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1. Introduction 

Odometry for space robotics applications is an active research area due to the increasing number of robotics 

platforms deployed into space and the necessity for their autonomous operation. Relative space navigation of a 

Source spacecraft platform in relation to a non-cooperative Target platform, i.e. with unknown attitude (pose) is 
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considered a hot research topic. This is because precise relative space navigation will enable a Source spacecraft to 

perform autonomous close-proximity maneuvers and achieve uncooperative rendezvous with a non-cooperative 

Target platform, contributing towards autonomous active space debris removal and satellite inspection and docking 

operations. In any of these scenarios, the Target platform is likely to be non-cooperative and therefore unable to 

exchange with the Source platform its pose actively or passively, e.g. via known markers placed on the Target. 

Therefore, the Source spacecraft must estimate its relative position and attitude with respect to the Target platform 

by utilizing only its onboard sensors. Current solutions involve 2D visual data in a monocular [1,2] or a stereo 

camera configuration [3–6], 2D Infrared (IR) thermal data [7], and 3D Light Detection and Ranging (LIDAR) data 

[8,9,18–24,10–17]. A comprehensive review of spacecraft pose determination techniques for close-proximity 

operations is presented in [25]. 

Even though each modality has its own strengths and weaknesses, LIDAR is preferred due to its proven 

robustness in the outer space environment [23]. Although visual [26] and IR [7] sensors have already been exploited, 

with the latter having several advantages over the former such as operating during day and night under harsh 

illumination conditions. However, the accuracy of IR thermal odometry relies on the temperature of the Target’s 

components that may be affected by internal parameters, e.g. heat dissemination of the platform’s components, and 

by external parameters, e.g. reflection of the sun’s radiation. This temperature fluctuation may affect the robustness 

of the IR feature detection and matching process, which are the core modules in [7]. On the contrary, odometry 

based on 3D LIDAR data outmatches its 2D counterparts (visual and IR) as it operates during day, night and under 

poor visibility conditions, is independent of the Target’s thermal properties, is capable of revealing the underlying 

structure of an object [27,28], and can provide both 3D position and intensity data [25]. 

 Spurred by the advantages of 3D LIDAR odometry for space robotics applications, the research community 

suggests quite a few techniques that use LIDAR data. Specifically, [15] exploits RGB-D data and suggests a sliding 

window filtering scheme that is combined with a Gauss-Newton method, while initial pose estimation is generated 

by an OPnP algorithm. Galante et al. [13] propose the Argon relative navigation system that comprises of a stereo 

optical camera setup and a flash LIDAR device. On the data acquired, Argon applies edge detection and a custom 

Iterative Closest Point (ICP) scheme to estimate a 6-degrees of freedom pose. Other solutions perform pose 

initialization via template matching and then apply the typical ICP [29] for frame-to-frame pose estimation 

[9,16,17,30,31]. Variants of that architecture substitute template matching either with Principle Component Analysis 
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(PCA) [9,32] or with global 3D feature matching using the Oriented Unique Repeatable Clustered Viewpoint 

Feature Histogram (OUR-CVFH) [14,33]. Other solutions available in literature fuse pose estimation based on 

OUR-CVFH or on Spin Images [34] (a 3D local feature descriptor) combined with ICP, with gyroscopic data and 

then perform Target platform tracking using a Multiplicative Extended Kalman Filter (MEKF) [10,19,32]. Volpe et 

al. [11] utilize 2D features from the visual domain combined with LIDAR based distance estimation and Unscented 

Kalman Filtering (UKF) for performance improvement. Alternatives to pure ICP registration for pose estimation 

have also been proposed, by substituting ICP with a UKF filter, an iterative least-squares (LS) scheme, or with an 

Extended Kalman Filter (EKF) [21], [20]. Lately, in [18] the HoD-S 3D local feature matches are recursively 

filtered via an adaptive H∞ filter affording an accurate space navigation solution. This work is further extended in 

[35] where several combinations of 3D features and recursive filtering schemes are evaluated on both real and 

simulated scenarios. Kechagias-Stamatis et al. [24] suggest a non-standard space navigation solution where 3D 

LIDAR data are remapped into multiple 2D planar projections. On the latter ones, 2D keypoint detection, 2D feature 

description, and cross-plane feature matching are applied, and 2D correspondences are back-projected in the initial 

3D space and are then filtered via a Kalman or an H∞ filter. The novelty of this architecture is the combination of 

advantages of both the 3D and 2D data space and ultimately affording accurate odometry at a low processing time. 

A comprehensive list of current 3D space odometry methods is presented in Table 1.  

It is worth noting that in contrast to space robotics odometry, terrestrial odometry (ground and aerial) is more 

mature, spreading over several data domains such as 2D visual in a monocular or stereo camera configuration 

[36,37], 2D IR [38], fusion of visual with IR data [39], fusion of 3D LIDAR with visual data [40], 3D LIDAR fused 

with inertial data [41], purely on 3D data [42] or exploiting RGB-D data [43–45]. For completeness, the reader is 

referred to [46] for an extensive review on the odometry methods for terrestrial applications. However, simply 

extending current algorithms designed for terrestrial robotics odometry into the field of space robotics odometry is 

not an optimum solution because the space environment is completely different posing additional challenges. Major 

differences are; first the lack of surrounding objects forcing odometry to rely on a relatively limited number of 

vertices belonging to a single and usually small-sized object, and second, the low point cloud complexity of space 

objects reducing the unique and non-degenerated geometries on the Target, which are important for the odometry 

solution to converge to an acceptable estimation.  
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Table 1. 

