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1  | INTRODUC TION

Despite a wealth of available genomic data, the development of reliable 
predictive tools in oncology remains challenging (Lipinski et al., 2016; 
Turajlic, Sottoriva, Graham, & Swanton, 2019; Yankeelov, Quaranta, 
Evans, & Rericha, 2015). Although the search for prognostic biomarkers 

has largely focussed on the presence or absence of particular genomic 
aberrations, indices of intratumour heterogeneity, which depend only on 
aberration frequencies, not identities, have emerged as promising alter-
native predictors (Alizadeh et al., 2015; Jamal-Hanjani, Quezada, Larkin, & 
Swanton, 2015; Maley et al., 2017; Marusyk, Almendro, & Polyak, 2012; 
Polyak, 2014). Higher clonal diversity has been found to predict worse 
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Abstract
The utility of intratumour heterogeneity as a prognostic biomarker is the subject of 
ongoing clinical investigation. However, the relationship between this marker and its 
clinical impact is mediated by an evolutionary process that is not well understood. 
Here, we employ a spatial computational model of tumour evolution to assess when, 
why and how intratumour heterogeneity can be used to forecast tumour growth 
rate and progression-free survival. We identify three conditions that can lead to a 
positive correlation between clonal diversity and subsequent growth rate: diversity 
is measured early in tumour development; selective sweeps are rare; and/or tumours 
vary in the rate at which they acquire driver mutations. Opposite conditions typi-
cally lead to negative correlation. In cohorts of tumours with diverse evolutionary 
parameters, we find that clonal diversity is a reliable predictor of both growth rate 
and progression-free survival. We thus offer explanations—grounded in evolutionary 
theory—for empirical findings in various cancers, including survival analyses reported 
in the recent TRACERx Renal study of clear-cell renal cell carcinoma. Our work in-
forms the search for new prognostic biomarkers and contributes to the development 
of predictive oncology.
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clinical outcome in Barrett's oesophagus (Maley et al., 2006; Martinez 
et al., 2016; Merlo et al., 2010), ovarian cancer (Schwarz et al., 2015), lung 
cancer (Jamal-Hanjani et al., 2017) and breast cancer (Park, Gönen, Kim, 
Michor, & Polyak, 2010; Rye et al., 2018). Computational modelling of 
premalignant somatic evolution further indicates that genetic diversity 
indices can predict cancer risk more reliably than the presence or absence 
of particular mutations (Dhawan, Graham, & Fletcher, 2016). However, 
studies in kidney cancer (Turajlic et al., 2018) and across cancer types 
(Andor et al., 2015) have found more complicated relationships between 
intratumour heterogeneity and its clinical impact, which elude simple 
explanation. It also remains unclear whether and how intratumour het-
erogeneity can complement established prognostic biomarkers—such as 
tumour stage and grade—and other proposed ecological and evolutionary 
indices (Maley et al., 2017).

Interpreting intratumour heterogeneity is challenging due to the com-
plexity of tumour evolutionary dynamics (Burrell, McGranahan, Bartek, & 
Swanton, 2013; Cross, Graham, & Wright, 2016; Gerlinger et al., 2012; 
Lipinski et al., 2016; Venkatesan & Swanton, 2016; Williams, Werner, 
Graham, & Sottoriva, 2016). Greater heterogeneity at the scale of tu-
mour clonal composition may reflect higher genomic instability (Hanahan 
& Weinberg, 2011) and may correspond to a greater likelihood of ma-
lignant cell phenotypes being present (Greaves & Maley, 2012; Maley 
et al., 2006, 2017). On the other hand, clonal sweeps initiated by highly 
adapted clones might reduce diversity within aggressive tumours (Maley 
et al., 2006, 2017; Robertson-Tessi & Anderson, 2015). The frequency of 
such selective sweeps in turn depends on the extent of clonal interfer-
ence (Lang et al., 2013; Martens, Kostadinov, Maley, & Hallatschek, 2011) 
and spatial constraints (Michor, Frank, May, Iwasa, & Nowak, 2003; 
Noble, Burri, Kather, & Beerenwinkel, 2019), which may vary between 
tumour types. Potentially, clonal diversity could fail as a prognostic bio-
marker either because it is insufficiently variable within patient cohorts 
or because tumour progression is so stochastically variable as to be ef-
fectively unpredictable. Even when forecasts are possible, their accuracy 
is expected to depend on the number and location of cells used to assess 
heterogeneity. Some tumour regions will tend to harbour more clonal 
diversity than others, and a clone's ability to expand and contribute to 
growth rate is constrained by intracellular interactions, which depend on 
the clone's location relative to other clones and to the tumour edge.

