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Abstract

We examine the feasibility of rule extraction as a method of explanation for
neural networks with an emphasis on deep neural networks. This is done by
establishing a framework for neural-symbolic computing which gives precise
meaning to notions such as fidelity, neural encoding, and rule extraction. Us-
ing this framework, we establish semantic and syntactic relationships between
different classes of neural networks and different logical systems. This shows
that there is nothing inherently different about the computations done by deep
neural networks and logical systems. We use this to argue that complexity is
the primary difference between neural and symbolic approaches. We develop a
measure of complexity and two different rule extraction algorithms using M-of-
N rules. The first extraction algorithm is a fast decompositional algorithm for
Deep Belief Networks that builds on the optimal confidence extraction algo-
rithm. The second algorithm is a parallel search for optimal M-of-N rules that
implements a hyperparameter that controls the complexity of the extracted
rules. We apply this algorithm to a variety of deep networks and find that
although differences in architecture, dataset, and learning algorithm influence
the complexity of extracted rules, generally only the final softmax layer can
be represented simply and accurately with M-of-N rules. We conclude by ex-
perimenting with the combination of rule extraction from the final layer and
importance methods to visualize the inputs to the final layer.
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Chapter 1

Introduction

1.1 Explainable AI

As AI systems become more sophisticated in their capacity to approach a wider
variety of sociotechnical problems, an increase in their integration across al-
most all facets of society appears more likely, if not inevitable. One of the key
issues this raises is the explainability of these AI systems. Many people are
concerned about the use of AI to make crucial decisions in which there are po-
tential social impacts or even safety issues. This concern is only compounded
in the case that the AI functions as a black-box. In many circumstances it is
not adequate that an AI simply produces an answer. Instead, we may want
further indication of the reasoning used to produce the answer. Accuracy on a
test set may provide an initial metric to evaluate an AI system but the system
may still learn reasoning procedures which are generally invalid. This may
be due to a lack of contextual information in the dataset, which limits the
applicability of the learned reasoning. A striking example of this can be found
in medical predictions. In one instance, a machine learning algorithm was
trained to predict the survival rates of hospital patients based on a combina-
tion of symptoms. The predictions were meant to determine whether or not a
patient should be discharged from the hospital. When inspecting the decisions
made by the AI, it was found that a particularly deadly combination of symp-
toms was given the green light for discharge. This was because when patients
presented these symptoms, they were immediately rushed to the emergency
room, boosting their survival rate significantly. The AI system, however, only
saw that this combination of symptoms resulted in a higher survival rate and
had no means of understanding the underlying reasons behind this increase
Caruana et al. [2015]. There are many other instances in which AI systems
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develop faulty reasoning because of a lack of contextual information in the
dataset.

For these reasons, before deploying AI systems into roles with issues of safety
or ethics, we want a guarantee that decisions are not being made based on
fallacious reasoning. The simplest criterion we can impose on decisions made
by AI is the same one imposed on decisions made by humans: an explanation
for the action taken. If an AI can provide not only an answer to a query, but
an explanation of the reasoning used to produce the answer, then a human will
be able to verify that the reasoning is both sound and just. This prevents not
only incorrect reasoning, but potentially malicious use of AI systems in which
someone trains an AI with an explicit agenda.

Explainable AI has several other advantages as well. In having an explanation
of an AI’s reasoning, we can improve our ability to prevent fallacious reason-
ing and thus develop more robust AI systems. For example, it is possible that
an AI can detect features that are statistically relevant in a dataset but have
no causal efficacy. Ultimately, this renders a system incapable of generalizing
accurately. This concern has been given greater importance with the develop-
ment of adversarial attacks. Adversarial attacks are techniques used to fool a
neural network by modifying input in an imperceptible way that nevertheless
causes the network to make a false prediction Goodfellow et al. [2015]. The
success of adversarial attacks has effected the confidence that people have in
many state of the art AI systems. Explainable AI helps to prevent this by
illuminating any faulty decision making in a network that could potentially
be exploited by an adversarial attack. Furthermore, explainable AI has po-
tential to help us formulate scientific hypotheses from data that experts may
be unable to identify due to the massive amounts of available data. Finally,
the potential for explainable AI to provide insight into core cognitive processes
cannot be understated. For example, an AI that passes the Turing test but
is incomprehensible may have practical implications although it tells us very
little about how the mind works.

The issue of explainable AI seems, at first glance, to be primarily a practi-
cal one. However, in attempting to properly address the question, one cannot
avoid serious philosophical questions about the mind. At the heart of the issue
is the distinction between abstract and intuitive reasoning. Whereas abstract
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reasoning relates conceptual information via universally agreed upon deduc-
tive rules, intuitive reasoning has no concrete explanation but rather relies on a
multitude of subtle influences to make a conclusion. The initial ideas about AI
were born out of a computational theory of the mind in which mental processes
were thought of in an abstract computational framework Russell and Norvig
[2010]. This lead to the development of symbolic systems in which reasoning
processes were made explicit and encoded into systems that could make predic-
tions based on current knowledge. Over the years, the symbolic approach has
declined in popularity while more adaptable methods which do not attempt
to model abstract reasoning have grown in popularity. Currently, connection-
ist systems are among the most commonly used AI systems. Although they
are more flexible than the earlier symbolic systems, they lack the inherent ex-
plainability of the previous systems. One method of addressing this problem
is the use of rule extraction algorithms; Rule extraction aims to identify inter-
pretable symbolic rules whose behaviour corresponds with the neural network.
Generally speaking, the set of symbolic rules that can be used as explanations
for a neural network is exponential and makes exhaustive searches intractable.
In addition to computational difficulty, rule extraction is complicated by the
presence of competing objectives, namely accuracy and complexity. As we will
see, for most significant practical applications the difference between a sym-
bolic and connectionist system is mainly representational. This means that in
most cases we can represent any neural network with a corresponding sym-
bolic system to an arbitrary degree of accuracy. However, the symbolic system
itself may be no more interpretable than the network. The goal, then, is to
find symbolic systems which faithfully capture the behaviour of the network
while being of limited complexity. The existence of such rules is by no means
guaranteed and in many cases it seems reasonable to assume that a network
cannot be represented by an interpretable set of rules.

In the domain of deep learning, neural networks are arranged hierarchically
with lower layers feeding into higher layers. The use of rule extraction as a
method of explanation for deep networks has been limited. This is perhaps
mainly due to the fact that a full symbolic account of a deep network would
have to itself be hierarchical, with rules explaining lower levels of a network
feeding into rules explaining higher levels. Errors generated in one layer of the
symbolic system are propagated upwards and compounded potentially causing
a dramatic drop in overall fidelity. This issue, combined with the large number
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of hidden units in a deep network has meant that layer-wise rule extraction
as a method of explanation for deep networks has not often been attempted.
More often, model-agnostic methods which ignore the underlying structure of
the model are employed. Although these have been effective to some degree,
ignoring the structure used by a model makes evaluation of explanations more
difficult. How can we be certain that the explanations given are an accurate
representation of the reasoning employed by the model?

Although the hierarchical nature of deep networks provides a barrier to the
application of layer-wise rule extraction as an effective method of explanation,
it also provides an opportunity for its use in a more limited scope. By applying
rule extraction to higher layers we can explain the reasoning of the model in
terms of the input to those layers. By treating the inputs to higher layers as
atomic concepts to be explained with model-agnostic methods we can explain
more of the structural reasoning of the network through rule extraction than
we could by using model agnostic methods on their own.

In order for this to work we must first examine the effectiveness of rule ex-
traction for providing interpretable explanations of different layers of a deep
network before deciding how to apply it in conjunction with other methods.
We begin by reviewing the difference between symbolic and connectionist AI
and the methods that have been develop to integrate the two before analyzing
previous rule extraction algorithms. From there we develop the necessary pre-
liminaries and present two new M-of-N extraction algorithms; one of which is
fast but relies on a weaker heuristic and the other which is slower but carries
out a more thorough search. The first algorithm can be applied to large net-
works in which more thorough searches are not feasible. The second algorithm
can be applied to small and medium sized networks and will mainly be used
to evaluate the layer-wise explainability of deep networks.

1.2 Neural-Symbolic Computing

Traditionally, there have been two approaches to AI: the symbolic approach
and connectionism. Symbolic AI is based on a computational theory of the
mind, that is one in which the mind is viewed as a computational model operat-
ing on abstract symbols in a syntactic way. The goal of symbolic AI is to come
up with computation models that resemble cognitive processes. In this view,
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cognitive processes relevant to AI operate at the level of abstract concepts
rather than low-level sensory information; hence in symbolic AI the semantic
meaning of a symbol is not as relevant as its syntactic relationship to other
symbols. Over the years many symbolic systems have been described. Often
these systems fall into the category of logic programming. Logic programming,
in which the central object of study is the logic program, is an attempt to model
computation in a logical framework. A logic program is made up of a set of
sentences called rules which are typically written as A← X1, ..., Xn. Here the
truth of the right hand side (called the body or antecedent) implies the truth
of the left hand side (called the head or consequence). Logic programs can be
seen as a computational model operating on a set of concepts by considering
the implications of the concepts an agent holds true at a given time. In many
cases, it is desirable to have a guarantee that an initial set of beliefs will settle
on a stable set of unchanging beliefs. This is guaranteed in one important
restriction of logic programming in which a rule is restricted so that there are
no negations in the body. Clauses of this form are called Horn clauses and
the convenience of their semantics has led to them being extensively studied.
many other variants of logic programming also exist, some of which have stable
model semantics and some of which do not.

Connectionism takes a more bottom-up approach to AI. Instead of abstract
symbols and rules, Artificial Neural Networks (ANNs) are the main object of
study in connectionism. ANNs are biologically inspired models that consist
of a large number of simple computational units called neurons (also referred
to as units or nodes) which interact with each other via weighted connec-
tions. By adjusting these weights in response to observed data, ANNs can be
trained to perform a large number of tasks often with little or no hard-coded
background knowledge (although the design of the network and training pro-
cedures may be influenced by the desired task). This flexibility has lead to
ANNs being deployed in a large number of industrial and academic settings.
Despite symbolic AI being more popular in the 1960s and 1970s, the success of
ANNs has lead to connectionism becoming the dominant force in contempo-
rary AI. Philosophically, the connectionist position is distinct from symbolic
AI in that it views many cognitive processes as taking place at the subsymbolic
level instead of the symbolic level. The argument is that many thoughts or
ideas cannot necessarily be explained solely in terms of other previously held
abstract ideas. Rather, they can only be explained by looking at the level of
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neurons. Even if an idea can then be verified through symbolic systems, the
source of the idea is not the result of a symbolic system but of a subsymbolic
system. The subsymbolic position was fully elucidated during the early devel-
opment of connectionist systems making it a distinct philosophical position in
cognitive science rather than a simply practical approach to problem solving
in AI Smolensky [1988]. Much discussion on the subsymbolic vs. symbolic
debate was generated including a rebuttal highlighting some of the challenges
connectionism must overcome in order to be viewed as a general cognitive
model McCarthy [1988].

Many experts in AI have long observed that many of the strengths and weak-
nesses of connectionism and symbolic AI are complementary. The flexibility
of connectionism is lacking in symbolic AI whereas the transferability and in-
terpretability of symbolic AI is lacking in connectionist systems. This has lead
to the development of neural-symbolic systems, systems looking to integrate
the connectionist and symbolic approach in a way that can capitalize on the
benefits of both systems without the disadvantages of either. The neural-
symbolic approach can be divided into three categories: The implementation
of symbolic systems with connectionist systems, the extraction of logical sys-
tems from connectionist systems, and the creation of new systems with both
connectionist and symbolic components. The first category, the encoding of
symbolic knowledge in connectionist systems, has been given much academic
attention Garcez et al. [2008]. Not only does this area have practical applica-
tions, but the fact that propositional modal logic can be encoded in a neural
network at least partially addresses the "propositional fixation" identified as
one of the epistemological challenges of connectionism Garcez [2005]. The
foundation of this encoding is the CILP (Connectionist Inductive Logic Pro-
gramming) Garcez and Zaverucha [1999]. At its most basic, CILP implements
the immediate consequence operator of a Horn Logic Program. Running the
CILP system for enough iterations will result in the network entering a stable
configuration corresponding to the least-fixed point of the immediate conse-
quence operator. This means that CILP effectively defines the semantics of
the corresponding Horn Logic Program. Modal propositional logic programs
can be encoded using an ensemble of CILP networks. Prior to CILP, a similar
method of encoding propositional knowledge into ANNs was given by Knowl-
edge Based Artificial Neural Networks(KBANN) Towell and Shavlik [1994]. As
we will see, the encoding and extraction of symbolic rules to/from neural net-
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works is almost always – at least in theory – possible. However, in doing so we
often lose the very advantages that make one system appealing over another.
In order to properly understand these difficulties we must first formalize the
relationship between connectionist systems and neural networks.

1.3 Outline

With the need for explainability in AI becoming more apparent, the question
of rule extraction has attracted renewed interest. Despite decades of work,
rule extraction remains unable to be used as a general-purpose explainability
technique. Some researchers point to a fundamental incompatibility between
neural-networks and symbolic systems as a likely culprit, but the formal dis-
tinction between the two approaches is often unclear, making it difficult to
distinguish between what is the result of a fundamental limitation and what is
merely the result of practical difficulties. In this thesis, we attempt to provide
an answer to that question using two different approaches; the first theoretical
and the second empirical. The first approach is the development of a concrete
theoretical framework in which to understand the relationship between neu-
ral networks and symbolic systems. Within this formalism, we elucidate the
difference between semantic and syntactic relationships and outline theoret-
ical as well as practical limitations to the different approaches. This allows
us to recontextualize existing neural-symbolic algorithms in such a way that
makes clear exactly how different classes of neural networks can be expressed
as symbolic systems and vice-versa. We add to this literature by providing sev-
eral fundamental baseline relationships between propositional logic and various
feed-forward network architectures. With the theoretical equivalences clarified,
we develop a rigorous notion of fidelity that generalizes various other notions of
fidelity that have been used in the past. Turning our attention to rule extrac-
tion specifically, we make the argument that complexity is the sole theoretical
factor that distinguishes connectionist and symbolic models, at least from the
perspective of explainability.

The second approach we take is empirical. We develop two rule extraction
algorithms based on the M-of-N framework. The first being a fast decom-
positional algorithm for RBMs (Restricted Boltzmann Machines) that can be
applied iteratively to explain DBNs (Deep belief Networks). The second al-
gorithm searches over a space of M-of-N rules ordered by weight and uses a
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complexity measure along with an approximation of fidelity as a regularized
loss function. By weighting the complexity loss with a hyperparameter we can
vary the trade off between fidelity and complexity that our extraction algo-
rithm produces. This allows us to empirically address the question of whether
or not there exist sufficiently simple rules that can accurately explain a deep
network. We test this question with deep CNNs (Convolutional Neural Net-
works) trained on multiple datasets, using different transfer functions, and
with different learning algorithms. Applying our search in a layerwise fashion
we find that the internal layers of a deep networks are in general too complex
to be considered adequately explainable with rule extraction. However, under
most circumstances the final softmax layer is remarkably explainable. We use
this result to justify further experiments in which rule extraction is applied
to the final layer and other explainability methods are used to visualize the
inputs to the final layer. With these experiments we give a proof of concept for
a new method of modular explainability. Rather than use a single approach
to provide an explanation we use rule extraction in conjunction with other
methods to explain features of a deep network at different levels. Output la-
bels are described in terms of a logical rule system whose inputs are explained
visually. These modular explanations mirror the distinction between symbolic
and subsymbolic computing making them an extremely appealing approach
to explainability. We also provide some initial experiments on the effect of
final layer rule extraction on robustness, indicating that final layer rule extrac-
tion provides a small improvement to robustness against numerous adversarial
attacks. We conclude by discussing how the modular approach could be im-
proved and extended.

In chapters 2 and 3 we give a brief overview of neural networks and logi-
cal systems, reviewing the required preliminaries and clarifying notation. In
chapter 4 we develop our framework for neural-symbolic integration. This in-
cludes all relevant definitions as well as several theorems relating feed-forward
networks to propositional logic along with key observations and identities. We
also discuss computational issues relating to recurrent networks including the
potential importance of hypercomputation. In chapter 5 we review previous
extraction and encoding techniques used in neural-symbolic computing. We
describe the encoding techniques inside our formalism allowing us to more
clearly map out the existing relationships and those that still need to be es-
tablished. Moving on to the empirical portion of the thesis we discuss the
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approach of layerwise rule extraction in chapter 6. This involves the descrip-
tion of a fast M-of-N extraction algorithm along with experiments applying
it to RBMs. In chapter 7 we describe our slow extraction algorithm in de-
tail. chapter 8 contains the results of all experiments conducted using the
slower M-of-N extraction algorithm algorithm. This includes both the charac-
terization of the fidelity/complexity relationship along with our experiments
in modular explainability approaches. In the concluding chapters we review
our theoretical and experimental results and discuss future directions for the
research.

1.4 Objective and Contributions

The objective of this thesis is to examine the limitations and potential of rule
extraction as a method of explainability for neural networks and, in particular,
deep networks. Although plenty of rule extraction algorithms exist, they are
unable to explain neural networks in general. Furthermore, many have criti-
cised the approach of rule extraction based both on practical and philosophical
grounds. The practical argument maintains that the distributed nature of neu-
ral networks along with the large number of parameters makes rule extraction
unlikely, if not impossible. The philosophical argument views neural networks
as operating in a fundamentally different way than symbolic systems, making
the extraction of rules from a neural network futile. We contribute to this
discussion by systematically addressing this question. We develop an ana-
lytic framework help formalize the arguments against rule extraction into a
precise quantitative question. We develop multiple extraction algorithms to
give empirical evidence for the relative explainability of a deep network. The
contributions are summarized as follows

• The development of a theoretical framework for neural-symbolic integra-
tion

• The clarification of several issues facing neural-symbolic integration using
this framework. These include the distinction between semantic and
syntactic encodings as well as the reduction of the arguments against
rule extraction to a precise issue of complexity

• The formalization of several equivalences between neural networks and
propositional logic that had yet to be elucidated as well as the contex-
tualization of previous neural-symbolic results into the framework
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• The development of a fast M-of-N extraction algorithm based on confi-
dence rules that can be applied to deep networks

• Several results outlining the limitations of the decompositional extraction
of confidence rules from DBNs

• The development of a slower M-of-N extraction algorithm that can ex-
plicitly relate complexity and accuracy

• The experimental application of M-of-N rule extraction to a variety of
deep neural networks layer-by-layer, identifying the final layer of CNNs
as a good target for rule extraction as well as providing evidence for the
claims against full end-to-end rule-based explanation methods

• Proof of concept experiments for a new, modular approach to explainabil-
ity that combines visualization methods with final-layer rule extraction

• Preliminary experiments on the effect of final-layer rule extraction on
robustness

The following publications contain material in this thesis

• Simon Odense, Artur Garcez, Confidence Values and Compact Rule Ex-
traction From Probabilistic Neural Networks, NeSy 2017

• Simon Odense, Artur Garcez, Extracting M of N Rules from Restricted
Boltzmann Machines, ICANN 2017

Both publications relate to the extraction of M-of-N rules from RBMs. The
first publication deals with the issues inherent to using conjunctive confidence
rules covered in sections 6.1 and 6.2. The second publication contains the
details of algorithm 2 in section 6.4 along with experimental results.
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Chapter 2

Artificial Neural Networks

2.1 The Idealized Neuron

In order to study neural computation we begin by reviewing its basic defini-
tions. The central object of study in neural computation is the artificial neural
network (ANN). A neural network is a highly parallel model consisting of sim-
ple computational units called neurons which communicate to each other via
a set of connections called weights. Artificial neural networks were developed
as a computational model meant to replicate the behaviour of the biological
neural networks found in the nervous system McCulloch and Pitts [1943]. Al-
though substantial differences exist between the neurons found in the nervous
system and the idealized neurons used in artificial neural networks, the central
idea is preserved. A neuron receives input from the neurons to which it is
connected. If the total input crosses a certain threshold the neuron will fire,
sending the signal to all the other neurons it is connected to Hodgkin and
Huxley [1952]. To be explicit, we denote a neuron by a variable xi, the output
of the neuron is denoted O(xi) and its input I(xi). In the basic conception
of an ANN the input of xi is determined by a weighted sum of the outputs of
the neurons connected to xi, in other words I(xi) =

∑
j

wj,iO(xj) + bi. Here

wj,i ∈ R is the connection from neuron xj to xi and bi ∈ R is an additional pa-
rameter called the bias. The output is then defined by the simple step function
defined by f(x) = 1 if x ≥ 0 and f(x) = 0 otherwise. This gives us O(xi) = 1

if I(xi) ≥ 0 and 0 otherwise.

The power of neural networks comes from their ability to adapt via a learning
algorithm. Given some test input/output examples (supervised) or input ex-

12



amples (unsupervised), the neural network adapts by adjusting its weights in
order to mimic the desired behaviour. The ability of neural networks to learn
has made them an invaluable tool for AI.

The basic neuron described above can be generalized considerably by allowing
for various transfer functions (also called an activation function). A transfer
function is a function g : R → R which maps the input of a neuron to its
output. We can further generalize the artificial neuron by allowing the output
to take multiple or continuous values. The output of a neuron is then given
by O(xi) = g(I(xi)). Transfer functions for neurons taking continuous values
are generally continuous. Popular transfer functions include tanh, the logistic
function σ(x) = 1

1+e−x , and the rectified linear function,

Relu(x) =

{
0 x < 0

x x ≥ 0

The output equation is then written as xi = g(
∑
j

wj,ixj+bi). A neural network,

N , defines a function on its state space by N(x1, ..., xn) = (O(x1), ..., O(xn)).
We will use N t to denote the function resulting from the application of N
repeatedly t times. From this point on, we will generally suppress the notation
for input output and transfer function and simply use xi to refer to the output
value of neuron xi. The application of a neural network is largely dependent
on the connectivity pattern of the weights, the choice of transfer function,
and the specific learning algorithm. The remaining sections in this chapter are
dedicated to reviewing the popular variations of neural networks that are most
relevant for neural-symbolic computing.

2.2 Feed-Forward vs. Recurrent Neural Net-

works

The behaviour of a neural network is constrained by its architecture. The most
significant distinction is between feed-forward and recurrent networks which we
will discuss here. In order to understand the architecture of a neural network
we discuss how the weights of a network can be converted to a graph before
going over the most pertinent examples of feed-forward and recurrent networks.

The weights of a neural network define a connectivity graph between neurons.
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From a neural network, we can extract a graph with nodes corresponding to
the neurons and edges connecting nodes which have a non-zero weight. To be
precise, given nodes i, j corresponding to neurons xi, xj, there is an edge ei,j if
and only if wi,j 6= 0. A neural network is called feed-forward if its graph has
no cycles and recurrent otherwise. Feed-forward networks can be thought of
as functional approximators representing a function from a set of input neu-
rons to a set of output neurons. The most basic feed forward network is the
perceptron Rosenblatt [1957] which consists of a single layer of input neurons
fully connected to a single layer of output neurons. The neurons are assumed
to take binary values while the transfer function is a simple step function.
Equipped with a learning algorithm called the perceptron learning algorithm,
a perceptron can iteratively update its weights based on example input/output
pairs. The perceptron algorithm works as follows: given examples from a train-
ing set, S, and a initial set of weights, w, if the perceptron predicts 1 when
the correct output is 0, update the weight by w ← w + x. If the perceptron
predicts 0 when the correct output is 1, update the weight by w ← w − x.
Repeat until convergence or for a fixed number of iterations. By taking exam-
ples from a training set, the perceptron will hopefully learn an input/output
relationship that can generalize correctly to unseen examples. The generaliza-
tion capabilities of a neural network are evaluated using a test set which is a
set of examples that are not used in the learning algorithm but reserved to
evaluate the accuracy of the final model. The perceptron learning algorithm is
an example of a supervised learning algorithm since the target output is given
to the algorithm to calculate the weight update.

Although a perceptron is adequate for many classification tasks, it can only
represent functions which are linearly separable. That is, functions whose out-
put classes can be separated with a linear decision boundary. Functions whose
output classes cannot be separated by a linear decision boundary, for example
the XOR function, can not be expressed with a perceptron. This limitation
can be overcome by adding a hidden layer of neurons between the input and
output layers with a nonlinear activation function. This modification turns
the simple perceptron into a multi-layer perceptron (MLP). Unlike simple per-
ceptrons, the MLP is a universal functional approximator Hornik et al. [1989].
This means that any continuous function on a compact set can be represented
by an MLP. Rather than use the perceptron learning algorithm, MLPs learn
by using gradient descent. In gradient descent an error function is minimized
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by calculating the gradient of the error function with respect to the model
parameters and updating the parameters to move down the gradient. Ideally,
over time a minimum of the error function will be reached. This can be com-
plicated by the existence of local minima in the error function leading to the
adoption of many different strategies to combat this. The most common error

function is the mean squared error defined by E = 1
n

n∑
i=1

|Yi − Ŷi| where Yi is

the output label associated to example i, Ŷi is the output label predicted by
the network. Given an example, or set of examples, each parameter of the
network, wi, is updated using the update rule wi ← wi + α dE

dwi
where α is a

hyperparameter in the range [0, 1]. In order to calculate the gradient, MLPs
use a technique called backpropagation in which the error at the output layer
is propagated backwards in order to calculate the error accumulated in the
previous layer. Rather than use the chain rule to compute dE

dwi
for each wi

at each layer, backpropagation calculates a quantity δl that can be used to
calculate the gradient for the parameters in each layer l. δl is defined recur-
sively. Starting with the final layer L, we have δL = (gL)′∇aLE where (gL)′

is the derivative of the activation function of layer L evaluated at the inputs
to layer L and ∇aLE is the gradient of the error function with respect to the
activation values of the neurons in layer L for the test example. Moving on we
have δl−1 = (gl−1)′ · (W l−1)T · δl where (gl−1)′ is the derivative of the transfer
function at layer l−1 evaluated at the inputs to layer l−1, and (W l−1)T is the
transpose of the weights at layer l−1. The name backpropagation comes from
the recursive calculation of δ. The actual gradient with respect to a weight in
layer l is given by δl · al−1 where al−1 is the activation values of the neurons
at layer l − 1. Given an input example, backpropagation uses a forward pass
to calculate the input values at each layer as well as the activation values at
each layer. It then does a backward pass calculating δ at each layer and uses
this to calculate the gradient of the error function with respect to the weights
at that layer. Backpropagation has become an essential tool in the training
of neural networks Rumelhart et al. [1986]. Further refinements to the super-
vised learning algorithm involve the use of regularization terms on the error
function, additional terms taking into account the second derivative for the
weight update, the inclusion of momentum in the weight update, and many
more. Bengio [2012] gives a practical overview of the various techniques for
optimizing the learning process and their application.

Feed-forward neural networks are most commonly treated as functions. Given
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Figure 2.1: Example architecture for a feed-forward (left) and recurrent (right)
network

an input pattern, they produce an output by calculating the activations of each
successive layer until the end of the network is reached. This means that the
activations of neurons in layers not currently being calculated are generally ig-
nored. For practical purposes this is not important, however it adds a technical
quirk to our theoretical analysis. As we define them, neural networks start in
an initial state and update the activations of every neuron at each time step.
Although there are frameworks where activations are updated asynchronously,
for simplicity, we generally limit our discussion to networks which update syn-
chronously. One issue with this definition is that the input neurons in a feed
forward network, having no connections or bias, will always revert back to the
same state regardless of the input configuration. In some instances this is de-
sirable (for instance, computing the minimal model of a Horn logic program,
as we will see in chapter 5). Unfortunately, it fails to capture the way in which
feed-forward networks are usually used. Luckily, we can rectify this by giving
the input units self-connections of 1, a bias of 0, and a linear activation. This
ensures that the input neurons will remain in their initial state. When giving
an initial state, we must also choose one for the hidden layers. Because we do
not care what the initial activation of the hidden layers is, we will consider all
initial states equivalent if they differ only by the value of hidden units which
have not been calculated by previous layers. We will formalize this when we
discuss proposition encodings of feed-forward networks. Although technically
this modification makes the network recurrent (due to the self connections),
we will consider feed-forward networks as either those which are feed-forward
by definition or those described above. Recurrent neural networks are most
often used to model time series. Recurrent neural networks most often have
a visible and hidden layer similar to MLPs. The difference between recurrent
networks and feed-forward networks is due to the recurrent connections within
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the hidden and/or visible layer which allows the network to model time depen-
dency. Recurrent networks are most often used for unsupervised learning tasks
where the goal is predict the next m steps of a time series given the previous
n steps. Learning in recurrent networks can be difficult, often requiring the
use of backpropagation through time which is vulnerable to problems such as
vanishing gradients in addition to being computationally difficult for long time
series. Despite this, there are numerous powerful recurrent networks such as
the Long-Short Term Memory and Recurrent Restricted Boltzmann Machine
which have successfully been applied to an number of tasks Hochreiter and
Schmidhuber [1997], Sutskever et al. [2008]. Although recurrent networks in
general are capable of more complicated dynamic behaviour than feed-forward
networks, some recurrent networks share the property that, given any starting
state, eventually the network will settle to a stable state. Neural networks
with this property are an important class of networks for machine learning;
formally defined as follows

Definition 2.2.1. A neural network, N , is stable if for all initial states, x0,
there exists t > 0 such that for all t′ ≥ t, N t′(x0) = N t(x0)

Next we examine what is perhaps the most well-known class of stable recurrent
networks.

2.3 Symmetrically Connected Networks

One of the most important kinds of recurrent neural networks is the Symmet-
rically Connected Network (SCN). A symmetrically connected network is a
recurrent neural network which satisfies two properties, the first is that for all
i, wi,i = 0, the second is that for all i, j, wi,j = wj,i hence the name symmet-
rically connected networks. The standard example of an SCN is the Hopfield
network. The Hopfield network is an SCN in which, like the simple percep-
tron, the neurons take binary values and the transfer function is given by the
standard step function Hopfield [1982]. The other common variant of the Hop-
field network is the Boltzmann Machine, Ackley et al. [1985]. The Boltzmann
machine is a probabilistic analog of the Hopfield network in which the logistic
function is used as a transfer function. Because the Boltzmann machine is
probabilistic, the transfer function calculates the probability that a neuron will
be activated rather than its activation value. For instance, in a 3 neuron net-
work with weights w1,2 = 1, w1,3 = −11, w3,2 = 2 and biases uniformly equal
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to 0, P (x3 = 1|x1 = 1, x2 = 1) = σ(w1,3x1 + w2,3x2 + b3) = σ(0) = 0.5. When
running an SCN, the neurons are usually updated asynchronously, that is they
updated one at a time rather than all at once.

The dynamics of an SCN are governed by the following energy function E(x) =
1
2

∑
i,j

xixjwi,j+
∑
i

bi. Although SCNs are recurrent networks, (because wi,j and

wj,i form a path from i to itself for all i) they are different from many recurrent
networks because they are guaranteed to settle to a stable state (or a stable
distribution in the case of Boltzmann machines). This is because each time the
network is updated it will move to a state of either the same, or lower energy.
Because there are only a finite number of states the network much eventu-
ally reach a stable state. For this reason, Hopfield networks are thought of as
associative memories in which the stable states are the stored memories and
the starting configurations are the noisy memories meant for retrieval. Boltz-
mann machines, on the other hand, are used to model probability distributions.

SCNs are trained using Hebbian learning. In Hebbian learning weights are
updated based on the mutual firing patterns of the two connected neurons
Hebb [1949]. We can store a single pattern of activation by setting each weight
wi,j = xixj. For multiple patterns we simply take the sum of the pairwise acti-
vations over every pattern. In Boltzmann machines the corresponding update
rule is E[xixj]0 − E[xixj]inf where the first term is the expected value in the
desired distribution and the second term is the expected value in the Boltz-
mann distribution of the network. Since calculating the expected value in the
Boltzmann distribution involves summing an exponential number of terms this
becomes quite difficult.

Often SCNs are partitioned into visible and hidden units. The network dy-
namics are unchanged but we are only concerned with learning patterns of the
visible units. The hidden units exist solely to provide computational power.
For example, we may wish to store a number of m-dimensional patterns in
a Hopfield network with m visible neurons and k additional hidden neurons.
The capacity of this network will be larger than one without the hidden units.

SCNs have played an important role in the modern development of deep learn-
ing LeCun et al. [2015]. In order to help train deep networks, a particular
variant of the Boltzmann machine known as the Restricted Boltzmann Ma-
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chine (RBM) was used. An RBM is a Boltzmann machine which is partitioned
into a set of visible and hidden units. The RBM is further restricted by dis-
allowing connections with the visible and hidden layer. In order to use RBMs
to pretrain a deep network, first an RBM is trained on the input distribution.
This is done using an algorithm called contrastive divergence, which uses Gibbs
sampling to approximate the log-likelihood of a pattern in the Boltzmann dis-
tribution Hinton [2002]. Once the first RBM is trained, a second RBM is
placed on top of the first and trained on the hidden distribution of the first
RBM conditioned on the visible distribution. This process is iterated until
the desired number of layers is achieved. A softmax layer is then placed on
top of the final RBM and the whole network is trained using backpropagation
in order to fine-tune the weights. By pre-training with RBMs, we are essen-
tially initializing a deep network so that it will be closer to the desired solution.

The success of unsupervised pre-training in deep learning lead to an explosion
in the application of deep networks. Today other methods of deep learning are
more popular but the use of RBMs in deep networks remains an important
breakthrough in the field of deep learning.

2.4 Deep Neural Networks

The explosion in neural networks is in large part due to the effectiveness of
deep neural networks. These are our central object of concern for rule extrac-
tion and so we will review the basic definitions as well as some of the tentative
theory that has been developed to explain their effectiveness.

Deep neural networks are neural networks which have multiple (often many)
hidden layers. Deep networks can be feed-forward or recurrent but the net-
works we will focus on are deep feed-forward neural networks. Although the
universal approximation theorem for neural networks shows that any measure-
able function on a compact set can be expressed as a feed forward network with
a single hidden layer Hornik et al. [1989], deep networks are often thought to
be able to represent functions more efficiently. This has some theoretical sup-
port assuming certain conditions Delalleau and Bengio [2011], Mhaskar et al.
[2016], but it is not likely true that a deep architecture will be more efficient (in
terms of number of neurons, parameters, or training time) for every conceiv-
able problem. This can be seen as an instance of the ‘no free lunch’ theorem in
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machine learning which states that over the entire problem domain, no learning
algorithm is better on average Wolpert and Macready [1997]. The immediate
implication of the no free lunch theorem is that in order to achieve exemplary
performance on some set of tasks, it may be necessary to equip the learning
algorithm with an appropriate inductive bias. Furthermore, although this in-
ductive bias will be beneficial for a certain subset of tasks, it will likewise make
our algorithm perform worse on a different set of tasks. A universal inductive
bias, one which is beneficial for all learning tasks, does exist, and it has been
argued that the no free lunch theorem is thus not a real constraint on machine
learning Lattimore and Hutter [2011]. However, the universal inductive bias
is uncomputable and whether approximations to this bias can prove useful to
machine learning is an ongoing research problem. Luckily, most kinds of tasks
that we are interested in modelling with AI share similar properties which we
can exploit with neural architecture and/or inductive biases. In particular,
many datasets in AI can be represented with a hierarchical structure. This
argument has been extended to physics where it has been argued that the
prevalence of low-dimensional Hamiltonians in nature makes hierarchical rep-
resentations more efficient for most tasks to which deep learning is applied Lin
et al. [2017].

The standard method of learning in deep networks is gradient descent through
back-propagation. The computational difficulty of this task prevented the
widespread use of deep networks until a major breakthrough showed that
a deep-network could be effectively pre-trained by greedily training RBMs
stacked on top of one another Hinton et al. [2006]. Doing so results in a
Deep Belief Network (DBN), a type of neural network (or generative graphical
model depending on your view) consisting of layers of latent variables with
connections running between one layer and then next but with no connections
within a layer. The procedure for doing this is as follows: begin by training an
RBM on the dataset using contrastive divergence. Next, train another RBM
on the conditional distribution of the hidden units of the first RBM given the
dataset. Repeat this process for as many layers as desired. Each time we stack
another RBM on top of our network, we are adding another layer to the deep
network by training it to learn a hidden representation of the previous layers
hidden units. In doing this, ideally the network will learn a representation of
the input data that makes supervised learning converge to an accurate solu-
tion faster. Following the unsupervised pre-training, we enter a ‘fine-tuning’
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phase where back-propagation is applied in the standard way. If the network
was able to find a suitable representation of the input data, then the network
we begin back-propagation with will be much closer to a solution than one
that was initialized randomly. A common alternative to RBMs is to use au-
toencoders in the pre-training phase. Autoencoders are feed-forward networks
with a single hidden layer which are trained using back-propagation but with
the output layer made identical to the input layer. In other words, it learns
an encoding of the data in the hidden layer which it then decodes to produce
the original input. In either case the idea is the same - to produce a network
which, internally, encodes a faithful representation of the data which one can
then use for supervised learning. Although these techniques have proven to
be effective, the theory behind deep learning has not developed at a similar
pace. The intuitive justification for hierarchical representations has yet to be
formalized. Some have attempted to use the information bottleneck frame-
work to understand the success of deep learning Tishby and Zaslavsky [2015]
but counter examples have shown that some deep networks are effective de-
spite not conforming to the optimality conditions of the information bottleneck
Saxe et al. [2018]. Aside from the rudimentary theory and intuition we out-
lined above, the finer details of the efficacy of deep learning remain mysterious.

Following the initial success of unsupervised pre-training, many smaller adjust-
ments to the learning process have been developed to improve deep learning.
Examples include changing the activation functions from smooth sigmoidal
functions to the piece wise linear Relu units and the use of drop-out. Le-
Cun et al. [2015]. With all of these improvements to technique along with
hardware optimization, modern deep learning no longer relies on unsupervised
pre-training but it does remain an important tool in the extensive machine
learning package that was developed in the subsequent decade. Perhaps the
most important tool in that package is the use of convolutional weights which
is the topic of the next section.

