household income
=

$105, 000

$42, 228
= 2.5 (B.2)

Median gross wage for all occupations is calculated using Equation B.3. Data

is obtained from from the Bureau of Labour Statistics (BLS). The median hourly

wage is obtained from the BLS Occupational Employment and Wages Estimates

(2014c) and corresponds to civilian workers including private industry and state

and local government workers. The estimated hourly benefit is approximated by

multiplying the median hourly wage by the ratio of mean gross compensation to

mean money wages as shown in Equation B.4 and is obtained from BLS Employer

Costs for Employee Compensation (2014b).

Median Gross Wage = Median hourly wage + estimate hourly benefits (B.3)
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Estimate hourly benefits = (
Avg. benefits

Avg. salary and wages
) ∗ Median Hourly Wage (B.4)

Personal air travel time value (VOTpersonal), shown in Equation B.5, is esti-

mated by multiplying a factor of 1.9 times 70% of the hourly median household

income which is calculated by dividing the median household income by 2,080 hours

-i.e. annual working hours -. factorpersonal is defined by the NTHS as the ratio of the

2001 median household income of air travellers on personal business to the nation-

wide median household income of 2001. Again, the value of this factor is assumed to

be constant across the entire period considered in this dissertation. Information re-

garding the mean household income is obtained from the US Census Bureau website

(2014b).

V OTpersonal = factorpersonal ∗ (0.7 ∗ Median household income

2, 080
)

= 1.5 ∗ (0.7 ∗ Hourly Median household income)

(B.5)

Once the value of air travel time for business and personal purposes is calculated

for each year and in terms of $/hours, value of air travel time (VOT ) is calculated

applying the weights presented in Table B.1. Value of delayed travel time (VOTDelay)

is assumed to be 3 times the value of travel time following the assumption of other

research (Evans, 2010). Value of travel time is computed using the sources mentioned

above for the years between 2003 and 2014. For further years in which future

projections are generated, since data was not available an annual growth rate of 0.5%

has been assumed. This corresponds to the average annual growth rate between 2009

and 2014. Table B.2 presents the values of travel time and delayed travel time for

the entire period (in 2007’s dollars).
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Year VOT VOTDelay Year VOT VOTDelay

2003 $38.9 $116.7 2015 $41.4 $124.1

2004 $39.2 $117.5 2016 $41.6 $124.7

2005 $39.5 $118.5 2017 $41.8 $125.3

2006 $40.0 $119.9 2018 $42.0 $126.0

2007 $40.5 $121.6 2019 $42.2 $126.6

2008 $40.0 $119.9 2020 $42.4 $127.2

2009 $40.7 $122.0 2021 $42.6 $127.9

2010 $40.4 $121.2 2022 $42.8 $128.5

2011 $40.3 $120.9 2023 $43.0 $129.1

2012 $40.3 $120.9 2024 $43.3 $129.8

2013 $40.8 $122.4 2025 $43.5 $130.4

2014 $41.2 $123.5

Table B.2: Value of business and personal travel time for years between 2003 and 2025.

B.2 Consumer Price Index

Across the modelling approach presented in this dissertation, several variables are

related to economic information, such as the mean household income and airfare
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values. Because 2007 is the threshold year: with years up to 2007 used to estimate

the model, and with years afterwards being those in which projections have been

generated, all monetary data have been converted to 2007’s dollars. In order to do

that the Consumer Price Index (CPI) is defined by the BLS as a measure of the

average change over time in the prices paid by urban consumers for a market basket

of consumer goods and services (Bureau of Labour Statistics, US Department of

Labour, 2018).

The BLS methodology is followed to convert monetary value to 2007 US$ (Bu-

reau of Labour Statistics, US Department of Labour, 2014a). CPI values for all

years are obtained from the BLS Consumer Price Index Detailed reports (2014a)

with 2007’s value used as the reference index. The difference between both indexes

is computed so that the index point change is obtained (i.e. Equation B.6). In order

to generate the factor value to which monetary data needs to be multiplied to obtain

the value of money in 2007 dollars, the ratio between the index point change and

2007’s CPI value is calculated. Since this is expressed as percentage change to 2007’s

value, it can be converted to a multiplying factor by the sum of this change with

1 as shown in Equation B.7. Table B.3 presents the CPI values for years between

2003 and 2014 as well as the factor used to convert monetary data to 2007’s dollars.