Here, we use a computational model of solid tumour evolution to 
characterize the relationship between clonal diversity, subsequent tu-
mour growth rate and progression-free survival after treatment. We 
identify conditions that determine the sign and strength of correlations 
between these variables. We thus provide insight into the evolutionary 
processes underlying clinical observations. Our results contribute to 
establishing a theoretical foundation for predictive oncology.

2  | METHODS

2.1 | Computational model

We simulate invasive tumour growth and evolution using a spatial, 
stochastic computational model specifically designed to recapitulate 

the spatial structure of common acinar tumour types, such as kidney, 
lung and breast carcinomas. This model has previously been shown 
to generate a pattern of branched evolution, consistent with previ-
ous observations in various cancer types (Noble et al., 2019).

Our model represents tissue as a two-dimensional regular grid 
of “demes,” corresponding to localized subpopulations of interact-
ing cells. Initially, all demes contain normal cells, except that one 
deme at the centre contains a single tumour cell with a higher di-
vision rate than normal cells. Tumour cells stochastically divide, 
mutate, die and disperse between neighbouring demes, whereas 
normal cells undergo stochastic division and death only. The num-
ber of cells per deme is regulated, via negative feedback, to remain 
approximately constant. Specifically, we assume that the cell death 
rate increases from zero to a large value (100 times the initial cell 
division rate) when the deme population size exceeds carrying ca-
pacity K. Whenever a tumour cell emerges via cell division, it either 
remains in the same deme or, with probability d, disperses to a neigh-
bouring deme. The value of dispersal probability d is adjusted for 
the value of K, such that, in the absence of mutation, all tumours 
would take a similar amount of time to reach the endpoint size of 
one million cells (corresponding to several years in real time). We 
restrict our analysis to mutations that either increase tumour cell 
fitness (termed driver mutations) or confer resistance to treatment. 
The distribution of fitness effects and the nature of epistasis in tu-
mour evolution are only poorly understood but it is reasonable to as-
sume that biological constraints impose diminishing returns (Wiser, 
Ribeck, & Lenski, 2013). Accordingly in our model, driver mutations 
occur at rate μ and individually increase cell division rate r by a factor 
of 1 + X × (1 – r/m), where X is drawn from an exponential distribu-
tion with mean value s, and m is an upper bound on the cell division 
rate. Because we set m to be much larger than the initial value of 
r, the combined effect of drivers is approximately multiplicative. In 
simulations of response to treatment, we additionally model the ac-
quisition of resistance mutations. Treatment is applied at the end-
point size (one million cells) and immediately eliminates all cells that 
lack resistance mutations. The tumour's subsequent growth (if any) 
is tracked until it again attains the endpoint size. This choice of sur-
vival outcome takes advantage of the fact that, in a simulation study 
such as ours, the observation time is essentially unlimited and we 
can look at endpoints that would be infeasible or unethical in a real 
clinical trial. We use Gillespie's exact stochastic simulation algorithm 
(Gillespie, 1977) to ensure statistically accurate simulation of cell 
events. Additional features of the computational model have been 
previously described (Noble et al., 2019) and the code is shared in a 
public repository (Noble, 2019a).

2.2 | Forecast correlations

We focus our study on how the principal parameters of our model—
deme carrying capacity (K), driver mutation rate (μ) and mean driver 
fitness effect (s)—influence the coefficient of correlation between a 
predictor variable (such as clonal diversity), measured at a particular 
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tumour size, and the rate at which the tumour grows to a larger end-
point size (Figure 1a). We define the tumour's future growth rate as.

where measurement size is the tumour size when the predictor vari-
able is measured; measurement time is the corresponding tumour 
age; and endpoint size and endpoint time are the tumour size and 
age, respectively, when the tumour reaches the endpoint size. We 
use Spearman's rank correlation coefficient so as to allow for non-
linear correlations. Correlation coefficients closer to 1 or −1 corre-
spond to more reliable forecasts. Analyses that instead use Kendall's 
τ coefficient (a concordance index) produce similar results (compare 
Figures 4b and S7).

