
Development of substructure and
superelement codes for the FEA of tall

slender buildings

Jovana Veletić
PhD Thesis

January 2020

City, University of London

School of Mathematics, Computer Sciences and Engineering

Submitted in part fulfilment of the requirements for the degree of

Doctor of Philosophy in Civil Engineering at City, University of London

Contents

Table of contents i

List of figures iii

List of tables ix

Acknowledgements xii

Declaration xiii

Abstract xv

Nomenclature & Abbreviations xviii

1 Introduction 1

1.1 The demand for ever taller, more slender, buildings 1

1.2 A new generation of tall slender structures 2

1.3 Urbanisation and the first appearance of tall buildings 5

1.4 Structural materials used in tall buildings 7

1.4.1 Steel . 7

1.4.2 Reinforced and pre-stressed concrete 7

1.5 Different structural systems for tall buildings 8

1.5.1 The structural frame: columns, beams, trusses, shear walls and

floor slabs . 8

1.5.2 Foundation solutions . 11

1.5.3 Other considerations . 13

1.6 Defining the height of a building and respecting planning requirements . 13

1.7 Vertical transportation and services for tall buildings 14

i

1.7.1 The movement of people into and out of the building 14

1.7.2 Service elevators . 14

1.7.3 Mechanical floors . 15

1.8 The steps involved in structural design 16

1.8.1 Load cases to consider . 16

1.8.2 The detailed design phase . 19

1.8.3 BIM . 20

1.8.4 Constructability . 20

1.9 The benefits of open-source structural analysis codes 21

1.9.1 The merit of using Matlab m-script 21

1.9.2 The CALFEM library . 21

1.9.3 Commercial (licensed) FE software versus open-source research

code . 22

1.10 The goal and scope of this research . 22

2 Finite element formulation of 3D Beam and Shell elements 25

2.1 3D Beam theory . 26

2.2 3D Shell theory . 48

3 Methods for increasing the computational efficiency of the finite ele-

ment analysis: Master-Slave approach, Substructuring and Superele-

ments 53

3.1 Displacement constraints . 55

3.1.1 The Transformation method . 58

3.2 Diaphragm action in structural modeling treated as a multipoint constraint 60

3.3 Substructuring and the use of Superelements 64

4 The FE mesh generator and analysis code 71

4.1 Finite Element Mesh Generator . 73

4.2 Code to enforce the rigid in-plane behavior of the floor slabs and create

substructures and superelements . 85

4.3 Assembly of the superelements and/or substructure 89

4.4 Sparse storage . 91

ii

5 FE analysis of tall slender buildings 95

5.1 Comparisons between the results from SPARSEfeaTS and SEfeaTS . . . 96

5.2 Time and memory savings . 100

5.3 Stiffness contribution from different structural members 104

5.4 Structural solution giving the least deflection 109

6 Conclusions and recommendations for further work 115

Appendix 118

A 3D Beam stiffness matrix 118

B 3D Shell analyses 120

C SPARSEfeaTS and SEfeaTS codes 122

D Matlab functions used in SPARSEfeaTS and SEfeaTS 128

E Effects of dead and live load on the structrue 163

Bibliography 167

iii

iv

List of Figures

1.1 Existing and planned structures adjacent to Central Park, NYC 2

1.2 Intended new build on Manhattan Island [5] 2

1.3 111 West 57th under construction . 3

1.4 432 Park Avenue [1] . 4

1.5 Shanghai skyline [4] . 5

1.6 Conventional frame . 9

1.7 Braced frame (left) and belt trusses with outriggers, floor slabs not shown

(right) [25] . 10

1.8 Bundled tube . 10

1.9 Diagrid frame [19] . 11

1.10 Buttressed core configuration of the Burj Khalifa (centre), Dubai 12

1.11 Example configuration of shear walls (red) forming the cores of a tall

building . 16

2.1 3D beam within a Cartesian coordinate system showing both global

(X, Y, Z) and local (x, y, z) axes . 26

2.2 Positive sign convention for moments and forces 27

2.3 DoF for a two-noded 3D beam element 27

2.4 A portion ∆x of a slender undeformed beam (elevation, left and cross-

section, right) . 29

2.5 A portion ∆x of a slender deformed beam with radius of curvature R

(elevation) . 29

2.6 Side elevation (portion ∆x of deformed beam) 30

2.7 Section forces on a portion ∆x under a uniformly distributed load (posi-

tive sign convention) . 32

2.8 Torsion of a thin-walled cylinder of a radius r 34

v

2.9 Linear shape functions N1 and N2 . 36

2.10 Nomenclature for nodal parameters associated with a 2-noded beam el-

ement under an axial load . 43

2.11 Nomenclature of the nodal parameters associated with a 2-noded beam

element under a transverse force and bending moment 43

2.12 Beam element subjected to three-dimensional nodal force 47

2.13 3D view of the 4-noded shell element showing various coordinate systems 49

3.1 Modification process showing various options 57

3.2 One dimensional bar comprising 3 finite elements. The node numbers

are given within circles and the element numbers are given in the squares. 58

3.3 Master-Slave approach for the diaphragm action of a floor slab. The

diagram on the top left illustrates the master and slave nodes showing

all the slave DoF, whereas the diagram on the lower right shows the

remaining DoF on the slave node and the master DoF which control the

movement of the slave node. Note that the displacements um and vm

have been exaggerated (to make the diagram clearer) and θZm is zero in

this example. 62

3.4 2D beam frame structure . 65

3.5 2D beam frame showing 3 substructures 66

3.6 2D beam frame showing 2 substructures 66

3.7 2D beam frame showing use of 3 superelements 67

3.8 2D beam frame showing combined use of a substructure and 2 superele-

ments . 68

4.1 List of functions used in SPARESEfeaTS and SEfeaTS 72

4.2 Alternative plan view arrangements for four and six elevators. Option

(d) was chosen for this study, where the two elevators in the northern

core block are the service lifts and the four southern elevators are the

passenger lifts. 73

4.3 Floor plan showing the key dimensions len, lne, lse, we, wc, tiYZ,

txYZ, txXZ and the variable ncols 74

vi

4.4 Plan view of the structure having just 4 corner columns. The interior

beams are shown in red. 75

4.5 Floor plan of a building showing the differance in the meshes for the floor

slabs with only 4 corner columns (left) and 11 columns per side (right) . 76

4.6 Column orientation. The top left plan view shows all columns with square

cross-sections. The top right view shows square cross-sectional columns

on the east and west faces but rectangular column cross-sections on the

North and South faces (with an east-west alignment of the major axis).

The bottom left view shows all rectangular cross-sectional columns with

their long axis having an East-West alignment. The bottom right view

shows all rectangular cross-sections but with different major axis orientation. 77

4.7 Isometric views of 3 (low rise) buildings with different numbers of sub-

structures while the number of floors in each substructure remains the

same (flawsInSS=4). Left nSS=1, middle nSS=2, right nSS=3 82

4.8 Isometric views of 2 structures with the same number of floors but dif-

ferent external dimensions; left len=20m, right len=40m 82

4.9 Isometric views of 2 structures with 12 floors but different numbers of

columns; left ncols=0, right ncols=4 83

4.10 Isometric views of 2 structures with different floor heights but the same

number of floors (12); left height=3.5m, right height=4.5m 83

4.11 Isometric view of 420m tall building with slenderness ratio of 21:1 and

just 4 corner columns (to avoid obscuring the floor slabs in this graphic,

although the resulting structure would not be stiff enough 84

4.12 Master-slave and substructuring algorithm sequence 87

4.13 Illustration of the steps to form a substructure and superelement. From

the whole structure (left) we identify a substructure with 4 floors in this

example (middle) and then condense-out the interior nodes (DoF) on the

first three levels of the substructure while keeping the connection nodes

to create a superelement (right) . 88

vii

4.14 A 12 storey building with 4 corner columns (left); a 12 storey building with

4 corner columns represented by a ground substructure and 2 superele-

ments (middle); a 12 storey building with 4 corner columns represented

by 3 superelements (right) . 90

4.15 The sparsity pattern of [sKglobal] for the example 12 storey building.

The location of the non-zero terms are shown by the black dots, whereas

zero terms are left un-marked. The two square frames shown in the top

left corner relate to the size of the matrices shown in Figures 4.16 and

4.17. 91

4.16 The sparsity pattern of [sKglobal] for the example 12 storey building

comprising one substructure and two superelements 92

4.17 The sparsity pattern of [sKglobal] for the example 12 storey building

comprising three superelements . 93

5.1 Floor plan of a building showing 10 perimeter columns per side (illustrat-

ing the orientation of the cross sections). The plan also illustrates the

width of the perimeter beams and the mesh for the floor slabs 98

5.2 Horizontal displacement versus height for different representations (com-

paring output for SPARSEfeaTS and SEfeaTS 99

5.3 Computational memory (left) and run time (right) savings influenced by

the number of floors in a substructure 100

5.4 Horizontal displacement for the 420m high building depending, on the

number of columns on each side . 105

5.5 Floor plans for the 420m tall building having 10 columns on each side

showing two different column cross-sections 106

5.6 Horizontal displacement for the 420m high building showing two different

column cross-sections . 107

5.7 Horizontal displacement for the 420m high building showing the effect of

different floor slab thicknesses . 108

5.8 Horizontal displacement for the 420m high building showing the effect of

different exterior core wall thicknesses 108

5.9 Horizontal displacement for the 420m high building 109

viii

5.10 Horizontal displacement over height for the 420m high building compris-

ing solution with uniform member sizes over the height or 3 different sets

of member sizes over the height (largest cross-sections at the base) . . . 110

5.11 Plan view of the column and floor slab mesh corresponding to nclos=26 112

5.12 Comparison between the predicted lateral displacements over the height

of the building for 16 column and 26 column arrangements 113

B1 3D Cantilever beam subjected to an end point load 121

B2 Shear wall deformation subjected to an end point load; one element (left)

and 400 elements (right) . 122

ix

x

List of Tables

4.1 Input and output to and from MeshGen 78

4.2 Algorithm sequence for creating the nodal coordinates 79

4.3 Algorithm sequence for creating the element topology lists 80

4.4 Algorithm sequence for creating the external wind force vector 81

4.5 Algorithm sequence for creating the transformation matrix 85

4.6 Algorithm sequence for eliminating the ghost nodes from the connection

level of the substructure . 86

4.7 Horizontal displacement for the 12 storey building with four 0.4× 0.4m

corner columns, len=20m, height=3.5m, 0.15m thickness of the core

walls and slabs and Vg=44.7m.s−1) wind speed (Figure 4.14) 94

5.1 Information on the machine and Matlab version used to run the analyses 95

5.2 Geometric constants used for all of the FE analyses 97

5.3 Variables used for the FE analyses . 97

5.4 Computational memory savings of SEfeaTS compared with SPARSEfeaTS101

5.5 Run time savings of SEfeaTS compared with SPARSEfeaTS 101

5.6 Computational memory savings of SEfeaTS compared with SPARSE-

feaTS (ncol=12) . 102

5.7 Run time savings of SEfeaTS compared with SPARSEfeaTS (ncol=12) . 102

5.8 Computational memory savings of SEfeaTS compared with SPARSE-

feaTS (ncol=14) . 102

5.9 Run time savings of SEfeaTS compared with SPARSEfeaTS (ncol=14) . 103

5.10 Computational memory savings of SEfeaTS compared with SPARSE-

feaTS (ncol=16) . 103

5.11 Run time savings of SEfeaTS compared with SPARSEfeaTS(ncol=16) . 103

xi

5.12 The list of dimensions and number of elements used in the analysis for

the 400m tall slender building . 111

E1 The list of dimensions and number of elements used in the analysis for

the 400m tall slender building under dead and live load 165

xii

Acknowledgements

This research would not be possible without the support and encouragement of my su-

pervisor Professor Roger Crouch. I would like to express my deepest gratitude for his

guidance over the years. He has shared his vast knowledge unselfishly. His curiosity,

thirst for knowledge and deeper understanding inspires me to always ask simple ques-

tions (What?-Why?-How?) in order to solve the complex problems. I am also most

grateful to Visiting Professor Ron Slade, of WSP Consulting Engineers, who very kindly

enabled me to spend time in the WSP structural design office in London. Over a period

of 6 weeks I was able to discuss my project with professional engineers, especially Waleed

Hamad, who’s experience and knowledge in the design and analysis of tall buildings was

of great importance for the final stages of my Phd.

I can only try to express my internal gratitude to my family Veletić, Ðokanović, Ivanković.

Without their unconditional love and support this work would not be possible. Special

thanks goes to my mother Ljiljana. Her endless love, compassion and perseverance are

my guiding light.

To my friends Georgia and Slađan, here in London, who during this PhD become my

family, and those back at home I owe huge thanks for their comprehension and encour-

agement.

Finally all of this work was inspired by the admiration of Koviljka Lalović. She was my

life mentor and for showing me how to live a courageous life, I thank her.

xiii

xiv

Declaration

The author grants full power of discretion to the Director of Library Services (City,

University of London) to allow this thesis to be copied in whole or part without further

consent from myself.

xv

xvi

Abstract

This thesis is concerned with the development of a finite element (FE) design and analysis

capability for tall slender buildings (having a regular geometry) taking into consideration

the need to create a computationally efficient code such that parametric studies can be

performed speedily. In what follows, the current trend in tall slender buildings is discussed

as well as the motivation for focusing on a structure having a regular cross-section over

the height of the building. A reinforced concrete structural frame is adopted, as this is

the dominant material now used for tall slender buildings. The focus of the FE analysis

is the prediction of lateral displacements under wind loading.

The primary structural components in tall buildings are beams and plates. Beam Theory

is reviewed and the derivation of the three-dimensional (3D) Euler-Bernoulli (EB) beam

stiffness matrix is given. In addition, the concepts behind 3D FE shell theory (used for

the plate analysis, to represent the floor slabs and core walls) are described.

The report proceeds to discuss the master-slave approach and substructuring technique

that are introduced in order to save memory and reduce the run time. A bespoke Matlab

3D mesh generator and graphical routines (to illustrate the meshes and the deformed

structure) are also described.

Through the application of the Matlab codes SPARESEfeaTS and SEfeaTS (written by

the author) a 120 storey 420m tall structure is analysed, allowing parametric studies

to be undertaken to explore the efficiency of different structural members. Results are

presented for the lateral displacements of the building under static wind pressure. The

computational memory and run time savings of the two codes are discussed. It is shown

that the resulting computation tools provide a novel, valuable capability for engineers

xvii

carrying out preliminary designs of these tall elegant structures.

xviii

Nomenclature

Abbreviations

BIM Building information modeling

CAE Computer-aided engineering

DoF Degrees of freedom

EB Euler-Bernoulli

FE Finite Element

GP Gauss point

MFC Multi-freedom constraint

NA Neutral axis

SFC Single-freedom constraint

Nomenclature

τ Shear stress

[K] Global stiffness matrix

[kle] Local element stiffness matrix

[Ke] Element stiffness matrix

[ke] Global element stiffness matrix

α Exponential coefficient

∆s Arc length

∆x Length of a small portion

` Length of a thin-walled cylinder

γ Shear strain

γc Concrete density

γs Steel density

ν Poisson’s ratio

σxx Longitudinal stress

εxx Longitudinal strain

{d} Displacement vector

{di} Local displacement vector

{eY } Direction vector

{f le} Local element load vector

{fe} Global element load vector

{g} Null vector

{V1,k} Normalized vector

{V2,k} Normalized vector

{Vn,k} Thickness vector

A Cross-sectional area

b Width of the beam

d Depth of the beam

Dl Local constitutive matrix

dle Element nodal displacement vector

E Young’s modulus

f intx Internal force

xix

fint Internal tangential shear force

G Linear elastic shear modulus

h Height of the building

I Identity matrix

Iy Second moment of area around y

axis

J St. Venant’s torsion constant

M Moment

M ext
y External moment about y axis

M int
y Internal moment about y axis

N Normal force

Ni Shape function

Nk Nodal shape function

Q Shear force

R Radius of curvature

T Transformation matrix

tk Shell thickness

Ts Transformation matrix

vg Gradient wind

xx

Chapter 1

Introduction

1.1 The demand for ever taller, more slender, build-

ings

Tall buildings can attract a sense of awe from the public. They are seen by some as

iconic monuments to the achievements of humankind. They have also been viewed as

indicators of the economic prosperity of a city or nation. Tall slender buildings can be

both of those things and more; in that their particular stretched-out geometry provides

an even greater sense of wonder. Such structures are not just providing solutions to

(i) the need for downtown accommodation or commercial offices (as a consequence

of rapid urbanisation, increasing traffic pollution and suburban sprawl) or

(ii) maximising the use of land space and seeking a return on a financial investment

[38].

Tall slender structures can offer additional prestige through their use of the skyline as

global branding for corporate headquarters or aspirational home-owners. They provide

impact and mark the urban landscape; forming a city’s identity. Furthermore, such

buildings tend to be showcases for contemporary construction technology, implementing

the most advanced techniques and materials, and therefore embodying the vanguard of

their time1.
1Not everyone is entirely convinced of the need for these buildings. Detractors might point to:

(i) the requirement for lower cost housing, (ii) the increase of shadow zones and wind funnelling at
ground level, (iii) the high energy cost of their construction and (iv) the difficulties associated with
overcrowding, fire escape or terrorist attack.

1

Figure 1.1: Existing and planned structures adjacent to Central Park, NYC

1.2 A new generation of tall slender structures

A recent visitor to New York cannot fail to have noticed the new cluster of pencil-thin

towers around Central Park. Oliver Wainwright wrote that they seem to defy the laws

of both gravity and commercial sense [5].

Figure 1.2: Intended new build on Manhattan Island [5]

The current habitable building with the greatest aspect (height to width) ratio (23:1) is

111 West 57th Street, Manhattan. This was designed by engineers WSP and architects

2

Figure 1.3: 111 West 57th under construction

SHoP. The tower rises 435m yet measures just 19m×24m in plan [50]. The engineering

solution involved providing additional structural beams every 3 floors in order to build up

the necessary stiffness. The residential tower was constructed from cast in-situ reinforced

concrete (having a compressive strength of 96MPa) in conjunction with welded steel

plate structural members. Four outrigger walls were introduced at the mechanical floor

levels (see [46]) and an 800 tonne tuned mass damper employed to further limit the

motion of the tower [35].

3

Figure 1.4: 432 Park Avenue [1]

Nearby, the 96-storey 432 Park Avenue building has a similar height (425m) with an

aspect ratio of 15:1 and square footprint. Designed by architect Rafael Viñoly and

engineers WSP, the structural system comprises 7 perimeter columns on each elevation

with 760mm thick core walls and 250mm thick concrete floor slabs spanning 9.1m.

The inner and outer members are structurally connected on every 12th floor (that is, 12,

24, 36 . . .). Two 650 tonne tuned mass dampers were installed in the uppermost plant

room (84th floor). While the normal floor-to-ceiling height for residential towers in New

York is 3.7m, at 432 Park Avenue it is 4.7m [34] [35]. Such pencil-thin buildings are

about to appear in other major cities, including Dubai, Melbourne, Brisbane, Toronto

and Mumbai.

4

Figure 1.5: Shanghai skyline [4]

1.3 Urbanisation and the first appearance of tall

buildings

Over 10 million inhabitants now live in the largest of cities (for example, Shanghai,

Beijing and Tokyo). The importance of finding space for habitable dwellings close to the

city centre is growing. Building, maintaining and managing sustainable city centres has

become one of the most pressing challenges of the 21st century. In 1800, only 3% of the

world’s population lived in urban areas. By 1900, almost 14% were urbanites, although

only 12 cities had 1 million or more inhabitants. In 1950, 30% of the world’s population

resided in urban centres. The number of cities with over 1 million inhabitants had grown

to 83. Today, over half of the world population (54%) live in urban areas; a proportion

that is expected to increase to 66% by 2050 [9].

Motivations for this migration include access toprowess

(i) more and better jobs,

(ii) modern hospitals and improved health care,

(iii) reductions in commuter travel-time and cost,

5

(iv) a wider choice of schools and universities and

(v) greater social and financial support.

Tall buildings emerged in the late nineteenth century as a consequence of the rapid

development of the US. Initially, commercial use was the main trigger for construction

development, as businesses took advantage of being close to one another and therefore

tended to concentrate in city centres. Consequently, great pressure was put on land

prices further enhancing the need to build higher [14]. A tall building’s function has

changed over time. In the late 19th century 82% of tall buildings in the world were

offices, while in the last 17 years that number has declined significantly (40%). The

opposite trend applies for residential tall buildings, which have grown from less than

10% up to 27%. The remaining 33% have mixed use (for example, including hotels)

[7]. Demographics and economics still drive the construction of tall buildings. In China,

more than 12 million people are expected to move into urban areas every year between

now and 2030.

This building type would not have been plausible without the supporting technologies.

The arrival of the steel skeletal structures, glass curtain wall systems (which were first

seen in Chicago) and pumpable high strength concrete have led to the modern skyscraper.

Furthermore, advances in elevator design and performance have now made the construc-

tion of supertall (over 300m) and even megatall (over 600m) buildings possible [7][13].

6

1.4 Structural materials used in tall buildings

1.4.1 Steel

The application of steel to tall structures can be traced back to 1889, when the 300m

Eiffel Tower was first constructed. That height record was only broken in 1931 by the

381m steel-framed Empire State Building and then the 412m steel-framed twin towers

of the World Trade Center completed in 1972. Today, improved fabrication and erection

techniques, combined with the use of advanced analytical techniques (such as the Finite

Element method, used throughout this thesis) have permitted the use of steel in almost

any rational structural system for tall buildings [38]. A steel tall building is defined as

one where the main vertical and lateral structural elements are constructed from carbon

steel. The advantages of steel over concrete as a construction material are: (i) the speed

with which construction can proceed, (ii) the availability of steel in a variety of grades

and shapes and (iii) in difficult foundation conditions, steel construction can result in

reduced foundation costs because of its reduced weight. For a given bending resistance,

steel beams and columns are significantly lighter than concrete elements performing

the same function. This is a consequence of the much higher (typically 8×) material

stiffness (Young’s modulus). In addition, the behavior of steel structural systems tend

to be more predictable than those made of concrete because of the quality control that

can be achieved during their manufacture. Steel is also more dimensionally stable, as it

is not prone to the creep and shrinkage effects that concrete elements can experience

over time [38].

1.4.2 Reinforced and pre-stressed concrete

Concrete has become an enormously successful building material because it offers sig-

nificant economic savings over steel, plus it is versatile in its ability to take on any given

shape and it provides impressive fire resistance. A concrete tall building is defined as one

where the main vertical and lateral structural elements are constructed from concrete.

Concrete buildings are inevitably more massive, which leads to more expensive foundation

costs. However, the lower basic cost of material often over-rides that consideration [12].

While the erection of a steel structural frame has always been a rapid (time and labour

saving) process, concrete has recently seen new advances in its speed of construction.

7

Modern self-jacking formwork systems, modular designs and new admixtures can lead to

rapid casting and rapid curing, where the building is essentially constructed as if it were

a vertical factory. From the wind engineering perspective, the higher mass of concrete

frames and their greater inherent damping can both help decrease wind induced motion

[38].

1.5 Different structural systems for tall buildings

1.5.1 The structural frame: columns, beams, trusses, shear

walls and floor slabs

A structural framework is designed to withstand the external and internal loads transmit-

ted through the building down to the foundation. The most useful elementary structural

idealisation is to consider the tall building as a vertical cantilever, with its base fixed at

ground level. The main challenge is to provide a system which can resist the very high

over-turning moments from the wind pressure. The 3-dimensional aspects (rather than

planar 2-dimensional idealisations) of the building need to be considered at all stages.

Ideally, the structural members should be as small as possible to minimise the encroach-

ment into usable space. They should be stiff, ductile and strong enough to meet the

design expectations in terms of keeping the maximum deflections to within acceptable

limits and maintaining an agreed margin of safety under the highest conceivable loads.

The structural members include elements that are designed to only carry axial forces (for

example, struts and ties in a pin-jointed truss) and those capable of withstanding both

axial forces and bending moments (that is, columns and beams, and the floor slabs) as

well as elements designed primarily to resist in-plane shear and axial forces (for example

core walls). The combination and geometric arrangement of these members creates the

structural frame.

Conventional frames

A conventional structural frame involves a regular grid of vertical columns and horizontal

beams (Figure 1.6). Such a system will restrict the free internal floor space and will

8

typically require large columns in order to achieve the necessary lateral stiffness if shear-

resisting core walls are not introduced.

Figure 1.6: Conventional frame

Braced frame

A braced frame may look similar to a conventional frame expect that the introduction of

diagonal elements, from one floor level to another, stiffen the structure laterally (Figure

1.7, left). The bracing may be replicated on each floor, or appear periodically upon

different levels.

Belt trusses and outriggers

Outrigger systems function by tying together two structural systems (the core and the

perimeter) to give rise to a greater building bending stiffness than provided by the sepa-

rate component systems (Figure 1.7, right). Thus, outriggers engage perimeter columns

that would otherwise be gravity-only elements. An outrigger’s performance is governed

by: (i) their location through the height of a building, (ii) their plan arrangements,

(iii) the presence of belt trusses or deep spandrel beams to engage adjacent perimeter

columns and (iv) the outrigger truss depths.

Bundled tubes

A bundled tube structural solution comprises a series of vertical tubes (forming discrete

structural cells, when viewed in plan) typically tied together (periodically, over the height)

horizontally through the use of belt trusses (Figure 1.8). This system can provide a

9

Figure 1.7: Braced frame (left) and belt trusses with outriggers, floor slabs not shown
(right) [25]

laterally stiff frame, but it is less appropriate for prismatic slender towers having a small

footprint, as the usable floor space may be significantly compromised.

Figure 1.8: Bundled tube

Diagrid systems

A diagrid structural system typically comprises a framework of diagonally intersecting

external structural members, connected across multiples of floor, sometimes tied to a

more conventional rectangular grid of vertical columns and horizontal beams (Figure

1.9). This form of bracing can lead to a reduction in the material required in comparison

with a conventional rectangular frame having the same lateral stiffness. Although this

structural efficiency is attractive, it is achieved at the expense of views being partially

obstructed by the diagonal elements.

10

Figure 1.9: Diagrid frame [19]

Buttressed core

The Burj Khalifa represents one of the most familiar structures configured in the form

of a buttressed core (Figure 1.10), where the three buttresses step inwards as the height

increases. This provides the necessary stability for the (current) world’s tallest build-

ing. In the study reported here, the external perimeter (shape and dimension) remains

constant throughout the height of the building. Thus a buttressed core solution is not

adopted for the building under investigation.

1.5.2 Foundation solutions

One obvious characteristic of tall buildings is the cumulative weight of each floor that is

carried down to, and resisted by, the foundation. This means that significant attention

must be given to both the bearing capacity of the foundation and its settlement. A

further complication that tall slender buildings inherit, is that they are typically located

in dense urban areas where surrounding buildings will be less tall, thereby leading to the

potential for differential settlement. In some cases, the neighbouring buildings might in-

clude historic structures with delicate plasterwork or decorative features which were never

designed with an adjacent tall slender tower in mind. In addition, the congested urban

site might overlie underground transportation systems (subways) and large drainage cul-

verts. The presence of these will restrict the solutions possible for the foundation. It

has already been mentioned that the lateral forces (and consequent moments) imposed

by wind loading can be extremely high for a tall building. These moments will give rise

11

Figure 1.10: Buttressed core configuration of the Burj Khalifa (centre), Dubai

to increased and decreased vertical loads on opposite edges of the foundation. For a

structure of the type examined here, a raft foundation alone would not provide sufficient

bending resistance unless keyed into highly competent (stiff) rock. If multilevel base-

ments form part of the structure, then the material removed to form these lower levels

can partially offset (that is, compensate for) the high vertical loads passed down by the

structural frame.

The most appropriate foundation solution for a tall slender building is invariably a group-

ing of skin-friction and end-bearing piles tied together at their upper levels by a compen-

sating cellular raft. By way of example, the 160-storey Burj Khalifa includes a 6 storey

basement garage with a 3.7m thick reinforced concrete raft supported on 1.5m diameter

bored piles extending 50m below the raft.

A detailed geotechnical site investigation is essential before the final foundation design

can be realised. As part of that design, a coupled soil-structure interaction analysis

should be undertaken. In this way, the foundation is not designed solely on the basis

of the loads acting at ground level, but consideration is taken of the stiffening effect

12

from the (lower levels of the) superstructure. For any tall structure, given the inherent

variability nature of the subsurface, pile tests would need to be performed prior to the

construction of the superstructure [39].

1.5.3 Other considerations

It is not just the structural frame which dictates a design solution. The energy distribu-

tion, lighting, heating and cooling, acoustic properties, refuse collection, potable water

and waste water distribution, cleaning and maintenance all must be considered at an

early stage in the design process, together with the building’s potential impact on the

city’s immediate neighbourhood and infrastructure [38].

1.6 Defining the height of a building and respect-

ing planning requirements

There is no universally agreed definition of a tall building. However, the Council for Tall

Buildings and Urban Habitat (CTBUH) use the 300m and 600m criteria for supertall and

megatall buildings respectively. As of December 2019 there are 113 fully completed and

occupied supertall buildings worldwide (32 of which are in China) with another 103 cur-

rently under construction (49 in China). There are 3 megatall buildings fully completed

and occupied, with another 4 under construction. Three different height definitions are

used by the CTBUH: (i) the height to tip, (ii) the height to the architectural top and

(iii) the height to the finished level of the highest occupied floor within the building.

Those three heights are all measured from the lowest, significant, open-air, pedestrian

entrance [7].

Design engineers face building height restrictions that vary from country to country.

Building codes have invariably been developed with modest-scale buildings in mind.

Such codes do not directly address the unique aspects of tall buildings and therefore

may not be at all appropriate for tall buildings. The most significant design considera-

tions for supertall buildings is their resistance and response to wind loading. Interstory

drift and occupant comfort are often the controlling design criteria [12].

13

London is a city that has a clear position on its tall building strategy. The Core Strate-

gic Policy (CS14, [6]) gives a qualitative (rather than quantitative) description of tall

buildings as those significantly exceeding the height of their general surroundings. The

guidelines include information on whether planning permission could be granted for tall

buildings in areas covered by the Proposals Map. This, for example, prevents new build-

ings from obscuring local views of St Paul’s Cathedral and viewing corridors to the

Tower of London, plus prevents loss of local views from the Monument and other her-

itage assets or conservation areas. Furthermore, tall buildings in central London must

not adversely affect the operation of London’s airports, nor exceed the Civil Aviation

Authority’s maximum height of 309.6m above Ordinace Datum [6].

1.7 Vertical transportation and services for tall build-

ings

1.7.1 The movement of people into and out of the building

Taller buildings only became truly viable when Elijah Otis invented the safety brake

and over-speed governor in 1854. The challenge associated with planning a modern lift

installation is not so much in calculating its probable performance, but in estimating

the passenger demand that is likely. The number of floors to be served determines how

much work is to be done in moving people, and the function of the building (for example,

commercial, residential or hotel) determines the kind and frequency of traffic (peak-up

and peak-down) [10] [38]. For megatall buildings, more than 50% of the footprint may

be needed for elevators and service facilities. Features which can reduce the required

space include transfer floors (sky lobbies) and double deck elevators [8].

1.7.2 Service elevators

Lifts come in a wide variety of types aimed at specific markets and uses, from the low-

speed hydraulic elevators to the high-speed, high-rise gearless traction elevator. Hydraulic

lifts use one or more hydraulic pistons to raise and lower the cabin, either directly or

in some cases using a side-roping arrangement which permits the cabin to be moved

by steel cables looped over pulleys mounted at the top of the pistons. Traction lifts

14

are moved up and down by means of a motor-driven toothed pulley (traction sheave),

which imparts motion to the lift via steel hoisting ropes. In recent years, composite

steel and polyurethane materials have been used for mid-rise lifts (for example, in belts

used by the Otis Gen2 elevators) and there is increasing evidence that fully composite

hoisting ropes using advanced aramid fibers will provide a lighter-weight alternative to

traditional steel roping. ThyssenKrupp, jointly with Eros Elevators & Escalators, have

developed a TWIN-system for high-rise buildings. The advantage of the TWIN is that

two cabins run independently in the same single shaft. The system keeps a safe distance

between the two elevators (upper and lower cabins) that are running on top of each

other. This system provides savings in space; cutting the number of shafts needed by

one-third, compared to conventional elevators. Double Deck elevators are two cabins

tall; where one cab serves even-numbered floors and the other serves odd-numbered

floors, resulting in reducing the total number of elevators needed. These solutions can

also reduce a building’s overall energy use by decreasing the number of stops and the

total number of elevators required, when used with destination dispatch controls [43].

1.7.3 Mechanical floors

While most buildings typically have mechanical rooms, positioned in the basement, tall

buildings require dedicated mechanical floors throughout the structure. These spaces

are used to locate generators, heating and ventilation equipment, water pumps, storage

tanks, phone relays, electrical distribution panels and elevator controls, for example. The

mechanical floor offers a centralized location which can facilitate access and maintenance

to the above systems. This location can reduce losses to floor space in other areas of

the building. These floors are usually not accessible via regular elevators and stairwells,

because they contain sensitive equipment and controls. Thus, they are accessed via the

service elevator(s). On a mechanical floor, some provision should be made for cranage

to enable heavier items of equipment to be moved. The loads introduced by such cranes

would need to be considered when designing the structural members in that space.

15

1.8 The steps involved in structural design

For a building, the structural design process involves: (i) initial planning, frame con-

cept and member layout (this stage entails working from the architectural drawings to

identify the position and orientation of the columns, beams, core walls and trusses, plus

deciding upon the span of the floor slabs), (ii) determining the external forces acting and

computing the member loads, (iii) analysing the members to identify the deformations

and internal stresses, (iv) defining the required material properties and confirming the

member shape and size (typically via sectional analysis), (v) producing full engineering

drawings (including connection details) and preparing schedules.

Figure 1.11: Example configuration of shear walls (red) forming the cores of a tall
building

1.8.1 Load cases to consider

Dead loads

Dead loads can be defined as vertical loads that are fixed in position and are produced by

the (gravitational) weight of the elements of the structure together with all its permanent

16

components. Although these loads are known quite accurately once the design of the

structure is completed, at the beginning of an analysis a dead load has to be assumed.

Previous design experience, available data and weight tables (as well as some empirical

formulas) are helpful in this stage of the design process. The density of the construction

materials are well known (for example, for steelwork γs ≈ 7.85g.m−3 and for reinforced

concrete γc ≈ 2.5g.m−3) whereas the mass of specialist equipment can be found from

the appropriate product manuals.

Live loads

All transients loads which are not (permanent) dead loads are termed live loads. The

magnitudes of this variable loading depends upon the use of the building. Minimum

values are usually specified by local or national building codes. Some types of live

loads may be practically permanent in nature, although subject to removal or relocation.

Movable partitions, hung ceilings and building equipment fall into this category. To

produce a safe design, occupancy loads are taken conservatively, derived more from

experience and current practice than from accurately computed values from statistical

data based on the probability of their occurrence [47].

Wind loads

The minimum wind forces specified in most design codes do not fully consider the

potential dynamic response of a tall tower and may therefore under-predict the demand

levels. In some tall slender structures, vortex shedding can lead to high transverse

effects that exceed the forces stipulated by a design code. In addition, wind buffeting

from adjacent tall buildings may also increase the response. For these reasons, wind

tunnel testing coupled with Computational Fluid Dynamic analysis studies are generally

essential to better estimate the response of a tall building to wind [12]. The equivalent

static wind loads used in the analysis reported in this thesis are estimated using a power

relationship between wind speed (velocity) and height. The wind pressure is determined

from the square of the wind speed at a particular height. This is explained further in

Chapter 4.