2.5 Convolutional Neural Networks

The success of deep learning highlights the importance of network architec-
ture in machine learning. Although a single hidden layer in both recurrent
and feed-forward networks is sufficient to represent any function, it does not
mean that, given a learning algorithm and dataset, a single layer network will
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be effective in finding a good solution to the problem. The architecture of a
network forces the solution to be represented in a certain form that allows the
learning algorithm to have a better chance of converging to the correct general
solution. The reasons why deep learning are effective were briefly discussed in
the previous section; however, the hypothesis presented there remain largely
conjectural. Another structural bias that has become of great importance is
the use of convolutional weights. Convolutional weights exploit symmetry in
the dataset by restricting the connections of a hidden neuron to a small seg-
ment of the total number of input neurons. For each segment, a copy of this
neuron is made with identical weight values but connecting to a different seg-
ment. Collectively, the neurons with a specific set of weights are known as a
filter. Convolutional neural networks have the dual advantages of a reduced
number of parameters and a natural invariance to translation, a property that
is fundamental to natural image data. This is another example of structural
inductive bias. Just as deep architectures have naturally model the hierarchi-
cal structure of a dataset, the inclusion of convolutions in neural layers injects
knowledge about the statistical properties of natural images and other locally
invariant datasets directly into its structure. The inclusion of this bias can
be mathematically justified assuming that the dataset has a compositional
structure Mhaskar et al. [2016]. This puts convolutions on theoretically better
footing than deep networks as the use of convolutions in a network can be
analytically shown to reduce the number of parameters required to represent
a compositional dataset.

Many datasets are compositional, the most obvious of these is image data.
For this reason, Convolutional Neural Networks (CNNs) have become a funda-
mental tool in computer vision. CNNs build the locality of image data directly
into the network. To do this, the input image is divided into patches. For ex-
ample, if the input is a 28× 28 image and we want to use 3× 3 image patches,
we associate a filter to the collection of 28× 28 = 784 image patches each cen-
tered at one of the input features. If a patch extends beyond the boundaries
of the image then we ignore the portion of the patch outside the image al-
though other padding techniques are sometimes used. Each filter represents a
collection of neurons with identical weights but connected to a different patch
of the image. Because the neurons in a filter have identical weights, they all
represent the same feature. The result of this is that translating a feature in
an image will not effect behaviour of the network because there will always be
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Figure 2.2: A 2× 2 filter on 3× 3 input.

a neuron in the filter that detects the feature in its image patch.

The combination of deep architectures and convolutional layers has resulted
in state of the art image recognition. Deep convolutional networks will be the
focus of our rule extraction experiments. Now that we have described the most
important neural networks we move on to a description of symbolic systems.
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Chapter 3

Symbolic Systems

3.1 Symbolic Reasoning and Logical Systems

In this chapter we review the symbolic systems that are most relevant to
neural-symbolic integration. Although it is straightforward to define neural
networks, what does and does not count as a symbolic system is more ambigu-
ous. Symbolic systems are intuitively understood as systems which operate by
reasoning with or manipulating abstract symbolic data. In chapter 4 we will
discuss this in more detail along with a comparison to the intuition underlying
connectionism, but for now we will recall the important concepts underlying
the kind of symbolic systems we will focus on: logical systems. We will then
review those systems that have the strongest connection to neural-symbolic
integration.

A logical system consists of a formal language that is interpreted via some
kind of semantics along with a collection of deductive rules. The semantics
are defined in terms of models. A model is a way of interpreting the abstract
entities described by the language that allows one to determine whether or not
a sentence is true under that interpretation. Deductive rules are used to derive
sentences that are logically follow from another set of sentences. A set of sen-
tences in a logical system is known as a knowledge base. Given a knowledge
base, L, we say that L entails l or L � l if l is true for every model in which all
sentences in L are true. We say L ` l if there is a deductive rule which derives
l from L. A sound deductive system is one in which L ` l implies L � l and a
complete deductive system is one in which L � l implies L ` l. A sound and
complete deductive system is one that exactly describes the semantic relation-
ship between statements in the knowledge base.
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These concepts are most easily demonstrated with the prototypical logical
system: propositional logic. The language of propositional logic consists of a
countable set of propositional variables, X1, X2, ... (also known as atoms) and
the set of connectives {¬,→,∧,∨}. A well-formed formula in propositional
logic is either an atom, or derived from other well-formed formulas, φ, ψ via
one of the following rules: ¬φ, φ∧ψ, φ∨ψ, φ→ ψ. A truth assignment is a an
assignment of either true or false to each of the atoms. A truth assignment on
atoms extends to a truth assignment on sentences by the following rules:

¬φ is True iff φ is not True
φ ∧ ψ is True iff φ and ψ are True
φ ∨ ψ is True iff φ or ψ are True
φ→ ψ is True iff ¬φ ∨ ψ is True

The symbol ¬ is known as not or a negation, ∧ is known as and or a conjunc-
tion, ∨ is known as or or a disjunction, and → is known as an implication.
Implications are usually written left to right but sometimes also right to left.
The arrow in an implication points from the antecedent and to the consequence.
A double arrow, φ ↔ ψ, is used as a shorthand for (φ → ψ) ∧ (ψ → φ). A
truth-assignment is a model of a sentence if it assigns it a value of True. For
convenience, truth assignments in propositional logic are often represented by
the set of atoms that are assigned true. For example, given a propositional
system with the atoms X1, X2, X3, the truth assignment that assigns true to
X1 and false to X2 and X3 is represented as {X1}. This notation will be used
for logical systems that share the syntax and method for evaluating truth with
propositional logic; specifically, logic programming and penalty logic.

Propositional logic is equipped with a set of inference rules that allow you
to deduce the truth of a sentence from the truth of other sentences. We will
not spend much time discussing inference rules in this thesis; however, several
propositional inference rules of propositional logic will be used in our develop-
ment of a syntactic encoding of feed-forward neural networks into propositional
logic. For this reason we will discuss three important inference rules. The first,
and perhaps the most famous, is known as modus ponens. Given propositional
sentences φ and ψ, if a knowledge base contains {φ → ψ, φ} then modus po-
nens allows us to deduce ψ. The other rules that will be implicitly referenced
are simplification and conjunction. Simplification tells us that from {φ ∧ ψ}
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we can deduce φ and ψ. Conjunction tells us that from {φ, ψ} we can deduce
{φ ∧ ψ}. Propositional logic will be the foundation for the majority of logi-
cal systems we discuss. But first-order logic also plays a central role in logic
programming as well as providing an example for a system of semantics not
based solely on truth assignments of atomic variables. For this reason we give
the basic definitions here.

The symbols used in the construction of first-order sentences can be divided
into logical and non-logical symbols. The logical symbols consist of the set
of connectives found in propositional logic along with the universal and ex-
istential quantifier, ∀ and ∃ respectively. The non-logical symbols are made
up of variables, z1, z2, ..., constant symbols, c1, c2, ..., functions f1, f2, ... and
relations, P1, P2, .... Each function and relation symbol has an associated nat-
ural number known as the arity which defines the number of arguments taken
by the function or relation. Terms in first-order logic are either variables,
constants, or a function with each required argument being assigned a term.
For example, if f1 has arity 1 and f2 has arity 2 then f2(f1(z3), z6) is a term.
Terms are used in conjunction with relation symbols to define atomic formulas.
An atomic formula is a relation symbol in which each argument is assigned a
term. Atomic formulas can loosely be thought of as the first-order analog of
atomic variables in propositional logic and act as the most basic well-formed
formulas in first-order logic. From atomic formulas, well-formed formulas are
constructed using the logical symbols. The logical connectives carried over
from propositional logic are used in the same way to construct well-formed
formulas with atomic formulas replacing atomic variables. Quantifiers are
used to construct well-formed formulas as follows. If φ is a well-formed for-
mula and x is a variable then ∀xφ and ∃xφ are well-formed formulas. Here
φ is known as the scope of the quantifier. For example, take the well-formed
formula ∃x(∀y(P1(x, y)→ P1(y, x))) (where P1 is a relation symbol of arity 2),
The scope of the existential quantifier here is (∀y(P1(x, y) → P1(y, x))) and
the scope of the universal quantifier is (P1(x, y) → P1(y, x))). If a variable
is in the scope of a quantifier it is bound otherwise it is free. The sentences
of first-order logic are the well-formed formulas which contain no free-variables.

The semantics of first order logic are defined in terms of first-order structures.
A first-order structure gives an interpretation of the symbols in the language
that allows one to determine the truth of any first-order sentence. As with

26



propositional logic, the set of structures that make a sentence true are known
as the models of the sentence. Before we define first-order structures, a small
note on terminology. A model is usually reserved for a structure that makes
a sentences true. As we’ve seen, models in first-order logic and propositional
logic are first-order structures and truth assignments which make a sentence
true. In the standard use of the term, a model is a concept that only makes
sense relative to some sentence or set of sentences. Unfortunately, when dis-
cussing logical systems in general, there are various types of structures that
may be candidate models in the logical system. In first-order logic these are
first-order structures and in propositional logic these are truth assignments.
When discussing a logical system abstractly, we need a term to refer to the
set of objects from which models are taken. We will use the term model in
both this context and the traditional context. When we refer to an object as
a model without reference to any knowledge-base, we simply mean a structure
that interprets the language and may or may not be a model for any partic-
ular sentence or set of sentences. When discussing models of a knowledge
base, then we are referring only to those structures which are a model of the
knowledge base. This allows us to discuss the semantics of an arbitrary logical
system without making reference to the particular kinds of structures used in
the semantics.

Now we are ready to define the semantics of first-order logic. A first-order
structure is a set together with a set of functions, relations, and constants
for each function, relation, and constant symbol in the language. For each
constant symbol, the first-order structure assigns an element of its associated
set. For each function symbol of arity n, the first-order structure assigns a
function on the set of arity n, and for each relation of arity n, the first-order
structure assigns a relation on the set of arity n. In order to see how a first-
order structure defines the semantics we must first go over the notion of a
grounded formula. A grounded atomic formula is a formula in which the ar-
guments of the relation are not variables. In other words, each argument is
a constant or a function of constants. A grounded atomic formula has argu-
ments which refer to specific elements in a first-order structure. A grounded
atomic formula is true if the corresponding relation in the first-order structure
relates the corresponding objects. For example, if Follows is interpreted as
the relationship in the natural numbers that is true if the first argument is
number immediately following the second argument and the constants c2 and
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c1 are interpreted as the numbers 2 and 1 respectively, then Follows(c2, c1) is
true but Follows(c4, c2) is not. Truth from the logical connectives is defined
in the same way as it is in propositional logic. A universally quantified sen-
tence is true in a first-order structure if the scope of the quantifier is true in
the structure when the quantified variable is replaced by any element of the
set of objects in the structure. An existentially quantified sentence is true if
the quantified variable can be replaced by some element in the set of objects
to make the scope true. Note that elements in the set of objects may not
correspond to constant symbols. In this case truth from an atomic formula
is determined by the corresponding relation in the structure using arguments
found in the set. For example, suppose we have a first-order language with
2-ary relation symbol, Follows, 1-ary function symbol, Successor, and con-
stant symbols c0, c1. Suppose also that we have a first-order structure whose
set is the natural numbers that assigns Follows to the same relationship in
the above example, Successor to the map addition by one, and c0 and c1 to be
the numbers 0 and 1. Then the sentence ∀x(Follows(Successor(x), x)) is true
because no matter what number is assigned to x, Follows(Successor(x), x) is
always true under the structures interpretation of Follows.

First-order logic also has a corresponding set of inference rules that expand on
those from propositional logic. All of the inference rules involving the proposi-
tional logical connectives remain unchanged with first-order sentences taking
the place of propositional well-formed formulas. Additional rules for the intro-
duction and elimination of quantifiers are also included. As we will not make
use of first-order deduction rules in our discussion of neural-symbolic integra-
tion, we will not go into further detail. The semantics of first-order logic are
important in our discussion because they highlight the fact that the way in
which truth values are determined by models is highly specific to the logical
system. Other logical systems such as modal logic use even more complicated
structures to assign truth values to sentences. In order to remain completely
general when we give our definition of logical systems, the set of models will be
defined simply as a set along with some function that assigns a truth value to
each sentence in the language. The nature of this function will be left ambigu-
ous. Now that we have a basic understanding of logical systems along with the
two most prominent examples, we move onto the logical system that is most
closely associated with neural-symbolic computing: Logic Programming.

28



3.2 Logic Programming

Logic programming is a symbolic system that adapts the basic principles of log-
ical reasoning in a way that can be easily used in a computational framework.
Although logic programming is generally used as a programming language, in
many cases it can also be seen as its own logical system that uses the language
of propositional or first-order logic but modifies the semantics and deductive
system. The logic programming languages we discuss are primarily proposi-
tional and these will be the focus of our discussion, but we will also give a brief
discussion of first-order logic programming. The language of a propositional
logic program consists of propositional sentences that are either a single atom,
a conjunction of atoms, or contain a single implication whose consequence
(known as the head) is a single atom and whose antecedent (known as the
body) is a conjunction of literals (an atom or its negation). A sentence con-
taining an implication in logic programming will be known as a rule and the
body will consist of a clause. We will use clause to refer to either a conjunc-
tion of literals or, later, an M-of-N collection of literals. Unlike propositional
logic, logic programming writes implications right to left and implications with
an empty body are allowed (these are seen as equivalent to simply writing the
atom at the head of the implication). With the most basic semantic interpreta-
tion, truth assignments assign true or false to propositional atoms (represented
as 1 and 0 respectively) with the truth of conjunctions and implications being
defined in the same way as propositional logic. From a programming perspec-
tive, a logic program represents a set of IF ... THEN rules which operate
on truth assignments of the atoms by repeatedly applying modus ponens with
the closed-world assumption. The closed-world assumption states that if an
atom cannot be deduced from a knowledge base it is assumed to be false. For
example, consider the following logic program

A←

B ←

C ← A ∧B

Starting with the values A = B = C = 0 we first deduce A = 1, B = 1, C = 0

and then deduce A = 1, B = 1, C = 1, which is stable under modus ponens.
Now consider the following logic program

B ← A
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Starting from the values A = 1, B = 0, since there is nothing in the program
to prove A, we first deduce A = 0, B = 1. Then we deduce A = 0, B = 0

which is stable.

The most basic form of logic program is one which contains no negations.
An implication of this form is known as a Horn Clauses. Horn clauses have
the desirable property that iteration of modus ponens as demonstrated above
is guaranteed to converge to a minimal model. This isn’t necessarily the case
for general logic programs. To understand this property and what is meant by
minimal model, we first define a partial order on the set of truth assignments
using subset inclusion. In other words, given two truth assignments M1 and
M2, we defineM1 ≤M2 if and only if {Xi :M1(Xi) = 1} ⊂ {Xi :M2(Xi) = 1}.
This means that every atom that is true under M1 is also true under M2. A
minimal model is a model which is minimal under this partial order. In other
words, M1 is minimal if and only if M2 ≤M1 =⇒ M2 =M1.

A logic program, L, defines an operator, called the Least Fixed Point Op-
erator on truth assignments defined as TL(M) = {Xi : There exists a rule,
Xi ← Xi1 ∧Xi2 ∧ ... ∧Xik ∈ L with Xij ∈ M for all ij }. A stable model is a
model which is a fixed point of TL. In Horn Logic programming, TL will always
converge to a truth assignment which is minimal and a model of the propo-
sitional sentences making up the logic program, furthermore this will be the
unique minimal stable truth assignment for L. The semantics of Horn clauses
are easily defined with the single model of L being the unique fixed-point of TL.

Horn clauses can be extended to general logic programs through the introduc-
tion of negated literals in the body. Introducing negation to logic programming
can be a semantic challenge. The standard paradigm is negation-as-failure in
which ¬A is derived from a failure to derive A. Unfortunately, when negation
is introduced, TL is no longer guaranteed to converge to a unique fixed point.
Take for example the program P ← ¬P , for which TL has cyclic behaviour.
Defining the semantics in this case can be more difficult, but for propositional
logic programming we can define the semantics in terms of the completion of a
logic program Clark [1978]. The completion of a propositional logic program is
a propositional knowledge base consisting of the following: all the implications
of the original logic program with each implication replaced by a double im-
plication (if there is more than one rule with the same head then the body of
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the double implication replaced by the disjunction of the bodies of each rule),
each propositional atom that is at the head of an implication with an empty
body, the negation of each propositional atom in the language that is not at
the head of any implication. For example,

A←

C ← A ∧ ¬B

Assuming the language consists of the propositional atoms A,B,C, the com-
pletion is

A

¬B

C ↔ A ∧ ¬B

The models for the logic program are the propositional models of its comple-
tion. In several specific cases, the semantics of general logic programs can also
be defined in terms of the fixed-points of TL, for instance when the implica-
tions can be placed in a hierarchy in such a way that an atom at the head
of an implication only appears in the body of implications ‘above’ it in the
hierarchy. The set of general logic programs is sometimes restricted to a set of
‘acceptable’ logic programs for which TL has some kind of desirable behaviour
that allows for a simple definition of the semantics. In the most general case,
multi-valued semantics and multiple operators may be necessary to define a
meaningful semantics for general logic programming. Fitting [2002] Gives a
thorough survey of fixed-point semantics for general logic programs.

In our discussion of logic programming we have only considered propositional
logic programming. In practice, first-order logic programming is commonly
used. In first-order logic programming, atomic variables are replaced by rela-
tions. For example we might have the following logic program.

P (x, y)←

Q(x, y)←

R(x, z)← P (x, y) ∧Q(y, z)

Rules such as P (x, y)→ are considered shorthand for ∀x∀yP (x, y)→. In other
words, we omit the universal quantifiers. This means that for any assignment
of the variables x, y, z, the above will hold. We generally restrict the seman-
tics by only considering models whose domain is the Herbrand universe of the
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language. The Herbrand universe is defined as the closure under application of
all function symbols in the language of the set containing all constant symbols
of the language. We understand a logic program as being shorthand for the
(possibly infinite) logic program in which each sentence is grounded by each
possible variable assignment.

Commonly, we restrict our language by removing function symbols. When this
is done, assuming a finite number of constant symbols, the Herbrand universe
is finite and thus so is our grounded logic program. Under these conditions,
first-order logic programs are merely a shorthand for propositional logic pro-
grams since every relation with a specific grounding can be thought of as its
own atomic propositional variable. Although the field of logic programming is
extensive, for our purposes (namely rule extraction from neural networks), it is
sufficient to consider propositional logic programs with stable model semantics.

Along with a semantic interpretation, a straightforward set of inference rules
can be given to logic programming. In practice, computational rules on queries
replace deductive inference and thus remove the need for well-defined deduc-
tive rules on logic programs. However, according to the definitions we use, a
logical system must contain deductive rules. For this reason we merely note
that acceptable logic programs can be equipped with the deductive rules of
conjunction, simplification, and modus ponens along with an additional rule
which deduces ¬A from ¬φ1 ∧ ¬φ2 ∧ ... ∧ ¬φk where {φ1, ..., φk} is the set of
the bodies of all rules with A as the head.

3.3 M-of-N Rules

In the previous section we discussed logic programs. Our rule extraction algo-
rithms will not make use of full logic programming, but a specific kind of logic
program that restricts the clauses to a form known as M-of-N. We introduce
M-of-N rules here.

Propositional logic programs are made up of propositional rules of the fol-
lowing form, A ← B ∧ C ∧ D. The body of the clause, B ∧ D ∧ C is a
conjunction, that is, it is true if and only if each one of B C and D are true.
If we want A to be true in other cases, for example if E and B are true, then
we need to introduce an additional rule A ← B ∧ E. As we will see, for the
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purposes of rule extraction, having a large number of rules to describe a single
variable can result in a logic program that is uninterpretable. Luckily there
exists an alternative which is better suited for rule extraction from neural net-
works. These are the M-of-N rules.

An M-of-N rule is a standard logic programming rule with the conjunctive
clause in the body of the rule replaced by an M-of-N clause. M-of-N clauses
generalize conjunctive clauses by relaxing the condition that the clause is true
if and only if all of the literals in the body are true. Instead, an M-of-N clause
only requires M of its N literals to be true (hence the name). For example
2-of-{B,C,D} is true if and only if 2 or more of B,C, or D are true. We can
express this in disjunctive normal form (DNF) by (B∧C)∨ (B∧D)∨ (C∧D).
It is easy to see that by writing the M-of-N clause in DNF an M-of-N rule is
logically equivalent to a standard logic program by replacing the single M-of-
N rule with multiple conjunctive rules. This raises the question, what is the
advantage of using M-of-N rules over simple conjunctive ones? The answer
lies in compactness. Using the previous example, if we wanted to express the
rule A ← 2-of-{B,C,D} using only conjunctive clauses we would need three
separate rules, A← B,C, A← B,D, and A← C,D. That’s three rules each
containing three literals as opposed to one rule with 4 literals and a single
integer. M-of-N rules are a more compact representation of the correspond-
ing conjunctive rules. In the example given here the difference is small, but
examples in following sections will highlight the significance of this. In cir-
cuit theory, an analog to M-of-N rules known as linear threshold circuits have
been studied in detail where many results comparing their compactness to tra-
ditional circuits have been made Håstad and Goldmann [1991], Kautz [1961].
Compactness has the benefit of requiring fewer parameters to specify a set of
rules and, as a result, can correspond to a smaller physical implementation or
less space required in memory.

Although we have discussed compactness, we have not discussed interpretabil-
ity. This is a much more difficult problem and many people have pointed out
that the interpretability of M-of-N rules can be poor, even though the rep-
resentation is compact. A 37-of-106 rule is unlikely to be easily understood
by a human. For this reason, when using M-of-N rules for rule extraction
we will include explicit measures of complexity in order to better understand
the relationship between the complexity and accuracy of rules extracted from
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neural networks. Our measure of complexity will be based on the length of
the DNF of an M-of-N rule. This gives a good relative measure of complexity
against other M-of-N rules but it should be noted that an M-of-N rule may be
considered simpler than the equivalent set of rules expressed in DNF due to the
existence of a shorter description. An M-of-N rule will usually be denoted by
M -of-{X1, ..., XN} but occasionally it will be convenient to refer to an M-of-N
rule by

(
X1,...,XN

M

)
. This notation is more compact and also highlights the fact

that there are M choose N conjunctive clauses which will satisfy an M-of-N
rule

In addition to being more compact, M-of-N rules are an obvious choice for
rule extraction due to their similarity to neural networks. In fact, an M-of-N
rule can simply be thought of as a ‘weightless perceptron.’ Both can be thought
of as types of threshold circuits in which the output is calculated based on a
weighted sum of the input. In anM-of-N rule each weight for the input is 1. As
with perceptrons, M-of-N rules can be extended to hierarchical M-of-N rules
by using the atoms at the heads of one set of M-of-N rules to be the inputs to
the next set of M-of-N rules. Although feedback can exist in a set of M-of-N
rules, we will only be concerned with hierarchical M-of-N rules. Note that not
every propositional function can be represented by a single M-of-N rule. For
example, the XOR function, whose DNF is (X1 ∧¬X2)∨ (¬X1 ∧¬X2) cannot
be expressed as an M-of-N rule. However, all propositional functions can be
expressed by hierarchical M-of-N rules. This can be seen by first observing
that any conjunctive clause X1∧X2, ...,∧XN can be expressed by

(
X1,X2,...,XN

N

)
,

in particular any literal Xi can be expressed as
(
Xi

1

)
. We also have that any

disjunction, X1 ∨X2 ∨ ... ∨XN can be expressed with
(
X1,X2,...,XN

1

)
. Then for

any propositional sentence, by writing it in DNF, α1∨α2∨, ...,∨αN (here each
αi is a conjunctive term), we can see that this is expressed by the M-of-N rule(
α1,α2,...,αN

1

)
where each αi is represented by a dummy variable at the head of an

M-of-N rule representing the corresponding conjunction. Therefore, hierarchi-
cal M-of-N rules simply amount to a compact representation of propositional
logic. Finally it should be noted that although M-of-N rules are usually de-
fined only for 0 < M ≤ N , rules with M = 0 can be considered another way
of writing >, the clause that is always true, and rules with M > N can be
considered another way of writing ⊥, the clause that is always false. These
can be intuitively justified by noting that there are always at least 0 clauses
in an M-of-N rule that are true and there are never more than N clauses in
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an M-of-N rule that are true.

3.4 Decision Trees and Decision Sets

Although a large portion of deterministic symbolic systems can be boiled down
to rule sets, when it comes to interpretability, the way in which a set of rules
is represented can be important. For this reason, many popular explainabil-
ity methods choose to use either decision trees or decision sets. Both can be
written as a set of propositional formulas, but their specific form is generally
thought to be more easily understandable than a simple set of propositional
rules.

A decision tree is a graphical tree in which each node represents a proposi-
tional statement. The idea is, given an input example, we begin at the root
and traverse the tree until reaching one of its leaves, which will be the classi-
fication. At each node, we decide which branch to follow based on the result
of the propositional formula applied to our input example.

Every decision tree can be expressed as a set of propositional sentences in
which each path from the root to a leaf is represented as a propositional rule
whose head is the classification decision and whose body is the conjunction
of the decisions taken at each node along the path. Thus we can easily con-
vert a decision tree into a set of propositional rules. As previously mentioned,
however, it is generally easier to comprehend these rules when presented in a
decision tree format, despite the meaning being unchanged. One popular way
of building decision trees is based on information gain, Quinlan [1986]. Infor-
mation gain is the change in average entropy when a set is split in two. Given
a probability distribution, P , over a finite set X, the entropy is a measure of
the uncertainty of P defined by H(P ) = −

∑
x∈X

P (x) log(P (x)). Given a set of

input examples, each with a corresponding label, we can form a probability
distribution of the labels using their frequency. This probability distribu-
tion will have an associated entropy. Splitting this set in two will result in
a probability distribution over the resulting subsets, each with an associated
entropy. We can calculate the average of the two entropies by weighting by
the size of the respective sets normalized by the size of the original set. In
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other words if X is split into X1 and X2 then the average entropy of the split
is |X1|
|X| H(X1) +

|X2|
|X| H(X2). The information gain of this split is simply the

difference between the original entropy and the new average entropy. We can
use information gain to build decision trees iteratively. Given a set of input
examples, choose a split which maximizes the information gain. This split
becomes the root node. For each subsequent node repeat the same procedure
for the set of examples which reach that node given the queries from higher
nodes. This can be repeated until the only elements left in the set all have
the same label or until some entropy threshold is reached. At this point a leaf
node is added which classifies the example based on the label of the majority
of the input examples that reach this leaf.

Similar to decision trees, a decision set is an ordered rule list in which the
truth of one rule determines whether or not we check for the truth of the next
rule. Each rule in a rule list makes a class prediction for an input. If the
body of the rule is satisfied, then the head of the rule predicts the class label.
However, if the body of a rule is not satisfied, then we move on to the next
rule. A rule list will end with a ‘default’ prediction. If the input satisfies none
of the rule-bodies, then we simply make the default prediction. Like decision
trees, rule lists can be converted to propositional formulas in DNF. For each
class label, consider each rule in the list with the class label at its head. We
will check this rule only if every previous rule is not satisfied. Thus we will
predict the class label with this rule if and only if the conjunction of the rule
body with the negation of each previous rule body is satisfied. This converts
a rule in a rule list into an equivalent propositional formula. The disjunction
of each of these formulas will be equivalent to the class label. We can see that
the equivalent DNF is much more complicated than the rule list itself which is
why rule lists are considered to be a more easily understandable representation
of propositional logic.

3.5 Penalty Logic

Although propositional logic is considerably useful for abstract reasoning, it is
too rigid to model the nuances of everyday reasoning. This is because during
our day to day life, we usually only have imperfect information about the world
around us. This means that we may make observations which are inconsistent
with our previously held beliefs. If we are using propositional logic, we will
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AGE ≥ 18

SEX =Male Income ≤ 20k

False True False True

Figure 3.1: An example decision tree. Given an input, start at the root and
follow the path right if the input satisfies a node and left if it does not until
you reach a leaf

be unable to make any logical deductions once we observe some piece of in-
formation that conflicts with our previously held beliefs. By contrast, neural
networks are much more tolerant of ambiguity. If we consider each neuron as
representing some amount of evidence for a fact, then an output neuron may
receive evidence both in support of and against it. Only by integrating all of
this evidence it comes to a ‘conclusion’ which we can consider a degree of belief
in a fact given various evidence for or against it. In an attempt to soften the
restrictiveness of propositional logic and, as a result, create a logical system
more like neural networks, penalty logic was developed Pinkas [1995]. Penalty
logic is a an important logical system in neural-symbolic computing because
of its close relationship to SCNs. It also serves as the inspiration for rule ex-
traction techniques using confidence values and so we will cover it in detail here.

Penalty logic generalizes propositional logic by weighting propositional sen-
tences by a positive integer called a penalty. The penalty is meant to represent
our degree of belief in the sentence. In other words it is the ‘consistency
penalty’ we pay if the sentence is not true in a truth assignment. Given a set
of sentences with associated penalties, we can define a penalty associated to
each propositional truth assignment by computing the sum of the penalties of
each sentence that is violated. For instance, given the following set of sentences

10 : A ∧B

5 : ¬A ∨ ¬B

2 : B

consider the truth assignment {A}. In propositional logic, this is a model of
the second sentence, but not the first or third, giving it a penalty of 12. Notice
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that the above set of sentences has no propositional models. A traditional
propositional model is one in which every sentence is satisfied and hence has
penalty 0. However, in penalty logic we do not wish to be that restrictive.
Instead of requiring a 0 penalty, we consider the set of truth assignments with
minimum penalty. The models of a knowledge base in penalty logic are the
truth assignments with minimum associated penalty. Penalty logic also has a
sound and complete deductive system to go along with the minimum-penalty
semantics Pinkas [1995].

Penalty logic is a complete logical system similar to propositional logic in that
it shares the same language (excluding the penalty values) and has a sound and
complete deductive system. However, propositional logic is monotonic whereas
penalty logic is not. A monotonic logic is one in which additional assumptions
do not negate any previously derived conclusions. So if L1 ` l, then L1∪L2 ` l.
This does not hold in non-monotonic logics. To see that penalty logic is non-
monotonic, consider the following example, L1 = {1 : P, 2 : P → Q} and
L2 = {3 : ¬P}. The single model for L1 is {P,Q} so L1 ` Q. On the other
hand, the models for L1 ∪ L2 are {P,Q}, {Q}, and {} so L1 ∪ L2 6` Q. Logic
programs with negation as failure are another example of a non-monotonic
logic.

Considering that penalty logic was developed with the explicit purpose of de-
veloping a logical system more like SCNs, it comes as no surprise that there
is a strong equivalence between penalty logic and SCNs. This makes penalty
logic an important example for neural-symbolic integration and it will be ref-
erenced both when we discuss semantic equivalence and when we develop new
rule extraction algorithms. Penalty logic is also useful because it generalizes
propositional logic. A knowledge base in penalty logic in which the weights on
all statements are uniform is identical to the corresponding knowledge base in
propositional consisting of the same statements but with all weights removed.
The deductive apparatus and model theory in this case is identical. We can
therefore regard propositional logic as a specific subset of penalty logic mean-
ing anything that can be proved for all knowledge bases in penalty logic can
also be proved for all knowledge bases in propositional logic. This is a fact we
will use when discussing neural-symbolic integration.

Although we have discussed a number of different network architectures and
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logical systems, there are countless others that we have omitted. There are
many different modifications and expansions of all of the systems that have
been discussed so far. The models presented here are those that are relevant
to our discussion on neural-symbolic integration as well as playing a role in our
own experiments. Now that the basic systems we will be studying have been
described we will begin to answer the question of how they can be integrated.

39



Chapter 4

A Framework for Neural-Symbolic
Integration

4.1 Neural Networks vs Symbolic Systems

Neural networks have become popular due to their flexibility and general-
purpose learning algorithms. Both of these features have traditionally been
difficult for symbolic systems. Conversely, symbolic systems use comprehen-
sible abstract reasoning which can be verified by a human. Furthermore, the
use of abstract features in symbolic systems ensures that it reasons about sit-
uations in sufficient generality. If a symbolic system encodes the concept ‘dogs
like to play fetch’ then we do not have to worry that it will only apply this
reasoning to some dogs or dogs that look a certain way. Neural Networks,
on the other hand, do not have this guarantee. Although it may predict that
dogs play fetch in all cases in a test set, we cannot be sure that the network
actually encodes the concept of ‘dogs’, ‘fetch’, or the relationship between
them. Indeed, the development of adversarial attacks seems to indicate that
neural networks might not be learning the concepts necessary for truly gen-
eral solutions akin to those a human uses. The complementary strengths and
weaknesses of symbolic systems and neural networks was the initial inspiration
for neural-symbolic integration. However, if we are to fully reach the potential
of neural-symbolic integration, the exact formal differences between symbolic
systems and neural networks must be made explicit.

Much has been made of the differences in how symbolic and connectionist
systems view and approach the AI problem, but these differences are more
often than not left ambiguous. This might lead one to assume that neural net-
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works and symbolic systems are fundamentally different in nature. However,
the underlying relationship between neural networks and symbolic systems is
a more subtle one. One issue here is the lack of clarity in what constitutes
a ‘symbolic system’. Intuitively, symbolic systems operate at the ‘symbolic
level.’ Reasoning at the symbolic level is reasoning with abstract entities. To
illustrate, consider the famous example, ‘all men are mortal’, ‘Socrates is a
man’, therefore ‘Socrates is mortal.’ In this example we use the abstract con-
cepts of being a man and mortality. The reasoning process uses the logical
rule modus ponens. The key feature here is that the abstract entities can be
meaningfully identified by a person. In a symbolic system we are attempting
to model the same kind of reasoning that humans do in their everyday life.
We may see that it is raining out and decide to get an umbrella. This kind
of deduction is done in terms of abstract concepts. Umbrellas can come in all
shapes, sizes, and colours but the exact nature of a particular umbrella is not
important in the process of our reasoning. Neural networks, on the other hand,
operate at the ‘sub-symbolic’ level. Individual neurons do not necessarily rep-
resent any easily identifiable concept. Instead they may model weak statistical
regularities in a dataset with a network owing its predictive capabilities to raw
computational power rather than abstract reasoning. For example, a single
layer neural network analyzing image data may use features such as the colour
and brightness of pixels. Because there might be many pixels, the colour of
a single pixel is not considered an abstract feature when trying to determine
what objects are contained in the image. This distinction is intuitive but gen-
erally not formalized in a meaningful way. The colour value of a pixel can be
represented in logic easily and the same reasoning process applied to abstract
concepts can likewise applies to the colour values.

When looking at symbolic systems and neural networks formally, the distinc-
tion between abstract and non-abstract concepts is lost. There is nothing
inherent to symbolic systems that requires the atomic variables to represent
meaningful concepts. Furthermore, the notion of what is and what isn’t a
meaningful and transferable concept is difficult to define. The issue is further
complicated by the fact that there exist many different types of neural net-
works and symbolic systems which can often have vastly different properties.
We have already seen that symbolic systems can be adapted to reason about
things in a softer and more human-like manner with penalty logic, something
thought to be more characteristic of neural networks. It is also clear that
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a simple perceptron can implement various logic gates in a way identical to
propositional logic. Given the rich variety of neural networks and symbolic
systems, along with the implicit Turing-equivalence 1, it seems likely that the
difference between neural networks and symbolic systems is more of an issue of
representation rather than something fundamental. In this chapter, we develop
a framework for neural-symbolic integration that clarifies the relationship be-
tween neural networks and logical system by defining the ways in which neural
networks and logical systems can be identified. We focus specifically on sym-
bolic systems that can be thought of as logical systems because the majority
of neural-symbolic integration has involved logical systems. By proving the
equivalence between basic network architectures and various logical systems,
along with collecting several important equivalences previously developed in
the field of neural-symbolic integration, we show that the difference between
neural networks and logical systems is primarily a representational one. The
definitions also allow us to make a precise definition of fidelity that generalizes
both the probabilistic and deterministic cases. Using these results we reduce
both the practical and philosophical arguments against rule extraction to one
of complexity and use this to test the claims empirically.

4.2 Neural and Symbolic Encodings

In this section, we will formally define the possible relationships between a
neural network and a symbolic system. The mapping of a symbolic system
into a neural network is known as a neural encoding whereas the reverse is a
symbolic encoding. The presence of both encodings is an equivalence. Encod-
ings will be defined both syntactically and semantically with the implications
of each discussed in detail. Finally, we build on this by giving a precise defini-
tion of fidelity.

We begin with a definition of a symbolic system. A neural network can be
easily understood as a dynamical system of the form presented in chapter 2.
A symbolic system is more difficult to define. Because the focus of neural-
symbolic integration has been on logical systems and automata, we will limit

1It is necessarily true that any symbolic system and any neural network implemented
on a finite-precision machine can both be simulated by a Turing machine, in the case of
arbitrary precision this is no longer true for some neural networks. We will discuss this issue
in this chapter
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our discussion of symbolic systems to these. Most neural-symbolic integra-
tion has related neural networks to logical systems with an emphasis on logic
programming. One exception to this is the use of finite automata to describe
recurrent neural networks. We will discuss the neural symbolic work done on
the relationship between automata and neural networks, but the focus will be
on logical systems. Informally, a logical system is a deductive system over a
formal language with some notion of semantics. The semantics are a set of in-
terpretations for the language that determine the truth of each sentence in the
language. In order to formalize this, we follow the standard metalogical defi-
nition with some minor variation Hunter [2008]. For our purposes, we define
a logical system as such.

Definition 4.2.1. A logical system, S, is a triple, (L,`S ,M) where L is a
computable language, `S is a set of deductive rules (defined as a computable
relation on 2L) andM is a set of models. A model, M , is a set together with
a truth function fM : L → {0, 1}.

A logical system has two components. The first is the deductive system, which
represents the abstract reasoning in a language. In other words, given that
some sentences are true, which other sentences are true? An inference from a
set of sentences (hereafter referred to as a knowledge base), L, to some other
set of sentences, L′, is considered valid in a logical system if (L,L′) ∈`S . The
second component of a logical system is the semantics. The semantics provide
the means for evaluating the truth of a sentence given a specific interpretation.
Following the standard Tarskian definition of truth, we view the models of a
logical system as interpretations of the language in which the sentences are
either true of false. The idea is that each model is a ‘possible world’ in which
the truth of a sentence can be evaluated. In practice the truth function of
a model is usually built by assigning elements in M to atomic units in the
language and recursively defining the value of fM based on connectives in the
language. The definition we give is too general in the sense that we can always
define a system with trivial semantics in which every model interprets every
sentence as true. However, every logical system with meaningful semantics will
be of this form making a more precise definition needlessly technical for our
purposes. We now recall the basic notions of logical entailment. Given a set
of sentences L ⊂ L, we say M ∈M is a model of L if for all l ∈ L, fM(l) = 1.
Given a sentence l0, we say L �S l0 if every model of L is also a model of l0.
We write L `S l0 if (L, l0) ∈`S . For every L,L′ ∈ L we say L `S L′ if for
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all l′ ∈ L′, L `S l′. A logical system is sound if for every L ⊂ L, L `S l0
implies L �S l0. This is just to say that the deductive system respects the
semantics. Conversely a logical system is complete if for every L ⊂ L, L �S l0
implies L `S l0. This definition gives two possible avenues for neural symbolic
integration, syntactic and semantic. Using semantics, neural networks are used
to determine the models of a logical system. To do this, we start by choosing
a set of neurons along with a neural network defined on these neurons and an
injective mapping from states of the neurons into the models of S.