Current 3D space odometry architectures 

No Reference Year 
Point cloud 

type 
Hardware Method 

1 Galante et al. [13] 2012 Real 
stereo camera 

and LIDAR 
2D edge tracking and custom ICP for pose estimation 

2 Sell et al. [14] 2014 Real LIDAR 
OUR-CVFH features for pose initialization and ICP for point 

cloud registration and pose estimation 

3 Opromolla et al. [16] 2014 Simulated LIDAR 
optimized template matching for pose initialization and ICP 

for point cloud registration and pose estimation 

4 Opromolla et al. [17,30] 2015 Simulated LIDAR 
optimized template matching for pose initialization and ICP 

for point cloud registration and pose estimation 

5 Rhodes et al. [32] 2016 Simulated 

Gyroscope, 

star tracker, 

LIDAR 

OUR-CVFH or Spin Images features for pose initialization 

and ICP for point cloud registration and pose estimation that 

is fused with sensor inputs via a MEKF module 

6 Liu, Zhao and Bo [31] 2016 Simulated LIDAR template based pose initialization and ICP object tracking 

7 Woods and Christian [10] 2016 Simulated 

Gyroscope, 

GPS, star 

tracker, 

LIDAR 

OUR-CVFH features for pose initialization and ICP for point 

cloud registration and pose estimation that is fused with 

sensor inputs via a MEKF module 

8 Opromolla et al.[9] 2017 Real LIDAR 
optimized template matching or PCA for pose initialization 

and ICP for point cloud registration and pose estimation 

9 Song [15] 2017 Simulated 
RGB-D 

camera 

sliding window filter (SWF) smoothing to estimate the 

structure and pose on SE(3). Gauss-Newton (GN) method is 

implemented for each window with an initial guess 

generated by OPnP algorithm 

10 Volpe et al. [11] 2017 Simulated 
Optical camera 

and LIDAR 

2D feature tracking based odometry combined with LIDAR 

for distance measurement and UKF 

11 Martinez et al. [12] 2017 Simulated ToF camera 

geometrical based orientation estimation for pose 

initialization, ICP for pose estimation and EKF for kinematic 

estimation 

12 
Rhodes, Christian and Evans 

[19] 
2017 Simulated LIDAR 

OUR-CVFH features or OUR-CVFH combined with MEKF 

for trajectory smoothing 

13 Dietrich and McMahon [20] 2017 Simulated LIDAR point cloud registration using UKF 

14 Dietrich and McMahon [21] 2018 Simulated LIDAR point cloud registration using UKF, LS and EKF 

15 Jalalabadi and Malaek [23] 2018 Simulated LIDAR 

NN ICP registration using kd-tree, M-UKF trajectory 

filtering and Upper Bound fusion for multi observer data 

acquisition 

16 
Kechagias-Stamatis and 

Aouf [18] 
2019 Real LIDAR HoD-S local features with adaptive H∞ recursive filtering 

17 
Kechagias-Stamatis, Aouf 

and Richardson [24] 
2019 Simulated LIDAR 

3D-to-multi-2D point cloud data remapping followed by 

multi-2D keypoint detection, description, and cross-plane 

feature matching. 2D correspondences are then back-

projected to the 3D space and filtered via Kalman or H∞. 

18 Chen et al. [47] 2019 Real Optical camera 

a deep network predicts the position of the predefined 

landmark points in the input image and pose estimation is 

performed by establishing the 2D-3D correspondences 

between the input image and the created 3D Target model 

19 
Kechagias-Stamatis, Aouf 

and Dubanchet [35] 
2019 

Real and 

Simulated 
LIDAR 

Evaluation of multiple combinations of 3D features and 

recursive filtering schemes 

 

Spurred by the advantages of 3D LIDAR odometry and the appealing performance of deep learning for 

terrestrial odometry applications [46], we present a Deep Recurrent Convolutional Neural Network (DRCNN) that is 

appropriate for space relative navigation. Our deep LIDAR odometry solution incorporates a Convolutional Neural 
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Network (CNN) module and a Recurrent Neural Network (RNN) module. Despite the CNN and RNN modules are 

applied on 2D data, we exploit 3D LIDAR point cloud data by properly remapping the 3D vertices to the 2D data 

domain. Advantages of the proposed DRCNN architecture are: 

a. Effective feature representation, via adopting a CNN module, where features can be generalized and 

ultimately used in untrained environments.  

b. Robust and automatic modeling of the navigation dynamics due to the RNN module. 

c. Transforming the acquired 3D LIDAR data into multiple 2D depth maps to reduce the processing burden but 

simultaneously minimize information loss.  

d. DRCNN is highly adaptive as it can be exclusively trained on simulated data and tested on both simulated as 

well as real LIDAR data affording better odometry accuracy than current algorithms even if the data modality 

changes. This feature is very important because DRCNN is capable of offline training on simulated data but still 

capable of accurate odometry on untrained data of a different modality, increasing the flexibility of the robotic 

platform to perform odometry on a broad spectrum of scenarios. 

The remainder of the article is organized as follows: Section 2 introduces the proposed DRCNN odometry 

architecture and Section 3 evaluates the suggested technique against current ones on realistic simulated and real 

LIDAR data scenarios. Our conclusions are presented in Section 4.  

 

2. DRCNN Odometry 

The problem addressed in this work is LIDAR odometry for relative space robotics navigation of a Source 

platform equipped with a 3D LIDAR sensor that moves in the 3D space relative to a Target platform with an 

unknown pose. Therefore, given two consecutive Target point clouds 
1{ ,..., }a

k k kp p=P  and 
1

1 1 1{ ,..., }b

k k kp p+ + +=P  

captured by the Source’s LIDAR sensor, with each vertex being in the form pk=(xk,yk,zk) and pk+1=(xk+1,yk+1,zk+1), the 

generic odometry process aims to calculate a rigid body transformation, 

 *

0 1

R T
R

 
=  
 

 (1) 

where R is the rotation and T the translation component, that remap Pk to Pk+1: 

 1k kp Rp T+ = +  (2) 
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+

+

      
      

= +      
            

 (3) 

Despite that attitude R may originate from Euler or Quaternion angle encodings, we express R via a rotation matrix 

[2,48–50] but we ensure it conforms to the SO(3) constraints both during the training and the evaluation phases 

presented in Section 3. We chose this angular representation as it is suitable for the regression we develop through 

the last part of our network and it is also meeting the motion estimation manner used in the competitor filtering 

approaches presented in Section 3. Hence, maintaining the same way of regressing the motion quantities is useful for 

the comparison of the results, because inevitably the performance difference between the proposed technique and 

the competitor methods is not due to the angular representation but purely to the odometry pipeline. Regarding the 

SO(3) constraints of the rotation matrix elements, our training scheme also considers learning these constraints from 

the known ground truth R that is used. In fact, the DRCNN during training is naturally imposed to learn the SO(3) 

constraints because the ground truth R is free of these constraints. Thus, implicitly the R estimation is practically 

optimized during training to meet the SO(3) constraints and this embedded knowledge of DRCNN is then used 

during testing, providing rotation matrices respecting these constraints. However, if during testing DRCNN delivers 

a rotation matrix that does not meet the SO(3) constraints, then the solution is rejected and the odometry solution is 

recalculated with additional randomness to overcome the previous local minimum. In case the new odometry 

solution still does not conform to the constraints, then it is discarded and * *

1k kR R+ = . However, due to optimizing the 

R estimation to meet the SO(3) constraints, in the vast majority of pose instances the initial rotation matrix delivered 

met these constraints. It is worth noting that in contrast to [2,48–50] that express R via a rotation matrix without 

explicitly dealing theoretically with the SO(3) constraints, in our work we practically tackle the theoretical aspect of 

these constraints. 