IndexPointChange = CPI2007 − CPIyear (B.6)

factorCPI = 1 +
Index Point Change

CPI2007
= 1 +

Index Point Change

CPI2007
(B.7)
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Year CPI2007 CPIyear Index Point Change factorCPI

2002 207.3 179.9 27.4 1.15

2003 207.3 184.0 23.4 1.13

2004 207.3 188.9 18.4 1.10

2005 207.3 195.3 12.0 1.06

2006 207.3 201.6 5.7 1.03

2007 207.3 207.3 - 1.00

2008 207.3 215.3 -8.0 0.96

2009 207.3 214.5 -7.2 0.97

2010 207.3 218.1 -10.7 0.95

2011 207.3 224.9 -17.6 0.92

2012 207.3 229.6 -22.3 0.90

2013 207.3 233.0 -25.6 0.89

2014 207.3 236.7 -29.4 0.88

Table B.3: FactorCPI. calculation in order to convert monetary data to 2007’s dollars.
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Appendix C

Previous attempts - O&D

demand model

This appendix presents a brief summary of previous attempts to model O&D pas-

senger demand. Differences between the modelling approaches presented here and

the one in Chapter 3 are based on the model specification and and model applica-

tions that those have; the methodology has not changed so that previous attempts

also used linear regression with logarithmic transformation as explained in Chapter

3. This section is split into two: first previous modelling attempts are presented;

and then, the error investigation performed to understand the large error obtained

from those early attempts is also presented.

C.1 Previous modelling specifications

Initially, the approach to estimate the O&D passenger demand was based on a single

model for the entire US air transportation system. Data used to train the model

referred to 2007 and input variables included population, mean household income per

capita, generalised cost, a dummy variable indicating whether the city-pair is also

connected by other transport modes such as train (i.e. R) and a set of two dummy

variables indicating whether none or one of the cities in the pair is a major tourism

or business destination (i.e. S1 and S2 ). Two sets of coefficients were estimated

based on the estimation process: using ordinary least squares (OLS); using weighted

least squares (WLS) with number of passengers as weight. Estimation results are
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presented in Table C.1 for both OLS and WLS models.

All estimated coefficients obtained are statistically significant at the 95% con-

fidence level. Also all coefficients are of the expected sign with exception of the

dummy variable indicating whether the city-pair is also connected by other trans-

port modes such as train (i.e. R) for the WLS model. This suggests that the model

does not capture competition from other transport modes well when used in this

type of model formulation, and therefore it should be dropped.

Variables OLS WLS

Intercept 10.54 ∗∗∗ 7.81 ∗∗∗

Population 1.015 ∗∗∗ 1.20 ∗∗∗

Income 1.32 ∗∗∗ 1.47 ∗∗∗

S1 0.58 ∗∗∗ 1.14 ∗∗∗

S2 −1.34 ∗∗∗ −1.13 ∗∗∗

R −1.56 ∗∗∗ 2.33 ∗∗∗

Generalised cost −0.87 ∗∗∗ −1.29 ∗∗∗

Adjusted R2 0.614 0.795

Error in validation -36% -34%

∗∗∗p < 01, ∗∗p < 0.01, ∗p < 0.05

Table C.1: 1st attempts: estimated coefficients obtained when using OLS and WLS as
estimation process. Error refers to the average difference of predicted total network passenger
demand against observed during the validation years (2008-2013).

C.2 Error Investigation

Large error (i.e. about -35%) is obtained due to over-predictions as shown in Figure

C.1, which shows the error distribution clearly left-skewed (i.e. a sign of over-

prediction). Further checks are performed to investigate the source of such high

over-predictions, which could be due to the following reasons:

• Most of the over-predictions occur on high demand O&Ds - solution would

be adding extra dummy variables such as variables related to high speed rail

network.

• Most of the over-predictions occur on low demand O&Ds - the solution would

be excluding those O&Ds with low demand during the training and validation

phase.
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Figure C.1: Error distribution throughout the validation years, closed up to error values
between -100,000 and +100,000.
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Few case examples for which a large error is obtained are checked against

the source data (BTS-RITA, Bureau of Transportation Statistics - Research and

Innovative Technology Administration, 2014), revealing that those O&D have a

much lower passenger demand than expected based on the city-pair attributes. The

set of examples checked are the following:

• NYC&IAD - both pair of cities have high income and population and are a

major tourism and/or business destination, but demand is shown to be between

600k and 700k passengers in 2014. Projected values are about 3 million for

the same year.