2.3 | Survival analysis

Our survival analyses use the Cox proportional hazards model. To 
satisfy the model's assumptions, we transform each continuous 
explanatory variable to obtain an approximately linear relationship 
with the martingale residuals (the differences between the ob-
served numbers of progression events and the expected numbers 
based on the fitted null model). If a variable's effects significantly 
grow or diminish with time then we include a term for the interac-
tion between that variable and log10(t + 10), where t is time meas-
ured in days (results are insensitive to the choice of the constant in 
this term). We conducted analyses in R using the “survival” pack-
age (Therneau, 2015) and the “survminer” package (Kassambara, 
Kosinski, & Biecek, 2019).

2.4 | Clonal diversity index

We measure clonal diversity using the inverse Simpson index, de-
fined as one divided by the sum of the squares of all clone frequen-
cies. This index can be straightforwardly interpreted as an effective 
number of distinct clones. For example, if a tumour contains n 
equally abundant clones then the diversity index is 1/(n × (1/n)2) = n.

2.5 | Clonal turnover index

Our clonal turnover index quantifies the average rate of change in 
clone frequencies. Specifically, for each time point t≥ �, we calcu-
late Θ(t)= iTOTO

∑

(fi(t)− fi(t−�)2, where fi(t) is the frequency of clone 
i at time t, and � is 10% of the total simulation time (the time from 
when the simulation is initiated with a single cell until the endpoint 
time). The clonal turnover index is then the mean value of Θ(t). Time 
is measured in cell generations (i.e. relative to the expected cell divi-
sion time of the initial tumour clone) and the time points are evenly 
spaced.

2.6 | Sampling

We variously measure clonal diversity among all cells in the simu-
lated tumour, all cells at the tumour edge, a small random sample 
of cells, or one or more small localized samples of cells (simulated 
biopsy). We sample the edge of the tumour by selecting all demes 
that are directly “visible” from one of the four sides of the square 
lattice and, from each of these edge demes, we sample a number of 

(endpoint size−measurement size)∕(endpoint time−measurement time),

F I G U R E  1   Correlations between predictor variables and future tumour growth rate for cohorts of tumours with identical parameter 
values. (a) Example tumour growth trajectories. In this cohort, tumours with higher mean cell division rate (red curves) typically have higher 
future growth rate, which results in a positive correlation coefficient. One trajectory is shown in black to illustrate the method used to 
calculate average growth rate. (b) Correlation coefficients between predictor variables and subsequent tumour growth rate, for different 
measurement sizes. Correlation coefficients that significantly differ from zero (p < .05) are indicated by black rings. Each point represents a 
cohort of 100 simulated tumours; lines are added only to guide the eye. Parameter values are K = 512, μ = 10−5, s = 0.1

(a) (b)
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cells equal to the square root of the deme carrying capacity, K (so the 
total sample size is not biased by deme size).

Biopsies are taken from small disc-shaped regions, centred at a 
given proportion of the distance from the tumour's edge to its centre 
of mass. When four biopsies are taken from the same tumour, they 
are located on perpendicular transects through the tumour's centre 
of mass (Figure S8). The number of cells sampled from a deme is 
proportional to the extent of overlap between the biopsy region and 
the deme. If the sample size is less than the deme population size 
then we employ multinomial sampling of clones. Our sample size of 
between 100 and 4,000 cells per tumour is within the range that can 
be practically analysed by single-cell sequencing.

2.7 | Parameter values

Although cancer genomic data is broadly consistent with driver mu-
tation rates between 10–6 and 10–2 per cell division (Bozic, Paterson, 
& Waclaw, 2019), most studies have settled on values close to 
10–5 per cell division (Bozic et al., 2010; Sun et al., 2017; Waclaw 
et al., 2015). Likewise, we consider values of μ in the range 10–6–
10–4. When we simulate cohorts of tumours with different mutation 
rates, we choose each μ value at random from a continuous uniform 
distribution within this range. We assume that the rate of acquiring 
resistance mutations is 10 times lower than the driver mutation rate, 
so as to simulate a treatment that is only infrequently curative.

In certain nonspatial mathematical models, driver fitness effects 
of less than 1% are consistent with the acquisition of multiple driver 
mutations during tumour growth (Bozic et al., 2010). Importantly, 
the same result does not necessarily hold when spatial structure 
and/or clonal interference inhibit the spread of beneficial mutations. 
Consistent with recent genomic data analysis (Williams et al., 2018), 
we assume the mean driver fitness effect s to be between 0.05 and 
0.2.

We have previously found that glands of invasive, acinar tumours 
typically contain between a few hundred and a few thousand cells 

(Noble et al., 2019). We therefore consider K values of 64, 512 and 
4,096.

Other parameter values are listed in Table 1.