17

Seismic excitation

In regions of moderate to high seismicity, the building codes do not adequately address

the unique aspects of the earthquake dynamics of tall buildings. Tall buildings can re-

spond to ground shaking in a complex manner, where the fundamental mode of vibration

is not necessarily the controlling response. Higher modes of vibration, excited by violent

ground shaking in a period range of 1-3 seconds, may dominate the seismic response of

a tall tower. Flexural and shear demands can be much greater than those envisioned by

code provisions, and the distribution of these demands can be wholly inconsistent with

the typical first mode response inherent in prescriptive building code provisions [12].

While the predicted seismic behaviour will directly govern the decision as to whether it

is possible to design a credible, safe, tall slender building in many cities worldwide, the

research reported here is restricted to consideration of a building constructed in an area

where the risk of earthquake excitation is deemed negligible.

Thermal loads

Tall slender structures could be susceptible to flexural loading induced by temperature

variations between opposite faces of the building. The effects of these thermal gradients

can be reduced by seeking appropriate cladding solutions. Nevertheless, calculations

should be undertaken to check the maximum plausible stresses that could be induced by

differential heating and cooling.

Loads resulting from the construction process

Temporary loads will be acting on the structure during the construction process. Typ-

ically, the reinforced concrete core walls are cast first and the temporary tower cranes

attached to those shafts. Until the structure has a sufficient number of members con-

nected, the incomplete system may represent a critical load case. This will need to be

checked for each stage of assembly.

Loads induced during assembly through dimensional inaccuracies

In steel structures, consideration has to be given to the consequence of using under or

over-sized (but still within the prescribed tolerances) structural members. Dimensional

variations are inevitable (as achieving infinite precision in the manufacturing process

18

is impossible). Therefore a the designer has to calculate the magnitude of the forces

resulting from any mismatch. This is not normally a significant issue, as the length of

steel members can typically be machined to 0.1mm. For reinforced concrete elements,

this need not to be considered at all, since the concrete will flow into whatever space is

created by the formwork. A different matter presents itself when casting concrete; that

is, the potential for shrinkage cracks occurring if appropriate consideration is not given

to the heat generated as a consequence of the hydration of cement. There are unlikely

to be massive volumes of concrete poured in the superstructure of a tall slender building

(although there may be in the basement/foundation). Thus the problem is invariably one

that can be solved by appropriate use of concrete admixtures and formwork insulation.

1.8.2 The detailed design phase

In design stages (ii)-(iv), mentioned at a start of section 1.9, once the layout of the struc-

tural members has been decided and the (factored) magnitudes of the external forces

have been estimated, then the detailed calculations follow. These involve the determi-

nation of the cross-sectional dimensions of each member. This is achieved by comparing

the stresses acting within each member against the (factored) material strength (which

can vary according to the grade of the steel or the concrete mix). The sectional stresses

can be obtained from finite element analysis. Deformations are also estimated at this

stage and the stability of the structural system assessed. For steel members, decisions

have to be made as to the method of connection (typically bolted, with connection

plates pre-welded to the beams and columns) and whether local stiffening in the web

is required in I-section beams experiencing high shear stresses. For reinforced concrete,

the number, diameter and location (cover) of the reinforcing bars has to be determined,

once the grade of concrete has been decided. The number and size of the bars alone

are not the only considerations. Construction experience will guide whether a partic-

ular arrangement of densely-packed reinforcing bars will allow the concrete to flow as

intended. Checks on the fire resistance of each structural member have to be made, to

ensure that the building can remain stable for long enough to either: (i) enable the fire

to be extinguished and/or (ii) safely evacuate the building.

19

1.8.3 BIM

Building information modeling (BIM) is a smart, collaborative, information exchange

process supported by various commercial design packages. The framework involves the

generation and management of digital representations of a complete engineering design.

BIMs can be seen as common format files which can be extracted, merged, edited and

shared to support team-based decision-making associated with the planning, design,

construction and operation of a great many physical infrastructures. The integrated

document system can incorporate every detail of a building. The BIM model can be used

in the analysis phase to explore design options and to create comprehensive visualizations

of the intended solutions. The BIM model is then used to generate the design drawings

and documentation, ready for construction. While the Matlab code generated as part of

this research has not been written with any particular BIM package in mind, the essential

data defining the finite element meshes (that is, the nodal coordinates and the finite

element typologies) have been stored in array formats which could easily be exported to

another CAE system.

1.8.4 Constructability

Even if one were to design a structural frame which met the required stiffness and

strength to adequately resist the largest plausible applied loads, it would not mean that

that particular design was appropriate. There are other considerations to be made. The

conjestion of an urban site might mean that it was effectively impossible to transport

lengthy steel beams and columns to the site. Thus the particular location might force the

frame to be formed by reinforced concrete. The availability of sufficient space would also

dictate whether a concrete batching plant could be set-up within the building envelope,

otherwise concrete would have to arrive ready-made in trucks.

The issue of placing the concrete in a tall slender building is not without challenges.

It might have to be craned-up to a certain level and then pumped over a distance,

say, of 30m. The rate at which the concrete can achieve its minimum strength will

influence the length of time that the framework needs to be in place and therefore the

rate of construction progress. Furthermore, the use of identically sized members can

save formwork costs (and lead to fewer setting-out errors) even though the structural

20

analysis may indicate that smaller (and thus dissimilar) elements could be used. The

number of, and position of, the tower cranes will need careful consideration, as will the

storage arrangements and the site offices. All these factors will have an influence on the

efficiency (and thus the cost) of the building’s construction.

1.9 The benefits of open-source structural analysis

codes

1.9.1 The merit of using Matlab m-script

Many leading design consultancies, who regularly call upon their engineers to develop

numerical solutions, have adopted Matlab as their principal means of creating reli-

able, robust and reusable software applications. This computational tool offers a high-

performance language, giving access to a great many advanced numerical analysis ca-

pabilities needed for technical computing. Matlab integrates computation, visualization

and programming in an environment where solutions are expressed using familiar mathe-

matical notation. Therefore, all the code presented in this thesis has been written using

Matlab m-script.

1.9.2 The CALFEM library

Several of the core structural analysis algorithms presented in this thesis have been

adapted from existing CALFEM library functions. These form a compact collection of

m-scripts, developed in the Division of Structural Mechanics at Lund University, originally

intended to aid the teaching of the finite element method. As will be described later,

CALFEM is unable to analyse the kind of tall slender structure examined in this study.

Therefore key aspect of the research is to modify and enhance CALFEM to provide

advanced new features.

21

1.9.3 Commercial (licensed) FE software versus open-source

research code

A great many licensed finite element packages are currently available. These include

ANSYS, ADINA, DIANA, ETABS, FINEL, STRUDL, LUSAS, MSC Nastran, Oasys

GSA/ADC, SAP2000, ABAQUS, Revit and STAAD2. Most of these are impressively

comprehensive in their ability to tackle a range of engineering problems (including ad-

vanced nonlinear and dynamic analyses). However, one common disadvantage of those

systems is that they are closed (essentially black box) packages where the user is pre-

vented from seeing (and therefore understanding and possibly editing and extending)

the code. While the study reported on here could have made use of such a commercial

package, it would have necessarily had very different goals and outcomes. The advan-

tages gained by personally creating the code (and thus understanding the underlying

engineering mechanics theory and numerical analysis methods, with their limitations

and assumptions) was a key necessity for this investigation. Furthermore, the ability

for future developers to potentially extend this software was seen as a most important

requirement.

1.10 The goal and scope of this research

The aim of the work here is to provide a novel analysis capability which can help an

engineer find preliminary structural solutions to assist in the design of tall (> 300m)

habitable buildings with an aspect ratio of 20:1 or more, and a small ground level footprint

(< 500m2). The work is restricted to the linear elastic analysis of slender multi-storey

structures under static wind load (which varies non-linearly over the height). This condi-

tion can govern the whole design, as an engineer will want to limit the lateral deflection

at the top to within, say, h/500 (where h is the height of the building). While the

dynamics of such a building is a fundamental aspect which must be considered by a

designer, it is not investigated here (thus the addition of features intended to suppress

the transient lateral motion, such as tuned-mass dampers, fall outside the scope of the

study). Unlike many very tall buildings, no attempt is made here to optimise the external

shape in order to minimise the wind loading. Furthermore, the purpose here is not to

2This list is not exhaustive, but contains the leading packages used within the UK.

22

design one single building, but to provide a computationally efficient tool which enables

a variety of solutions to be explored and compared. The adopted design constraints

involve the structure having a square floor plan which does not change from one level

to the next (for example, see Figure 1.4). There is a powerful elegance to such a ge-

ometry. A key outcome from this work is the creation (by the author) and explanation,

of a series of accessible Matlab Finite Element codes which a user could adapt and ex-

tend. Throughout this work, the author has explored techniques which either reduce the

computational requirements (memory) or the run-time. Although not the primary focus,

consideration is given to the need to identify design features that could reduce the carbon

footprint of the building and increase its sustainability. Wider sociological and political

aspects (associated with the use of tall habitable buildings) fall outside this investigation.

In subsequent chapters, theoretical aspects underpinning the structural analysis method

and the Finite Element codes themselves are described. Building upon an existing FE

framework (based on the existing CALFEM m-script library [3]) the following new fea-

tures have been introduced (i) 4-noded shell elements [52] with additional drilling DoF,

to represent the reinforced concrete core walls and composite floors (note that CALFEM

only included 2D rectangular plate elements, in its FE library), (ii) master-slave approach

for 3D beam and shell elements, (iii) a substructuring approach whereby only part of

the building needs to be modelled in detail (iv) use of superelements (substructures

with condensed-out internal DoF), (v) efficient matrix storage and solver schemes for

the sparse system of equations, (vi) a bespoke 3D mesh generator and (vii) graphical

routines to illustrate the meshes and the deformed structure.

Thereafter the findings from a number of simulations, predicting the lateral drift of tall

slender buildings, are given and conclusions drawn. For example, the consequences of

changes in: (i) the number of perimeter columns, (ii) their cross-sectional dimensions and

orientation, (iii) the thickness of the core walls and (iv) the depth of the spandrel beams

are all examined, together with observations on the computational efficiency achieved

through the novel use of substructuring and superelements.

23

24

Chapter 2

Finite element formulation of 3D

Beam and Shell elements

Tall slender buildings are complex structures comprising many components. If one wishes

to predict the displacement of the structure under a given system of loads and determine

the stresses acting within individual members, then the finite element method offers a

powerful technique to enable that analysis to be undertaken. The method is the most

widely used approach adopted by structural engineers. It involves the establishment of

stiffness matrices for each structural member (each of which is a finite element) and

then the assembly of all the element stiffness matrices [Ke] into a global structural

stiffness matrix [K]. Once the forces {f} are prescribed, the resulting displacements

{d} can be determined by solving the linear system [K]{f}={d}. Each finite element is

characterised by a set of nodes. These nodes have degrees of freedom (DoF) associated

with them. The DoF represent the displacements and/or rotations potentially occurring

at that node.

One approach to obtain an expression for the stiffness matrix is to make use of the

Principle of Virtual Work. There are other approaches which could be used to derive

the stiffness matrix, including (i) the Rayleigh-Ritz method, a variational approach that

makes use of the Principle of Minimum Potential Energy to establish the governing

equations, or (ii) a weighted residual method such as the Galerkin approach, which offers

a more general mathematical framework for solving the governing differential equations

[20].

25

Here a more direct approach is used where the stiffness matrix is constructed from

consideration of the underlying mechanics theory. In this chapter, the 3D beam and

shell finite elements (both of which will be used to represent the principal structural

members of a tall slender building) are described. We begin with a review of Euler-

Bernoulli Beam Theory, before deriving the stiffness matrix for a 3D beam element.

2.1 3D Beam theory

A right-handed global rectangular Cartesian coordinate system (X, Y, Z) is used through-

out this thesis. Figure 2.1 illustrates the local coordinate system (x, y, x) attached to an

individual beam element which may be orientated in any direction with respect to the

global coordinate axes. Figure 2.2 indicates the standard engineering sign convention

Figure 2.1: 3D beam within a Cartesian coordinate system showing both global (X, Y, Z)
and local (x, y, z) axes

used in for positive normal (N) and shear (Q) forces and moments (M).

A typical beam element in three-dimensions has six DoF: three translations u, v, w, and

three rotations, θx, θy, θz as shown in Figure 2.3. The local displacement vector at node

26

Figure 2.2: Positive sign convention for moments and forces

i is given by

{di} =

ui

vi

wi

θxi

θyi

θzi

displacement in the x direction

displacement in the y direction

displacement in the z direction

rotation about the x–axis

rotation about the y–axis

rotation about the z–axis

(2.1)

Figure 2.3: DoF for a two-noded 3D beam element

27

Beam mechanics

A slender beam is defined as a structural member having one of its dimensions much

larger than the other two. Furthermore a beam is loaded in a direction transverse to

the long axis (that is, at right angles to the longer dimension). In what follows, the

cross-section geometry is assumed to be identical at all points along the length of the

beam (that is, the beam is prismatic). Several beam theories have been developed based

on various assumptions leading to different levels of accuracy. One of the simplest and

most useful of these theories was first described by Leonhard Euler and Jacob Bernoulli.

It is commonly referred to as Euler-Bernoulli beam theory. This is the theory embodied

in the stiffness matrices used in the FE analysed reported here.

Euler Bernoulli Beam Theory

A fundamental assumption of this theory is that no deformations occur in the plane of the

cross-section. Consequently, the in-plane displacement field can be represented simply

by two rigid body translations (v and w) and one rigid body rotation (θx). The Euler-

Bernoulli derivation assumes that plane sections perpendicular to the longitudinal axis

remain not only plane but also perpendicular to the neutral axis (NA) during deformation

when pure bending is applied. The neutral axis is that axis where no longitudinal stresses

(σxx) or strains (εxx) occur.

The slender beam is assumed to be homogenous, isotropic and linear elastic with a

symmetric cross-section about the local y and z axes. During deformation, the beam

forms a circular arc as shown in Figure 2.5. The deformation gives rise to linearly

varying longitudinal stress and strain profiles (σxx and εxx) over the depth of the beam

as a consequence of the shortening of the upper surface (under longitudinal compression)

and lengthening of the lower surface (under longitudinal tension).

28

Figure 2.4: A portion ∆x of a slender undeformed beam (elevation, left and cross-section,
right)

The theory is developed by first considering a small portion (of length ∆x) of the slender

rectangular beam of width b and depth d (Figures 2.4). We now examine the longitudinal

region AB located z above the neutral axis CD. Following the application of an external

Figure 2.5: A portion ∆x of a slender deformed beam with radius of curvature R (ele-
vation)

moment, M ext
y , the beam is assumed to deform in a circular arc of radius R (this is

the distance from the center of curvature to the neutral axis) and angle subtended ∆θ

(Figure 2.5). The neutral axis segment CD becomes C’D’, yet the arc length ∆s of

29

Figure 2.6: Side elevation (portion ∆x of deformed beam)

C’D’ remains identical to the original length CD since the neutral axis undergoes no

shortening or lengthening. That arc length ∆s equals R∆θ, where ∆θ is measured in

radians. Thus we may write

AB = CD = C ′D′ = ∆s = R∆θ (2.2)

Note that as ∆θ << 1, ∆θ ' sin(∆θ) ' tan(∆θ) =
dw

dx
(Figure 2.5). We may

re-express the final equation in (2.2) in differential form as ∆s tends to zero

dθ

ds
=

1

R
= κ =

dθ

dx

dx

ds
(2.3)

where κ denotes the curvature and the final term arises from the chain rule of differen-

tiation. On the neutral axis ∆s=∆x thus

dx

ds
= 1 (2.4)

and so
1

R
=
dθ

dx
(2.5)

(2.5) may be re-expressed as follows

1

R
=
dθ

dx
=
d(dw

dx
)

dx
=
d2w

dx2
(2.6)

Consider now the longitudinal straining of region AB as it deforms to A’B’

εxx =
(R− z)∆θ −R∆θ

R∆θ
= − z

R
(2.7)

30

Note that negative strains occur above the neutral axis (shortening) but positive strains

occur below the neutral axis (lengthening). Recall that, in the case of uniaxial stress,

Young’s modulus is given by

E =
σxx
εxx

= −σxxR
z

(2.8)

Thus, we may write
E

R
= −σxx

z
(2.9)

or

σxx = −zE
R

(2.10)

Consider the internal force acting at B’ arising from the longitudinal stress, σxx, times

the area of the cross-sectional band of height ∆z and width b.

f intx = σxx b.∆z (2.11)

The internal moment (about the neutral axis) caused by that force is given as

M int
y = σxx b.∆z.z (2.12)

Summing all such moments over the depth of the beam gives

M int
y =

∫ + d
2

− d
2

σxx b.z.dz = −
∫ + d

2

− d
2

z2bE

R
dz = −Eb

R

[
z3

3

]+ d
2

− d
2

= −Ebd
3

12R
(2.13)

We note that bd3

12
is the second moment of area about the y axis (that is, Iyy or Iy).

Thus

M int
y = −EIy

R
= −EIy

d2w

dx2
(2.14)

In order to obtain moment equilibrium

M ext
y +M int

y = 0 (2.15)

Thus

M ext
y = EIy

d2w

dx2
(2.16)

31

Figure 2.7: Section forces on a portion ∆x under a uniformly distributed load (positive
sign convention)

To further develop the Beam Theory we consider the equilibrium of additional external

forces and moments acting again on a small length of beam ∆x (Figure 2.7).

Examining force equilibrium in the z direction, we have

Qz(x)−Qz(x+ ∆x) + qz∆x = 0 (2.17)

But we may replace Qz(x+ ∆x) with the truncated Taylor series

Qz(x+ ∆x) = Qz(x) +
dQz

dx
∆x (2.18)

if ∆x is small. Thus, the equilibrium expression becomes

Qz(x)−Qz(x)− dQz

dx
∆x+ qz∆x = 0 (2.19)

or
dQz

dx
= qz (2.20)

Now examining moment equilibrium (about the y axis) at B, we have

−My(x) +My(x+ ∆x)−Qz∆x+ qz
∆x∆x

2
(2.21)

Note that the term involving (∆x)2 is insignificantly small if ∆x is small. Again, using

the truncated Taylor series expansion

32

My(x+ ∆x) = My(x) +
dMy

dx
∆x (2.22)

we have

−My(x) +My(x) +
dMy

dx
∆x−Qz∆x = 0 (2.23)

Thus

dMy

dx
= Qz (2.24)

We can finally write

M(x) = EIy
d2w(x)

dx2
(2.25)

Q(x) = EIy
d3w(x)

dx3
(2.26)

The corresponding expression for the axial force (N) is given by

N(x) = EA
du(x)

dx
(2.27)

This follows from the recognition that εxx = du
dx

and E εxx = σxx (in this case of uniaxial

loading).

33

Simple Torsional Theory

Thus far, we have only considered the application of a bending moment acting orthog-

onally to the longitudinal axis of the beam. We now consider the additional action of

torsion applied to the beam. Torsion occurs as a consequence of a twisting moment (or

applied torque), T , about the member’s longitudinal axis, as shown in Figure 2.8. Here,

a thin-walled cylinder is initially considered (rather than a beam of rectangular cross

section) where the cross-section is assumed to remain plane and the radius is assumed

to remains constant during the twisting. On applying equal and opposite torques to each

end, the arc ∆s is given by

∆s = r∆θ (2.28)

Along the length of the member, the arc length will vary according to

∆s = γ` (2.29)

where γ is the shear strain induced by the applied torque. From (2.28) and (2.29) we

Figure 2.8: Torsion of a thin-walled cylinder of a radius r

may write

γ =
r∆θx
`

(2.30)

The shear stress, τ , is then given by

τ = Gγ = G
r∆θx
`

(2.31)

34

where G is the linear elastic shear modulus. For any circular annulus of area

∆A = 2πr∆r (2.32)

the internal tangential shear force is

fint = τ∆A = τ2πr∆r (2.33)

In order to maintain rotational equilibrium, the sum of the moments contributed by the

shear stress acting on each differential area dA on the cross section must be balanced

by the applied moment T . Thus

T =

∫
A

τ rdA = G
∆θx
`

∫
A

r2dA (2.34)

The quantity
∫
A
r2dA is the polar moment of inertia J (St. Venant’s torsion constant)

which for this hollow circular cross section is

J =

∫ ro

ri

r2dr (2.35)

where ro and ri are the outer and inner radii. In the simple twisting case under con-

sideration (where the quantities T , J and G are constant along x), the twist is given

by
dθx
dx

=
∆θx
`

(2.36)

On combining (2.31), (2.34) and (2.35), the relationships governing the simple theory

of torsion are obtained as follows

T

J
=
G∆θx
`

=
τ

r
(2.37)

For rectangular sections an approximate expression for St. Venant’s constant is given by

[53]

J ' ab3
(

16

3
− 3.36

b

a

(
1− b4

12a4

))
(2.38)

where a is the half length of the largest cross-section side and b is the half length of

the shortest cross-section side. For other shaped sections there exist approximate ex-

35

pressions for J which can be found in the literature [53]. In all that follows, use will be

made of (2.38) since the reinforced beams adopted for the tall slender structure are all

rectangular in their cross-section.

Finite Element Shape Functions

Within finite element theory we make use of the notion that displacements are deter-

mined at the nodes and then shape functions are used to describe the variation of the

displacements within an element. Thus we can write an expression for the generalized

displacement (that is, the translation and/or rotation) {d} at any point within or on an

element in terms of its nodal {di} displacements.

{d} = [Ni]
T{di} (2.39)

where [Ni] contains the nodal shape functions

Figure 2.9: Linear shape functions N1 and N2

The shape (or interpolation) functions Ni have the following characteristics

(i) Ni = 1 at node i

(ii) Ni = 0 at node j where i 6= j.

We shall distinguish between two classes of problems: those involving displacements (or

rotations) only, and those involving both displacements and their derivatives.

36

Developing the shape function relationship for axial deformation and torsion

In the case of pure axial loading (either compression or tension) we may express the axial

deformation at any point along the beam as

u = N1u1 +N2u2 (2.40)

Similarly, in the case of pure torsional loading we may write

θx = N1θx1 +N2θx2 (2.41)

In the case of axial loading, we assume that the axial deformation varies linearly with

distance along the finite element. That is

u = a1x+ a2 (2.42)

The boundary conditions are given by u = u1 at x = 0, and u = u2 at x=`. Thus we

have

u1 = a2 (2.43)

and

u2 = a1`+ a2 (2.44)

Solving for a1 and a2 in terms of u1 and u2 we obtain

a1 =
u2
`
− u1

`
(2.45)

and

a2 = u1 (2.46)

Substituting and rearranging the above expressions into (2.40) we obtain

u = (
u2
`
− u1

`
)x+ u1 = (1− x

`
)u1 +

x

`
u2 (2.47)

Thus

N1 = 1− x

`
(2.48)

37

N2 =
x

`
(2.49)

We can arrive at identical expressions for N1 and N2 if we consider the case of pure

torsion when we assume a linear variation in the torsion over the length of the element.

38

Developing the shape function expressions for flexure

When we consider the case of two dimensional flexure, for each element we have trans-

lations in the local z-direction (w) and rotations (θy) at either end of the element. We

therefor have 4 DoF and will require 4 shape functions, N3 to N6. These will be obtained

through consideration of the 4 boundary conditions. We assume a third order polynomial

variation in the displacements over the length of the beam. Thus

w(x) = a3 + a4x+ a5x
2 + a6x

3 (2.50)

which we may write as

w = {1 x x2 x3}

a3

a4

a5

a6

(2.51)

So

dw

dx
= {0 1 2x 3x2}

a3

a4

a5

a6

(2.52)

We note that

w
∣∣∣
x=0

= w1 (2.53)

dw(x)

dx

∣∣∣
x=0

= θ1 (2.54)

w
∣∣∣
x=`

= w2 (2.55)

dw(x)

dx

∣∣∣
x=`

= θ2 (2.56)

Thus, using (2.53)-(2.56) in conjunction with (2.52) we see that

39

a3 = w1 (2.57)

a4 = θ1 (2.58)

a3 + a4`+ a5`
2 + a6`

3 = w2 (2.59)

a4 + 2a5`+ 2a6`
2 = θ2 (2.60)

or
1 0 0 0

0 1 0 0

1 ` `2 `3

0 1 2` 3`2

a3

a4

a5

a6

=

w1

θ1

w2

θ2

(2.61)

The preceding matrix may be inverted to give

a3

a4

a5

a6

=

1 0 0 0

0 1 0 0

− 3
`2
−2
`

3
`2
−1

l

2
`3

1
`2
− 2
`3

1
`2

w1

θ1

w2

θ2

(2.62)

Given a3, a4, a5 and a6 from (2.62), (2.51) can be written as

w = {1 x x2 x3}

1 0 0 0

0 1 0 0

− 3
`2
−2
`

3
`2
−1

l

2
`3

1
`2
− 2
`3

1
`2

w1

θ1

w2

θ2

(2.63)

or

w =

{(
1− 3x2

`2
+

2x3

`3

) (
x− 2x2

`
+
x3

`2

) (
3x2

`
− 2x3

`3

) (
−x

2

`
+
x3

`2

)}

w1

θ1

w2

θ2

(2.64)

40

which may be expressed as

w = {N3 N4 N5 N6}

w1

θ1

w2

θ2

(2.65)

such that the shape functions can be written as (after re-arrangement)

N3 =
1

`3
(2x3 − 3x2`+ `3) (2.66)

N4 =
1

`3
(x3`− 2x2`2 + x`3) (2.67)

N5 =
1

`3
(−2x3 + 3x2`) (2.68)

N6 =
1

`3
(x3`− x2`2) (2.69)

The same shape functions established above for a 2D beam element may be used for

the 3D beam element when considering flexure about the local z axis.

41

2D Beam element stiffness matrix

We now collect together the expressions from the axial force (N), the shear force (Q)

and the bending moment (M), making use of (2.25), (2.26) and (2.27). It is worth

noting that the axial force (N) should not be confused with the shape functions N1 to

N6, despite sharing the same symbol.

N = EA · d
dx
{N1 N2}

 u1

u2

 (2.70)

Q = EI · d
3

dx3
{N3 N4 N5 N6}

w1

θy1

w2

θy2

(2.71)

M = EI · d
2

dx2
{N3 N4 N5 N6}

w1

θy1

w2

θy2

(2.72)

or

N = EA · d
dx
{1− x

`
x}

 u1

u2

 (2.73)

Q = EIy ·
d3

dx3
{12 6` − 12 6`}

w1

θy1

w2

θy2

(2.74)

M = EIy ·
d2

dx2
{12x−6` 6−4`2 −12x+6` 6`x−2`2}

w1

θy1

w2

θy2

(2.75)

Taking into account the nomenclature of Figures 2.10 and 2.11, the following boundary

42

Figure 2.10: Nomenclature for nodal parameters associated with a 2-noded beam element
under an axial load

Figure 2.11: Nomenclature of the nodal parameters associated with a 2-noded beam
element under a transverse force and bending moment

conditions exist
N(0) = − Nx1

Q(0) = Qz1

M(0) = − My1

N(`) = Nx2

Q(`) = − Qz2

M(`) = My2

(2.76)

43

Combining (2.70)-(2.75) with (2.76), the following expressions are obtained

−Nx1 =
EA

`
· d
dx
{−1 1}

 u1

u2

 (2.77)

Qz1 =
EI

`3
· {12 6` − 12 6`}

w1

θy1

w2

θy2

(2.78)

−My1 =
EI

`3
· {−6` − 4`2 6` − 2`2}

w1

θy1

w2

θy2

(2.79)

Nx2 =
EA

`
· d
dx
{−1 1}

 u1

u2

 (2.80)

−Qz2 =
EI

`3
· {12 6` − 12 6`}

w1

θy2

w2

θy2

(2.81)

My2 =
EI

`3
· {−6` − 4`2 6` − 2`2}

w1

θy1

w2

θy2

(2.82)

(2.77)-(2.82) can be written in matrix form providing the following equilibrium equations

AE

`

 1 −1

−1 1

 u1

u2

 =

 Nx1

Nx2

 (2.83)

44

EI

`3

12 6` −12 6`

6` 4`2 −6` 2`2

−12 −6` 12 −6`

6` 2`2 −6` 4`2

w1

θy1

w2

θy2

=

Qz1

My1

Qz2

My2

(2.84)

It should be noted that (2.83) and (2.84) correspond to a 2D beam element subjected

only to nodal forces. In the case of beams loaded by forces acting between the nodes,

equivalent nodal forces will need to be determined. This capability exist in the finite

element analysis code but is not discussed further here as it is not used in the analyses

reported on in subsequent chapters.

45

3D Beam element stiffness matrix

The element stiffness matrices associated with axial loading, torsional loading and bend-

ing (about the local z axis) are now recalled and combined

AE

`

 1 −1

−1 1

 u1

u2

 =

 Nx1

Nx2

 (2.85)

GJ

`

 1 −1

−1 1

 θx1

θx2

 =

 Mx1

Mx2

 (2.86)

EIzz
`3

12 6` −12 6`

6` 4`2 −6` 2`2

−12 −6` 12 −6`

6` 2`2 −6` 4`2

w1

θy1

w2

θy2

=

Qz1

My1

Qz2

My2

(2.87)

Collecting these together gives

EA
`

0 0 0 EA
`

0 0 0

0 12EIzz
`3

0 6EIzz
`2

0 −12EIzz
`3

0 6EIzz
`2

0 0 GJ
`

0 0 0 −GJ
`

0

0 6EIzz
`2

0 4EIzz
`2

0 −6EIzz
`2

0 2EIzz
`

−EA
`

0 0 0 −EA
`

0 0 0

0 −12EIzz
`3

0 6EIzz
`2

0 12EIzz
`3

0 −6EIzz
`2

0 0 −GJ
`

0 0 0 GJ
`

0

0 6EIzz
`2

0 2EIzz
`

0 −6EIzz
`2

0 4EIzz
`

u1

w1

θx1

θy1

u2

w2

θx2

θy2

=

Nx1

Qz1

Mx1

My1

Nx2

Qz2

Mx2

My2

(2.88)

To obtain the full 3D beam element equilibrium equation (involving the complete local

element stiffness matrix) the terms associated with bending about the local z axis have

to be introduced. These are essentially the same as those obtained for bending about

the local y axis.

EIyy
`3

12 6` −12 6`

6` 4`2 −6` 2`2

−12 −6` 12 −6`

6` 2`2 −6` 4`2

v1

θz1

v2

θz2

=

Qy1

Mz1

Qy2

Mz2

(2.89)

46

The complete 12× 12 element stiffness matrix appearing in the equation of equilibrium

for a 3D Euller-Bernoulli beam element is given in Appendix A. That equation may be

written compactly as

Figure 2.12: Beam element subjected to three-dimensional nodal force

[kle]{dle} = {f le} (2.90)

where the superscript ` refers to the local coordinate system.

3D Beam element transformation from local (x, y, z) to global (X, Y , Z)

axis

The final equation of the equilibrium must be expressed using the global coordinate

system. This can be obtained using a transformation matrix [T] which is constructed for

each element. The local element stiffness matrix [kle] and the local element load vector

{f le} are transformed as follows

[ke] = [T]T[kle][T] (2.91)

{fe} = [T]T{f le} (2.92)

[T] can be obtained from the normalised direction vectors which express each of the

local axis directions in terms of the global coordinates. The element nodal displacements

47

can be transformed from global to local as follows

{dle} = [T]{de} (2.93)

The latter operation is sometimes performed once the global nodal displacements are

determined, to enable local member stresses and forces to be calculated for each ele-

ment.

2.2 3D Shell theory

A shell is a structural member which has its thickness dimension significantly smaller

than its other dimensions, and is able to support loads in all directions. It can therefore

potentially undergo bending and twisting, as well as in-plane deformation. The shell

may be doubly curved, giving rise to complex geometries and significant challenges when

constructing a general theory to predict displacements and internal stresses. Numerous

shell finite elements have been proposed over the past 50 years and yet no one formulation

has been developed which fully satisfies the desire for both accuracy and efficiency [16].

Although the application of the shell finite elements used in this project is in the form

of planar components (plates), the more general shell formulation has been adopted,

drawing on the work of [52] and the references contained within. It is recognised that it

is not necessary to make use of a generalised shell element for the floor slabs and core

walls (since they are planar). But introduction of the chosen shell element offers greater

opportunities for the code when considering alternative geometries (not studied here).

Figure 2.13 shows a 4-noded shell element. Two main assumptions are used in the

process of transforming a solid three dimensional element to a shell element. They are

(i) normals to the middle surface before deformation remain straight after deformation

(ii) strain energy associated with stresses perpendicular to the local x, y surface is

neglected. The normal stress component in the thickness direction is constrained

to zero and eliminated from the constitutive equations [27].

Typically, at each shell element node, there are three displacements u, v, w in the global

directions X, Y, Z and two normal rotations θx and θy (although we will see that this has

48

Figure 2.13: 3D view of the 4-noded shell element showing various coordinate systems

been modified in the formulation used in this research). In order to define the geometry

of the shell element, nodal coordinates (xk, yk, zk, which are parallel to the global

coordinate system X, Y, Z), angles φk and ψk (which are used to define the normalised

mid-surface vectors) and the shell thickness (tk measured normal to the mid-surface)

are required at each node k. A total number of four coordinate systems are required to

construct the shell finite element stiffness matrix (Figure 2.13). The global Cartesian

coordinate system (X, Y, Z) is of course used. That system is also used to construct

the nodal coordinate system mentioned above. A local curvilinear coordinate system (ξ,

η, ζ) is required for the construction of the nodal shape functions Nk. The mid-surface

of the shell element is defined by the ξ and η coordinates when ζ = 0. The ζ direction

is only locally normal to the shell middle surface in a doubly curved element and varies

from - 1 to + 1 in the thickness direction [27].

Previously mentioned normalised direction vectors exist at each node on the shell mid-

surface. These define the direction of the thickness vector

{Vn,k} =

cos (φ)

sin (φ) cos (ψ)

sin (φ) sin (ψ)

 (2.94)

and two further orthogonal vectors {V1,k} and {V2,k} complete that local coordinate

49

system. It is assumed that the mid-surface normals remain straight and perpendicular

during deformation and that transverse (in the thickness direction) shear terms are zero.