• NYC&BOS - both cities with associated high income and population with

passenger demand to be about 700k passengers in 2014. Projected levels of

demand are about 2 million passengers for the same year.

• MIA&TPA - both cities are a major tourism destination located quite close to

each other. Observed demand is just below 200k in 2014; however, projected

demand is about 1 million for the same year.

• DFW&IAD - similarly to the cases above observed demand is about 600k a

year in 2014; however projected demand is about 1.8 million passengers for

the same year.

Case examples such as the above are exceptional cases of city-pairs that the-

oretically should have a higher demand but they do not - i.e. from literature, air

travel is believed to be income elastic, and with all the city-pairs above having asso-

ciated a high income variable as well as most of them being a major tourism and/or

business destination, their related passenger demand would be expected to be much

higher than the observed. Note that the above examples are likely to have a lower

demand than expected due to competition with mainly road transport.

A further check includes looking at the distribution of demand across all O&Ds

in bins of 10,000 passengers and calculate how much error these bins have associated.

Figure C.2 shows total error per bin against mean passenger demand per bin. The

color of the points shows the number of O&Ds in each bin. Figure C.2 shows that

bins with lower mean passenger demand make most of the error; and therefore would

confirm that the source of the error is in line with hypothesis two stated above - i.e.
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most of the over-predictions occur in low demand O&Ds. The bin with the most

error is the first one, which contains O&Ds with less than 10,000 passenger, and

has associated passenger demand from about 18,819 O&Ds with a mean average

passenger demand of 1,785; the total error associated to this first bin is 1.16e+08.

The second bin, which contains O&Ds with a passenger demand between 10k and

20k, has a mean passenger demand of 14,120 per O&D and sum up a total of

2.96e+07 error.

Because O&Ds with less than 20,000 passenger demand account for around

42% of the error, further exploration of those O&Ds is done. Using bins of 500

passengers, Figure C.3 shows total error per bin against mean passenger demand

per bin. Again, most of the error is gather within the first two bins (O&Ds with

less than 1,000 passengers per year), which accounts for about 22.5% of total error.

Mean passenger demand for first bin is 194 passengers, while for the second bin is

729 passengers. The over-prediction amongst this low demand O&Ds is expected,

because given the way the model is formulated demand cannot go below 0, i.e. a city-

pair with yearly demand of 200 can only under-predict by 200, but can over-predict

by an unlimited amount.

The model presented above was re-trained only using O&Ds with more than

20k, 25k, 30k and 40k passengers and although error obtained for the model when

considering O&Ds with more than 25k passengers had an improved performance

with respect the first attempts (i.e. error decreases just below 30%), results were not

accurate enough and an alternative solution, such as the one presented in Chapter

3 was then pursued.
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Appendix D

Previous attempts - Airport

connectivity

This appendix presents a brief summary of previous attempts to model airport

connectivity which involved a modelling approach with a single model aimed to

predict the connectivity of airport-pairs (i.e. ’1’ if connected, and hence, a flight

service exists between them; ’0’ if disconnected, and hence, a flight service does

not exist between them) rather than connectivity changes in airport-pairs (i.e. an

airport-pair going from connected to disconnected or vice versa). Initially, O&D

passenger demand1 was included in the model specification as the early attempts

below show; however given that the problem involved the identification of a small

number of connectivity changes, errors obtained were relatively large and another

approach was eventually used as presented in Chapter 3.

Section D.1 below presents some of the specifications used for when O&D pas-

senger demand was included amongst the input dataset. Section D.2 presents some

illustrative figures related to links added and removed in 2011 and 2012, which

helps to visualise the fact that there is not a clear pattern on where the connectivity

changes occur.

1Note O&D passenger demand is associated to the city-pair which the airport-pair under study
connects.
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D.1 Airport connectivity models including O&D pas-

senger demand

Early attempts to model airport connectivity are similar to the work presented in

Chapter 3 as per using logistic regression and data from 2007 as training data and

from 2008-2013 for validation. However set of explanatory variables differ and initial

attempts did not split the problem in two (i.e. link addition and link removal). In

early attempts, model specification included a larger set of explanatory variables

which are briefly described below.