Additionally, it should be noted that Eq. (1) – (3) should ideally involve the true point correspondences between 

the kP  and 1k +P  point clouds that exactly link the same physical points. Typical methods for establishing point 

correspondences between kP  and 1k +P  involve 3D local or global feature matching of a subset of the vertices 

belonging to kP  and 1k +P . However, in real-world scenarios, point correspondences are unknown, and depending on 

the relative motion between kP  and 1k +P  there might not be an actual one-to-one point correspondence at all. In that 
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case, the odometry method seeks the optimum point correspondences based on a minimum feature matching error, 

where each feature is the representative description of the surroundings of each point. The optimum point 

correspondences are then input to Eq. (1) – (3) aiming at ultimately presenting the minimum error between the 

calculated and the ground truth R and T values, respectively. Though the point correspondence quality defines the 

odometry accuracy and any deviation of the estimated R and T compared to the corresponding ground truth values 

can only be presented during controlled experimental setups and not during real-world scenarios.  

Then at instance u, the position of the Source platform relative to the d uncooperative Target platform is given 

by: 

 * *

1

u

uR R

=

=   (4) 

In the space-related literature, *R  is typically estimated by a two-stage process, i.e. coarse Target pose initialization 

via template matching or 3D feature matching (global or local features), and then fine Target pose estimation via an 

iterative process. However, as presented in Section 3, current solutions suffer from; a high processing burden, 

template/feature mismatching, and ICP not always converging to an optimum odometry solution. 

2.1. Pre-processing LIDAR data 

Despite 3D data offering quite a few advantages over their 2D counterpart (see Section 1), the 3D data modality 

imposes a higher computational burden [28]. Therefore, in our proposed space robotics navigation architecture we 

take advantage of both data modalities (3D and 2D) by remapping
kP  and 

1k +P  from the 3D to the 2D domain where 

we create three 2D depth images. Specifically, for 
kP  and accordingly for 

1k +P , we transfer the XYZLIDAR reference 

frame that is aligned and centered at the LIDAR sensor coordinate frame onboard the Source platform to the 

geometric center of the target point cloud 
kP  and create the XYZTarget reference frame. Then, we quantize the 

floating-point vertex coordinates 1{ ,..., }a

k k kp p=P  into 
1

_ _ _{ ,..., }a

Q k Q k Q kp p=P  with, 

 ( ) ( )_ _ _ _, , , ,fQ k Q k Q k Q k kp yqx y z p x z =     (5) 

where 
fq  is a quantization factor,    the bottom-round process, and α the point cloud cardinality. Next, we project 

_Q kP  on each plane of the XYZTarget reference frame by utilizing an orthographic projection process orthoP : 
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1 _

2 _

_ _
3 _

0 0 0

0 0 0

0 0 0

1 0 0 0 1 1

q Q k

q Q k
orthoQ k Q k

q Q k

x c x

y c y
p P p

z c z


     
     
     = = = 
     
     
     

  (6) 

Depending on the projection plane, we substitute with zero the appropriate binary remapping coefficient 

 1 2 3, , 0,1c c c   of orthoP , e.g. for c1=c2=1 and c3=0, the XY depth image 
_

XY

Q kp  is created. The three orthographic 

projections _ _ _, ,XY XZ YZ

Q k Q k Q kp p p  are depth images created in a form of parallel projection of the point cloud onto the 

corresponding planes of the XYZTarget reference frame, which are simplified versions of 
_Q kP . The depth value of 

each pixel within each _Q kp  is unique and represents the distance between the Target and the XYZTarget reference 

frame. An advantage of this projection scheme is its fast execution time. The reason for translating the XYZLIDAR  to 

the Target platform and create the XYZTarget reference frame is to preserve the Target’s details during the 

quantization process of Eq. (5), while in parallel keep the projection images _ _ _, ,XY XZ YZ

Q k Q k Q kp p p  small to afford low 

memory and processing requirements. Given that the x-axis is towards the Target platform, the z-axis is upwards 

with respect to the LIDAR sensor and the y-axis is at right angles, by projecting the Target point cloud on the 

XYZLIDAR frame the _

XZ

Q kp  and the _

XY

Q kp  would contain no depth information for the distance between the Source and 

the Target, but would inevitably increase the _

XZ

Q kp  and the _

XY

Q kp  images. It is worth noting that we also investigated 

preserving the original XYZLIDAR frame and applying range gating to create projections that contain only the Target. 

Though, the processing time for range gating was slightly more processing deficient than translating the reference 

frame.  

Selecting fq  is not trivial as it highly affects the size of the multi-2D projections and the number of details 

contained in each projection. In fact, high fq  values create large non-uniform 2D projections that impose a greater 

computational burden and memory requirement of the processing platform. On the contrary, small fq  values 

discard the point cloud topology information during the 3D to 2D remapping process by subsampling the projected 

data. For our trials we set 20fq =  such as to fully exploit the memory capability of our computer platform, while 

still preserving the Target’s point cloud topology. For completeness, Fig. 1 presents the _

XY

Q kp  for several fq  values. 
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(a) (b) (c) 

   
(d) (e) (f) 

Fig. 1 Interplay between the _

XY

Q kp projection and fq  (a) 3D point cloud model and _

XY

Q kp projection with a fq  value of (b) 5 (c) 10 (d) 20 (e) 

40 (f) 80 (closer pixels are hotter, best seen in color) 

 

2.2. Deep Recurrent Convolutional Neural Network  

Given the three depth images of 
_Q kP , i.e. _ _ _, ,XY XZ YZ

Q k Q k Q kp p p , we create a stacked image,  

 _ _ _

XY XZ YZ

k Q k Q k Q kI p p p=   (7) 

where || ( )  is a 1D vertical concatenation process. Then we create 
, 1 1k k k kI I I+ += that is input to our proposed 

DRCNN network, which comprises of a CNN module that is followed by an RNN module.  

However, the image size of each projection _ _ _, ,XY XZ YZ

Q k Q k Q kp p p  is not consistent and thus all three projections must 

be resized to apply Eq. (7). Hence, prior to creating kI  we resize each projection to 128x32 pixels by applying to it 

a Nearest-neighbor interpolation scheme. For this work, the advantage of the Nearest-neighbor interpolation over the 

bilinear and bicubic interpolations is not smoothing the topology information of the projections and thus attaining 

lower odometry errors. It is worth noting that during our preliminary trials we evaluated several image size 

combinations but concluded that the 128x32 image size per projection was the optimum. Hence, the depth image 

input images kI  and 1kI +  have a size of 384 pixels x 32 pixels. A study on several depth image input sizes and 

interpolations schemes is presented in Section 3.4. An example of the kI  processing stages is presented in Fig. 2. 
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(a) (b) (c) 

Fig. 2 (a) _

XY

Q kp projection with 20fq =  (b) Nearest-neighbor interpolated of _

XY

Q kp  (c) stacked image containing the interpolated

_ _ _, ,XY XZ YZ

Q k Q k Q kp p p  (closer pixels are hotter, best seen in color) 

 

The CNN module performs feature extraction on 
, 1k kI +

 and since both components of 
, 1k kI +

 involve 2D depth 

images, the associated features are geometric rather than texture-based. This is important as the features can be 

generalized increasing the overall robustness. The configuration of the CNN module is presented in Table 2 (layers 

1-8). Initially, the 2D depth image 
, 1k kI +

 of size 768 pixels x 32 pixels is input to layer 1. The size of 
, 1k kI +

 is 

experimentally defined during training and is the largest possible such as to preserve the details of Pk and Pk+1 and 

ultimately afford an appealing odometry solution. However, the size of 
, 1k kI +

 is limited by the available GPU 

memory. The following six layers are three convolutional layers, each of which is followed by a Rectified Linear 

Unit (ReLU) activation layer. The reasoning for exploiting a shallow CNN architecture rather than a deep one is 

linked to the 
, 1k kI +

 image size and the selection of the fq , both of which determine the level of details within 
, 1k kI +

. 