3  | RESULTS

3.1 | Mean cell division rate reliably predicts future 
tumour growth

Before considering clonal diversity, we first look at the predictive 
value of mean cell division rate in our model. Cell division rate is 
an important component of conventional clinical grading of tumours 
and therefore provides a benchmark with which we can compare 
alternative predictor variables. To test the limits of forecastability, 
we examine cohorts of simulated tumours with identical parameter 
values and initial conditions, so that variation among growing, evolv-
ing tumours is entirely due to stochastic events.

In line with intuition, and consistent with the clinical evidence 
that underpins cancer staging, mean cell division rate is consistently 
positively correlated with future tumour growth rate in our model 
(Figure 1b, yellow curve; Figure S1). The correlation is however im-
perfect because tumour growth trajectories continue to be swayed 
by the stochastic accumulation of driver mutations between the 
measurement time and the endpoint time (the time at which the tu-
mour reaches the endpoint size, as shown in Figure 1a). Correlations 
are weaker when cell division rate is measured at a very early stage 
of tumour growth, especially when driver mutations have only small 
effects on cell fitness (Figure S1). This is mostly because very small 
tumours typically lack sub-clonal driver mutations and hence there 
is insufficient variation in cell division rate to support a correlation. 
When driver mutations have large fitness effects, correlations are 
weaker if cell division rate is measured at a very late stage (Figure 
S1). In general, these initial results demonstrate that, despite the ef-
fects of ongoing stochastic events, tumour growth in our models is 
in principle forecastable.

3.2 | Diversity-growth correlation depends on 
when and where diversity is measured

Having established potential for forecasting, we next examine cor-
relations between clonal diversity and subsequent tumour growth 
rate, which we will refer to as diversity-growth correlations. We de-
fine diversity in terms of Simpson's index (see Section 2) and define 
a clone as a set of tumour cells with the same combination of driver 
mutations (i.e. mutations that increase cell fitness). In other words, 
cells belong to the same clone if and only if they are identical by 
descent with regard to driver mutations. This definition of a clone is 
consistent with that used by the TRACERx Renal Consortium, which 
has conducted the most sophisticated clinical investigation of the as-
sociation between intratumour heterogeneity and disease progres-
sion to date (Turajlic et al., 2018).

TA B L E  1   Parameter values used in this study

Parameter Value(s)

Deme carrying capacity, K 64, 512, 4,096

Driver mutation rate, μ 10−6–10−4

Resistance mutation rate μ/10

Mean driver fitness effect, s 0.05–0.2

Normal cell relative division rate 0.9

Upper bound on cell division rate, m 10

Dispersal rate Conditional

Note: Mutation rate is measured per cell division; division rate is 
measured relative to the division rate of the initial tumour cell. The 
effect of a driver mutation with effect size s is to multiply the cell 
division rate r by a factor of 1 + s(1 – r/m), where m is the upper bound. 
Dispersal rates are set such that tumours typically take between 
500 and 1,500 cell generations to grow from one to one million cells, 
corresponding to several years of human tumour growth.
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When measured at an early stage of tumour development, we find 
that clonal diversity is positively correlated with subsequent tumour 
growth rate. Conversely, clonal diversity measured at a later stage 
can be negatively correlated with tumour growth rate (Figure 1b, blue 
curve). Therefore diversity-growth correlations importantly depend 
on the stage of tumour development when diversity is measured.

One factor that affects the predictive value of clonal diversity is 
that cells contribute unequally to tumour growth. Since our model 
assumes that tumours grow by invading normal tissue, the build-up 
of driver mutations in the tumour core does not influence total pop-
ulation growth unless an especially fit clone evades clonal interfer-
ence and spreads so rapidly through the tumour so as to overtake 
the expanding edge. As such we would predict that adaptive muta-
tions arising near the tumour edge are more likely to increase tumour 
growth rate, at least over short timescales. Consistent with these 
considerations, negative diversity-growth correlations are absent or 
less pronounced when diversity is measured only in cells sampled 
from the tumour edge (Figure 1b, green curve; Figure S1).

3.3 | Diversity-growth correlation depends on the 
extent of clonal turnover

A potential explanation for negative diversity-growth correlation, 
typically observed when clonal diversity is measured at larger tu-
mour sizes (Figure 1b), is the occurrence of selective sweeps that 
purge heterogeneity. To test this hypothesis, we use a clonal turno-
ver index (see Section 2) to quantify changes in clone frequencies 
over time. As expected, clonal diversity, when measured at an in-
termediate tumour size, is positively correlated with future tumour 
growth rate only in cohorts that have low clonal turnover, whereas 
correlations are negative in cohorts that have high clonal turnover 
(Figure 2a). Low clonal turnover corresponds to one or more of three 
factors: low driver mutation rate, low driver fitness effect, and/or 
small deme carrying capacity (Figure S2).