• Population - Combined variable calculated through Equation 3.2 using popu-

lation values associated for each of the airports being part of the link under

study.

• City attractiveness - set of two dummy variables indicating whether none or

one of the cities in the pair are a major tourism or business destination.

• Hub information - set of two dummy variables indicating whether none or both

of the airports forming the airport-pair are considered hub airports.

• Fuel price - average annual fuel price.

• O&D passenger demand - passenger demand between two cities. Given the

case of multi-airport cities, the same O&D passenger demand will be allocated

from airports from same cities. Referred as Nod in Table D.1.

• Previous year existing link between a given O&D - binary variable that cap-

tures whether a given O&D was connected by any available flight service the

previous year (i.e. referred as Linkt−1 in Table D.1):

– ’0’ when none of the possible airport-pairs connecting a given O&D had

a flight service operating the previous year.

– ’1’ when at least one of the possible airport-pairs connecting a given O&D

had a flight service operating the previous year.

• Count of connections within a given O&D - set of two variables that look at

the degree2 of the origin and destination airport within a given O&D. For

2Airport degree is the number of airports that the airport is connected to (i.e. a flight service
exists)
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example, given the following O&D: Atlanta and Tri-cities/Greeneville; there

are two possible airport-pairs that can connect those two cities: ATL-TRI

and/or ATL-GCY; however, in 2006 only ATL-TRI was connected by flight,

making the degree of ATL and TRI within this O&D equal to 1, while the

degree of GCY is 0. This is referred as O&Ddegree,i for origin airport i and

O&Ddegree,j for destination airport j in Table D.1

• Network theory variables 3- node degree (k), node weight (s), node eigenvector

centrality (EVC ) and clustering coefficient (CC ). Note that these metrics are

included in the model either as a combined variable (Equation 3.9) or indi-

vidually for each of the airports forming the airport-pair, such as ki would be

referred to node degree of airport i and kj would be referred to node degree

of airport j.

The first attempt, considered the following input variables: O&D passenger

demand, population, city attractiveness, hub information, fuel price and the set of

all network theory metrics computed as a combined variable. This early attempt

resulted on a true positive rate - i.e. which measures the percentage of actual

positives (connected) which are correctly identified -of 66.58% across all validation

years; whereas the true negative rate - i.e. which measures the percentage of actual

negatives (disconnected) that are correctly identified as such - obtained was 97.65%.

These results showed how the model had a good accuracy at predicting the majority

class (i.e. unconnected airport-pairs) while failed to identify the minority class (i.e.

connected airport-pairs).

After this first attempt another set of model specifications were considered.

Those included newly created input variables such as the count of connections within

a given O&D or the existence of a direct connection the previous year. A set of model

specifications were considered as shown in Table D.1.

During training the algorithm aims to minimise the overall error, since the

training dataset is imbalanced - i.e. the number of cases of one class (i.e. in this

case the number of unconnected airport-pairs), outnumbers the number of cases

for the other class - the minority class will contribute little to this minimisation

process; and therefore estimates would tend to be biased towards reducing the error

3Please refer to Chapter 3 for explanation on network theory metrics.
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of the majority class. In order to avoid classifier bias towards the majority class, 5

different techniques are used to balance the dataset. Note that during the evaluation

phase when the problem was split into two (i.e. link addition and link removal), the

scenario when no technique is used to artificially balance the dataset yielded the best

results and therefore the actual data has been used to develop the models presented

in Chapter 3. The techniques used to artificially balance the dataset when a single

model was used are briefly described below.

• Over-sampling - this techniques looks at replicating the observations from

minority class to balance the data.

• Under-sampling - this techniques looks at sampling the majority class so that

the number of observations within the majority class is similar to the minority

class size.

• Combination of over&under sampling - this technique looks at applying over-

sampling at under-sampling at the same time and finding a mid-point size for

both classes.

• Random Over-Sampling Examples (ROSE) (Lunardon et al., 2014) - this tech-

nique uses smoothed bootstrapping to generate artificial data from the feature

space neighbourhood around the minority class.