Specifically, from Fig. 2 (c) it is obvious that the level of details in 
, 1k kI +

 is not high and thus the high-level domain-

based features produced by the deep convolutional layers regularly used in RGB based odometry and classification 

applications are not optimum for our work. Instead, low-level features extracted from shallow CNNs are more 

appropriate for our 
, 1k kI +

 projections. The receptive filter size of each convolutional layer is fixed to 5x5, which for 

the quantization factor 
fq  used during the multi-projection process, enhances capturing large features. Regarding 

the number of channels in each convolutional layer, we intentionally double them in any successive convolutional 

layer to afford the CNN module to learn more features. Finally, the CNN module concludes with a Fully Connected 

layer to bridge the CNN and RNN modules. This is because the cardinality of the output tensor ReLU_3 exceeds the 

GPU memory limitations of our testing platform and thus we use the Fully Connected_1 layer to reduce the tensor 

size of the CNN output. The size of the latter layer is experimentally defined and is the largest possible based on the 

available GPU memory to minimize information loss. An example of the activated responses from the 256 channels 
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at layer Convolution_3 is presented in Fig. 3, confirming that the extracted features are quite generic without being 

stable on any particular characteristics of the Target due to the minor depth variations of the 
, 1k kI +

. A study on 

several CNN depths, number of channels, receptive filter sizes, and CNN-RNN bridge-layer configuration is 

presented in Section 3.4. 

 

Table 2. 

DRCNN configuration 

Layer 

No 

Network 

type 
Layer type Variables 

1 

C
N

N
 

Input 768x32 depth image 

2 Convolution_1 filter size 5x5, padding 3, stride 2, channels 64 

3 ReLU_1 - 

4 Convolution_2 filter size 5x5, padding 2, stride 2, channels 128 

5 ReLU_2 - 

6 Convolution_3 filter size 5x5, padding 2, stride 2, channels 256 

7 ReLU_3 - 

8 Fully Connected_1 1024x1 matrix 

9 

R
N

N
 

LSTM_1 
per LSTM layer: hidden values 1000, tanh activation function for cell and 

hidden states, sigmoid activation function for gates, mini Batch Size 10 
10 LSTM_2 

11 LSTM_3 

12 Fully Connected_2 1024x1 matrix 

13 Regression 1024x1 matrix converted to matrix R* 

 

  
(a) (b) 

Fig. 3 CNN activation response (a) 
, 1k kI +

 (b) response example at layer Convolution_3 

(closer pixels/highest response respectively are hotter, best seen in color) 

 

The RNN module aims at automatically modeling the Source – Target platform dynamics and the relations 

between the 
, 1k kI +

 features extracted by the CNN module. It is worth noting that compared to handcrafted models 

used to describe motion and geometry, the RNN module is more flexible to learn the motion model. This is because 

RNN and specifically the Long Short-Term Memory (LSTM) layers used in our DRCNN architecture can learn 

long-term dependencies between image projections that exceed two sequential depth image projections, i.e. frame k 

and k+1. For an analysis on the operating principles of LSTM layers, the reader is referred to [51]. The proposed 

RNN module consists of three LSTM layers to enhance the RNN capability in learning a high-level representation 

and model complex dynamics. For completeness, it is worth mentioning that in Section 3.4 we evaluate several 



 

12 

 

LSTM layer depths, number of hidden values, and activation functions. However, due to GPU memory limitations, 

the maximum number of hidden values is limited to 1000 for three LSTM layers.  

The three LSTM layers are then followed by the Fully Connected_2 layer that has the same tensor cardinality as 

Fully Connected_1. Finally, the last layer of the RNN module is a Regression layer the output of which is converted 

into R* by exploiting elements 1-12 so that, 

11 12 13 21 22 23 31 32 33 [            ]T

x y zregression layer r r r r r r r r r t t t= (8) 

while the remaining tensor elements 13-1024 are discarded. This is because the CNN output layer Fully 

Connected_1, along with the input and the output layers of the RNN module need to be of the same size, i.e. 

1024x1, while the R* is a 4x4 matrix containing the 12 rotational and translational values. As a reminder, the size of 

the Fully Connected_1 layer is the largest possible to balance information loss and the memory limitations of our 

GPU. Finally, the configuration of the RNN module along with the parameters per layer are presented in Table 2 

(layers 9-13), while the proposed DRCNN architecture for space robotics navigation is presented in Fig. 4. A study 

on several RNN depths, LSTM activation functions, and the number of LSTM hidden values is presented in Section 

3.4. 

The suggested DRCNN architecture is appealing for the following reasons: 

a. Classic odometry involves local feature detection, matching, and then motion estimation based on the 

matched frame-to-frame features. The data domain used is usually 3D LIDAR, 2D visual, 2D IR, or a mixture of 

these. In DRCNN, we rely on a fully autonomous system that exploits the CNN module features and the robust 

navigation dynamics modeling of the RNN module, without involving any process of the typical odometry pipeline, 

i.e. feature detection and matching. 

b. Compared to current deep learning odometry solutions for space robotics odometry [22], DRCNN exploits 

3D LIDAR data rather than 2D visual imagery, affording the advantages of LIDAR over visual data as presented in 

Section 1. In contrast to the DRCNN proposed in this paper, space odometry literature in [22] purely relies on CNN 

and does not involve any type of RNN module. Additionally, the solutions presented in [52,53] propose deep 

learning odometry methods for terrestrial applications that combine CNN with RNN layers. However, these 

techniques exploit 2D visual data rather than 3D LIDAR data as done in this work and also suffer from the 

limitations of visual imagery, e.g. day operating conditions. An additional advantage of the proposed DRCNN over 
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the networks of [52,53] is that due to the larger information content per pixel of the visual imagery compared to the 

LIDAR projections exploited here, our CNN module is shallower empowering its generalization capability and 

ultimately affording DRCNN to be trained on simulated data and achieving appealing accuracy on real LIDAR data. 