In cohorts with high clonal turnover, we observe very similar 
negative correlations between clonal diversity and contempora-
neous mean cell division rate (Figures 2b and S3). Examining the 

F I G U R E  2   Higher clonal diversity can be associated with slower future tumour growth. (a) Correlation coefficients between clonal 
diversity (measured at a tumour size of 250,000 cells) and subsequent tumour growth rate, plotted against mean clonal turnover index. 
Each point represents a cohort of 100 simulated tumours. (b) An example of a tumour cohort exhibiting negative correlation between clonal 
diversity (measured at a tumour size of 750,000 cells) and mean cell division rate (Spearman's correlation coefficient − 0.55; p < 10−8). (c) A 
simulated tumour from this cohort exhibiting a succession of selective sweeps, resulting in high mean cell division rate, high growth rate and 
low clonal diversity. Top left is a Muller plot in which colours represent clones with distinct combinations of driver mutations (the original 
clone is grey-brown; subsequent clones are coloured using a recycled palette of 26 colours). Descendant clones are shown emerging from 
inside their parents. Top right is a spatial plot of the tumour at the endpoint time, in which each pixel corresponds to a deme containing 
approximately K cells, coloured according to the most abundant clone within the deme. The middle row shows a Muller plot of clone sizes, 
rather than frequencies. In the bottom row, clones in the Muller and spatial plots are coloured by cell division rate. (d) A simulated tumour 
from the same cohort exhibiting low mean cell division rate, low growth rate and high clonal diversity due to extensive clonal interference. 
Parameter values in panels b–d are K = 512, μ = 10−5, s = 0.2. Muller plots were drawn using the ggmuller R package (Noble, 2019b)

(a) (b)

(c) (d)
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evolutionary dynamics of individual tumours within such cohorts, 
we find that the combination of low clonal diversity, high mean 
cell division rate and high tumour growth rate is characteristic of a 
succession of selective sweeps (Figure 2c). Conversely, high clonal 
diversity, low mean cell division rate and low tumour growth rate 
result from clonal interference between less well-adapted clones 
(Figure 2d).

3.4 | Clonal diversity is positively correlated with 
future growth rate among tumours with diverse driver 
mutation rates

It is reasonable to expect that, in reality, even tumours of the 
same size and type (morphology and anatomical location) vary in 
their underlying biological parameters because of intrinsic and 

microenvironmental factors. In particular, genomic instability and 
mutation burden are highly variable within cancer types (Chalmers 
et al., 2017) and—at least across cancer types—the number of driver 
mutations per tumour generally increases with total mutation bur-
den (Martincorena et al., 2017). To examine the consequences of 
such variation, we next analyse cohorts containing tumours with dif-
fering values of the driver mutation rate, μ.

In such cohorts, we find that future growth rate is consistently 
positively correlated with clonal diversity (Figure 3a, blue curves; 
Figure S4a). As previously discussed, cells near the tumour edge 
have a disproportionate influence on tumour growth rate, whereas 
observing the entire tumour provides more reliable information 
about the mutation rate. When mutation rate substantially differs 
between tumours, information about this rate has high predictive 
value. Accordingly, we find that in this case correlations with future 
growth rate are stronger when diversity is measured across the 

F I G U R E  3   Correlation coefficients for cohorts of tumours with diverse driver mutation rates. (a) Correlation coefficients between 
predictor variables and subsequent tumour growth rate, for different measurement sizes. (b) Correlation coefficients between predictor 
variables (measured at a tumour size of 125,000 cells) and subsequent tumour growth rate, for different endpoint sizes. (c) Correlation 
coefficients between future tumour growth rate and clonal diversity, measured in biopsy samples of different number and size (at a depth 
of 40% from the tumour edge), for different measurement sizes. (d) Correlation coefficients between future tumour growth rate and clonal 
diversity, measured in biopsy samples taken at different depths relative to the tumour edge (four biopsy samples, each of 1,000 cells, are   
taken from each tumour), for different measurement sizes. Correlation coefficients that significantly differ from zero (p < .05) are indicated 
by black rings. In all plots, each point represents a cohort of 100 simulated tumours; lines are added only to guide the eye. Parameter 
values are K = 512 and s = 0.1. The driver mutation rate of each tumour is chosen by sampling a random value X from a continuous uniform 
distribution between 4 and 6 and then setting μ = 10−X



     |  7NOBLE Et aL.