Definition 4.2.2. Given a Neural Network, N , with a state space, X, and an
injective map i : X → M where M is the set of models for a logical system,
S = (L,`S ,M), we say x ∈ X is a model for L ⊂ L if i(x) is a model of for
L.

This gives us the following definition of a neural model

Definition 4.2.3. A network N , with an initial state x0 is a model for L if
there exists t0 > 0 such that for all t > t0, x = N t(x0) is a model for L. A
network is called a model for L if it is a model for L given any initial state.

In other words, starting at initial state x0, there is some time after which every
subsequent state of the network is a model for L. It is possible that there are
states of the network that are models for a knowledge base, but appear only
temporarily in the dynamics of the network. When using neural networks to
define the semantics of a logical system, we only want to count those models
that appear infinitely often. For this reason we give the following definition.

Definition 4.2.4. Given a knowledge base L, a state, x, of a neural network
N is an L-model of N if x is a model of L and there exists an initial state x0
such that for all t > 0, ∃t′ > t such that N t′(x0) = x.

The L-models of N are those states which model L and appear infinitely many
times for at least one initial state. By looking at the set of L-models of a net-
work, we can define a notion of neural entailment by restricting the semantics
of a logical system.

Definition 4.2.5. If N is a neural-model of L we say that L �N l0 if l0 is true
in every L-model of N .

The inference process is the same except that only L-models are considered
when making a judgement. Importantly, if the set of L-models of a network
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is equal to the set of models of a knowledge base, then the semantics are
identical. Semantic encodings have most commonly been applied to stable
neural networks. When the network is stable, it is much easier to define a
neural model. This is because the only states of stable networks that appear
infinitely often are the stable states meaning that they are the only states that
need to be considered. This is summarized with the following proposition

Proposition 4.2.1. Given a stable network N , if x is an L-model then x is
a stable state. Furthermore N is a neural model of L if and only if each of its
stable states are models of L.

Proof. If x is not a stable state, then for all x0, because N is stable, there exists
t0 such that N t0(x0) is stable so for all t > t0, x 6= N t(x0) and thus x is not an
L-model. If every stable state of N is a model of L then because N is stable it
is a model for all x0 and thus by definition a model for L. Furthermore, if N
is a model for L then if there exists a stable state, x′, which was not a model
for L, then N with initial state x′ would not be a model for L and again by
definition N would not be a model for L

The use of stable networks and their corresponding stable states to model logi-
cal systems has sometimes been referred to as stable-state semantics but here it
can be seen as a specific case of a more general neural semantics. Stable-state
semantics will be our focus when we investigate various neural and symbolic
encodings in detail in future sections.

One obvious limitation to the semantic approach is that the number of models
a network can represent is limited. In first-order logic the Lowenheim-Skolem
theorems state that every knowledge base with an infinite model has models
of arbitrarily large cardinality Marker [2002]. This means that the state space
of even an uncountable number of neurons with continuous activations will
not be large enough to map onto every model of some knowledge bases be-
cause the collection of all cardinalities is not a set. Although the number of
elementary equivalence classes of models of a countable first-order language is
at most uncountable, making a semantic neural encoding technically possible,
the practical difficulties in defining such an encoding make the applicability of
it dubious. Furthermore, when we move to multi-valued logical systems there
will be systems with a large enough set of inequivalent models that a seman-
tic neural encoding will be genuinely impossible. An early criticism of neural
networks was a perceived ‘propositional fixation’ which saw the tendency to
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model neurons as propositional atoms as a fundamental shortcoming of neural
networks that must be overcome in order for neural networks to be a truly gen-
eral purpose tool in AI McCarthy [1988]. We observe that the general focus
of neural-symbolic integration on semantic encodings may have contributed
to this perception. In order for neural-networks to completely overcome the
propositional fixation they cannot be related to logical systems via semantics,
but must represent logical systems with syntactic encodings

In a syntactic encoding the states of a neural network are mapped to the
sentences in the languages themselves rather than models. The dynamics of
a network are required to respect the deduction rules. In order to formalize
this, we first develop a notion of entailment for neural networks whose states
represent knowledge bases. Given a network, N , with an injective map from
its state space to the set of knowledge bases in a logical system, S. If a state
x0 is mapped to the knowledge base L0, we say L0 `N l if there exists t0 > 0

such that N t0(x0) = x and x maps to a knowledge base L such that l ∈ L. All
this is doing is translating the dynamics of the network N into a relation on
knowledge bases in S. The definition of a syntactic model is merely a neural
network whose dynamics do not violate the deductive framework of a logical
system. In other words

Definition 4.2.6. A syntactic model of a logical system, S, is a neural net-
work, N , with an injective mapping from its state space into 2L such that if
L `N l0, then L `S l0.

In a syntactic encoding the neural network at least partially models the deduc-
tive process. Each state of the network represents a knowledge base and the
transition from one state to another represents a deduction from one knowledge
base to another. Most neural-symbolic integration has been semantic in na-
ture; however, A general purpose syntactic encoding for neural networks has
been developed Smolensky and Legendre [2006]. This encoding decomposes
sentences in a formal language into roles and fillers. A role is the position of a
symbol in the language and a filler is the symbol filling that role. The rolls and
fillers are both represented as linearly independent vectors in a vector space
and the tensor product of the role and filler vector is taken to represent the
filler/role association. The encoding is extended to full sentences by summa-
tion of each filler/role vector contained within the sentence. Because neural
networks are Turing complete Siegelmann and Sontag [1995], this representa-
tion can, in principle, simulate any deductive rule in a logical system. Using a
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distributed representation for logical systems may have other advantages, too,
which we will discuss when we cover the representational differences between
neural networks and logical systems.

In our definitions of neural models we require the mapping from states of
the network to models or knowledge bases to be injective. This is to exclude
trivial mappings in which we simply map every element in the state space to
a single model or knowledge base. This is especially important for syntactic
encodings. Suppose we mapped every state to the same knowledge base, then
because the deduction L `S L is always true (we don’t put this requirement
in our definition explicitly but it is valid in every logical system used) we
would have a syntactic model of S. This trivial mapping would imply that
any neural network can be symbolically encoded into any logical system with
an encoding that gave us no information about the dynamics of the network.
The objective here is to give a complete description of the neural network as
a deductive apparatus. However, this comes with one small caveat. In many
cases, the dynamics of certain neurons are not considered relevant outside of
some intermediate calculation steps. The dynamical properties of the network
in which we are interested pertain to a certain subset of the nodes. Return-
ing to our umbrella analogy, the function of an umbrella is defined by the
state transition between closed and open. A complete logical description of an
umbrella from a functional perspective may be that, when it rains, someone
will change the state of an umbrella from closed to open only to be closed
again when the rain lets up. The exact mechanisms facilitating this change
in state, while important to those who design umbrellas, are not relevant to
the abstract functionality of an umbrella. For this reason we do not always
need a complete description of the neural state when deciding which model
or language base it encodes. Although we have defined our maps into logical
systems on the entire state space, in many cases we are only interested in
the dynamics on some equivalence class of state spaces. For example, many
neural networks have hidden units which are used only to boost a network’s
computational power and whose internal state does not necessarily represent
anything meaningful to a human observer. Another instance is the state of
hidden layers in a feed-forward network before the network has propagated up
an input. In our definition, the initial state of a neural network must define
a starting activation for every neuron in the network; however, in the case
of feed-forward networks, there is no need to assign the hidden layers any
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particular value until it has been calculated from the input. Although this
might seem to be a minor detail, it turns out to be a problematic technicality.
For this reason we define the mappings to logical systems only on an equiva-
lence class of states in which the equivalence classes contains all states of the
network that are identical up to variation in the subset of states which are
deemed irrelevant. As an example, consider a three neuron network x1, x2, x3
in which we have decided that the neuron x3 is irrelevant to our encoding. In
this case the states (0, 1, 0) and (0, 1, 1) map to the same model or knowledge
base. Which states are defined as equivalent depends highly on the networks
and logical system under investigation. A general guideline is that as long as
two states of a neural network are thought to have a meaningful representa-
tional difference then they should not be identified. With that cleared up, we
move on to notions of equivalence between logical systems and neural networks.

The relationship between neural networks and logical systems in bi-directional.
From a semantic point of view, We can map a set of neural networks into a
set of knowledge bases in a logical system (known as rule extraction) as well
as map a set of knowledge bases into a set of neural networks. In practice
there is an acceptable amount of error when mapping neural networks into
logical systems. We don’t expect the extracted symbolic sentences to always
agree with the network. For this reason we reserve the terms neural encod-
ing and symbolic encoding for the exact identification of logical systems and
neural networks and vice-versa. Starting with the semantic approach, a neu-
ral encoding is a choice of neural model for a knowledge base which captures
its semantics while, conversely, a symbolic encoding is a choice of knowledge
base for a neural network such that the network captures the semantics of the
knowledge base. This gives us the following definitions.

Definition 4.2.7. Given a knowledge base, L0, in a logical system, S, a neural
encoding of L0 is a neural model of L0, N , such that L0 �N L ⇒ L0 �S L.
Given a network, N , a symbolic encoding is a choice of knowledge base L such
that N is a neural encoding of L.

Note that because a neural model is a restriction of the models of S, we
always have L0 �S L⇒ L0 �N L meaning that given an neural encoding of L,
L0 �N L ⇐⇒ L0 �S L. Moving on to syntactic encodings, we want a syntactic
neural encoding to model the entire deductive process of a logical system.
In other words, given any knowledge base and any deduction in the logical
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system, there should be some syntactic neural model that has a corresponding
initial state and sequence of states that arrives at the same conclusion as the
deduction. For a logical system to be a (syntactic) symbolic encoding of a
(syntactic) neural model we require that the neural model is a neural encoding
for each knowledge base it maps to. In other words,

Definition 4.2.8. Given a logical system, S, with a syntactic model N , we
say that N is a (syntactic) neural encoding of a knowledge base L if there
exists a state of the network x that maps to L and L `S l ⇒ L `N l. N

is a neural encoding of a set of knowledge bases if it is a neural encoding of
each knowledge base in the set. We say that a set of knowledge bases of S is
a (syntactic) symbolic encoding of N if N is a (syntactic) neural encoding of
each knowledge base mapped to by a state in the state space of N .

With both the syntactic and semantic methods of encoding defined we can
formally state what it means for a set of neural networks to be equivalent to
a logical system.

Definition 4.2.9. A set of neural networks is (semantically/syntactically)
equivalent to S if every knowledge base in S can be (semantically/syntactically)
neurally encoded into a network in the set of neural networks and every neu-
ral network in this set can be (semantically/syntactically) symbolically encoded
into S.

In future work, it may be useful to require a stricter definition of equivalence
in which the correspondence between knowledge bases and neural networks is
one-to-one. This would allow one to think of neural and symbolic encodings
as invertible mappings between neural networks and knowledge bases (or col-
lections of knowledge bases) in a logical system. For the time being we merely
require that we can always represent one in the other somehow. In both se-
mantic and syntactic equivalences, the maps are defined in terms of knowledge
bases. In a syntactic equivalence, a knowledge base has a neural encoding if
we can directly represent the knowledge base as a state of a neural network in
which the dynamics represent every possible deduction from that knowledge
base. Semantically, a neural encoding represents the models of a knowledge
base as states of the network and the dynamics merely drive a convergence to
these states. Semantic symbolic encodings are simply knowledge bases that
exactly capture the semantic implications of a neural model. For syntactic
symbolic encodings, we do not map to a single knowledge base but an entire
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set of knowledge bases thus fully describing the states of a network. From a
syntactic point of view, a symbolic encoding is a complete description of the
network and its dynamics whereas from a semantic point of view a symbolic
encoding is simply a knowledge base whose models are completely described
by the neural network.

in most cases a precise neural or symbolic encoding is not feasible. This is
especially true when translating neural networks into logical systems. When
this is the case, rule extraction techniques will be used. Like a symbolic en-
coding, a rule extraction technique associates a knowledge base in a logical
system to a state of a neural network. Usually this knowledge base will contain
sentences that describe the whole network along with additional information
describing the state. The difference between rule extraction and symbolic en-
coding is that a rule extraction technique does not require a network to be a
model (either semantic or syntactic) of the associated knowledge base. When
this is the case, it is important to have some kind of measure for how closely
the neural network models the knowledge base. The most obvious measure is
the percentage of initial states of a network which are models of the knowledge
base. This measure is known as the fidelity of a rule extraction technique and
it is given the following formal definition

Definition 4.2.10. The fidelity of a knowledge base, L, given a neural net-
work, N , is the quantity

1

V ol(I)

∫
I

χN,L(x̂)dx̂

where I is the set of states of the neural network and χN,L is an indicator
function returning 1 if N with initial state x̂ is a model of the knowledge base
L and 0 otherwise. The integral is the standard Lebesgue integral (which in
the finite case will be a summation) and V ol(I) =

∫
I
dx̂. A syntactic definition

of fidelity is identical with the indicator function returning 1 if x̂ is a syntac-
tic neural model of its knowledge base and 0 otherwise. Although technically
fidelity can be measured as long as one gives a logical system and a neural
model, syntactic or otherwise, in virtually all cases fidelity will be used when
trying to find approximate symbolic encodings of neural networks (in other
words, rule extraction). We will revisit this later but to summarise, we are
not generally interested in approximate neural encodings. A neural encod-
ing is only considered significant if it can exactly model a knowledge base in a
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logical system, whereas a complete symbolic encoding of a neural network gen-
erated by rule extraction will generally be highly complicated and thus have
limited to no practical use. For this reason, approximate solutions are often
preferred making the fidelity an important metric for rule extraction.

Next, we will examine the relationship between propositional logic and sta-
ble neural networks with either binary, discrete, or continuous activations.

4.3 Stable Binary Neural Networks and Propo-

sitional Logic

The first neural-symbolic relationship we will discuss is that of propositional
logic and binary neural networks.

Theorem 4.3.1. Propositional logic is semantically equivalent to stable neural
networks whose neurons take binary activation values, hereafter referred to as
binary neural networks.

Proof. Given a binary neural network with a finite number of neurons, we as-
sociate a propositional variable X to each neuron x. We can then associate
states of the neural network with a propositional model by including a proposi-
tional variable in the model if the corresponding neuron is activated. In other
words, with each state of the network we associate the model {X : x = 1}.
With a finite number of variables, we can translate models into sentences by
associating a model with a conjunction that includes all variables in the model
and the negation of all variables absent from the model. For example, given
the propositional variables X1, X2, X3 we map the model {X1} to the sentence
X1∧¬X2∧¬X3. With this in mind, we show that every stable neural network
has a symbolic encoding. We do this by taking the set of stable configurations
of the network and translating them into propositional sentences. For exam-
ple, the configuration x1 = 1, x2 = 1, ..., xk = 0, ..., xn = 0 is translated to the
sentence X1 ∧X2 ∧ ...∧¬Xk ∧ ...∧¬Xn. The disjunction of each of these sen-
tences will be a symbolic encoding of the network. To see that every knowledge
base has a neural encoding we refer to the proof that every knowledge base
in penalty logic has a neural encoding (See next chapter). Since propositional
logic can be extracted from penalty logic by setting each penalty to 1, and
the encoding method between neurons and propositional models is the same,
it follows that each propositional knowledge base has a neural encoding
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The symbolic encoding of stable binary neural networks is somewhat trivial
for the case of propositional logic. This is because models for propositional
logic can be exactly represented by a propositional sentence. This reduces the
problem to simply writing the sentence corresponding to the stable states of a
network. Not all models in all logical systems have this property. First order
logic proves more difficult as there are models which cannot be unambiguously
described by a knowledge base (famously, standard arithmetic cannot be de-
scribed by a recursively enumerable knowledge base — you will always end up
with non-standard models). Moving on, we prove that all feed-forward binary
neural networks can be syntactically symbolically encoded into propositional
logic.

Theorem 4.3.2. Binary feed forward networks can be syntactically symboli-
cally encoded in propositional logic.

Proof. First we develop an encoding method. Again we start with a neu-
ral network whose neurons each correspond to an atomic variable in proposi-
tional logic. This time, we directly identify a configuration of neurons with
a propositional conjunction. We translate a configuration of n binary neu-
rons, xi1 = 1, xi2 = 1, ..., xik = 0, ..., xin = 0, into the propositional sentence
Xi1∧Xi2∧ ...∧¬Xik∧ ...∧¬Xin . For a configuration x̂ call this c(x̂). Define the
knowledge base Lx̂ as the knowledge base including c(x̂) and every sentence
which can be deduced from c(x̂). In other words Lx̂ is the closure under impli-
cation of c(x̂). Now take a binary neural network N and start with an empty
knowledge base L. For each neuron, say h, with inputs x1, ..., xn, enumerate
all input/output relationships and start with an empty knowledge base L. If
x̂ is a configuration of the input neurons which results in an output of 1, add
the sentence H ← c(x̂) to the knowledge base along with all its implications,
namely H ∨ ¬c(x̂). If x̂ is a configuration of the input neurons that results in
an output of 0, add the sentence ¬H ← c(x̂) and its consequences. If h has
no input neurons then after time t = 1, h is either always on or always off. If
it is always on add H to the knowledge base and if it is always off add ¬H.
We will write propositional statements consisting of a single atomic variable,
X, as X ← to distinguish the statement from the variable itself. With this
notation we add either H ← or ¬H ← if H has no inputs. Now we repeat this
for every neuron. The result of this is that every input/output relationship
between neurons in the network is represented with a propositional statement
in L. Next we must develop the notion of a supported neuron. We define this
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recursively. If there is a rule X ← in L then if x = 1, x is supported. If there
is a rule ¬X ← then if x = 0, x is supported. Now for any xi, if there is
a rule in L such that the head of the rule matches the value of xi (ie a rule
with Xi at the head if xi = 1 and ¬Xi at the head if xi = 0) whose body
contains only supported neurons then xi is supported. For example, if we have
a configuration x1 = 0, x2 = 1, x3 = 1 with rules ¬X1 ← X3, X2 ← X1 ∧X3,
and X3 ←, then x1 and x3 are supported and x2 is not. Given any configura-
tion of neurons, let x̂ be the configuration of the supported neurons, we define
a set of equivalence classes of configurations with the relation x ∼ x′ iff the
configuration of the supported neurons in x is identical to the configuration
of the supported neurons in x′. Define Lx̂ on this equivalence class of states
to be the conjunction of the literals corresponding to the configuration of the
supported neurons. Now we map each state, x, (up to the previously defined
equivalence class) of the neural network to the knowledge base L̂x̂ where L̂x̂
consists of L∪Lx̂ and all consequences of the propositions that do not involve
modus ponens. We know this is injective because L̂x̂ is not closed under modus
ponens meaning that L̂x̂ only contains information about the current state and
thus no inferences about neurons which are unsupported in x̂ can be made.
Therefore if L̂x̂1 = L̂x̂2 then x̂1 = x̂2 (up to a difference in state of unsupported
neurons).

If a neuron is supported, its state does not change. This can easily be seen by
induction. The input neurons are only supported when they reach their stable
state. Then if a neuron has inputs which are supported, by our induction
hypothesis the inputs neurons do not change and thus the output neuron does
not either.

In order to prove that this is a symbolic encoding we must show that for
all configurations of supported neurons L̂x̂ `S l iff L̂x̂ `N l.
‘⇒’
Suppose L̂x̂ `S l. This implies that there is a deductive sequence, L1, L2, L3, ..., Lk

with l ∈ Lk such that L̂x̂ `S L1, L1 `S L2, L2 `S L3, ..., Lk−1 `S Lk where each
deduction represents a set of inference rules in propositional logic. We will
show that at each step, for all li ∈ Li, L̂x̂ `N li. Recall that L̂x̂ `N l implies
that there exists t > 0 such that l ∈ L̂Nt(x̂). We will use induction to prove
that L̂N i(x̂) ⊃ Li for all 1 ≤ i ≤ k. Because the sequence starts with L̂x̂ the
base case is trivial, now consider some Li and assume L̂N i−1(x̂) ⊃ Li−1. Take
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any l ∈ Li, by assumption, Li−1 `S l via a one step deduction. By construc-
tion of L̂N i−1(x̂), l is either an application of modus ponens using a rule in L
of the form Y ← X1 ∧ ... ∧ ¬Xk ∧ ... ∧ ¬Xn whose body is satisfied by a sen-
tence in L̂N i−1(x̂), or some other consequence of L̂N i−1(x̂). In the first case, the
configuration of x1, x2, ..., xn will be unchanged in N i(x̂) because each neuron
is supported. By construction of L, y will be supported in N i(x̂) and thus
l ∈ L̂N i(x̂). In the second case, because L̂N i−1(x̂) is closed under all other de-
ductions by construction, l ∈ L̂N i(x̂). By the previous argument, monotonicity
of propositional logic, and the inductive hypothesis, we have that for all l ∈ Li,
Li−1 `S l =⇒ L̂N i−1(x̂) `S l =⇒ l ∈ L̂N i(x̂). Which gives us L̂N i(x̂) `N Li.
‘⇐’
Applying the previous induction but on time steps gives the same result. Given
a state, x̂ and a proposition, l ∈ L̂ ˆN(x), either l is a conjunction atoms repre-
senting supported neurons, or it is a consequence of the conjunction of sup-
ported neurons and L. In the latter case L̂ ˆN(x) `S l by definition. In the
former case, every atom, Xi, in the conjunction must correspond to a sup-
ported neuron in ˆN(x). This means that either xi is supported in x̂ or that
Xi is at the head of a rule in L with all the atoms in the body correspond-
ing to neurons supported in x̂. In both cases L̂ ˆN(x) `S Xi or L̂ ˆN(x) `S ¬Xi

depending on whether or not Xi is negated in the head of the corresponding
rule in L. This implies that L̂ ˆN(x) `S l as l is the conjunction of each literal.
Putting this into the induction, we have that if L̂x̂ `N l, then this can be
expressed as L̂x̂ `N L̂ ˆN(x) `N ... `N L̂ ˆNk(x)

and at each step we have proved
that L̂ ˆN(i−1)(x) `S L̂ ˆN i(x)

and thus by induction we have that if L̂x̂ `N l then

L̂x̂ `S l

The previous example shows that feed forward networks can be described ex-
actly as deductions in a propositional system in which the knowledge bases
are sets of acyclic implications and all of their consequences. Such a system is
effectively a type of logic programming. An exact semantic equivalence with
various kinds of logic programming will be described when we review several
important neural encodings. If we restrict propositional logic to knowledge
bases generated from a set of acyclic implications, we can also show that these
knowledge bases have not only semantic but syntactic neural encodings by
feed-forward networks; however, full unrestricted propositional logic may con-
tain cyclic implications which makes their translation to feed-forward neural
networks impossible. This might be surprising as feed-forward networks can
be thought of as equivalent to propositional statements in that they can en-
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code any binary function. The possibility of feedback means that feed-forward
neural networks, when conceived as a stable dynamical system, can no longer
represent the deductive process of propositional logic. For example, it is a
property of propositional logic that for an inconsistent knowledge base, L,
L `S l for all propositional sentences l. In order to encode any inconsistent
knowledge base of propositional logic into a stable neural network the stable
states much correspond to the entire language. This may be possible but it
is probably not particularly enlightening and we will limit ourselves to the
encoding of feed-forward neural networks into propositional logic.

The previous theorem, although correct in identifying the dynamics of feed-
forward networks with applications of modus ponens, does not quite match
how feed-forward networks are used in practice. As discussed in the section
on feed-forward networks, in the definition of a feed-forward network we have
given, input neurons are part of the network and subject to the same dynamics
of the rest of the neurons. In practice this means that no matter what initial
state you give the input neurons will immediately revert back to the single
stable state determined by their biases. Although this is useful when making
the identification with propositional logic programming, in practice the input
neurons in feed-forward networks are often treated as a representation of the
input to a function and hence they are not subject to the neural dynamics.
In other words, we choose an input configuration and then propagate upwards
to determine the output, keeping the inputs fixed at whatever value we gave
for input. Luckily, a few simple modifications to our encoding reestablishes
the relationship between feed-forward neural networks and propositional logic.
First we give all input neurons 0 bias, a single self-connection of 1, and a lin-
ear function for the transfer function. With these additions, the input neurons
remain in their initial state for all time. In order to now rectify our symbolic
encoding, we simply define any configuration of input neurons to be supported
and remove from L all instances of rules whose head is an atomic variable
corresponding to an input neuron. These will exactly be the rules whose body
is empty. It is not difficult to see that the same proof shows that this gives
a symbolic encoding for these modified feed-forward networks. Although the
self connections of the input technically disqualify these networks from being
feed-forward they are still stable and this minor nit-pick does not contain any
substance. In the following chapter, when we refer to feed-forward networks in
the context of neural-encodings of logic programs we will be referring to those
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in which the inputs are not fixed, but when we discuss rule extraction from
deep networks in part 2 we will assume that these feed-forward networks have
fixed inputs.

To summarize, stable binary networks are semantically equivalent to propo-
sitional logic and feed-forward networks can be syntactically symbolically en-
coded into propositional logic. This suggests that feed-forward neural networks
can be exactly described by propositional logic. Any feed-forward neural net-
work can be described in propositional logic semantically by a set of knowledge
bases or syntactically by a single knowledge base and its consequences. What
we have established here is that any solution to a problem given by a feed-
forward neural network could have equally been given a solution using proposi-
tional logic. Binary neural networks may still have representational differences
to propositional logic including an easily computable learning algorithm but
there is no fundamental difference in solutions to problems represented by
feed-forward neural networks and the solutions represented by propositional
knowledge bases. Binary neural networks; however, only represent a small
part of the neural networks used in practice. For this reason we move on to
look at the relationship between propositional logic and stable networks with
finite, discrete, and continuous activation values. As we will see, the move
from stable binary neural networks to stable multi-valued networks retains
the same equivalence to propositional logic, but moving to infinite-valued and
continuous networks changes the relationship somewhat. With infinite valued
networks, despite remaining the same most often in practice, the trivial se-
mantic equivalence is no longer valid. Furthermore, the syntactic relationship
is true only in an approximate sense. From a theoretical perspective continu-
ous stable networks don’t share the same relationship to propositional logic as
finite-valued ones but in reality, given that all neural networks are implemented
on finite-precision machines, the relationship is still a valid one.

4.4 Stable Finite Valued Neural Networks

Now that we have established the relationship between binary networks and
propositional logic we expand our class of networks and reexamine the rela-
tionship. What if our neural networks are not binary, but discrete? Can we
still relate these networks to propositional logic in the same way? Because
finite-valued neural networks extend binary neural networks, all neural en-
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codings described in the previous section are still valid. The question, then,
turns to the symbolic encodings. We can again rely on the fact that models
of propositional logic can themselves be represented by sentences consisting of
a conjunction of propositional variables. The trick now is to find a sensible
way of encoding the states of a finite-valued network into propositional vari-
ables. Luckily there is a fairly obvious way. Suppose each neuron takes values
in {a1, ..., ak}. Then for each neuron xi we associate propositional variables
X i
a1
, X i

a2
, ..., X i

an . If xi = aj then, for a semantic encoding, we want the asso-
ciated model, M , to contain X i

aj
and to not contain any other propositional

variable associated with xi. So M should have the property that for l 6= aj,
X i
l 6∈M . As an example, suppose we have neural network with 3 neurons that

each take values {1, 2, 3}. Given the state, x1 = 1, x2 = 1, x3 = 1, the corre-
sponding model is {X1

1 , X
2
1 , X

3
1}. In a finite but non binary valued network

a neuron gets associated to n distinct propositional variables where n is the
number of values that the neuron takes. Given a configuration of the states,
the corresponding model contains the propositional variables corresponding to
the values of the neurons in the configuration.

With this identification, we can tackle the problem of symbolic encodings.
In the semantic case, we can use the same trivial symbolic encoding from the
previous section by enumerating the stable states of the network, translating
each stable state to a conjunction, and mapping the network to the knowledge
base consisting of the disjunction of the conjunctions associated with each
stable state. Replicating the syntactic results from the previous section is sim-
ilarly easy. Because the bulk of the proof is nearly identical to 4.3.2, we will
simply refer to 4.3.2 when making arguments that differ only in the number
of implications or other superficial details.

Theorem 4.4.1. There is a syntactic symbolic encoding for finite-valued feed-
forward neural networks into propositional logic

Proof. Again, associate each neuron with a set of propositional variables cor-
responding to each of its possible activation values. To construct a knowledge
base, enumerate the input/output relationships between each neuron to derive
a set of implications of the form Hai ← X1

aj1
, X2

aj2
, ..., Xk

ajk
where the body

corresponds to a configuration of the inputs neurons of h that maps h to the
value ai. The finiteness of the number of neurons and values they take ensures
that this list will be finite. construct L by adding each of these implications
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along with, for each input neuron, x, Xai if x = ai for all times t > 1. Call
this knowledge base L. We define a similar notion of supported neurons to
that found in 4.3.2. An input neuron is supported if its value corresponds
to the atom in L. All other neurons are supported if their value corresponds
to a an atom which is at the head of a rule whose body contains only atoms
which themselves correspond to supported neurons. For example, suppose we
have a neuron, y, with value a, if Ya ← X1

aj1
∧ ... ∧ Xk

ajk
is a rule in L and

x1, ..., xk are supported then y is supported if y = a. Again we observe that
supported neurons are static in value according to the same inductive argu-
ment presented in 4.3.2. Given a state x̂, Definite Lx̂ as the conjunction of
the atoms corresponding to the values taken on by the supported neuron in x̂
along with all consequences of the conjunction. Finally, form L̂x̂ as the closure
under deductions not involving modus ponens of L∪Lx̂. The remainder of the
proof is identical to 4.3.2

What this shows is that by allowing for stable networks to have multiple but
finite values, despite the significantly larger number of implications to consider,
we can still think of these networks as knowledge bases in propositional logic
in which each update of the network carries out modus ponens along with all
the resulting consequences of conjunction and simplification. Another way we
could have gone about this is by converting finite-valued neural networks into
binary ones in a way that preserves the dynamics. The procedure for this would
be similar to the one used to convert multi-valued neurons into propositional
variables. It would begin by translating a single multi-valued neuron into a
set of binary ones in which each binary neuron represents a particular value
of the translated neuron in such a way that the dynamics of the finite-valued
network are equivalent to the dynamics of the binary network. To accomplish
this, each pair of connected neurons in the multi-valued network would have to
translate the weight value in a way that preserves the same input/out relation
in the binary network. One way to do this could be with strong inhibitory
connections between all binary neurons associated with the same finite-valued
neuron. Such a procedure translates the dynamics of a finite-valued neural
network into those of a much larger binary neural network. This suggests a
kind of relationship between different neural networks and their equivalence to
logical systems. Namely, if we can map the state space of one neural network
onto another surjectively in a way that preserves the dynamics, then if there
is a symbolic encoding of the target network in a logical system, there is also
a symbolic encoding of the initial network in the same logical system.
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Theorem 4.4.2. Given a neural networks N1 and N2, if there is a bijective
map, f , from the state space of N1 to the state space of N2 such that f(N1(x)) =

N2(f(x)), then for a logical system S

• if N2 can be symbolically encoded into S then N1 can be symbolically
encoded into S

• if S can be neurally encoded into N2 then S can be neurally encoded into
N1

Proof. See Appendix

This theorem is valid for both semantic and syntactic encodings, but for sta-
ble networks we can weaken the condition on f substantially to N1(x) = x iff
N2(f(x)) = f(x) and retain the result for the semantic case. In other words,
in a stable network, as long as f preserves stable states then the semantic
relationships remain unchanged moving from one network to the next. What
this is beginning to look like is a categorical equivalence. That is, we can define
maps between neural networks in a way that turns the set of neural networks
into a category, similarly we can define maps between logical systems in a way
that turns the set of logical systems into a category. When this is done, neural
and symbolic encodings are simply functors between the two categories. The
previous result then states that isomorphic objects in the category of networks
must map to isomorphic logical systems. Further development of this idea is
beyond the scope of this thesis so we merely make a note of it and remark that
developing this theory could potentially provide valuable insights for neural-
symbolic integration in the future.

We have seen that moving to finite-valued networks does not change any-
thing about the relationship between stable neural networks and propositional
logic. Because all currently existing physical computing architecture has finite-
precision, this means that any neural network implemented in real life, even
if ostensibly continuous, will still have the same relationship to propositional
logic from a theoretical standpoint. The very high level of precision available
to computers, however, means that any translation between a ‘continuous’
network and propositional logic using the method above would lead to mon-
umentally large knowledge bases and thus have little practical value. Any
propositional system containing potentially millions of variables and at least
as many rules can no longer claim to be operating on a conceptual level, at
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least not one comprehensible to humans. This problem lies at the heart of rule
extraction and will be the focus of much of our subsequent discussion. Despite
the technical equivalence, for the reasons outlined above, it is useful to discuss
the relationship between infinite and continuous-valued neural networks and
logical systems.

4.5 Continuous-Valued Neural Networks

In this section we once again broaden the set of neural networks under consid-
eration and establish syntactic and semantic relationships to important logical
systems. In this case, the networks being discussed are those with continuous
values. This is perhaps the most important case to consider as almost all neu-
ral networks used in practice have neurons with continuous-values, at least in
the hidden layers.

Many neural networks are continuous-valued. Many are also continuous in
time (most notably biological neural networks), but we will limit our discus-
sion to continuous-valued networks operating in discrete time (which we will
refer to as continuous networks for convenience). Because there is no bijec-
tive map between the state space of a continuous network and a finite one, we
clearly cannot call on 4.4.2 to provide the same results for continuous networks
that we had for finite ones because the injectivity of our map between state
spaces is only required to make the encodings valid. We have the option of con-
sidering surjective mappings from the state space of the continuous network to
the state space of a finite-valued network and identifying states with the same
image as equivalent. Under this equivalence relation we would have a bijective
map from the state space of continuous network to a finite-valued one and we
could then attempt to apply 4.4.2. However, we may not be able to find a
map like this that will preserve the dynamics of the target network. Although
for some networks we may be able to find such a map, in other networks this
may not be possible. Let us discuss this in more detail. Suppose we have a
surjective function between the state space of a continuous network, N1 and
the state space of a finite network, N2 such that f(N1(x)) = N2(f(x)). We
can use f to define an equivalence relation on the state space of N1 by x1 ∼ x2

iff f(x1) = f(x2). f will be bijective and 4.4.2 will apply. Note that N1 must
be well defined on this equivalence relation because it can be shown that if
f(N1(x)) = N2(f(x)), then f(x1) = f(x2) =⇒ f(N1(x1)) = f(N1(x2)). The
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contrapositive of this is that if f(N1(x1)) 6= f(N1(x2)) then we can’t have
f(N1(x)) = N2(f(x)). These observations underlie the general procedure for
extracting rules from continuous networks. We want to find a partition of the
state space that is well defined under the neural dynamics. In other words,
if x1 and x2 are in the same partition, then so are N(x1) and N(x2). When
this is satisfied, it is simple to construct a finite-valued network and surjective
mapping between the state spaces that preserves the neural dynamics. The
target network, by 4.4.1, is equivalent to a set of propositional rules relating
the partitions as atomic variables and so by 4.4.2 the continuous network can
be symbolically encoded into propositional logic with the given partition of the
state space. When this condition is not satisfied, then it will be impossible, at
least when encoding the partitions using the same method as 4.4.1.

In general, this property does not hold for an arbitrary partition of a continu-
ous dynamical system. We know it always holds for some partition, because it
is always true of the trivial partition which maps every state to the same thing.
However, what we really want is to be able to make the partitions arbitrarily
fine as to be able to describe the network exactly with arbitrary amount of
precision. Given a successively finer sequence of partitions, although each indi-
vidual partition might not satisfy f(x1) = f(x2) =⇒ f(N1(x1)) = f(N1(x2)),
it might hold in an approximate sense so that the fidelity of the extracted rules
goes to 100% as the partitions get finer and finer. To be precise, we want to
find a sequence of partitions, Pi, of the state space, X, each with an associ-
ated rule extraction algorithm that has fidelity 1 − εi such that lim

i→∞
Pi = X

lim
i→∞

εi = 0. Where our abuse of notion is meant to indicate that the partition,
Pi is a collection of subsets of X that, in the limit consists of every singleton
subset of X and that the fidelity of the sequence of rule extraction algorithms
is 100% in the limit. This property gives a characterization of an approximate
symbolic encoding.

So our old syntactic encoding will no longer work for continuous feed-forward
networks, what about our semantic equivalence? Unfortunately, the possibil-
ity of infinite stable states renders our obvious encoding invalid. Consider, for
example a continuous network with a single neuron that has no bias and a
self connection of 1. Every state is a stable state and thus the propositional
sentence describing this stable state contains an uncountably infinite num-
ber of variables making the sentence not only invalid in propositional logic
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but unwritable. Luckily, it is easy to see that the strategy of finite-partitions
can recover an approximate version of our previous results. Take some finite-
partition of the state space. Then use this to form an equivalence class on the
state space as before. Because there are a finite number of partitions, there
are a finite number of stable states so the trivial symbolic encoding into propo-
sitional logic from 4.3.1 holds. As for semantic neural encodings of proposi-
tional knowledge bases, by 4.4.2 it is sufficient to note that every stable binary
network is the discretization (transformation of a continuous network into a
finite-valued network) of some stable continuous network. Thus, given an ar-
bitrary discretization, stable continuous networks are semantically equivalent
to propositional logic under finite partition. Because this is true for any par-
tition, any sequence of partitions that, in the limit, splits the state space into
the entire collection of singleton subsets, represents an approximate semantic
symbolic encoding because each partition has a rule extraction algorithm with
100% fidelity as shown above.

Now we will show that continuous feed-forward neural networks can be approx-
imately syntactically symbolically encoded into propositional logic. To do this,
we will develop a sequence of partitions that vanishes in the limit along with
a general rule extraction procedure whose fidelity is 1 in the limit. The most
obvious way to discretize the state space of a continuous network is to partition
the state space of each of its neurons. By this we mean that for each neuron
x ∈ [a, b], we partition the interval with values a < c1 < c2 < ... < ck < b

which results in the partition [a, b] = [a, c1) ∪ [c1, c2) ∪ ... ∪ [ck, b]. For sim-
plicity we assume that the activations of each neuron are bounded and lie in
the same interval. Extending this to the more general case does not change
any of the arguments but it does make the notation much more complex.
Now that we have discretized the activations of x, we can associate them with
propositional variables using the same method employed in the previous sec-
tion. Namely, for each partition, [ci, ci+1) we associate a propositional variable
Xci,ci+1

. This gives a mapping from states of a continuous network to models
of propositional logic. If we have the configuration x1 = y1, x2 = y2, ..., xn = yn

such that for all i, cxi ≤ yi < cxi+1, we map this configuration to the model
{X1

cx1 ,cx2
, X2

cx2 ,cx3
, ..., Xn

cxn ,cxn+1
}.