• Synthetic Minority Oversampling Technique (SMOTE) (Ganganwar, 2012)-

this technique aims to generate artificial data of the minority class. SMOTE

algorithm creates artificial data based on feature space similarities from mi-

nority samples. Increasing the number of minority class observations is an

attempt to shift the classifier learning bias towards the minority class. This

technique can only be applied with continuous data, therefore SMOTE has

not been used for model number 5.
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Model number

Variable 1 2 3 4 5

Nod X X X X

Linkt−1 X

O&Ddegree,i X

O&Ddegree,j X

ki X X

kj X X

si X

sj X

EV Ci X X X X

EV Cj X X X X

CCi X X X X

CCj X X X X

Table D.1: Model specifications used during early attempts to model airport connectivity.

The above models were validated using data from years 2008-2013 and the

performance metrics and error rates calculated to evaluate model performance are

presented in Table D.3 and described as per below. Note that because in this case

a single model is applied to the entire air transport system, actual positives refers

to connected airport-pairs and actual negatives refers to unconnected airport-pairs:

• Specificity (True Negative Rate or TNR): percentage of actual negatives (un-

connected airport-pairs) that are correctly identified as not being connected.

• Sensitivity (True Positive Rate or TPR): percentage of actual positives (con-

nected airport-pairs) that are correctly identified as being connected.

• Precision: percentage of airport-pairs predicted connected that are actually

positive over the total number of predicted airport-pairs being connected.

Considering the fact that the model has a relatively large error when predicting

the minority class (i.e. which airport-pairs will be connected) as presented in Tables

D.2 and D.3, an alternative methodology was used and it was decided that the

problem would be split into two: link addition and link removal.
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Actuals

(0 = Un-connected; 1 = connected)

over-sampling under-sampling OU-sampling ROSE SMOTE

Model 1

0 1 0 1 0 1 0 1 0 1

P
re

d
ic

ti
on

s
(0

=
U

n
-c

o
n

n
ec

te
d

;
1

=
co

n
n

ec
te

d

0 18088 763 18016 740 18094 762 17793 662 18841 1208

1 857 1272 929 1295 851 1273 1152 1373 104 828

Model 2

0 17717 588 17636 569 17722 591 17555 550 18570 920

1 1228 1446 1308 1466 1222 1444 1390 1485 374 1116

Model 3

0 17997 702 17930 688 17982 692 17796 622 18742 1063

1 948 1333 1015 1347 962 1343 1149 1412 203 972

Model 4

0 17857 657 17812 655 17854 658 17796 642 18672 1004

1 1088 1378 1133 1380 1091 1377 1149 1393 273 1031

Model 5

0 18451 257 18491 264 18453 250 18470 240 NA NA

1 494 1778 454 1771 492 1785 475 1795 NA NA

Table D.2: Confusion matrix obtained during validation. Average values across all validation
years: 2008-2013.
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sampling technique Sensitivity Specificity Precision

Model 1

over-sampling 0.62 0.95 0.60

under-sampling 0.64 0.95 0.58

OU-sampling 0.62 0.96 0.60

ROSE 0.67 0.94 0.55

SMOTE 0.41 0.99 0.89

Model 2

over-sampling 0.71 0.94 0.54

under-sampling 0.72 0.93 0.53

OU-sampling 0.71 0.94 0.54

ROSE 0.73 0.93 0.52 1

SMOTE 0.55 0.98 0.75

Model 3

over-sampling 0.65 0.95 0.59

under-sampling 0.66 0.95 0.57

OU-sampling 0.66 0.95 0.58

ROSE 0.69 0.94 0.55

SMOTE 0.48 0.99 0.83

Model 4

over-sampling 0.68 0.94 0.56

under-sampling 0.68 0.94 0.55

OU-sampling 0.68 0.94 0.56

ROSE 0.68 0.94 0.55

SMOTE 0.51 0.99 0.79

Model 5

over-sampling 0.87 0.97 0.78

under-sampling 0.87 0.98 0.80

OU-sampling 0.88 0.97 0.78

ROSE 0.88 0.97 0.79

Table D.3: Performance metric for all 5 estimated models when validating the models over
data from 2008 to 2013. Values shown are average across the 6 validation years.
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D.2 Link additions and removals in 2011 and 2012

Figures D.1, D.2, D.3 and D.4 show a graphic representation of the links added and

removed in 2011 and 2012 respectively. Figures below clearly show there is not an

obvious trend on link addition and removal but rather a quite even distribution of

those links changing connectivity across the entire network.

Figure D.1: Links that were added in 2011 (airport-pairs that were unconnected in 2010).