It should be noted that despite DRCNN attains an appealing odometry accuracy, it also has a few constraints that 

are mainly linked to the available GPU memory of our computer platform, which in turn impose limitations to the 

entire architecture and performance of DRCNN. Specifically, the weaknesses and sensitivities of DRCNN are: 

a. the 
, 1k kI +

 depth image size, which along with the quantization factor fq  determine the level of details within 

each point cloud projection. From our preliminary tests, we observed that the higher the level of details, the better 

the odometry accuracy is, but also a deeper CNN architecture is required to exploit the fine details. However, both 

these features impose larger GPU memory requirements.  

b. The FC_1 size, which links the CNN and the RNN modules. Inevitably due to memory constraints, we 

exploited the largest possible FC_1 size by trading off accuracy because the layer’s size is linked with the amount of 

information input to the LSTM module.  

c. The hidden values within each LSTM layer are constrained to 1000, while based on our preliminary trials, 

increasing the number of hidden values may benefit the odometry accuracy. 

d. The memory limitations presented above inevitably limit the DRCNN application to Targets with a known 

satellite model. This is because the selection of fq  is linked to the distinct topology information and the size of the 

Target model and thus cannot be generalized to facilitate a broad spectrum of satellites that contain different levels 

of details.  
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Fig. 4 Suggested DRCNN architecture 

 

3. Experiments 

Trials involve both simulated and real 3D LIDAR data of a non-cooperative but known Target satellite. Real 

LIDAR data (point cloud) of a satellite mockup are acquired in our lab by a LIDAR sensor placed on a Source 

platform that is moving within the lab. 

 

3.1. Experimental setup 

Prior to evaluating DRCNN, we train it using the Elite satellite Target platform developed by Thales Alenia Space 

(France) that is inspired by the Globalstar-2 and Iridium constellations. The Elite Target satellite is a complete 3D 

point cloud model P3D from which we create self-occluded point cloud views emulating realistic views of the Target 

platform as observed by the virtual motion of the Source platform. These views are created by applying the Hidden 

Point Removal (HPR) [54] algorithm on the Target platform.  
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HPR initially remaps the coordinates of each vertex 3Dp  belonging to P3D by exploiting an imaginary ray that 

connects each 3Dp vertex with the viewpoint set on the LIDAR sensor onboard the Source. The output of this stage 

is a mirror image of P3D as observed from the Source, which is then projected onto a sphere of radius R that is 

centered at the LIDAR sensor. The latter process is named “spherical flipping” and the resulting point cloud consists 

of the sfqP  vertices: 

 
3

3 3

3

2( ) D

D D

D

sfq

p
p p R p

p
= + −  (9) 

In out trials R is automatically calculated as suggested in [55]. Finally, the convex hull of the resulting point cloud, 

associated with a weight factor qa for each point of the cloud is given by:  

 

| | | |

1 1

| ( : 0) 1)
sfq sfqP P

q sfq q q

q q

a p q a a
= =

 
   = 

 
   (10) 

Summarizing, a vertex 3Dp  of the raw Target point cloud P3D is considered as visible and belongs to Pk, only if its 

spherical flipped form sfqP  is on the convex hull. In our trials, depending on the Source – Target relative position 

and distance, the cardinality of Pk varies from 8000 vertices down to only 30 vertices.  

Once Pk is created, we train the proposed DRCNN to link the response of the deepest CNN layer with the relative 

Source – Target platform position, by utilizing three LSTM layers. For that purpose, the Elite satellite Target 

platform performs a simulated sinusoidal trajectory with 2sin( ),y x z x= =  with { 0.2 | {1,..., 25000}}x g g=  . This 

trajectory has the advantage of repeatedly training our network on combined curved and straight trajectories. For the 

training process we use an initial learning rate of 0.01 with a gradient threshold of 1. As a reminder, the size of 

, 1k kI +  and the cardinality of the fully connected layers in the DRCNN are governed by the GPU memory limitations 

of our computer platform and are experimentally defined during the training stage. Finally, it should be noted that 

once DRCNN is trained on the sinusoidal trajectory it is then evaluated on both simulated and real LIDAR data 

scenarios. As a reminder DRCNN is trained to meet the SO(3) constraints because the ground truth R is free of these 

constraints (see Section 2). 

3.1.1 Trials on simulated data  

The first batch of trials considers three trajectories of the Elite satellite Target platform that we also use during the 

DRCNN’s training stage. For our simulated data trials, we consider three scenarios, namely a straight-line approach 
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(SLA), an ellipse of inspection (EoI), and a helical (Helix). Similar to the training process, for all three scenarios we 

create self-occluded point cloud views emulating realistic views of the Target platform by applying the HPR 

algorithm. An example of the Elite Target platform along with the simulated ground truth trajectories are presented 

in Fig. 5 (a)-(d). It should be noted that for the simulated data scenarios we intentionally extend the Source – Target 

ranges beyond the standard ones to push the limits of odometry and investigate the performance of the evaluated 

methods. The odometry accuracy is compared against the fictitious ground truth position of the Source platform 

utilizing the metrics presented in Section 3.1.3. 

 

3.1.2 Trials on real LIDAR data 

The next set of trials considers real data acquired by a Velodyne VLP-16 Puck Lite LIDAR sensor. Trials 

evaluate the proposed space robotics odometry architecture on several scenarios where the LIDAR sensor is placed 

on a moving Source platform, in relation to a scaled Target EnviSat satellite model. The odometry accuracy is 

evaluated against the ground truth position of the Source that is determined from an Optitrack setup [56] that tracks 

the Source platform within our lab. Optitrack provides the position of objects that are within its field of view and are 

visible in the Near Infrared (NIR) bandwidth in sub-millimeter accuracy. Thus, we place highly NIR reflective 

markers on the VLP-16. The accuracy of the pose solution used as ground truth is 10-3 m. 