Assuming we have a feed-forward network, we define a map from states of
the neural network into knowledge bases. Each partition determines a set
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of variables which in turn determines a knowledge base. This necessarily in-
troduces a degree of error as the rules are defined on variables associated to
partitions rather than states. An output neuron may take values from different
partitions given two different inputs in the same partition. In some cases we
may still have perfect fidelity but this is not generally true. For this reason,
the decision boundaries of the output neurons become important. If all con-
figurations of an input partition produce an output that is contained between
two decision boundaries, then we have a exact neural model for the knowledge
base consisting of the corresponding rule. Of course if there are states within a
partition that produce outputs on different sides of a decision boundary, then
there must be some states of the network inside that partition that are not
neural encodings of the knowledge base. This is because no matter which rule
is assigned to the input and output partition, some states will invalidate the
extracted rule.

The inability of a discrete logical system to exactly describe a continuous
network is not surprising as some amount of information loss is to be expected
when compressing a continuous signal into a finite one. For this reason, in
the next chapter we will identify the loss in fidelity induced by mapping a
continuous state space onto a discrete one as the compression error. In order
to produce an approximate encoding, we want to consistently be able to refine
our partition so that we can reduce the compression error from rule to an ar-
bitrarily small amount.

In order to make precise the rule extraction method we are using, we will
go over in detail how rules are extracted from a feed-forward network using
a finite partition of the state space. We must first give some assumptions for
our network. We assume that the transfer function is continuous, and that
the activation values of the neurons are bounded. The second assumption may
seem harsh as it neglects important networks that use transfer functions such
as Relu but the range of activation values can be made arbitrarily large and
the fact that the input neurons are generally bounded means that activations
are essentially always bounded in practice. The first step in our approximate
encoding is to discretize the network according to the method above. We
again enumerate the input/output relationships between discretized input and
output neurons; however, as discussed above, a single discretized input config-
uration may result in multiple discretized output configurations. In this case,
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we add the rule which holds for the greatest percentage of the inputs. By this
we mean: assuming a uniform distribution over the networks configurations
within the discretized input configuration, select the value for the discretized
output neuron as the one that is generated by the largest area within the
input configuration of any of the output values. This is why we required con-
tinuity and bounded activations, in order to define the relative volume of the
regions corresponding to the different output values, we need these regions to
be bounded and measurable in the usual sense. Once this is complete, we have
produced a finite set of rules in such a way that by using 4.4.1 to add the nec-
essary state information to each knowledge base we have mapped states of our
continuous network to a propositional knowledge base in a way that encodes
the neural dynamics with a certain fidelity determined by what percentage of
the state space violates the condition x1 ∼ x2 =⇒ N(x1) ∼ N(x2).

To give a more detailed illustration of the discretization process, take a sim-
ple feed-forward network with three neurons, x1, x2, x3, each with activations
in [0, 1], and 0 bias. The weights are w1,3 = 1, w2,3 = −1, and the out-
put neuron has a Relu activation function. Suppose we have the partition
{{0.2, 0.6}, {0.5}, {0.1}}. We associate the continuous variables with discrete
ones, namely x1 ≤ 0.2, 0.2 < x1 ≤ 0.6, 0.6 < x1, x2 ≤ 0.5, 0.5 < x2 and
similarly for the output variable. Now we have turned our continuous net-
work into a set of discrete variables. This allows us to define functions from
the discrete input variables to the discrete output variables. However, these
functions cannot be completely accurate because there exist configurations of
the input variables for which there are activations in the continuous network
which result in outputs satisfying one discrete output variable and activations
which result in outputs satisfying a different output variable. For example,
take the activations x1 = 0.8, x2 = 0.9, and x1 = 1, x2 = 0.7. Both activations
correspond to 0.6 < x1 and 0.5 < x2 but the outputs correspond to 0 and 0.3

respectively which in turn correspond to the variables x3 ≤ 0.1 and 0.1 < x3.
This means that any function on the discrete variables will never always be
accurate.

So for each continuous feed-forward network, we can choose a partition of
the state space to produce a finite-valued network which can be encoded into
propositional logic. The existence of rules whose conclusion does not always
correspond to the conclusion derived from the network means that, in general,
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the propositional system will not have 100% fidelity with the original network.
However, by selecting finer and finer partitions, the number of states in the
finite-valued network with ambiguous outcomes will decrease and in the limit
go to 0. This is formalized in Theorem 4.5.1. The idea of this proof is intuitive
while certain formal details are quite technical. For this reason we will sketch
the idea of the proof here before presenting the theorem and full proof. The
idea of the proof is that given an output neuron with a partition and a set
of inputs. Choose some initial partition of the input space by partitioning
the activation values of each input neuron. Given an input configuration, the
configuration must land inside a box defined by the partitions of the input
variables. Given that the transfer function is continuous, the partition that
the output neuron will end up in is determined by a set of decision boundaries
in the input space. If the decision boundary does not intersect an input box,
then every configuration inside that box will always give an output value in the
same output partition meaning the corresponding discrete rule agrees with the
network all the time. If one or more decision boundaries intersect the interiors
of a box, then the fidelity measured over that box must be less than 100%.
However, we can further refine the partition of the input space so that the
partition does not contain any points of the decision boundary in the limit.
Because the decision boundary has measure 0, in the limit, the overall fidelity
will be 100%. Now suppose we have a feed-forward network. The error in a
single layer is a function of the error generated by the state space partition in
the current layer and the accumulated errors of previous layers. Because we
can reduce the error to 0 in each layer, we can reduce the error to 0 of the
whole network by starting at the bottom and reducing the error to be arbitrar-
ily close to 0 and doing the same for the next layer until we get to the top. So
given any partition of the output neurons there is a partition of the remaining
neurons along with a rule extraction method that gives fidelity 1 − ε for any
ε > 0. We get an approximate syntactic symbolic encoding by choosing a
sequence of output partitions with corresponding input partitions in a way so
that the partitions converge to the whole state space and the fidelity converges
to 1. We give the exact statement and proof of this as follows.

Theorem 4.5.1. In a continuous feed-forward network, for any 0 < ε ≤ 1 we
can always find a partition of the state space such that there is a syntactic rule
extraction algorithm defined from the state space of the network to propositional
logic with fidelity greater than 1− ε.

Proof. We begin by defining partitions of Rn and proving some of their prop-
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erties. A box in Rn is a compact subset of the form {x : ax1 ≤ x1 ≤ bx1 , ax2 ≤
x2 ≤ bx2 , ..., axn ≤ xn ≤ bxn}. A box partition of Rn is a set of boxes whose
union is Rn. We can define a finite box partition of Rn by choosing points
−∞ < a1 ≤ a2 ≤ ... ≤ ak < ∞ for each xi. A box in this partition is defined
by pairs of points for each xi so that aij ≤ xi ≤ aij+1

. Each choice of pairs of
points clearly defines a unique box and the union of all such boxes is obviously
Rn. Call box partitions of this form interval partitions. Although not every
box partition is an interval partition, it is easy to see that for every box parti-
tion, there is an interval partition that is finer than the box partition. This is
done by choosing the collection of all endpoints of xi used by the boxes in the
partition as points for the interval corresponding to xi. Doing this for each xi
gives an interval partition whose boxes are strictly contained in the boxes of
the original partition.

Now suppose we have a neural network consisting of n input neurons, xi, and
a single output neuron, h. Suppose h is partitioned by a1, a2, ..., ak. Assuming
that h has a continuous transfer function, f , f−1((ai, ai+1)) will all be open sets
including the unbounded intervals. It is a fact from point-set topology that
any open set in Rn can be expressed as a countable union of boxes. Take the
first m such boxes for each f−1((aj, aj+1)) and take their union. Because each
of these sets are disjoint and they cover the entire input space, this will give
us a box partition of the input space. From these boxes we can define an in-
terval partition finer than the union of all of these boxes. Call this partition pm.

Now we define a mapping from states of the neural network to a proposi-
tional knowledge base. Given our partition, pm, the activations for each neuron
are divided into intervals. For example, given neuron xi, pm defines intervals
xi ≤ ai1, a

i
1 < xi ≤ ai2, ..., a

i
k < xi. Associate with each of these intervals a

propositional variable, Aij,l where i indicates the neuron that the variable cor-
responds to and j, l correspond to the endpoints of the interval. Note j may
be −∞ and l may be ∞ if the activations of the neuron are unbounded. This
is done for the output variable h as well giving us propositional variables of
the form Hj,l. Each box is thus associated with a conjunction of propositional
variables. For each box we associate a rule whose body consists of the as-
sociated conjunction and whose head is the output variable corresponding to
the output partition mapped to by the majority of the input states within a
box. Majority is defined as percentage of volume where volume is defined in
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the usual way with the Lebesgue measure. If a box has infinite volume then
if every state in the box maps to the same output partition assign the vari-
able for that partition to the head of the rule, otherwise choose an arbitrary
variable to assign to the head of the rule. Define a knowledge base L as the
collection of each of these rules. To each configuration of the network we as-
sociate the knowledge base L along with the conjunction of supported atoms
and their consequences under propositional inference excluding modus ponens.
Supported atoms are defined as in 4.4.1. Configurations of input neurons are
always supported and other neurons are supported only if their value is in a
partition that corresponds to a variable at the head of a rule whose body only
contains literals that themselves represent supported neurons.

If a box is contained in f−1((aj, aj+1)) for some values, aj, aj+1, in the par-
tition of an output neuron, h, then every input configuration inside the box
results in a value of h that corresponds to the variable Haj ,aj+1

. Thus the
rule Haj ,aj+1

← pm,l (where pm,l is the conjunction of all atomic variables cor-
responding to the box) is an exact syntactic neural encoding for states that
are inside the box as the rule is satisfied for all initial states of the network.
When there are states inside a box on either side of a decision boundary, then
the associated rule will have less than 100% fidelity depending on ratio of
the volumes of the regions inside the box but on either side of the decision
boundary. If every box of input neurons was contained strictly inside the de-
cision boundaries of the output neurons, then following the same reasoning
as 4.4.1 we could construct an syntactic symbolic encoding of the network
using the partition to define the atomic variables. The fidelity of a knowl-
edge base on the input space, I, with partition pm can be decomposed into
Fidelity(I) = V ol(Ipm )

V ol(I)
Fidelity(Ipm) +

V ol(I◦pm )

V ol(I)
Fidelity(I◦pm). Where Ipm is the

set of boxes containing points on either side of a decision boundary and I◦pm
is the set of boxes whose points are all on the same side of every decision
boundary. As shown above, we can extract rules so that the fidelity on I◦pm is
100%. Since each f−1((aj, aj+1)) is exactly the union of an infinite sequence
of boxes, for any input state, x, that is not on the decision boundary we
can choose an m such that in the partition pm, x is contained inside a box
strictly contained inside of some set f−1((aj, aj+1)). Thus in the limit, Ipm
is equal to the union of every decision boundary. Because the each decision
boundary is an n − 1 dimensional subspace of Rn and the set of all decision
boundaries for the output partitions is the countable union of each individual
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decision boundary, the set of states on a decision boundary has measure 0 and
thus in the limit as m→∞, we have V ol(Ipm )

V ol(I)
= 0 and thus the fidelity is 100%.

For multiple output neurons it suffices to note that for every pair of parti-
tions there exists a partition finer than each. Thus, given the set of partition
sequences corresponding to the output neurons we can form another sequence
of partitions such that the fidelity of the extracted rules for every output neu-
ron is 100% in the limit. Note that if the activations are unbounded then we
cannot make sense of the fidelity on unbounded boxes as the volume is infi-
nite. However, the same sequence of partitions will converge to a partition in
which the boxes with infinite volume are strictly contained within the decision
boundaries and can thus simply be assigned a fidelity of 1.

Moving on to multi-layer networks, we fix an output partition and use the
previous step to find a partition with fidelity 1 − ε. Repeat this layerwise so
that the rules extracted from each layer have fidelity 1− ε over their respective
input spaces when considered as independent layers. Because we can refine
the partition of each layer to obtain arbitrarily high fidelity, starting with any
partition of the output neurons, we can find a partition of the input neurons
that gives a certain fidelity to the output neurons. Repeating this process by
moving down each layer, because the number of errors accumulated at each
layer is at worst additive and there are a finite number of layers, we can always
choose a partition so that the overall fidelity is 1− ε for arbitrary ε > 0

We have shown that feed-forward networks can always be syntactically encoded
into propositional logic, at least in the limiting case. On a formal level, this
establishes that the difference between logical systems and feed-forward neural
networks is a representational one. However, our proofs often involved adding a
massive number of rules to a knowledge base. This theoretical correspondence
is therefore not a practical one. As we will see in the next chapter when we
review different rule extraction techniques, we consistently end up sacrificing
a degree of fidelity in exchange for reduced complexity. As we will also see,
semantic encodings of neural networks have usually focused on other kinds of
logic considered more aligned with dynamics of neural networks. Before we
review the major neural encoding and rule extraction techniques, there are
some loose ends to tie up.
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4.6 Unstable Networks

So far we’ve discussed stable networks, that is, networks which always set-
tle down into a stable state. Stable state dynamics is convenient for neural-
symbolic integration since it allows us to model the semantics of a logical
system in terms of the stable states. As we will see in a future section, stable-
state semantics have not just been applied to propositional logic, but also other
forms of logic due to the simple nature of their dynamics. Stable networks are
very common in practice, mostly due to the prevalence of feed-forward net-
works, but unstable networks are also common. Unfortunately, for unstable
networks the question of neural-symbolic integration, at least in the current
formulation, has some issues. We will explore these issues now.

To begin, we first note that all unstable networks are recurrent. Of course,
there are many examples of recurrent networks which are stable, including
SCNs as well as other kinds of networks which we will revisit in our discussion
of the neural encoding of propositional logic programming, but recurrence is
a necessary condition for a network to be unstable. The next thing we note is
that every unstable recurrent network with finite activation values will settle
into a cycle. Although this type of network may have stable points, for most
initial states, we will eventually run into a cycle. This is because, assuming a
finite number of neurons, the state space is finite. The implication is that even-
tually we will have to return to a previously visited state. Because the network
is deterministic this means it must revisit the same states in the same order
it did previously until it loops back again. When the network has continuous
activations we can have very complicated dynamics which poses a problem for
any finite symbolic rule extraction techniques.

One common explainability approach for recurrent networks is to associate
them with a finite automata. This is done by partitioning the state space
of a continuous network and using the networks dynamics to define a tran-
sition function on the set of states defined by the partition. Many different
approaches for this have been developed Jacobsson [2005]. This approach
doesn’t technically fit into our definition of a symbolic encoding because it
uses finite automata rather than logical systems. Rule extraction from re-
current networks is an important example of neural-symbolic integration with
symbolic systems that are not logical systems. If the recurrent networks have
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finite values, then they can always be transcribed exactly into a finite au-
tomata. Like before, this can be done by simply enumerating the states of the
networks and defining the transition function. When the networks are contin-
uous, we run into serious theoretical limitations. The first is that continuous
recurrent networks are capable of hypercomputation, Siegelmann [1995]. Hy-
percomputation is the ability of a network to compute non-Turing computable
functions. The ability of a system to do this depends, crucially on the use of
continuum. A neural network capable of hypercomputation can never be simu-
lated by a finite-automata due to the fact that it is in a different computability
class. Furthermore, since the symbolic systems we have been concerned with
are discrete, the behaviour of continuous networks capable of hypercomputa-
tion simply cannot be captured by finite symbolic systems. It is still possible,
perhaps even likely, that symbolic systems which themselves use continuous
variables are capable of encoding unstable neural networks either semantically
or syntactically. This question is left open for future work.

Although the existence of recurrent networks capable of hypercomputation
is a concern for rule extraction, the vast majority of continuous neural net-
works are not capable of hypercomputation. In fact, the practical implications
of hypercomputation has seen heavy criticism. It is unclear whether or not
hypercomputation is physically realizable at all Davis [2006]. The relevance
of recurrent networks capable of hypercomputation to effective rule extraction
is dubious at best. Despite this, there is another fundamental issue we run
into when attempting to do rule extraction on continuous recurrent neural
networks. Different partitions of the state space may lead to output sequences
which belong to grammars of different computational classes Kolen [1994].
This observation has lead to the criticism that rule extraction for recurrent
continuous networks may be a dead end.

To summarize, using a finite symbolic system to emulate a continuous one
will, in general, result in a degree of error (which in the future we will call the
compression error). For feed-forward networks we can always reduce this com-
pression error by choosing a finer partition. This introduces new variables to
the symbolic system and results in a more complex description of the network.
In other words, we can always increase fidelity by increasing complexity. For
recurrent networks we see that there are, at least in certain cases, fundamen-
tal computational differences which suggest no discrete symbolic system could
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be considered an adequate description of the network. It should be noted,
however, that in practice truly continuous machines would require infinite (or
at least arbitrarily high) precision. In particular, since every neural network
today is implemented on a Turing-complete machine they, too, are Turing
complete and the computational considerations described above do not apply
to them. Considering we will be focusing our attention on stable networks, the
limitations on the effectiveness of rule extraction have to do with the required
complexity of the rules rather than some fundamental difference in the two
computational models.

Although the majority of neural-symbolic integration with recurrent networks
has used finite automata, integration with logical systems has been developed
for certain kinds of recurrent networks de Penning et al. [2014]. What dis-
tinguishes this encoding from the ones discussed previously is that the neural
network in question is probabilistic. In the next section we will discuss how our
definitions of neural-symbolic integration can be extended into multi-valued
logic and probabilistic networks.

4.7 Neural-Symbolic Integration with Other Log-

ical Systems and Neural Networks

The framework developed in section 4.2 gives a precise account of neural-
symbolic integration between deterministic networks and logical systems with
two truth values. However, this excludes many important classes of neural
networks and logical systems. Luckily, our definitions can be extended to in-
clude these cases. These extensions are the focus of this section.

We start with a generalized definition of a logical system which includes multi-
valued logic.

Definition 4.7.1. A multi-valued logical system is a quadruple, S = (L,`S
,M, T ). Where L is a recursive language, `S is a computable relation on 2L×T ,
M is a set of models, and T ⊂ R is a set of truth values.

A model is a set, M , along with a truth function fM : L → T . The differ-
ence between this definition and the definition for a boolean logical system is
that we must specify a particular truth value for each sentence in a knowledge
base in order to apply an inference procedure to it. Likewise a model does
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not necessarily assign a value of true or false to a sentence, but rather one of
many, possibly infinite truth values. We can see that this definition generalizes
the old one by setting T = {0, 1} and only defining the deductive relation on
subsets which assign a value of 1 to every element of the knowledge base. By
extending our definition in this way, we can formalize neural-symbolic integra-
tion for a whole family of logics which have played an important role in AI.
Most notably among these is fuzzy logic. We would like to also note that the
central barrier to neural-symbolic integration with recurrent continuous valued
networks is now not an issue, because there are continuous-valued logics which
would not be required to partition the state space of a continuous network in
order to define a map from the states of a network to models of the logic. In
this sense, the theoretical problems of neural-symbolic integration with recur-
rent networks are not an issue with symbolic systems themselves but merely
an issue with representing a continuous state space with a discrete one.

Like multi-valued logics, we can incorporate probabilistic networks into our
framework of neural-symbolic integration by generalizing the definitions of a
semantic encoding. Given an initial state x0, a probabilistic network defines a
probability distribution on its state space at every time t. We write a config-
uration of the state space at time t as x(t). If P is the probability distribution
over all sequences defined by the network, the probability of a configuration
at time t given initial state x0 is P (x(t)|x(0) = x0). Assuming we have a map
from configurations of the state space to models of a logical system as before,
then we have the following definition for a neural model

Definition 4.7.2. A neural network is a model for a knowledge base L if, given
any initial state x0, if x is not a model of L then lim

t→∞
P (x(t) = x|x(0) = x0) = 0

Recall that for deterministic networks, the L-models of N are those models
which appear infinitely often given some initial state. We extend this to prob-
abilistic models by defining an L-model of N as a model, x, of L such that
there exists an initial state x0 such that for all t, there exists t′ > t with
P (x(t

′) = x|x(0) = x0) > 0. Again this definition simply discounts models
which only appear temporarily in the dynamics of the network. With our def-
inition of L-models we can define semantic neural and symbolic encodings in
the same fashion as with deterministic networks. Although it is possible to
extend the definition of syntactic encodings, to our knowledge there have not
been any attempts at probabilistic syntactic encoding so we defer this defini-
tion to later work.
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In the deterministic case, stable neural networks play an important role for
semantic encodings. The probabilistic analog of a stable state is a stable dis-
tribution. A stable distribution is one in which P (x(t)) does not change as t
changes. Many important stochastic processes settle to a stable distribution.
In the context of neural networks the best example of this is the Boltzmann
machine which, given any initial state, converges to a stable Boltzmann dis-
tribution. In the case that a probabilistic network is stable, we only need to
check whether configurations which are not models have a 0 probability in the
stable distributions in order to verify that a network is a model for a knowledge
base.

The final thing to consider is the fidelity of a rule extraction algorithm. For
deterministic networks we defined the fidelity as the percentage of initial states
which were models of a knowledge base. We may be tempted to use the same
definition for probabilistic networks; however, this is inadequate. To see this,
consider the Boltzmann machine which converges to the same distribution for
every initial state and therefore any Boltzmann machine which is not a model
will have 0% fidelity even if there is a 99% chance of a state in the stable
distribution being a model. A more sensible definition in this case would be
the probability in the stable distribution that a state is a model. However, not
all stochastic processes are stable. What we want is some time t at which the
probability of being in a model state is never lower than in the future than it
was at time t. In other words, at time t the probability of being in a model
state is always at least what it is now. Furthermore, we want the time with
the maximum such probability. Thus, for a given initial state, x0, the fidelity
with respect to x0 is defined as follows, let MN

Definition 4.7.3. The fidelity with respect to x0 is max
t
P (x(t) is a model

|x(0) = x0) where t satisfies the property that ∀t′ > t, P (x(t
′) is a model |x(0) =

x0) ≥ P (x(t) is a model |x(0) = x0)

This definition may seem difficult to work with, but in the case we have a
stable distribution it reduces to the probability of a state being a model in the
stable distribution. We will use this definition when calculating the fidelity of
rule extraction techniques when applied to Boltzmann machines. The fidelity
of the whole network is defined as the average fidelity over all initial states.
All of these definitions can be seen as generalizing the ones we gave for de-
terministic networks. This is because a deterministic network can be seen as
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a probabilistic network with the probabilities for any state transition to be
either 1 or 0. When formulated this way, the definitions of models and fidelity
become equivalent to the definitions we gave for deterministic networks. Now
that we’ve given a thorough definition for the kinds of relationships different
logical systems and neural networks may have, we will discuss some of the
practical and representational differences between the two approaches before
giving a review of the various neural encoding and rule extraction methods
developed over the years.

4.8 Learning and Representation

As we have seen, for many important cases, neural networks can either be
thought of as defining the semantics of a logical system, or as implementing
the deductive apparatus. This type of formal equivalence is in addition to the
more general computational limitations obeyed by both with the only excep-
tion arising when the neural networks are continuous (either in time or the
state space). However, since in almost all practical scenarios neural networks
are implemented on a discrete computer, the networks will be limited by Tur-
ing completeness. Given this kind of formal equivalence, what, then, is the
difference between symbolic systems and neural networks? This question is
examined further in this section.

There are two possible angles to look at: The first of which is the learning
procedures. Much of the success of neural networks can be attributed to the
use of continuous optimization algorithms such as gradient descent LeCun et al.
[2015]. Although symbolic learning algorithms exist, the power of gradient de-
scent along with its very general applicability give it an advantage over the
learning algorithms of symbolic systems. As discussed before, this is one of
the main motivating factors for the translation of symbolic systems into neural
networks Garcez et al. [2008]

The second area of difference is a more subtle one: representation. It has
been argued that one of the key features of neural networks allowing them
to have such good generalization ability is that concepts are encoded using
distributed representations, Smolensky [1988], LeCun et al. [2015]. In a dis-
tributed representation, the abstract concepts relevant for reasoning are not
represented with a single variable or neuron, but rather from patterns of ac-
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tivity over many neurons Smolensky [1988]. At the surface, the difference
between a local and distributed representation in a neural network is negli-
gible as any distributed representation is isomorphic to a local one via linear
transformation. However, distributed representations have been shown to ex-
hibit graceful saturation, that is, as more states of a system are encoded into a
finite network the errors accumulate at a reasonable rate rather than resulting
in a catastrophic failing of the network Smolensky and Legendre [2006].

Another important feature of distributed representations is a notion of dis-
tance between concepts. In a distributed representation, we can measure the
distance between points in the vector space representing completely different
concepts. In a purely symbolic system, relations such as Paris:France and
Rome:Italy have no meaningful similarity even though conceptually they rep-
resent a similar relationship. All similarity has to be encoded axiomatically,
whereas in a distributed representation we are given a metric by default. This
has been proposed as a mechanism for the generalization capabilities of neural
networks. Even if an input is completely new it will be spatially close to similar
inputs which may be familiar. In this view, distributed representations equip
a concept space with a geometry that can be used for strict logical inference as
well as encoding fuzzier relations between concepts. The idea of using the ge-
ometry of embedded distributions as a model theory for symbolic systems has
been partially formalized Guha [2014] and further neural symbolic integration
using the geometry of embedded distributions has been pursued in Serafini and
d’Avila Garcez [2016].

According to the previous analysis, the benefit of neural networks lies in their
use of many subsymbolic variables to represent symbolic structures. This al-
lows neural networks to implement the type of intuitive reasoning required for
generalization that symbolic systems are unable to capture. This observation
seems to be in contrast to the formal neural-symbolic equivalence that was
discussed previously. Since, for all practical purposes, both systems are com-
putationally equivalent, it should in theory be possible to define a symbolic
system which is able to reason like a neural network. The key difference be-
tween the symbolic systems in use and the kind that would be required to
implement general neural networks is that we require our symbolic systems
to be relatively compact, with variables and atoms that represent very ab-
stract concepts. A symbolic system may reason about an object like dog or
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cat whereas a neural network will reason over a large set of variables each one
of which may not represent anything particularly meaningful. This leads us
to what is perhaps the fundamental difference between symbolic and connec-
tionist systems: compactness. The question, then, isn’t whether or not there
is any fundamental difference between neural networks and symbolic systems
but rather to what degree can a dataset be compressed into a set of variables
that can still make accurate predictions about the label. The representational
issues outlined above boil down to how much information is lost when transi-
tioning from a high dimensional geometric space to a low dimensional symbolic
one.
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Chapter 5

Encoding and Extraction
Techniques

5.1 Other Neural-Symbolic Relationships

In the previous chapter, we explicitly proved some very general relationships
between logical systems and propositional logic. The only features we consid-
ered were the set of values taken on by the neurons and whether or not the
network had a recurrent or feed-forward architecture. From this information
alone we can establish some important relationships, but many other, often
closer, relationships have been established by relating logical systems other
than propositional logic to networks with a more restrictive architecture. Also
notably absent from the previous chapter is any discussion of specific rule ex-
traction techniques. This is because rule extraction is more concerned with
establishing an approximate relationship between a neural network and a log-
ical system in terms of fidelity rather than an exact encoding.

In this chapter we will review some of the most important equivalences that
have been established in neural-symbolic integration as well as the most no-
table rule extraction techniques. We will describe the equivalences in terms
of semantic and syntactic encodings. In several cases we will either extend an
encoding to an equivalence or comment on the class of networks represented by
its image. This has two purposes, the first is to provide a more detailed image
of how various logical systems and neural networks relate to each other. The
second, is to validate our neural-symbolic framework by showing that previous
work in neural-symbolic integration fits into the chosen definitions. The dis-
cussion of rule extraction will be more focused on technique as motivation for,
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as well as a point of comparison to, the extraction algorithms developed in Part
II. We conclude the chapter by summarizing the neural-symbolic relationships
that are established in chapters 4 and 5.

5.2 Other Neural Encodings

So far we have shown that stable networks are, at least in a limiting sense,
semantically equivalent to propositional logic. However, neural encodings of
stable networks have been developed for other logical systems as well. In this
section we will discuss some of these encoding methods.

Most relevant to the development of one of our own algorithms is the se-
mantic equivalence of penalty logic and SCNs. Recall that Penalty logic was
explicitly developed in an attempt to capture the reasoning properties of SCNs
(see section 3.5). The relationship between SCNs and penalty logic turns out
to be a semantic one. First we must show that there is a neural encoding of
penalty logic. To do this, we associate each knowledge base in penalty logic to
an energy function Pinkas [1995]. To construct this energy function, first we
translate a knowledge base into a function over the propositional variables (in-
terpreted as binary variables) such that the minima of the function are exactly
the preferred models of the knowledge base. After doing this, we construct an
energy function for SCNs that is equal to the previous function up to some con-
stant difference c. This function will have the same minima as the previously
defined function. This gives a one-to-one correspondence between minima in
the energy function and preferred models of the knowledge base. Since SCNs
are stable, the neural models of this encoding are exactly the minima of the
energy function, which are exactly the preferred models of the knowledge base.
Therefore we have a neural encoding. To show that every SCN has a seman-
tic encoding we merely have to repeat the construction in reverse. For every
energy function of an SCN, we show that there is some function over a set of
binary variables whose minima correspond to the preferred models of a knowl-
edge base that is equal to our energy function up to a constant difference c. By
the same reasoning as before this is a symbolic encoding of the knowledge base.

One minor difficulty with this procedure is the existence of high order terms.
The energy function we construct may have terms of the form x1x2x3. This
can be interpreted as a multi-weight, a connection between three neurons. In
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most definitions of neural networks, a connection exists only between two neu-
rons. Luckily, the addition of hidden units solves this problem. A connection
between three neurons can be replaced by three two-valued connections all to
a single hidden neuron. In other words, we replace the term x1x2x3 with three
terms hx1,hx2, and hx3.

Before we continue we should make a minor note on monotonicity. We have
now shown that SCNs are equivalent to both propositional logic and penalty
logic. This first seems to pose a contradiction: while propositional logic is
monotonic, penalty logic is not. Indeed, one can construct a map from penalty
logic to propositional logic by first mapping a knowledge base to an equiva-
lent network, and then mapping that network to an equivalent knowledge base
in propositional logic. Because this is a semantic encoding, the link here is
that they share the same set of models. However, if we add a sentence to the
knowledge base in penalty logic and map it to a neural network, the knowl-
edge base in propositional logic we get from mapping the neural network back
into propositional logic will not necessarily consist of the previous knowledge
base with an additional sentence. Indeed, if any connections in our network
are changed, or added, many of the sentences we had in our old propositional
knowledge base will not be there. All our map has really shown here is that
for every knowledge base in penalty logic, there is a knowledge base in propo-
sitional logic with the same models, but this could be seen trivially anyways.

Next we will look at neural encodings for logic programming. Logic program-
ming has been a common target for neural-symbolic integration due to its com-
mon use in AI. Many variants of logic programming have been given neural en-
codings making the integration of logic programming and neural computation
one of the greatest successes of neural-symbolic integration. However, encod-
ings are generally of propositional logic programming, or, if they are encodings
for first-order logic programming, then they deal with a reduced language and
model-space that allows them to be reduced to what is essentially a proposi-
tional language. An explicit neural encoding of fully-fledged first-order logic
programming remains one of the challenges for neural-symbolic integration. As
we have discussed Chapter 4, this challenge must be overcome using syntactic,
rather than semantic encodings.

One of the first neural encodings of logic programming was Knowledge-Based
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Artificial Neural Network (knowledge based artificial neural networks) Tow-
ell and Shavlik [1994]. Similar to the previous encodings we have described,
KBANN encodes acyclic Horn clauses into feed-forward neural networks by as-
signing atomic variables in the logic program to neurons in the network. This
is done by viewing the logic program as a hierarchy. To see an acyclic logic
program as a hierarchy, start by taking any rule in the logic program. If any
of the variables in the body of this rule are themselves the head of another
rule, go ‘down a level’ and consider that rule. Repeat this procedure until you
reach a rule for which none of the variables in its body are the heads of any
rules. The ‘level’ of the variable at the head of a rule is the longest path to
a rule for which there are no variables in the body that are the heads of any
rule. in KBANN, the level of a variable determines which layer in the network
it will be placed in. The first step of KBANN is to rewrite the logic program
to eliminate disjuncts of more than one variable, ie multiple clauses with the
same head whose body contains multiple variables. This is done by adding new
variables corresponding to each disjunct. For example, if we have the disjuncts
A← B∧C and A← C∧D, then we rewrite this as A′ ← B∧C, A′′ ← C∧D,
A← A′, A← A′′. This is done because neural networks are threshold units. If
any combination of variables reaches the threshold then it will fire regardless of
which particular combination of variables that happens to be. Now translate
the logic program into a neural network by assigning each variable a neuron
and for each rule set the weights so that the head is only true if each neuron in
the body is true. Insert appropriate biases for neurons which are the head of
a rule with no variables. Notice that this network, regardless of its input, will
settle at a single stationary configuration, namely the one in which all input
units with biases are on and all other are off. This is because, as discussed
in the section on logic programming, the semantics of Horn clauses are deter-
mined by their minimal model. Thus this is a neural encoding. In its original
formulation, KBANN perturbs the weights and adds additional neurons meant
to represent additional facts that may be relevant to the problem. The inten-
tion of KBANN was to create a network that can be trained to learn new facts
related to the problem. For our purposes, we are only interested in the ability
of KBANN to encode logic programs and for this reason we do not discuss
these aspects of it here. What about the other direction? can KBANN always
be encoded in a logic program? The important thing to ask here is: what is
the class of neural networks that KBANN represents? Because it doesn’t deal
with negation, the encoding we have given never uses negative weights. Thus
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we should ask whether or not every feed-forward network with positive weights
can be expressed as a logic program. The answer is yes. We merely use the
same encoding of rules as we did for propositional logic, but only add those
rules for which the head is not negated. In other words, we only add the rules
which turn on the output neuron. Additionally, we drop any negated terms
from the body of each rule. It is not difficult to check that the single stable
state of our network will be the minimal model of our extracted Horn clause.
With the converse established, we can state that Horn clauses are semanti-
cally equivalent to feed-forward networks with positive weights. We can also
adapt the propositional syntactic encoding used in the previous chapter to this
case. Equipping Horn clauses with the deductive rules discussed at the end
of section 3.2 excluding the inference rule for negated literals allows us to use
the same symbolic encoding as we did for propositional logic to encode binary
feed-forward networks with positive weights into Horn logic programming. The
corresponding neural encoding now also holds using the encoding developed
above with the mapping from neural states to truth assignments replaced by
an appropriate map to conjunctive clauses along with the required rules and all
sentences inferred from conjunction and simplification of the supported neu-
rons. Thus feed-forward networks with positive weights are syntactically and
semantically equivalent to Horn logic programming (for continuous values this
becomes approximately true in the same sense as 4.5.1).

The neural encoding techniques of KBANN were extended to general logic
programs with the Connectionist Inductive Logic Programming (CILP) algo-
rithm Garcez and Zaverucha [1999]. CILP uses a similar encoding technique
to KBANN, but condenses the network by using only a single hidden layer.
Furthermore, CILP adds recurrent connections from the output neurons to
the input neurons. Given a general logic program, CILP implements the least-
fixed point operator of the logic program. This implies that CILP associates
a neural model to every acceptable logic program. Acceptable logic programs
are a broader class of logic programs that are not necessarily Horn clauses but
for which the least-fixed point operator always converges to a stable minimal
model. Like Horn clauses, the semantics of an acceptable logic program is
defined entirely by the stable models of the least-fixed point operator and,
given enough time, the least fixed-point operator of the logic program is guar-
anteed to converge to the unique stable model. Because CILP implements the
least-fixed point operator, given any input, the CILP network associated to
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an acceptable logic program will eventually converge to a stable state corre-
sponding to a minimal model of the logic program. Because the models of an
acceptable general logic program are the fixed points of the least-fixed point
operator and every such fixed point will be a fixed point of CILP with some
initial state, CILP is a semantic neural encoding of acceptable logic programs.
Note that the converse, however, is not true. Given a feed-forward network
with recurrent connections from the final layer to the first layer, there isn’t
necessarily a symbolic encoding of it with acceptable logic programs. Take, for
example, the CILP network corresponding to the program {A← ¬B,B ← A}.
This program does not have a unique minimal model and the least-fixed point
operator will cycle through every configuration of A and B including the states
(A,B) = (0, 0) and (A,B) = (0, 1) which are not models of the program. This
implies that the CILP network corresponding to this logic program is not a
neural model of it. The main techniques of CILP have been extended to pro-
vide neural encodings for other classes of logic programming including modal,
temporal, and epistemic logic programs Garcez et al. [2008].

Moving from propositional logic programming to first-order logic program-
ming, Markov Logic Networks (MLNs) give a probabilistic semantic encod-
ing of a restricted set of first-order logic programs Richardson and Domingos
[2006]. MLNs restrict first-order logic programs by removing all function sym-
bols and constructing models from the Herbrand base rather than the more
general model theory of first-order logic. MLNs associate a Markov network to
each grounding of a knowledge base so that every model of the logic program
has a non-zero probability in the stationary distribution and every state which
is not a model of the knowledge base has 0 probability in the stationary distri-
bution. In other words, MLNs give a probabilistic semantic neural encoding of
a knowledge base. Conversely it is shown that every probability distribution
can be represented as a MLN. Although Markov Networks are technically not
themselves neural networks, they can be represented to arbitrary precision by
Bolztmann machines by a universal approximation theorem Le Roux and Ben-
gio [2008] making this a semantic equivalence between Boltzmann machines
and (restricted) first-order logic programming.

This is just a brief overview of the most relevant neural encodings that have
been developed over the years. As one can tell from this overview, the focus
of neural encoding techniques has been on semantic encodings of logic pro-
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gramming, despite there having been syntactic encoding methods developed
as well. Next we will turn our attention to the other side of neural-symbolic
integration, rule extraction.