The two normalized vectors {V1,k} and {V2,k} are defined as follows (using the vector

cross-product)

{V1,k} =
{Vn,k} × {eY }
|{Vn,k} × {eY }|

{V2,k} =
{Vn,k} × {V1,k}
|{Vn,k} × {V1,k}|

(2.95)

where {eY } gives the direction of the global Y axis. The geometry and displacements

are given by
x

y

z

 =
4∑

k=1

Nk

xk

yk

zk

+
ζ

2

4∑
k=1

tkNk{Vn,k} (2.96)

u

v

w

 =
4∑

k=1

Nk

uk

vk

wk

+
ζ

2

4∑
k=1

tkNk{Vn,k} (2.97)

where tk is the shell thickness at node k. For the four-noded element, the following

Lagrangian shape functions are used to interpolate the geometry and displacements over

the shell mid-surface.
N1 =

1

4
ξ(ξ − 1)η(η − 1)

N2 = −1

4
ξ(ξ − 1)η(η + 1)

N3 =
1

4
ξ(ξ + 1)η(η + 1)

N4 =
1

4
ξ(ξ + 1)η(η − 1)

(2.98)

Assuming material linear elasticity, the local constitutive matrix [Dl] is given by

[Dl] =
E

1− ν2

1 ν 0 0 0 0

ν 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1
2
(1− ν) 0 0

0 0 0 0 1
2
k(1− ν) 0

0 0 0 0 0 1
2
k(1− ν)

(2.99)

where k is the bulk modulus and not the curvature referred to in (2.3). Note that the

50

zero entries appearing in row and column 3 of [Dl] above account for the assumption

of zero stresses acting normal to the mid-surface of the shell element [52]. To allow

for any orientation of the element within 3D space, [Dl] is calculated at each Gausian

integration point within the element and transformed to the global coordinate system

using

[D] = [Ts]
T[Dl][Ts] (2.100)

where

[Ts] =

`1`1 m1m1 n1n1 `1m1 m1n1 n1`1

`2`2 m2m2 n2n2 `2m2 m2n2 n2`2

`3`3 m3m3 n3n3 `3m3 m3n3 n3`3

2`1`2 2m1m2 2n1n2 `1m2 + `2m1 m1n2 +m2n1 n1`2 + n2`1

2`2`3 2m2m3 2n2n3 `2m3 + `3m2 m2n3 +m3n2 n2`3 + n3`2

2`3`1 2m3m1 2n3n1 `3m1 + `1m3 m3n1 +m1n3 n3`1 + n1`3

(2.101)

In the above matrix `1, `2 and `3, m1,m2 and m3 and n1, n2 and n3 refer to the direc-

tion cosines of the angles between the local and global coordinate systems. The local

orthogonal Gauss point (GP) basis vectors can be found using Jacobian matrix

[J] =

dξGP
dx

dηGP
dx

dζGP
dx

dξGP
dy

dηGP
dy

dζGP
dy

dξGP
dz

dηGP
dz

dζGP
dz

 =

{J1}

{J2}

{J3}

 (2.102)

such that
{eξGP } = {J1}

{eηGP } = {J2}

{eζGP } = {J3}

(2.103)

Note that here only the geometrically and materially linear version of the formulation

given in [52] is used. Furthermore, just the 4-noded element (rather than the 9-noded

shell element, also described in [52]) in its planar form has been incorporated into the

finite element analysis code for the tall slender building under investigation. It would

be a valuable future extension to include the more advanced 9-noded shell elements in

the code. This would provide significantly more accurate deflections than the 4-noded

51

formulation, given the same mesh density. It is important to recognise that an out-

of-plane drilling DoF stiffness was added to the formulation presented in [52]. This

additional stiffness (introduced via a penalty factor) enabled the shell elements to be

attached together at their nodes orthogonally (or in fact at any angle to one another).

Introduction of this capability was essential in order to simulate the connected structural

behaviour of the floor slabs and the core walls. The method of adding an out-of-plane

drilling DoF stiffness can be found in kShell function in Appendix D.3, lines 57-60.

Note that a series of benchmark tests were performed on both the beam and shell

elements used in this study to verify that the formulations were correctly derived and

coded. In the case of the beam elements (which made use of the CALFEM code,

written by others [3]) many test cases already exist. For the shell element several classic

benchmark tests were undertaken in [52] and two further benchmark problems (specific

to the planar 4-noded element) are reported on in Appendix B.

52

Chapter 3

Methods for increasing the

computational efficiency of the

finite element analysis:

Master-Slave approach,

Substructuring and Superelements

A finite element analysis of the frame comprising all structural components for the

considered building (slenderness ratio of 20:1 and 400m2 square floor plan) could result

in a system with 120k+ DoF. This number comes from 120 floors with 10 external

columns on each side (4,320 all together), 5,520 internal beams, 6,520 perimeter beams,

13,920 shell elements representing the floor slab and 4,440 shell elements representing

the core walls. To seek the near optimal engineering solution (in terms of the minimal

material required to meet the design state limits), a finite element model would typically

need to be modified (for example, by changing the number of columns) and the analysis

re-run numerous times. This chapter describes a method where the in-plane rigidity of

the floor slabs can be taken into account and two methods that could be used to save

memory and reduce the run time, allowing the engineer to undertake a greater number

of analyses in a given time. In what follows, application of the master-slave method,

via displacement constraints is described. This constraint is justified from a physical

understanding of the expected structural behavior. By linking the displacement of one

53

DoF to another, this allows one of the DoFs to be removed from the system, thereby

reducing the size of the problem to be solved. In this way, realistic consideration can be

introduced which not only provides a more realistic representation of the structure, but

also leads to a reduction in computer run time. Bathe [15] provide a review of several

modeling tools (for example, skew systems, model symmetries and substructures) to

efficiently construct a finite element model. In addition to these, Wilson [51] provided

a number of examples that illustrate the practical use of multi-point constraints. Two

cases were considered where (i) different types of elements (spring, truss, beam, shell

and solid) were combined in a simple model and (ii) rigid links were used to connect two

nodes by imposing constraints such that the distance between the two nodes does not

change under displacement and rotation.

There are three main methods of imposing constraints to the finite element equations

(essentially by modifying the global stiffness matrix)

(i) Master-slave elimination (also called the Transformation Method). Use of this

method separates DoF into master and slave freedoms. Once the slave depen-

dence of the master freedom is defined, then the slave freedoms can be eliminated.

(ii) Penalty method whereby each multi-freedom constraint (MFC) is enforced through

the introduction of a stiff fictitious (penalty) element. This element has its stiffness

characterised by a penalty value. The exact constraint is enforced as this magnitude

becomes infinite. The latter is always avoided because of the numerical instability

it would introduce, therefore a sufficiently large number (relative to the other

stiffness values) is chosen.

(iii) Lagrange Multiplier approach, where for each MFC an additional unknown is added

to the main stiffness equations. Physically, these unknowns represent constraint

forces that enforce the desired displacements and/or rotations.

The advantages and disadvantages of these methods are explored by many authors and

useful improvements have been achieved in terms of their computational efficiency (see

Curiskis [21], Shepard [44], Aalonen [41] and Ainsworth [11]). For this research, the

master-slave elimination method is adopted to enforce the constraints where required.

The advantage of this approach is the precision of the formulation and the directness

54

of its derivation. The potential disadvantages of this method, of increasing the stiffness

matrix bandwidth and the loss of symmetry (which increases the storage capacity) are

avoided by combining this master-slave approach with a substructuring technique.

After introducing the algebraic derivation of the master-slave approach, this chapter

provides a detailed explanation of the substructuring technique whereby only part of

the building is modelled in detail, and superelements (that is, substructures where the

internal DoF have been condensed out) are used in the more remote zones. This allows

a hierarchical zoom-in strategy to be used, whereby an engineer can rapidly analyse and

design a local region of several (say 5) floors within the complete structure. The option

to analyse just the part of the structure while retaining the stiffness of the surrounding

areas can save considerable time in the analysis of tall slender building.

3.1 Displacement constraints

Displacement constraints define relationships between different degrees of freedom. They

can be classified as single-freedom constraints (SFC), when a nodal displacement com-

ponent has a prescribed value, and multi-freedom constraints (MFC) when two or more

displacement components are connected through a functional relationship. In general,

for each application of a constraint equation, one global displacement degree of freedom

is eliminated [51]. The modification process for applying a displacement constraint is

illustrated in Figure 3.1.

An example of a SFC might be

v27 = 3.6mm (3.1)

where v27 refers to the displacement of node 27 in the global Y -direction. A SFC

can be classified as linear or nonlinear and homogeneous or non-homogeneous. Typical

boundary conditions in a structural finite element analysis represent SFCs which are linear

and homogeneous (that is, the value of displacement and/or rotation, that the DoF is

constrained to is zero). Examples of: (i) linear and non-homogeneous, (ii) non-linear

and homogeneous and (iii) non-linear non-homogeneous SFCs linking different freedoms

at a common node are given in (3.2) to (3.4) respectively. The first equation concerns

55

node 1. The second equation concerns node 3 and the final equation concerns node 2.

u1 −
1

3
v1 = 0.5 (3.2)

(u3)
2 − 1

3
v3 = 0 (3.3)

(u2)
2 − 1

3
v2 = 0.5 (3.4)

An MFC in which all displacement components appear on the left-hand side, is referred

to as the canonical form of the constraint. The constraint is linear if all displacement

components appear linearly on the left-hand-side. Otherwise, the constraint is non-linear.

The constraint is referred to as being homogeneous if, upon transferring all terms that

depend on displacement components to the left-hand side, the prescribed value on the

right-hand side is zero. It is called non-homogeneous otherwise. Simple examples of

MFC are as follows

u1 −
1

3
u2 = 0.5 (3.5)

v22 −
1

3
v3 = 0 (3.6)

u22 −
1

3
v3 = 0.5 (3.7)

The handling of MFCs is undertaken (at least conceptually) by transforming the assem-

bled equilibrium equations to produce a modified system of equations such that

[K]{d} = {f} (3.8)

becomes

[K̂]{d̂} = {f̂} (3.9)

The transformation process (Figure 3.1) is also referred to as the constraint imposition

process. The modified system (3.9) is then submitted to the equation solver, which

returns {d̂}.

56

U
nm

od
ifi
ed

eq
ui
lib
riu

m
eq
ua
tio

n
[K
]{
d}

=
{f
}

D
isp

la
ce
m
en
t
co
ns
tr
ai
nt

ty
pe

Si
ng

le
-f
re
ed
om

co
ns
tr
ai
nt
s

lin
ea
r

ho
m
og

en
eo
us

no
n-
ho

m
og

en
eo
us

no
n-
lin
ea
r

ho
m
og

en
eo
us

no
n-
ho

m
og

en
eo
us

M
ul
ti-
fr
ee
do

m
co
ns
tr
ai
nt
s

lin
ea
r

ho
m
og

en
eo
us

no
n-
ho

m
og

en
eo
us

no
n-
lin
ea
r

ho
m
og

en
eo
us

no
n-
ho

m
og

en
eo
us

A
pp

ly
D
C
s

Tr
an
sf
or
m
at
io
n
m
et
ho

d

Pe
na
lty

m
et
ho

d

La
gr
an
ge

m
ul
tip

lie
r
m
et
ho

d

M
od

ifi
ed

eq
ui
lib
riu

m
eq
ua
tio

n
[K̂

]{
d̂
}

=
{f̂
}

Eq
ua
tio

n
so
lv
er

re
tu
rn
s
{d̂
}

R
ec
ov
er

{d
}
if
ne
ce
ss
ar
y

Figure 3.1: Modification process showing various options

57

3.1.1 The Transformation method

We adopt the following general form for the linear MFC equations

[A]{d} − {g} = {0} (3.10)

where the order of [A] is n×m. n identifies the number of DoF that are constrained (that

is, those which are tied to a master DoF). m identifies the total number of DoF in the

system [26]. {d} represents the full vector of DoFs; which could be displacements (u, v,

w) and/or rotations (θx, θy, θz). The vector {g} enables non-homogeneous constraints

to be used. Consider an idealised 4-noded one-dimensional structure comprising three

2-noded bar finite elements (each node having just one DoF) as illustrated in Figure 3.2

[20].

Figure 3.2: One dimensional bar comprising 3 finite elements. The node numbers are
given within circles and the element numbers are given in the squares.

If the left-most node were fixed (that is, u1 = 0) and u2 was constrained to equal u3,

while u4 had no constraint, then the following [A] matrix (and {g} vector) would express

the system.

 1 0 0 0

0 1 −1 0

u1

u2

u3

u4

−

 0

0

 =

 0

0

 (3.11)

If u3 were constrained to be equal to 2u2, then the system would read as shown below

58

(removing the null {g} vector)

 1 0 0 0

0 2 −1 0

u1

u2

u3

u4

=

 0

0

 (3.12)

By way of a third example, if the constraint u2 + u3 = 1 were applied, then we would

have (again, removing the null {g} vector)

 1 0 0 0

0 1 1 0

u1

u2

u3

u4

=

 0

1

 (3.13)

We partition (3.10) as follows

[
[Am] [As]

] {dm}{ds}

− {g} = {0} (3.14)

where subscripts m and s refer to the master and slave DoF respectively. Solving (3.10)

for {ds}, we obtain

{ds} = −[As]
−1[Am]{dm}+ [As]

−1{g} (3.15)

We now write

{dm} = [I]{dm}+ {0} (3.16)

(where [I] is the identity matrix) such that

{d} =

 {dm}{ds}
 =

 [I]

−[As]
−1[Am]

 {dm}+

 {0}

[As]
−1 {g}

 (3.17)

Making the substitutions

[T] =

 [I]

−[As]
−1[Am]

 (3.18)

59

{g0} =

 {0}

[As]
−1 {g}

 (3.19)

yields

{d} = [T]{dm}+ {g0} (3.20)

Pre-multiplying (3.20) by [K] and equating [K]{d} to {f} gives

[K][T]{dm}+ [K]{g0} = {f} (3.21)

Re-arranging that expression gives

[K][T]{dm} = {f} − [K]{g0} (3.22)

Finally, pre-multiplying both sides by [T]T gives

[T]T[K][T]︸ ︷︷ ︸
[K̂]

{dm} = [T]T{f} − [T]T[K]{g0}︸ ︷︷ ︸
{f̂}

(3.23)

or

[K̂]{dm} = {f̂} (3.24)

This is the format that we can use when applying the master-slave elimination method.

3.2 Diaphragm action in structural modeling treated

as a multipoint constraint

Diaphragm action within structural analysis expresses the condition whereby the struc-

tural floors have a high (typically infinite) in-plane stiffness. This idealisation is often

adopted when considering the effects of wind load or seismic excitation on a multi-

storey building. There are three fundamental types of diaphragm action which can be

considered in structural modeling

(i) rigid

(ii) semi-rigid

60

(iii) flexible

Rigid diaphragms represent a plane of infinite rigidity (this is often assumed for a

reinforced concrete floor slab). Such a system would distribute loads to column elements

which are connected to the floor solely based on the relative stiffness of those column

elements. This behavior is achieved by tying all of the nodes within the plane of the

diaphragm together for both in–plane translation and rotation about the x-axis. A semi-

rigid diaphragm is one which distributes loads based on both the actual stiffness of the

diaphragm and the stiffness of the columns which connect to the (diaphragm) floor slab.

Flexible diaphragms distribute loads to the columns solely on the basis of the tributary

area of the floor slab associated with a particular column. The semi-rigid approach is

the standard (default) option for most finite element packages.

However, a number of commercial finite element structural analysis programs do offer

master-slave constraint options. Field measurements have verified for a large number of

building structures that the relative in-plane deformations in the floor systems are very

small compared to the inter-storey (horizontal) displacement [51]. That is, the stiffness

of the columns is very much lower than the in-plane stiffness of a floor slab. Hence,

it has become common practice to assume that the in-plane motion of all nodes on

each floor move as a rigid body. To incorporate this assumption into the analysis, the

in-plane displacements of all nodes within the diaphragm are expressed in terms of the

two horizontal displacements, um and vm, and the rotation of the master node about

the global Z-axis, θZm .

Consider the floor slab illustrated in Figure 3.3. The task is to use the master-slave

approach such that all nodes in the plane of the slab move with respect to a single

master node as if the slab had an infinite in-plane stiffness. We consider the case of

a single slave node (s) and establish the constraint equations as follows. Relative to

the origin of the local coordinate system X ′, Y ′ (located at the master node) the new

position for the master node is given as um and vm following displacement under the

loading. The new position of the slave node (relative to the local origin at the master

61

Figure 3.3: Master-Slave approach for the diaphragm action of a floor slab. The diagram
on the top left illustrates the master and slave nodes showing all the slave DoF, whereas
the diagram on the lower right shows the remaining DoF on the slave node and the
master DoF which control the movement of the slave node. Note that the displacements
um and vm have been exaggerated (to make the diagram clearer) and θZm is zero in this
example.

node) is X ′s

Y ′s

+

 us

vs

 =

 um +X ′s cos(θzm)− Y ′s sin(θzm)

vm +X ′s sin(θzm)− Y ′s cos(θzm)

 (3.25)

where θZm denotes the rotation of the master node about the global Z axis. X ′s and

Y ′s refer to the local X ′ and Y ′ distances from the master node to the slave node in

question. Thus the movement of the slave node is given as us

vs

 =

 um +X ′s cos(θZm)− Y ′s sin(θZm)−X ′s
vm +X ′s sin(θZm)− Y ′s cos(θZm)− Y ′s

 (3.26)

For all of the building structures analysed here, the rotation θZm will be small (typically,

significantly smaller than 2◦) thus if θ is expressed in radians

cos θZm ' 1

sin θZm ' θZm

(3.27)

62

This leads to us

vs

 =

 um − Y ′sθZm
vm +X ′sθZm

 (3.28)

The slave rotation θZs may, or may not, be constrained depending on how the beams and

columns are physically connected to the floor system. For a steel structure the connection

between the column and the floor slab could allow the two structural members to rotate

independently. In the case of a poured-in-place reinforced concrete structure, where the

columns and beams are an integral part of the floor system, the following additional

constraint should be satisfied

θZs = θZm (3.29)

The transformation matrix for this case is shown in the equation below

um

vm

wm

θXm

θXm

θZm

us

vs

ws

θXs

θYs

θZs

=

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

1 0 0 0 0 −Y ′s 0 0 0

0 1 0 0 0 X ′s 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0 0

um

vm

wm

θXm

θYm

θZm

ws

θX,s

θY,s

(3.30)

Equation (3.23) shows that the stiffness matrix [K] and the load vector {f} need to be

transformed accordingly.

63

3.3 Substructuring and the use of Superelements

In this section, substructuring, as a method for increasing the efficiency of the analysis,

is explained. The technique was first used within finite element analysis by aerospace

engineers in the early 1960s as a way of decomposing complex systems in order to help

overcome computer memory limitations. The potential advantages of substructuring are

its quicker run time, large problem handling capabilities (because of reduced memory re-

quirement) and partitioned input and output [37]. It can enable the structural behaviour

of tall buildings to be determined where standard FEM programs lack the capacity [45].

A superelement is often unhelpfully also referred to as a substructure, but more cor-

rectly it is a simplification of a substructure, or a single finite element representation

of a structural component. It is can be seen as a generalization of the finite element

concept [22].

Some applications in tall buildings replacing complete structural components by su-

perelements have been reported by others; for both static and dynamic analysis. Kim

[31] developed a superelement describing a complete shear wall with openings. Lee

[32] explored the flexural stiffness of the floor slabs and the T-section beams using sub-

structuring. Birgersson [18] enhanced the spectral superelement method for modeling

plate vibration. Sakharov [40] developed a spectral superelement for the soil-foundation-

structure system interaction. An integrated superelement concept was proposed by Long

[33] for the structural analysis responses during progressive collapses of large-scale struc-

tures. This study ignored the effect of rigid body rotation of a superelement. Weng

et al. [49] proposed a procedure for rigid body rotation correction and improved the

accuracy of this superelement formulation. Steenbergen [45] proposed efficient seismic

analytical models employing substructuring techniques and superelements.

Kim and Kang [30] analyzed super tall megaframe buildings using a substructuring

method. In this study a multi-level condensation was developed and an analytical model

was proposed. The rigid in-plane behavior of the floor slabs was ignored; a skyline

matrix storage was used instead of a sparse matrix storage; a specific structural system

was analyzed without an option to analyse a local region in detail.

64

Consider the following 2D frame structure comprising 18 beam finite elements (Figure

3.4).

Figure 3.4: 2D beam frame structure

One could consider the above frame as comprising 3 substructures (Figure 3.5). The

letters b and i refer to boundary and internal nodes respectively. One could equally rep-

resent the same frame with 2 substructures. The choice for the size of the substructure

is made from consideration of computational efficiency and recognition of those parts of

the structure where identical units exists (although the magnitude of the loading acting

on each substructure may differ).

65

Figure 3.5: 2D beam frame showing 3 substructures

Figure 3.6: 2D beam frame showing 2 substructures

66

A substructure could be transformed into a superelement whereby the internal nodes

are eliminated. For example, the arrangement shown in Figure 3.5 would become

Figure 3.7: 2D beam frame showing use of 3 superelements

Alternatively one could represent the frame using 2 superelements and a single substruc-

ture as

67

Figure 3.8: 2D beam frame showing combined use of a substructure and 2 superelements

The elimination process for interior nodes (or more precisely, the interior DoF) can be

undertaken through static condensation using the following partitioned matrix algebra

 [Kbb] [Kbi]

[Kib] [Kii]

 {db}{di}
 =

 {fb}{fi}
 (3.31)

in which {db} and {di} refer to the boundary and interior degrees of freedom respectively.

The second matrix equation reads as

[Kib]{db}+ [Kii]{di} = {fi} (3.32)

If [Kii] is non-singular, then we can solve for the interior freedoms as follows

{di} = [Kii]
−1{{fi} − [Kib]{db}} (3.33)

Substituting (3.33) into (3.32) gives the condensed equation

[K̃bb]{db} = {f̃b} (3.34)

68

where [K̃bb] and {f̃b} are referred to as the condensed stiffness matrix and condensed

force vector, respectively.

[K̃bb] = [Kbb]− [Kbi][Kii]
−1[Kib] {f̃b} = {fb} − [Kbi][Kii]

−1{fi} (3.35)

When coding this method, the explicit calculation of the inverse of [Kii] is generally

avoided as it is potentially a computationally costly process. A more efficient approach

involves making use Gaussian elimination (see section 4.1). Note that, a third option for

creating a superelement is a use of closed-form expressions, derived from the displace-

ment functions [45].

If we consider the simple one-dimensional example previously illustrated in Figure 3.2

and we wish to condense out the single DoF at node 3, then the elimination process

would be as follows

k11 k12 k13 k14

k21 k22 k23 k24

k31 k32 k33 k34

k41 k42 k43 k44

u1

u2

u3

u4

=

Nx1

Nx2

Nx3

Nx4

(3.36)

k11 − k31×k13

k33
k12 − k32×k23

k33
k14 − k34×k43

k33

k21 − k31×k13
k33

k22 − k32×k23
k33

k24 − k43×k43
k33

k41 − k31×k13
k33

k42 − k32×k23
k33

k44 − k34×k43
k33

u1

u2

u4

 =

Nx1 − N3×k13

k33

Nx2 − N3×k23
k33

Nx4 − N3×k43
k33

(3.37)

After the condensation process has been completed, the stiffness matrix will be smaller

by the number of condensed DoF. This process can be repeated as many time as there

are DoF to be eliminated. An important advantage of the Gaussion elimination process

is that partitioning of the matrix system (as given in (3.31)) is not required.

69

70

Chapter 4

The FE mesh generator and

analysis code

As mentioned in Chapter 1, building upon an existing FE framework (based on the

CALFEM m-script library [3]) the following new features have been introduced (i)

a master-slave approach for 3D beam and shell elements; tying degrees of freedom

together to simulate the membrane action of the floors, (ii) 4-noded shell elements

[52] with additional drilling DoF, to represent the reinforced concrete core walls and

composite floors (note that CALFEM only included 2D rectangular plate elements, in

its FE library), (iii) a substructuring approach whereby only part of the building needs

to be modelled in detail, (iv) use of superelements (substructures with condensed-out

internal DoF), (v) efficient matrix storage and solver schemes for the sparse system of

equations, (vi) a bespoke 3D mesh generator and (vii) graphical routines to illustrate the

meshes and the deformed structure. The hierarchical zoom-in approach adopted here,

whereby an engineer can rapidly analyse and design a local region of several (say 5)

floors within the full structure can offer significant time savings and help reveal optimal

structural solutions when undertaking both preliminary and detailed designs of very tall

slender structures.

Two FE codes, SPARSEfeaTS and SEfeaTS, have been created. The former (SPARSE-

feaTS) refers to the solver where a sparse storage scheme has been introduced to as-

semble the stiffness matrices. The latter code (SEfeaTS) refers to the solver where

substructures and superelements are used. Figure 4.1 gives a list of the functions used

71

in both codes. SPARSEfeaTS was created to validate the results obtain by the main

code SEfeaTS. SPARSEfeaTS opened up the opportunity of analysing tall slender (multi-

storey) structures which CALFEM was unable to treat in its original form. SEfeaTS gives

additional memory and speed advantages over SPARSEfeaTS. All of the listed functions

and the two main codes can be found in Appendices C and D of this thesis.

SPARSEfeaTS

MeshGen

sortuniqarray

kShell

GpPos

Shapefunc

kBeam

transform

plotBeamsCrossSec

plotBeams

plotShells

solveKdf

SEfeaTS

MeshGen

sortuniqarray

kShell

GpPos

Shapefunc

kBeam

transform

superelementS

superelementMS

assembly

solveKdf

recovery

Figure 4.1: List of functions used in SPARESEfeaTS and SEfeaTS

72

4.1 Finite Element Mesh Generator

Before creating a finite element mesh for the building frame, several layout options (when

it comes to the lift arrangement and core walls) have been considered (Figure 4.2). The

location and dimensions of the core area are key aspects of the building design. The

planning and selection of the vertical transportation scheme for a tall building is topic

worthy of detailed investigation in itself. Although the basic calculations (for determining

how many elevators are needed, what size they should be and what speed they should

travel at) are relatively simple, the theory on which they are based can be quite complex

[5].

Figure 4.2: Alternative plan view arrangements for four and six elevators. Option (d)
was chosen for this study, where the two elevators in the northern core block are the
service lifts and the four southern elevators are the passenger lifts.

In order to define the number of elevators for this project the Transportation Systems

in Buildings 2015 guide [10] has been followed.

73

This guide offers two possible models that can be used for lift traffic design and analysis

(i) a calculation method based on mathematical models drawing on information from

existing building performance and

(ii) a discrete digital simulation of the movement of lifts and the passenger dynamics

for a specific building.

Figure 4.3: Floor plan showing the key dimensions len, lne, lse, we, wc, tiYZ,
txYZ, txXZ and the variable ncols

74

For the purpose of this research, the empirical calculation method was adopted. Based

on that calculation, the results suggest that the number of elevators should be six (4

passenger lifts and 2 service lifts) for a building of the given footprint (20 × 20m) and

height (400 + m). A fire escape stairwell is incorporated in the core, giving rise to

the floor plan shown in Figure 4.3. As can be seen, the orientation of the elevators is

fixed. The internal dimensions of the elevator shaft (given by lse, lne and we) plus

the thickness of the core walls (interior tiYZ and exterior txYZ,txXZ) can be changed.

Figure 4.4: Plan view of the structure having just 4 corner columns. The interior beams
are shown in red.

The MeshGen code was created for this specific layout. It was considered to be suffi-

ciently flexible (in terms of being able to vary a number of key dimensions) yet retain

a common pattern which is appropriate to a structure of this type. Two different types

of elements are used, as described in the previous chapter: (i) 3D beam elements for

the columns, perimeter beams and interior beams and (ii) 3D shell elements for the

floor slabs and core walls. Different sets of properties are required for the two types of

elements. These are listed in arrays [ShellElemProps] and [BeamElemProps]. The

4 corner columns (SW, SE, NW, NE) are always present, while ncols allows the intro-

duction of additional columns between those corners. The location of the interior beams

75

(shown by the red lines in Figure 4.4) is governed by the core wall locations.

Figure 4.5: Floor plan of a building showing the differance in the meshes for the floor
slabs with only 4 corner columns (left) and 11 columns per side (right)

The position of the interior beams (Figure 4.5) controls the number of shell elements

used for the floor slabs. Increasing the number of columns (ncols) increases the number

of shell elements used for the floor slabs (see Figure 4.5). Note that it is possible to

add additional columns to increase the floor slab mesh density, yet give those columns

artificially negligible stiffness so that the influence of the shell mesh density can be

explored. The mesh generator is written such that different orientations of the columns

are possible based on their position (see Figure 4.6). Table 4.1 lists all of the inputs

required by the mesh generator as well as the outputs which are read in by the main

FE analysis codes (SPARESEfeaTS or SEfeaTS). Once the dimensions of the building

are defined (that is, the input listed above) MeshGen creates the nodal coordinates for

the entire building. Table 4.2 shows the main steps used in the mesh generator code to

create the nodal coordinate list.

76

Figure 4.6: Column orientation. The top left plan view shows all columns with square
cross-sections. The top right view shows square cross-sectional columns on the east and
west faces but rectangular column cross-sections on the North and South faces (with
an east-west alignment of the major axis). The bottom left view shows all rectangular
cross-sectional columns with their long axis having an East-West alignment. The bottom
right view shows all rectangular cross-sections but with different major axis orientation.

77

Input

MG - whether MeshGen alone is to be run (MG=0) or

MeshGen is run with the main analysis code (MG=1)

MS - whether Master-Slave approach is to be used

(MS=0, not used; MS=1, used)

plotmesh - whether the structure is to be plotted (plotmesh=1) or

not (plotmesh=0)

analysis - whether the analysis is run as full FEA (analysis=1) or

reduced FEA with superelements (analysis=0)

stages - the number of stages over the height of the structure (stages<4)

nSS - the number of substructures to be used in the analysis

flawsInSS - the number of floors (levels) contained with a single substructure

ncols - the number of columns per side

len - the external width of building (m)

height - the floor to ceiling height (m)

wc - the width of the elevator corridor (m)

we - the width of the elevator shafts (m)

lse - the breadth of the elevator shafts (m)

lne - the breadth of the service elevator shafts (m)

Vg - the magnitude of the maximum wind speed (m.s−1)

qLL - the live load (N.m2)

element properties - Young’s modulus, Poisson’s ratio, beam cross-sectional

dimensions and shell thicknesses

Output

coord - the nodal coordinates (m)

etopolShells - the list of nodes defining each shell element

etopolBeams - the list of nodes defining each beam element

bc - the DoF numbers where the boundary conditions are given

MSarray- the list of master and slave nodes

groundn - the list of the ground nodes where the boundary

conditions are applied

connectn - the list of ghost nodes at the substructure connection level

fext - the applied nodal loads (N)

fextfactor - the scaling factor to provide the variation in wind pressure

Table 4.1: Input and output to and from MeshGen

78

Calculating the nodal coordinates

1. calculate the distance between columns in the y direction yspacing

2. calculate the distance between columns in the x direction xspacing

3. for y=1:size(yspacing,2)

4. create the nodal coordinates at the ground level coord

5. end

6. for node=1:nodes

7. add first floor nodes

8. remove unnecessary floor slab nodes from coord at the ground level

9. end

10. if flaws > 1

11. for flaw=2:flaws

12. add nodal coordinates for levels 2+

13. end

14. end

15. for n=1:(flaws+1)*nodes

16. create the final set of nodal coordinates ncoord

17. end

Table 4.2: Algorithm sequence for creating the nodal coordinates

After creating the nodal coordinates, the next step is to create the element topology

lists for the building (Table 4.3). As mentioned previously, the structural elements are

separated into two groups: beams and shells. For each individual group of beam and

shell elements (perimeter beams, interior beams, columns, floor slab and core walls) the

topology lists are created (that is, the list of nodes associated with each element) after

which they are combined to produce the final arrays etopolBeams and etopolShells.

79

Calculating the element topology arrays

1. create the topology array for the perimeter beams [etopolPerimBeams]

2. identify the nodes for the interior beams

3. create the topology array for the interior beams [etopolIntBeams]

4. identify the nodes for the floor slabs

5. identify the nodes for the core walls

6. create the topology array for the core walls [etopolCoreWalls]

7. create the topology array for the floor slabs [etopolFloorSlabs]

8. create the final topology for the shell elements [etopolShells]

9. for flaw=1:flaws

10. for beam=1:PerimBeams

11. add upper floors to the perimeter beams topology list

12. end

13. for IntBeam=1:IntBeams

14. add stiffened internal beams at the top level of each substructure

14. end

15. if flaw>1

16. add upper floors to the floor slab topology list

17. add upper floors to the core wall topology list

18. create the topology array for the columns etopolCols

19. end

20. end

21. remove the internal beams at the ground level

22. create the final topology array for the beam elements etopolBeams

Table 4.3: Algorithm sequence for creating the element topology lists

When the nodal coordinates and the element topology arrays have been created, Mesh-

Gen forms the load vector fext (Table 4.5) which distributes the northerly wind pressure

over the column nodes on the southern face. When determining the wind load on the

building the first step is to decide upon the peak wind velocity and the vertical pro-

file of the wind pressure. This enables the horizontal (south to north) peak pressure q

80

(N.m−2), to be determined on each floor of the building. This is achieved using

q = 0.613(vz)
2 (4.1)

where vz is the horizontal velocity of the wind (m.s−1) at height z. That wind velocity

is assumed to vary over the height according to the following power law

vz = vg(
z

zg
)

1
α (4.2)

where vg is the gradient wind at height zg, α is the exponential coefficient (7 is chosen

here) and z is the height at the location where vz is required [36] [47]. MeshGen

allows the wind pressure to act either on the south or the east faces of the building.

Note that the structure has an east-west symmetry, but not a north-south symmetry

as a consequence of the core wall layout. A scaled force magnitude, fextfactor,

is calculated to give the wind pressure acting on each substructure. This pressure

as assumed to be uniformly distributed over the height within each substructure, but

increasing with the height of each substructure. Thus the array fextfactor has as

many scalar values as there are substructures in the building.

Calculating the external wind force

1. calculate the wind velocity at level z Vz

2. calculate the pressure acting on the building pressure

3. calculate the nodal force acting on a column node forceColnode

4. calculate the substructure scaling factors fextfactor

5. for col=1:ncols+2

6. form the external force vector fext

7. end

Table 4.4: Algorithm sequence for creating the external wind force vector

The next step in MeshGen is to define the nodal boundary conditions. The building

is fully restrained at the ground level, implying that all the DoFs (both displacement

and rotation) at that level are set equal to zero. A list of these DoFs is formed in the

array bc. Next, a list of master and slave nodes is created (MSarray). This is done by

defining the first node at each level to act as a master node while the following set of

81

numbers gives the list of slave nodes on that level. This array is later used to impose the

rigid in-plane behavior of the slabs and to condense-out unnecessary DoF. To be able

to perform this operation, it is necessary to identify the ghost nodes at the connection

level of each substructure (which is explained in greater depth in the next section). The

option to apply dead and live loads is also incorporated into MeshGen as well as the

capability to calculate the total volume (m3) and mass (kg) of each structural member

(that is, each beam and shell element). The following figures (4.7, 4.8, 4.9, 4.10, 4.11)

illustrate some of MeshGen’s capabilities.

Figure 4.7: Isometric views of 3 (low rise) buildings with different numbers of substruc-
tures while the number of floors in each substructure remains the same (flawsInSS=4).
Left nSS=1, middle nSS=2, right nSS=3

Figure 4.8: Isometric views of 2 structures with the same number of floors but different
external dimensions; left len=20m, right len=40m

82

Figure 4.9: Isometric views of 2 structures with 12 floors but different numbers of
columns; left ncols=0, right ncols=4

Figure 4.10: Isometric views of 2 structures with different floor heights but the same
number of floors (12); left height=3.5m, right height=4.5m

83

Figure 4.11: Isometric view of 420m tall building with slenderness ratio of 21:1 and
just 4 corner columns (to avoid obscuring the floor slabs in this graphic, although the
resulting structure would not be stiff enough

84

4.2 Code to enforce the rigid in-plane behavior of

the floor slabs and create substructures and

superelements

In this section, an explanation is given of the algorithmic sequence of the code used to

(i) enforce the rigid in-plane behaviour of the floor slab, (ii) create the stiffness matrices

and force vectors for the substructure [Kssg], [Kss], {fssg} and {fss}, (iii) create the

stiffness matrices and force vectors for the superelements [Kse0], [Kse1], {fse0} and

{fse1} and (iv) assemble all the stiffness matrices and force vectors into their global

form [Kglobal] and {fglobal}. Once the stiffness matrix for a substructure has been

created [Ksubstructure], the code splits to either operate on the substructure in the

contact with the ground (left branch of Figure 4.12) or on all substructures above that

(right branch of Figure 4.12).

The next stage for both types of substructure involves the use of the tranform function

to enforce the master-slave approach, which eliminates slave DoF to both achieve a

rigid in-plane response of the floor slabs and reduce the total number of DoF to be

solved for. transform involves the steps shown in Table 4.5.

transform function

1. define the number of master nodes masters

2. define the number of slave nodes slaves

3. for m=1:masters

4. identify the DoF of the master nodes

5. for s=1:slaves

6. calculate the transformation matrix T

7. end

8. end

9. remove the constrained DoFs from the list of DoFs

Table 4.5: Algorithm sequence for creating the transformation matrix

Note that the slave nodes are not removed when applying transform. It is the DoF

associated with the displacements in the global X and Y directions and rotation about

85

the global Z axis which are eliminated here. The DoF associated with rotation about the

global X and Y axes and the displacement in the global Z direction are still retained.