entire tumour, rather than only at the tumour edge (Figure 3a, blue 
vs. green curves). In either case, correlation coefficients are insensi-
tive to varying the endpoint size (Figure 3b). These results demon-
strate that parameter variability within a cohort can transform 
diversity-growth correlations, provided that intrinsic, deterministic 
differences between tumours outweigh the stochastic differences 

that emerge during evolution. Nevertheless, we find that, as a pre-
dictor of future growth rate, clonal diversity is always substantially 
inferior to mean cell division rate (Figure 3a, yellow curves; Figure 
S4a).

When tumours differ in the mean driver fitness effect (parame-
ter s) but not in driver mutation rate (μ), diversity-growth correlations 

F I G U R E  4   Forecasting progression-free survival in tumours with diverse driver mutation rates. (a) Muller plots for a simulated tumour 
that is treated and regrows to its pretreatment size. In the left panel, colours represent clones with distinct combinations of driver mutations 
(using a recycled palette of 26 colours). Descendant clones are shown emerging from inside their parents. In the right panel, clones are 
coloured by cell division rate. (b) Correlation coefficients between predictor variables measured immediately before treatment and 
progression-free survival (time to regrow to pretreatment size). (c) Kaplan–Meier curves for progression-free survival in a cohort of tumours 
(parameter values K = 512 and s = 0.05). Tumours are grouped by pretreatment clonal diversity (first panel); driver mutation rate (second 
panel); or both pretreatment clonal diversity and driver mutation rate (third panel). For grouping, values above and below the median are 
classed as high and low, respectively. The endpoint size is one million cells. The driver mutation rate of each tumour is chosen by sampling 
a random value X from a continuous uniform distribution between 4 and 6 and then setting μ = 10−X. To facilitate comparison, colours are 
consistent with figure 7 of Turajlic et al. (2018). (d) Results of two alternative survival analyses using the Cox proportional hazards model (see 
Section 2 for further details)

(a)

(b)

(c)

(d)



8  |     NOBLE Et aL.

instead follow the same pattern as when parameter values do not 
vary (Figure S5).

3.5 | The predictive value of clonal diversity is 
robust to biopsy sampling error

Clinical evaluations of intratumour heterogeneity are typically based 
on examining cells in one or more relatively small biopsy samples. 
To assess how sampling error affects our results, we repeated our 
analyses using clonal diversity measurements derived only from 
biopsies (see Section 2). When driver mutation rate varies within 
cohorts, results based on biopsies are similar to those based on all 
tumour cells, except when the biopsy size is much below 1,000 cells 
(Figures 3c and S4b). Also when driver mutation rate varies within 
cohorts, diversity-growth correlations are stronger when biopsy 
samples are taken from inside the tumour, rather than from the edge 
(Figures 3d and S4c).

3.6 | Clonal diversity as a predictor of progression-
free survival

To investigate forecasting response to treatment, we extend our 
computational model to include the acquisition of resistance muta-
tions at a rate proportional to the driver mutation rate. We simulate 
treatment application at the endpoint tumour size by removing all 
tumour cells that lack resistance mutations and we measure progres-
sion-free survival as the time taken to regrow to the endpoint size 
(Figure 4a). If all cells are sensitive to treatment then the tumour is 
eliminated and progression-free survival is assumed to outlast the 
observation period.

In cohorts of tumours with differing driver mutation rates, we 
find that clonal diversity measured immediately before treatment 
is negatively correlated with progression-free survival (Figure 4b). 
This is an expected corollary of our previous results because the 
probability of a cell being resistant is independent of its divi-
sion rate, and hence the mean cell division rate immediately be-
fore treatment equates to its expected value immediately after 
treatment. In other words, tumours that were growing relatively 
fast before treatment are also likely to rebound quickly after 
treatment.

The prognostic value of clonal diversity can be more thoroughly 
understood using survival analysis. Mimicking the approach taken in 
the TRACERx Renal study of clear-cell renal cell carcinoma (Turajlic 
et al., 2018), we first divide a cohort of 100 tumours into subsets 
with high or low pretreatment clonal diversity and high or low 
driver mutation rate. The hazard rate for progression is then higher 
in the high-diversity subset, both among all tumours (log-rank test 
p < 10–6) and among those with low driver mutation rates (p = .031; 
Figure 4c).