5.3 Extracting Knowledge from Neural Networks

Neural encoding is one of the major tasks of neural computing. Combined
with rule extraction, they form the two main halves in the neural-symbolic
feedback process. Two thirds if you include hybrid systems, and progressively
smaller fractions depending on how far you want to stretch the definition of
neural-symbolic computing 1. One obvious difference between rule extraction
methods and the neural encoding techniques that we’ve examined is every
translation from a logical system to a neural network that we’ve discussed is a
full blown neural encoding. For semantic encodings this means that we define
a network which captures the semantics of our target logical system exactly.
Conversely, many of these networks are themselves symbolic encodings of the
same logical system making them semantically equivalent. Rule extraction
has historically been done with the aim of explainability. This means that a
perfect symbolic encoding of a neural network, even if it is possible, may not
be desirable as the resulting knowledge base may be just as complicated as
the network itself. Encoding methods, on the other hand, are not concerned
with the complexity of the network and thus only exact neural encodings were
considered. The result is that we have a wealth of rule extraction methods but
there are no approximate neural encoding techniques. Reflecting on chapter
4, it is clear that this isn’t the result of fundamental incompatibilities between
symbolic systems and neural networks so much as it is the result of different
goals for each task. The purpose of this section is to do a short review of the
rule extraction techniques developed over the decades. We note that every rule
extraction technique presented here is semantic in nature, it works by mapping
models of a logical system to states of a network.

We begin by examining the problems preventing us from extracting rules which
can describe neural networks perfectly. As discussed in chapter 4, for most
neural networks we can, in principle, find a rule set which describes them ac-
curately to an arbitrary desired precision. However, in practice, finding an

1Encoding, Extraction, and Hybridization can be see as very broad categories that can
further be refined into a larger set of more precise tasks
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adequate set of rules can be difficult due to the large search space. This forces
to reduce the search space in order make rule extraction. By reducing our
search space we will often not be able to guarantee that a rule extraction
method can find a solution with the desired accuracy. With this in mind we
identify all possible sources of error for rule extraction methods and the dif-
ferent contexts for which they become problems.

The most immediate difficulty for rule-extraction algorithms of any kind is
the time complexity. A simple perceptron with a single output neuron and
n input neurons has 2n input configurations which results in a maximum of
2n conjunctive rules that can potentially describe the network. Even for very
small binary network this makes an exhaustive search computationally costly.
In networks containing neurons that take multiple or even continuous values,
exhaustive searches become impossible. In order to overcome this, rule ex-
traction algorithms will either employ heuristic searches or simply restrict the
search space to something more manageable.

Even if a particularly clever algorithm is able to find a set of rules with 100%

fidelity efficiently, the rules themselves may still not be acceptable due to their
high complexity. To illustrate, consider a finite-valued feed forward network.
We know from 4.4.1 that for any finite-valued feed forward network, we can
find a propositional knowledge base that exactly encodes the dynamics of the
network into a set of propositional rules. The procedure used to prove this
involved enumerating every network configuration and recording all the in-
put/output relationships; effectively turning the network into a giant lookup
table. Besides being computationally difficult for the previously described rea-
son, the motivation behind such an act is questionable. Ideally we would want
to find a different symbolic encoding that uses far fewer variables and rules
while. Whether or not this is possible is a property of the network in question.

The final problem facing rule extraction occurs when trying to find symbolic
encodings of feed-forward continuous networks into discrete systems. As dis-
cussed in section 4.5, any continuous network must be discritized in some way
before it can be symbolically encoded into a discrete network. Although in
some cases, there may be a way of discritizing a continuous state space that
admits a syntactic symbolic encoding, in general, no matter the discritization,
a continuous network will have no symbolic encoding. 4.5.1 does guarantee
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that with a fine enough partition we will be able to find a set of rules with ar-
bitrarily high fidelity but this comes at the cost of adding additional variables
potentially increasing the complexity of the extracted rules.

Even though we have shown that (up to arbitrary approximation for con-
tinuous networks) stable networks are semantically equivalent to propositional
logic, and feed-forward networks can be symbolically encoded into proposi-
tional logic, this does not mean we can easily translate a neural network into
a logical system. Even though there are theoretical equivalences, the practical
limitations on the search algorithm along with the desired complexity prop-
erties of a solution mean that it might be impossible to produce a desirable
solution using rule extraction. The sources of error that we have identified
above are broken down into the following.

Compression Error: The error induced by mapping a continuous state space
onto a lower-dimensional or discrete one.

Complexity Error: The error induced by restricting the possible complexity
of a solution.

Structural Error: The error induced from the algorithm itself, either from
a further restriction of the search space or from nonoptimality of the algorithm.

It should be noted that compression error does not apply to binary or dis-
crete neural networks and one can reduce the compression error with finer and
finer partitions of the state space, however, this adds more variables for a rule
to consider, boosting the complexity error. Complexity error and structural
error can in some cases be thought of as the same thing since both simply
exclude a set of possible solutions based on various criteria. We make the dis-
tinction because in practice these will be two separate conditions. For example,
when we search through a space of M-of-N rules we induce structural error
by ignoring possible solutions which are not in an M-of-N form. At the same
time we may restrict the complexity so that only sufficiently simple M-of-N be
required. In the search procedure we will use in later sections we will penalize
the complexity so that all possible M-of-N rules will be considered but their
complexity will be taken into account when choosing our solution. From the
point of view of knowledge extraction, complexity error is the issue of most
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interest. Whereas compression error and structural error are properties of a
chosen knowledge representation and algorithm, complexity error is a property
of the network itself.

Now we will review some important rule extraction methods. Note that some
of these methods will produce decision trees and decision sets instead of rule
lists. Since both decision trees and decision sets are logically equivalent to rule
lists we will include them here. All rule extraction algorithms can be classified
by a taxonomy according to various dimensions of accuracy and explainabil-
ity as well as distinguishing methods which use the behaviour of the network
(Pedagogical) and the structure of the network (Decompositional) for the rule
extraction process Andrews et al. [1995]. Pedagogical techniques often have
the advantage of being model-agnostic. Because they treat the model to ex-
plain as a black box, pedagogical techniques can be applied to any model, not
just a specific class of models such as neural networks. This makes pedagogical
algorithms more broadly applicable but this often comes at the expense of a
more detailed description of the internal reasoning used by the model. This can
be a problem when using fidelity to evaluate the accuracy of a rule-extraction
algorithm. Fidelity, as described in the previous section, gives a way of esti-
mating how accurate an explanation is. However, fidelity can be misleading
as it is possible for a set of rules to arrive at the same conclusion as a model
without using the same reasoning. This may not be a problem depending on
the application, but in many instances, for example legal cases, the actual
reasoning used to come to a conclusion is as important as the accuracy of the
conclusion itself. In this area decompositional techniques have an advantage
over pedagogical ones as they examine the internal processes of the model in
a more fine-grained manner.

The original decompositional techniques involve looking at sets of positive
weights and sets of negative weights and comparing their sum to the threshold
of the corresponding neuron. An early example of an algorithm using this
technique is KT LiMin Fu [1994]. These early rule extraction algorithms ex-
tracted Horn clauses from a network. Horn clauses are simple in nature but
often aren’t flexible enough to capture the behaviour of a neural network. As
described in section 3.3, M-of-N rules generalize Horn clauses, allowing them
to more accurately represent a network with fewer parameters. Despite being
able to represent a larger set of functions than Horn clauses, M-of-N rules still
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are unable to represent every function that a single-layer neural network can.
Despite this, M-of-N rules have been a popular choice for rule extraction due
to their similarity to neural networks as well as their ease of interpretability.
The use ofM-of-N rules for rule extraction began in the context of the KBANN
model Towell and Shavlik [1993]. The method used here consisted of cluster-
ing the weights and looking for combinations which exceeded the threshold of
the output neuron. An early example of a Pedagogical technique is that of
VIA Thrun [1994]. In VIA activation values of neurons are split into intervals
which are modified for consistency.

Decision trees have also been a popular choice of structure for representing
neural networks with rule-extraction. A series of several pedagogical methods
for producing decision trees built on each other to create one of the most en-
during and popular rule extraction algorithms. The first of which, C4.5, forms
a decision tree by treating the model as a black box with input and output
features and uses the information gain to calculate splitting values on the in-
put features. These splitting values then become the nodes in a decision tree.
Quinlan [1993]. Shortly after, M-of-N rules were used in conjunction with de-
cision trees in ID2-of-3 and then TREPAN Murphy and Pazzani [1991], Craven
[1996]. Here, information gain was once again used to construct a decision tree,
but now the nodes consisted of M-of-N rules. M-of-N rules were constructed
using a hill climbing search (a greedy search consideringM+1 of N andM+1

of N + 1 at each step) To find the M-of-N rule which maximized the infor-
mation gain. The combination of M-of-N rules with decision trees proved to
be a powerful way of representing a model, however, experiments have shown
that the interpretability of the explanation is often lacking Percy et al. [2016].
More recently Two level decision sets have been used to generate both local
explanations Lakkaraju et al. [2016] and global explanations Lakkaraju et al.
[2017], Angelino et al. [2018] but have only been done in a model-agnostic way
with no attempt to explain the internal variables of a model such as the hid-
den neurons in a deep network. These recent examples differ from many of the
eariler techniques in that they have explicit paramters controlling the complex-
ity of the extracted rules. CORELS Angelino et al. [2018], for instance, gives
a verifiably optimal set of rules for a given set of parameters controlling com-
plexity. It does this by performing a linear search through the set of possible
rule lists (an equivalent formulation of decision sets). This linear search adds a
new rule to the list at each step based on several metrics developed to measure
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the optimality of the rule with regard to the given complexity parameters.
Several analytic results allow the search to end once certain conditions are sat-
isfied, meaning that the average complexity does not involve searching through
the whole list of possible rules. We will discuss CORELS in more detail in a
future section when we use it to benchmark our own rule extraction algorithms.

With the increased popularity of deep networks, rule extraction techniques
specifically designed with deep architectures in mind are becoming of inter-
est. The main difficulty of this task is the interpretation of the hidden layers.
One way to extended simple rule extraction techniques to deep networks is
to simply apply the extraction algorithm layer by layer. This was done with
DIMLP, an eclectic extraction technique which restricts the weight space of
a trained perceptron in order to facilitate simple rule extraction Bologna and
Hayashi [2016]. DeepRED extended a previous decompositional rule extrac-
tion method, CRED Sato and Tsukimoto [2001] which used C4.5 to extract
decision trees with splits on the hidden units before extracting decision trees
corresponding to each of the splits resulting in a series of if-then rules relating
the input and output variables. DeepRED applies this technique to deep net-
works by starting from the output layer and creating decision trees similar to
CRED before doing the same to the preceding layer Zilke et al. [2016]. Finally,
an adaption of the relationship between penalty logic and SCNs was utilized
for a layerwise rule extraction technique for DBNs Tran and Garcez [2016].
This final technique will be explored in more detail when we develop our own
rule extraction methods. This overview is by no means an exhaustive list of
rule-extraction techniques, Many other techniques have been developed as well
as almost as many review papers. Complicating this further, Rule extraction is
just one possible approach to explaining neural networks, more recently impor-
tance methods have become popular methods of explanation along with other
techniques not based on knowledge-extraction. We will give a brief overview
of these alternative techniques in the following section.

5.4 Summary of Neural-Symbolic Relationships

We have now established the relationship between neural networks and logical
systems as well as reviewed a number of the neural encoding and rule extrac-
tion methods that have been developed. We have shown that neural networks
can be encoded into logical systems and vice-versa semantically and syntacti-
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cally. Whether or not we can translate between a neural network and logical
system depends on the particular network and system in question. Specifically,
the capacity of a neural network to represent a logical system is determined
primarily by its state space and architecture. We have also seen that classes
of neural networks may be able to represent many different kinds of logic. The
encodings we have described in this thesis are simply a portion of the possible
encodings that have been developed or could be developed in the future. One
important question in characterizing the relationship between neural networks
and logical systems moving forward is to determine the strongest logic that a
class of neural networks can represent. Although not all logical systems can
be arranged in a hierarchy, some logical systems are stronger than others in
the sense that one logic is representable in another. For example, first-order
logic is stronger than propositional logic because you can map the knowledge
bases of propositional logic to knowledge bases in first-order logic in a way that
respects the deductive system. Finding hard limits to the constraints that the
architecture of a class of neural networks places on its capacity to represent
symbolic systems is a fundamental problem of neural-symbolic integration. Al-
though we have not answered this question here, we catalog the encodings that
have been established in this chapter and the previous one in Table 5.1. Table
5.1 contains only those relationships that have been either directly proven or
referenced in the previous sections. Many other neural encodings have been
developed which we have not covered in our review. Often these encodings
relate a restricted form of first-order logic programming to a neural network
with a very specific architecture. This makes it difficult to classify the rela-
tionship based on the topology of the network. Furthermore, the fundamental
relationship between stable networks and propositional logic programming has
been established making the numerous other encodings of less theoretical im-
portance. It is likely possible to establish stronger relationships in some cases.
For example, finite stable networks are probably also syntactically equivalent
to penalty logic and propositional logic, continuous feed-forward networks are
also presumably approximately equivalent to Horn logic programming both se-
mantically and syntactically. Rather than directly proving every equivalence,
future work should proceed by exploiting Theorem 4.4.2 and developing other
theorems that can fill in the gaps.

One might notice that so far our discussion of M-of-N rules has been con-
spicuously absent from our comparison of neural networks and symbolic sys-
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tems. Being that M-of-N rules are essentially a restriction of logic program-
ming, most of the same theoretical relationships with feed forward networks are
identical. Any acyclic logic program consisting of M-of-N rules is an acyclic
logic program and any acyclic logic program can be translated into an equiv-
alent acyclic M-of-N logic program by. M-of-N rules particularly interesting
is their close relationship to neural networks, in particular feed-forward neural
networks given that they both broadly fall under the category of threshold
circuits. In terms of semantic or symbolic equivalence, when restricting to
simple M-of-N rules (recall these are those rules in which N is a set of atomic
propositional variables), any M-of-N rule can be represented by a perceptron
in which the output neuron represents the head of the rule, and visible neu-
rons represent the body of the rule. In order to encode an M-of-N rule in a
neural network, set the bias of the output neuron to M and the weights of
each input neuron to 1 or −1 for neurons corresponding to positive or neg-
ative literals, respectively. This also shows that although every M-of-N rule
can be expressed as a propositional rule, the converse is not true as XOR and
other functions cannot be implemented with a simple perceptron. One may
ask whether M-of-N rules express exactly the same set of propositional for-
mulas that a perceptron does. This, however, is not true. Consider a simple
perceptron with 3 input neurons, x1, x2, x3 each with 0 bias and a single out-
put neuron, y, with bias −1. If the weights of the perceptron are w1,y = 2,
w2,y = 0.6, and w3,y = 0.6 then the perceptron calculates exactly the sentence
x1 ∨ (x2 ∧ x3) which cannot be expressed as an M-of-N rule. Thus the set of
propositional sentences can be given the following hierarchy.

All ⊃ perceptrons ⊃ M − of − N ⊃ Conjunctions

So although M-of-N rules are similar to single layers of neural networks, there
are functions that a single-layer neural network can compute thatM-of-N rules
cannot. We will empirically examine the impact of this discrepency in a future
section by comparing extracted M-of-N rules to a more general set of rules
produced by CORELS.

Now that we have clarified the foundations of neural-symbolic integration,
we move on to the question of extracting rules from deep networks for the
purpose of explaining them.
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Neural Network Relationships to Symbolic Systems

Binary Feed Forward
with Positive Weights

Semantic and Syntactic Equivalence with
Horn Logic Programming Towell and Shavlik
[1994]

Finite Feed Forward Semantic and Syntactic encodings into
propositional logic 4.4

Finite Hamiltonian
Feed Forward

Semantic Neural Encodings for acceptable
logic programs including general, extended,
modal, temporal, and epistemic logic pro-
grams d’Avila Garcez et al. [2001]

Finite Stable Semantically equivalent to propositional
logic and Penalty Logic 4.4, Pinkas [1995]

Finite Unstable Computationally equivalent to finite au-
tomata 4.6

Continuous Feed For-
ward

Approximate syntactic and semantic encod-
ing into propositional logic 4.5

Continuous Stable Approximate semantic equivalence with
propositional logic 4.5

Continuous Unstable Not generally describable by Turing-
complete symbolic systems Siegelmann
[1995]

Boltzmann Machines
(via MLNs)

Semantically equivalent to (restricted) first
order logic programming Richardson and
Domingos [2006]

Table 5.1: The relationships between different classes of neural networks and
symbolic systems established in this thesis (given by reference to section num-
ber) or established previously (given by reference to relevant paper or book)
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Part II

RULE EXTRACTION FROM
DEEP NETWORKS
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Chapter 6

Hierarchical Rule Extraction From
Deep Networks

6.1 Explaining Latent Variables with Rule Ex-

traction

In Part I we discussed some of the rule extraction techniques used to ex-
plain neural networks as well as the difficulties encountered by such methods.
These difficulties have only been exacerbated by the growing use of deep neural
networks LeCun et al. [2015]. Deep neural networks contain multiple layers
meaning a complete rule-based explanation of a network must be hierarchical
which introduces the problem of errors propagating through stages in the hier-
archical rule list. That combined with the fact that neural networks generally
have a large number of hidden units along with the fact that information is
thought to be represented in a distributed way LeCun et al. [2015] makes the
proposition of using rule extraction to fully explain a deep network dubious.
For this reason, many view rule extraction methods as being inadequate for ex-
plaining deep networks Frosst and Hinton [2017]. However, the explainability
of a deep network may vary according to other factors like the specific network
architecture, the properties of the training set, and the learning algorithm. Of
particular interest is the variability of explainability between the layers. In-
tuitively, higher layers are thought to represent more abstract concepts than
lower layers which may make them more amenable to rule extraction. There
is some theoretical backing for the notion that higher layers encode more ab-
stract, and thus more compact, features of the training set. For instance, it
has been pointed out that many aspects of our physical world can be described
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by a compact hierarchy which allows one to reason accurately without having
to observe enormous numbers of variables. This could explain the apparent
effectiveness of deep learning Lin et al. [2017]. More generally the efficiency of
deep architectures have been shown in circuit theory and for neural networks
in the context of certain problem domains Håstad and Goldmann [1991], El-
dan and Shamir [2016]. These results have been characterized as no flattening
theorems. We know that a single layer neural network can represent any con-
tinuous function on a compact set so the question becomes can deep networks
represent a function using fewer parameters than shallow networks. A no flat-
tening theorem states that a shallow network will require exponentially more
parameters to represent a function. What a no flattening theorem implies is
that the hierarchical structure of a deep network is particularly well suited to
represent a given problem. Presumably this is because the dataset itself can
be represented hierarchically. Although it seems obvious that the efficiency of
deep networks on a hierarchical dataset is due to the ability of deep networks
to represent the inherent abstract features of the dataset in its higher layers,
a direct link has yet to be made. Furthermore, the existence of adversarial
attacks casts some doubt on the representational efficiency of deep networks
Goodfellow et al. [2015], Szegedy et al. [2014], Su et al. [2019].

Rather than simply look at representational efficieny on a dataset, the com-
pactness of features in a deep network have been investigated in information
bottleneck framework Tishby et al. [1999]. Some have gone further and claim
that the good generalization capabilities of deep net can be attributed to com-
pression in the information plane during training, however further experiments
have demonstrated that good generalization in deep networks cannot be ex-
plained by compression in every case Tishby and Zaslavsky [2015], Saxe et al.
[2018]. With the case being made for more compact representations being used
in deep learning for certain datasets we return to the question of rule extrac-
tion as a method of explanation. If rule extraction cannot be used as a general
method for explainability in deep networks it may still be a useful tool when
applied selectively. If the choice of dataset, transfer function, network archi-
tecture, and learning method can effect how much compression a network is
doing then perhaps certain networks can be explained with more comprehensi-
ble rules. Even within a deep network different layers may be learning hidden
representations which are explainable with rule extraction. These possibilities
suggest that we should consider carefully the context in which we apply rule
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extraction methods. Ideally, we want to identify the circumstances in which
rule extraction methods are effective and apply them accordingly.

In order to investigate the potential of rule extraction for deep networks, we
develop two M-of-N rule extraction algorithms. The first is a quick decomposi-
tional algorithm based on confidence rules which can be applied hierarchically
to explain deep belief networks. We follow this by developing a more thorough
eclectic search that allows us to empirically evaluate the explainability of hid-
den neurons in a given network. Using the slower thorough search on medium
sized networks we identify contexts which are promising for rule extraction
and then apply our decompositional algorithm in conjunction with other ex-
plainability techniques on larger networks to provide a detailed explanation of
them.

6.2 Confidence Rules Revisited

The development of our fastM-of-N extraction algorithm will depend crucially
on a previous algorithm relying on confidence rules. Confidence rules are an
adaptation of penalty logic to rule extraction. In this section we give a de-
tailed description of confidence rules and discuss several issues and limitations
concerning their extraction from RBMs.

Recall that a set of confidence rules is a set of propositional rules in which
each rule is assigned a positive integer called its confidence. Given an arbi-
trary assignment of truth values to the propositional atoms, we can use the
confidence values to compute a penalty value for a set of confidence rules by
calculating the sum of the confidence values for each rule which is not satisfied
by the truth assignment. We then define the models of a set of confidence
rules to be the truth assignments with minimal penalty values. The purpose
of penalty logic is to create a logical system whose semantics are more like
those of neural networks. As we have seen, in the case of symmetrically con-
nected networks, there is a semantic equivalence between a neural network and
a knowledge base in penalty logic. Pinkas [1995]

When it comes to rule extraction, the correspondence between SCNs and
penalty logic makes confidence rules an attractive choice. The fact that deep
networks are often pretrained layerwise with RBMs makes confidence rules
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an obvious choice for rule extraction. Because RBMs are probabilistic and
stable, according to 4.7.3 we can measure the fidelity of a rule by the prob-
ability that a state in the stable distribution is a model. In other words, we
measure the fidelity by the probability that the state of the network satisfies
the extracted rules. Unfortunately, if we restrict our extraction domain to
conjunctive clauses then we can no longer guarantee that a hidden unit in an
RBM will be semantically equivalent to some conjunctive rule. Furthermore, it
turns out that a decompositional algorithm cannot guarantee that confidence
values preserve fidelity (which is, in this case, the probability). The distinction
between probability and confidence can be seen at the level of penalty logic in
the following example

100 : A→ ¬B ∧ ¬C

3 : A

2 : B

2 : C

Here although A has a higher confidence than B and C, the minimal model
is {A → ¬B ∧ ¬C,B,C}. A quick check shows that B and C are both more
probable in the corresponding distribution. In this example we can think of
B and C as ‘red flags’. Each is evidence that A is not true but we are not
confident in them enough alone to disregard A. However, when we observe
both of them we conclude that A is false.

To examine the effect of this discrepancy on rule extraction, recall that in
stable probabilistic networks fidelity is measured by the probability of a rule
being true in the stable distribution. In other words, the fidelity of a rule
is the probability that the network is in a state which the rule evaluates as
true. For example given a rule h ← x1, x2 and an RBM with distribution P ,
P (h ← x1, x2) = 1 − P (h = 0, x1 = 1, x2 = 1). Note that the probability of
a biconditional rule being true corresponds exactly to the expected error of
the predictions made by that rule against the network. Since rule extraction
is trying to optimize the fidelity of the extracted rules to the network, the
question that naturally arises with biconditional confidence rules is whether
or not the confidence value associated to them corresponds to the probabil-
ity of the rule. That is, does a higher confidence imply a higher probability
of the rule being true? First, assuming that when we compute the expected
value of the error we use the visible distribution as defined by the RBM, the
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answer is no by the universal approximation theorem of RBMs Le Roux and
Bengio [2008]. This is because a decompositional extraction algorithm relies
only on local information, a rule involving a hidden unit h only depends on
the weights of h. However since RBMs are universal approximators we can
always define a new RBM with exactly the same parameters for h but with
an arbitrarily chosen distribution on the visible units. This means that we
can change P (h↔ x1, ..., xk,¬xk+1, ...,¬xn) a great deal without changing the
confidence of the rule. This shows that any assignment of confidence values
to RBMs that depends only on local information will not preserve the order
of the probabilities. This fact is summarized in the following proposition.

Proposition 6.2.1. Given an RBM, N , any local decompositional rule extrac-
tion algorithm cannot assign confidence values, c, to rules in a way such that
for rules R1 and R2, cR1 < cR2 =⇒ P (R1) < P (R2).

Proof. See appendix

The relationship between RBMs, penalty logic, and rule extraction can be
complicated so we will summarize it here. Given an SCN there is a corre-
sponding knowledge base in penalty logic In a deterministic network (Hopfield
network) the minimal models of this knowledge base are the stable states and
in a probabilistic network (Boltzmann Machine) they are the states with high-
est probability. It is easy to see that a statement in the knowledge base with a
high confidence will not necessarily have a high probability in the Boltzmann
Machine because it may be contradicted by many other statements of low
confidence. When applying rule extraction we search for a set of conjunctive
clauses which maximizes the fidelity of the corresponding logic program to the
network. The set of clauses we extract, however, will not necessarily be the
statements in the corresponding knowledge base because we will only look for
rules rather than arbitrary propositional statements. Furthermore, if we are
using a decompositional method, then no matter how we assign confidence it
will tell us nothing about the probability and hence the fidelity of the extracted
rule.

Now that we’ve clarified the relationship between confidence and fidelity let’s
examine in detail a rule extraction algorithm for RBMs which uses confidence
values.
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6.3 Extracting Confidence Rules from RBMs

Here we will outline a method for extracting confidence rules from RBMs. The
method is decompositional so in theory it can be applied to any neural network
but it was specifically developed for RBMs Tran and Garcez [2016]. We will
refer to this method as the optimal confidence algorithm.

The algorithm will be applied to explain the hidden units of an RBM. This
means that in the extracted rules the head of each rule corresponds to the a
hidden unit and the literals in the body of the rule correspond to the visible
units. Since the neurons in an RBM take on binary values, we define the
atomic variable Xi by Xi = > iff xi = 1 and Xi = ⊥ iff xi = 0. Here xi is a
neuron in the RBM. Since the neurons in an RBM are partitioned into hidden
and visible we will use the variables {hj}kj=1 to denote the hidden neurons and
the variables {xi}ki=1 to denote the visible neurons. Our conjunctive rules will
then be of the form

hj ↔ xi1 ∧ xi2 ∧ ... ∧ ¬xik ∧ ... ∧ ¬xil

Since the RBM is a symmetric network, whatever effect a visible unit has on
a hidden unit must be equal to the effect of the hidden unit on the visible
unit. For this reason the rules that are extracted are considered biconditionals
rather than one-way implications. That means if the body of the extracted
rule for a literal H is not satisfied then we predict H = ⊥. In other words, if
we fail to prove H with our extracted rule we assume H is false. Because the
rules extracted are hierarchical, the semantic difficulties of negation in logic
programming are not an issue.

Given an RBM with n visible units and m hidden units we can represent a set
of conjunctive rules modeling the hidden units with a matrix S ∈ {0, 1}n×m

defined by S(i, j) = 1 if Xi is in the body of the rule for Hj, S(i, j) = −1 if ¬Xi

is in the body of the rule corresponding to Hj, and S(i, j) = 0 otherwise. In
order to generate a rule for each hidden unit, the optimal confidence algorithm
finds what is essentially an optimal cluster of visible weights by minimizing
the following loss function

Iloss =
∑
i,j

1

2
|wi,j − cjS(i, j)|2 (6.1)

The algorithm works iteratively, first, given a conjunctive rule, we calculate
the optimal value of the confidence that minimizes the loss function. Then we
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Algorithm 1 Extracting conjunctive confidence rules from an RBM
Input: An RBM, N
for Each hidden neuron hj ∈ N do
for all input neurons xi to hj, set S(i, j) = sign(wi,j)

cj =

∑
i
wi,jS(i,j)∑
i
S(i,j)2

Inewloss =
∑
i,j

1
2
|wi,j − cjS(i, j)|2

Iloss =∞
while Inewloss < Iloss do
Iloss = Inewloss

for all input neurons xi to hj do
if cj ≥ 2|wi,j| then
S(i, j) = 0

end if
end for
cj =

∑
i
wi,jS(i,j)∑
i
S(i,j)2

Set Inewloss =
∑
i,j

1
2
|wi,j − cjS(i, j)|2

end while
end for
return Matrix S representing a set of rules

prune literals from the rule if doing so will lower the loss function. In detail,
the algorithm begins by setting S(i, j) = 1 if wi,j ≥ 0 and S(i, j) = −1 if
wi,j < 0. Then we set each confidence to the value that minimizes Iloss. It is
not hard to see that this is

cj =

∑
i

wi,jS(i, j)∑
i

S(i, j)2
(6.2)

From there we want to set S(i, j) = 0 if it will decrease (7.1), this is true
iff cj ≥ 2|wi,j|. We then repeat this process until convergence. As an ex-
ample, imagine a neuron, x4, with inputs x1, x2, x3 and associated weights
w1,4 = 2, w2,4 = −1, w3,4 = −0.5. S is initialized to S(1, 4) = 1, S(2, 4) =

S(3, 4) = −1. Using 6.2 we calculate c4 = 3.5
3
. Because c4 ≥ 2|w2,4|, S(3, 4)

becomes 0 while S(1, 4) and S(2, 4) are unchanged. Recalculating 6.2 we get
c4 = 3

2
. Because atoms are only removed if doing so reduces the information

loss, we know that there is at least one more iteration to do. Now we compare
c4 with 2|wi,4| and observer that it is smaller for both i = 1 and i = 2. S(i, 4)

99



h

x1 ... xn

a a a

Figure 6.1: An RBM with a single hidden unit and n identical visible units

remains unchanged and thus the algorithm has converged giving us the rule
X4 ↔ X1 ∧ ¬X2.

In the previous section we saw that any decompositional knowledge extrac-
tion algorithm cannot produce confidence rules which will always correspond
to probability. This observation came from the fact that the visible distribution
could be changed arbitrarily without changing the confidence rule produced
by the algorithm. What if we clamp the visible distribution? For example,
in DBNs, when performing inference we draw from a given input distribution
and propagate up through the network. Does the optimal confidence algorithm
preserve probabilities in this case? A simple example shows that it doesn’t.
Take a network with one hidden unit and n visible units all connected to the
hidden unit with weight a. All biases are 0 as shown in figure 6.1. The optimal
confidence algorithm will extract the rule a : h↔ x1, ..., xn. But as a increases
to infinity, the probability of any configuration of the visible units other than
all 0s activating h goes to 1. But when h = 1 the rule is only true if all the
visible units are activated. Since we’re assuming an independent and uniform
distribution for the visible units this implies that by taking n→∞ the prob-
ability of the biconditional goes to 0 regardless of a. In fact we can make a
arbitrarily large and still get the same result showing that we can have arbi-
trarily large confidence values corresponding to biconditionals with arbitrarily
low probability. In other words, we have the following

Proposition 6.3.1. For all 0 < ε < 1 and all c > 0, there exists an RBM
such that the optimal confidence algorithm extracts a rule R with P (R) < ε

and cR > c

Proof. See appendix

This proposition shows that conjunctive rules are too restrictive. In particular,
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rules with single conjunctions can be prone to false negatives. That is, if we
extract a rule h ← x1, x2 then we will predict h = 1 only when x1 = x2 = 1.
However there may be many other configurations in which we want to predict
h = 1. We can either add more single implication rules to cover additional
cases or we can hope to find a biconditional rule that accurately captures
the behaviour of the network. The above proposition shows that the latter
approach can result in rules with arbitrarily low fidelity. This motivates the
use of a less restrictive paradigm. This is where we bring in M-of-N rules.
M-of-N rules are not as prone to false negatives as conjunctive clauses but
they do not require us to search through (potentially large) arbitrary sets of
rules. We will use the optimal confidence algorithm to define a new algorithm
which extracts M-of-N rules instead of purely conjunctive ones.

6.4 Extracting M-of-N Confidence Rules

Now we are finally prepared to define our first M-of-N extraction rule. To do
this, first note that a conjunctive rule can be turned into an M-of-N rule sim-
ply by choosing a value for M . For example, a confidence rule h↔ x1, x2,¬x3
can be turned into a confidence rule h ↔ 1 − of − {x1, x2,¬x3}. With this
in mind, we develop a decompositional algorithm for finding M-of-N rules by
first using the optimal confidence algorithm to find a set of confidence rules,
and then converting these rules into M-of-N rules by choosing a suitable value
of M for each rule. All that is required to do this is a suitable way of choosing
M . In the original M-of-N extraction algorithm, M was chosen so that the in-
put coming into the neuron from M of the literals is greater than the neurons
threshold Towell [1991]. We use a similar method for converting confidence
rules to M-of-N rules.

For each confidence rule cj : hj ↔ x1, ..., xl,¬xl+1, ...,¬xk, we choose a value
Mj by setting Mj to be the minimum value so that Mj · cj ≥ Tj where Tj
is some threshold. Consider the minimum possible input to hj, this is just
Ij,min := bj +

∑
i:wi,j<0

wi,j. In general, given some arbitrary threshold, T , we set

Mj to be the minimum value such that Mj · cj+ Ij,min ≥ T which gives us that
Mj · cj ≥ T − IJ,min so Tj = T − IJ,min. In the case of the RBM for example,
since P (hj = 1|x) > 0.5 if the total input to hj is greater than 0 we should
predict 1 if Mj · cj + Ij,min ≥ 0. In other words, Tj = −Ij,min so we set Mj to
the minimum value with Mj · cj ≥ −Ij,min. For the case that no value of Mj
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Algorithm 2 Extracting M-of-N rules from a network using a set of conjunc-
tive rules with confidence values as a starting point
Input: An RBM, N
Run Algorithm 1 on N to get an initial set of rules R represented by matrix
S

for Each hidden neuron hj ∈ N do
Mj = N + 1

Wj,to_add = {wi,j : S(i, j) = 0}
while Wj,to_add 6= ∅ and{M :M · cj ≥ −bj −

∑
i:wi,j<0

wi,j} = ∅ do

k =arg max{|w·,j| : S(i, j) = 0}
S(k, j) = sign(wk,j)

Wj,to_add = Wj,to_add \ wk,j
Update cj according to 6.2

end while
if {M :M · cj ≥ −bj −

∑
i:wi,j<0

wi,j} 6= ∅ then

Mj = min{M :M · cj ≥ −bj −
∑

i:wi,j<0

wi,j};

end if
end for
return Set of rules R, represented by matrix S and integers Mj

can exceed Tj we proceed by attempting to add a literal to the rule and recal-
culating cj according to equation 6.2, we choose the literal to add to be the
one corresponding to the neuron with the highest absolute weight in the set of
literals not in the rule. If there is nothing to add and we still cannot exceed Tj
then we output the rule N+1 of N , in other words, the rule which always out-
puts 0. To illustrate we consider a simple example. Take an RBM with a single
hidden unit and two visible units with weights w1,h = 1, w2,h = −1, hb = 0.
Then minimizing 6.1 gives us the rule h ← x1 ∧ ¬x2 with confidence c = 1.
Then we set the threshold T = 1 and since 1 · 1 ≥ 1 we set M = 1 giving us
the rule 1 of (x1,¬x2). The procedure is summarized above.

Intuitively, the algorithm begins by using the optimal confidence algorithm
to generate confidence rules. From there, we choose M to be the smallest
value so that if M of the literals in the confidence rule are satisfied then the
minimum possible input to the hidden neuron is positive. In some cases even if
all of the literals in the confidence rule are below 0 the minimum input to the
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hidden neuron is below 0. When this happens we try to amend the confidence
rule by adding the next most relevant literal, that is the one corresponding to
the neuron whose weight has the greatest magnitude, recalculating the confi-
dence value, and trying again. We proceed until we either find an M-of-N rule
which guarantees a non-negative input or we run out of literals to add. In the
second case we output the ‘impossible to satisfy’ rule, N + 1 of N indicating
that our rule should always predict that the hidden unit outputs 0 since in this
case, regardless of the input configuration, there is a higher probability of the
output being 0.

To illustrate, take the example from the previous section: x1, x2, x3, x4 with
w1,4 = 2, w2,4 = −1, w3,4 = −0.5. Suppose x4 has 0 bias. Running the optimal
confidence algorithm produces the rule X4 ↔ X1 ∧ ¬X2 with confidence 3

4
.

The minimum possible input to x4 is −1.5. 1 · 3
4
≥ 1.5 but 0 · 3

4
< 1.5 so

M = 1 is the minimum value of M that satisfies the necessary condition. The
resulting rule is thus x4 ↔ 1− of − {X1,¬X2}.

The algorithm, given a set of literals, chooses M in what one might call a
pessimistic way. The relevant information for the algorithm is if the rule is
satisfied, is the smallest possible input to the hidden node positive or negative?
If the answer is negative then the rule being satisfied is not good enough to
ensure we have a greater than 50% chance of being correct. The algorithm
chooses the minimum value of M so that in the worst case scenario we still
have a greater than 50% chance or being right. The optimistic approach would
assume that all positive literals are on. In this case, unless the bias of the hid-
den node is negative and larger than all positive weights the 1 of N (or even
0 of N) rule would be sufficient so this is not a useful threshold. We could
also have used an average case scenario where we choose some combination
of positive and negative weights but this didn’t seem to work as well experi-
mentally although further trials could be done. The worst-case approach we
use is essentially trying to decrease the chance of false positives by ensuring
that the rule only outputs true if it is guaranteed that there is an over 50%

chance of the corresponding hidden unit being on. The full conjunctive rule
will minimize the chance of false positives but at the expense of increasing the
chance of false negatives as shown in the proof of Proposition 6.3.1. By choos-
ing the minimum M that achieves this we lower the chance of false negatives
while still keeping the chance of false positives low. To summarize, the current
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approach to choosing M is to conservatively minimize false positives so that
we don’t increase false negatives too much.

Note that we are technically not looking at the worst case scenario by con-
sidering M · cj as the positive input from the rule. cj is the average weight
of the literals in the rule but in the worst case scenario the literals with
the smallest weights would be the ones satisfied. For example take a rule
hj ↔ 2 − of − {x1, x2, x3} with w1,j = 2, w2,j = 3, w3,j = 1. Then cj = 2

so our algorithm would use Ij,min + 2 · 2 = Ij,min + 4 as the minimum input
but in reality the configuration x1 = x3 = 1, x2 = 0 satisfies the rule and the
minimum input is Imin,j + 1 + 2 = Ij,min + 3. Modifying the algorithm to
use the actual minimum instead of the approximate minimum is possible but
in this case every M has to be tested whereas we can explicitly solve for M
using M · cj as an approximation. It is possible to implement this approach
without significant time penalty by simply keeping a list of indices for weight
magnitudes of the literals in the rule. Since there are N possible literals and
we can check the minimum for each M with a single operation this addition
is asymptotically linear. Despite this we continue to use the confidence value
approximation for the time being due to its convenience.