Following those operations, the code removes (through static condensation) the nodes

(or more precisely, DoF) on the perimeter beams which are not directly connected to

the column at the highest floor level on the substructure (and in the core area corridor).

Those nodes are referred to as ghost nodes. This is done with use of the superlementS

function. Only the column nodes and core wall nodes are required to connect a su-

perelement to another superelement or a superelement to a substructure. Thus the

ghost nodes are removed at the connection level of the substructure. The method of

eliminating those DoF is shown in Table 4.6 and explained in Section 3.3, equations

(3.36) and (3.37).

superelementS function

1. define the number of DoF for a ghost node

2. identify the number of ghost nodes from connectn array

3. identify the exact set of DoFs for condensation

4. condense-out DoFs from the stiffness matrix and load vector

5. remove those DoFs from the DoF array

Table 4.6: Algorithm sequence for eliminating the ghost nodes from the connection level
of the substructure

Note that the ghost nodes exist as a consequences of the core wall and internal beam

layout which dictate the mesh arrangement of the floor slab (shell) elements. For the

lowest (first) substructure, the DoF associated with the base fixity, at the ground level

of the building (where z = 0), are removed. At this stage, the substructure stiffness

matrices [Kss] and [Kssg] have been formed. Similarly, the substructure force vector

{fss} and {fssg} have been formed. The remaining step involves the construction of

the superelement stiffness matrices [Kse0] [Kse1] and force vectors {fse0} and {fse1}

by eliminating (through static condensation) the superelement internal DoF. This is

achieved by the superelenentMS function. The algorithm shown in Table 4.6 applies

here with the difference that the master nodes (6 DoF) and slave nodes (3 DoF) are

condensed-out at the same time. For this process, the arrays midMS and groundMS are

used.

86

Input
number of floors in substructure (FlawsInSS)

number of substructures (nSS)
position of the substructure (substructure)

Create stiffness matrix for the substructure
[Ksubstructure]

Apply master-slave method
to all substructres ex-
cluding ground level

[Kssm], {fssm}

Condense-out the ghost
DoF at the connection level

[Kss],{fss}

Condense-out
the internal DoF
[Kse1],{fse1}

Apply master-slave method
to the substructure
at the ground level
[Kssgm],{fssgm}

Condense-out the ghost
DoF at the connection level

[Ksg],{fsg}

Remove the boundary DoF
[Kssg],{fssg}

Condense-out
the internal DoF
[Kse0], {fse0}

Assemble the stiffness matrices and
load vectors from [Kss], {fss}, [Kse1],
{fse1}, [Kssg], {fssg}, [Kse0], {fse0}

Solve for {d} using [sKglobal] \ {fglobal}

Recover {uvw} from the sub-
structures and superelements

Figure 4.12: Master-slave and substructuring algorithm sequence

87

Figure 4.13: Illustration of the steps to form a substructure and superelement. From the
whole structure (left) we identify a substructure with 4 floors in this example (middle) and
then condense-out the interior nodes (DoF) on the first three levels of the substructure
while keeping the connection nodes to create a superelement (right)

88

Figure 4.13 gives a simple illustration of the substructuring method. For example, if a

building with 12 stories and only 4 corner columns is considered, the substructure could

have 2, 3 or 4 floors (flawsInSS) which would imply that nSS is 6, 4 or 3 respectively.

Consider the example of a substructure with 4 floors. This simple illustrative frame

comprises a total of 264 shell elements for the floor slabs, 204 shell elements for the core

walls, 48 beam elements for the columns, 264 beam elements for the perimeter beams

and 216 for the interior beams. This give size to a total of 527 nodes and thus 3,162 DoF

for the complete system. As consequence of the internal beams spanning from the core

walls to the perimeter beams, 19 ghost nodes need to be eliminated on the upper level

of each substructure. Upon application of the substructuring method and master-slave

approach for the floor slabs (plus the application of the boundary conditions), the total

number of DoF reduces from 3,162 to just 603.

4.3 Assembly of the superelements and/or sub-

structure

Once all of the stiffness matrices and force vectors have been formed, they are assembled

to create [Kglobal] and {fglobal} which then enables the nodal displacements (and

rotations) to be determined using Matlab’s solver (backslash operator). assembly

undertakes the assembly process. This function inserts the corresponding stiffness and

load vectors into their required specific location according to nSS and the substructure

being considered. Note that the global stiffness matrix remains symmetric following

the various elimination stages. This symmetry is detected by Matlab’s linear solver,

enabling a version of Gaussian elimination to be (automatically) chosen such that the

(previously unknown) displacements may be determined in an efficient manner. When

considering the number of substructures and superelements to adopt, it is helpful to

examine Figure 4.14. That figure shows a three alternative representations of the same

simple 12 storey building where, (i) 3 substructures are used, but no superelements

(left), (ii) a ground level substructure and 2 superelements are used (middle) and (iii)

3 superelements but no substructures are used (right). In the following chapter, the

computational efficiencies of the different choices are discussed.

89

Figure 4.14: A 12 storey building with 4 corner columns (left); a 12 storey building with
4 corner columns represented by a ground substructure and 2 superelements (middle); a
12 storey building with 4 corner columns represented by 3 superelements (right)

90

4.4 Sparse storage

Using a sparse storage technique (not employed within CALFEM, but introduced in this

research study) gives a computationally efficient method which reduces the memory

requirements for the code. In this approach only the nonzero elements (these refer to

matrix locations, not the finite elements) and their row and column indices are stored

[2]. The density of a matrix refers to the number of non-zero terms divided by the total

number of terms within the matrix. By way of illustration, the stiffness matrix for the

example 12 storey structure (Figure 4.14 left) comprises 3,162×3,162 DoFs.

0 500 1000 1500 2000 2500 3000

nz = 106686

0

500

1000

1500

2000

2500

3000

Figure 4.15: The sparsity pattern of [sKglobal] for the example 12 storey building. The
location of the non-zero terms are shown by the black dots, whereas zero terms are left
un-marked. The two square frames shown in the top left corner relate to the size of the
matrices shown in Figures 4.16 and 4.17.

91

The number of non-zeros entries is 106,686 , that is, just over 1% of the full matrix

(Figure 4.15). Without use of the sparse storage scheme the total memory required for

the entire analysis would be 79MB, while with the sparse storage scheme it is only 1.9MB

(analysed using SPARSEfeaTS). Using SEfeaTS for the same problem (with one ground

substructure and 2 superelements, Figure 4.14 middle) the size of stiffness matrix is

reduced from 3,162 to 603 DoFs and the memory needed without sparse storage would

be 2.9MB; while with the sparse storage it would be 0.6MB. The number of non-zero

terms is 41,558 in this [sKglobal] matrix.

0 100 200 300 400 500 600

nz = 41558

0

100

200

300

400

500

600

Figure 4.16: The sparsity pattern of [sKglobal] for the example 12 storey building
comprising one substructure and two superelements

92

If the 12 storey building were analysed (using SEfeaTS) as a structure comprising three

superelements (Figure 4.14 right) this would lead to the reduction in the size of the

stiffness matrix to just 216 DoFs (and memory 0.4MB) when using sparse storage. The

number of non-zero terms in that [sKglobal] matrix would be 29,246.

0 50 100 150 200

nz = 29246

0

20

40

60

80

100

120

140

160

180

200

Figure 4.17: The sparsity pattern of [sKglobal] for the example 12 storey building
comprising three superelements

The predicted horizontal displacements over the height of the building for the four mod-

els are shown in Table 4.7. These results indicate that the horizontal displacements are

identical for the 4 different cases: (i) standard analysis, (ii) sparse storage scheme (Figure

4.14 left), (iii) a building represented with a ground substructure and 2 superelements

(Figure 4.14 middle) and (iv) a buiding represented with 3 superelements (Figure 4.14

right).

93

Displacements (m)

height

(m)

standard

storage

sparse

storage
1SS+2SE 3SE

0 0 0 0 0

3.5 0.00004 0.00004 0.00004

7 0.00013 0.00013 0.00013

10.5 0.00025 0.00025 0.00025

14 0.00038 0.00038 0.00038 0.00038

17.5 0.00052 0.00052

21 0.00067 0.00067

24.5 0.00081 0.00081

28 0.00095 0.00095 0.00095 0.00095

31.5 0.00108 0.00108

35 0.00120 0.00120

38.5 0.00132 0.00132

42 0.00143 0.00143 0.00143 0.00143

Table 4.7: Horizontal displacement for the 12 storey building with four 0.4 × 0.4m
corner columns, len=20m, height=3.5m, 0.15m thickness of the core walls and slabs
and Vg=44.7m.s−1) wind speed (Figure 4.14)

This chapter has shown how the introduction of the new features into the FE analysis

codes have led to dramatic reduction in the required computer storage capacity. These

savings enable a 420m tall structure to be analysed rapidly in Chapter 5, allowing sev-

eral parametric studies to be undertaken to explore the efficiency of different structural

members. Without SPARESEfeaTS or SEfeaTS it would not be possible to analyse the

tall slender building using the existing (CALFEM based) FE code because of the required

memory which far exceeds the capacity of the conventional RAM of a personal computer.

94

Chapter 5

FE analysis of tall slender

buildings

In Chapter 3, the theory behind the master-slave approach and the use of substructures

and superelements was described. In Chapter 4, the two FE codes (SPARSEfeaTS and

SEfeaTS) which implement those techniques, were explained. This chapter presents a

series of finite element simulations using those codes to predict the lateral deforma-

tion of multi-storey buildings under static wind pressure. Results are compared between

SPARSEfeaTS and SEfeaTS (section 5.1). The next section (5.2) reports on the com-

putational memory and run time savings of the two codes. In Section 5.3 the focus is

on a parametric study involving different combinations of structural elements. The key

findings from 16 FE simulations are given. The deformation results have been compared

for the same loading case and conclusions draw with regard to the stiffness contributions

from different structural elements. The final section (5.4) seeks an optimal structural

solution for a 400m tall building with a slenderness ratio 20:1. As a part of the ex-

amination, the total mass of the building and the mass per square metre of floor area

are reported. All analyses were performed on the same modest computer. Table 5.1

provides information on the machine and Matlab version used for all of the runs.

Operating system Windows 10
Matlab version R2019b

Processor Intel(R) Core (TM) i7 - 7500U CPU @2.70GHz
RAM 16 GB

Table 5.1: Information on the machine and Matlab version used to run the analyses

95

5.1 Comparisons between the results from SPARSE-

feaTS and SEfeaTS

Before predicting the structural displacements using these codes1 decisions have to be

made with regard to defining the variable and the constant parameters for all analyses.

In order to identify the stiffness contributions from the key structural components it

was necessary to fix some of the building’s principal dimensions. These are the height,

the external width (and breadth) of the building, the dimensions of the passenger and

service elevator shafts and the width of the elevator corridor (Table 5.2). A significant

recent development in tall buildings is the widespread use of reinforced concrete (rather

than structural steelwork) for the core walls. It is not just the economic benefit of

using reinforced concrete which has led to this trend. It is also the lessons learnt from

the structural failure of the World Trade Center Towers which had both steel perimeter

columns and a steel core [14]. In the following analyses, concrete with a Young’s modulus

of 35GPa (and a Poisson’s ratio of 0.2) was used. Note that the FE code can, of course,

analyse a steel framed structure (provided that the appropriate material stiffness, second

moments of area and connection assumptions are adopted).

As a consequence of the building’s slenderness, gravity loads do not represent the

critical loading case, whereas the deflection under lateral wind loads is the key structural

performance criterion for such buildings [48]. The lateral wind load applied to the

structure was governed by the maximum wind speed (chosen here as Vg=44.7m.s−1).

A non-linearly increasing (over the height) wind pressure was applied on the southern

elevation of the structure (see Section 4.1, equations (4.1) and (4.2)).

Once the layout of the building had been defined (Chapter 4), the set of parameters that

were varied was chosen. For the purpose of partially validating SEfeaTS, four analyses

with the input listed in Tables 5.2 and 5.3 (see Figure 5.1) were considered and the

results have been compared with the findings from using SPARSEfeaTS on the same

structures.

Figure 5.2 demonstrates that, in the case of a linear static analysis of the proposed

1Recall that SPARSEfeaTS does not make use of substructuring, or superelements, whereas SE-
feaTS does.

96

Geometric constants

height of the building (m) H 420

external width of the building (m) len 20

width of the elevator corridor (m) wc 2

width of the elevator shaft (m) we 3

breadth of the elevator shaft (m) lse 3.2

width of the service elevator shaft (m) lne 3.5

Table 5.2: Geometric constants used for all of the FE analyses

Variables

number of substructures nSS 30

number of floors in the substructure flawsInSS 4

number of columns per side ncols 10

column dimensions (m) bc x dc 0.9 x 0.6

perimeter beam dimensions (m) bpb x dpb 0.6 x 0.6

internal beam dimensions (m) bib x dib 0.6 x 0.6

floor slab thickness (m) ts 0.15

exterior core walls thickness (m) tx 0.4

interior core walls thickness (m) ti 0.4

Table 5.3: Variables used for the FE analyses

building, the horizontal displacement variation over the height is the same for the 2

codes. The superelement stiffness matrix and load vector (which both have reduced DoF

due to the internal nodes being condensed-out) possess exactly the same effects as the

substructure (which has no reduction in DoF other than that resulting from the master-

slave approach and the removal of the ghost nodes) [22]. The first simulation (Figure 5.2,

top left) illustrates the lateral deformation of a building comprised of 30 superelements.

The same structure is then represented with one substructure at the ground level (Figure

5.2, top right) and 29 superelements. Following that, the substructure is moved to the

mid-height of the building (Figure 5.2, bottom left) and then to the top of the building

(Figure 5.2, bottom right). Note that each substructure and superelement contains 4

97

Figure 5.1: Floor plan of a building showing 10 perimeter columns per side (illustrating
the orientation of the cross sections). The plan also illustrates the width of the perimeter
beams and the mesh for the floor slabs

floors.

A widely-used guideline to estimate the allowable maximum lateral displacement of a tall

building is the height of the building divided by 500 [23]. Based on empirical observations

and theoretical dynamic response considerations, Scholl [42] noted that the inter-storey

can be significantly influenced by the local structural detailing (and even non-structural

features) provided by the designer. Here the inter-storey drift was not examined, as the

focus was on the overall building lateral displacement [48]. This horizontal displacement

(for a 120 storey building with 10 columns per side) was predicted by the FE analyses to

be 1.397m. This exceeds the deflection limit which is, for the proposed building, 0.84m

(as determined by h/500).

The purpose of the preliminary FE analyses was to verify if the substructure and su-

98

Superelements Superelements

Substructure

Superelements

Substructure

Superelements Superelements

Substructure

Figure 5.2: Horizontal displacement versus height for different representations (compar-
ing output for SPARSEfeaTS and SEfeaTS

perelement approach was working correctly. SPARSEfeaTS (which is less efficient than

SEfeaTS, but nevertheless more capable than the original CALFEM Code) does not

make use of substructures or superelements. It constructs the global stiffness matrix

element-by-element, rather than by assembling substructures and superelements. The

complete agreement between the two codes (in terms of the predicted displacements)

enabled an investigation to be made into the run time and memory required for each

code.

99

5.2 Time and memory savings

In this section the computational efficiency of the code is explored by considering differ-

ent possibilities available in SEfeaTS. First, the memory savings observed for the same

model as analysed in the previous section are reported. When analysing the building

using SPARSEfeaTS, even though this code includes the very efficient sparse storage

scheme (see section 4.4) the memory required was 168.2MB. When analysing the same

building using superelements, but with different numbers of floors in the substructure,

the memory saving was as shown in Figure 5.3, left. It can be seen that increasing the

number of floors in each substructure from 2 to 4 led to less computational memory

being used by the code. The pattern is reversed when examining the run time for the

same analysis (Figure 5.3, right).

Number of floors in substructure

Ti
m

e
[s

]

149.405

Number of floors in substructure

168.2

Figure 5.3: Computational memory (left) and run time (right) savings influenced by the
number of floors in a substructure

The run time required for SPARSEfeaTS to determine the displacements at all nodes

was 149.4 seconds, while with SEfeaTS this time ranged from just 21.9 to 137.7 seconds

depending on the number of the floors in the substructure. Tables 5.4 and 5.5 express

these savings in percentage compared with SPARSEfeaTS.

100

SEfeaTS memory used in comparison with SPARSEfeaTS (168.2MB)

flawsInSS nSS memory [MB] proportion [%]

2 60 122.30 72.7

3 40 81.2 48.3

4 30 60.7 36.1

Table 5.4: Computational memory savings of SEfeaTS compared with SPARSEfeaTS

SEfeaTS run time in comparison with SPARSEfeaTS (149.4s)

flawsInSS nSS run time [s] proportion [%]

2 60 21.9 14.6

3 40 60.5 40.5

4 30 137.7 92.2

Table 5.5: Run time savings of SEfeaTS compared with SPARSEfeaTS

The most time consuming operation in SEfeaTS is the elimination of internal DoFs

(the condensation process explained in the previous chapter) from the stiffness matrix

of a substructure. As described in Chapter 4, SEfeaTS provides an option to represent

the whole structure with a superelemnts only or with a substructure, which could be

analysed in greater detail, and superelemnts. In the following analyses, the number of

columns per side was progressively increased by 2 (from 10 to 16) which increased the

total number of DoF and computational efforts.

When analysing the building with 12 number of columns per side using SPARSEfeaTS,

the memory required was 211.7MB. When analysing the same building using superele-

ments the memory saving was as shown in Table 5.6. The run time required for SPARSE-

feaTS to determine the displacements at all nodes was 375.5 seconds, while with SEfeaTS

this time ranged from 60.5 to 353 seconds depending on the number of the floors in

the substructure. Tables 5.6 and 5.7 express these savings in percentage compared with

SPARSEfeaTS.

101

SEfeaTS memory used in comparison with SPARSEfeaTS (211.7MB)

flawsInSS nSS memory [MB] proportion [%]

2 60 155 73.2

3 40 103 48.6

4 30 77 36.4

Table 5.6: Computational memory savings of SEfeaTS compared with SPARSEfeaTS
(ncol=12)

SEfeaTS run time in comparison with SPARSEfeaTS (375.5s)

flawsInSS nSS run time [s] proportion [%]

2 60 60.5 16.1

3 40 161 42.9

4 30 353 94

Table 5.7: Run time savings of SEfeaTS compared with SPARSEfeaTS (ncol=12)

Next, when analysing the building with 14 number of columns per side using SPARSE-

feaTS, the memory required was 253MB. On the other hand, when analysing the same

building using superelements the memory saving was as shown in Table 5.8. The run

time required for SPARSEfeaTS to determine the displacements at all nodes was 673.6

seconds, while with SEfeaTS this time ranged from 110 to 650 seconds, again depending

on the number of the floors in the substructure. Tables 5.8 and 5.9 express these savings

in percentage compared with SPARSEfeaTS.

SEfeaTS memory used in comparison with SPARSEfeaTS (253MB)

flawsInSS nSS memory [MB] proportion [%]

2 60 202 79.8

3 40 134 53

4 30 100 39.5

Table 5.8: Computational memory savings of SEfeaTS compared with SPARSEfeaTS
(ncol=14)

102

SEfeaTS run time in comparison with SPARSEfeaTS (673.6s)

flawsInSS nSS run time [s] proportion [%]

2 60 110 16.3

3 40 296 44

4 30 650 96.6

Table 5.9: Run time savings of SEfeaTS compared with SPARSEfeaTS (ncol=14)

The final analysis in this section was for the building with 16 number of columns per

side. When this building was analysed using SPARSEfeaTS, the memory required was

302MB. When analysing the same building using superelements the memory saving was

as shown in Table 5.10. The run time required for SPARSEfeaTS to determine the

displacements at all nodes was 1354 seconds, while with SEfeaTS this time ranged from

192 to 1327 seconds depending on the number of the floors in the substructure. Tables

5.10 and 5.11 express these savings in percentage compared with SPARSEfeaTS.

SEfeaTS memory used in comparison with SPARSEfeaTS (302MB)

flawsInSS nSS memory [MB] proportion [%]

2 60 256 84.8

3 40 170 56.3

4 30 127 42.1

Table 5.10: Computational memory savings of SEfeaTS compared with SPARSEfeaTS
(ncol=16)

SEfeaTS run time in comparison with SPARSEfeaTS (1354s)

flawsInSS nSS run time [s] proportion [%]

2 60 192 18.9

3 40 554 41

4 30 1327 98

Table 5.11: Run time savings of SEfeaTS compared with SPARSEfeaTS(ncol=16)

103

It can be concluded that for preliminary linear analyses of these buildings, the use of 3

floors in the substructures and 39 superelements would be the most efficient application

(the savings in the memory required and run time ranges approximately from 40% to

60% in all given analyses).

Note that the original CALFEM code could not cope with the number of finite elements

present in the chosen structure; the memory requirements (without use of a sparse

storage scheme or use of substructures and superelements) exceeds the capacity of the

computer used. This was one of the primary incentives to develop SPARSEfeaTS and

SEfeaTS. Even when analysing smaller structures (with fewer elements) which were at

the limit of a normal desktop computer’s memory capacity, the run times for CALFEM’S

(full stiffness matrix storage) algorithm were 8 to 12 times longer than observed with

SPARSEfeaTS.

5.3 Stiffness contribution from different structural

members

Chapter 1, Section 1.6 gave a brief introduction to different structural systems found

in tall buildings. These normally comprise: columns, beams, floor slabs and core walls.

They all contribute to the overall structural resistance of the building, but their contri-

butions can be very different, so it is essential for the designer to appreciate their relative

effects in order that an optimum structural system can be sought [54]. Ali [14] reviewed

the chronological evolution of tall building’s structural systems and the technological

driving forces behind tall building developments. They offered updated height-based

charts showing efficient structural systems for steel and concrete (originally developed

by [29]). This section considers methods of increasing the structural stiffness by making

changes to the different structural components. This is achieved by varying their num-

ber, cross-sectional dimensions, shape or orientation. All of the FE predictions reported

here are compared with the predictions from the model described in Section 5.1 (Tables

5.2 and 5.3 and Figure 5.1). Using the default number of columns (and column, beam,

core wall and slab dimensions) for the 120 storey structure, as mentioned previously, the

FE analysis predicted a maximum displacement of 1.397m. This significantly exceeds

104

the target maximum displacement of 0.84m.

Displacement [m]

H
ei

gh
t [

m
]

3D View - 16 columns 3D View - 10 columns

ta
rg

et
 m

ax
im

um
 d

is
pl

ac
em

en
t

Figure 5.4: Horizontal displacement for the 420m high building depending, on the num-
ber of columns on each side

First, the influence of the columns was examined, by identifying their stiffness contri-

bution and thus their ability to reduce the overall lateral displacement. The dimensions

of the columns are directly influenced by their number along one side of the building.

For example, 432 Park Avenue has seven 1.16 × 1.16m columns on each side [23]. In

the following analyses, the number of columns per side was progressively increased by 2

(from 10 to 16) giving the results shown in Figure 5.6. 16 columns per side was chosen

as the initial upper limit, because this gave rise to a clear space between columns of

0.43m. This narrow dimension corresponded to the clear space between the columns

in the iconic New York Twin Towers [2]. The predicted horizontal displacements over

the height of the building for the four models are shown in Figure 5.6. These results

indicate that the horizontal displacement can be reduced from 1.397m (for 10 columns)

to 0.968m (for 16 columns).

Next, the orientation of the cross-sections of the columns and their total area was

105

Figure 5.5: Floor plans for the 420m tall building having 10 columns on each side showing
two different column cross-sections

examined. In the first model analysed in Section 5.1, the orientation of the columns can

be seen in Figure 5.1. When the column cross-sections were rotated through 90◦ (see

Figure 5.5, left) there was no significant change in the horizontal displacements. Hence,

those FE results are not shown here. But if the original 0.9× 0.6m cross-sections were

changed to 0.75× 0.75m (to give a similar cross-sectional area) there was a decrease of

0.03m in the maximum horizontal displacement (see Figure 5.6). Note that an analysis

involving stiffened perimeter and internal beams (from 0.6× 0.6m to 0.6× 1.2m) led to

no significant increase in the overall stiffness of the structure. Thus, those results have

not been shown here.

After examining the effect of the changes to the columns, subsequent analyses investi-

gated the stiffening effect of the shell elements (used to represent the floor slabs and core

walls). The FE results showed little change when increasing the thickness of the floor

slab from 0.15m to 0.25m (Figure 5.7). This is not surprising since the main structural

lateral stiffness arises from the columns and the core walls.

106

Displacement [m]

H
ei

gh
t [

m
]

0.9 x 0.6m columns 0.75 x 0.75m columns

ta
rg

et
 m

ax
im

um

di
sp

la
ce

m
en

t
Figure 5.6: Horizontal displacement for the 420m high building showing two different
column cross-sections

The final analyses reported in this section concerned a change in the thickness of the core

walls. It has been already mentioned that the reinforced concrete core walls represent

the current normal option for tall buildings, rather than steel-framed cores. Some design

codes now require that the core of the building be constructed using reinforced concrete

to provide appropriate fire safety [23]. By way of example, the Shard with its height of

306m has the thickness of its core walls in the range of 0.45m (at the top) to 0.8m

(at the bottom level), while the taller 432 Park Avenue has 0.76m thick core walls [23].

For the purpose of this research, the thickness of the internal walls in the core area was

kept constant while the outer core wall thickness was changed. The reason for keeping

the inner core wall thicknesses constant was to preserve the space required for the lift

shaft. The maximum horizontal displacement versus the height for the three different

core wall thicknesses is shown in Figure 5.8. The model using a thickness of 0.8m led

to the smallest lateral displacement (as one might expect) with a difference of 0.279m

between the deflection of the building with the thinnest and the thickest core walls.

107

H
ei

gh
t [

m
]

Displacement [m]

ta
rg

et
 m

ax
im

um
 d

is
pl

ac
em

en
t

Figure 5.7: Horizontal displacement for the 420m high building showing the effect of
different floor slab thicknesses

Displacement [m]

H
ei

gh
t [

m
]

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

50

100

150

200

250

300

350

400

450

External core wall thickness 0.4m

External core wall thickness 0.6m

External core wall thickness 0.8m

ta
rg

et
 m

ax
im

um
 d

is
pl

ac
em

en
t

Figure 5.8: Horizontal displacement for the 420m high building showing the effect of
different exterior core wall thicknesses

108

5.4 Structural solution giving the least deflection

Recall that from the initial analysis reported on in Section 5.1 (for a 420m tall building

with a 20 × 20m wide base, a slenderness ratio of 21:1, 10 columns on each side and

cross-sectional dimensions of all structural elements as given in Table 5.2, subjected to

the highest credible wind load) the maximum horizontal displacement was predicted as

being 1.387m. This exceeds the target maximum deflection of 0.84m by almost 0.6m.

It can be seen from Section 5.2 that the greatest reduction in the lateral deflection is

achieved by increasing: (i) the number of columns (from 10 to 16), (ii) the thickness

of the external core walls (from 0.4m to 0.8m) and (iii) reshaping the columns (from

0.9× 0.6m to 0.75× 0.75m). These changes were combined together in the following

analysis in order to examine their consequences on the overall displacement.

0.4

0.6

0.8

1

1.2

1.4

H
ei

gh
t [

m
]

Displacement [m]

3D View - Last model 3D View - First model

ta
rg

et
 m

ax
im

um

di
sp

la
ce

m
en

t

Figure 5.9: Horizontal displacement for the 420m high building

The maximum horizontal displacement versus height for the initial and final models are

shown in Figure 5.9. It can be seen that the maximum displacement achieved in the

final model was 0.838m, lying just inside the 0.84m limit dictated by the height over 500

109

guideline. The total mass of this structure was computed (by summing all the member’s

volumes and multiplying by the density of reinforced concrete) as 152 × 106kg. That

corresponds to 3, 164kg for each m2 of the floor space over the entire structure. This

compares with a figure of 114 × 106kg for the total mass (and 2, 373kg for the mass

per m2 floor) corresponding to the first structure examined in Section 5.1.

Displacement [m]

H
ei

gh
t [

m
]

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

50

100

150

200

250

300

350

400

450

1 stage

3 stages

3D View - First stage 3D View - Third stage

 ta
rg

et
 m

ax
im

um
 d

is
pl

ac
em

en
t

Figure 5.10: Horizontal displacement over height for the 420m high building comprising
solution with uniform member sizes over the height or 3 different sets of member sizes
over the height (largest cross-sections at the base)

In a further analysis, additional possible savings in the total mass of the building were

investigated. This was explored by dividing the structure into three stages over the

height. The cross-sectional size of the columns and core walls remain as in the previous

analysis in the first stage (at the base of the building), while for the second and third (1/3

to 2/3 height and 2/3 height to top) stages the cross-sectional size of the square columns

was reduced from 0.75m to 0.65m and then to 0.55m, respectively. The thickness of

the exterior core walls was also reduced in a similar manner, from 0.8m to 0.6m and

then to 0.4m. This led to a reduction from 152 × 106kg to 135 × 106kg for the total

mass but gave rise to an increase of 0.11m (from 0.838 to 0.947m) in the maximum

110

horizontal displacement (Figure 5.10).

Variables

number of substructures nSS 25

number of floors in substructure flawsInSS 4

number of columns per side ncols 16

columns dimensions (m) bc x dc 0.75 x 0.75

perimeter beam dimensions (m) bpb x dpb 0.6 x 0.6

internal beam dimensions (m) bib x dib 0.6 x 0.6

floor slab thickness (m) ts 0.15

exterior core walls thickness (m) tx 0.8

interior core walls thickness (m) ti 0.4

Table 5.12: The list of dimensions and number of elements used in the analysis for the
400m tall slender building

If the floor height of 4m, rather than 3.5m, was used and the total number of floors

was reduced to 100, this would give a 400m structure (Table 5.12) with an aspect ratio

of precisely 20:1. The maximum lateral displacement for this arrangement was 0.707m.

Although not shown here, when using the FE code it is straightforward to consider wind

pressures which are non-uniform across the width of the structure. This gives rise to a

twisting of the building, the magnitude of which depends on the degree of non-symmetry

of the wind load. A great many other load cases can be considered using SPARSEfeaTS

or SEfeaTS. In Appendix E some significant load combinations have been examined to

calculate the axial resistance of building’s main structural elements (columns in this

case). From these calculations the 0.75 × 0.75m size of the columns is a reasonable

member dimension, capable to resist the vertical loads.

It is evident that the predicted linear elastic static displacements are directly proportional

to the value of Young’s modulus (E) chosen for the reinforced concrete. The E value

relevant for the extreme wind pressure loading should correspond to that measured at

a similar strain rate [24] as experienced by the structure under the short duration wind

load. Taking consideration of this, in conjunction with measured static modulus values

of > 45GPa for concrete with a compressive strength of 115MPa [17][28] suggests that

111

some additional material stiffness (above 35GPa) could be realised when using new high

performance concretes.

The final analysis in this chapter was focused on increasing the number of columns from

16 to 26 (Figure 5.11) in order to compare the lateral displacements over the height. The

cross-sectional area of the columns for the last analysis (ncols=26) is approximately

similar to the 0.75 × 0.75m columns shown in Figure 5.12. It can be seen that for the

compared models the difference in the maximum displacement is 0.023m. Note that

this last model provides a higher density for the FE mesh of the floor slabs (and the

core walls). This is important, since a coarse mesh will not properly represent the true

flexibility of the floor and core walls.

Figure 5.11: Plan view of the column and floor slab mesh corresponding to nclos=26

This chapter has shown the efficiency and capabilities of SEfeaTS compared to SPARSE-

feaTS. In the following chapter, overall conclusions and recommendations for further

work are given.

112

3D View - 16 columns 3D View - 26 columns

ta
rg

et
 m

ax
im

um
 d

is
pl

ac
em

en
t

Figure 5.12: Comparison between the predicted lateral displacements over the height of
the building for 16 column and 26 column arrangements

113

114

Chapter 6

Conclusions and recommendations

for further work

Throughout this thesis considerable effort has been made to provide a computationally

efficient tool which enables an engineer to change some of the defining structural features

(for example, the number of main structural elements, the number of floors, the thick-

ness of the core walls and the structural material) and quickly obtain the corresponding

displacement results for a given loading. When designing a tall slender structure the

greatest challenge is to develop an effective lateral load resisting system. Walsh [48]

suggested that buildings with square footprints can achieve greater heights in compari-

son with those having rectangular footprints under the same type of load. This simple

but elegant shape has been the focus of the study reported here. A further feature of

the structure investigated here is the periodic (repetitive) nature of the structural layout

over the height of the building. Such structures are not just conveniently simple, they are

increasingly appearing as attractive engineering solutions when designing tall buildings.

The framework presented in Chapter 3 proposed two methods, the master-slave ap-

proach and the substructuring technique, to bring about memory savings and run time

reductions for a large finite element analysis. Furthermore, the incorporation of the

4-noded shell element, with drilling degrees of freedom, has significantly enhanced the

capabilities of the original CALFEM code. In addition, the creation of a rapid mesh gen-

erator code dramatically sped up the time required to prepare each FE analysis. These

features enable the user to analysis and compare a greater number of alternative struc-

115

tural systems in order to discover the near optimal solution.

Chapter 5 presented a series of numerical simulations using the theory and codes de-

veloped in Chapters 2, 3 and 4. The results from using the sparse storage scheme

(SPARSEfeaTS) or the substructure method (SEfeaTS) have been compared against

one another and the computational efficiency gains of SEfeaTS reported. The observa-

tions drawn from Chapter 5 are as follows

(i) a significant improvement is achieved in the memory required (from 72.7% to

36.1%) and run time required (from 92.2% to 14.6%) through implementation of

both the master-slave method and the substructuring technique. This enabled

repeat analyses to be performed quickly allowing a designer to gain a rapid appreci-

ation of the relative contribution of different components on the overall structural

response. It is therefore concluded that for preliminary linear analyses of these

buildings, use of substructuring offers noticeable benefits to the engineer

(ii) different structural members were considered and their individual stiffness contri-

butions reported, revealing that the greatest reduction in the lateral deflection is

achieved by: (a) increasing the number of columns (from 10 to 16 in the examples

shown), (b) increasing the thickness of the external core walls (from 0.4m to 0.8m)

and (c) reshaping the column cross-sections (from 0.9× 0.6m to 0.75× 0.75m)

(iii) the final analysis in Chapter 5 sought the stiffest credible structure using reasonable

member dimensions in order to estimate whether it is possible to design a structure

(without using colossal columns) with a slenderness ratio of 20:1. It appeared

that it is possible to design such a structure. However there are some important

considerations which must be addressed before finally deciding on the suitability

of the proposed building. These considerations are

(a) the number of shell elements used to model the core walls and floor slabs

was limited. Even through the qualitative trends provide valuable insight, it

is necessary to increase the mesh density for these members in order to gain

greater confidence in the predicted structural deflections

(b) the use of Euler-Bernoulli beam theory for the deep spandrel (perimeter)

beams represents an over-simplification. Greater confidence would come from

116

modelling these using Timoshenko beam theory which is more appropriate for

deep beam analysis

(c) the dynamics of the structure under transient wind loading would need to

be examined in great detail before a designer could be satisfied that the

behaviour of the building was either satisfactory or unsatisfactory. It is very

likely that the incorporation of tuned mass dampers, to limit the dynamic

motion, would be necessary for the structures considered here.

Despite the above reservations, the key contribution from this study has been to develop

a computationally efficient finite element structural analysis method and bespoke mesh

generator to enable an engineer to gain valuable preliminary insights into the possible

response and the influence of different structural members. In total, 1,700 lines of

Matlab script have been written in this project (Appendices C and D) to create the

capability described in this thesis. The resulting FE analysis provides an attractive open

source code for further development. It is suggested that the potential next modifications

to the code would involve

(i) the incorporation of an eigenanalysis capability to enable the natural frequencies

and mode shapes of the structure to be determined

(ii) the introduction of Timoshenko beam elements in place of the Euler-Bernoulli

elements and

(iii) an ability to automatically refine the number of shell elements used to represent

the core walls and the floor slabs.