When we instead treat pretreatment clonal diversity as a con-
tinuous explanatory variable, we likewise find a significant effect 

on progression-free survival (Cox proportional hazards model 
p < 10–6). However, if driver mutation rate is also included as a 
continuous variable then the effect of clonal diversity disappears 
(p = .94; Figure 4d). Hence different results are obtained depending 
on whether the explanatory variables are treated as discrete or con-
tinuous. This apparent discrepancy can be explained as an effect of 
covariance: within the low-mutation rate subset, tumours with low 
clonal diversity also tend to be those with especially low-mutation 
rates.

Similarly, if we combine cohorts with different mean driver mu-
tation fitness effects (in the manner of a pan-cancer analysis) then 
we find that, although both pretreatment clonal diversity and driver 
mutation rate predict progression-free survival (n = 400; p < 10–6), 
the effect of clonal diversity disappears when mean cell division rate 
is included in the statistical model (p = .78; Figure S6). In summary, 
these results indicate that clonal diversity is a useful predictor of 
progression-free survival only inasmuch as it is a proxy for impor-
tantly varying biological parameters (such as driver mutation rate 
and mean cell division rate) that cannot themselves be precisely 
measured or inferred.

4  | DISCUSSION

Intratumour heterogeneity is considered a promising prognostic bio-
marker because it relates to the evolutionary processes that drive tu-
mour progression (Alizadeh et al., 2015; Jamal-Hanjani et al., 2015; 
Maley et al., 2017; Marusyk et al., 2012; Polyak, 2014). The general 
nature of this relationship has, however, proven difficult to charac-
terize. By simulating tumour evolution under different conditions in 
numerous virtual patient cohorts, here we have taken first steps to-
wards disentangling when, why and how clonal diversity (a particular 
form of intratumour heterogeneity) predicts tumour growth rate and 
clinical progression.

We have identified three mutually reinforcing factors that can 
lead to positive correlations between clonal diversity and future tu-
mour growth. First, positive diversity-growth correlations are seen 
when clonal diversity is measured at an early stage of tumour pro-
gression. This is because high diversity in a small tumour indicates 
the presence of mutations that are under selection, and that will 
eventually accelerate tumour growth, but that have not yet had time 
to fix. Second, clonal diversity, even when measured at a later stage, 
can positively correlate with future growth rate provided that tu-
mour spatial structure and/or evolutionary parameters sufficiently 
restrict the rate of clonal turnover, which otherwise purges diversity 
within more aggressive tumours. Finally, positive diversity-growth 
correlations can arise in cohorts of tumours that have differing rates 
of acquiring beneficial (driver) mutations—for example due to varia-
tion in genomic instability—because higher diversity then correlates 
with higher driver mutation rate, which in turn predicts faster tu-
mour growth. In the absence of all three of these factors, we find 
that the correlation between clonal diversity and future tumour 
growth rate is typically negative. These results are robust to biopsy 
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sampling error and readily extend to forecasting progression-free 
survival after treatment.

Although the influence of stochastic factors fundamentally limits 
predictability in our model—as is the case in real cancers (Lipinski 
et al., 2016)—we find that tumour growth forecasts can be remark-
ably reliable. Due to complex processes at multiple spatial and tem-
poral scales, forecasts of weather and of many kinds of ecological 
dynamics become progressively less accurate as they reach further 
into the future (Petchey et al., 2015). Tumour growth in our model 
conforms to a very different pattern, such that forecast accuracy 
is unchanged or even improves as the projection period lengthens 
(Figures 3b and S4b). This is because, in a growing population, early 
mutations are likely to reach higher frequency and hence be more 
influential than later mutations (which arise in a larger population, 
typically further from the tumour edge, and encounter more clonal 
interference), yet even early mutations have somewhat delayed ef-
fects on tumour growth, due to the time required for clonal expan-
sion. A tumour's long-term growth trajectory is mostly determined 
at an early stage, even as driver mutations occur increasingly often 
over time.