In order to evaluate this algorithm, we compared it to the original optimal
confidence algorithm as well as a Hillclimbing procedure. Hillclimbing starts
with an initial rule 1−of −{xi} where xi is the visible unit with the strongest
connection to hj. If xi has a negative connection to hj then the initial rule
is 1 − of − {¬xi}. From there the algorithm increases M and N by either
adding the literal with the next highest weight (positive or negative depending
on the sign of the weight), adding the literal with the next highest weight and
increasing M by one, or remaining with the same rule. It does this by con-
sidering the expected error, whichever option has the lowest expected error is
chosen. If the current rule is the best option then the algorithm outputs that
rule and moves on to generate the next rule. Hillclimbing is optimal for certain
tasks, in otherwords it outputs the rule with the smallest error, as we will see,
however, this is not the case for generating M-of-N rules. Unfortunately, for
larger tasks the expected error is intractable and hillclimbing becomes essen-
tially impossible.

To evaluate the fidelity we calculated the expected value of the error of the rules
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with respect to the network. Recall that an RBM converges to a stationary
distribution and in that case the fidelity can be measured by the probabil-
ity of the rule being true in the stationary distribution. Because we extract
biconditionals, given some input x, the probability of a rule being false is
P (hi = 1|x)|1− r(x)|+ P (hi = 0|x) where P is the Boltzmann distribution of
the Network. For simplicity we assume a clamped visible distribution, then if
there are 2l inputs we have P (x) = 1

2l
which implies that the probability of a

rule being false is

1

2l

∑
x∈X

(p(hi = 1|x)|1− r(x)|+ P (hi = 0|x)|r(x)|) (6.3)

Now given a single rule for each hidden unit, the probability of not satisfying
the entire set of rules would be the product of each conditional probability.
However, in many cases rule extraction may be applied selectively, that is we
only want to extract rules for a few hidden units. For this reason, we simply
give the average error over each hidden unit which gives us a final error measure
of

1

2l
1

m

∑
i

∑
x∈X

(p(hi = 1|x)|1− r(x)|+ P (hi = 0|x)|r(x)|) (6.4)

We tested the three different rule extraction algorithms on 12 different RBMs
each trained on a different small dataset generated using logical functions.
The datasets were generated by taking every possible combination of the first
n − 1 visible units and setting the nth visible unit to the output of the first
n − 1 visible units with the function. For example the XOR (3 vis) dataset
has the first two variables free and the third calculated as x1 XOR x2 giving
us (0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0). Since the datasets are small, we are able
to use the expected error as mentioned in previous sections. This is just the
expected value of the difference between the output of our rules and the output
of the network for a single hidden unit, averaged over all hidden units. So in
a network with l visible units and m hidden units the error is

1

2l
1

m

∑
i

∑
x∈X

(p(hi = 1|x)|1− r(x)|+ P (hi = 0|x)|r(x)|) (6.5)

Here X is the space of visible configurations, r(x) is the output of our rule on
input x. The maximum error possible is 1 and the minimum is 0. Again note
that we are comparing deterministic rules to a probabilistic network which is
why we look at the error as a random variable dependent on the output of
the network, also note that the M-of-N rules generated also have associated
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confidence values which we can take into consideration when looking over the
set of generated rules. We also report the average value of M and N in order
to gain some insight into how interpretable these rules might be, if N scales
linearly with the size of the input data then large datasets will give us totally
incomprehensible rules.

Here we tested three different rule extraction algorithms on small RBMs trained
on datasets constructed from Boolean functions. We tested the original opti-
mal confidence algorithm along with the M-of-N optimal confidence algorithm
and with the expected error.

Each Network was trained for 10000 iteration using contrastive divergence
with 10 Gibbs steps. It is clear that of the three methods tested, overall the
M-of-N optimal confidence algorithm gives the best trade off for time and
accuracy. As expected the most accurate method is the hill climb using the
expected error but this sums over all visible states and is thus exponential.
We see that the time it takes grows quite quickly whereas the time it takes the
M-of-N optimal confidence algorithm to finish grows relatively slowly. In ad-
dition the expected error for the M-of-N optimal confidence algorithm is more
or less in line with hill climbing, in some cases even beating it, which implies
that hill climbing is not optimal for finding the minimum expected error.

Speed wise the optimal confidence algorithm is the fastest with the M-of-
N optimal confidence algorithm being only slightly slower. Also interesting
things to note is that for all algorithms the expected error is relatively consis-
tent as the dataset increasing in size. This is encouraging. Finally notice that
M and N appear to increase slower than the dimension of the test set in all
cases although they grow slowest with hill climbing. For larger datasets the
expected error will be intractable and instead we will have to rely on test error
over a sample set to evaluate the accuracy.

106



hcee optmial confidence
Network M/N Error Time(s) M/N Error Time(s)
XOR(3 vis 10 hid) 2.1/2.7 0.0991 0.322 2.7/2.7 0.2279 0.09
XOR(6 vis 20 hid) 2.65/3.4 0.1095 7.819 4.55/4.55 0.3344 0.014
XOR(9 vis 30 hid) 3.36/4.03 0.1035 89.158 5.8/5.8 0.2766 0.036
NAND(3 vis 10 hid) 1.4/1.4 0.1277 0.222 2.6/2.6 0.2302 0.007
NAND(6 vis 20 hid) 2.35/2.65 0.1206 5.248 3.6/3.6 0.2540 0.022
NAND(9 vis 30 hid) 2.93/3.3 0.1227 74.511 5.4/5.4 0.2723 0.034
OR(3 vis 10 hid) 1.6/2.1 0.1424 0.095 2.4/2.4 0.2328 0.004
OR(6 vis 20 hid) 2.4/2.8 0.1132 5.429 3.6/3.6 0.2665 0.021
OR(9 vis 30 hid) 2.53/3.26 0.1369 74.209 5.13/5.13 0.3614 0.036
AND(3 vis 10 hid) 2.0/2.2 0.0884 0.249 2.4/2.4 0.1735 0.007
AND(6 vis 20 hid) 2.5/2.85 0.1068 3.584 3.5/3.5 0.2439 0.021
AND(9 vis 30 hid) 3.26/3.93 0.1052 87.367 5.4/5.4 0.2819 0.035

MofN optimal confidence

Network M/N Error Time(s)
XOR(3 vis 10 hid) 2.4/2.8 0.1149 0.009
XOR(6 vis 20 hid) 3.35/4.75 0.1067 0.023
XOR(9 vis 30 hid) 4.86/6.06 0.1234 0.043
NAND(3 vis 10 hid) 2.3/2.8 0.1562 0.011
NAND(6 vis 20 hid) 3.3/3.9 0.1312 0.026
NAND(9 vis 20 hid) 4.53/5.56 0.1300 0.039
OR(3 vis 10 hid) 1.8/2.5 0.1614 0.004
OR(6 vis 20 hid) 3.1/3.75 0.1223 0.024
OR(9 vis 30 hid) 3.83/5.2 0.1440 0.038
AND(3 vis 10 hid) 2.2/2.4 0.1042 0.007
AND(6 vis 20 hid) 3.4/4.05 0.1125 0.029
AND(9 vis 30 hid) 4.6/5.6 0.1240 0.040

Table 6.1: Comparing hill climbing with expected error(hcee) to the optimal
confidence algorithm presented in Tran and Garcez [2016] and the M-of-N
version of the optimal confidence algorithm. Error is the average error of the
extracted rules, M/N is the average value of M and N of the extracted rules,
and time is the time for the extraction algorithm to complete.
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Chapter 7

Characterizing the
Accuracy/Interpretability
Landscape for M-of-N

Explanations of Latent Variables

7.1 The Accuracy/Interpretability Tradeoff

As discussed previously, knowledge extraction methods must balance between
accuracy and interpretability. Although some trade off may be necessary when
attempting to distill a network into a comprehensible knowledge base, the ex-
tent to which accuracy is constrained by interpretability in real world neural
networks has not been studied in detail. Indeed, in most cases, given a rule
produced by some extraction algorithm, we do not know how much the accu-
racy of the rule was limited by the structural error of the algorithm versus how
much of the accuracy was limited by the complexity of the problem. In other
words, it is impossible, or at least difficult, to tell whether or not we could
find a better rule using a different algorithm. In some cases, a rule extrac-
tion algorithm will produce rules which are both satisfactorily accurate and
interpretable. However, in other cases extraction algorithms will produce rules
which are either inaccurate or too complex to be interpretable. The lack of a
satisfactory rule based explanation may be a failure of the particular algorithm
or it could be that one doesn’t exist at all.

Even when satisfactory rules are produced it is unclear whether or not they
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are optimal in terms of their accuracy/interpretability trade off. We are often
left with the question, can we find a simpler explanation for this model? To
answer this question, we consider a brute force approach. By testing every
possible rule in a set of candidate rules, we can be sure that the resulting rule
is a good indicator of the complexity inherent in the network rather than a
product of the specific search procedure. The reason a brute force approach
has been avoided in the past is because of its computational difficulty. The
total number of possible rules that can be assigned to a neuron grows expo-
nentially with the number of inputs making a complete search infeasible for
any but the smallest networks. To get around this, we do not attempt a full
brute force search of the solution space, instead we make several simplifying
assumptions that reduce the search space to a manageable size. The first as-
sumption is the restriction to M-of-N rules. The intuitive reasons for using
M-of-N rules to describe neural networks has been explained in detail, but the
fact remains that a single layer in a neural network can implement a larger
class of functions than an M-of-N rule. For this reason we will still need to
empirically justify the restriction to M-of-N rules. The second assumption is a
specific ordering of the literals. In particular a weight ordering. What we mean
by this is that any M-of-N rule that we consider will contain only the first N
literals in our ordering. If X1 is a literal that comes before X2 in our ordering
then any rule which contains X2 as a literal but not X1 will be excluded from
our search. This restriction makes our search space polynomial in size which
allows us to conduct experiments on medium sized networks. This restriction
is analytically justifiable in some cases but remains a heuristic approach in the
most general case.

By reducing the search space and testing every solution in the space we can
guarantee that we find an optimal rule among the candidate rules, but we
cannot be certain that the truly optimal rule is even among the candidate
rules. The partial analytic justification for the weight-ordering may give us
some comfort, but the choice of M-of-N rules has no analytic justification in
any context. In order for us to be confident that our search procedure is indeed
finding rules that are at least close to optimal, we will need to test it empiri-
cally against a search procedure that is optimal. Luckily, CORELS is such an
algorithm. CORELS is a sequential extraction process that produces optimal
rules (see 5.3 for a more thorough description). Unsurprisingly, CORELS is too
slow to apply to most networks, but by comparing our slow M-of-N approach

109



to CORELS on small networks we can verify that rules in our simplified test
set are at least close to optimal. This will allow us to interpret experimental
results from our algorithm as evidence, although not absolute proof, of the
necessary complexity of a rule to describe a network.

Even with these simplifications, our approach can be slow. While medium-
sized networks may have hundreds or thousands of neurons, many state of the
art networks in domains such as image recognition have hundreds of thousands
of neurons. When this is the case, our algorithm will be computationally in-
feasible and faster algorithms that rely on more heuristics must be turned to.
The goal of our experiments will not be to develop a general purpose extraction
algorithm that can be used to explain any network. Rather, we wish to see
to what degree rule extraction is limited by the inherent complexity of neural
networks. Recalling our discussion in 6.1, the complexity of features used by
a network is likely the result of several factors and the complexity between
layer of a deep network may vary as well. Applying the search to different
layers of number of different networks which differ in crucial ways (dataset,
size, learning algorithm, etc.), we can identify conditions in which simple and
accurate rules may be extracted. When looking to explain larger networks for
which our approach method is not possible, we can use the information about
the inherent complexity of extracted rules to decide whether or not rule ex-
traction is worth pursuing at all. When we have reason to believe that a large
network may be explainable with rule extraction (either entirely or in part),
then we can employ fast decompositional techniques such as the M-of-N opti-
mal confidence algorithm developed in the previous section. These techniques
may not be optimal, but we know there is at least the possibility of finding an
interpretable rule.

When we describe rules as optimal, it is important to define what it means for
a rule to be optimal. Complexity and accuracy are competing objectives. One
rule may be highly accurate but highly complex while another rule is simple
but inaccurate. Which, then, is more optimal? Optimality in this context
depends crucially on a desired tradeoff. We can quantify this desired tradeoff
with a parameter β ∈ R+ which weights the relative importance of accuracy
and interpretability. Given a measures of accuracy, A, and interpretability, I,
we can measure how well a rule, R, explains a model with the equation

A(R) + βI(R) (7.1)
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Given a set of rules R, a rule, R0 ∈ R is optimal with respect to a given β if
it maximizes the previous equation taken over R. If we set R to be the set
of every possible rule then the inherent complexity of the model is captured
by the relationship between β and A(R0) for an optimal R0. For the special
case of β = 0 we search for the most accurate rule in our set of candidate rules
R. In the previous sections we established that, in a feed forward network,
if R is the set of all possible rules then the structural error of an optimal
extraction algorithm over R is 0, although there will still be some degree of
compression error if the network is continuous. As β increases the accuracy of
our optimal rule decreases. In a model that is explainable with rule extraction,
the accuracy should decrease only a little for relatively large values of β. In
an unexplainable model accuracy will decrease very rapidly at relatively small
values of β.

In addition to looking at specific accuracy and interpretability values, the
shape of graph of the relation between interpretability and accuracy is of in-
terest. By plotting A(R0) against I(R0) starting with β = 0 and increasing β
we can determine the exact relationship between accuracy and interpretabil-
ity. If the graph is relatively linear, then picking a desired tradeoff becomes
difficult as you can always sacrifice a little bit of interpretability for a little bit
of accuracy or vice-versa. If, on the other hand, the graph is exponential, then
we have a ‘natural’ choice for our rules. It is still possible that our model is
unexplainable as the ‘natural’ choice may have a low interpretability.

Before we get into the details of our search method, we must first define ways
of measuring accuracy and interpretability. We have already developed a way
of measuring the accuracy, namely the fidelity (see 4.2.10). Unfortunately
measuring the fidelity over the entire input space can be difficult even in the
simplest case. In the more general case, the input comes from some unknown
manifold making an explicit measure of the fidelity impossible. Rather, we will
use an approximation of the fidelity based on a number of selected samples.
Furthermore, for convenience we will use the error rather than the fidelity
which is simply defined as 1 − fidelity. We will discuss explicitly how the
error is calculated in the next section but intuitively it can be thought of as
the percentage of disagreements a rule set has with the network over some set
of test inputs. In order to measure complexity we will use the notion of mini-
mum description length. The minimum description length is a robust measure
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of complexity that, as the name implies, judges complexity by the length of
sequences minimum description. We will fix the language as propositional for-
mulas expressed in DNF and measure the complexity based on the length of
this formula. Although fidelity and error are obvious choices for measuring ac-
curacy, the relationship between complexity and interpretability is more subtle.
It is true that very complex rules are not interpretable, but it isn’t always true
that simple rules are. The interpretability of a rule is highly dependent on the
context and the audience. Although complexity provides a rough estimation
of interpretability, whether or not a set of rules is understandable for a specific
audience ultimately has to be empirically justified for a given context. Before
elucidating the technical details of error and complexity, we should note that
these measures are inverses of accuracy and interpretability. The lower the
complexity the higher the interpretability and the lower the error the higher
the accuracy. The only thing this changes in practice is that we search for
rules which minimize equation 7.1 instead of rules which maximize it.

7.2 Measuring Accuracy and Interpretability

Now that we have discussed the important metrics for rule extraction, we are
ready to define them formally. The two metrics we are concerned with in rule
extraction are accuracy and interpretability. For our experiments these will
be measured with error and complexity respectively. In order to understand
how the error is measured, recall that according to our definition of fidelity, the
error is the percentage of initial states of a network that are not models for the
extracted rules. In our case, we are extracting semantic symbolic encodings
from feed forward networks. In other words, from a neuron h with inputs
xi, we extract a rule H ← Xr1 ∧ Xr2 ∧ ... ∧ ¬Xrk ∧ ... ∧ ¬Xrl . Because the
network is feed forward, an initial state, xr1 , ..., xrl will be a model of the rule
if either the corresponding Xr1 ∧ Xr2 ∧ ... ∧ ¬Xrk ∧ ... ∧ ¬Xrl is false or, in
the next time step, the value of h maps H to true. Strictly speaking then,
the error of this single rule is percentage of inputs over the input space that
result in a false positive. These are inputs for which the rule predicts H is
true but the dynamics of the network do not reflect this. In practice, we
wish to count the false negatives as well. A rule whose body is never satisfied
will make no false positive predictions but is of little use for describing the
network. Therefore, rather than extract unidirectional implications, all of
our rules will be bidirectional. When the rule is bidirectional, if the body
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is not satisfied but the head is, then the configuration is not a model of the
rule meaning error measures both false negatives and false positives. In the
discrete case, the number of input examples is exponential in the number
of input neurons, making the exact calculation of error intractable. In the
continuous case, although we may be able to integrate over the input space,
we are often dealing with inputs taken from an unknown manifold (consider,
for example, normalized 32×32 grayscale images, the total input space is R992

but the natural images we are interested in only consist of a small fraction of
these). For this reason we approximate the error by sampling the input space
and calculating the error on this set of samples. Putting this all together, the
process for calculating the error of a rule is as follows. Given a neuron h in a
neural network with input neurons xi, we use the network to compute the state
of h from the state of the input neurons which then determines the truth of the
propositional variable H. Thus we can use the network to determine the truth
of H, call this N(x). Furthermore, if we have some rule R relating variables
H and Xi, we can use the state of the input x to determine the value of the
variables Xi, and then use R to determine the value of H, call this R(x). Given
a test set of input configurations I we can measure the discrepancy between
the output of the rules and the network as

E(R) :=
1

|I|
∑
x∈I

[R(x), N(x)] (7.2)

where [R(x), N(x)] is a function returning 0 if R(x) = N(x) and 1 otherwise.
Because we only ever deal with binary variables, if we quantify the truth values
of H to 1 and 0 corresponding to > and ⊥ respectively then this term becomes
|R(x) − N(x)|. This provides an approximation of the error for a single rule,
what about an entire rule set? If we extract a rule for every neuron in a deep
network, then by our definition of fidelity, if a single rule makes an incorrect
prediction then the initial state is not a model of our extracted rules. This
means that we could conceivably extract highly accurate rules for each neuron,
but that, taken as a whole, the extracted rules have very low fidelity because
the large number of neurons implies that there is likely to be at least one
mistake somewhere in the network. Furthermore, when experimenting with
larger networks, we do not always extract rules from every neuron but rather
a sample of them. For these reasons we take the more pragmatic approach of
evaluating each rule independently and averaging the results to give a sense
of how explainable the average neuron is. This will pay off when we develop
the notion of modular explainability methods in which rule extraction is only
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applied to especially explainable neurons.

Moving on to our interpretability measure we will discuss complexity. Here,
we think of complexity in an analogous way to the Kolmogorov complexity
which is determined by a minimal description. Using this idea we calculate
the complexity of a rule by the length of its body when expressed in a min-
imal disjunctive normal form (DNF). In analogy to Kolmogorov complexity,
DNFs in propositional logic with the standard syntax acts as the reference
language with equivalent formulas being different DNF representations of the
same model. The choice of restricting our attention to DNFs when calculating
the complexity may raise objections as in practice this means some rules could
conceivably have simpler representations than other rules that are measured
as less complex, however calculating the minimal complexity over an arbitrary
number of possible representations is impractical if not infeasible. Further-
more, because M-of-N rules all share the same form, any further reduction in
complexity would apply to all of them. Using this definition, the complexity
of an M-of-N rule is M

(
N
M

)
(where

()
denotes the binomial coefficient). To

see this, consider each minimal model satisfying an M-of-N rule. This is a
configuration in which exactly M of the N literals are true. For a specific
collection of M of the N literals, the conjunction of these M literals will have
as models all configuration in which at least the selected M literals are true.
There will be

(
N
M

)
such configurations. Thus we can express an M-of-N rule as

a disjunction of
(
N
M

)
terms each of which is a conjunction of M literals giving

a total length of M
(
N
M

)
. This will capture every possible model of our M-of-N

rule and no other. Furthermore, since each of these terms will have at least
one term that differs from every other term, this is a minimal DNF.

We also measure complexity in a relative manner by normalizing w.r.t. a
maximum complexity. Given N possible input variables the maximum com-
plexity of anM-of-N rule is dN+1

2
e
(

N
dN+1

2
e

)
, where de denotes the ceiling function

(rounding to the next highest integer). This is because the error is between 0

and 1. In principle it should not matter whether or not we normalize because
this is equivalent to scaling β but because the numbers grow quite large it is
easier to think of complexity in relative terms. Finally, because the complexity
grows very fast in N and M , we control for growth by taking the logarithm
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which gives us the following normalized complexity measure.

C(R) :=
log(M

(
N
M

)
)

log(dN+1
2
e
(

N
dN+1

2
e

)
)

(7.3)

As an example, suppose we have a simple perceptron whose output unit has a
bias of 1 and two binary visible units with weights w1,1 = 1 and w2,1 = −0.5.
Then consider the rule h = 1 ⇐⇒ 1-of-{x1 = 1,¬(x2 = 1)}. Over the entire
input space we see that R(x) 6= N(x) only when x1 = 0 and x2 = 1 giving
us an error of 0.25. Furthermore, a 1 − of − 2 rule is the most complex rule
possible for 2 variables as it has the longest DNF of any M-of-N rule giving
us a complexity of 1.
Using Eqs. 7.2 and 7.3 we define a loss function for a rule R as a weighted
sum in which a parameter β ∈ R+ determines the trade-off between error and
complexity.

L(R) := E(R) + βC(R) (7.4)

Now that we have defined a loss function that measures both the error and
complexity of a rule, we need to develop a search method that optimizes this
quantity. The strategy we want to employ is brute force. Given a set of
test inputs and a value of β, we will calculate the loss for every rule in a
set of M-of-N rules and return the rule with the lowest result. A full search
over the entire space of M-of-N rules already backs away from a true brute
force search over the entire space of rules, but even this remains intractable
computing. Because of this, we will employ some heuristics in order to reduce
the search space to a manageable size. Our search procedure is therefore
not a full brute force search over the entire solution space but a complete
search of a smaller solution space with justifications for the exclusion of certain
potential solutions. By repeating our search for various values of β we are
able to explicitly determine the relationship between the allowed complexity
of a rule and its maximum accuracy. For β = 0 the rule with the minimum
loss will be the rule with minimum error regardless of complexity, and for β
large enough the rule with the minimum loss will be a rule with 0 complexity,
either a 1− of − 1 rule or one of the trivial rules which either always predicts
true or always predicts false (these can be represented as M-of-N rules by
0 − of − N and N + 1 − of − N respectively). Because all the networks we
will test contain continuous-valued neurons, before we can apply our search
to them we must find a way of translating continuous valued neurons into
binary valued propositional variables. As discussed before, the simplest way
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to do this is to choose a splitting value for the neurons with values above the
split corresponding to True and values below the split corresponding to False.
How do you choose a splitting value though? A naive approach might be to
take the mean or median value of a neuron. If the neuron is bounded, one
could potentially choose the center-point of its range. However, sometimes the
values a neuron takes could be heavily skewed, meaning that whether or not
the activation is above or below average tells us very little about the neurons
impact on the neurons it feeds into as well as the network dynamics as a
whole. In order to choose atoms that more accurately capture relevant neuron
activations we will employ the information gain.

7.3 Generating Splits

When our network has continuous activation values, in order to define the
atoms to use for rule extraction we must choose a splitting value a for each
neuron leading to an atom of the form h > a. In order to choose splitting val-
ues for continuous neurons we use information gain (see section 3.4). Given a
target neuron we wish to explain, h, we generate an atom for the target neuron
by selecting a split based on the information gain with respect to the output
labels of the network. More precisely, let X be a set of test examples, let h(x)
be the activation value of h with input x and N(x) be the output label of the
network given input x. X defines a distribution over the labels, N(X), given
by the relative frequency. For example, suppose we have a network with binary
outputs and a test set X = {x1, x2, x3}. If N(x1) = 0, N(x2) = 0, N(x3) = 1,
then N(X) defines the distribution P (0) = 2

3
, P (1) = 1

3
.

For any real value a, We can partition X into two sets by splitting X into
elements that produce an activation value of h larger than a and those that
produce an activation value of h smaller than a. In other words, X+ := {x :

h(x) ≥ a}, X− := {x : h(x) < a}. We choose as our splitting value the value of
a which has the highest information gain with respect to the network labels. In
other words, we choose the value of a which partitions X to give the smallest
average entropy of N(X+) and N(X−).

This gives us an atom in the form of H := h ≥ a. Similar to the way a
network defines a distribution over its output labels, given a test set, X, H
defines a distribution over {0, 1} in which the probability of 1 is defined as the
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Figure 7.1: A simple perceptron with a single hidden node, a single output
node, and two input nodes

fraction of examples x ∈ X for which h(x) ≥ a. We generate the input atoms
in the same way as before but we maximize the information gain with respect
to the distribution defined by the output literal rather than the network out-
put. It is important to note that we generate a different set of splits of the
input neurons for each target neuron we explain. This means that even if two
target neurons appear to contain the same literals the different splitting values
means the corresponding atomic variables are different. The whole process is
illustrated in the following simple example

Suppose we have a perceptron with the structure given in figure 7.1. with a lin-
ear hidden activation function, a simple step function for the output activation,
and 0 biases. Given the test examples x0 = (0.5, 1), x1 = (1, 1), x2 = (0.5,−1),
we calculate h(x0) = 0.5, h(x1) = 0, h(x2) = −1.5 and y(x0) = 1, y(x1) =

1, y(x2) = 0. Then if we choose a = 0 to be our split we partition our test set
into X+ = {x0, x1} and X− = {x2}. Then y = 1 with probability 100% on X+

and y = 0 with probability 100% on X− so the average entropy on these two
sets is 0 and a = 0 obviously maximizes the information gain. Now let’s calcu-
late the output of the literal H := h ≥ 0. H(x0) = 1, H(x1) = 1, H(X2) = 0.
Then we can either split x1 with 0.5 or 1, if we split on 1 then we have
X+ = {x0, x2} and X− = {x1}. The distribution defined by H on X+ is the
uniform distribution on two elements and thus has 1 bit of entropy. On X−

the entropy is 0 giving an average entropy of 2
3
· 1+ 1

2
· 0 = 0.67. If we split on

0.5 then X+ = {x0, x1, x2} which gives the distribution P (1) = 2
3
, P (0) = 1

3
.

This has 0.92 bits of entropy. Since X− is empty this is equal to the average
entropy. We see that when splitting on 1 we have less entropy and thus this is
the split we choose for x1 when finding rules to explain h.
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In the case that the layer is convolution, each feature map corresponds to
a group of neurons each with a different input patch. Rather than test every
single neuron in the feature map we only test the one whose optimal split has
the maximum information gain with respect to the network output. This gives
us a single rule for each feature map rather than a collection of them.

7.4 Search Procedure (Extraction Method)

With the metrics defined, and the generation of splits detailed, we are ready to
define the search procedure for our slow M-of-N extraction algorithm. Given
a neuron hj with n input neurons xi, we generate splits for each neuron using
the technique just described to produce an atom Hj and a set of atoms {Xi}i.
Using these we create a set of O(n2) M-of-N rules whose bodies consists of
unnegated variables from {Xi}i that have a positive connection to hj (in other
words Xi : wi,hj > 0)), negated variables from {Xi}i that have a negative
connection to hj(Xi : wi,hj < 0) and whose head is Hj. We calculate L(R) for
each one of these rules and return a rule that minimizes it. In order to create
the set of rules to search, we reorder the variables according to the magnitude of
the weight connecting xi to hj (such that we have |w1,j| ≥ |w2,j| ≥ ... ≥ |wn,j|).
Then we consider the rule M − of −{(¬)X1, ..., (¬)XN} (where Xi is negated
if wi,hj < 0) for each 1 ≤ N ≤ n and each 0 ≤ M ≤ N + 1. The search
procedure only relies on the ordering of the variables Xi.

A neuron with n input neurons has O(2n) possible M-of-N rules which
makes an exhaustive search intractable. However, here we choose an order
for the literals based on the magnitude of the weight of the corresponding

neuron. This reduces the search space to
n∑
i=1

i∑
k=1

(
i
k

)
+ 2 = O(n2) rules (the

extra 2 rules come from the always true rule 0-of-N and the always false rule
N + 1-of-N). The reduction of an exponential search space to a polynomial
one makes our problem tractable although it can still be computationally dif-
ficult if the number of neurons and test examples is large. However, because
the weight-ordering determines every rule we wish to test beforehand, we can
further speed up the search by running it in parallel. This represents a signifi-
cant advantage in speed over methods which search through the rule space by
adding literals one at a time such as the hillclimbing method described in pre-
vious sections. The combination of an ordering along with the use of parallel
computing allows us to examine the error/complexity landscape of networks
which would be intractable using a sequential search. Although restricting
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Algorithm 3 Search procedure for finding M-of-N rules to explain a hidden
feature h
Input: A network N , a set of input examples, I, and a hidden unit to
explain, h
Generate a split, s, for h by choosing the value which maximizes the infor-
mation gain with respect to the network output. Use this to define the atom
H

for Each neuron x which is an input of h, do
Generate a split for x by choosing the value which maximizes the informa-
tion gain with respect to H. Use this value to define the literal X if the
connection between x and h is positive, and use it to define ¬X otherwise

end for
Order the input literals by the magnitude of their weights
for N : 1 ≤ N ≤ number of inputs do
for M : 1 ≤M ≤ N do
Create an M − of − N rule, R, whose body consists of the first N
literals. Then compute L(R);

end for
end for
Compute L(R) for the trivial rules 0− of − {} and 1− of − {};
return rule with the lowest value of L(R).

the ordering makes our technique feasible for larger networks, it creates the
possibility that we miss a truly optimal rule. How do we know that using the
weight-ordering guarantees that we find the optimal M-of-N rule? Luckily,
under certain conditions we can validate the optimality of the weight-ordering
with the following theorem.

Theorem 7.4.1. Given a binary network, N , consisting of n input neurons
and a single output neuron. Then, over the test set {0, 1}n, the most accurate
M-of-N rule is the one whose N literals consist of the N literals corresponding
to the N neurons with weights of greatest magnitude.

Proof. See Appendix

This Theorem tells us that if our input space is binary and homogeneous in the
sense that the values of each neuron have identical ranges and are mutually
independent, then the literals of the optimal M-of-N rule will be those corre-
sponding to the N neurons whose weights have the largest magnitude. The
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result follows because of the symmetry of the input space. Another way of
putting this is that the average contribution a neuron makes to the activation
of the output neuron only depends on its weight. In the continuous case, as-
suming the same homogeneity condition, if the atoms are generated using the
same splitting value the result holds. In general, different choices of splitting
value may invalidate this result. For example, in the extreme case, if we choose
a splitting value such that the atom is always true or false, it tells us nothing
about the output value regardless of its weight. Luckily, by splitting based on
the information gain we ensure that the corresponding atom tells us as much
as possible about the output. Furthermore, if the input space is homogeneous,
then neurons with higher weights must result in splits with higher information
gains.

Theorem 7.4.1 tells us that the weight-ordering is optimal if the input space
is homogeneous. For this reason, if we sample uniformly over the input space
we can be confident that our approximation of error converges to the true
minimum error of any M-of-N rule over this space as the number of samples
increases. Unfortunately, over an arbitrary subset of the input space this is not
always true. In practice, neural networks are not trained on datasets which
are homogeneous, but rather on manifolds existing in some larger ambient Eu-
clidean space. On these manifolds we expect neurons to be correlated, at least
to some degree. When this is the case, adding two highly correlated neurons
to a rule will not give a significant increase in fidelity, even when both have
weights of high-magnitude. Rather a rule containing a lower-weighted neu-
ron might provide more information about the output, thus invalidating the
optimality of our weight-ordering heuristic. How much of an issue this poses
depends entirely on the dataset and network, which in turn depends on a learn-
ing algorithm. Is it reasonable to assume that if two input neurons are highly
correlated that the learning algorithm will assign them both high weights? Or
will it assign only one of them a high weight and the other a weight close to
0? These questions aren’t immediately clear meaning the impact of this effect
on the optimality of our extraction algorithm is not impossible to determine
analytically.

Even if our algorithm was able to produce optimal M-of-N rules in every
case, we would still want to test it empirically as the choice of M-of-N rules to
begin with is a heuristic, adding a degree of structural error. As pointed out in
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Section 5.4, neural networks are capable of representing more than just M-of-N
rules. Whether or not your typical trained neural network employs reasoning
significantly differently than an M-of-N rule is something which must be em-
pirically tested. For this reason, in order to be confident that our extracted
rules are close to an optimal rule for a given error/complexity tradeoff, we will
compare the parallel M-of-N extraction algorithm to the verifiably optimal
algorithm CORELS on a number of small categorical datasets to see if weight-
ordered M-of-N rules are a reasonable representation to approximate neural
networks without straying too far from optimal. As we will see in section 8.2,
M-of-N rules with a similar complexity offer only a marginal decrease in fidelity
compared to the rules found by CORELS suggesting that restricting your set
of explanations to M-of-N rules gives you approximately optimal explanations.

The above procedure generates rules for a single neuron. Repeating this
throughout the network allows us to create a set of rules for every neuron.
By doing so we replace a deep neural network with a set of M-of-N rules. Be-
cause the outputs of a set of rules extracted from one layer will be the inputs
to the set of rules extracted from the next layer, these rules are hierarchical.
However, there is a caveat to this. Because splits are chosen independently, the
output atoms produced in one layer will not be the same as the input atoms
produced in the next. If we want to create a usable set of hierarchical rules, we
must develop a consistent splitting technique. This can be done in a number of
ways. One approach is to average out the splitting values assigned to a neuron
by each iteration of the extraction process. This naive approach will generate
a consistent set of splits, but it may result in information loss and as a result:
lower fidelity. A more sophisticated technique is the top-down approach. In
the top-down approach, splits are generated one layer at a time. Starting with
the penultimate layer, splits are generated using information gain with respect
to the output label. Moving down a layer, splits are generated using informa-
tion gain with respect to configurations of the atoms in the penultimate layer.
This process can be repeated until splits for the input layer are generated. At
each step, a single splitting value is chosen for a neuron. This produces a set
of consistent splitting values for the network that can then be used as input
for our extraction technique.

Despite methods being available for the generation of hierarchical rules, we
do not employ them. This is because errors arising from rules extracted in
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one layer of the network can propagate upwards and result in errors in higher
layers. In effect, this means that the rules are bottlenecked by their least ac-
curate layer. As we will see in the experimental results, some internal layers
of a deep network have low fidelity. Any hierarchical rules generated would
be no better than the rules generated for this layer. With this in mind, we
can reasonably conclude that from the results that there is no accurate set of
hierarchical rules explaining the networks in our experiments and therefore no
need to search for one. In the next section we illustrate the process all the
way through. Beginning with the generation of splits all the way to the final
extraction of rules for various values of β.

7.5 A Demonstration of the Procedure

To demonstrate the procedure we will examine the extraction process for the
first hidden feature in a CNN trained on the fashion MNIST data set. First
we select 1000 random input examples from the training set and use them to
compute the activations of each neuron in the CNN as well as the predicted
labels of the network. Since the CNN pads the input with zeros and the input
images are 28×28 we have 28×28 = 784 neurons per feature in the first layer.
Each of these neurons correspond to different 5 × 5 patches of the input. To
select a neuron to test, we select the optimal split of each neuron by computing
the information gain of each neuron with respect to the predicted labels on
the 1000 input examples. For the first feature we find that the neuron with
the maximum information gain is neuron 335 which has an information gain
of 0.05 when split on the value 0.134. This neuron corresponds to the image
patch centered at (335/28, 335%28) = (12, 19). With this split we define the
variable H by H := 1 iff h335 ≥ 0.134.

Using this variable we define the input splits by choosing the values which
result in the maximum information gain with respect to H. Note our test
input consists of the 1000 5× 5 image patches centered at (12, 19) taken from
the input examples. We then search through the M-of-N rules using the input
variables defined by the splits to determine an optimal M-of-N rule that ex-
plains H for various error/complexity tradeoffs. As we increase the complexity
penalty we extract four different rules which are summarized in Table 7.1. and
visualized in figure 7.2. We can see from figure 7.2 that many of the weights
are filtered out by the rules. The most complex rule only contains 6 of the total
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Figure 7.2: An example of the various rules extracted for the first feature.
The first image represents the weights of the neruon and the following four are
rules of decreasing complexity explaining the neuron. Here grey indicates that
the input feature is not included in the M-of-N rule, white indicates a positive
literal, and black indicates a negative literal

25 input literals. Even completely ignoring the majority of the inputs the rules
achieve an error of 0.061 or a 93.9% accuracy (See Table 7.1.). Penalizing the
complexity extracts rules containing 4 literals and a single input literal with a
significant increase in error only occurring when we reach a single input literal.

M-of-N Error Complexity
3-of-6 0.061 0.227
2-of-4 0.077 0.138
2-of-3 0.100 0.099
1-of-1 0.330 0.000

Table 7.1: Summary of the rules extracted to explain feature 1 with various
error/complexity tradeoffs

To demonstrate how the rules are used we consider how they behave on an
example input. Given an image patch from the test input, we derive the truth
of a the corresponding literals by comparing the input values to their corre-
sponding splits. This converts a real valued vector to a binary vector (See Fig
7.3). Using this binary vector we calculate the output of the rules by check
to see if enough of the rule conditions are satisfied. In the example case we
see that when looking at the 3 − of − 6 rule, 3 of the positive literals are
satisfied and 1 of the negative literals are satisfied meaning 4 of the total 6 lit-
erals are satisfied. Since this is a 3−of−6 rule the predicted output for H is 1.

Using the weights and biases of the network we can see that the output of
hidden unit 335 on the selected input image patch is 0.474. Since this is
greater than the split value of 0.134 the network output for H is 1. In this
case the extracted rules agree with the network output. The error is just ratio
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Figure 7.3: An image patch used as a test input for the selected feature. On
the left is the raw input and the right is the image converted to input literals
by comparing the input values to the selected splits for each feature.

of examples for which the output of the extracted rules does not agree with
the output of the network.
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Chapter 8

Experimental Results

8.1 Outline of Experiments

Now that we are armed with a search procedure, we can begin applying it to
deep neural networks. The focus of our experiments is on determining the re-
lationship between the complexity and accuracy of an extracted rule. In order
to achieve this, we run our algorithm on a set of neurons with a specific value
of β and average the accuracy of each optimal rules found by the algorithm.
Repeating this process for different values of β allows us to graph a complexity
accuracy curve. By analyzing this curve we can determine just how complex
an M-of-N rule needs to be on average to explain a neuron. The case argued
against rule extraction would predict that, on average, extracted rules are ei-
ther not accurate enough, or too complex to be viable explanations. Despite
this being probably true in the general case, the intuition and theory of infor-
mation compression behind deep networks leads us to extract rules from every
layer separately to determine whether certain layers can be reliably explained
with rule extraction.