These would enable an engineer to use the code for more demanding computational tasks

such as (i) structural optimization, (ii) reliability analysis and (iii) time history analyses

where the benefit of both the master-slave method and the substructuring technique

would be more significant.

117

118

Appendix A

3D Beam stiffness matrix (in local coordinates)

 E
A `

0
0

0
0

0
−
E
A `

0
0

0
0

0

0
1
2
E
I z
z

`3
0

0
0

6
E
I
z
z

`2
0

−
1
2
E
I z
z

`3
0

0
0

6
E
I
z
z

`2

0
0

1
2
E
I y
y

`3
0

−
6
E
I
y
y

`2
0

0
0

−
1
2
E
I y
y

`3
0

−
6
E
I
y
y

`2
0

0
0

0
G
J `

0
0

0
0

0
−
G
J `

0
0

0
0

−
6
E
I
z
z

`2
0

4
E
I y
y

`
0

0
0

6
E
I
y
y

`2
0

2
E
I y
y

`
0

0
6
E
I
z
z

`2
0

0
0

4
E
I z
z

`
0

−
6
E
I
z
z

`2
0

0
0

2
E
I z
z

`

−
E
A `

0
0

0
0

0
E
A `

0
0

0
0

0

0
−

1
2
E
I z
z

`3
0

0
0

−
6
E
I z
z

`2
0

1
2
E
I z
z

`3
0

0
0

−
6
E
I
z
z

`2

0
0

−
1
2
E
I y
y

`3
0

6
E
I
y
y

`2
0

0
0

1
2
E
I y
y

`3
0

6
E
I
y
y

`2
0

0
0

0
−
G
J `

0
0

0
0

0
G
J `

0
0

0
0

−
6
E
I
y
y

`2
0

2
E
I y
y

`
0

0
0

6
E
I
y
y

`2
0

4
E
I y
y

`
0

0
6
E
I
z
z

`2
0

0
0

2
E
I z
z

`
0

−
6
E
I
z
z

`2
0

0
0

4
E
I z
z

`

119

120

Appendix B

B.1 3D Shell cantilever beam analyses

-0.1

0

-0.05

0

0.1

0.05

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10 -3
1 0

Figure B1: 3D Cantilever beam subjected to an end point load

121

The above analysis was undertaken to verify that the 4-noded shell elements could be

attached orthogonally at their edges (through addition of the drilling DoF) so that the

core walls and floor slabs could be modelled correctly. In the analysis, one half of the

symmetric I beam was represented by shell elements for the flanges and web. The pre-

dicted end deflection was 0.094m under a centrally applied end load. This compares

with the Euler-Bernoulli prediction of 0.101m. The results confirm that the enhanced

shell elements are performing as expected.

B.2 3D Shell shear wall analyses

In the second analysis, a vertical shear wall (of length 3m, height 3m and thickness

0.15m) was subjected to a horizontal in-plane load of 1MN at the coordinates (0, 0, 3).

Figure B2 illustrates the exaggerated displacements of the both a single 4-noded shell

element (left) and the same structure divided into 20×20 mesh of 4-noded shell elements.

The single element produced a deflection which was 1.27× stiffer than the fine mesh

solution. In both analyses the Young’s modulus was taken as 35GPa.

3

2

10

0.5

0 0

1

1.5

2

2.5

3

3

2

10

0.5

0 0

1

1.5

2

2.5

3

Figure B2: Shear wall deformation subjected to an end point load; one element (left)
and 400 elements (right)

122

Appendix C

C.1 SPARSEfeaTS

1 clear; clf;
2 [coord,height,etopolShells,etopolBeams,BeamElemProps,ShellElemProps,bc,MSarray, ...
3 groundn,connectn,scalef,fext,fextfactor,nSS,flawsInSS]=MeshGen;
4 [shells,temp]=size(etopolShells); % shells: slabs, walls
5 [beams,temp]=size(etopolBeams); % beams : columns, internal, ...
6 % perimeter, perimeter_upperSS
7 nodes=size(coord,1); nDoF=6*nodes; DoF=reshape([1:nDoF],6,nodes)'; ...
8 flaws=(max(coord(:,3)))/height;
9 uvw=zeros(nDoF,1); react=zeros(nDoF,1);

10 fd=(1:nDoF); fd(bc(:,1))=[]; ShellsPerFlaw=shells/flaws;
11

12 time4=toc;
13 fprintf('assembling shell element stiffness matrices %9.3f\n',time4);
14 nen=4; neDoF=(6*nen)^2;
15 krow=zeros(neDoF*shells,1); kcol=krow; kval=krow;
16 for shell=1:shells
17 EYm=ShellElemProps(etopolShells(shell,5),1); ...
18 nu=ShellElemProps(etopolShells(shell,5),2);
19 thickness=ShellElemProps(etopolShells(shell,5),3); ...
20 Vn=ShellElemProps(etopolShells(shell,5),4:6);
21 ed=reshape(ones(6,1)*etopolShells(shell,1:4)*6- ...
22 (6-1:-1:0).'*ones(1,nen),1,6*nen);
23 [ke,V1,V2]=kShell(coord(etopolShells(shell,1:4),:),EYm,nu,thickness,Vn); ...
24 kend=shell*neDoF; kstart=kend-neDoF+1;
25 krow(kstart:kend)=reshape(ed.'*ones(1,6*nen),neDoF,1);
26 kcol(kstart:kend)=reshape(ones(6*nen,1)*ed,neDoF,1);
27 kval(kstart:kend)=reshape(ke,neDoF,1);
28 end
29 sKglobal=sparse(krow,kcol,kval,nDoF,nDoF);
30

31 time5=toc;
32 fprintf('assembling beam element stiffness matrices %9.3f\n',time5);
33 nen=2; neDoF=(6*nen)^2;
34 ColNSstageIke=0; ColEWstageIke=0; ColNSstageIIke=0; ...

123

35 ColEWstageIIke=0; ColNSstageIIIke=0; ColEWstageIIIke=0;
36 krow=zeros(neDoF*beams,1); kcol=krow; kval=krow;
37 for beam=1:beams
38 if (etopolBeams(beam,3)==1)&(ColNSstageIke >0); ke=keColNSstageI;
39 elseif (etopolBeams(beam,3)==2)&(ColEWstageIke >0); ke=keColEWstageI;
40 elseif (etopolBeams(beam,3)==3)&(ColNSstageIIke >0); ke=keColNSstageII;
41 elseif (etopolBeams(beam,3)==4)&(ColEWstageIIke >0); ke=keColEWstageII;
42 elseif (etopolBeams(beam,3)==5)&(ColNSstageIIIke>0); ke=keColNSstageIII;
43 elseif (etopolBeams(beam,3)==6)&(ColEWstageIIIke>0); ke=keColEWstageIII;
44 else
45 EYm=BeamElemProps(etopolBeams(beam,3),1); nu=BeamElemProps(etopolBeams(beam,3),2);
46 breadth=BeamElemProps(etopolBeams(beam,3),3); depth=BeamElemProps(etopolBeams(beam,3),4);
47 ke=kBeam(coord(etopolBeams(beam,1:2),:),EYm,nu,breadth,depth);
48 if (etopolBeams(beam,3)==1); keColNSstageI =ke; ColNSstageIke =1;
49 elseif (etopolBeams(beam,3)==2); keColEWstageI =ke; ColEWstageIke =1;
50 elseif (etopolBeams(beam,3)==3); keColNSstageII =ke; ColNSstageIIke =1;
51 elseif (etopolBeams(beam,3)==4); keColEWstageII =ke; ColEWstageIIke =1;
52 elseif (etopolBeams(beam,3)==5); keColNSstageIII=ke; ColNSstageIIIke=1;
53 elseif (etopolBeams(beam,3)==6); keColEWstageIII=ke; ColEWstageIIIke=1;
54 end
55 end
56 ed=reshape(ones(6,1)*etopolBeams(beam,1:2)*6-(6-1:-1:0).'*ones(1,nen),1,6*nen);
57 kend=beam*neDoF; kstart=kend-neDoF+1;
58 krow(kstart:kend)=reshape(ed.'*ones(1,6*nen),neDoF,1);
59 kcol(kstart:kend)=reshape(ones(6*nen,1)*ed,neDoF,1);
60 kval(kstart:kend)=reshape(ke,neDoF,1);
61 end
62 sKglobal=sKglobal+sparse(krow,kcol,kval,nDoF,nDoF);
63

64 time6=toc;
65 fprintf('global stiffness determined %9.3f\n',time6);
66

67 if size(MSarray,2)>0
68 sTms=transform(coord,MSarray,DoF);
69 time7=toc;
70 fprintf('Master-Slave transformation determined %9.3f\n',time7);
71 sKms=sTms'*sKglobal*sTms;
72 fextms=sTms'*fext;
73 [uvwms,reactms]=solveKdf(sKms,fextms,bc);
74 reactms=(sKms*uvwms)-fextms;
75 uvw=sTms*uvwms; react=sTms*reactms;
76 else
77 [uvw,react]=solveKdf(sKglobal,fext,bc);
78 end
79 displacements=[(1:nodes); coord(:,1:3)'; [reshape(uvw,6,nodes)']']';
80 basenodes=(size(bc,1))/6; reactbase=reshape(react(bc(:,1)),6,basenodes)'; ...
81 scalereact=100.0/abs(sum(fext));
82 %fprintf('node X Y Z u v w thetaX thetaY thetaZ\n');

124

83 %fprintf('%4i %5.2f %5.2f %5.2f %7.4f %7.4f %7.4f %7.4f %7.4f %7.4f\n',displacements');
84 dispcoord=reshape(uvw,6,nodes)'; dispcoord=dispcoord(:,1:3); ...
85 scaledcoord=coord+(scalef*dispcoord);
86 time8=toc;
87 fprintf('solution determined %9.3f\n',time8);
88

89

90

91 %
92 plotBeamsCrossSec(BeamElemProps,etopolBeams,coord);
93 plot3([0 1],[0 0],[0 0],'b-'); plot3([0 0],[0 1],[0 0],'b--'); ...
94 plot3([0 0],[0 0],[0 1],'b:');
95 view(35,15); axis equal; axis off;
96

97 figure;
98 plotShells(etopolShells,scaledcoord,'y'); ...
99 plotBeams(etopolBeams,scaledcoord,'r-','r.');

100 for node=1:basenodes
101 if (reactbase(node,3)<0); reactline='b:'; ...
102 reactsign=+1; else; reactline='b-'; reactsign=-1; end;
103 plot3([coord(node,1) coord(node,1)+(scalereact*reactsign*reactbase(node,1))], ...
104 [coord(node,2) coord(node,2)+(scalereact*reactsign*reactbase(node,2))], ...
105 [coord(node,3) coord(node,3)+(scalereact*reactsign*reactbase(node,3))], ...
106 reactline); hold on;
107 end
108 view(35,15); axis equal; axis off;
109 time9=toc;
110 fprintf('analysis complete %9.3f\n',time9);

125

C.2 SEfeaTS

1 clear; clf;
2 [coord,height,etopolShells,etopolBeams,BeamElemProps,ShellElemProps,...
3 bc,MSarray,groundn,connectn,scalef,fext,fextfactor,nSS,flawsInSS]=MeshGen;
4 [shells,temp]=size(etopolShells); [beams,temp]=size(etopolBeams);
5 nodes=size(coord,1); nDoF=6*nodes; DoF=reshape([1:nDoF],6,nodes)';
6 Ksubstructure=zeros(nDoF); fextfactor=fextfactor';
7 substructure=0;
8 time4=toc;
9 fprintf('assembling shell element stiffness matrices %9.3f\n',time4);

10 nen=4; neDoF=(6*nen)^2;
11 for shell=1:shells
12 EYm=ShellElemProps(etopolShells(shell,5),1); ...
13 nu=ShellElemProps(etopolShells(shell,5),2);
14 thickness=ShellElemProps(etopolShells(shell,5),3); ...
15 Vn=ShellElemProps(etopolShells(shell,5),4:6);
16 [ke,V1,V2]=kShell(coord(etopolShells(shell,1:4),:),EYm,nu,thickness,Vn);
17 sDoF=[(6*etopolShells(shell,1))-5:6*etopolShells(shell,1) ...
18 (6*etopolShells(shell,2))-5:6*etopolShells(shell,2) ...
19 (6*etopolShells(shell,3))-5:6*etopolShells(shell,3) ...
20 (6*etopolShells(shell,4))-5:6*etopolShells(shell,4)];
21 Ksubstructure(sDoF,sDoF)=Ksubstructure(sDoF,sDoF)+ke;
22 end
23

24 time5=toc;
25 fprintf('assembling beam element stiffness matrices %9.3f\n',time5);
26 ColNSke=0; ColEWke=0;
27 for beam=1:beams
28 if (etopolBeams(beam,3)==1)&(ColNSke>0)
29 ke=keColNS;
30 elseif (etopolBeams(beam,3)==2)&(ColEWke>0)
31 ke=keColEW;
32 else
33 EYm=BeamElemProps(etopolBeams(beam,3),1); ...
34 nu=BeamElemProps(etopolBeams(beam,3),2);
35 breadth=BeamElemProps(etopolBeams(beam,3),3); ...
36 depth=BeamElemProps(etopolBeams(beam,3),4);
37 ke=kBeam(coord(etopolBeams(beam,1:2),:),EYm,nu,breadth,depth); ...
38 if (etopolBeams(beam,3)==1); keColNS=ke; ColNSke=1; ...
39 elseif (etopolBeams(beam,3)==2); keColEW=ke; ColEWke=1; end;
40 end
41 bDoF=[(6*etopolBeams(beam,1))-5:6*etopolBeams(beam,1) ...
42 (6*etopolBeams(beam,2))-5:6*etopolBeams(beam,2)];
43 Ksubstructure(bDoF,bDoF)=Ksubstructure(bDoF,bDoF)+ke;
44 end
45

46 time6=toc;

126

47 fprintf('global stiffness determined %23.3f\n',time6);
48

49 [Tm,msDoF]=transform(coord,MSarray,DoF);
50 [Tg,gmsDoF]=transform(coord,groundn,msDoF,MSarray,Tm);
51 Kssgm=Tm'*Ksubstructure*Tm;
52 fssgm=Tm'*fext;
53 Kssm=Tg'*Ksubstructure*Tg;
54 fssm=Tg'*fext;
55 time7=toc;
56 fprintf('Master-Slave transformation determined %9.3f\n',time7);
57 clear coord DoF Ksubstructure fext Tm
58

59 Mdof=6; Sdof=3;
60 [Ksg,fsg,ssgDof]=superelementS(Sdof,connectn,Kssgm,fssgm,msDoF);
61 [Kss,fss,s1Dof]=superelementS(Sdof,connectn,Kssm,fssm,gmsDoF);
62 time8=toc;
63 fprintf('nodes at connection level removed %9.3f\n',time8);
64 clear Kssgm fssgm Kssm fssm msDoF gmsDoF
65

66 [nd,nd]=size(Ksg);
67 fdof=[1:nd]'; pdof=bc(:,1); dp=bc(:,2);
68 fdof(pdof)=[]; Kssg=Ksg(fdof,fdof);
69 fssg=fsg(fdof)-Ksg(fdof,pdof)*dp;
70

71 ngroundn=size(groundn,2); redDoF=ssgDof; redDoF(1:ngroundn,:)=[];
72 nslaves=size(MSarray,2)-1; nmasters=size(MSarray,1);
73 newmasterslave=MSarray-ones(nmasters,(nslaves+1))*ngroundn;
74 dofn=newmasterslave(1,1)-1;
75 for rold=1:nmasters
76 redDoF(newmasterslave(rold,1),:)=dofn*ones(1,6)+[1:6];
77 dofn=redDoF(newmasterslave(rold,1),6);
78 for nold=1:nslaves
79 redDoF(newmasterslave(rold,nold+1),3:5)=dofn*ones(1,3)+[1:3];
80 dofn=redDoF(newmasterslave(rold,nold+1),5);
81 end
82 end
83 col=size(redDoF,1)-(size(connectn,1)-1);
84 redDoF(col:end,:)=[];
85 clear Ksg fsg ssgDof
86 midMS=[]; floors=flawsInSS-1;
87 for floor=1:floors
88 midMS=[midMS; MSarray(floor,1:end)];
89 end
90 listoeli=zeros(size(midMS,1),1);
91 listoeli(:,1)=ngroundn;
92 groundMS=midMS-listoeli;
93

94 [Kse1,fse1,se1DoF]=superelementMS(midMS,Mdof,Sdof,Kss,fss,s1Dof);

127

95 [Kse0,fse0,se0DoF]=superelementMS(groundMS,Mdof,Sdof,Kssg,fssg,redDoF);
96 time9=toc;
97 fprintf('nodes from mid-levels removed %9.3f\n',time9);
98 clear s1Dof redDoF
99

100 [Kglobal,fglobal,GsubDoF,subDoF,supDoF]=assembly(substructure,nSS,fextfactor, ...
101 Kss,Kse1,Kse0,Kssg,fss,fse1,fse0,fssg);
102 clear Kss Kse1 Kse0 Kssg fss fse1 fse0 fssg
103 sKglobal=sparse(Kglobal);
104 time10=toc;
105 fprintf('assembling sub-structure and superelements %9.3f\n',time10);
106 [uvw]=sKglobal\fglobal;
107

108 [uvwSE,uvwSS]=recovery(uvw,nSS,substructure,Tg,Mdof,Sdof,midMS,ngroundn,GsubDoF, ...
109 subDoF,supDoF);
110

111 time11=toc;
112 fprintf('solution determined %9.3f\n',time11);
113

114 SEnodes=size(uvwSE,1)/6;
115

116 SSnodes=size(uvwSS,1)/6;
117 SSdisplacements=[reshape(uvwSS,6,SSnodes)'];
118 SEdisplacements=[reshape(uvwSE,6,SEnodes)'];
119

120 time12=toc;
121 fprintf('analysis complete %9.3f\n',time12);

128

Appendix D

D.1 MeshGen

1 function [ncoord,height,etopolShells,etopolBeams,BeamElemProps,ShellElemProps,..
2 bc,MSarray,groundn,connectn,scalef,fext,fextfactor,nSS,flawsInSS]=MeshGen
3

4 tic; MG=0; if (MG==0); clf; end; % MG=0 (only run MeshGen), ...
5 % MG=1 (MeshGen called by FEA)
6 MS=0; % MS=0 (no Master-Slave approach), ...
7 % MS=1 (use Master-Slave)
8 plotmesh=1; % plotmesh=1 plot structure, ...
9 % plotmesh=0 do not plot structure (AND do NOT calculate fextDL/LL)

10 analysis=1; % analysis=0 (reduced FEA with superelements), ...
11 % analysis=1 (full FEA)
12 stages=1;
13 flawsInSS=1;
14 nSS=stages*1;
15 ncols =24;
16 len =20; % (x and y) external width (breadth) of building
17 wc =2.0; % y-dimension (width) of East-West elevator corridor
18 we =3.0; % y-dimension (width) of all 6 elevator shafts and (north) stairwell
19 lse =3.2; % x-dimension (breadth) of each of 4 'south' elevator shafts
20 lne =3.5; % x-dimension (width) of each of 2 'north' service elevator shafts
21 height=3.5; % height of each floor
22 sw =(len-(4*lse))/2; % calculated x-dimension from west exterior to elevator core
23 ws =(len-wc-(2*we))/2; % calculated y-dimension from south exterior to elevator core
24 Vg=44.7; rhoc=2350.0; qLL=3.0e+3; tol=1e-6; scalef=50.0e+0;
25 flawsT=nSS*flawsInSS; Zg=max(500,flawsT*height); ...
26 if (analysis==1); flaws=flawsT; else; flaws=flawsInSS; end;
27 % ep types: 1 columns NS Stage I
28 % 2 columns EW Stage I
29 % 3 columns NS Stage II
30 % 4 columns EW Stage II
31 % 5 columns NS Stage III
32 % 6 columns EW Stage III
33 % 7 perimeter beams (was 4)
34 % 8 internal beams (was 5)

129

35 % 9 internal beams (was 6, stiffened level)
36 % 1 floor slabs
37 % 2 exterior core walls XZ (west-east) Stage I
38 % 3 exterior core walls YZ (south-north) Stage I
39 % 4 interior core walls YZ (south-north) Stage I
40 % 5 exterior core walls XZ (west-east) Stage II
41 % 6 exterior core walls YZ (south-north) Stage II
42 % 7 interior core walls YZ (south-north) Stage II
43 % 8 exterior core walls XZ (west-east) Stage III
44 % 9 exterior core walls YZ (south-north) Stage III
45 % 10 interior core walls YZ (south-north) Stage III
46

47 nu=0.2;
48 EcNSI =35e9; bcNSI =0.6; dcNSI =0.4; % 1 NS columns Stage I
49 EcEWI =35e9; bcEWI =0.4; dcEWI =0.6; % 2 EW columns Stage I
50 EcNSII =35e9; bcNSII =0.65; dcNSII =0.65; % 3 NS columns Stage II
51 EcEWII =35e9; bcEWII =0.65; dcEWII =0.65; % 4 EW columns Stage II
52 EcNSIII=35e9; bcNSIII=0.55; dcNSIII=0.55; % 5 NS columns Stage III
53 EcEWIII=35e9; bcEWIII=0.55; dcEWIII=0.55; % 6 EW columns Stage III
54 Epb =35e9; bpb =0.6; dpb =0.6; % 7 perimeter beams
55 Eib =35e9; bib =0.6; dib =0.6; % 8 internal beams
56 Eibs=35e9; bibs=0.6; dibs=1*dib; % 9 stiffened internal beams at substructure top level
57

58 Es =35e9; ts =0.15; % 1 floor slabs
59 ExXZ_I =35e9; txXZ_I =0.80; % 2 exterior core walls XZ Stage I
60 ExYZ_I =35e9; txYZ_I =0.40; % 3 exterior core walls YZ Stage I
61 EiYZ_I =35e9; tiYZ_I =0.40; % 4 interior core walls YZ Stage I
62 ExXZ_II =35e9; txXZ_II =0.40; % 5 exterior core walls XZ Stage II
63 ExYZ_II =35e9; txYZ_II =0.40; % 6 exterior core walls YZ Stage II
64 EiYZ_II =35e9; tiYZ_II =0.40; % 7 interior core walls YZ Stage II
65 ExXZ_III=35e9; txXZ_III=0.40; % 8 exterior core walls XZ Stage III
66 ExYZ_III=35e9; txYZ_III=0.40; % 9 exterior core walls YZ Stage III
67 EiYZ_III=35e9; tiYZ_III=0.40; % 10 interior core walls YZ Stage III
68

69 BeamElemProps=[EcNSI nu bcNSI dcNSI % 1
70 EcEWI nu bcEWI dcEWI % 2
71 EcNSII nu bcNSII dcNSII % 3
72 EcEWII nu bcEWII dcEWII % 4
73 EcNSIII nu bcNSIII dcNSIII % 5
74 EcEWIII nu bcEWIII dcEWIII % 6
75 Epb nu bpb dpb % 7
76 Eib nu bib dib % 8
77 Eibs nu bibs dibs]; % 9
78

79 ShellElemProps=[Es nu ts 0 0 1 % floor slabs
80 ExXZ_I nu txXZ_I 0 -1 0 % exterior core walls XZ Stage I
81 ExYZ_I nu txYZ_I 1 0 0 % exterior core walls YZ Stage I
82 EiYZ_I nu tiYZ_I 1 0 0 % interior core walls YZ Stage I

130

83 ExXZ_II nu txXZ_II 0 -1 0 % exterior core walls XZ Stage II
84 ExYZ_II nu txYZ_II 1 0 0 % exterior core walls YZ Stage II
85 EiYZ_II nu tiYZ_II 1 0 0 % interior core walls YZ Stage II
86 ExXZ_III nu txXZ_III 0 -1 0 % exterior core walls XZ Stage III
87 ExYZ_III nu txYZ_III 1 0 0 % exterior core walls YZ Stage III
88 EiYZ_III nu tiYZ_III 1 0 0]; % interior core walls YZ Stage III
89

90 yspacingmin=[(len-wc-(2*we))/2 (len-wc)/2 (len+wc)/2 (len+wc+(2*we))/2];
91 yspacingcols=[0 len/(ncols+1):len/(ncols+1):len*(1-(1/(ncols+1)))+tol len];
92 yspacing=sortuniqarray(yspacingmin,yspacingcols); colincorr=[];
93 nodesPerimWE=size(yspacing,2);
94

95 for y=1:size(yspacing,2) % determine whether perimeter columns are ...
96 % in the elevator corridor area
97 if (yspacing(y)>((len/2)-(wc/2)+tol))&(yspacing(y)<((len/2)+(wc/2)-tol))
98 colincorr=[colincorr yspacing(y)];
99 end

100 end
101 colsincorr=size(colincorr,2); y=0;
102 if colsincorr>0
103 for y=1:colsincorr
104 colincorrFromC=(colincorr-(((len-wc)/2)*ones(1,colsincorr)))./(wc); ...
105 thingy=[(len/2)-lse+(colincorrFromC(y)*(lne-lse)) ...
106 (len/2)+lse-(colincorrFromC(y)*(lne-lse))];
107 xspacingminD(y,:)=sort(unique([0 (len/2)- ...
108 (2*lse) thingy (len/2) (len/2)+(2*lse) len]));
109 end
110 end
111 xspacingcolsA=[0 len/(ncols+1):len/(ncols+1): ...
112 (len*(1-(1/(ncols+1))))+tol len];
113

114 xspacingminA=[0 (len/2)-(2*lse):lse:(len/2)+(2*lse)+tol len];
115 xspacingminB=[0 (len/2)-(2*lse) (len/2)+(2*lse) len];
116 xspacingminC=xspacingminA;
117 xspacingminE=[0 (len/2)-(2*lse) (len/2)-(2*lse)+lne ...
118 len/2 (len/2)+(2*lse)-lne (len/2)+(2*lse) len];
119 xspacingminF=xspacingminB;
120 xspacingminG=xspacingminE;
121

122 coord=[]; k=0; node=0; firstnodesx=[]; lastnodesx=[]; nodesxB=0; nodesxF=0;
123 for y=1:size(yspacing,2)
124 if (yspacing(y)<(ws+tol)) % A
125 xspacingA=sortuniqarray(xspacingminA,xspacingcolsA); ...
126 nodesxA=size(xspacingA,2); firstnodesx=[firstnodesx; ...
127 size(coord,1)+1];
128 coord=[coord; [xspacingA; yspacing(y)*ones(1,size(xspacingA,2))]'];
129 firstnodeA=1; lastnodeA=size(coord,1); lastnodesx=[lastnodesx; size(coord,1)];
130 elseif (yspacing(y)>(ws+tol))&(yspacing(y)<(ws+we-tol)) % B

131

131 xspacingB=sort(unique([xspacingminB len/(ncols+1): ...
132 len/(ncols+1):sw-tol len:-len/(ncols+1):len-sw+tol]));
133 nodesxB=size(xspacingB,2); firstnodesx=[firstnodesx; size(coord,1)+1];
134 coord=[coord; [xspacingB; yspacing(y)*ones(1,size(xspacingB,2))]'];
135 firstnodeB=lastnodeA+1; lastnodeB=size(coord,1); ...
136 lastnodesx=[lastnodesx; size(coord,1)];
137 elseif (yspacing(y)>(ws+we-tol))&(yspacing(y)<(ws+we+tol)) % C
138 xspacingC=sort(unique([xspacingminC len/(ncols+1):len/(ncols+1): ...
139 sw-tol len:-len/(ncols+1):len-sw+tol]));
140 nodesxC=size(xspacingC,2); firstnodesx=[firstnodesx; ...
141 size(coord,1)+1];
142 coord=[coord; [xspacingC; yspacing(y)*ones(1,size(xspacingC,2))]'];
143 if nodesxB>0
144 firstnodeC=lastnodeB+1;
145 else
146 firstnodeC=lastnodeA+1;
147 end
148 lastnodeC=size(coord,1); lastnodesx=[lastnodesx; size(coord,1)];
149 elseif (yspacing(y)>(ws+we+tol))&(yspacing(y)<(ws+we+wc-tol)) % D
150 k=k+1;
151 xspacingD=sort(unique([xspacingminD(k,:) len/(ncols+1):len/(ncols+1): ...
152 sw-tol len:-len/(ncols+1):len-sw+tol]));
153 nodesxD=size(xspacingD,2); firstnodesx=[firstnodesx; size(coord,1)+1];
154 coord=[coord; [xspacingD; yspacing(y)*ones(1,size(xspacingD,2))]'];
155 if (k==1)
156 firstnodeD(k)=lastnodeC+1;
157 else
158 firstnodeD(k)=lastnodeD(k-1);
159 end
160 lastnodeD(k)=size(coord,1); lastnodesx=[lastnodesx; size(coord,1)];
161 elseif (yspacing(y)>(ws+we+wc-tol))&(yspacing(y)<(ws+we+wc+tol)) % E
162 xspacingE=sort(unique([xspacingminE len/(ncols+1):len/(ncols+1):sw-tol ...
163 len:-len/(ncols+1):len-sw+tol]));
164 nodesxE=size(xspacingE,2); firstnodesx=[firstnodesx; size(coord,1)+1];
165 coord=[coord; [xspacingE; yspacing(y)*ones(1,size(xspacingE,2))]'];
166 if (k>0)
167 firstnodeE=lastnodeD(k)+1;
168 else
169 firstnodeE=lastnodeC+1;
170 end
171 lastnodeE=size(coord,1); lastnodesx=[lastnodesx; size(coord,1)];
172 elseif (yspacing(y)>(ws+we+wc+tol))&(yspacing(y)<(ws+we+wc+we-tol)) % F
173 xspacingF=sort(unique([xspacingminF len/(ncols+1):len/(ncols+1):sw-tol ...
174 len:-len/(ncols+1):len-sw+tol]));
175 nodesxF=size(xspacingF,2); firstnodesx=[firstnodesx; size(coord,1)+1];
176 coord=[coord; [xspacingF; yspacing(y)*ones(1,size(xspacingF,2))]'];
177 firstnodeF=lastnodeE+1; lastnodeF=size(coord,1); lastnodesx=[lastnodesx; ...
178 size(coord,1)];

132

179 elseif (yspacing(y)>(ws+we+wc+we-tol)) % G
180 xspacingG=sortuniqarray(xspacingminG,xspacingcolsA);
181 nodesxG=size(xspacingG,2); firstnodesx=[firstnodesx; size(coord,1)+1];
182 coord=[coord; [xspacingG; yspacing(y)*ones(1,size(xspacingG,2))]'];
183 if nodesxB>0
184 firstnodeG=lastnodeF+1;
185 else
186 firstnodeG=lastnodeE+1;
187 end
188 lastnodeG=size(coord,1); lastnodesx=[lastnodesx; size(coord,1)];
189 end
190 end
191 nodes=size(coord,1); etopolCols=[];
192 coord=[coord'; zeros(1,nodes)]'; % coord complete for ground level ...
193 % (includes some unnecessary nodes)
194

195 nodenotneeded=[];
196 for node=1:nodes
197 coord=[coord; [coord(node,1) coord(node,2) height]];
198 if (((coord(node,2)<tol)|(coord(node,2)>(len-tol)))& ...
199 (ismember(coord(node,1),xspacingcolsA)==1))
200 etopolCols=[etopolCols; [node node+nodes 1]];
201 elseif (((coord(node,1)<tol)|(coord(node,1)>len-tol))& ...
202 (coord(node,2)>tol)&(coord(node,2)<len-tol) ...
203 &(ismember(coord(node,2),yspacingcols)==1))
204 etopolCols=[etopolCols; [node node+nodes 2]];
205 if (coord(node,1)>-tol)&(coord(node,1)<(sw-tol))& ...
206 (coord(node,2)>tol)&(coord(node,2)<(len-tol))&(coord(node,3)<tol)
207 nodenotneeded=[nodenotneeded; node]; % ignore west corridor nodes
208 elseif (coord(node,1)>(len-sw+tol))&(coord(node,1)<(len+tol))& ...
209 (coord(node,2)>tol)&(coord(node,2)<(len+tol))&(coord(node,3)<tol)
210 nodenotneeded=[nodenotneeded; node]; % ignore east corridor nodes
211 elseif (coord(node,1)>(sw-tol))&(coord(node,1)<(len-sw+tol))& ...
212 (coord(node,2)>-tol)&(coord(node,2)<(ws-tol))&(coord(node,3)<tol)
213 nodenotneeded=[nodenotneeded; node]; % ignore south corridor nodes
214 elseif (coord(node,1)>(sw-tol))&(coord(node,1)<(len-sw+tol))& ...
215 (coord(node,2)>(len-ws+tol))&(coord(node,2)<(len+tol))&(coord(node,3)<tol)
216 nodenotneeded=[nodenotneeded; node]; % ignore north corridor nodes
217 elseif (coord(node,1)>(sw-tol))&&(coord(node,1)<(len-sw+tol))& ...
218 (coord(node,2)>(((len-wc)/2)+tol))&(coord(node,2)<(((len+wc)/2)-tol))& ...
219 (coord(node,3)<tol)
220 nodenotneeded=[nodenotneeded; node]; % ignore elevator corridor nodes
221 elseif (coord(node,1)>((len/2)-tol))&(coord(node,1)<((len/2)+tol))& ...
222 (coord(node,2)>(((len+wc)/2)-tol))&(coord(node,2)<(((len+wc)/2)+tol))& ...
223 (coord(node,3)<tol)
224 nodenotneeded=[nodenotneeded; node];
225 else
226 % plot3(coord(node,1),coord(node,2),coord(node,3),'b.');

133

227 end
228 % plot3(coord(node+nodes,1),coord(node+nodes,2),coord(node+nodes,3),'b.'); hold on;
229 end
230 end
231

232 if flaws>1
233 for flaw=2:flaws
234 for node=((flaw-1)*nodes)+1:flaw*nodes
235 coord=[coord; [coord(node,1) coord(node,2) coord(node,3)+height]];
236 end
237 end
238 end
239 oldnewnodes=[[1:(flaws+1)*nodes]' zeros((flaws+1)*nodes,1)]; k=1;
240 for n=1:(flaws+1)*nodes
241 if ismember(n,nodenotneeded)<1 % this node is needed
242 oldnewnodes(n,2)=k;
243 ncoord(k,:)=coord(n,:); k=k+1;
244 end
245 end
246 time1=toc;
247 fprintf('nodal coordinates created %9.3f\n',time1);
248 etopolPerimBeamsW=[[firstnodesx(1:size(firstnodesx,1)-1)] ...
249 [firstnodesx(2:size(firstnodesx,1))]];
250 etopolPerimBeamsN=[[lastnodeG-nodesxG+1:lastnodeG-1]' ...
251 [lastnodeG-nodesxG+2:lastnodeG]'];
252 lastnodesxDescend=sort(lastnodesx,'descend');
253 etopolPerimBeamsE=[lastnodesxDescend(1:size(lastnodesxDescend)-1,1) ...
254 lastnodesxDescend(2:size(lastnodesxDescend),1)];
255 etopolPerimBeamsS=[[nodesxA:-1:2]' [nodesxA-1:-1:1]'];
256 % following statement gives element typologies for perimeter beams on level 1 (not ground)
257 etopolPerimBeams=[etopolPerimBeamsW+nodes; etopolPerimBeamsN+nodes; ...
258 etopolPerimBeamsE+nodes; etopolPerimBeamsS+nodes];
259