In their own study cohort and in the larger TCGA kidney cancer 
cohort, the TRACERx Renal consortium found that low intratu-
mour heterogeneity correlates with longer progression-free and 
overall survival times when tumours have low genomic instabil-
ity, but not when tumours have high genomic instability (Turajlic 
et al., 2018). Our computational model generates a similar pattern 
(Figures 4c and S7) and thus provides an explanation for clinical 
observations. From a clinical perspective, however, the crucial 
question is whether new prognostic biomarkers can outperform 
the status quo. The TRACERx Renal consortium found that the 
predictive power of intratumour heterogeneity and genomic in-
stability remained significant after adjusting for known prog-
nostic variables (including stage and grade) in the TCGA kidney 
cancer cohort but not in their own smaller cohort of 100 tumours 
(Turajlic et al., 2018). Consistently, in our model results, forecast-
ing growth rate and progression-free survival from clonal diversity 
is inferior to forecasting based on mean cell division rate (a cor-
relate of cancer grade) and the predictive power of clonal diver-
sity vanishes if additional explanatory variables can be accounted 
for. Notwithstanding this theoretical limitation, a key part of the 
appeal of clonal diversity as a prognostic biomarker is that, in prac-
tice, it is easier to measure precisely than the alternative indices 
with which it covaries.

Our work contributes to a growing body of work on predicting 
evolution in complex systems, which is gaining increasing attention 
because of its potential to provide mechanistic explanations for pat-
terns observed in clinical data and to guide therapeutic interventions 
(reviewed in Lässig, Mustonen, & Walczak, 2017). For example, using 
a nonspatial computational model and analysis of high-throughput 
sequencing data, Williams et al. (2018) recently inferred the strength 
of selection in various cancer types and used the results to forecast 
changes in clonal architecture. Hosseini, Diaz-Uriarte, Markowetz, 
and Beerenwinkel (2019) and Diaz-Uriarte and Vasallo (2019) have 

instead examined the order of accumulation of driver mutations 
and found that certain types of fitness landscape lead to more or 
less predictable tumour evolutionary trajectories. Our approach is 
both distinct and complementary, in that we seek to describe the 
stochastic processes of clonal initiation, expansion and interaction in 
a realistic spatial context, and we focus on generic, clinically relevant 
predictor variables and outcomes.

We have kept our model simple so as to yield the most general 
insights. Our work thus has several limitations that motivate further 
investigation. Even allowing for the fact that we simulate a two-di-
mensional slice of a larger three-dimensional tumour, the endpoint 
size of one million cells is unrealistically small. This discrepancy 
might be relatively inconsequential, however, given our finding that 
forecast accuracy is robust to increasing endpoint size. The essen-
tial principles that underlie our results apply in three dimensions 
just as in two dimensions, but outcomes might differ quantitatively 
due to reduced clonal interference in the former case. In common 
with previous computational modelling studies (Bozic et al., 2010; 
Waclaw et al., 2015), we assume an infinite sites model of evolu-
tion. We also assume only very weak diminishing-returns epistasis. 
We expect that assuming a finite sites model or stronger diminish-
ing-returns epistasis—such as observed in long-term E. coli evolu-
tion (Wiser et al., 2013)—would tend to make tumour growth even 
more deterministic and more predictable. Relatedly, we neglect 
deleterious mutations and hence do not impose any fitness cost 
of high genomic instability, a factor that might help explain slower 
growth of especially heterogeneous tumours (Andor et al., 2015). 
We have not attempted to investigate how forecast accuracy might 
be affected by frequency-dependent cell–cell interactions, vari-
able deme carrying capacity or other forms of microenvironmental 
heterogeneity. Nor have we tested here whether clonal diversity 
can predict metastatic potential, which is a crucial factor in overall 
survival.

An especially promising direction for future research is in 
combining clonal diversity measurements with information about 
evolutionary processes, such as the pervasiveness of selective 
sweeps in a given tumour type across individuals or in a particu-
lar tumour within an individual (Maley et al., 2017). Although it is 
generally infeasible to infer a complete history of clonal turnover, 
genomic data from even a single time point can potentially be used 
to infer the strength of selection, time since the most recent com-
mon ancestor, and rate of demographic expansion (Alves, Prado-
López, Cameselle-Teijeiro, & Posada, 2019; Williams et al., 2018). 
Future work should employ multi-variable statistical models that 
incorporate such information about tumour evolution, ecology 
and demography (Maley et al., 2017). These methods are likely to 
outperform the simpler models we have examined here. Future 
studies should also evaluate system-specific modifications of our 
model and our biopsy sampling protocol, using multi-omics data, 
histopathology image analysis, and cancer staging assays to infer 
sub-clonal cell proliferation rates and to characterize cell–cell in-
teractions. By laying the foundations for such projects, the current 
study comprises a step towards the ultimate goal of personalized 
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cancer evolution forecasts, parametrized with patient-specific 
data.
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