Figure D.2: Links that were added in 2012 (airport-pairs that were unconnected in 2011).
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Figure D.3: Links that were removed in 2011 (airport-pairs that were connected in 2010).

Figure D.4: Links that were removed in 2012 (airport-pairs that were connected in 2011).
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Appendix E

Previous attempts - Itinerary

choice model

This appendix presents a brief summary of previous attempts to model itinerary

shares. This appendix is split in two sections, the first one looks at early modelling

approaches investigated using multinomial logit (section E.1); the second presents

some early investigation done to decide which was the best neural network architec-

ture to model itinerary shares (section E.2).

E.1 Multinomial logit model

As discussed in Chapter 3 one of the concerns within the topic of itinerary choice

modelling is journey fare, which has proven to be the most problematic of the ex-

planatory variables and when considering aggregate values might lead to erroneous

estimates. Earlier attempts to model itinerary shares did not use the 2-stage control

function to correct this issue and therefore values of time obtained were too high

and in some occasions negative. Below, some of the earlier approaches which also

used Berkson-Theil approximation to estimate the model coefficients are presented.

Explanatory variables considered in initial attempts included journey time,

journey fare and number of airlines operating on a given itinerary as continuous

variables as well as the set of alternative specific constants (ASCs) included in the

model presented in Chapter 3 -i.e. 26 ASCs referred to the itinerary level of service,

including one for non-stop itineraries and 25 for one-top itineraries through one of
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the connecting airports included in this study. The three models considered at this

stage are characterised by the following:

• Model 1: accounts for interactions between fare and the boolean variable indi-

cating the level of service of the itinerary (i.e. non-stop or one-stop). Journey

fare variable is included in the model as a log formulation and divided by 100;

• Model 2: similar to model 1 but without any data transformation;

• Model 3: in this model journey fare is not split between non-stop and one-stop

itineraries, and there is added variables to account for whether true-origin and

true-destination journey airports are hub or not.

Note that in Model 3, variables regarding hub information are only present for

those city-pairs in which at least one of the available option is a non-stop itinerary. In

all the models, number of passengers for a given itinerary has been used as weight

during the estimation process with the exception of model 3 in which the ratio

between the itinerary’s number of passenger and the number of passengers from the

reference alternative has been used. Table E.1 shows the model specification for

each of these 3 models; whereas Table E.1 presents the estimation model results

obtained.
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Coefficients Model Explanatory variables

Constant

ASCNS 1 x HUBi==”Non-stop”

ASCATL 1 x HUBi==”ATL”
...

...

ASCk 1 x HUBi==”k”

Journey fare

Model 1
βNSfare ln(farei100 ) x non-stopi

βOSfare ln(farei100 ) x one-stopi

Model 2
βNSfare farei x non-stopi

βOSfare farei x one-stopi

Model 3 βfare
farei
100

Journey time All models βtime timei

Num. of airlines All models βairlines num airlinesi

Hub information Model 3

βhub1 NS Market x hub1i

βnohub NS Market x nohubi

βhub2hub NS Market x hub2hubi

Table E.1: Specification table of the utility function for models estimated using Berkson-Theil
method.

Validation process is as explained in Chapter 3, input data between 2008 and

2013 is used to generate predictions of number of passengers across all available

itineraries. To evaluate the models predicting power average adjusted R2 square

across all the validation years is calculated for each of the three models (Table E.3).

Figures E.1, E.2 and E.3 below show the comparison between observed and predicted

number of passengers across the validation years for all 3 models.
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Parameter Model 1 Model 2 Model 3

βfare -0.112***

βNSfare -0.239*** - 0.001***

βOSfare -0.305*** -0.0014***

βtime -0.595*** -0.598 *** -0.328***

βairlines 0.150 *** 0.149*** 1.3645 ***

βhub1 -0.050***

βnohub -0.0775***

βhub2hub -0.0563*

Adj R-squared 0.7 0.699 0.57

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table E.2: Table results for Berkson-Theil.

Model 1 Model 2 Model 3

Adjusted R2 0.858 0.858 0.818

Table E.3: Comparison of predictive powers between the 6 models estimated using Berkson-
Theil method.

Figure E.1: Observed against predicted number of passengers using model 1 throughout the
validation years.

212



Figure E.2: Observed against predicted number of passengers using model 2 throughout the
validation years.