260 nodesIntBeamsWA=[lastnodeA-nodesxA+1:lastnodeA-nodesxA+ ...
261 (floor((sw-tol)/(len/(ncols+1))))+2];
262 nodesIntBeamsWC=[firstnodeC:firstnodeC+(floor((sw-tol)/(len/(ncols+1))))+1];
263 nodesIntBeamsWE=[firstnodeE:firstnodeE+(floor((sw-tol)/(len/(ncols+1))))+1];
264 nodesIntBeamsWG=[firstnodeG:firstnodeG+(floor((sw-tol)/(len/(ncols+1))))+1];
265 nodesIntBeamsN1=[firstnodeG+(floor(sw/((len-tol)/(ncols+1))))+ ...
266 1:nodesxG:lastnodeG-4-floor((len-sw-tol)/(len/(ncols+1)))];
267 nodesIntBeamsN2=[firstnodeG+(floor((sw+lne-tol)/(len/(ncols+1))))+ ...
268 2:nodesxG:lastnodeG-3-floor((len-sw-lne-tol)/(len/(ncols+1)))];
269 nodesIntBeamsN3=[firstnodeG+(floor(((len-tol)/2)/(len/(ncols+1))))+ ...
270 3:nodesxG:lastnodeG-3-floor(((len-tol)/2)/(len/(ncols+1)))];
271 nodesIntBeamsN4=[firstnodeG+nodesxG-3-floor((sw+lne-tol)/(len/(ncols+1))):nodesxG: ...
272 lastnodeG-2-floor((sw+lne-tol)/(len/(ncols+1)))];
273 nodesIntBeamsN5=[firstnodeG+nodesxG-2-floor((sw-tol)/(len/(ncols+1))):nodesxG: ...
274 lastnodeG-1-floor((sw-tol)/(len/(ncols+1)))];

134

275 nodesIntBeamsEG=[firstnodeG+nodesxG-2-floor((sw-tol)/(len/(ncols+1))): ...
276 firstnodeG+nodesxG-1];
277 nodesIntBeamsEE=[firstnodeE+nodesxE-2-floor((sw-tol)/(len/(ncols+1))): ...
278 firstnodeE+nodesxE-1];
279 nodesIntBeamsEC=[firstnodeC+nodesxC-2-floor((sw-tol)/(len/(ncols+1))): ...
280 firstnodeC+nodesxC-1];
281 nodesIntBeamsEA=[lastnodeA-1-floor((sw-tol)/(len/(ncols+1))):lastnodeA];
282 nodesIntBeamsS5=[1+nodesxA-2-floor((sw-tol)/(len/(ncols+1))):nodesxA: ...
283 lastnodeA-1-floor((sw-tol)/(len/(ncols+1)))];
284 nodesIntBeamsS4=[1+nodesxA-3-floor((sw+lse-tol)/(len/(ncols+1))):nodesxA: ...
285 lastnodeA-2-floor((sw+lse-tol)/(len/(ncols+1)))];
286 nodesIntBeamsS3=[1+(floor(((len-tol)/2)/(len/(ncols+1))))+3:nodesxA: ...
287 lastnodeA-2-floor(((len-tol)/2)/(len/(ncols+1)))];
288 nodesIntBeamsS2=[1+(floor((sw+lse-tol)/(len/(ncols+1))))+2:nodesxA: ...
289 lastnodeA-3-floor((sw+(3*lse)-tol)/(len/(ncols+1)))];
290 nodesIntBeamsS1=[1+(floor(sw/((len-tol)/(ncols+1))))+1:nodesxA: ...
291 lastnodeA-4-floor((len-sw-tol)/(len/(ncols+1)))];
292

293 etopolIntBeamsWA=[[nodesIntBeamsWA(1:size(nodesIntBeamsWA,2)-1)]' ...
294 [nodesIntBeamsWA(2:size(nodesIntBeamsWA,2))]'];
295 etopolIntBeamsWC=[[nodesIntBeamsWC(1:size(nodesIntBeamsWC,2)-1)]' ...
296 [nodesIntBeamsWC(2:size(nodesIntBeamsWC,2))]'];
297 etopolIntBeamsWE=[[nodesIntBeamsWE(1:size(nodesIntBeamsWE,2)-1)]' ...
298 [nodesIntBeamsWE(2:size(nodesIntBeamsWE,2))]'];
299 etopolIntBeamsWG=[[nodesIntBeamsWG(1:size(nodesIntBeamsWG,2)-1)]' ...
300 [nodesIntBeamsWG(2:size(nodesIntBeamsWG,2))]'];
301 etopolIntBeamsN1=[[nodesIntBeamsN1(1:size(nodesIntBeamsN1,2)-1)]' ...
302 [nodesIntBeamsN1(2:size(nodesIntBeamsN1,2))]'];
303 etopolIntBeamsN2=[[nodesIntBeamsN2(1:size(nodesIntBeamsN2,2)-1)]' ...
304 [nodesIntBeamsN2(2:size(nodesIntBeamsN2,2))]'];
305 etopolIntBeamsN3=[[nodesIntBeamsN3(1:size(nodesIntBeamsN3,2)-1)]' ...
306 [nodesIntBeamsN3(2:size(nodesIntBeamsN3,2))]'];
307 etopolIntBeamsN4=[[nodesIntBeamsN4(1:size(nodesIntBeamsN4,2)-1)]' ...
308 [nodesIntBeamsN4(2:size(nodesIntBeamsN4,2))]'];
309 etopolIntBeamsN5=[[nodesIntBeamsN5(1:size(nodesIntBeamsN5,2)-1)]' ...
310 [nodesIntBeamsN5(2:size(nodesIntBeamsN5,2))]'];
311 etopolIntBeamsEG=[[nodesIntBeamsEG(1:size(nodesIntBeamsEG,2)-1)]' ...
312 [nodesIntBeamsEG(2:size(nodesIntBeamsEG,2))]'];
313 etopolIntBeamsEE=[[nodesIntBeamsEE(1:size(nodesIntBeamsEE,2)-1)]' ...
314 [nodesIntBeamsEE(2:size(nodesIntBeamsEE,2))]'];
315 etopolIntBeamsEC=[[nodesIntBeamsEC(1:size(nodesIntBeamsEC,2)-1)]' ...
316 [nodesIntBeamsEC(2:size(nodesIntBeamsEC,2))]'];
317 etopolIntBeamsEA=[[nodesIntBeamsEA(1:size(nodesIntBeamsEA,2)-1)]' ...
318 [nodesIntBeamsEA(2:size(nodesIntBeamsEA,2))]'];
319 etopolIntBeamsS5=[[nodesIntBeamsS5(1:size(nodesIntBeamsS5,2)-1)]' ...
320 [nodesIntBeamsS5(2:size(nodesIntBeamsS5,2))]'];
321 etopolIntBeamsS4=[[nodesIntBeamsS4(1:size(nodesIntBeamsS4,2)-1)]' ...
322 [nodesIntBeamsS4(2:size(nodesIntBeamsS4,2))]'];

135

323 etopolIntBeamsS3=[[nodesIntBeamsS3(1:size(nodesIntBeamsS3,2)-1)]' ...
324 [nodesIntBeamsS3(2:size(nodesIntBeamsS3,2))]'];
325 etopolIntBeamsS2=[[nodesIntBeamsS2(1:size(nodesIntBeamsS2,2)-1)]' ...
326 [nodesIntBeamsS2(2:size(nodesIntBeamsS2,2))]'];
327 etopolIntBeamsS1=[[nodesIntBeamsS1(1:size(nodesIntBeamsS1,2)-1)]' ...
328 [nodesIntBeamsS1(2:size(nodesIntBeamsS1,2))]'];
329

330 node1A=etopolIntBeamsS1(size(etopolIntBeamsS1,1),2); % core wall nodes
331 node1C=etopolIntBeamsWC(size(etopolIntBeamsWC,1),2); ...
332 node16C=node1C+1; node15C=node16C+1; node14C=node15C+1;
333 node2E=etopolIntBeamsWE(size(etopolIntBeamsWE,1),2);
334 node12E=node2E+1; node13E=node12E+2;
335 node2G=etopolIntBeamsWG(size(etopolIntBeamsWG,1),2);
336 node32=etopolIntBeamsN2(1,1);
337 node43=etopolIntBeamsN3(1,1);
338 node44=etopolIntBeamsN4(1,1);
339 node55=etopolIntBeamsN5(1,1);
340 node6E=etopolIntBeamsEE(1,1);
341 node7C=etopolIntBeamsEC(1,1);
342 node7A=etopolIntBeamsEA(1,1);
343 node84=etopolIntBeamsS4(size(etopolIntBeamsS4,1),2);
344 node93=etopolIntBeamsS3(size(etopolIntBeamsS3,1),2);
345 node102=etopolIntBeamsS2(size(etopolIntBeamsS2,1),2);
346

347 etopolIntBeams=[etopolIntBeamsWA; etopolIntBeamsWC; etopolIntBeamsWE; etopolIntBeamsWG;
348 etopolIntBeamsN1; etopolIntBeamsN2; etopolIntBeamsN3; etopolIntBeamsN4; ...
349 etopolIntBeamsN5;
350 etopolIntBeamsEG; etopolIntBeamsEE; etopolIntBeamsEC; etopolIntBeamsEA;
351 etopolIntBeamsS5; etopolIntBeamsS4; etopolIntBeamsS3; etopolIntBeamsS2; ...
352 etopolIntBeamsS1];
353

354 for IntBeam=1:size(etopolIntBeams,1)
355 etopolIntBeams(IntBeam,1:3)=[etopolIntBeams(IntBeam,1:2) 8];
356 end
357

358 topolFloorA=[];
359 for FloorElem=1:(lastnodeA/nodesxA)-1
360 topolFloorA=[topolFloorA; ...
361 [((FloorElem-1)*nodesxA)+1+nodes:((FloorElem-1)*nodesxA)+nodesxA-1+ ...
362 nodes]' ...
363 [((FloorElem-1)*nodesxA)+nodesxA+1+nodes:((FloorElem-1)*nodesxA)+ ...
364 (2*nodesxA)-1+nodes]' ...
365 [((FloorElem-1)*nodesxA)+nodesxA+2+nodes:((FloorElem-1)*nodesxA)+ ...
366 (2*nodesxA)+nodes]' ...
367 [((FloorElem-1)*nodesxA)+2+nodes:((FloorElem-1)*nodesxA)+nodesxA+nodes]'];
368 end
369 topolFloorG=[];
370 for FloorElem=1:((lastnodeG-firstnodeG+1)/nodesxG)-1

136

371 topolFloorG=[topolFloorG; ...
372 [((FloorElem-1)*nodesxG)+firstnodeG+nodes:((FloorElem-1)*nodesxG)+ ...
373 firstnodeG+nodesxG-2+nodes]' ...
374 [((FloorElem-1)*nodesxG)+firstnodeG+nodesxG+nodes:((FloorElem-1)*nodesxG)+ ...
375 firstnodeG+(2*nodesxG)-2+nodes]' ...
376 [((FloorElem-1)*nodesxG)+firstnodeG+nodesxG+1+nodes:((FloorElem-1)*nodesxG)+ ...
377 firstnodeG+(2*nodesxG)-1+nodes]' ...
378 [((FloorElem-1)*nodesxG)+firstnodeG+1+nodes:((FloorElem-1)*nodesxG)+ ...
379 firstnodeG+nodesxG-1+nodes]'];
380 end
381 topolFloorD=[];
382 for FloorElem=1:((lastnodeE-firstnodeC+1)/nodesxC)-1
383 topolFloorD=[topolFloorD; ...
384 [((FloorElem-1)*nodesxC)+firstnodeC+nodes:((FloorElem-1)*nodesxC)+ ...
385 firstnodeC+nodesxC-2+nodes]' ...
386 [((FloorElem-1)*nodesxC)+firstnodeC+nodesxC+nodes:((FloorElem-1)*nodesxC)+ ...
387 firstnodeC+(2*nodesxC)-2+nodes]' ...
388 [((FloorElem-1)*nodesxC)+firstnodeC+nodesxC+1+nodes:((FloorElem-1)*nodesxC)+ ...
389 firstnodeC+(2*nodesxC)-1+nodes]' ...
390 [((FloorElem-1)*nodesxC)+firstnodeC+1+nodes:((FloorElem-1)*nodesxC)+ ...
391 firstnodeC+nodesxC-1+nodes]'];
392 end
393 topolFloorBW=[];
394 if nodesxB>0
395 topolFloorBW=[topolFloorBW; ...
396 [lastnodeA-nodesxA+1+nodes:node1A-1+nodes]' ...
397 [firstnodeB+nodes:firstnodeB+(nodesxB/2)-2+nodes]' ...
398 [firstnodeB+nodes+1:firstnodeB+(nodesxB/2)-1+nodes]' ...
399 [lastnodeA-nodesxA+2+nodes:node1A+nodes]'];
400 for FloorElem=1:((node1C-(node1A+nodesxA))/nodesxB)
401 topolFloorBW=[topolFloorBW; ...
402 [((FloorElem-1)*nodesxB)+firstnodeB+nodes:((FloorElem-1)*nodesxB)+ ...
403 firstnodeB+(nodesxB/2)-2+nodes]' ...
404 [((FloorElem-1)*nodesxB)+firstnodeB+nodesxB+nodes:((FloorElem-1)*nodesxB)+ ...
405 firstnodeB+(nodesxB/2)-2+nodesxB+nodes]' ...
406 [((FloorElem-1)*nodesxB)+firstnodeB+nodesxB+nodes+1:((FloorElem-1)*nodesxB)+ ...
407 firstnodeB+(nodesxB/2)-1+nodesxB+nodes]' ...
408 [((FloorElem-1)*nodesxB)+firstnodeB+nodes+1:((FloorElem-1)*nodesxB)+ ...
409 firstnodeB+(nodesxB/2)-1+nodes]'];
410 end
411 else
412 topolFloorBW=[[lastnodeA-nodesxA+1+nodes:node1A-1+nodes]' ...
413 [lastnodeA+1+nodes:node1A+nodesxA-1+nodes]' ...
414 [lastnodeA+2+nodes:node1A+nodesxA+nodes]' ...
415 [lastnodeA-nodesxA+2+nodes:node1A+nodes]'];
416 end
417 topolFloorFW=[];
418 if nodesxF>0

137

419 topolFloorFW=[topolFloorFW; ...
420 [firstnodeE+nodes:firstnodeE+(node2E-firstnodeE)-1+nodes]' ...
421 [firstnodeE+nodesxE+nodes:firstnodeE+(node2E-firstnodeE)-1+nodesxE+nodes]' ...
422 [firstnodeE+nodesxE+nodes+1:firstnodeE+(node2E-firstnodeE)-1+nodesxE+nodes+1]' ...
423 [firstnodeE+nodes+1:firstnodeE+(node2E-firstnodeE)-1+nodes+1]'];
424 for FloorElem=1:((node2G-(node2E+nodesxE))/nodesxF)
425 topolFloorFW=[topolFloorFW; ...
426 [((FloorElem-1)*nodesxF)+firstnodeF+nodes:((FloorElem-1)*nodesxF)+ ...
427 firstnodeF+(nodesxF/2)-2+nodes]' ...
428 [((FloorElem-1)*nodesxF)+firstnodeF+nodesxF+nodes:((FloorElem-1)*nodesxF)+ ...
429 firstnodeF+(nodesxF/2)-2+nodesxF+nodes]' ...
430 [((FloorElem-1)*nodesxF)+firstnodeF+nodesxF+nodes+1:((FloorElem-1)*nodesxF)+ ...
431 firstnodeF+(nodesxF/2)-1+nodesxF+nodes]' ...
432 [((FloorElem-1)*nodesxF)+firstnodeF+nodes+1:((FloorElem-1)*nodesxF)+ ...
433 firstnodeF+(nodesxF/2)-1+nodes]'];
434 end
435 else
436 topolFloorFW=[[firstnodeE+nodes:firstnodeE+(node2E-firstnodeE)-1+nodes]' ...
437 [firstnodeE+nodesxE+nodes:firstnodeE+(node2E-firstnodeE)-1+nodesxE+nodes]' ...
438 [firstnodeE+nodesxE+nodes+1:firstnodeE+(node2E-firstnodeE)-1+nodesxE+nodes+1]' ...
439 [firstnodeE+nodes+1:firstnodeE+(node2E-firstnodeE)-1+nodes+1]'];
440 end
441 topolFloorFE=[];
442 if nodesxF>0
443 topolFloorFE=[topolFloorFE; ...
444 [lastnodeF-(nodesxF/2)+1+nodes:lastnodeF+nodes-1]' ...
445 [node55+nodes:node55+nodes+(nodesxF/2)-2]' ...
446 [node55+nodes+1:node55+nodes+(nodesxF/2)-1]' ...
447 [lastnodeF-(nodesxF/2)+1+nodes+1:lastnodeF+nodes]'];
448 for FloorElem=1:((node2G-(node2E+nodesxE))/nodesxF)
449 topolFloorFE=[topolFloorFE; ...
450 [((FloorElem-1)*nodesxF)+node6E+nodes:((FloorElem-1)*nodesxF)+lastnodeE-1+nodes]' ...
451 [((FloorElem-1)*nodesxF)+node6E+nodes+nodesxF:((FloorElem-1)*nodesxF)+ ...
452 lastnodeE-1+nodes+nodesxF]' ...
453 [((FloorElem-1)*nodesxF)+node6E+nodes+nodesxF+1:((FloorElem-1)*nodesxF)+ ...
454 lastnodeE-1+nodes+nodesxF+1]' ...
455 [((FloorElem-1)*nodesxF)+node6E+nodes+1:((FloorElem-1)*nodesxF)+ ...
456 lastnodeE-1+nodes+1]'];
457 end
458 else
459 topolFloorFE=[[node6E+nodes:lastnodeE-1+nodes]' ...
460 [node55+nodes:firstnodeG+nodesxG+nodes-2]' ...
461 [node55+nodes+1:firstnodeG+nodesxG+nodes-1]' ...
462 [node6E+nodes+1:lastnodeE-1+nodes+1]'];
463 end
464 topolFloorBE=[];
465 if nodesxB>0
466 topolFloorBE=[topolFloorBE; ...

138

467 [lastnodeB-(nodesxB/2)+1+nodes:lastnodeB+nodes-1]' ...
468 [node7C+nodes:lastnodeC+nodes-1]' ...
469 [node7C+nodes+1:lastnodeC+nodes]' ...
470 [lastnodeB-(nodesxB/2)+1+nodes+1:lastnodeB+nodes]'];
471 for FloorElem=1:((lastnodeB-lastnodeA)/nodesxB)
472 topolFloorBE=[topolFloorBE; ...
473 [((FloorElem-1)*nodesxB)+node7A+nodes:((FloorElem-1)*nodesxB)+ ...
474 lastnodeA-1+nodes]' ...
475 [((FloorElem-1)*nodesxB)+node7A+nodes+nodesxB: ...
476 ((FloorElem-1)*nodesxB)+lastnodeA-1+nodes+nodesxB]' ...
477 [((FloorElem-1)*nodesxB)+node7A+nodes+nodesxB+ ...
478 1:((FloorElem-1)*nodesxB)+lastnodeA-1+nodes+nodesxB+1]' ...
479 [((FloorElem-1)*nodesxB)+node7A+nodes+ ...
480 1:((FloorElem-1)*nodesxB)+lastnodeA-1+nodes+1]'];
481 end
482 else
483 topolFloorBE=[[node7A+nodes:lastnodeA-1+nodes]' ...
484 [node7C+nodes:lastnodeC-1+nodes]' ...
485 [node7C+nodes+1:lastnodeC+nodes]' ...
486 [node7A+nodes+1:lastnodeA+nodes]'];
487 end
488

489 if nodesxB>0
490 nodesP1=[node1A node1A+nodesxA:nodesxB:node1C];
491 nodesP2=[node2E node2E+nodesxE:nodesxF:node2G];
492 nodesP6=[node55 node55-nodesxG:-nodesxF:node6E+nodesxF node6E];
493 nodesP7=[node7C node7C-nodesxC:-nodesxB:node7A];
494 else
495 nodesP1=[node1A node1C];
496 nodesP2=[node2E node2G];
497 nodesP6=[node55 node6E];
498 nodesP7=[node7C node7A];
499 end
500

501 topolP1=[]; topolP2=[]; topolP3=[]; topolP4A=[]; topolP4B=[]; topolP5=[];
502 topolP6=[]; topolP7=[]; topolP8=[]; topolP9=[]; topolP10=[]; topolP11=[];
503

504 for P1panel=1:(size(nodesP1,2))-1
505 abcd=[nodesP1(1,P1panel) nodesP1(1,P1panel)+nodes ...
506 nodesP1(1,P1panel+1)+nodes nodesP1(1,P1panel+1)];
507 topolP1=[topolP1; abcd];
508 end
509 for P2panel=1:(size(nodesP2,2))-1
510 abcd=[nodesP2(1,P2panel) nodesP2(1,P2panel)+nodes ...
511 nodesP2(1,P2panel+1)+nodes nodesP2(1,P2panel+1)];
512 topolP2=[topolP2; abcd];
513 end
514 for P3panel=1:(node32-node2G)

139

515 topolP3=[topolP3; [node2G+P3panel-1 node2G+P3panel-1+nodes ...
516 node2G+P3panel+nodes node2G+P3panel]];
517 end
518 for P4Apanel=1:(node43-node32)
519 topolP4A=[topolP4A; [node32+P4Apanel-1 node32+P4Apanel-1+nodes ...
520 node32+P4Apanel+nodes node32+P4Apanel]];
521 end
522 for P4Bpanel=1:(node44-node43)
523 topolP4B=[topolP4B; [node43+P4Bpanel-1 node43+P4Bpanel-1+nodes ...
524 node43+P4Bpanel+nodes node43+P4Bpanel]];
525 end
526 for P5panel=1:(node55-node44)
527 topolP5=[topolP5; [node44+P5panel-1 node44+P5panel-1+nodes ...
528 node44+P5panel+nodes node44+P5panel]];
529 end
530 for P6panel=1:(size(nodesP6,2))-1
531 dcba=[nodesP6(1,P6panel+1) nodesP6(1,P6panel+1)+nodes ...
532 nodesP6(1,P6panel)+nodes nodesP6(1,P6panel)];
533 topolP6=[topolP6; dcba];
534 end
535 for P7panel=1:(size(nodesP7,2))-1
536 dcba=[nodesP7(1,P7panel+1) nodesP7(1,P7panel+1)+nodes ...
537 nodesP7(1,P7panel)+nodes nodesP7(1,P7panel)];
538 topolP7=[topolP7; dcba];
539 end
540 for P8panel=1:(node7A-node84)
541 topolP8=[topolP8; [node7A-P8panel node7A-P8panel+nodes ...
542 node7A-P8panel+1+nodes node7A-P8panel+1]];
543 end
544 for P9panel=1:(node84-node93)
545 topolP9=[topolP9; [node84-P9panel node84-P9panel+nodes ...
546 node84-P9panel+1+nodes node84-P9panel+1]];
547 end
548 for P10panel=1:(node93-node102)
549 topolP10=[topolP10; [node93-P10panel node93-P10panel+nodes ...
550 node93-P10panel+1+nodes node93-P10panel+1]];
551 end
552 for P11panel=1:(node102-node1A)
553 topolP11=[topolP11; [node102-P11panel node102-P11panel+nodes ...
554 node102-P11panel+1+nodes node102-P11panel+1]];
555 end
556 topolP12=[node12E node12E+nodes node32+nodes node32];
557 topolP13=[node13E node13E+nodes node44+nodes node44];
558 topolP14=[node84 node84+nodes node14C+nodes node14C];
559 topolP15=[node93 node93+nodes node15C+nodes node15C];
560 topolP16=[node102 node102+nodes node16C+nodes node16C];
561

562 etopolCoreWallsExtXZ=[topolP3; topolP4A; topolP4B; topolP5; ...

140

563 topolP8; topolP9; topolP10; topolP11];
564 etopolCoreWallsExtYZ=[topolP1; topolP2; topolP6; topolP7];
565 etopolCoreWallsIntYZ=[topolP12; topolP13; topolP14; topolP15; topolP16];
566 for CoreWall=1:size(etopolCoreWallsExtXZ,1)
567 etopolCoreWallsExtXZ(CoreWall,1:5)=[etopolCoreWallsExtXZ(CoreWall,1:4) 2];
568 end
569 for CoreWall=1:size(etopolCoreWallsExtYZ,1)
570 etopolCoreWallsExtYZ(CoreWall,1:5)=[etopolCoreWallsExtYZ(CoreWall,1:4) 3];
571 end
572 for CoreWall=1:size(etopolCoreWallsIntYZ,1)
573 etopolCoreWallsIntYZ(CoreWall,1:5)=[etopolCoreWallsIntYZ(CoreWall,1:4) 4];
574 end
575 etopolCoreWalls=[etopolCoreWallsExtXZ; etopolCoreWallsExtYZ; etopolCoreWallsIntYZ];
576

577 etopolFloorSlabs=[topolFloorA; topolFloorG; topolFloorD;
578 topolFloorBW; topolFloorFW; topolFloorFE; topolFloorBE];
579 for FloorSlab=1:size(etopolFloorSlabs,1)
580 etopolFloorSlabs(FloorSlab,1:5)=[etopolFloorSlabs(FloorSlab,1:4) 1];
581 end
582 etopolShells=[etopolFloorSlabs; etopolCoreWalls];
583

584 nFloorSlabs=size(etopolFloorSlabs,1);
585 walls=size(etopolCoreWalls,1);
586 PerimBeams=size(etopolPerimBeams,1);
587 IntBeams=size(etopolIntBeams,1);
588 cols=size(etopolCols,1);
589 for flaw=1:flaws
590 Colstage =(2*ceil(flaw/(flaws/stages)))-2;
591 Wallstage=(3*ceil(flaw/(flaws/stages)))-3;
592 for beam=1:PerimBeams
593 etopolPerimBeams(beam,1:3)=[etopolPerimBeams(beam,1:2) 7];
594 etopolPerimBeams(((flaw-1)*PerimBeams)+beam,:)= ...
595 [etopolPerimBeams(beam,1)+((flaw-1)*nodes) ...
596 etopolPerimBeams(beam,2)+((flaw-1)*nodes) 7];
597 end
598 for IntBeam=1:IntBeams
599 if (flaw==flaws)|(rem(flaw,flawsInSS)<(1e-3)) ...
600 % at top level of sub-structure stiffen internal beams
601 etopolIntBeams=[etopolIntBeams; [etopolIntBeams(IntBeam,1)+(flaw*nodes) ...
602 etopolIntBeams(IntBeam,2)+(flaw*nodes) 9]];
603 else
604 etopolIntBeams=[etopolIntBeams; [etopolIntBeams(IntBeam,1)+(flaw*nodes) ...
605 etopolIntBeams(IntBeam,2)+(flaw*nodes) 8]];
606 end
607 end
608 if flaw>1
609 for FloorSlab=1:nFloorSlabs
610 etopolFloorSlabs=[etopolFloorSlabs;

141

611 [etopolFloorSlabs(FloorSlab,1:4)+(ones(1,4)*(flaw-1)*nodes) ...
612 etopolFloorSlabs(FloorSlab,5)]];
613 etopolShells=[etopolShells; [etopolFloorSlabs(FloorSlab,1:4)+ ...
614 (ones(1,4)*(flaw-1)*nodes) etopolFloorSlabs(FloorSlab,5)]];
615 end
616 for wall=1:walls
617 etopolCoreWalls=[etopolCoreWalls; [etopolCoreWalls(wall,1:4)+ ...
618 (ones(1,4)*(flaw-1)*nodes) etopolCoreWalls(wall,5)+Wallstage]];
619 etopolShells=[etopolShells; [etopolCoreWalls(wall,1:4)+ ...
620 (ones(1,4)*(flaw-1)*nodes) etopolCoreWalls(wall,5)+Wallstage]];
621 end
622 end
623 if flaw>1
624 for col=1:cols
625 etopolCols(((flaw-1)*cols)+col,:)=[etopolCols(((flaw-2)*cols)+col,1)+nodes ...
626 etopolCols(((flaw-2)*cols)+col,2)+nodes etopolCols(col,3)+Colstage];
627 end
628 end
629 end
630 etopolIntBeams(1:IntBeams,:)=[]; % remove IntBeams at ground level
631

632 % new etopols created below (having removed ground floor beam elements and nodes)
633 etopolFloorSlabsn=[];
634 for FloorSlab=1:size(etopolFloorSlabs,1)
635 etopolFloorSlabsn=[etopolFloorSlabsn; [oldnewnodes(etopolFloorSlabs(FloorSlab,1),2) ...
636 oldnewnodes(etopolFloorSlabs(FloorSlab,2),2) ...
637 oldnewnodes(etopolFloorSlabs(FloorSlab,3),2) ...
638 oldnewnodes(etopolFloorSlabs(FloorSlab,4),2) ...
639 etopolFloorSlabs(FloorSlab,5)]];
640 end
641 etopolCoreWallsn=[];
642 for CoreWall=1:size(etopolCoreWalls,1)
643 etopolCoreWallsn=[etopolCoreWallsn; [oldnewnodes(etopolCoreWalls(CoreWall,1),2) ...
644 oldnewnodes(etopolCoreWalls(CoreWall,2),2) ...
645 oldnewnodes(etopolCoreWalls(CoreWall,3),2) ...
646 oldnewnodes(etopolCoreWalls(CoreWall,4),2) ...
647 etopolCoreWalls(CoreWall,5)]];
648 end
649 etopolShellsn=[];
650 for Shell=1:size(etopolShells,1)
651 etopolShellsn=[etopolShellsn; [oldnewnodes(etopolShells(Shell,1),2) ...
652 oldnewnodes(etopolShells(Shell,2),2) ...
653 oldnewnodes(etopolShells(Shell,3),2) ...
654 oldnewnodes(etopolShells(Shell,4),2) ...
655 etopolShells(Shell,5)]];
656 end
657

658 etopolColsn=[];

142

659 for Col=1:size(etopolCols,1)
660 etopolColsn=[etopolColsn; [oldnewnodes(etopolCols(Col,1),2) ...
661 oldnewnodes(etopolCols(Col,2),2) etopolCols(Col,3)]];
662 end
663 etopolPerimBeamsn=[];
664 for PerimBeam=1:size(etopolPerimBeams,1)
665 etopolPerimBeamsn=[etopolPerimBeamsn; [oldnewnodes(etopolPerimBeams(PerimBeam,1),2) ...
666 oldnewnodes(etopolPerimBeams(PerimBeam,2),2) ...
667 etopolPerimBeams(PerimBeam,3)]];
668 end
669 etopolIntBeamsn=[];
670 for IntBeam=1:size(etopolIntBeams,1)
671 etopolIntBeamsn=[etopolIntBeamsn; [oldnewnodes(etopolIntBeams(IntBeam,1),2) ...
672 oldnewnodes(etopolIntBeams(IntBeam,2),2) ...
673 etopolIntBeams(IntBeam,3)]];
674 end
675 time2=toc;
676 fprintf('element topology created %9.3f\n',time2);
677

678 fext=zeros(6*size(ncoord,1),1); fextWLs=fext; ...
679 fextWLe=fext; fextfactor=[]; k=0;
680 ColNodesE=unique([(etopolPerimBeamsE(:,1))' ...
681 (etopolPerimBeamsE(:,2))']); ColNodesEn=[];
682 ColNodesE=(nodes*ones(1,size(ColNodesE,2)))+ColNodesE;
683 for PnE=1:size(ColNodesE,2)
684 remyceil=abs(coord(ColNodesE(PnE),2)/(len/(ncols+1))- ...
685 ceil(coord(ColNodesE(PnE),2)/(len/(ncols+1))));
686 remyfloor=abs(coord(ColNodesE(PnE),2)/(len/(ncols+1))- ...
687 floor(coord(ColNodesE(PnE),2)/(len/(ncols+1))));
688 remycoord=1; if (abs(remyceil)<1e-6)|(abs(remyfloor)<1e-6); ...
689 remycoord=0; end;
690 if (oldnewnodes(ColNodesE(PnE),2)>0)&(remycoord<+1e-6)
691 k=k+1; ColNodesEn=[ColNodesEn oldnewnodes(ColNodesE(PnE),2)];
692 end
693 end
694 for flaw=1:flawsT
695 SS=ceil(flaw/flawsInSS); zed=((flawsInSS*height)*(SS-1))+(flawsInSS*height/2);
696 Vz=Vg*((zed/Zg)^(1/7)); pressure=0.61335*(Vz^2);
697 forceColnode=pressure*len*height/(ncols+1);
698 if (SS==1); forceColnode0=forceColnode; fextfactor(1)=forceColnode; else;
699 fextfactor(SS)=forceColnode/forceColnode0; end;
700 if (flaw<=flawsInSS)|(analysis==1);
701 startCol=((flaw-1)*((4*ncols)+4))+1; endCol=startCol+ncols+1; ...
702 southCols=startCol:endCol;
703 for col=1:ncols+2
704 nodeCol_S=etopolColsn(southCols(col),2);
705 nodeCol_E=ColNodesEn(col)+((flaw-1)*nodes);
706 if (col==1)|(col==ncols+2)

143

707 fextWLs((6*(nodeCol_S-1))+2)=+forceColnode/2;
708 fextWLe((6*(nodeCol_E-1))+1)=-forceColnode/2;
709 else
710 fextWLs((6*(nodeCol_S-1))+2)=+forceColnode;
711 fextWLe((6*(nodeCol_E-1))+1)=-forceColnode;
712 end
713 if (MG==0)
714 plot3([ncoord(nodeCol_S,1)],[ncoord(nodeCol_S,2)], ...
715 [ncoord(nodeCol_S,3)],'b.'); hold on;
716 plot3([ncoord(nodeCol_S,1) ncoord(nodeCol_S,1)], ...
717 [ncoord(nodeCol_S,2) ncoord(nodeCol_S,2)- ...
718 (1.0e-3*fextWLs((6*(nodeCol_S-1))+2))], ...
719 [ncoord(nodeCol_S,3) ncoord(nodeCol_S,3)],'b-');
720 plot3([ncoord(nodeCol_E,1)],[ncoord(nodeCol_E,2)], ...
721 [ncoord(nodeCol_E,3)],'b.');
722 plot3([ncoord(nodeCol_E,1)
723 ncoord(nodeCol_E,1)-(1.0e-3*fextWLe((6*(nodeCol_E-1))+1))], ...
724 [ncoord(nodeCol_E,2) ncoord(nodeCol_E,2)], ...
725 [ncoord(nodeCol_E,3) ncoord(nodeCol_E,3)],'b-');
726 end
727 end
728 end
729 end
730 time3=toc;
731 fprintf('external forces created %9.3f\n',time3);
732

733 offsetx=0.0; offsety=0.0; offsetz=0.2;
734

735 % use: ncoord, etopolFloorSlabsn, etopolCoreWallsn, ...
736 % etopolColsn, etopolIntBeamsn, etopolPerimBeamsn
737

738 if (MG==0)&(plotmesh>0)
739 plotBeamsCrossSec(BeamElemProps,etopolColsn,ncoord);
740 plotBeamsCrossSec(BeamElemProps,etopolPerimBeamsn,ncoord);
741 % plotBeams(etopolPerimBeamsn,ncoord,'k-','b.');
742 plotBeams(etopolIntBeamsn, ncoord,'m-','b.');
743 plotShells(etopolCoreWallsn, ncoord,'y');
744 plotShells(etopolFloorSlabsn,ncoord,'g');
745 view(44,21);
746 axis equal; axis off;
747 end
748

749 etopolBeams=[etopolColsn; etopolPerimBeamsn; etopolIntBeamsn];
750 etopolShells=etopolShellsn;
751

752 nodesT=size(ncoord,1); bc=zeros(6*nodesT,2); k=0; groundn=[];
753 for node=1:nodesT
754 if abs(ncoord(node,3))<1e-9