In our trials we consider three trajectories, namely a Forward-backward (FB), a FB curved, and a single leg 

curved (Curved). On average, the point cloud cardinality of Pk is 190 vertices. Fig. 2 (e)-(i) present the Target 

platform, an example of the acquired Pk and the ground truth trajectories of the real data scenarios. As a reminder, 

despite this set of scenarios involves real LIDAR data, the proposed DRCNN architecture is still trained on the 

simulated sinusoidal trajectory presented in Section 3.1.1.  
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(a) (b) (c) (d) 

     

(e) (f) (g) (h) (i) 

Fig. 5 (a) Target point cloud and evaluated simulated trajectories (b) SLA (c) EoI (d) Helix where motion is from low towards high z-axis 

values – (e) Target mockup (f) Target point cloud and evaluated real trajectories (g) FB (h) FB curved (i) Curved 

 

3.1.3 Evaluation criteria 

We challenge the suggested DRCNN architecture against current space navigation techniques and specifically 

against ICP [9,16,17,30,31], HoD-S combined with adaptive H∞ recursive filtering [18], OUR-CVFH combined 

with ICP [10,14,32], and Spin Images combined with ICP [32]. For the latter two cases, we apply the OUR-

CVFH/ICP and Spin Images/ICP on a frame-to-frame basis. Similarly, it should be noted that in our trials the ICP 

algorithm is used to perform odometry rather than Target tracking, and thus at instance 1k +  ICP does not initialize 

with the pose estimated at instance k . Additionally, the parameters of the proposed architecture and the competitor 

methods are tuned for optimum odometry based on the sinusoidal trajectory used to train DRCNN. Table 3 presents 

the tuned parameters, while the parameters not tuned are fixed either to the ones originally proposed by their authors 

or to their PCL implementation [57–59]. In our trials we consider that the initial position and pose R* of the Source 

is known and that all the evaluated methods aim to build-up an accurate odometry solution. It is assumed that this 

prior knowledge is obtained before commencement of any of the methods examined in this work and can be based 

on Earth-based range and Doppler measurements or spacecraft-based optical images [21]. Despite several more 

space odometry architectures exist (see Table 1), in most cases their implementation is not available and re-

implementing these methods might lead to a non-optimal performing solution. Additionally, simply utilizing 

odometry methods that were initially designed for terrestrial applications is also a non-optimum solution as the 

projected LIDAR imagery and the RGB imagery have a large domain gap. Hence, for fairness, we constrain our 

evaluation to the competitor methods with an available code, which are presented above. For completeness, it is also 
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worth mentioning that the design of DRCNN is constraint to the data domain and level of details presented here, i.e. 

LIDAR imagery projected on the planes of a local reference frame. Thus, simply applying DRCNN on the LIDAR 

data of the popular Kitti dataset [60], would lead to a non-optimum solution as the finer features of that dataset 

require high-resolution depth images 
, 1k kI +

 and deeper CNNs exceeding the three convolutional layers of our 

DRCNN. However, redesigning and tuning the DRCNN to meet these requirements is another research topic that is 

beyond the scope of this paper.  

In our trials performance is evaluated in terms of drift, i.e. RMSE between the estimated endpoint and the ground 

truth (GT) endpoint, Terror presenting the overall translational error as a percentage over the GT distance traveled, eT 

representing RMSE of the true and the estimated position, and finally t the processing time required per frame. All 

trials are implemented on a desktop with an Intel i7, an NVIDIA Quadro K2200 GPU, and 16GB of RAM, running 

Windows 10 and MATLAB 2019a. For completeness, it is worth mentioning that real space platforms use space-

grade field-programmable gate arrays (FPGA), however in the context of evaluating the conceptual validity and 

performance of DRCNN against current space robotics odometry methods, we believe that the computer platform 

used during trials is acceptable. 

 

Table 3. 

Tuned parameters  

Category Tuned parameters 

OUR-CVFH 5° angular threshold, curvature threshold 1, axis ratio 0.8 

Spin Images description radius 0.02, 8 resolution bins 

ICP point-to-point variant, 1% translational tolerance in consecutive iterations, 1000 iterations 

HoD-S description radius 20 x average Pk+1 resolution, encoding quality 10 bins  

adaptive H∞ recursive filtering 510dt −= and 0.1g = parameters of H∞, iterations equal to the HoD-S matches cardinality 

 

3.2. Simulated data odometry trials 

3.2.1 SLA scenario 

This is a constant Target pose scenario where the Source –Target range is increasing. From Table 4 it is evident 

that the suggested architecture is overall more accurate than the competitor techniques challenged, while the 

processing burden is only 60ms. Next to follow is HoD-S/H∞, while ICP does not present an appealing odometry 
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solution despite the frame-to-frame motion being relatively small. This is mainly due to the sparse nature of Pk and 

Pk+1 prohibiting ICP to settle to a globally optimum solution and due to implementing ICP on a frame-to-frame basis 

without initializing ICP at frame 1k + with the pose estimated at instance k . Regarding the Spin Image/ICP and 

OUR-CVFH/ICP solutions, both fail to present a valid odometry solution because Spin Images and OUR CVFH do 

not afford any correct feature matches between Pk and Pk+1, mainly due to the sparse nature of the Target point 

cloud. For OUR-CVFH specifically, the lack of distinctive vertex clusters on the Target point cloud automatically 

degrades the high performing OUR-CVFH feature estimation to the VFH features that are typically less robust. 

Hence, Spin Image/ICP and OUR-CVFH/ICP preserve during each frame-to-frame motion the R* initialization 

value, i.e. unity rotation matrix and zero translation matrix. Therefore, the performance metrics of these two 

methods are omitted from Table 4. 

Considering the processing burden imposed by each method, DRCNN is the fastest to execute despite being a 

two-phase method, i.e. 3D to multi-2D point remapping and activating the DRCNN. This is due to the space 

environment’s lack of background and the small-sized Targets, making the remapping process highly efficient 

requiring less than a millisecond. The activation of the DRCNN is also fast executing within a few milliseconds. 

Among the methods offering a valid odometry solution, HoD-S/H∞ is the least processing efficient as it involves 3D 

data manipulation, which is well known for imposing a higher processing burden.  

Fig. 6 presents the trajectory plots of DRCNN against HoD-S/H∞ and the ground truth (GT). For better 

readability and due to their large error, we eliminate the presentation of the trajectory plots of ICP, Spin Images/ICP, 

and OUR-CVFH/ICP.  

 

 

   
(a) (b) (c) 

Fig. 6 SLA scenario (a) XY (b) z and error plots (c) eT. Due to large errors and for better readability, Spin Image/ICP, OUR CVFH/ICP and ICP 

are neglected from (a)-(c) 
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Table 4. 

Performance Metrics for the SLA Scenario 

 drift (m) Terror (%) eT t (s) 

DRCNN 10.29 0.69 2.97 0.06 

HoD-S/H∞ 17.66 1.19 3.44 0.20 

ICP 107 106 4 x106 0.13 

 

3.2.2 EoI scenario 

This scenario considers a simultaneously frame-to-frame varying Target pose and Source – Target distance, 

emulating the Source platform orbiting around the Target platform. Table 5 presents the performance metrics of the 

evaluated methods and Fig. 7 shows the trajectory plots of DRCNN against HoD-S/H∞ and GT.  

This scenario is more challenging because in addition to the sparse Target point cloud, the trajectory is curved 

and altitude (z-axis) also varies. Despite that, the accuracy of the proposed architecture affords overall low errors 

and a low processing time. It should be noted that despite this scenario is more challenging compared to the SLA 

scenario, the performance of DRCNN is better because the trajectory is shorter and thus errors do not build up. 