The first set of experiments we carry out is a simple comparison with CORELS.
Because our algorithm uses heuristics to reduce the search space, the rules it
extracts do not represent the true optimal accuracy/complexity tradeoff for
a given β. Luckily CORELS is verifiably optimal and uses an identical com-
plexity penalty in the loss function. Therefore, the first set of experiments
compares our algorithm to CORELS on small networks to determine whether
or not the rules it finds are at least close to the optimal and can thus be used
to make judgements about the overall explainability of a network.
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The second set of experiments is the layerwise rule extraction. Three CNNs
with an identical architecture are trained on MNIST and our M-of-N extrac-
tion algorithm is applied to each layer. The transfer function and learning
algorithm are varied between the networks in order to observe the impact on
explainability. When the final layer is found to be explainable, the second set
of experiments are extended by applying rule extraction to the final layer in
a larger number of networks. This is to verify that the good explainability of
the final layer found in the previous experiments is a general feature of deep
networks and not just an anomaly.

The third set of experiments tries to capitalize on the good explainability in
the final layer by combining rule extraction in the final layer with importance
methods (LIME, keras-vis) to explain the penultimate layer. The result is a
type of hybrid explanation where the behaviour of a network is represented as
an abstract rule with variables that can be visualized.

The final set of experiments replaces the final layer of a CNN with a set
of extracted M-of-N rules to produce a new hybrid network-rule model. The
classification accuracy of this model on adversarial examples generated from
the original network is measured.

8.2 Benchmarking with CORELS on Categori-

cal Datasets

Before we apply the algorithm outlined in the previous section to larger net-
works, it is important to examine how close to an optimal solution the search
method is getting. In order to do this we will compare the M-of-N search
method with the slower, but proveably optimal search method CORELS An-
gelino et al. [2018]. CORELS performs a sequential search over a space of rule
lists with a fixed maximum size for the antecedents to find a rule list which
provides an optimal complexity/error tradeoff for a given complexity regu-
larization parameter λ. CORELS uses theoretical results to reduce the run
time of the algorithm by calculating lower bounds for error and complexity of
an optimal rule list at each step and terminating the search once any of the
bounds get violated. This has the potential of greatly reducing the run time
of the search but it remains too slow to apply systematically to the hidden
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neurons of even a medium sized deep neural network. Since our extraction
algorithm uses an ordering on the literals, each rule can be evaluated indepen-
dently so that the search procedure can run in parallel. This greatly speeds
up the search compared to CORELS, which requires a sequential search. By
making the assumption that M-of-N rules provide a good approximation of
an optimal rule list describing a single hidden unit we are able to examine the
accuracy/complexity tradeoff for rules extracted from much larger networks.

Before making a direct comparison with CORELS we describe under which
circumstances a weight-ordered M-of-N search will not be optimal. In this
case when we describe a search procedure as optimal we mean that it has no
structural error as defined in section 5.3. Compression error will be present in
any search procedure that searches through a discritized space of rules to eval-
uate against a continuous model. The compression error may be reduced either
by choosing a better compression method or by implementing the compression
step during the search procedure. Complexity error is built in to the search
procedure and acts as the independent variable in our experiments. Since the
set of boolean functions modelled by a single layer in a neural network is strictly
larger than the set of M-of-N rules, our search procedure will not produce an
optimal solution whenever a hidden neuron computes a boolean function that
is not an M-of-N rule. Furthermore, by ordering the literals by weight we may
not be able to find an optimal M-of-N rule if multiple variables in the input
space are highly correlated. It can be easily shown that if the input space is of
the form Xn (where X ⊂ R) then by 7.4.1 the weight ordering will produce an
optimal M-of-N rule. However, since we wish to evaluate on more complicated
input spaces our search procedure may find a non-optimal M-of-N rule during
our experiments. For these reasons we empirically evaluate the M-of-N search
procedure against CORELS. In order to compare our search procedure with
CORELS as an optimal baseline Angelino et al. [2018], we train a deep neural
network with 2 fully connected layers of 16 and 8 hidden neurons, respectively,
with a rectified linear (Relu) activation function, on the car evaluation dataset.
The car evaluation dataset is a small categorical dataset meant to predict the
quality of a used car based on several features. There are 7 features, 4 output
classes, and 1728 instances Bohanec and Rajkovic [1988].

Since CORELS has multiple parameters to penalize complexity we run CORELS
multiple times with different parameters to generate a set of rules with higher
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Method Comp Acc Network Time
CORELS(1/0.01/0.01) n/a n/a DNA promoter Layer 1 n/a
Parallel M-of-N β = 0.3 0.239 89% DNA promoter Layer 1 700s
CORELS (1/0.01/0.01) 0.124 93.4% Cars Layer 1 1s

CORELS (2/0.05/0.05) 0.04 87.3% Cars Layer 1 1800s

Parallel M-of-N β = 0.2 0.131 90.3% Cars Layer 1 1s

Parallel M-of-N β = 1 0.031 85.4% Cars Layer 1 1s

CORELS (1/0.01/0.01) 0.053 99.05% Cars Layer 2 1s

CORELS (3/0.02/0.02) 0.079 99.42% Cars Layer 2 1s

Parallel M-of-N β = 0.3 0.057 98.4% Cars Layer 2 1s

Parallel M-of-N β = 0.1 0.069 98.6% Cars Layer 2 1s

CORELS (1/0.01/0.01) 0.165 91.6% E.COLI Layer 1 1s

CORELS (2/0.005/0.001) 0.287 92.6 % E.COLI Layer 1 10s

Parallel M-of-N β = 0.2 0.132 89.4% E.COLI Layer 1 1s

Parallel M-of-N β = 0.1 0.189 90.2% E.COLI Layer 1 1s

Table 8.1: Comparison of similarly complex rules extracted by CORELS and
parallel M-of-N measures from the layers of three different networks trained
on categorical datasets

complexity and one with lower complexity and then compare these rules to
rules of similar complexity found by our parallel search. In Table 8.1 we can
see that rules found via ourM-of-N search are only marginally worse than a set
of optimal rules with similar complexity found by CORELS and that CORELS
can become quite slow when using too broad a search on a dataset with many
inputs. Notice also that in this example the second hidden layer is much more
explainable than the first, c.f. the large difference in accuracy between layers.
Finally, the rate of accuracy decrease vs. complexity of Parallel M-of-N seems
to be lower than that of CORELS; this deserves further investigation. In sum-
mary, the above results show that a parallel M-of-N search can provide a good
approximation of the complexity/error trade-off for the rules describing the
network. Next, we apply Parallel M-of-N to much larger networks for which
sequential or exhaustive methods become intractable. CORELS was also com-
pared to our M-of-N extraction algorithm on a one layer network trained on
the E. Coli dataset Horton and Nakai [1996]. This dataset contains 7 features,
some categorical and some real, predicting the localization site of a protein on
an E. Coli bacteria. There are 8 output labels. The network was a single layer
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fully connected network with 100 hidden units and a Relu activation function.
In this case, we found that the extracted rules are less directly comparable due
to more significant differences in complexity between CORELS and parallel
M-of-N. Despite this, CORELS is clearly able to find superior rules, although
not by a significant margin, with a complexity difference of 0.1 adding only
a 2% increase in accuracy. Finally we ran our experiments on the DNA pro-
moter dataset Towell et al. [1990] using a large set of synthetic examples but
CORELS was unable to find a solution before exiting due to memory overflow.
The DNA promoter dataset is a categorical dataset consisting of 58 features
representing a gene sequence with the classifier predicting whether or not the
gene is a promoter. The original dataset contained 106 instances but in or-
der to test the extraction algorithms, 10000 instances of synthetic data were
generated.

8.3 MNIST

In order to evaluate the capability of compact M-of-N rules of explaining hid-
den features, we now apply the extraction algorithm to the hidden layers of
three different networks trained on MNIST and compare results. MNIST is a
visual dataset consisting of 28× 28 pixel greyscale images representing hand-
written digits with an associated class Lecun et al. [1998]. Since applying
extraction hierarchically can cause an accumulation of errors from previous
layers, we use the network to compute the values of the inputs to the hidden
layer that we wish to extract rules from. Hence, the errors from the extracted
rules correspond to rule extraction at that layer. This allows us to examine
the relative explainability at each layer. In practice, one could extract a hier-
archical set of rules by choosing a single splitting value for each neuron.

Our three networks are identical save for the activation function and train-
ing procedure. The network architecture consists of two convolutional layers
with 16 and 8 hidden units respectively, each with a 3×3 convolutional window
and using max pooling. This is followed by a 128-unit densely connected layer
with linear activation followed by a softmax layer. The first network uses Relu
units in the first two layers and is trained end-to-end. The second network is
trained identically to the first but uses the hyperbolic tangent (Tanh) activa-
tion function in the first two layers. The third network uses an autoencoder to
train the first three layers unsupervised before training the final softmax layer
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separately.

Comparing the network using Relu to the one using Tanh shows that in both
cases the minimum error for each layer remains approximately the same. How-
ever, the explainability in the Tanh network is greatly increased in the first
three layers, rules extracted from the Tanh network can be made much less
complex without significantly increasing the error. This applies not only to
the first two layers but also to layer 3 which uses a linear activation in both
cases. In both cases the third layer is much less explainable than the first two
and the only layer which we are truly able to produce an acceptably accurate
and comprehensible explanation is the final one in which we see rules with an
average complexity of 0.087 achieving an average error of 0.013%.

In the third layer we believe that the higher minimum error is mainly the
result of the number of input units. Our results suggest that there are a lot of
input units which are not relevant enough alone to be included in an M-of-N
rule, but collectively they add enough noise to have a significant effect on the
output. Because our search procedure is heuristic, it is possible that a more
thorough search could produce rules which are simpler and more accurate but
our results seem to at least tentatively back up the idea that the distributed
nature of neural networks makes rule extraction from the hidden layers im-
practical if not infeasible. We hypothesize that the difference in complexity
between rules extracted from the Tanh network and the Relu network is due
to the saturating effect of the tanh function. A hidden neuron in the tanh net-
work may have fewer ‘marginally relevant’ features than in the Relu network.
This would explain the steep decline in accuracy found in the Tanh network
and the more gradual decline found in the Relu network.

The autoencoder has hidden features which are in general more explainable
than either of the two previous networks. Compared to the Relu network, the
error of the extracted rules in the second layer is lower at every level of com-
plexity. Compared to the Tanh network, the autoencoder has more accurate
rules at medium levels of complexity (6.1% error at 0.144 complexity vs. 6.6%
error at 0.18 complexity). However, as complexity is reduced the extracted
rules in the Tanh network remain accurate for longer (9.6% error at 0.053

complexity vs. 8.4% at 0.048 complexity). Interestingly, in the autoencoder
the second layer is slightly less explainable than the first. The third layer is
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more explainable than it is in the other two networks with significant increases
in error only being seen with rules of average complexity less than 0.08.

(a) CNN-Relu (b) CNN-Tanh

(c) CNN-AE

Figure 8.1: The Complexity/Error relationship for rules extracted from each
layer of three different deep networks trained on MNIST. From left to right a
CNN with Relu activations trained end-to-end, a CNN with tanh activations
trained end-to-end, a CNN with Relu activations trained as an autoencoder.
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In the softmax layer trained on top of the autoencoder we see that one cannot
extract accurate rules of any complexity. This points to something fundamen-
tally different from the previous two networks in the way that softmax uses the
representations from the final layer to predict the output. This is the subject
of further investigation.

Our results indicate that, when using binary features and M-of-N rules with
an assumption of weight-ordering, there are hard limitations to representing
hidden units that cannot be overcome with any level of complexity in CNNs.
These limitations seem to be the result of the internal representations deter-
mined by the training procedure. Whether these limitations can be overcome
by refining rule extraction methods or whether they are a fundamental part
of the network is to be determined. Discretizing the neurons into a multiple
variables rather than binary is likely to improve accuracy at the cost of com-
plexity. Furthermore, although M-of-N rules appear to approach the optimal
accuracy/complexity tradeoff, it remains possible that expanding the search
space could result in simpler and more accurate explanations of the internal
features. What we can say is that the final layer of a CNN may be a promising
target for rule extraction.

8.4 Extraction from the final layer

Following the observations of the previous section, we extract rules from the
final layer of 2 additional CNNs trained on the Olivetti faces dataset and the
fashion MNIST dataset. Olivetti faces is a small facial recognition dataset
consisting of 64× 64 pixel greyscale images of the faces of 40 different people
Samaria and Harter [1994]. Fashion MNIST is a replacement for MNIST in
which handwritten digits are replaced by images of different articles of clothing.
The dataset is set up to be identical to MNIST in terms of input dimension,
number of examples, number of classes etc. Xiao et al. [2017]. The networks
trained on these datasets are both 4-layer CNNs consisting of two convolutional
layers, a fully connected layer, and a softmax. The Relu activation function is
used. In all six cases, we observe that units in the softmax layer can be accu-
rately explained by relatively simple rules (See Table 8.2.). The Olivetti faces
dataset had the most accurate and interpretable rules of all, this is probably
at least partially due to the smaller size of the dataset. In all cases we can see
a massive drop off in the complexity with only a penalty of β = 0.1 with a less
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Dataset Comp. (β = 0) Acc.(β = 0) Comp. (β = 0.1) Acc.(β = 0.1)
Olivetti Faces 0.03 100% 0.024 99.9%
MNIST 0.7 99.6% 0.06 98.7%
Fashion MNIST 0.28 99.3% 0.06 98.8%
Car Evaluation 0.18 99.9% 0.0 99.7%
DNA promoter 0.9 99.1% 0.06 96.4%
E.Coli 0.145 96.8% 0.06 96.5%

Table 8.2: Comparison of the complexity (Comp), and accuracy (Acc) of rules
extracted from the final layer of three CNNs trained on different datasets as
well as three fully connected networks trained on different datasets. Repeated
for complexity penalties of β = 0 and β = 0.1

than 1% decrease in accuracy. This suggests that in the softmax layer, rela-
tively few of the input neurons are being used to determine the output. This
opens up the possibility of using rule extraction in the final layer as a method
of explanation for deep neural networks. By extracting from the final layer
we change the explanation task from explaining the output label to explaining
the relevant hidden nodes. As the experiments in the previous section showed,
our M-of-N rule extraction method is inadequate for this task. Instead, we
will employ importance methods to explain hidden neurons and combine this
with rule extraction in the final layer to produce an overall explanation of the
network. We repeat these experiments on several small datasets trained with
small 1 or 2 layer networks. The DNA promoter and Car Evaluation datasets
are categorical classification problems whereas the E. Coli dataset consists of
7 continuous features. The E. Coli dataset and the DNA promoter dataset
were learned by a single layer network whereas the car evaluation dataset was
learned by a small 2 layer network. All activations are Relu for the hidden
units and softmax units for the output. Here we find similar results to the
previous datasets although not as drastic.

8.5 Visualization Using Importance Methods

The next set of experiments will deal with the combination of rule extraction
and importance methods. For this reason, in this section we will briefly go
over the notion of importance methods along with several influential exam-
ples. Currently, importance methods are the main alternative to rule extrac-
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tion. Although techniques exist that build interpretable models from scratch,
as discussed in the previous section, these can be thought of as solving a sep-
arate problem from rule extraction. For this reason, along with the fact that
we will combine several importance methods with rule extraction in future
experiments, we discuss importance methods here.

Importance methods generate representations of features or classes by search-
ing for input patterns which in some way can be considered prototypical of
the explanation target. For hidden features, a prototypical input is one which
maximizes its activation over a given input space. This can also be applied to
class labels by choosing the input which most strongly predicts a given class.
Importance methods can also be local in which case they determine, given a
specific input, the regions or features of the input that most strongly explain
the target output. We’ll be especially concerned here with the case that the in-
put space is visual in nature. Although all of the methods we discuss here can
be applied to any neural network, for networks trained on categorical data, the
explanations provided by gradient methods might not make sense. In partic-
ular, the regularizers chosen are meant to reflect properties of natural images
and not other datasets. This gives us important examples of explainabilility
methods in which the nature of the dataset plays a crucial role in our approach
to explainability. With that said, let’s discuss how gradient methods work.

Gradient methods are a popular and influential approach to explainability
that work by finding input patterns which maximize the activation of a hidden
neuron. By doing this we hope to find distinct and identifiable features that
correspond to a specific hidden neuron. In the first layer of a network this can
be easily done by visualizing the weight filter. In higher-layers, however, the
non-linear relationship between the input and hidden neuron activation make
this problem difficult to solve simply by inspection. Instead we rely on search
techniques to find appropriate inputs. One of the first such techniques did
this by starting at an initial input image and calculated the gradient of the
target activation with respect to the input values. By using gradient ascent
we can converge to an input image which produces high activation values in
the target neuron Erhan et al. [2009]. One downside to this is that the im-
ages produced do not always resemble images found in the input space. This
is because the search takes place over all input configurations and it is often
possible to find ‘hacks’ which are input patterns that contain no meaningful
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information but nonetheless have a strong influence on the target neuron. This
can be overcome to a degree with the introduction of regularization intended
to penalize images that do not conform to a natural image prior Simonyan
et al. [2014], Mahendran and Vedaldi [2015]. One of the most recent gradient
techniques, DeepVis, uses four regularizations which can be tuned with vari-
ous hyperparameters Yosinski et al. [2015]. These regularization parameters
include; L2 decay, which penalizes pixels in the image with too high an activa-
tion, Gaussian blur, which penalizes high-frequency information, small-norm
clipping, which removes pixels with small-norm, and finally small contribution
clipping, which removes pixels that do not contribute much to the activation
of the target neuron. By including these regularization techniques, DeepVis
biases the search to produce images that more closely represent things that
can be seen in the dataset which, in this case, consists of natural images.

Gradient techniques with regularization can be effective at explaining hidden
features in networks trained on natural images, but sometimes more general
techniques which attempt to explain individual examples in networks are more
desirable. The most popular of these techniques is LIME Ribeiro et al. [2016].
Given an input/output example of the network, LIME generates synthetic
data by sampling from the input space in a way that biases examples close to
the given input. It then calculates the corresponding network outputs for the
sampled input data. Using these input/output pairs, LIME performs a linear
regression with the input and the target label to be explained. The input
features with the largest regression coefficients are then considered to be the
explanation of the label around the given input. When the data is categorical
the creation of input examples is straightforward, but when it is continuous -as
is the case for visual data- LIME uses a segmentation algorithm to associate a
set of binary variables with an image. LIME then generates its synthetic data
by randomly choosing segments to replace with a uniform segment in which
the value of every input is simply the average of all input values in the orig-
inal segment. By doing this, LIME generates synthetic visual data that can
be represented by a set of binary variables each corresponding to a particular
segment of the original image. The regression is done using these variables.
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8.6 Combining Importance Methods with rule

extraction

The M-of-N rule extraction experiments were unable to adequately explain
the internal features of a deep network. In many cases we are unable to find a
rule that is both accurate and simple enough to be understandable. Although
the it is conceivable that more sophisticated rule extraction techniques will be
able to find satisfactory explanations by expanding the search space, this runs
into the danger of being intractable for real-world networks and there is always
the risk that within certain hidden layers any rule simple enough to be of use
may necessarily have a low fidelity. This is in addition to the underlying issues
of hierarchical rule extraction, namely that the higher up in the deep network
a hidden neuron is the less accurate and more complex the hierarchical rules
explaining it will be. Despite this, the experiments also show that, at least
in the case of the networks trained end-to-end, the final softmax layer can be
explained well with simple M-of-N rules. Despite having hundreds of inputs,
often no more than a dozen input variables are required to produce a rule with
very high fidelity. This shows that rule extraction can be a beneficial tool for
explainability in deep networks, but that on its own it is insufficient to produce
human understandable explanations.

We have seen that in some deep networks rule extraction can produce accu-
rate and interpretable rules for the labels in terms of hidden units but that the
hidden units themselves are not easily explainable with rule extraction. The
widely held intuition that higher layers represent more abstract features may
contribute to this phenomenon, while low-level concepts may rely on highly
complicated relationships, neurons in higher layers may represent the kinds
of abstract concepts we are used to reasoning with using logical systems. Al-
though, as discussed in section 4.5, all layers of a deep neural network can be
described by propositional implications, the number and complexity of these
rules may make the translation from a distributed system to a symbolic one
fruitless. This might seem disappointing at first, but it also nicely conforms to
some of the ideas about intuition and reasoning. Low-level units of perception
can be seen as operating on a more intuitive level, finding weak associations
between large numbers of patterns which can lead to a conclusion about the
corresponding output unit. Intuition is generally accepted to be more or less
unexplainable in humans. A number of small details which, alone, can not de-
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termine the conclusion but nonetheless are able to, in the aggregate, influence
perception. This kind of reasoning is in direct opposition to the more struc-
tured ‘logical’ reasoning. The application of formal rules to abstract concepts
in order to derive a conclusion. In this style of reasoning, we can trace an
exact sequence of deductions that led us to the conclusion. This is because
when we’re dealing with a small number of abstract concepts that relate to
each other in a more straightforward way, it is easier to follow the exact pro-
cess that lead you from A to B and there is less ambiguity as to which factors
were and were not relevant. In other words, a task like recognising that an
object is a circle is not typically something that can be reasoned out with a
large number of ‘primitive’ variables closer to raw sensory data (such as pixel
shadings). In contrast, once we have a repertoire of abstract objects we can
recognise, making inferences in terms of these objects generally takes the form
of less complicated rules. For instance, explaining all the variable dependen-
cies between pixels on a computer screen and the class of circles would be
a hopeless task. However, if you already have access to the abstract notion
of ‘semi-circle’ then an explanation of a circle becomes very simple. For this
reason, the layered abstraction folk-lore of deep neural networks probably sug-
gests something similar to the results we found. Symbolic reasoning, although
on a theoretically level is not any different from a feed-forward network, is
ill-suited to explaining the low-level transformations of deep neural networks
but much more capable when dealing with a small number of abstract ideas
which relate to each other in relatively predictable ways.

This provides the motivation for a more modular approach to explainabil-
ity. When pressing a person for an explanation, we require that they frame
the argument in terms of ‘primitive concepts’ for which we require no expla-
nation. We would never ask how a person knew that there was a stop sign in
front of them or that there was a bird overhead. We trust that these facts are
justified by the persons own perception and intuition. The sensory apparatus
of a person can be seen as a map from extremely high dimensional sensory
input to a relatively compact set of concepts that can be described by some
kind of logical relationship between them.

Moving back to our experiments, although our results for the hidden layers
are by no mean the final say for the applicability of rule extraction in internal
layers, they do suggest that perhaps the kinds of processes going on in lower
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layers are those intuitive process which are the function of too many variables
to hope to understand in a comprehensive way. The compactness of rules ex-
traction from the final layer results tells us that the reasoning used by the final
layer may indeed be in terms of abstract concepts or objects learned by the
internal layers. This just leaves one problem, because we cannot apply rule
extraction to explain which concepts are being used by the higher layer, we are
forced to look to alternative methods to explain the complicated hidden units.
For this we turn to importance methods. Using importance methods we can
generate visual explanations for the hidden units and use these in conjunction
with rule extraction in the final layer to produce an explanation for the label.
By combining rule extraction with importance methods we hope to produce
more comprehensive explanations for a network than those produced by using
importance methods alone. Model agnostic methods can often produce expla-
nations of a high fidelity but they don’t examine any of internal logic of a model
which means they can miss important aspects of the reasoning process actually
used. For a deep network, layerwise rule extraction will explain the network
using some of the same logical dependencies and hidden variables that the net-
work uses. This has the potential to provide a more in-depth understanding
of the networks behaviour at the expense of reduced comprehensibility. We
will explore two possible ways of combining visualization techniques with rule
extraction. The following experiments serve as a proof of concept and in order
to realize the full potential of modular explanations much more experimenta-
tion must be done.

For our first experiment in combining importance methods with final layer
rule extraction we will use the popular model-agnostic importance method
LIME (see section 8.5 for a full description of LIME). We run our experiments
using a CNN trained on the olivetti faces dataset. The architecture of the
CNN is similar to the ones used for the accuracy/interpretability experiments.
It consists of 4 layers, 2 convolutional, 1 dense, and one softmax. We use Relu
transfer functions for the convolutional layers and a linear function for the
dense layer.

We extract M-of-N rules from the final layer using the same procedure as
before and find that we can achieve rules that have 100% fidelity and very low
complexity (see 8.2. For example, label 32 can be explained with 100% fidelity
by a 3 − of − 5 rule despite having 256 input neurons. For this reason, we
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(a) Label 32 (b) ¬H228 (c) ¬H246 (d) H71

Figure 8.2: A comparison of visual explanations produced using LIME to
explain label 32 for a given input example and visual explanations for three
hidden units which result in the network predicting label 32 according to the
extracted rule.

will use label 32 as an example for our combined rule extraction/importance
procedure. The high fidelity can at least partially be explained by the fact
that the Olivetti dataset is much smaller than MNIST, but the results are still
promising. In order to combine LIME with our extracted rules we take each
of the literals, (¬)Hi, from our extracted rule and use LIME to explain the
classifier defined by f(X) = 1 iff (¬)Hi = True. In practice we do this by
creating a new network which is identical to our CNN for the first three layers
and whose fourth layer consists of a single neuron. If the literal we want to
explain is positive (ie we have ¬H = 1 iff h ≥ a for some hidden neuron h

and splitting value a), then we give our single output neuron a bias of −a and
connect it to h with a weight of 1 and leave all of its other weights as 0. For
a negative literal, we do as before but swap the sign of the bias and weight.
We finish by giving the output neuron a sigmoidal transfer function (this is for
practical implementation purposes).

Given an input with label we wish to explain we first find the M-of-N rule
corresponding to that label. We then find the literals from the rule which
are true given the input. We produce explanations from M of these literals
using LIME by applying it to the corresponding networks described above. If
there are not M true literals for a given input then the rule predicts that the
label is not true given the input. If this is the case we can use the fact that
M-of-N rules are closed under negation to produce an explanation for why
the label is not true. We demonstrate this by applying it to several examples
for label 32 from the network described above. We first choose two exam-
ples for which the network outputs label 32. The rule explaining this label
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is label32 ↔ 3 − of − {H71, H154,¬H228,¬H238,¬H246}, for our first example
we find that every one of the input literals is satisfied. We randomly select
3 of them and apply LIME to generate an explanation for each 1. We also
apply LIME to the label itself to compare an explanation for the output of
the whole network to the outputs for the target hidden neurons (See figure
8.2). We can see that the explanation for the label includes some features not
found in the explanations of the hidden neurons. For example the area above
the right eye is selected as being important in determining the label but it is
not an important feature for any of the three literals we can use to explain the
label. Additionally, the explanations for the literals contain features not found
in the explanation of the whole network. Notably parts of the jawline and the
area above the left eye. We also find that some features are common to all
explanations, namely the base of the neck. This raises an important question,
although LIME identified features as relevant to explain the label, it also did
not identify those features as relevant to the hidden literals which we know
explain the label with 100% fidelity. The visualization of the features com-
bined with the rule allows us to reason counter-factually about the example.
We see that the right cheek is important for 2 of the three features. If it is
important for 1 of the two features not visualized then changing it could po-
tentially switch 3 of the literals from being true to not true and the rule would
no longer be satisfied. The chin, on the other hand, is only important for one
of the features. If 1 of the remaining 2 unvisualized features does not depend
on the chin, then changing it would probably not effect the truth of at least
3 of the 5 literals and the predicted label would remain unchanged. When
explaining the label, LIME uses the regression coefficient of each feature to
rank its importance. By using rule extraction and visualizing the features, we
have an alternative method of ranking the importance of segments. Namely,
how many features is this segment relevant to?

The reason for the discrepancy in the visualization of label 32 and the visualiza-
tion of the relevant features in the rule predicting label 32 may be in the hyper-
parameters of LIME. Given that LIME is a local model and builds a regression
using data that is very far away from the typical data a network is trained on,
options like the number of features to select may hide important regions for the

1a priori there is no selection criteria for which of the literals are chosen to explain. Only
that they come from the set of literals satisfied in the example. If we wanted, we could
visualize all of the literals satisfied as well.
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(a) H246 (b) ¬H71 (c) ¬H154

Figure 8.3: Visual explanation for 3 of the literals in a negative example of
label 32

regression. We can also apply this method to negative examples. Because the
label is given by the rule 3− of −{H71, H154,¬H228,¬H238,¬H246}, the nega-
tion of the label can be expressed as 3− of −{¬H71,¬H154, H228, H238, H246}.
We can use the same method to explain the network output on examples where
the network predicts a different label. In figure 8.3 we provide an explanation
for why the literals in the rule for label 32 were not satisfied. As we can see,
the regions of the image accounting for this are very different than the regions
identified in the positive example. The shoulders are not a factor here for any
of the literals whereas the mouth and nose are. This is interesting because the
shoulders in this example are quite different than in the positive example. The
bottom corner patches of the image are quite dark in the negative example
whereas in the positive example they are quite light. Given that the shoulders
were so important to the decision of the positive examples one might expect
the difference in this region to play an important role in the decision. Despite
the major differences, some common regions are identified in positive and neg-
ative examples, namely the cheeks, indicating that the shape of the cheek is
an important feature for discerning between these two labels.

The variation in the features identified between examples indicates that the
literals might represent a complex subspace of visual patterns. In order to feel
like we’ve managed to generate an acceptable explanation of a face, we need
to understand the hidden units used for the reasoning of the output rules. In
our example we noticed unit 32 was a 3−of−5 rule and gave examples of how
LIME can generate explanations for the label itself as well as the hidden units.
The downside to LIMEs locality is that it makes definitive reasoning about
classes more difficult. In our example we found that the literals that predict
label 32 were using information from the right eye region, cheeks, and. shoul-
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Figure 8.4: Visual explanations for the literal H154 from three different exam-
ples

der. In this case it might be tempting to conclude that our classifier primarily
looks at these regions to make a judgements; however, in a different example
the explanations for the same hidden units may be totally different. In order
to address this, we test several more examples with hidden units 154 to deter-
mine whether or not the unit can reasonably be said to represent a meaningful
concept that could be use to reason about the identity of a person, (maybe
something like high cheek bones, or a crooked nose, etc). From figure 8.3, it
is apparent that for all visual explanations for label 32 the shoulders seem to
provide crucial information. As we see in figure 8.4, what is unique to unit 154
is the importance of jaw and eye regions. This suggests that this literal may
represent something specific about a facial structure that the network uses to
determine which individual it is looking at. Although the locality of LIME is
desirable under certain conditions, it does not allow one to confidently identify
global features that a hidden unit may represent. For this reason, we turn to
gradient methods to give a more global description of a hidden unit.

8.7 Combining Gradient Methods with Rule Ex-

traction

Now we turn to gradient methods to provide a visual explanation of the fea-
tures used by rules extracted from the final layer. To do this we use the keras-
vis package which optimizes an input image to produce the highest activation
value of a hidden unit subject to two optional regularizers; LP norm and total
variation Kotikalapudiet al. [2017]. LPNorm penalizes very high or very low
activations preventing the image from selecting a few important pixels to max-
imize (or minimize). Total variation penalizes images with a high variability
between adjacent pixels. This is done to produce images which more closely
resemble natural images in which the intensity of a pixel varies more smoothly
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than in random images. Again we apply this technique to the rule for label 32,
3−of−{H71, H154,¬H228,¬H238,¬H246}. We apply the gradient technique on
each of the literals using the same technique we did when explaining literals
with LIME. That is, we copy the network and remove the final layer, then
add a layer containing a single node and a single connection to the desired
literal with a weight of either 1 or −1 depending on whether nor not the literal
is negated. This allows us to use gradient techniques for both negative and
positive literals. For each image generated we use a variety of weights on the
regularizers in order to generate meaningful images. Experimentally we found
high weights on LP norm and low weights on the activation maximization and
total variation to produce the best images but the exact values differ for many
of the images produced.

In figure 8.5 we see the input images found to explain each of the relevant
literals. Although indistinct, the outline of a facial shape in many of these
filters is noticeable. The vagueness of the features makes a precise analysis
impossible but some conjectures can be made. To start with, these images
provide information on the important regions of the input for the literal. None
of the literals are highly localized, each representing multiple regions of the
image in different ways. Again we can see that the shoulder area plays an
important part for each of these filters although other regions of the image are
more or less important for various literals. Comparing the regions identified
by LIME as important to unit H154 and the image produced to maximize the
output of H154, we can see that the regions identified by LIME in each example
are all present in the visualization. The shoulders, right section of the chin,
and area above the right eye all play an important part in the activation of
this hidden unit. Additional areas not found in the LIME examples are also
highlighted. For example, the mouth is a distinct region but in none of the
examples with LIME did it appear. We expect that for each example given
to LIME, the regions identified as important will be among the same relevant
regions found by this visualization. We also expect there to be regions that
contribute a lot in the global example that aren’t necessarily found in every
local example. Although tentative, the gradient images seem to support this.

We can also use visualize the negated rule using the same technique used before.
In figure 8.6 we can see the results of applying the gradient method to the liter-
als Applying the gradient methods to the literals ¬H71,¬H154, H228, H238, H246.
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(a) H71 (b) H154 (c) ¬H238 (d) ¬H228 (e) ¬H246

Figure 8.5: Visualizations of the literals in rule 32 using gradient methods

(a) ¬H71 (b) ¬H154 (c) H238 (d) H228 (e) H246

Figure 8.6: Visualizations of the literals in the negation of rule 32 using gra-
dient methods

The images produced here are similar to the previous ones in that each lit-
eral is not negated by a local region but by areas of the entire image. We
see that the regions highlighted are much different than the ones highlighted
by rule 32 with the relevant regions usually corresponding to regions which
were irrelevant in rule 32. This helps explain the results from LIME. Notice
that the shoulder region is not highlighted at all here, indicating that a bright
region around the shoulder is evidence for the literals, but that a dark re-
gion around the shoulder is not evidence against them. Rather other features
which negate the literals are important. Combined with our rule, this tells
us that the network looks for features which support the label, and regions
which do not support the label, and then weighs them, with a bias towards
not supporting the label (because we require 3 of the literals to be satisfied,
a clear majority). That is to say, the absence of features which support the
label is not considered evidence against the label but rather it is only the pres-
ence of other features which provide evidence against the label. Looking at
the negative examples for LIME, we can see that the relevant regions identi-
fied there correspond to relevant regions in the visualization. The consistency
between LIME and visual methods helps assure us that the these are these
representations of the hidden units are accurate. Using gradient methods we
are able to not only produce images that visualize a single literal, but images
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(a) H71∧H238∧
¬H246

(b) ¬H71∧H238∧
H246

Figure 8.7: Visualizations for combinations of the literals satisfying the rule
and its negation respectively

that maximizes multiple literals simultaneously. This allows us to visualize
different input patterns which satisfy a rule. By selecting 3 of the literals to
satisfy we can generate images that represent optimized inputs that satisfy the
rule with these 3 literals. The results of this are shown in figure 8.7 for both
the rule and its negation. What we see is that more facial features are becom-
ing apparent. As the literals are combined, more distinct faces are represented.

Although decompositional rule extraction for deep networks remains a difficult
problem, final layer rule extraction provides a simple way of understanding the
output as a function of abstract input variables. Visualization methods allow
one to visualize relevant regions or features for a hidden unit or input exam-
ple, but they do not account for how these features are combined to come to
a conclusion. By combining final layer rule extraction with gradient methods,
we hope to understand how the network reasons about input features to come
to a conclusion about the label. Although very preliminary, the experiments
combining final layer rule extraction and visualization methods seem promising
in that they allow one to reason about the way features are used in the net-
work. Further work in this area could result in comprehensive and intuitively
understandable explanations for deep networks.
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Part III

Conclusion and Future Work
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Chapter 9

The Relationship between
Symbolic Systems and Neural
Networks

9.1 Formal Equivalences

The field of AI has often been divided into symbolic and connectionist ap-
proaches. Although the intuition behind each approach is very different, for-
mally, the distinction between a symbolic system and a connectionist one has
more to do with practical differences rather than fundamental ones. In prac-
tice, the formal definitions of a connectionist and a symbolic system are often
unimportant. Rather than represent distinct classes of models with different
properties and abilities, the terms serve more as way of describing different
approaches taken to a problem. When studying neural-symbolic computing,
however, the exact differences between symbolic and connectionist models be-
comes important. It is important to know exactly what kind of representational
or practical benefits you might gain from translating one kind of model to the
other. It is also important to know fundamentally whether you can translate
from one model to the other without a loss of information.

In order to study this problem formally, we developed a framework for re-
lating logical systems to neural networks. In this framework we identified two
distinct forms of equivalence between a logical system and a neural network
(semantic and syntactic). This definition allowed us to precisely characterize
the relationship between different logical systems and classes of neural net-
works. We showed that stable networks are semantically equivalent to propo-
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sitional logic, meaning that every stable neural network can be thought of as
representing the semantics of some propositional knowledge base, and every
propositional knowledge base has a stable neural network describing its se-
mantics. We noted that the Lowenheim-Skolem theorems show that no neural
network can fully represent the complete semantics of first-order logic making
the specific approach to neural-symbolic computing of semantic encoding and
extraction fundamentally limited. We also showed that feed-forward networks
can be syntactically encoded into propositional logic (at least in a limiting
sense) meaning that every feed-forward network can be exactly described up
to arbitrary precision by propositional logic.

Within the framework we also developed a formal definition of fidelity as well
as extensions to the definitions to account for probabilistic networks and multi-
valued logical systems. This allowed us to review much of the literature on
neural-symbolic integration and contextualize the results of previous equiva-
lence results in terms of our framework. In particular, the semantic equiv-
alence of stable, recurrent, binary networks and penalty logic; the semantic
and syntactic equivalence of Horn logic programming and binary feed-forward
networks, the semantic and syntactic equivalence of CILP networks and ac-
ceptable logic programs along with all of the extensions to those results; and
finally the equivalence between Markov Logic and Boltzmann machines. With
our framework we are able to collect and organize much of the previous work
on neural-symbolic integration in order to provide a clear account of the exact
relationships between neural networks and logical systems. A summary of the
relationships between different classes of neural networks and logical systems
was given in 5.1.

These allow us to conclude several things. The first is that a semantic ap-
proach to neural-symbolic computing will not be possible for many important
logical systems. Depending on the application, semantic approaches can still
be important, but neural networks are fundamentally limited in this respect by
their size. The second take away is that any problem that can be solved by a
feed-forward network has an equivalent description in propositional logic. This
isn’t surprising but it highlights the fact that any kind of neural network classi-
fier can easily be thought of as a complicated propositional system. The third
take away is that stable networks cannot be used to represent an arbitrary log-
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ical system whereas unstable networks, in theory, can1. Although equivalences
between Turing machines and neural networks have been developed, first and
higher order logics have not been fully described with connectionist models.
The final and most important take away is that because feed-forward networks
are equivalent to stratified logic programs, the difference in the connectionist
and symbolic approach must come from practical and representational aspects.
In particular, the perceived differences between neural networks and logical
systems can be primarily attributed to the existence of efficient learning algo-
rithms along with the complexity of the internal representations of a network.
On the latter point, the use of distributed representations in a network is often
pointed to as the primary thing that separates neural networks from logical
system, but as we will argue in the next section, this can be thought of entirely
as an issue of complexity.