144

755 bc((6*node)-5,:)=[(6*node)-5 0]; k=k+1;
756 bc((6*node)-4,:)=[(6*node)-4 0]; k=k+1;
757 bc((6*node)-3,:)=[(6*node)-3 0]; k=k+1;
758 bc((6*node)-2,:)=[(6*node)-2 0]; k=k+1;
759 bc((6*node)-1,:)=[(6*node)-1 0]; k=k+1;
760 bc((6*node) ,:)=[(6*node) 0]; k=k+1;
761 groundn=[groundn node];
762 end
763 end
764 bc=sortrows(bc,1);
765 bc(1:(6*nodesT)-k,:)=[];
766 time4=toc;
767 fprintf('bondary conditions created %9.3f\n',time4);
768

769 MSarray=[];
770 for flaw=1:flaws
771 for node=1:nodesT
772 if (abs(ncoord(node,3))>(height*flaw)*(1-(1e-6)))&(abs(ncoord(node,3))< ...
773 (height*flaw)*(1+(1e-6)))
774 MSarray=[MSarray; node];
775 end
776 end
777 end
778 MSnodes=size(MSarray,1)/flaw; MSarray=reshape(MSarray,MSnodes,flaw)';
779 connectn=[nodenotneeded+(((size(ncoord,1)-size(groundn,2))/flaws)*(flaws-1)+ ...
780 size(groundn,2))];
781 if (MS==0); MSarray=[]; end; % if MS=0 then Master-Slave approach is NOT used
782

783 if (plotmesh>0)
784 fextDL=zeros(6*size(ncoord,1),1); fextLL=fextDL;
785 Vslabs=0;
786 for elem=1:size(etopolFloorSlabsn,1)
787 Aslab=polyarea([ncoord(etopolFloorSlabsn(elem,1),1) ...
788 ncoord(etopolFloorSlabsn(elem,2),1) ncoord(etopolFloorSlabsn(elem,3),1) ...
789 ncoord(etopolFloorSlabsn(elem,4),1)], [ncoord(etopolFloorSlabsn(elem,1),2) ...
790 ncoord(etopolFloorSlabsn(elem,2),2) ncoord(etopolFloorSlabsn(elem,3),2) ...
791 ncoord(etopolFloorSlabsn(elem,4),2)]);
792 Vslab=ts*Aslab;
793 fextDL((6*(etopolFloorSlabsn(elem,1)-1))+3)= ...
794 fextDL((6*(etopolFloorSlabsn(elem,1)-1))+3)-Vslab*rhoc*9.81/4;
795 fextDL((6*(etopolFloorSlabsn(elem,2)-1))+3)= ...
796 fextDL((6*(etopolFloorSlabsn(elem,2)-1))+3)-Vslab*rhoc*9.81/4;
797 fextDL((6*(etopolFloorSlabsn(elem,3)-1))+3)= ...
798 fextDL((6*(etopolFloorSlabsn(elem,3)-1))+3)-Vslab*rhoc*9.81/4;
799 fextDL((6*(etopolFloorSlabsn(elem,4)-1))+3)= ...
800 fextDL((6*(etopolFloorSlabsn(elem,4)-1))+3)-Vslab*rhoc*9.81/4;
801 fextLL((6*(etopolFloorSlabsn(elem,1)-1))+3)= ...
802 fextLL((6*(etopolFloorSlabsn(elem,1)-1))+3)-Aslab*qLL/4;

145

803 fextLL((6*(etopolFloorSlabsn(elem,2)-1))+3)= ...
804 fextLL((6*(etopolFloorSlabsn(elem,2)-1))+3)-Aslab*qLL/4;
805 fextLL((6*(etopolFloorSlabsn(elem,3)-1))+3)= ...
806 fextLL((6*(etopolFloorSlabsn(elem,3)-1))+3)-Aslab*qLL/4;
807 fextLL((6*(etopolFloorSlabsn(elem,4)-1))+3)= ...
808 fextLL((6*(etopolFloorSlabsn(elem,4)-1))+3)-Aslab*qLL/4;
809 Vslabs=Vslabs+Vslab;
810 end
811 VcoresXZ=0; VcoresYZext=0; VcoresYZint=0;
812 for elem=1:size(etopolCoreWallsn,1)
813 if (etopolCoreWallsn(elem,5)==2) % XZ plane exterior, stage I
814 VcoreXZ=txXZ_I*polyarea([ncoord(etopolCoreWallsn(elem,1),1)
815 ncoord(etopolCoreWallsn(elem,2),1) ncoord(etopolCoreWallsn(elem,3),1)
816 ncoord(etopolCoreWallsn(elem,4),1)], ...
817 [ncoord(etopolCoreWallsn(elem,1),3) ...
818 ncoord(etopolCoreWallsn(elem,2),3) ...
819 ncoord(etopolCoreWallsn(elem,3),3) ...
820 ncoord(etopolCoreWallsn(elem,4),3)]);
821 fextDL((6*(etopolCoreWallsn(elem,1)-1))+3)= ...
822 fextDL((6*(etopolCoreWallsn(elem,1)-1))+3)-VcoreXZ*rhoc*9.81/4;
823 fextDL((6*(etopolCoreWallsn(elem,2)-1))+3)= ...
824 fextDL((6*(etopolCoreWallsn(elem,2)-1))+3)-VcoreXZ*rhoc*9.81/4;
825 fextDL((6*(etopolCoreWallsn(elem,3)-1))+3)= ...
826 fextDL((6*(etopolCoreWallsn(elem,3)-1))+3)-VcoreXZ*rhoc*9.81/4;
827 fextDL((6*(etopolCoreWallsn(elem,4)-1))+3)= ...
828 fextDL((6*(etopolCoreWallsn(elem,4)-1))+3)-VcoreXZ*rhoc*9.81/4;
829 VcoresXZ=VcoresXZ+VcoreXZ;
830 elseif (etopolCoreWallsn(elem,5)==3) % YZ plane exterior, stage I
831 VcoreYZext=txYZ_I*polyarea([ncoord(etopolCoreWallsn(elem,1),2)
832 ncoord(etopolCoreWallsn(elem,2),2) ncoord(etopolCoreWallsn(elem,3),2)
833 ncoord(etopolCoreWallsn(elem,4),2)], ...
834 [ncoord(etopolCoreWallsn(elem,1),3) ...
835 ncoord(etopolCoreWallsn(elem,2),3) ...
836 ncoord(etopolCoreWallsn(elem,3),3) ...
837 ncoord(etopolCoreWallsn(elem,4),3)]);
838 fextDL((6*(etopolCoreWallsn(elem,1)-1))+3)= ...
839 fextDL((6*(etopolCoreWallsn(elem,1)-1))+3)-VcoreYZext*rhoc*9.81/4;
840 fextDL((6*(etopolCoreWallsn(elem,2)-1))+3)= ...
841 fextDL((6*(etopolCoreWallsn(elem,2)-1))+3)-VcoreYZext*rhoc*9.81/4;
842 fextDL((6*(etopolCoreWallsn(elem,3)-1))+3)= ...
843 fextDL((6*(etopolCoreWallsn(elem,3)-1))+3)-VcoreYZext*rhoc*9.81/4;
844 fextDL((6*(etopolCoreWallsn(elem,4)-1))+3)= ...
845 fextDL((6*(etopolCoreWallsn(elem,4)-1))+3)-VcoreYZext*rhoc*9.81/4;
846 VcoresYZext=VcoresYZext+VcoreYZext;
847 elseif (etopolCoreWallsn(elem,5)==4) % YZ plane interior, stage I
848 VcoreYZint=tiYZ_I*polyarea([ncoord(etopolCoreWallsn(elem,1),2)
849 ncoord(etopolCoreWallsn(elem,2),2) ncoord(etopolCoreWallsn(elem,3),2)
850 ncoord(etopolCoreWallsn(elem,4),2)], ...

146

851 [ncoord(etopolCoreWallsn(elem,1),3) ...
852 ncoord(etopolCoreWallsn(elem,2),3) ...
853 ncoord(etopolCoreWallsn(elem,3),3) ...
854 ncoord(etopolCoreWallsn(elem,4),3)]);
855 fextDL((6*(etopolCoreWallsn(elem,1)-1))+3)= ...
856 fextDL((6*(etopolCoreWallsn(elem,1)-1))+3)-VcoreYZint*rhoc*9.81/4;
857 fextDL((6*(etopolCoreWallsn(elem,2)-1))+3)= ...
858 fextDL((6*(etopolCoreWallsn(elem,2)-1))+3)-VcoreYZint*rhoc*9.81/4;
859 fextDL((6*(etopolCoreWallsn(elem,3)-1))+3)= ...
860 fextDL((6*(etopolCoreWallsn(elem,3)-1))+3)-VcoreYZint*rhoc*9.81/4;
861 fextDL((6*(etopolCoreWallsn(elem,4)-1))+3)= ...
862 fextDL((6*(etopolCoreWallsn(elem,4)-1))+3)-VcoreYZint*rhoc*9.81/4;
863 VcoresYZint=VcoresYZint+VcoreYZint;
864 elseif (etopolCoreWallsn(elem,5)==5) % XZ plane exterior, stage II
865 VcoreXZ=txXZ_II*polyarea([ncoord(etopolCoreWallsn(elem,1),1)
866 ncoord(etopolCoreWallsn(elem,2),1) ncoord(etopolCoreWallsn(elem,3),1)
867 ncoord(etopolCoreWallsn(elem,4),1)], ...
868 [ncoord(etopolCoreWallsn(elem,1),3) ...
869 ncoord(etopolCoreWallsn(elem,2),3) ...
870 ncoord(etopolCoreWallsn(elem,3),3) ...
871 ncoord(etopolCoreWallsn(elem,4),3)]);
872 fextDL((6*(etopolCoreWallsn(elem,1)-1))+3)= ...
873 fextDL((6*(etopolCoreWallsn(elem,1)-1))+3)-VcoreXZ*rhoc*9.81/4;
874 fextDL((6*(etopolCoreWallsn(elem,2)-1))+3)= ...
875 fextDL((6*(etopolCoreWallsn(elem,2)-1))+3)-VcoreXZ*rhoc*9.81/4;
876 fextDL((6*(etopolCoreWallsn(elem,3)-1))+3)= ...
877 fextDL((6*(etopolCoreWallsn(elem,3)-1))+3)-VcoreXZ*rhoc*9.81/4;
878 fextDL((6*(etopolCoreWallsn(elem,4)-1))+3)= ...
879 fextDL((6*(etopolCoreWallsn(elem,4)-1))+3)-VcoreXZ*rhoc*9.81/4;
880 VcoresXZ=VcoresXZ+VcoreXZ;
881 elseif (etopolCoreWallsn(elem,5)==6) % YZ plane exterior, stage II
882 VcoreYZext=txYZ_II*polyarea([ncoord(etopolCoreWallsn(elem,1),2)
883 ncoord(etopolCoreWallsn(elem,2),2) ncoord(etopolCoreWallsn(elem,3),2)
884 ncoord(etopolCoreWallsn(elem,4),2)], ...
885 [ncoord(etopolCoreWallsn(elem,1),3) ...
886 ncoord(etopolCoreWallsn(elem,2),3) ...
887 ncoord(etopolCoreWallsn(elem,3),3) ...
888 ncoord(etopolCoreWallsn(elem,4),3)]);
889 fextDL((6*(etopolCoreWallsn(elem,1)-1))+3)= ...
890 fextDL((6*(etopolCoreWallsn(elem,1)-1))+3)-VcoreYZext*rhoc*9.81/4;
891 fextDL((6*(etopolCoreWallsn(elem,2)-1))+3)= ...
892 fextDL((6*(etopolCoreWallsn(elem,2)-1))+3)-VcoreYZext*rhoc*9.81/4;
893 fextDL((6*(etopolCoreWallsn(elem,3)-1))+3)= ...
894 fextDL((6*(etopolCoreWallsn(elem,3)-1))+3)-VcoreYZext*rhoc*9.81/4;
895 fextDL((6*(etopolCoreWallsn(elem,4)-1))+3)= ...
896 fextDL((6*(etopolCoreWallsn(elem,4)-1))+3)-VcoreYZext*rhoc*9.81/4;
897 VcoresYZext=VcoresYZext+VcoreYZext;
898 elseif (etopolCoreWallsn(elem,5)==7) % YZ plane interior, stage II

147

899 VcoreYZint=tiYZ_II*polyarea([ncoord(etopolCoreWallsn(elem,1),2)
900 ncoord(etopolCoreWallsn(elem,2),2) ncoord(etopolCoreWallsn(elem,3),2)
901 ncoord(etopolCoreWallsn(elem,4),2)], ...
902 [ncoord(etopolCoreWallsn(elem,1),3) ...
903 ncoord(etopolCoreWallsn(elem,2),3) ...
904 ncoord(etopolCoreWallsn(elem,3),3) ...
905 ncoord(etopolCoreWallsn(elem,4),3)]);
906 fextDL((6*(etopolCoreWallsn(elem,1)-1))+3)= ...
907 fextDL((6*(etopolCoreWallsn(elem,1)-1))+3)-VcoreYZint*rhoc*9.81/4;
908 fextDL((6*(etopolCoreWallsn(elem,2)-1))+3)= ...
909 fextDL((6*(etopolCoreWallsn(elem,2)-1))+3)-VcoreYZint*rhoc*9.81/4;
910 fextDL((6*(etopolCoreWallsn(elem,3)-1))+3)= ...
911 fextDL((6*(etopolCoreWallsn(elem,3)-1))+3)-VcoreYZint*rhoc*9.81/4;
912 fextDL((6*(etopolCoreWallsn(elem,4)-1))+3)= ...
913 fextDL((6*(etopolCoreWallsn(elem,4)-1))+3)-VcoreYZint*rhoc*9.81/4;
914 VcoresYZint=VcoresYZint+VcoreYZint;
915 elseif (etopolCoreWallsn(elem,5)==8) % XZ plane exterior, stage III
916 VcoreXZ=txXZ_III*polyarea([ncoord(etopolCoreWallsn(elem,1),1)
917 ncoord(etopolCoreWallsn(elem,2),1) ncoord(etopolCoreWallsn(elem,3),1)
918 ncoord(etopolCoreWallsn(elem,4),1)], ...
919 [ncoord(etopolCoreWallsn(elem,1),3) ...
920 ncoord(etopolCoreWallsn(elem,2),3) ...
921 ncoord(etopolCoreWallsn(elem,3),3) ...
922 ncoord(etopolCoreWallsn(elem,4),3)]);
923 fextDL((6*(etopolCoreWallsn(elem,1)-1))+3)= ...
924 fextDL((6*(etopolCoreWallsn(elem,1)-1))+3)-VcoreXZ*rhoc*9.81/4;
925 fextDL((6*(etopolCoreWallsn(elem,2)-1))+3)= ...
926 fextDL((6*(etopolCoreWallsn(elem,2)-1))+3)-VcoreXZ*rhoc*9.81/4;
927 fextDL((6*(etopolCoreWallsn(elem,3)-1))+3)= ...
928 fextDL((6*(etopolCoreWallsn(elem,3)-1))+3)-VcoreXZ*rhoc*9.81/4;
929 fextDL((6*(etopolCoreWallsn(elem,4)-1))+3)= ...
930 fextDL((6*(etopolCoreWallsn(elem,4)-1))+3)-VcoreXZ*rhoc*9.81/4;
931 VcoresXZ=VcoresXZ+VcoreXZ;
932 elseif (etopolCoreWallsn(elem,5)==9) % YZ plane exterior, stage III
933 VcoreYZext=txYZ_III*polyarea([ncoord(etopolCoreWallsn(elem,1),2)
934 ncoord(etopolCoreWallsn(elem,2),2) ncoord(etopolCoreWallsn(elem,3),2)
935 ncoord(etopolCoreWallsn(elem,4),2)], ...
936 [ncoord(etopolCoreWallsn(elem,1),3) ...
937 ncoord(etopolCoreWallsn(elem,2),3) ...
938 ncoord(etopolCoreWallsn(elem,3),3) ...
939 ncoord(etopolCoreWallsn(elem,4),3)]);
940 fextDL((6*(etopolCoreWallsn(elem,1)-1))+3)= ...
941 fextDL((6*(etopolCoreWallsn(elem,1)-1))+3)-VcoreYZext*rhoc*9.81/4;
942 fextDL((6*(etopolCoreWallsn(elem,2)-1))+3)= ...
943 fextDL((6*(etopolCoreWallsn(elem,2)-1))+3)-VcoreYZext*rhoc*9.81/4;
944 fextDL((6*(etopolCoreWallsn(elem,3)-1))+3)= ...
945 fextDL((6*(etopolCoreWallsn(elem,3)-1))+3)-VcoreYZext*rhoc*9.81/4;
946 fextDL((6*(etopolCoreWallsn(elem,4)-1))+3)= ...

148

947 fextDL((6*(etopolCoreWallsn(elem,4)-1))+3)-VcoreYZext*rhoc*9.81/4;
948 VcoresYZext=VcoresYZext+VcoreYZext;
949 elseif (etopolCoreWallsn(elem,5)==10) % YZ plane interior, stage III
950 VcoreYZint=tiYZ_III*polyarea([ncoord(etopolCoreWallsn(elem,1),2)
951 ncoord(etopolCoreWallsn(elem,2),2) ncoord(etopolCoreWallsn(elem,3),2)
952 ncoord(etopolCoreWallsn(elem,4),2)], ...
953 [ncoord(etopolCoreWallsn(elem,1),3) ...
954 ncoord(etopolCoreWallsn(elem,2),3) ...
955 ncoord(etopolCoreWallsn(elem,3),3) ...
956 ncoord(etopolCoreWallsn(elem,4),3)]);
957 fextDL((6*(etopolCoreWallsn(elem,1)-1))+3)= ...
958 fextDL((6*(etopolCoreWallsn(elem,1)-1))+3)-VcoreYZint*rhoc*9.81/4;
959 fextDL((6*(etopolCoreWallsn(elem,2)-1))+3)= ...
960 fextDL((6*(etopolCoreWallsn(elem,2)-1))+3)-VcoreYZint*rhoc*9.81/4;
961 fextDL((6*(etopolCoreWallsn(elem,3)-1))+3)= ...
962 fextDL((6*(etopolCoreWallsn(elem,3)-1))+3)-VcoreYZint*rhoc*9.81/4;
963 fextDL((6*(etopolCoreWallsn(elem,4)-1))+3)= ...
964 fextDL((6*(etopolCoreWallsn(elem,4)-1))+3)-VcoreYZint*rhoc*9.81/4;
965 VcoresYZint=VcoresYZint+VcoreYZint;
966 end
967 end
968 VCols=0; VPerimBeams=0; VIntBeams=0;
969 for elem=1:size(etopolColsn,1)
970 xdiff=coord(etopolColsn(elem,1),1)-coord(etopolColsn(elem,2),1);
971 ydiff=coord(etopolColsn(elem,1),2)-coord(etopolColsn(elem,2),2);
972 zdiff=coord(etopolColsn(elem,1),3)-coord(etopolColsn(elem,2),3);
973 VCol=BeamElemProps(etopolColsn(elem,3),3)* ...
974 BeamElemProps(etopolColsn(elem,3),4)*sqrt(((xdiff)^2)+ ...
975 ((ydiff)^2)+((zdiff)^2));
976 fextDL((6*(etopolColsn(elem,1)-1))+3)= ...
977 fextDL((6*(etopolColsn(elem,1)-1))+3)-VCol*rhoc*9.81/2;
978 fextDL((6*(etopolColsn(elem,2)-1))+3)= ...
979 fextDL((6*(etopolColsn(elem,2)-1))+3)-VCol*rhoc*9.81/2;
980 VCols=VCols+VCol;
981 end
982 for elem=1:size(etopolPerimBeamsn,1)
983 xdiff=coord(etopolPerimBeamsn(elem,1),1)-coord(etopolPerimBeamsn(elem,2),1);
984 ydiff=coord(etopolPerimBeamsn(elem,1),2)-coord(etopolPerimBeamsn(elem,2),2);
985 zdiff=coord(etopolPerimBeamsn(elem,1),3)-coord(etopolPerimBeamsn(elem,2),3);
986 VPerimBeam=BeamElemProps(etopolPerimBeamsn(elem,3),3)* ...
987 BeamElemProps(etopolPerimBeamsn(elem,3),4)*sqrt(((xdiff)^2)+ ...
988 ((ydiff)^2)+((zdiff)^2));
989 fextDL((6*(etopolPerimBeamsn(elem,1)-1))+3)= ...
990 fextDL((6*(etopolPerimBeamsn(elem,1)-1))+3)-VPerimBeam*rhoc*9.81/2;
991 fextDL((6*(etopolPerimBeamsn(elem,2)-1))+3)= ...
992 fextDL((6*(etopolPerimBeamsn(elem,2)-1))+3)-VPerimBeam*rhoc*9.81/2;
993 VPerimBeams=VPerimBeams+VPerimBeam;
994 end

149

995 for elem=1:size(etopolIntBeamsn,1)
996 xdiff=coord(etopolIntBeamsn(elem,1),1)-coord(etopolIntBeamsn(elem,2),1);
997 ydiff=coord(etopolIntBeamsn(elem,1),2)-coord(etopolIntBeamsn(elem,2),2);
998 zdiff=coord(etopolIntBeamsn(elem,1),3)-coord(etopolIntBeamsn(elem,2),3);
999 VIntBeam=BeamElemProps(etopolIntBeamsn(elem,3),3)* ...

1000 BeamElemProps(etopolIntBeamsn(elem,3),4)*sqrt(((xdiff)^2)+((ydiff)^2)+((zdiff)^2));
1001 fextDL((6*(etopolIntBeamsn(elem,1)-1))+3)= ...
1002 fextDL((6*(etopolIntBeamsn(elem,1)-1))+3)-VIntBeam*rhoc*9.81/2;
1003 fextDL((6*(etopolIntBeamsn(elem,2)-1))+3)= ...
1004 fextDL((6*(etopolIntBeamsn(elem,2)-1))+3)-VIntBeam*rhoc*9.81/2;
1005 VIntBeams=VIntBeams+VIntBeam;
1006 end
1007

1008 Slab_CXZ_CYZe_CYZi_Col_PB_IB=[Vslabs VcoresXZ VcoresYZext ...
1009 VcoresYZint VCols VPerimBeams VIntBeams];
1010 TotalVolume_m3=sum(Slab_CXZ_CYZe_CYZi_Col_PB_IB);
1011 TotalMass_kg=TotalVolume_m3*rhoc;
1012 time5=toc;
1013 fprintf('volumes and masses determined %9.3f\n',time5);
1014 if (MG==0)
1015 MassPerSquareMetre_kg=TotalMass_kg/(flawsT*(len^2))
1016 EquivFloorDepth_m=TotalVolume_m3/(flawsT*(len^2))
1017 end
1018 fext=(1.0*fextWLs)+(0.0*fextDL)+(0.0*fextLL); clear fextWLs ...
1019 fextWLe fextDL fextLL;
1020 else
1021 fext=fextWLs;
1022 end

150

D.2 sortuniqarray

1 function [finalarray]=sortuniqarray(array1,array2)
2

3 tol=1e-6; duplicate=[]; finalarray=sort(unique([array1 array2]));
4 for i=1:size(finalarray,2)-1
5 for j=i+1:size(finalarray,2)
6 if (abs(finalarray(i)-finalarray(j))<tol)
7 duplicate=[duplicate i];
8 end
9 end

10 end
11 finalarray(duplicate)=[];

D.3 kShell

1 function [ke,V1,V2]=kShell(coord,EYm,nu,thickness,Vn)
2

3 nGp=8; koord=coord(:,1:3); thicknesses=ones(4,1)*thickness;...
4 Vns=ones(4,1)*Vn; kay=5/6; penfac=1.0e-3;
5 [wp,GpLoc]=GpPos(nGp);
6 nen=size(koord,1); ke20=zeros(5*nen); dxr=zeros(3);
7 ex=[1 0 0]'; ey=[0 1 0]'; ez=[0 0 1]';
8 V1=zeros(nen,3); V2=zeros(nen,3); g1=zeros(nen,3); g2=zeros(nen,3);
9

10 for node=1:nen
11 if norm(cross(ey,Vns(node,:)'))<1e-6
12 V=cross(ez,Vns(node,:)')';
13 else
14 V=cross(ey,Vns(node,:)')';
15 end
16 V1(node,:)=V/norm(V);
17 V2(node,:)=cross(Vns(node,:).',V1(node,:).').';
18 g1(node,:)=-0.5*thicknesses(node)*V2(node,:);
19 g2(node,:)= 0.5*thicknesses(node)*V1(node,:);
20 end
21 D=(EYm/(1-nu^2))*[[1 nu; nu 1; 0 0] zeros(3,4); zeros(3,3) ...
22 eye(3)*kay*(1-nu)*0.5]; D(4,4)=D(4,4)/kay;
23

24 for Gp=1:nGp
25 xsi=GpLoc(Gp,1); eta=GpLoc(Gp,2); zet=GpLoc(Gp,3);
26 [N,dNr]=shapefunc(xsi,eta);
27 dxr(1:2,:)=(dNr*(koord+0.5*zet*(Vns.*(thicknesses*ones(1,3)))));
28 dxr(3,:)=(0.5*(N.*thicknesses')*Vns);
29 detJ=det(dxr); VnGp=(N*Vns).'; sdir=dxr(2,:)'/norm(dxr(2,:));

151

30 er=cross(sdir,VnGp); er=er/norm(er);
31 es=cross(VnGp,er); es=es/norm(es);
32 et=VnGp/norm(VnGp); % local coordinates r(xi), s(eta) and t(zeta) may ...
33 % not coincide with V1, V2 and Vns
34 l1=(ex.'*er); m1=(ey.'*er); n1=(ez.'*er);
35 l2=(ex.'*es); m2=(ey.'*es); n2=(ez.'*es);
36 l3=(ex.'*et); m3=(ey.'*et); n3=(ez.'*et);
37 Q=[l1*l1 m1*m1 n1*n1 l1*m1 m1*n1 n1*l1 ;
38 l2*l2 m2*m2 n2*n2 l2*m2 m2*n2 n2*l2 ;
39 l3*l3 m3*m3 n3*n3 l3*m3 m3*n3 n3*l3 ;
40 2*l1*l2 2*m1*m2 2*n1*n2 l1*m2+l2*m1 m1*n2+m2*n1 n1*l2+n2*l1 ;
41 2*l2*l3 2*m2*m3 2*n2*n3 l2*m3+l3*m2 m2*n3+m3*n2 n2*l3+n3*l2 ;
42 2*l3*l1 2*m3*m1 2*n3*n1 l3*m1+l1*m3 m3*n1+m1*n3 n3*l1+n1*l3];
43 Dsh=Q.'*D*Q;
44 invJ=inv(dxr);
45 dNx=dxr\[dNr; zeros(1,4)];
46 G=zet*(invJ(:,1:2)*dNr)+invJ(:,3)*N;
47 B9=zeros(9,20);
48 B9([1 4 9],1:5:end)=dNx;
49 B9([5 2 6],2:5:end)=dNx;
50 B9([8 7 3],3:5:end)=dNx;
51 B9(:, 4:5:end)=g1(:,[1 2 3 1 2 2 3 3 1])'.*G([1 2 3 2 1 3 2 1 3],:);
52 B9(:, 5:5:end)=g2(:,[1 2 3 1 2 2 3 3 1])'.*G([1 2 3 2 1 3 2 1 3],:);
53 B=B9([1:3 5 7 9],:); B(4:6,:)=B(4:6,:)+B9([4 6 8],:);
54 ke20=ke20+(B.'*Dsh*B)*detJ*wp(Gp);
55 end
56

57 Tdc=zeros(24); pen=penfac*(abs(ke20(4,4))+abs(ke20(5,5))); Tsub=[eye(5) zeros(5,1)];
58 T20to24=[Tsub zeros(5,18); zeros(5,6) Tsub zeros(5,12); ...
59 zeros(5,12) Tsub zeros(5,6); zeros(5,18) Tsub];
60 ke=T20to24'*ke20*T20to24; ke(6,6)=pen; ke(12,12)=pen; ke(18,18)=pen; ke(24,24)=pen;
61

62 Tdcsub=[V1(1,1) V2(1,1) Vns(1,1)
63 V1(1,2) V2(1,2) Vns(1,2)
64 V1(1,3) V2(1,3) Vns(1,3)]';
65 Tdc(1 : 3, 1: 3)=eye(3); Tdc(4: 6, 4: 6)=Tdcsub;
66 Tdc(7 : 9, 7: 9)=eye(3); Tdc(10:12,10:12)=Tdcsub;
67 Tdc(13:15,13:15)=eye(3); Tdc(16:18,16:18)=Tdcsub;
68 Tdc(19:21,19:21)=eye(3); Tdc(22:24,22:24)=Tdcsub;
69 ke=Tdc'*ke*Tdc;

152

D.4 GpPos

1 function [wp,GpLoc]=GpPos(nGp)
2

3 wp=ones(8,1); r3=1/sqrt(3);
4 xsi=[-1 -1 1 1 -1 -1 1 1].'*r3;
5 eta=[-1 -1 -1 -1 1 1 1 1].'*r3;
6 zet=[-1 1 1 -1 -1 1 1 -1].'*r3;
7 GpLoc=[xsi eta zet];

D.5 shapefunc

1 function [N,dNr]=shapefunc(xsi,eta)
2

3 nGp=size(xsi,1); r2=nGp*2;
4 N(:,1)=0.25*(1-xsi).*(1-eta);
5 N(:,2)=0.25*(1-xsi).*(1+eta);
6 N(:,3)=0.25*(1+xsi).*(1+eta);
7 N(:,4)=0.25*(1+xsi).*(1-eta);
8 dNr(1:2:r2 ,1)=-1/4*(1-eta);
9 dNr(1:2:r2 ,2)=-1/4*(1+eta);

10 dNr(1:2:r2 ,3)= 1/4*(1+eta);
11 dNr(1:2:r2 ,4)= 1/4*(1-eta);
12 dNr(2:2:r2+1,1)=-1/4*(1-xsi);
13 dNr(2:2:r2+1,2)= 1/4*(1-xsi);
14 dNr(2:2:r2+1,3)= 1/4*(1+xsi);
15 dNr(2:2:r2+1,4)=-1/4*(1+xsi);

D.6 kBeam

1 function [Ke,fe]=kBeam(coord,EYm,nu,breadth,depth,eq)
2

3 ex=coord(:,1)'; ey=coord(:,2)'; ez=coord(:,3)';
4 theta=(atan2((ey(2)-ey(1)),(ex(2)-ex(1))))-(pi/2);
5 e0(1)=cos(theta);
6 e0(2)=sin(theta); e0(3)=0;
7 A=breadth*depth; Iy=(depth*(breadth^3))/12; Iz=(breadth*(depth^3))/12;
8 if (breadth==depth)
9 a=breadth/2; b=depth/2;

10 else
11 a=0.5*max(breadth,depth); b=0.5*min(breadth,depth);
12 end

153

13 Kv=a*(b^3)*((16/3)-(3.36*(b/a)*(1-(((b/a)^4)/12)))); Gs=EYm/(2*(1+nu));
14

15 beamVec=[(ex(2)-ex(1)) (ey(2)-ey(1)) (ez(2)-ez(1))];
16 L=sqrt(beamVec*beamVec'); xlocal=beamVec/L;
17 lc=sqrt(e0*e0'); zlocal=e0/lc;
18 ylocal=cross(zlocal,xlocal);
19 if nargin==5; eq=[0 0 0 0]; end
20

21 qx=eq(1); qy=eq(2); qz=eq(3); qw=eq(4);
22 k11= EYm*A /L ; k22=12*EYm*Iz/(L^3); k26=6*EYm*Iz/(L^2);
23 k33=12*EYm*Iy/(L^3); k35= 6*EYm*Iy/(L^2); k44=Gs*Kv /L;
24 k55= 2*EYm*Iy/L ; k66= 2*EYm*Iz/L ;
25 k11= EYm*A /L ; k22=12*EYm*Iz/(L^3); k26=6*EYm*Iz/(L^2);
26 k33=12*EYm*Iy/(L^3); k35= 6*EYm*Iy/(L^2); k44=Gs*Kv /L;
27 k55= 2*EYm*Iy/L ; k66= 2*EYm*Iz/L ;
28 Kle=[k11 0 0 0 0 0 -k11 0 0 0 0 0
29 0 k22 0 0 0 k26 0 -k22 0 0 0 k26
30 0 0 k33 0 -k35 0 0 0 -k33 0 -k35 0
31 0 0 0 k44 0 0 0 0 0 -k44 0 0
32 0 0 -k35 0 2*k55 0 0 0 k35 0 k55 0
33 0 k26 0 0 0 2*k66 0 -k26 0 0 0 k66
34 -k11 0 0 0 0 0 k11 0 0 0 0 0
35 0 -k22 0 0 0 -k26 0 k22 0 0 0 -k26
36 0 0 -k33 0 k35 0 0 0 k33 0 k35 0
37 0 0 0 -k44 0 0 0 0 0 k44 0 0
38 0 0 -k35 0 k55 0 0 0 k35 0 2*k55 0
39 0 k26 0 0 0 k66 0 -k26 0 0 0 2*k66];
40

41 fle=L/2*[qx qy qz qw -1/6*qz*L 1/6*qy*L qx qy qz qw 1/6*qz*L -1/6*qy*L]';
42 An=[xlocal
43 ylocal % d dimension is parallel to local y (depth in local y direction)
44 zlocal]; % b dimension is parallel to local z (breadth in E0 direction)
45 G=[An zeros(3) zeros(3) zeros(3);
46 zeros(3) An zeros(3) zeros(3);
47 zeros(3) zeros(3) An zeros(3);
48 zeros(3) zeros(3) zeros(3) An];
49 Ke=G'*Kle*G; fe1=G'*fle;
50 if nargin==6; fe=fe1; end

154

D.7 transform

1 function [T,DoF]=transform(coord,ms,dof,oldms,T)
2

3 ndim=6; slaves=size(ms,2)-1; masters=size(ms,1); colre=[];
4 DoF=dof; dofn=DoF(ms(1,1));
5 if nargin==3; T=speye(size(coord,1)*ndim); end
6 for m=1:masters
7 if m==1
8 DoF(ms(m,1),:)=dofn*ones(1,6)+[0:5];
9 else

10 DoF(ms(m,1),:)=dofn*ones(1,6)+[1:6];
11 end
12 dofn=DoF(ms(m,1),6);
13 for s=1:slaves
14 T(ms(m,s+1)*ndim-5:ms(m,s+1)*ndim-4,:)=0;
15 DoF(ms(m,s+1),[1 2 6])=0;
16 DoF(ms(m,s+1),3:5)=dofn*ones(1,3)+[1:3];
17 T(ms(m,s+1)*ndim,:)=0;
18 T(ms(m,s+1)*ndim-5:ms(m,s+1)*ndim-4, ms(m,1)*ndim-5:ms(m,1)*ndim-4)=eye(2);
19 T(ms(m,s+1)*ndim,ms(m,1)*ndim)=1;
20 dcoord=coord(ms(m,s+1),:)-coord(ms(m,1),:);
21 loc1=ms(m,1)*ndim; loc2=ms(m,s+1)*ndim-5;
22 T(loc2, loc1)=-dcoord(2);
23 loc2=ms(m,s+1)*ndim-4;
24 T(loc2, loc1)=dcoord(1);
25 colre=[colre ms(m,s+1)*ndim-5:ms(m,s+1)*ndim-4 ms(m,s+1)*ndim];
26 dofn=DoF(ms(m,s+1),5);
27 end
28 end
29 if nargin==5
30 sold=size(oldms,2)-1;
31 mold=size(oldms,1);
32 dofnold=DoF(oldms(1,1));
33 for rold=1:mold
34 DoF(oldms(rold,1),:)=dofn*ones(1,6)+[1:6];
35 dofn=DoF(oldms(rold,1),6);
36 for nold=1:sold
37 DoF(oldms(rold,nold+1),[1 2 6])=0;
38 DoF(oldms(rold,nold+1),3:5)=dofn*ones(1,3)+[1:3];
39 dofn=DoF(oldms(rold,nold+1),5);
40 end
41 end
42 end
43 T(:,colre)=[];

155

D.8 plotBeamCrossSec

1 function plotBeamsCrossSec(BeamElemProps,etopolBeams,coord)
2

3 for beam=1:size(etopolBeams,1)
4 if (etopolBeams(beam,3)==1); beamline='k-'; % column NS stage I
5 elseif (etopolBeams(beam,3)==2); beamline='k-'; % column EW stage I
6 elseif (etopolBeams(beam,3)==3); beamline='k-'; % column NS stage II
7 elseif (etopolBeams(beam,3)==4); beamline='k-'; % column EW stage II
8 elseif (etopolBeams(beam,3)==5); beamline='k-'; % column NS stage III
9 elseif (etopolBeams(beam,3)==6); beamline='k-'; % column EW stage III

10 elseif (etopolBeams(beam,3)==7); beamline='k-'; % perimeter beam
11 elseif (etopolBeams(beam,3)==8); beamline='m-'; % internal beam
12 elseif (etopolBeams(beam,3)==9); beamline='r-'; end; % stiffened internal beam
13 E0=zeros(1,3);
14 Ex=coord(etopolBeams(beam,1:2),1)'; Ey=coord(etopolBeams(beam,1:2),2)';
15 Ez=coord(etopolBeams(beam,1:2),3)';
16 theta=(atan2((Ey(2)-Ey(1)),(Ex(2)-Ex(1))))-(pi/2);
17 E0(1)=cos(theta); E0(2)=sin(theta);
18 if (etopolBeams(beam,3)>7)
19 plot3([coord(etopolBeams(beam,1),1) coord(etopolBeams(beam,2),1)], ...
20 [coord(etopolBeams(beam,1),2) coord(etopolBeams(beam,2),2)], ...
21 [coord(etopolBeams(beam,1),3) coord(etopolBeams(beam,2),3)],beamline); hold on;
22 else
23 localXX=[coord(etopolBeams(beam,2),1)-coord(etopolBeams(beam,1),1)
24 coord(etopolBeams(beam,2),2)-coord(etopolBeams(beam,1),2)
25 coord(etopolBeams(beam,2),3)-coord(etopolBeams(beam,1),3)]';
26 localXX=(1/sqrt(((localXX(1))^2)+((localXX(2))^2)+ ...
27 ((localXX(3))^2)))*localXX; localZZ=E0;
28 localZZ=(1/sqrt(((localZZ(1))^2)+((localZZ(2))^2)+((localZZ(3))^2)))*localZZ;
29 localYY=cross(localZZ,localXX);
30

31 % plot3([Ex(1)+(0.5*(Ex(2)-Ex(1))) Ex(1)+(0.5*(Ex(2)-Ex(1)))+localXX(1)], ...
32 % [Ey(1)+(0.5*(Ey(2)-Ey(1))) Ey(1)+(0.5*(Ey(2)-Ey(1)))+localXX(2)], ...
33 % [Ez(1)+(0.5*(Ez(2)-Ez(1))) Ez(1)+(0.5*(Ez(2)-Ez(1)))+localXX(3)],'r-'); hold on;
34 % plot3([Ex(1)+(0.5*(Ex(2)-Ex(1))) Ex(1)+(0.5*(Ex(2)-Ex(1)))+localYY(1)], ...
35 % [Ey(1)+(0.5*(Ey(2)-Ey(1))) Ey(1)+(0.5*(Ey(2)-Ey(1)))+localYY(2)], ...
36 % [Ez(1)+(0.5*(Ez(2)-Ez(1))) Ez(1)+(0.5*(Ez(2)-Ez(1)))+localYY(3)],'r--');
37 % plot3([Ex(1)+(0.5*(Ex(2)-Ex(1))) Ex(1)+(0.5*(Ex(2)-Ex(1)))+localZZ(1)], ...
38 % [Ey(1)+(0.5*(Ey(2)-Ey(1))) Ey(1)+(0.5*(Ey(2)-Ey(1)))+localZZ(2)], ...
39 % [Ez(1)+(0.5*(Ez(2)-Ez(1))) Ez(1)+(0.5*(Ez(2)-Ez(1)))+localZZ(3)],'r:');
40

41 b=BeamElemProps(etopolBeams(beam,3),3); d=BeamElemProps(etopolBeams(beam,3),4);
42 XYZnode1=coord(etopolBeams(beam,1),:); XYZnode2=coord(etopolBeams(beam,2),:);
43 plot3([XYZnode1(1)+((d/2)*localYY(1))+((b/2)*localZZ(1)) ...
44 XYZnode1(1)+((d/2)*localYY(1))-((b/2)*localZZ(1)) ...
45 XYZnode1(1)-((d/2)*localYY(1))-((b/2)*localZZ(1)) ...
46 XYZnode1(1)-((d/2)*localYY(1))+((b/2)*localZZ(1)) ...