Figure E.3: Observed against predicted number of passengers using model 3 throughout the
validation years.
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Values of time for all three models are computed and presented in Table E.41.

Those result in much higher values of time compared to those in the literature (Hsiao

and Hansen, 2011; Atasoy and Bierlaire, 2012), suggesting that fare endogeneity

might be an issue. For illustration purposes, Figure E.4 presents the distribution

of value of time at the itinerary level (i.e. non-stop and one-stop) for model 2 as

an example; which clearly shows those high values of time across all level of service

and no clear difference across the connecting hubs with some exceptions (e.g. DTW,

IAH, BWO).

Model 1 Model 2 Model 3

VOTNS $425/h $569/h

VOTOS $388/h $407/h

VOT $296/h

Table E.4: Comparison of Value of Time. Note the average VOT values for model 1 are
presented in this table.

1Note that for models 1, VOT is calculated by multiplying the itinerary fare, hence VOT values
vary across different itineraries. In this case the average fare for non-stop and one-stop itineraries
has been used to calculate average values of time.
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Figure E.4: VOT calculation from model 1.

E.2 Neural network model

The itinerary choice model using neural network presented in Chapter 3 is estimated

using the Levenberg-Marquart algorithm (LMA) during training; however previous

exploratory analysis also included the use of backpropagation and backpropagation

with momentum as alternative training algorithm. Eventually, Levenberg-Marquart

algorithm was chosen to train the model due to better performance in terms of

lower training time and number of epochs during training as well as lower mean

square error obtained when applying the model to a validation set. Figures E.5,

E.6 and E.7 show the three metrics used to evaluate the three training algorithms

across the range of neural network (NN) architectures considered in this study. The

three training algorithms seem to perform fairly similarly, with MSE values under

0.03 for most of the NN topologies. However, Levenberg-Marquart algorithm seems

to perform consistently better than the other two algorithms, specially in terms of

training time, with few exceptions - e.g. such as the NN architectures 10/5, 25/5 or

30/5.

2Values from applying Levenberg-Marquardt are not visible due to being much smaller in com-
parison to the rest of algorithms shown on the chart.
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Figure E.5: Validation performance comparison (MSE) between the best performance results
for several NN architectures with 3 different training algorithms.

Considering the choice of Levenberg-Marquart algorithm to use during training,

an evaluation was also performed to check which activation function to use for

each of the layers of the neural network architecture . The several combinations of

activation functions chosen to test are presented in Table E.5. The same metrics

(i.e. mean square error, number of epochs and training time) were used to evaluate

their performance presented in Figures E.8, E.9 and E.10 respectively.
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Figure E.6: Number of epochs comparison between the best performance results for several
NN architectures with 3 different training algorithms.2
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Figure E.7: Time comparison between the best performance results for several NN architec-
tures with 3 different training algorithms.
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Version Act. Fcn 1st layer Act. Fcn 2nd layer Act. Fcn Output layer

v1 Hyperbolic Tangent Hyperbolic Tangent Linear

v2 Sigmoid Sigmoid Linear

v3 Sigmoid Sigmoid Sigmoid

v4 Hyperbolic Tangent Hyperbolic Tangent Sigmoid

Table E.5: Combination of activation functions considered in this research.
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Figure E.8: Validation performance comparison (MSE) between the best performance run
considering four activation function combinations from table E.5.

’As the performance of all versions is consistently similar, v4 -i.e. hyperbolic

tangent function for hidden layers and sigmoid function for the output layer- is taken

to build the air itinerary choice model. With output values referring to the market

share of an itinerary serving a given city-pair, and hence ranging between 0 and 1,

the choice of sigmoid activation function in the output layer implies that no data

transformation is needed. Comparing v4 against v3 -i.e. sigmoid function for hidden

and output layer- shows that v4 performs slightly better when looking at number

of epochs and computing time.
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Figure E.9: Number of eqpochs comparison between the best performance run considering
four activation function combinations from table E.5.
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Figure E.10: Time comparison between the best performance run considering four activation
function combinations from table E.5.
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Dray, L., Evans, A., Reynolds, T., Schäfer, A. W., Vera-Morales, M., and Bos-

bach, W. (2014). Airline fleet replacement funded by a carbon tax: an integrated

assessment. Transport Policy, 34:75–84.

Dray, L. M., Krammer, P., Doyme, K., Wang, B., Al Zayat, K., O’Sullivan, A., and
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