9.2 Complexity and Representation

Despite the formal comparisons we can make between neural networks and
logical systems, they are generally used in different ways. This gives rise to
important representational differences. Although we can create an abstract
propositional knowledge base with millions of distinct atomic variables, this
is not done in AI. Rather, we assume that the atomic variables correspond to
some abstract concept we wish to model. The same is usually true for the
use of first-order logic in AI with the relation symbols, function symbols, and
constants usually chosen to represent things or properties that are abstract
enough to be generally applicable to multiple contexts. This is not a theo-
retical property of logical systems, but more one of convention. By contrast,
neural networks consist precisely of variables which do not correspond to any
predefined concept or notion. Rather we trust that, with a sufficiently large
network and dataset, the learning algorithm will be powerful enough to de-
velop a system which behaves the way we want. The resulting network will
be formally equivalent to a complicated propositional knowledge base with the
neurons identified by atomic variables. The exception to this of course is for
unstable continuous networks for which the relationship is more complicated.

Although neural networks can model problems on a test set, the fact that
1This is because the class of stable networks is not Turing complete, due to their inability

to implement non-terminating computations, while unstable networks are
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it is unclear what kind of concepts a single neuron represents means that
we are left uncertain as to whether or not a neural network has managed to
find a truly general solution to the problem, or whether it is using a more
brute force approach. In the later case, the network will fail to generalize
to problems from a different, but similar input space. By contrast, logical
systems, although technically capable of finding identical solutions to classifi-
cation problems as neural networks, would require many variables and would
be far too complex to design by hand. Learning techniques for logical systems
do exist but neural network learning seems to work better for specific kinds
of problems such as image recognition. The symbolic approach is to identify
a small number of relevant abstract concepts and try to create simple, easy
to understand systems in terms of these concepts. The difficulty in applying
these systems is that inputs often do not come in the form of abstract enti-
ties but rather high-dimensional continuous data. To illustrate the difficulty,
consider MNIST digit classification. Although hypothetically we could create
a logical system in which individual pixels were atomic variables and all sorts
of combinations of rules were included to make the right classification, such
a system would be complex and difficult to design. Rather we might want to
identify more abstract properties of images that we can reason about such as
‘loops’ or ‘vertical lines’. In order to do this, we would have to automate the
recognition of abstract properties which remains difficult to do with logical
systems for the reasons described above. Neural Networks, by contrast, im-
plement complicated transformations of the input data and do not necessarily
rely on reasoning using abstract features such as loops or lines. The large
number of neurons allows them to efficiently capture the relationship between
many different variables and use them to make predictions about higher-level
features in the data.

In practice Neural Networks operate at a lower level of abstraction than logical
systems. Despite this, in order to properly generalize we still want networks
to make use of the same abstract reasoning as before but with more flexibility.
A network which has learned to reason about a number in terms of different
shapes will be able to learn how to reason about letters more simply because
the problem involves many of the same abstract concepts. This is the goal
of neural-symbolic computing, to use connectionist and symbolic techniques
in order to develop systems which can use low level subsymbolic reasoning as
well as high level abstract reasoning. Rule extraction, an important part of
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this process, is a method of asking the question ‘has this network learned any
useful abstract symbolic reasoning?’ As per the previous discussion, abstract
in this context must be thought of in terms of complexity. The more com-
plexity we allow in our rule extraction procedure the more closely we get to
merely transcribing the neural network into an equivalent logical system. If we
are able to find a small number of atomic variables corresponding to certain
activations in a network that can predict the output of a network with a high
fidelity then we have found abstract concepts used by the network, although
the exact nature of these abstract concepts may still be unknown.

So if these abstract concepts are there, where might they be hiding? One
possibility, which was the main research topic of this thesis, is that the hier-
archical nature of deep networks puts abstract concepts closer to the top of
the network. The intuition behind deep learning has long been that lower lay-
ers represent simple low-level concepts and that higher layers represent more
complex features 2. If this is the case, then the higher layers of a deep network
are a good place to look for features that are abstract enough to be able to
explain the reasoning of a network fairly easily. This is what we investigated
and the results will be summarized in the next section. Another possibility
is that the abstract concepts correspond to distributed patterns of activation
across a variety of neurons. In this case an abstract concept is equivalent to
certain complicated combinations of low-level concepts. This idea was not fully
explored but we will discuss it when talking about future work. Now we will
look at the results of our experiments with layer-by-layer rule extraction to see
if there is anything to the idea that we can find abstract concepts residing in
higher layers.

9.3 Modular Explainability with Rule Extrac-

tion

In our experiments we examined the idea of layer wise rule extraction from deep
networks using a new M-of-N extraction algorithm. We wanted to see if the
intuitive idea that higher layers represented more abstract features translated
into less complex rules. As discussed in the previous section, a network which

2simple in the colloquial sense, a circle is thought of as simpler than a face yet describing
a circle in terms of pixel values of the image is a more complex task than describing a face
in terms of its facial features
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reasons using abstract concepts should theoretically be explainable with fairly
simple rules. We found that there is no clear pattern between the depth of
a layer and explainability using our rule extraction algorithm. Instead higher
layers may be more or less complex than lower layers. Similarly the size of a
layer could not completely predict how relatively complex a symbolic explana-
tion must be. We did, however, find that the final layer could be explained with
much simpler rules than the previous layers. This suggests that the neurons
in the final layer represent abstract, and potentially more identifiable concepts
than the previous layers. The pattern of highly a highly explainable final layer
was present across several datasets but not when the training procedure was
changed. This suggests that the explainable final layer is primarily the result of
the learning algorithm. There were also some differences found when changing
the transfer function but the overall pattern of explainability between layers
was not altered.

Next we used the previous results to produce modular explanations of deep
networks in which the neurons in the final hidden layer are explained via vi-
sualization techniques and the network behaviour is explained using a rule
extracted from the final layer. We used two different visualization techniques
for this, one local (LIME), and one global (keras-vis). Combining these visu-
alizations with rule extraction, we were able to produce explanations of the
network that were more detailed than those produced with the visualizations
alone, although the visualized features using gradient methods remain indis-
tinct. Seeing how features are combined by the network cannot be done with
visualization techniques alone, and rule extraction alone cannot be used to
understand the features of a deep network because the explanations will either
be too complex or not accurate enough. By combining these two approaches
we can overcome the deficiencies of both and create a new kind of explanation
which gives a more nuanced view into the inner workings of a neural network.

9.4 Summary

The contributions of the thesis and results are summarized here. The theory,
algorithms, and techniques developed are as follows

• Foundations for Neural-Symbolic relations were established with several
properties and limitations identified.
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• A fast decompositional M-of-N extraction algorithm for DBNs was de-
veloped.

• A slowM-of-N extraction algorithm that is capable of directly controlling
the complexity of extracted rules was developed.

The experimental results and theoretical properties of networks derived from
the previous algorithms and techniques are as follows

• Relationships between propositional logic and stable networks were es-
tablished. Including the complete description of feed-forward networks
semantically and syntactically with propositional logic up to a arbitrarily
small approximation error for continuous-valued networks.

• Previously established neural-symbolic relationships were put into the
context of our theory and, in combination with the previous point, the
relationship between many classes of neural networks and logical systems
were elucidated in table 5.4.

• Using the fast algorithm M-of-N, extraction was shown to improve on
the accuracy of the previous optimal confidence algorithm in RBMs.

• The slow M-of-N algorithm was compared with CORELS in small feed-
forward networks on categorical data and found to extract rules of a
similar complexity and accuracy.

• The slowM-of-N algorithm was applied to feed-forward CNNs trained on
image data and found that, like the categorical networks, the final layer
of a feed-forward network can be accurately explained with relatively
simple M-of-N rules.

• The results from the previous experiment also suggested that the inter-
nal layers of CNNs could only be adequately explained either by using
distributed representations in rule extraction, using finer partitions of
the activation values, or with very complex M-of-N rules.

• Proof of concept experiments were done with both a global and local
visualization method in order to demonstrate how rule extraction from
the final layer of a network can be combined with other techniques in
order to provide a hybrid end-to-end explanation of the network which
is able to explain the network in more detail than either method alone
can.

153



Chapter 10

Future Work

10.1 Rule Extraction For Robustness

We also studied the possibility of rule extraction as a tool for robustness. De-
spite neural networks being able to achieve very high accuracy on a test set, in
many cases it is possible to engineer adversarial examples. These are examples
which are designed to fool the network while still being easy to classify by
humans. Not only does this present possible security threats, but it also re-
veals that even networks with super-human accuracy on their test sets may not
be developing the same concepts that allow humans to reason generally. The
existence of adversarial examples once again raises the tension between sym-
bolic and connectionist systems. Recall that logical systems reason in terms
of abstract concepts whereas connectionist systems rely on large amounts of
data and computational power. While logical systems attempt to model logi-
cal reasoning, connectionist ones often model intuitive reasoning. Because the
validity of abstract reasoning is invariant under various representations of the
same class, symbolic systems are immune to adversarial attacks. Connectionist
systems, on the other hand can be influenced, albeit in a small way, by small
perturbations even if the variables being perturbed are overall insignificant.
The more philosophical question underlying rule extraction is whether or not
neural networks, and especially deep neural networks, learn to use abstract
features in their reasoning process. Naturally a neural network that represents
an abstract feature useful for logical reasoning will do so in a fuzzy way, with
several other activation patterns approximating it. Nonetheless, the use of
abstract features should endow the neural network with a similar robustness
to symbolic systems. As long as perturbations to an input do not change the
nature of the abstract features contained within, the neural network’s decision
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should remain unchanged. However, the vulnerability of neural networks to
adversarial attacks suggests that if neural networks are learning abstract fea-
tures, they are not the same ones used by humans. Although in many cases
adversarial attacks can be overcome by adding a regularization function to
specifically address the attack in question, the sheer number of attacks seems
to indicate that the representations formed by most neural networks suffer from
some deeper issues. Fixing a neural network to account for some particular
deficiency while it remains vulnerable to others misses the point that human
beings are robust against all sorts of adversarial attacks without having spe-
cific training for any of them (unless you consider optical illusions adversarial
attacks).

With the apparent ability of final layer rule extraction to provide simple and
accurate descriptions for deep neural networks, we hypothesized that the more
compact M-of-N rules we extracted may be more robust to adversarial exam-
ples as they force a network to rely on a small set of more abstract features.
Even if the majority of the input neurons to the final layer play no significant
role on the training set, if pushed in the right direction collectively they can
override the influence of the relevant features. Using a similar procedure to the
previous section, we extract rules from the final layer of the CNN trained on
the Olivetti faces dataset for different values of β. We form a hybrid model by
using the network to generate activation values for its final layer given some
input before using those values as inputs to our extracted rules to produce a
result.

In order to test the effect of final layer rule extraction on robustness, we use
the foolbox package Rauber et al. [2017] in python to generate adversarial ex-
amples for our CNN trained on the Olivettie faces dataset using three different
attacks. Using FGSM Goodfellow et al. [2015] and LBFGS Szegedy et al. [2014]
we were able to generate 400 adversarial examples each. We also tested for
adversarial examples with the one-pixel attack Su et al. [2019], a much weaker
attack that attempts to fool the network by only changing a single pixel value.
Using this attack we were able to generate an additional 6 adversarial exam-
ples. As we can see in Table 10.1, final layer rule extraction seems to provide a
small, but consistent resistance to adversarial attacks. Somewhat surprisingly,
simpler rules seem to be slightly more vulnerable in general. Although these
preliminary experiments don’t solve the problem of adversarial attacks, they
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Adversarial Attack β = 0 β = 0.1 β = 0.2 β = 1

LBFGS 82% 82.25% 83% 85.75%

FGSM 87.5% 89.25% 89.25% 89.75%

One-Pixel 33% 33% 16.7% 50%

Table 10.1: Error percentage on adversarial examples on a CNN trained on the
Olivetti faces dataset using final layer rule extraction for various complexity
penalties

do seem to indicate that the high dimensionality of neural networks is at least
partially responsible for their weakness and that rule extraction can at least
provide a modest benefit.

In order to confirm that this trait isn’t unique to the CNN trained on Olivetti
faces, we also applied FGSM to a CNN trained on MNIST in order to generate
1000 adversarial examples. In Table 10.2, we can see a similar pattern to that

Average Rule Complexity Misclassifications
0.165 62.4%

0.056 66.9%

0.044 68.3%

0.017 68.7%

0.004 80.8%

Table 10.2: Number of misclassifications by rules of various complexities ex-
tracted from a CNN on 1000 adversarial examples

of the Olivetti faces CNN with the more complex rules appearing to be more
robust than the simpler ones. Furthermore, using this network, final layer rule
extraction improves robustness to a much larger degree than in the previous
case. From these results it is clear that rule extraction will not provide an
answer to adversarial results on its own, however, the fact that the increase
in robustness seems to be independent of the attack suggests that the same
fundamental flaw underpins many different adversarial attacks and this flaw
may be related to the failure of neural networks to capture meaningful abstract
data. This observation further solidifies the difficulties of rule extraction but
at the same time highlights the importance of neural-symbolic computing to
develop truly intelligent computational systems.
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10.2 Improving the Optimality of the Extrac-

tion Algorithm

The main challenge for a rule extraction algorithm is the fact that the number
of possible rules is exponential. For this reason, extraction algorithms always
rely on a simplifying assumption to make a search tractable. The downside of
this is that you may end up ignoring more optimal rules. CORELS uses the-
oretical results to produce verifiably optimal rules with only a limited search
of the rule space. However, CORELS is still quite slow and becomes imprac-
tical for large networks and datasets. Our algorithm makes some simplify-
ing assumptions along with a parallel search which allows it to be applied to
much larger networks, but at the cost of not being completely optimal. We
demonstrated empirically that the rules found by CORELS are only marginal
improvements over our algorithm, but improvements to the M-of-N search
procedure could be made. In particular, some of the properties of M-of-N
rules discussed in the next section could potentially be used to further reduce
the search space without excluding relevant rules. The fact that an M-of-N
rule has the same complexity as an (N-M)-of-N rule is one example of a prop-
erty that could be used to reduce the search space. The other big issue is the
choice of splits. In our current algorithm we use the information gain to choose
splits independently, however, because input variables are not necessarily in-
dependent, the choice of an optimal split might change depending on which
rule the literal is being added to. CORELS and other extraction algorithms
generally assume that splits have already been chosen, but many other data
mining techniques can be used to produce a good set of candidate splits. The
implementation of these techniques could further improve the rules found by
our algorithm. Splitting neurons into multiple atomic variables by choosing
more than one splitting value is another option for improving the fidelity of
extracted rules but it comes at the cost of increased complexity due to the
larger number of variables. Experiments looking at the optimal rules extract-
ing using different numbers of splitting values could provide insight into how
finely the state space should be partitioned in order to extract the rules with
the best explainability.

Another approach to rule extraction that might make a drastic change in the
explainabililty is the consideration of distributed representations in the net-
work. The vast majority of rule extraction algorithms use individual neurons
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as prototypes for logical variables. However, as we discussed, there is good
reason to think that if a network does use abstract reasoning, then the instan-
tiation of an abstract concept is represented as a pattern of activity across a
collection of neurons. If this is the case then some layers within the network
might be much more explainable than they were in our experiments. We ran
some preliminary tests for this concept by first applying PCA to a hidden layer
before applying our rule extraction algorithm using the principal components
as the atomic variables. This has the additional advantage in that our ex-
traction method now becomes optimal (see appendix A.4). Our results were
intriguing, but inconclusive. Notably, the unexplainable final layer in the deep
autoencoder became much more explainable, but the already explainable final
layers in the other networks become unexplainable with accuracy-complexity
graphs resembling that of the final layer of the autoencoder. PCA essentially
switched the explainability graphs of the final layer in the autoencoder and
the networks trained with end-to-end backpropagation. The changes to other
layers were for the most part insignificant. Other whitening techniques could
be applied as well as more general transformations which attempt to find the
combinations of different input patterns which best explain the output. One
possible approach is the following. Use an extraction algorithm to produce a
rule whose atomic variables are defined by the activation values of single input
neurons. Then, consider a linear transformation between the input variables
and a new set of identical units. Initialize the linear transformation to the
identity. Replace the final layer of the network with the extracted rule. Use
gradient descent on the new linear transformation to maximize the fidelity of
the rules to network. After this, apply the rule extraction algorithm again
to produce a new set of rules and repeat the process for a fixed number of
steps or until some margin of error is reached. This is one possibility, other
techniques may be developed which encode patterns of activity into abstract
logical variables.

The potential of distributed representations to play an important role in the
abstract reasoning of a network means that our results are not conclusive re-
garding the use of abstract concepts in deep neural networks. What can be
said, is that if deep neural networks use abstract concepts, they are either only
present in the final layer, they are represented by distributed patterns of ac-
tivity in lower layers, or that they simply cannot be represented with M-of-N
rules and binary partitioning of the state space.
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10.3 Extracting Hierarchical Rules

In our experiments we were only be concerned with rule extraction from a sin-
gle layer in a neural network. However, we will provide a description for how
these rules can be combined into a hierarchical explanation of a deep network.
When extracting implications from a deep network, the rules are naturally hi-
erarchical. The variables at the head of one set of rules are the variables in the
body of the next set and so on. If the rules we produce are implications with-
out any confidence values, the only issue preventing us from chaining together
modus ponens to reach a conclusion about the output is that the discretization
method we used for continuous networks does not ensure that a neuron when
treated as and input produces the same atomic variable as it does when treated
as an output. In order to make inferences with hierarchical rules, it is essential
to make sure that each neuron was discretized the same way in each layer it
appears in. For example, if you define a propositional variable Xi by Xi = >
iff x ≥ 0.5 in one layer, say the layer for which xi is an output variable, and
then in the next layer xi corresponds to a variable X̂i for which X̂i = > iff
xi ≥ 0.7 then you cannot simply compose the rules from the second layer with
rules from the first. Assuming all variables are consistent, given an assignment
of truth values to the atomic variables corresponding to the input neurons,
one can repeatedly apply modus ponens and the closed world assumption to
produce a configuration of the atomic variables corresponding to the neurons
in the next layer. This assigns a value of 1 to each variable which is at the
head of a body that is satisfied, and 0 to each variable which is not. Repeating
this process we end up with a configuration of all atomic variables and thus a
full explanation of the network.

When confidence rules are involved this process needs to be adjusted to ac-
count for them. Suppose we have a rule 40 : h ← x1 ∧ x2. If we have 10 : x1

and 10 : x2, what should the confidence for h be? Luckily we can generalize
Modus Ponens to confidence rules in a way that propagates confidence values
up through the layers of a deep networks Tran and Garcez [2016]. In order to
do this, suppose we have a confidence rules, c : R, with a given set of input
neurons. Suppose further that some of these inputs neurons have assigned
confidence values in the range [min,max]. First assign the confidence value
min+max

2
to any input neurons which were not assigned a confidence value.

Then, in order to determine a confidence value for the output neuron, add the
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confidence values of the positive literals, subtract the confidence values of the
negative literals, and multiply by c. Repeating this process layer-by-layer gives
us a method of calculating confidence values for the outputs of a hierarchical
confidence rule. If our rule is an M-of-N rule, we can generalize this by using
the sum (and difference) of confidence values corresponding to the M inputs
with highest confidence. Other possible schemes exist and many would most
likely have to be tried in order to find an effective one.

Whether or not confidence rules are used specifically, hierarchical M-of-N rules
may be useful in the case that multiple layers of a neural network are explain-
able with rule extraction. In our experiments, we found that generally only
the final layer was explainable. However, it is possible that for some networks,
or if the extraction algorithm is improved, the final two or final three layers
can be explained with rule extraction. When this is the case, the modular
approach to explainability will necessarily call on hierarchical rule extraction
to provide an abstract symbolic explanation of the final layers.

When moving from the extraction of basic M-of-N rules to hierarchical M-
of-N rules, simplification techniques become important. Some attempts have
been made to develop operations on M-of-N rules that would allow one to
remove redundancies in order to make rules more compact and hopefully more
interpretable.M-of-N rules equipped with these operations were called the X-
algebra although the research was never carried to fruition Broda and Garcez
[2001]. We conclude this chapter with a brief discussion of the X-algebra in-
cluding some potentially useful operations and identities. In the X-algebra all
terms are M-of-N rules. The literal X is shorthand for the rule

({X}
1

)
and ¬X

is shorthand for the rule
({¬X}

1

)
. αi, and βi will be used to represent arbitrary

M-of-N rules. An M-of-N rule that contains only literals will be referred to as
basic and one that contains other M-of-N rules will be referred to as complex.

First, given M-of-N rules
(
S1

M1

)
and

(
S2

M2

)
(here each Si is a set of literals or

other M-of-N rules),
(
S1

M1

)
=⇒

(
S2

M2

)
if and only if for every M1 clauses in S1,

at least M2 clauses in S2 are contained in the set of implications of those M1

clauses. For basic M-of-N rules, since for literals Xi and Xj, Xi =⇒ Xj if
and only if Xi = Xj it is not hard to prove that

(
S1

M1

)
=⇒

(
S2

M2

)
if and only if

M1 − |S1 \ S2| ≥M2.
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In addition to conjunction and disjunction, which can be defined using M-
of-N rules as shown in section 3.3, negation can be defined by ¬

(
α1,α2,...,αN

M

)
=(¬α1,¬α2,...,¬αN

N−M+1

)
. We also introduce a new operation called dual.

Definition 10.3.1. dual is an operator on complex M-of-N defined recursively
by

1. dual(Xi) = Xi

2. dual(¬Xi) = ¬Xi

3. dual(
(
α1,α2,...,αN

M

)
) =

(
dual(α1),dual(α2),...,dual(αN )

N+1−M

)
Where Xi is a literal. For simple M-of-N rules, dual simply changes the value
of M to N +1−M . Extending the definition to complex M-of-N rules is done
by recursively applying it to its set of clauses. The following properties of the
X-algebra are easy to show.

Proposition 10.3.1. Given M-of-N rules α and β. The dual operator satisfies
the following properties

1. dual(α ∨ β) = dual(α) ∧ dual(β)

2. dual(α ∧ β) = dual(α) ∨ dual(β)

3. dual(>) = ⊥

4. dual(⊥) = >

5. dual(¬α) = ¬dual(α)

The use of the above identities could potentially be incorporated in an extra
step in the extraction of hierarchical M-of-N rules. After extracting rules
from one layer and before moving on to extraction from the next layer, apply
identities in a systematic way to reduce redundancy and complexity of the
rules. As discussed previously, results suggest that full end-to-end hierarchical
rules may be constrained by complexity. For this reason, it may be more
fruitful to develop the modular approach to explainability.

10.4 Refining Modular Techniques

The development of modular explainability techniques opens up a huge amount
of potential for explainable AI. Although our use of modular techniques was
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limited to our own rule extraction algorith, any rule extraction algorithm could
just as easily be used. Additionally, many different visualization techniques
exist all of which could be used in a modular fashion. Moving on to different,
possibly larger networks might mean having to switch to different, faster, ex-
traction algorithms. For example our fast M-of-N extraction algorithm could
be adapted in order to produce modular explanations for very large networks
such as imagenet. The subjective nature of visualization means that all the
various techniques and methods could be tested until reasonable visualizations
are produced. In some cases, lower layers in a deep network might be more
explainable and hierarchical rules for a segment of the network might be ex-
tracted. The general rule for modular explanation is that the extracted rules
should come after the visualized features, in other words, if we can find ac-
curate and simple rules to explain the final two layers in a network then we
can use rule extraction to produce a hierarchical set of rules and use visual-
ization techniques to explain the input features of these rules. On the other
hand, if the first layer is explainable but the second layer is not, then rules
extracted from the first layer are unlikely to be effectively used in conjunction
with visualization.
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Appendix A

Proofs

A.1 Proof of Theorem 4.4.2

Assume we have two networks, N1 and N2, with corresponding state spaces X1

and X2, along with a bijective map, f , from the state space of N1 to the state
space of N2 such that f(N1(x)) = N2(f(x)). First we deal with the syntactic
case

We assume that N2 is a syntactic model of S = (L,`S ,M). This implies
that there is an injective map, i : X2 → L such that for all x ∈ X2, i(x) `N2

l0 =⇒ i(x) `S l0. Define a mapping e : X1 → 2L given by e(x) = i(f(x)).
First we show that e makes N1 a syntactic model of S. By injectivity of i
and f , e is injective. Take any state x ∈ X1. And consider e(x) = i(f(x)).
Suppose that e(x) `N1 l0, then there exists t > 0 such that l0 ∈ e(N t

1(x))l0. By
definition this is i(f(N t

1(x)). Which is equivalent to i(N t
2(f(x)) by iterating the

assumption on f . Because we have l0 ∈ i(N t
2(f(x)) this gives us by definition

that e(x) = i(f(x)) `N2 l0 and thus by the fact that i is a symbolic encoding
of N2 we have that e(x) `S l0. And thus N1 is a syntactic model of S

Now suppose that i is a syntactic encoding of N2 into S. By definition this
means that for all x ∈ X2, i(x) `S l0 =⇒ i(x) `N2 l0. We want to show
that e also defines a syntactic encoding of N1 into S. Suppose we have that
e(x) `S l0. The knowledge base e(x) is encoded by the state f(x) ∈ X2 by i and
thus again by the fact that i is a symbolic encoding we have that i(x) `N2 l0.
So there exists t > 0 such that l0 ∈ i(N t

2(f(x)) but again by assumption on f
this is equivalent to saying l0 ∈ i(f(N t

1(x)) = e(N t
1(x)) so we have e(x) `N1 l0.

Thus e is a symbolic encoding of N1 into S.
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Now suppose that i defines a neural encoding of a set of knowledge bases
Q ⊂ 2L into N2. That is for all L ∈ Q, there exists x ∈ X2 such that i(x) = L

and i(x) = L `S l0 =⇒ L `N2 l0. We want to show that e also defines a
neural encoding of Q. First, because f is bijective, then if L = i(x) for some
x ∈ X2 we have that L = e(f−1(x)). Furthermore, if L `S l0 then we have
L `N2 l0 and thus there exists t > 0 with l0 ∈ i(N t

2(x)) = i(N t
2(f(f

−1(x)))) =

i(f(N t
1(f
−1(x)))) = e(N t

1(f
−1(x))) so we have L `N1 l0 and thus e defines a

neural encoding of Q.

Moving on to semantic encodings, assume that N2 is now a semantic model
of S via the map i. Again define e = i ◦ f . By injectivity of i and f , this
makes N1 a semantic model of S. We will show that L0 �N1 L iff L0 �N2 L.
This will imply that if N2 is a neural encoding of L0 then so is N1 because
L0 �N1 L → L0 �N2 L → L0 �S L and if L0 is a symbolic encoding of N2

then it is also a symbolic encoding of N1 for the same reason. We do this by
showing that if N2 is a model for L0 then so is N1 and that the L0-models of
N2 are identical to the L0-models of N1.

First note that because e(f−1(x)) = i(x), x and f−1(x) map to the same
model inM. Suppose that N2 is a model of a knowledge base L0 ∈ L. Take
any x0 ∈ X1. Because N2 is a model of L0, there exists t0 > 0 such that for
all t > t0, N t

2(f(x0)) is a model of L0. Consider e(N t
1(x0)) = i(f(N t

1(x0))) =

i(N t
2(f(x0))) thus N t

1(x0) is a model of L0 for all t > t0 and therefore N1

is a model of L0. Now suppose x is an L0-model of N2. We have already
shown that f−1(x) represents the same model of L0, now we must show that
it is an L0-model of N1. By definition of L0-model, there exists an ini-
tial state x0 ∈ X2 such that for all t > 0, there exists t′ > t such that
N t′

2 (x0) = x. We have x = N t′
2 (x0) = N t′

2 (f(f
−1(x0)) = f(N t′

1 (f
−1(x0)))

meaning f−1(x) = N t′
1 (f

−1(x0)). Thus for all t > 0 there exits t′ > t such that
N t′

1 (f
−1(x0)) = f−1(x) meaning f−1(x) is an L0-model of N1 so the L0-models

of N2 are a subset of the L0-models of N1. Now suppose x is an L0-model
of N1, again we know that f(x) corresponds to the same model of L0 so we
merely need to show that f(x) is an L0-model of N2. By definition, there
exists x0 ∈ X1 such that for all t > 0 there exists t′ > t with N t′

1 (x0) = x. We
have f(x) = f(N t′

1 (x0)) = N t′
2 (f(x0)) and so for all t > 0, there exists t′ > t

such that N t′
2 (f(x0)) = f(x) meaning f(x) is an L0-model of N2. Thus N1 and
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N2 are models of the same knowledge bases and, for each knowledge base L0,
contain the same L0 models meaning L0 �N1 ⇐⇒ L0 �N2 L �

A.2 Proof of Proposition 7.2.1

Let’s say we have a distribution P derived from an RBM N and a biconditional
h ↔ ANT . Where ANT is the antecedent of the rule. We can write the
probability as

P (h↔ ANT ) = P (h,ANT ) + P (¬h,¬ANT )

=
∑

x∈ANT

P (h, x) +
∑

x 6∈ANT

P (¬h, x)

=
∑

x∈ANT

P (h|x)P (x) +
∑

x 6∈ANT

(1− P (h|x))P (x)

Give an biconditional rule r with head h and body ANT , define ξr,x = P (h|x)
if x ∈ ANT and ξr,x = 1− P (h|x) if x 6∈ ANT . then the previous equation is
written simply as

P (r) =
∑
x

ξr,xP (x) (A.1)

RBMs are universal approximators, furthermore given a network N we can
construct another network N ′ which doesn’t alter the parameters for the ex-
isting hidden units but changes the visible distribution to be arbitrarily close
to any chosen distribution. Effectively this means we can find a network N ′

with each ξr,x identical to N but with arbitrary values in (0, 1) chosen for each
P (x). With this in mind, let’s compare the probabilities of two extracted rules
from an algorithm which relies only on local data.

Suppose we extract c1 : r1 and c2 : r2 from network N with c1 > c2. Then
if we assume that the extraction algorithm preserves the probabilites we have
P (r1) > P (r2). referring back to equation A.1 we can see that if ξr1,x > ξr2,x

for all x then we will have P (r1) > P (r2) regardless of the visible distribution.
However, if there is a single configuration, x0, with ξr1,x0 < ξr2,x0 , by the uni-
versal approximation properties of RBMs, we can find another network N ′ for
which all the values of ξ are unchanged but P (x0) ≈ 1 and P (x 6= x0) ≈ 0.
We can make this approximation to arbitrary precision so we can define the
network such that P (r1) < P (r2) but since the values of ξ are unchanged we
must still have c1 > c2.
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This means that if a local extraction rule is to preserve the probability with
the confidence it must only extract confidence rules c1 : r1 with c2 : r2 with
c1 > c2 if for all x, ξr1,x > ξr2,x. This is quite a restrictive condition in general.
In particular the optimal confidence algorithm described does not satisfy the
condition so we can find networks which extract rules that do not preserve the
probability.

A.3 Proof of Proposition 7.3.1

given a biconditional h↔ x1, ..., xk,¬xk+1, ...,¬xn we denote the configuration
of the visible units where the antecedent, x1, ..., xk,¬xk+1, ...,¬xn, is true by
ANT and the set of configurations of visible units where the antecedent is
not true by ¬ANT . Then we have P (h ↔ x1, ..., xk,¬xk+1, ...,¬xn) = P (h =

1, ANT )+P (h = 0,¬ANT ). Now consider the previous example with n nodes
of identical weights a. Using some algebra, the probability of the biconditional
being true in the network can be written as

P (h = 1|ANT )P (ANT ) +
n−1∑
i=0

(
n

i

)
(1− P (h = 1|ANT¬n))P (ANT¬n)

Where P (h = 1|ANT ) is the probability of the neuron being on when the
rule is satisfied and P (h = 1|ANT¬n) is the probability of the neuron being
on when exactly n literals of the rule are not satisfied, since all the weights
are the same this does not depend on which specific literals are not satisfied.
Furthermore we are assuming that this visible units are taken from a uniform
distribution so we have P (ANT ) = P (ANT¬n) = 1

2n
. This gives us

1

2n

(
σ(an) +

n−1∑
i=1

(
n− 1

i

)
(1− σ(ia))

)
Since a and n are arbitrary we can take them to be as large as possible, in
which case the limit of the right term goes to 1− σ(0) = 0.5 and the left hand
term goes to 1 so as n → ∞ the whole thing goes to 0. This shows we can
extract rules with arbitrarily high confidence but arbitrarily low probability �

A.4 Proof of Theorem 8.4.1

Suppose our input set is of the form I = [l, u]n with 0 < l < u. For simplicity
we assume l > 0 but the proof carries through with a few minor tweaks if not.
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Define V ol(I) as the volume of I using the standard Lesbegue measure, in this
case V ol(I) = (u− l)n. Assume also that for each input neuron, xi, we have a
split si ∈ [a, b] defining a propositional variable Xi as described in section 4.4

along with a split sh defining a propositional variable H for the output neuron
in the same way. Given a rule, R, relating the input variables and output
variable, The error is given by

E(R) :=
1

V ol(I)

∫
I

|R(x)−N(x)|dx

The binary case is similar except that the propositional variables are directly
defined by the binary state of the neuron, the integral is replaced with a sum-
mation, and V ol(I) is simply the cardinality of I. In either case I can be
partitioned into 4 subsets, Itp, Itn, Ifp, Ifn representing the true positives and
negatives and the false positives and negatives of the rule respectively. In
other words Itp = {x : R(x) = N(x) = 1}, Itn = {x : R(x) = N(x) = 0},
Ifp = {x : R(x) = 1, N(x) = 0}, Ifn = {x : R(x) = 0, N(x) = 1}. The error
can then be decomposed as E(R) = Efp(R)+Efn(R) where Efp(R) :=

V ol(Ifp)

V ol(I)

and Efn(R) :=
V ol(Ifn)

V ol(I)
.

Consider two M-of-N rules which differ only by containing a single differ-
ent literal. In other words, two rules R1 and R2 with R1 :=

(
Xl∪(N−1)

M

)
and

R2 :=
(
Xr∪(N−1)

M

)
where Xr and Xl are the two different literals and (N − 1) is

the set of literals common between the two rules. We wish to compare E(R1)

and E(R2) in the case that |wl| > |wr|. Note that in order to compare the
error of two rules we only need to look at the error on the set of inputs for
which the rules have different outputs. We start with the binary case.

Let hmin be the minimum possible value of h in other words hmin =
∑

wi:wi<0

wi+

b. For a given configuration of input values we can write the total input to

h as hmin+
n∑
i=0

|wi|s(xi) where s(xi) = xi if wi > 0 and s(xi) = 1−xi otherwise.

Consider every possible input configuration. If s(xl) = s(xr) then R1 and
R2 have the same output so the number of false positives and false negatives
on this set is equal and thus the error over this set is equal. Consider then
the set of input configurations where s(xl) 6= s(xr). Take any input sequence
in this set. If fewer than M − 1 literals of the shared literals are satisfied
that neither R1 or R2 predicts 1. If M are satisfied than both R1 and R2

predict 1. The only configurations for which R1 and R2 have different predic-
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tions are those in which exactly M − 1 of the shared literals are satisfied and
s(xl) 6= s(xr). We can pair all of these configurations by mapping a config-
uration with s(xr) 6= s(xl) to the configuration in which all values of xi are
unchanged but the values of s(xr) and s(xl) are swapped. The difference be-
tween the total input to h in the case where s(xl) = 1 and s(xr) = 0 and the
case where s(xl) = 0 and s(xr) = 1 is simply |wl| − |wr| which is non-negative
since |wl| > |wr| by assumption. Thus if the total input for a configuration in
which s(xr) = 1 and s(xl) = 0 is greater or equal to the threshold t then the
same is true for the paired configuration. Similarly if the total input of a con-
figuration in which s(xr) = 0 and s(xl) = 1 is less than t, the same will true for
the paired configuration. This means that for every configuration which is a
false positive for R1 there is a configuration which is a false positive for R2 and
for every configuration which is a false negative of R1 there is a configuration
which is a false negative of R2 meaning that E(R1) ≤ E(R2). By induction it
is easy to see that this implies that given N literals, the optimal M-of-N rule
contains the N literals with the highest weight.

The same argument can be adapted for the continuous case assuming the
equivalent homogeneity conditions (ie the input space is of the form [a, b]n) if
the splits for each input variable are identical. If the splits are different this
may no longer hold. What can be said is that if the splits for two variables xi
and xj are within a certain distance, ε, of each other and |wi| > |wj| then the
rule adding wi will be more accurate. Getting an exact estimate of ε depends
highly on the difference between |wi| and |wj|. What makes a useful estimate
of ε even more difficult is that it depends highly on the weights and splits of
the other variables as well. For this reason it is difficult to produce a useful
estimate of ε without specifying a particular network and input space.
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Glossary

ANN Artificial Neural Network. 6

atom A propositional variable or grounded relational term. 25

CILP Connectionist Inductive Logic Programming. 81

clause A conjunction, disjunction, or M-of-N collection of literals. 29

CNN Convolutional Neural Network. 22

DBN Deep Belief Network. 20

discretization The transformation of a continuous network to a finite-valued
one via a map between state spaces. Also referred to as a binarization
when the target network is binary.. 62

feed-forward A neural network with no cycle in its connectivity graph.. 13

KBANN Knowledge-Based Artificial Neural Network. 79

knowledge base A set of sentences in a logical system. 24

literal An atom or the negation of an atom. 29

MLP Multi-Layer Perceptron. 14

model An object which assigns meaning to the language of a logical system.
A model of a sentence or knowledge base is an object which evaluates the
sentence/knowledge base as true whereas a model in the general sense is
any object which is used to define the semantics of a logical system. 24

RBM Restricted Boltzmann Machine. 18
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recurrent In reference to neural networks, a neural network which contains
a cycle in its connectivity graph. 13

rule An implication with a conjunctive or M-of-N clause in the body and an
atom in the head. 29

SCN Symmetrically Connected Network. 17

test set A set of examples not used in the training of a neural network but
to evaluate its accuracy post-training.. 14

training set A set of examples used along with a learning algorithm to update
the parameters of a neural network with the purpose of making the neural
network implement some desired computational behaviour.. 14

transfer function A function that computes the output of a neuron given its
inputs. Also referred to as a transfer function.. 13
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