However, despite the relatively short trajectory, ICP still presents large errors, while Spin Images/ICP and OUR 

CVFH/ICP also fail to offer correct feature matches for relative motion estimation. An analysis for these methods’ 

failure to offer a valid space odometry solution is presented in the SLA scenario. Despite HoD-S/H∞ and ICP being 

the fastest to execute, DRCNN is overall more appealing due to the small eT error it attains and its low 

computational requirements. 

 

Table 5. 

Performance Metrics for the EoI Scenario 

 drift (m) Terror (%) eT t (s) 

DRCNN 0.14 0.03 0.84 0.06 

HoD-S/H∞ 65.13 21.24 5.42 0.01 

ICP 1.5x104 3x104 5x104 0.01 

 

 

   
(a) (b) (c) 

Fig. 7 EoI scenario (a) XY (b) z and error plots (c) eT. Due to large errors and for better readability, Spin Image/ICP, OUR CVFH/ICP and ICP 

are neglected from (a)-(c) 
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3.2.3 Helix scenario 

This is the most challenging scenario evaluated in this work due to the large curvature of the trajectory in the X-Y 

plane, the large translational disposition in all three axes, and the small Target point cloud cardinality. Despite that, 

we intentionally push the limits of odometry requirements and investigate the performance of the evaluated 

methods. Table 6 presents the performance metrics, while Fig. 8 shows the corresponding trajectories. From Table 6 

it is evident that the performance hierarchy of all methods is preserved with the suggested DRCNN method still 

offering an appealing solution.  

Interestingly, from Fig. 8 we observe that HoD-S/H∞ from frame 651 onwards presents an unexpected behavior 

with large errors. This is because from that frame till the end of this trajectory, the relative Source – Target position 

and distance are such that they prohibit HoD-S from achieving feature matches and thus, the R* remains at its 

initialization value, i.e. unity rotation matrix and zero translation matrix. 

 

Table 6. 

Performance Metrics for the Helix Scenario 

 drift (m) Terror (%) eT t (s) 

DRCNN 9.04 0.64 2.03 0.58 

HoD-S/H∞ 468.26 33.00 51.35 0.78 

ICP 5x105 3x104 1.7x105 0.11 

 

 

   
(a) (b) (c) 

Fig. 8 Helix scenario (a) XY (b) z and error plots (c) eT. Due to large errors and for better readability, Spin Image/ICP, OUR CVFH/ICP and 

ICP are neglected from (a)-(c) 

 

3.3. Real data odometry trials 

Compared to the simulated scenarios of Section 3.2, the three real data scenarios evaluated in this section are 

more challenging due to the highly sparse Pk, the limited structure of the EnviSat Target point cloud (Fig. 5 (f)), and 
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most importantly, due to the different data domain of the training and testing data, i.e. simulated vs. real LIDAR 

data.  

 

3.3.1 FB scenario 

This scenario considers a straight-line Forward – Backward motion of the Source with respect to the Target, 

where point clouds are acquired by a LIDAR sensor that is placed on the Source platform. The performance metrics 

attained by each method are presented in Table 7, while the corresponding trajectory and error plots in Fig. 9. From 

the results presented it is evident that DRCNN affords the lowest eT errors and a low processing burden making it a 

very appealing solution, despite it is trained solely on simulated data. It should be noted that similar to the trials 

relying on simulated data (Section 3.2), Spin Images/ICP and OUR-CVFH/ICP do not attain valid feature matches 

forcing R* to preserve its initialization values. Hence, in the performance metrics of Table 7 and Fig. 9 we neglect 

presenting these two methods.  

In contrast to the simulated data scenarios, on the FB trajectory DRCNN, HoD-S/H∞, and ICP have notably better 

accuracy. This is because the Source platform is moving slow, and thus Pk and Pk+1 present a smaller frame-to-frame 

variation. Regarding ICP, despite being more accurate compared to the simulated scenarios, it still attains larger 

translational errors compared to DRCNN and HoD-S/H∞. It is worth noting that the ICP’s performance on the FB 

trajectory is in line with [18] because in this work we tune ICP according to Table 3. 

 

 

   
(a) (b) (c) 

Fig. 9 FB scenario (a) XY (b) z and error plots (c) eT. Due to large errors and for better readability, Spin Image/ICP, OUR CVFH/ICP and ICP 

are neglected from (a)-(c) 
 

Table 7. 

Performance Metrics for the FB Scenario 

 drift (m) Terror (%) eT t (s) 

DRCNN 0.08 1.08 0.03 0.06 

HoD-S/H∞ 0.12 1.65 0.08 0.24 

ICP 0.44 5.91 0.29 0.05 
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3.3.2 FB curved scenario 

This is a highly curved real data trajectory that is more challenging compared to the FB scenario. Despite that, 

DRCNN and HoD-S/H∞ achieve low eT errors with DRCNN requiring less processing time. Similarly to the FB 

trajectory, Spin Images/ICP and OUR-CVFH/ICP fail to present feature matches and thus provide a poor odometry 

performance. Table 8 presents the performance metrics and Fig. 10 the corresponding trajectories of DRCNN, HoD-

S/H∞, and ICP. Comparing Table 8 with the corresponding tables of the previous scenarios we observe that the 

performance hierarchy of the evaluated methods is still preserved and that the suggested DRCNN method remains 

an appealing solution. 

 

3.3.3 Curved scenario 

Similar to the previous scenarios exploiting real LIDAR data, in this trial DRCNN manages a low translational error 

with a highly appealing computational efficiency. Despite the eT error of DRCNN not being optimum, it is still close 

to that of the competitor methods. Performance metrics are presented in Table 9, while Fig. 11 presents the 

corresponding trajectory plots. 

 

 

   
(a) (b) (c) 

Fig. 10 FB Curved scenario (a) XY (b) z and error plots (c) eT. Due to large errors and for better readability, Spin Image/ICP, OUR CVFH/ICP 

and ICP are neglected from (a)-(c) 
 

Table 8. 

Performance Metrics for the FB Curved Scenario 

 drift (m) Terror (%) eT t (s) 

DRCNN 0.03 0.24 0.05 0.06 

HoD-S/H∞ 0.13 1.05 0.08 0.23 

ICP 2.70 21.79 0.80 0.06 
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(a) (b) (c) 

Fig. 11 Curved scenario (a) XY (b) z and error plots (c) eT. Due to large errors and for better readability, Spin Image/ICP, OUR CVFH/ICP and 

ICP are neglected from (a)-(c) 
 

Table 9. 