156

47 XYZnode1(1)+((d/2)*localYY(1))+((b/2)*localZZ(1))], ...
48 [XYZnode1(2)+((d/2)*localYY(2))+((b/2)*localZZ(2)) ...
49 XYZnode1(2)+((d/2)*localYY(2))-((b/2)*localZZ(2)) ...
50 XYZnode1(2)-((d/2)*localYY(2))-((b/2)*localZZ(2)) ...
51 XYZnode1(2)-((d/2)*localYY(2))+((b/2)*localZZ(2)) ...
52 XYZnode1(2)+((d/2)*localYY(2))+((b/2)*localZZ(2))], ...
53 [XYZnode1(3)+((d/2)*localYY(3))+((b/2)*localZZ(3)) ...
54 XYZnode1(3)+((d/2)*localYY(3))-((b/2)*localZZ(3)) ...
55 XYZnode1(3)-((d/2)*localYY(3))-((b/2)*localZZ(3)) ...
56 XYZnode1(3)-((d/2)*localYY(3))+((b/2)*localZZ(3)) ...
57 XYZnode1(3)+((d/2)*localYY(3))+((b/2)*localZZ(3))],beamline); hold on;
58

59 plot3([XYZnode2(1)+((d/2)*localYY(1))+((b/2)*localZZ(1)) ...
60 XYZnode2(1)+((d/2)*localYY(1))-((b/2)*localZZ(1)) ...
61 XYZnode2(1)-((d/2)*localYY(1))-((b/2)*localZZ(1)) ...
62 XYZnode2(1)-((d/2)*localYY(1))+((b/2)*localZZ(1)) ...
63 XYZnode2(1)+((d/2)*localYY(1))+((b/2)*localZZ(1))], ...
64 [XYZnode2(2)+((d/2)*localYY(2))+((b/2)*localZZ(2)) ...
65 XYZnode2(2)+((d/2)*localYY(2))-((b/2)*localZZ(2)) ...
66 XYZnode2(2)-((d/2)*localYY(2))-((b/2)*localZZ(2)) ...
67 XYZnode2(2)-((d/2)*localYY(2))+((b/2)*localZZ(2)) ...
68 XYZnode2(2)+((d/2)*localYY(2))+((b/2)*localZZ(2))], ...
69 [XYZnode2(3)+((d/2)*localYY(3))+((b/2)*localZZ(3)) ...
70 XYZnode2(3)+((d/2)*localYY(3))-((b/2)*localZZ(3)) ...
71 XYZnode2(3)-((d/2)*localYY(3))-((b/2)*localZZ(3)) ...
72 XYZnode2(3)-((d/2)*localYY(3))+((b/2)*localZZ(3)) ...
73 XYZnode2(3)+((d/2)*localYY(3))+((b/2)*localZZ(3))],beamline);
74

75 plot3([XYZnode1(1)+((d/2)*localYY(1))+((b/2)*localZZ(1)) ...
76 XYZnode2(1)+((d/2)*localYY(1))+((b/2)*localZZ(1))], ...
77 [XYZnode1(2)+((d/2)*localYY(2))+((b/2)*localZZ(2)) ...
78 XYZnode2(2)+((d/2)*localYY(2))+((b/2)*localZZ(2))], ...
79 [XYZnode1(3)+((d/2)*localYY(3))+((b/2)*localZZ(3)) ...
80 XYZnode2(3)+((d/2)*localYY(3))+((b/2)*localZZ(3))],beamline);
81 plot3([XYZnode1(1)+((d/2)*localYY(1))-((b/2)*localZZ(1)) ...
82 XYZnode2(1)+((d/2)*localYY(1))-((b/2)*localZZ(1))], ...
83 [XYZnode1(2)+((d/2)*localYY(2))-((b/2)*localZZ(2)) ...
84 XYZnode2(2)+((d/2)*localYY(2))-((b/2)*localZZ(2))], ...
85 [XYZnode1(3)+((d/2)*localYY(3))-((b/2)*localZZ(3)) ...
86 XYZnode2(3)+((d/2)*localYY(3))-((b/2)*localZZ(3))],beamline);
87 plot3([XYZnode1(1)-((d/2)*localYY(1))-((b/2)*localZZ(1)) ...
88 XYZnode2(1)-((d/2)*localYY(1))-((b/2)*localZZ(1))], ...
89 [XYZnode1(2)-((d/2)*localYY(2))-((b/2)*localZZ(2)) ...
90 XYZnode2(2)-((d/2)*localYY(2))-((b/2)*localZZ(2))], ...
91 [XYZnode1(3)-((d/2)*localYY(3))-((b/2)*localZZ(3)) ...
92 XYZnode2(3)-((d/2)*localYY(3))-((b/2)*localZZ(3))],beamline);
93 plot3([XYZnode1(1)-((d/2)*localYY(1))+((b/2)*localZZ(1)) ...
94 XYZnode2(1)-((d/2)*localYY(1))+((b/2)*localZZ(1))], ...

157

95 [XYZnode1(2)-((d/2)*localYY(2))+((b/2)*localZZ(2)) ...
96 XYZnode2(2)-((d/2)*localYY(2))+((b/2)*localZZ(2))], ...
97 [XYZnode1(3)-((d/2)*localYY(3))+((b/2)*localZZ(3)) ...
98 XYZnode2(3)-((d/2)*localYY(3))+((b/2)*localZZ(3))],beamline);
99 end

100 end

D.9 plotBeams

1 function plotBeams(etopolBeams,coord,kolorbar,kolornode)
2

3 for beam=1:size(etopolBeams,1)
4 plot3([coord(etopolBeams(beam,1),1) coord(etopolBeams(beam,2),1)], ...
5 [coord(etopolBeams(beam,1),2) coord(etopolBeams(beam,2),2)], ...
6 [coord(etopolBeams(beam,1),3) coord(etopolBeams(beam,2),3)],kolorbar); hold on;
7 end

D.10 plotShells

1 function plotShells(topolShells,coord,kolorshell)
2

3 for shell=1:size(topolShells,1)
4 fill3([coord(topolShells(shell,1),1) coord(topolShells(shell,2),1)
5 coord(topolShells(shell,3),1) coord(topolShells(shell,4),1)]', ...
6 [coord(topolShells(shell,1),2) coord(topolShells(shell,2),2)
7 coord(topolShells(shell,3),2) coord(topolShells(shell,4),2)]', ...
8 [coord(topolShells(shell,1),3) coord(topolShells(shell,2),3)
9 coord(topolShells(shell,3),3) coord(topolShells(shell,4),3)]',kolorshell);

10 hold on;
11 end

D.11 solveKdf

1 function [d,react]=solveKdf(K,f,bc)
2

3 if nargin==2 ;
4 d=K\f ;
5 elseif nargin==3;
6 [nd,nd]=size(K); fDoF=[1:nd]';
7 d=zeros(size(fDoF)); react=zeros(size(fDoF));

158

8 pDoF=bc(:,1); dp=bc(:,2);
9 fDoF(pDoF)=[];

10 s=K(fDoF,fDoF)\(f(fDoF)-K(fDoF,pDoF)*dp);
11 d(pDoF)=dp; d(fDoF)=s;
12 end
13 react=K*d-f;

D.12 superelementS

1 function [K,f,Dof]=superelementS(dofS,node,K,f,Dof)
2

3 nodeS=size(node,1);
4 for y=1:nodeS
5 q=size(node(y),1)*dofS;
6 k=Dof(node(y),3);
7 node(y+1:end)=node(y+1:end)-1;
8 tr=[k:k+q-1]';
9 for n=1:size(tr,1)

10 runtimes=size(K,1);
11 tr(n+1:end)=tr(n+1:end)-1;
12 for i=1:runtimes
13 if i~=tr(n)
14 for j=1:runtimes
15 if j~=tr(n)
16 K(i,j)=K(i,j)-(K(tr(n),j)*K(i,tr(n))/K(tr(n),tr(n)));
17 end
18 end
19 f(i)=f(i)-(f(tr(n))*K(i,tr(n))/K(tr(n),tr(n)));
20 end
21 end
22 K(tr(n),:)=[]; K(:,tr(n))=[]; f(tr(n))=[];
23 end
24 end
25 cond=[reshape(node',[],1)];
26 remain=size(Dof,1)-size(cond,1)+1;
27 Dof(remain:end,:)=[];

159

D.13 superelementMS

1 function [K,f,Dof]=superelementMS(ms,dof,dofS,K,f,Dof)
2

3 node=zeros(size(ms,1),1);
4 for n=1:size(ms,1); node(n)=ms(n,1); end
5 nodeS=size(node,1); snum=size(ms,2)-1;
6 for y=1:nodeS
7 q=size(node(y),1)*dof;
8 k=Dof(node(y),1);
9 node(y+1:end)=node(y+1:end)-1;

10 tr=[k:k+q-1]';
11 for n=1:size(tr,1)
12 runtimes=size(K,1);
13 tr(n+1:end)=tr(n+1:end)-1;
14 for i=1:runtimes
15 if i~=tr(n)
16 for j=1:runtimes
17 if j~=tr(n)
18 K(i,j)=K(i,j)-(K(tr(n),j)*K(i,tr(n))/K(tr(n),tr(n)));
19 end
20 end
21 f(i)=f(i)-(f(tr(n))*K(i,tr(n))/K(tr(n),tr(n)));
22 end
23 end
24 K(tr(n),:)=[]; K(:,tr(n))=[]; f(tr(n))=[];
25 end
26 for m=1:snum
27 node(y+1:end)=node(y+1:end)-1;
28 trs=tr(1).*ones(dofS,1);
29 tr=[trs+[0:1:dofS-1]'];
30 for n=1:size(tr,1)
31 runtimes=size(K,1);
32 tr(n+1:end)=tr(n+1:end)-1;
33 for i=1:runtimes
34 if i~=tr(n)
35 for j=1:runtimes
36 if j~=tr(n)
37 K(i,j)=K(i,j)-(K(tr(n),j)*K(i,tr(n))/K(tr(n),tr(n)));
38 end
39 end
40 f(i)=f(i)-(f(tr(n))*K(i,tr(n))/K(tr(n),tr(n)));
41 end
42 end
43 K(tr(n),:)=[]; K(:,tr(n))=[]; f(tr(n))=[];
44 end
45 end
46 end

160

47 cond=[reshape(ms',[],1)];
48 remain=size(Dof,1)-size(cond,1)+1;
49 Dof(remain:end,:)=[];

D.14 assembly

1 function [Kglobal,fglobal,GsubDoF,subDoF,supDoF]=assembly(substructure,nSS, ...
2 fextfactor,Kss,Kse1,Kse0,Kssg,fss,fse1,fse0,fssg)
3 GDoF=[];
4 subDoF=size(Kss,1);
5 supDoF=size(Kse1,1);
6 GsubDoF=size(Kssg,1);
7 GsupDoF=size(Kse0,1);
8 if substructure==0
9 GDoF=0.5*supDoF*nSS;

10 elseif substructure < 1+1e-9
11 GDoF=GsubDoF+0.5*supDoF*(nSS-1);
12 else
13 GDoF=0.5*supDoF*(nSS-2)+subDoF;
14 end
15 Kglobal=zeros(GDoF); fglobal=zeros(GDoF,1);
16 if substructure==0
17 Kglobal(1:GsupDoF,1:GsupDoF)=Kglobal(1:GsupDoF,1:GsupDoF)+Kse0;
18 fglobal(1:GsupDoF,1)=fglobal(1:GsupDoF,1)+fse0;
19 for m=2:nSS
20 Kglobal((m-2)*(supDoF/2)+1:(m-2)*(supDoF/2)+supDoF,(m-2)*(supDoF/2)+...
21 1:(m-2)*(supDoF/2)+supDoF)=Kglobal((m-2)*(supDoF/2)+1:(m-2)*(supDoF/2)+...
22 supDoF,(m-2)*(supDoF/2)+1:(m-2)*(supDoF/2)+supDoF)+Kse1;
23 fglobal((m-2)*(supDoF/2)+1:(m-2)*(supDoF/2)+supDoF,1)=...
24 fglobal((m-2)*(supDoF/2)+...
25 1:(m-2)*(supDoF/2)+supDoF,1)+fse1*fextfactor(m,1);
26 end
27 elseif substructure==1
28 Kglobal(1:GsubDoF,1:GsubDoF)=Kglobal(1:GsubDoF,1:GsubDoF)+Kssg;
29 fglobal(1:GsubDoF,1)= fglobal(1:GsubDoF,1)+fssg;
30 for m=2:nSS
31 Kglobal((m-1)*(supDoF/2)+GsubDoF-supDoF+1:m*(supDoF/2)+...
32 GsubDoF-supDoF/2,(m-1)*(supDoF/2)+GsubDoF-supDoF+1:m*(supDoF/2)+...
33 GsubDoF-supDoF/2)=Kglobal((m-1)*(supDoF/2)+GsubDoF-supDoF+...
34 1:m*(supDoF/2)+GsubDoF-supDoF/2,(m-1)*(supDoF/2)+...
35 GsubDoF-supDoF+1:m*(supDoF/2)+GsubDoF-supDoF/2)+Kse1;
36 fglobal((m-1)*(supDoF/2)+GsubDoF-supDoF+1:m*(supDoF/2)+...
37 GsubDoF-supDoF/2,1)=fglobal((m-1)*(supDoF/2)+GsubDoF-supDoF+...
38 1:m*(supDoF/2)+GsubDoF-supDoF/2,1)+fse1*fextfactor(m,1);
39 end
40 else

161

41 Kglobal(1:GsupDoF,1:GsupDoF)=Kglobal(1:GsupDoF,1:GsupDoF)+Kse0; rownow=GsupDoF;
42 fglobal(1:GsupDoF,1)=fglobal(1:GsupDoF,1)+fse0;
43 if substructure==2
44 Kglobal(1:subDoF,1:subDoF)=Kglobal(1:subDoF,1:subDoF)+Kss; rownow=subDoF;
45 fglobal(1:subDoF,1)=fglobal(1:subDoF,1)+fss*fextfactor(substructure,1);
46 else
47 Kglobal(1:supDoF,1:supDoF)=Kglobal(1:supDoF,1:supDoF)+Kse1; rownow=supDoF;
48 fglobal(1:supDoF,1)=fglobal(1:supDoF,1)+fse1*fextfactor(2,1);
49 end
50 for m=3:nSS
51 if substructure==m
52 Kglobal(rownow-(supDoF/2)+1:rownow-(supDoF/2)+subDoF,rownow-(supDoF/2)+...
53 1:rownow-(supDoF/2)+subDoF)=Kglobal(rownow-(supDoF/2)+1:rownow-(supDoF/2)+...
54 subDoF,rownow-(supDoF/2)+1:rownow-(supDoF/2)+subDoF)+Kss;
55 fglobal(rownow-(supDoF/2)+1:rownow-(supDoF/2)+subDoF,1)=...
56 fglobal(rownow-(supDoF/2)+1:rownow-(supDoF/2)+subDoF,1)+fss*fextfactor(m,1);
57 rownow=rownow-(supDoF/2)+subDoF;
58 else
59 Kglobal(rownow-(supDoF/2)+1:rownow-(supDoF/2)+supDoF,rownow-(supDoF/2)+...
60 1:rownow-(supDoF/2)+supDoF)=Kglobal(rownow-(supDoF/2)+1:rownow-(supDoF/2)+...
61 supDoF,rownow-(supDoF/2)+1:rownow-(supDoF/2)+supDoF)+Kse1;
62 fglobal(rownow-(supDoF/2)+1:rownow-(supDoF/2)+supDoF,1)=...
63 fglobal(rownow-(supDoF/2)+...
64 1:rownow-(supDoF/2)+supDoF,1)+fse1*fextfactor(m,1);...
65 rownow=rownow-(supDoF/2)+supDoF;
66 end
67 end
68 end

D.15 recovery

1 function [uvwSE,uvwSS]=recovery(uvw,nSS,substructure,Tg,Mdof,Sdof,midMS,ngroundn, ...
2 GsubDoF,subDoF,supDoF);
3

4 nmidleveln=size(midMS,1)*size(midMS,2);
5 groundlevel=ngroundn*Mdof;
6 msgroundlevel=(ngroundn-1)*Sdof+Mdof;
7 fullDoF=(2*ngroundn+nmidleveln)*Mdof;
8 midlevel=(nmidleveln)*Mdof;
9 msmidlevel=(nmidleveln-size(midMS,1))*Sdof + (size(midMS,1))*Mdof;

10 sub=groundlevel+midlevel;
11 mssub=msgroundlevel+msmidlevel; subTg=zeros(fullDoF,subDoF);
12

13 subTg(1:sub,1:mssub)=subTg(1:sub,1:mssub)+Tg(1:sub,1:mssub);
14 subTg((sub+1):end,(mssub+1):end)=subTg((sub+1):end,(mssub+1):end)+...
15 Tg(1:groundlevel,1:msgroundlevel);

162

16 GsubTg=subTg;
17 GsubTg(1:groundlevel,:)=[]; GsubTg(:,1:msgroundlevel)=[];
18 seTg=subTg(1:groundlevel,1:msgroundlevel);
19

20 if substructure==0
21 uvwSE=zeros(groundlevel*(nSS),1);
22 uvwSS=[];
23 for m=1:nSS
24 uvwE=seTg*uvw((m-1)*(supDoF/2)+1:m*(supDoF/2),1);
25 uvwSE((m-1)*(groundlevel)+1:m*(groundlevel))=uvwSE((m-1)*(groundlevel)+...
26 1:m*(groundlevel))+uvwE;
27 end
28 elseif substructure==1
29 uvwSS=GsubTg*uvw(1:GsubDoF);
30 uvwSE=zeros(groundlevel*(nSS-1),1);
31 for m=2:nSS
32 uvwE=seTg*uvw((m-2)*(supDoF/2)+GsubDoF+1:(m-1)*(supDoF/2)+GsubDoF,1);
33 uvwSE((m-2)*(groundlevel)+1:(m-1)*(groundlevel))=uvwSE((m-2)*(groundlevel)+...
34 1:(m-1)*(groundlevel))+uvwE;
35 end
36 elseif substructure==2
37 uvwSS=subTg*uvw(1:subDoF);
38 uvwSE=zeros(groundlevel*(nSS-2),1);
39 for m=3:nSS
40 uvwE=seTg*uvw((m-3)*(supDoF/2)+subDoF+1:(m-2)*(supDoF/2)+subDoF,1);
41 uvwSE((m-3)*(groundlevel)+1:(m-2)*(groundlevel))=uvwSE((m-3)*(groundlevel)+...
42 1:(m-2)*(groundlevel))+uvwE;
43 end
44 else
45 uvwSE=zeros(groundlevel*(nSS-1),1); rownow=(supDoF/2);
46 uvwE=seTg*uvw(1:(supDoF/2),1);
47 uvwSE(1:groundlevel)=uvwSE(1:groundlevel)+uvwE;
48 for m=3:nSS
49 if substructure==m
50 uvwSS=subTg*uvw(rownow+1:rownow+subDoF,1); rownow=rownow+subDoF;
51 else
52 uvwE=seTg*uvw(rownow+1:rownow+(supDoF/2),1); rownow=rownow+(supDoF/2);
53 uvwSE((m-2)*(groundlevel)+1:(m-1)*(groundlevel))=uvwSE((m-2)*(groundlevel)+...
54 1:(m-1)*(groundlevel))+uvwE;
55 end
56 end
57 end

163

164

Appendix E

The analysis of slender tall building under dead and

live load

For the purpose of examining the effects of dead and live load the building with floor

height of 4m and the total number of 100 floors, which gives a 400m structure, aspect

ratio of 20:1 (see Table E1 for used variables) was considered. The structural analysis

Variables

number of substructures nSS 25

number of floors in substructure flawsInSS 4

number of columns per side ncols 16

columns dimensions (m) bc x dc 0.75 x 0.75

perimeter beam dimensions (m) bpb x dpb 0.6 x 0.6

internal beam dimensions (m) bib x dib 0.6 x 0.6

floor slab thickness (m) ts 0.15

exterior core walls thickness (m) tx 0.8

interior core walls thickness (m) ti 0.4

Table E1: The list of dimensions and number of elements used in the analysis for the
400m tall slender building under dead and live load

itself was conducted on the basis of linear static analysis following the guidelines form the

Eurocode 2 – Design of concrete structures EN1992-1-1. The self weight of the structure

has been determined by assuming the density of 25 kN/m3 for the reinforced concrete.

The live load applied to the structure was 2.0 kN/m2. The basic wind velocity was the

165

same as previously calculated (see Chapter 5, Section 5.1). The bending moments and

normal stress were evaluated for the followings three load combinations

(i) 1.35×Gk + 1.5×Qk,es

(ii) 1.0×Gk + 1.5×Fk,w

(iii) 1.35×Gk + 1.5× Fk,w + 1.05×Qk,es

where

Gk - dead load

Qk,es - live load

Fk,w - wind load

From the results (reactions at the base of the structure) the first load combination was

the most onerous for the columns. The maximum axial load and bending moment from

this analysis are

NEd = 18,975 kN

My = 106 kNm

RC COLUMN DESIGN

Column details

Overall depth h = 750mm

Overall breadth b = 750mm

Concrete details

Concrete strength class C50/60

Partial safety factor for concrete γc = 1.50

Coefficient αcc= 0.85

Slenderness limit λlim = 20× A×B × Cy√
(n)

= 28.2mm

Slenderness λy = y/iy = 13.9 mm < λlim - short

Calculated column properties

Area of concrete Ac = h× b = 562500mm2

Characteristic compression cylinder strength fck = 50N/mm2

Design compressive strength fcd = αcc × fck/γc = 28.3N/mm

Characteristic yield strength fyk = 500N/mm2

166

Partial safety factor for reinforcement γs = 1.15

Design yield strength of reinforcement fyd = fyk/γs = 434.8N/mm2

Design bending moment

Ecc. due to geometric imperfections eiy = max{ lo
400
, h
30
, 20mm} = 25mm

Design moment about y axis MEd = My +NEd × eiy = 474.4kNm

Compression reinforcement

nEd = NEd
b×h×fck

= 0.67

mEd = MEd

b×h2×fck
= 0.02

From the column design chart for rectangular columns d2/h=0.1
As×fyk
b×h×fck

= 0.2

As,rec = 11, 250mm2

Minimum reinforcement

As,min = 0.1NEd
fyd

= 4, 364mm2 > 0.002× Ac = 1, 125mm2

Maximum reinforcement

As,max = 0.04× Ac = 22, 500mm2

Longitudinal reinforcement required 16 H32 - As = 12, 868mm2

Design axial resistance of section

NRd = (Ac × fcd) + (As × fyd) = 22, 352.75kN

Ratio of applied to resistance axial loads NEd
NRd

= 0.85 < 1

*Note that a much higher strength concrete than 50MPa have been used in tall buildings

(over 120MPa). In this calculation only axial resistance of a column section is calculated.

There is no capability in the code to calculate section forces, only reaction forces at

the base of the structure. fOR this reason the moment resistance of a section is not

calculated.

167

168

Bibliography

[1] 432 Park Avenue Condominiums. https://www.432parkavenue.com/.

[2] Create sparse matrix - MATLAB sparse - MathWorks United Kingdom.

https://uk.mathworks.com/help/matlab/ref/sparse.html.

[3] GitHub - CALFEM/calfem-matlab: CALFEM - a finite element toolbox for MAT-

LAB, https://github.com/CALFEM/calfem-matlab.

[4] Lonely Planet. https://www.lonelyplanet.com/articles/top-10-free-and-almost-

free-things-to-do-in-shanghai.

[5] Super-tall, super-skinny, super-expensive: the ’pencil towers’ of New York’s super-

rich | Cities | The Guardian.

[6] Tall Buildings in the City of London, the City of London Corporation, Department

of the Built Environment.

[7] The Skyscraper Center. https://www.skyscrapercenter.com/compare-data.

[8] On traffic planning methodology.http://www.kone.com/countries.

[9] World Urbanization Prospects: The 2014 Revision, Highlights.

http://esa.un.org/unpd/wup/Highlights/WUP2014-Highlights.pdf). 2014.

[10] Transportation Systems in Buildings - CIBSE Guide D - 2015 (5th Edition) - Knovel.

https://app.knovel.com/web/toc.v/cid:kpTSBCIBSB/viewerType:toc/, 2015.

[11] Ainsworth, M. Essential boundary conditions and multi-point constraints in

finite element analysis. Computer Methods in Applied Mechanics and Engineering

190(48), 6323–6339.

169

[12] Akbar, R. T. Tall and Supertall Building: Planing and Design. McGraw-Hill

Education, 2014.

[13] Ali, M. The Skyscraper : Epitome of Human Aspirations. Ctbuh 2015 7th World

Congress (2005).

[14] Ali, M. M., and Moon, K. S. Advances in structural systems for tall buildings:

Emerging developments for contemporary urban giants. Buildings 8, 8 (2018).

[15] Bathe, K. J., and Bucalem, M. L. The mechanics of solids and structures–

hierarchical modeling and the finite element solution, vol. 49. 2012.

[16] Bathe, K. J. and Bolourchi, S. A geometric and material nonlinear plate

and shell element. Computers & structures 11(1) (1980), 23–48.

[17] Beushauen, H ; Dittmer T. The influance of aggregate type on the strength

and elastic modulus of high strength concrte. Construction and Building Materials

74 (2015), 132–139.

[18] Birgersson, F., Finnveden, S., and Nilsson, C. M. A spectral super

element for modelling of plate vibration. Part 1: General theory. Journal of Sound

and Vibration (2005).

[19] Choi, H. S., Ho, G., Joseph, L., and Mathias, N. Outrigger Design for

High-Rise Buildings. Outrigger Design for High-Rise Buildings (2017).

[20] Cook, R. D., Malkus, D. S., Plesha, M. E. and Watt, R. J. Concepts

and Applications of Finite Element Analysis, 4th ed. John Wiley & Sons, 2002.

[21] Curiskis, J. I. and Valliappan, S. A solution algorithm for linear constraint

equations in finite element analysis. 117–124.

[22] Egeland, O., and Araldsen, P. O. A general purpose finite element method

program. Computers and Structures 4, 1 (1974), 41–68.

[23] Fu, F. Design and analysis of tall and complex structures. Butterworth-Heinemann,

2018.

170

[24] Grote, D. L., Park, S. W., and Zhou, M. Dynamic behavior of concrete

at high strain rates and pressures: I. expreimental characterization. International

Journal of Impact Engineering 25 (2001), 869–886.

[25] Gunawardena, T., Ngo, T., Mendis, P., and Alfano, J. Innovative

Flexible Structural System Using Prefabricated Modules. Journal of Architectural

Engineering 22, 4 (2016), 1–7.

[26] Ho, G., Liu, P., and Liu, G. L. Parametric analysis and design engine for

tall building structures. Asia Ascending: Age of the Sustainable Skyscraper City

- A Collection of State-of-the-Art, Multi-Disciplinary Papers on Tall Buildings and

Sustainable Cities, Proc. of the CTBUH 9th World Congress (2012), 643–648.

[27] Huang, H. C., and Hinton, E. A new nine node degenerated shell element with

enhanced membrane and shear interpolation. International Journal for Numerical

Methods in Engineering (1986).

[28] Jurowski, K., and Grzeszczyk, S. The influance of concrete composition

on Young’s modulus. Procedia Engineering 108 (2015), 584–591.

[29] Khan, Y. Engineering Architecture: The vision of Fazlur R. Khan.

[30] Kim, H. S., and Kang, J. W. An efficient structural analysis of super tall

mega frame buildings using a multi-level condensation method. Journal of Asian

Architecture and Building Engineering 11, 2 (2012), 343–350.

[31] Kim, H. S., and Lee, D. G. Analysis of shear wall with openings using super

elements. Engineering Structures 25, 8 (2003), 981–991.

[32] Lee, D. G., Ahn, S. K., and Kim, D. K. Efficient seismic analysis of building

structure including floor slab. Engineering Structures 27, 5 (apr 2005), 675–684.

[33] Long, X., Yuan, W., Tan, K. H., , and Lee, C. K. A superelement formu-

lation for efficient structural analysis in progressive collapse. Structural Engineering

and Mechanics 48, 3 (2013), 309–331.

[34] Macklowe, H. The Complex Path to Simple Elegance: The Story of 432 Park

Avenue. CTBUH 2015 (2015).

171

[35] Marcus, S. The New Supers : Super-Slender Towers of New York. Global

interchanges: Resurgence of the skyscraper city (2015).

[36] Mendis, P., Ngo, T., Haritos, N., Hira, A., Samali, B., and Cheung,

J. Wind loading on tall buildings. Electronic Journal of Structural Engineering 7,

December 2014 (2007), 41–54.

[37] MSC Software. MSC Nastran 2017: Rotordynamics User’s Guide.

[38] Parker, D., and Wood, A. The tall buildings reference book, vol. 9780203106.

2013.

[39] Poulos, H. G. Tall building foundations: design methods and applications.

Innovative Infrastructure Solutions (2016), 1–10.

[40] Sakharov, V. O. Dynamic reduction for the nonlinear soil-foundation structure

system. 146–158.

[41] Salonen, E. M. Iterative penalty function method in structural analysis. Inter-

national Journal for Numerical Methods in Engineering 10(2) (1976), 413–421.

[42] Scholl, R. E. Brace dampers: an alternative structural system for improving the

earthquake performance of buildings, 1984.

[43] Schöllkopf, K.-O., and Mueller, J. New Approaches for Efficient People

Transportation in Both Dimensions – Vertically and Horizontally. CTBUH (2016).

[44] Shepard, M. S. Linear multipoint constraints via transformation as part of a

direct stiffness assembly process. International Journal for Numerical Methods in

Engineering 20(11), 2107–2112.

[45] Steenbergen, R. D. J. M., and Blaauwendraad, J. Closed-form super

element method for tall buildings of irregular geometry. International Journal of

Solids and Structures (2007).

[46] Stratford, S. B., and Coull, A. Tall Building Structures Analysis and

Design. 1991.

172

[47] Taranath, B. S. Tall Building Design: Steel, Concrete, and Composite Systems,

vol. 1. 2013.

[48] Walsh, P., Saleh, A., and Far, H. Evaluation of structural systems in slender

high-rise buildings. Australian Journal of Structural Engineering 19, 2 (2018), 105–

117.

[49] Weng, J., Tan, K. H., and Lee, C. K. Adaptive superelement modeling for

progressive collapse analysis of reinforced concrete frames. Engineering Structures

151 (2017), 136–152.

[50] Willis, C. Singularly Slender : Sky Living in New York , Hong Kong , and

Elsewhere. Cities to Megacities: Shaping Dense vertical urbanism (2016), 606–

614.

[51] Wilson, E. L. Three Dimensional Static and Dynamic Analysis of Structures.

Computers and Structures Inc., 2002.

[52] Wong, Y. Y. Developing a cardiac mechanics analysis framework using shell finite

elements. PhD thesis, City, University of London, 2020.

[53] Young, W. and Budynas, R. Roark’s Formulas for Stress and Strain, 8th

editio ed. McGraw-Hill, 2012.

[54] Zalka, K. A. Structural Analysis of Regular Multi-Storey Buildings. Tatlor and

Francis Group, 2012.

173