Performance Metrics for the Curved Scenario 

 drift (m) Terror (%) eT t (s) 

DRCNN 0.04 0.96 0.02 0.06 

HoD-S/H∞ 0.13 3.48 0.04 0.36 

ICP 2.09 55.57 0.43 0.06 

 

3.4. DRCNN variations 

For completeness, we also evaluate various DRCNN configurations to highlight the contribution of each of the 

DRCNN’s parameters to the odometry solution. Specifically, given the core DRCNN architecture presented in Table 

2, in the following trials we modify one of DRCNN’s parameters while the remaining ones are preserved. The 

evaluated parameters are the 
, 1k kI +

 input size and interpolation scheme, CNN depth, number of channels and filter 

size per convolutional layer, RNN depth, LSTM number of hidden values and activation function, and finally 

several CNN-RNN bridge layer configurations. To keep the paper in a reasonable length, evaluation is performed on 

the SLA scenario using the Terror metric. 

The first trial evaluates the performance of DRCNN under several fixed 1:1 and variable height/width ratio input 

image sizes of 
kI . Evaluation involves sizes up to 128pixels per dimension, which is a limiting factor of our GPU 

memory, with Fig. 12 presenting the corresponding performance. The latter figure shows that the lowest Terror 

attained for the 1:1 case is at 32x32 pixels 
kI  image size (4.53%), while for the variable height/width ratio case at 

128x32 pixels (0.69%). For the fixed 1:1 ratio case, despite increasing the 
kI  size the odometry performance does 

not improve mainly due to the quantization factor ( 20fq = ), and the receptive filter size within the CNN module 

(5x5 pixels), which all three parameters have a strong interaction on the DRCNN’s performance. For the variable 

height/width ratio case, the optimum image size is the 128x32 pixels, revealing that indeed the 32pixels width is 

GT DRCNN HoD-S/H∞ ICP OUR-CVFH/ICP Spin Images/ICP

-1.5
-1

-0.5
0

0.5
1

1.5
2

2.5

-1.75-1.5-1.25-1-0.75-0.5-0.25 0 0.250.50.75

y 
(m

)

x (m)

0.7

0.8

0.9

1

1.1

0 50 100 150 200 250 300 350

z 
(m

)

frame

1.E-07
1.E-06
1.E-05
1.E-04
1.E-03
1.E-02
1.E-01
1.E+00
1.E+01

0 100 200 300 400

eT
(l

o
g
 s

ca
le

)

frame



 

25 

 

well linked to the 
fq  and receptive filter size selected. This is also evident from the 64x32pixels size, which attains 

a Terror value close to the average of the 32x32 and 64x64pixels sizes. On that basis, it would be interesting to 

evaluate the 128x128pixels case to reveal if indeed the 128pixels would further benefit the DRCNN’s odometry. 

Though our GPU memory limits our trials up to 64x64pixels and 128x32pixels for the 1:1 and the variable 

height/width ratio cases, respectively.  

 

 
Fig. 12 DRCNN performance for various input image sizes and height/width ratio 

(dashed column height is for illustration purposes showing GPU memory-limited cases) 

 

One of the important parameters affecting the details in 
kI  is the interpolation method applied to the 

quantized depth images while resizing them to obtain 
kI . Thus, we evaluate three interpolation schemes, namely 

the nearest neighbor, the bilinear, and the bicubic. The first one is the simplest technique where the output pixel 

in the interpolated image is assigned the value of the pixel that the point falls within. For the bilinear 

interpolation, the output pixel value is a weighted average of pixels in the nearest 2x2 neighborhood, while the 

bicubic interpolation is an extension of the bilinear involving the nearest 4x4 neighborhood. Depending on the 

application, each method has its own strengths. For the odometry scenarios examined in this work, we observed 

that preserving the depth variations in the 
kI  is crucial as these trigger the responses within each DRCNN layer. 

Indeed, from Table 10 it is evident that as 
kI  becomes smoother the Terror metric is increasing. In terms of 

processing time, all methods are of the same order.  

 
Table 10. 

DRCNN performance for various interpolation schemes applied on 
kI  

 Terror (%) t (s) 

nearest 0.69 2 

bilinear 1.54 3 

bicubic 3.64 3 

 

 

0

2

4

6

8

10

T
er

ro
r
(%

)

Input image size (pixels)

1:1 ratio variable ratio



 

26 

 

A major contributor in DRCNN is the CNN module. The main parameters affecting the CNN’s performance are 

its depth, the number of channels in each convolutional layer, and the receptive filter size used for each convolution. 

The first batch of trials considers the DRCNN configurations presented in Table 11, where the CNN depth ranges 

from three layers up to 11 layers with the convolution channels altering from 64 up to 1024. Fig. 13 highlights that 

extending the CNN’s depth does not improve the odometry accuracy of the DRCNN (network configurations A-E of 

Table 11). This is due to the coarse level of details in 
kI , which are capable of providing generic features and thus 

the fine details extracted by the deeper layers (exceeding the three convolutional layers) are reducing the overall 

DRCNN’s performance. This does not contrast the mainstream CNN approach for RGB imagery where commonly 

deeper architectures are more robust because the information content per pixel in the visual imagery is larger 

compared to the LIDAR projections exploited in this work. Considering the number of channels per convolutional 

layer, from Fig. 13 it is obvious that preserving the same number of channels for all convolution layers is not an 

optimum choice (network configurations F-I of Table 11). This is because as the CNN depth increases, the features 

extracted by each convolutional layer become finer, and thus more channels are required to learn these features [52]. 

Accordingly, setting a large channel size for the entire CNN structure is also not optimum as the channel size is not 

matched to the level of details of the extracted features. Overall, the optimum CNN depth and channel size 

combination is found at the network configuration C of Table 11. However, given that the level of details in 
kI  is 

low, evaluating the network configuration B could potentially provide an appealing Terror metric. Though, this shall 

pose future work as currently for our computer platform this is a GPU memory-limited case.  
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Table 11. 

Various DRCNN configurations by altering the CNN depth and channels, one per column, presented as; Fully Connected layers “FC-(number of 

units)”, Convolutional layers “Conv-(number of feature maps)@ filter size”, LSTM layers “LSTM-(number of hidden values)” 

   Network configuration  
 

A B C D E F G H I 
C

N
N

 m
o
d
u
le

 

Conv-64 

@5x5 

+ReLU 

Conv-64 

@5x5 

+ReLU 

Conv-64 

@5x5 

+ReLU 

Conv-64 

@5x5 

+ReLU 

Conv-64 

@5x5 

+ReLU 

Conv-64 

@5x5 

+ReLU 

Conv-128 

@5x5 

+ReLU 

Conv-256 

@5x5 

+ReLU 

Conv-512 

@5x5 

+ReLU 

 

Conv-128 

@5x5 

+ReLU 

Conv-128 

@5x5 

+ReLU 

Conv-128 

@5x5 

+ReLU 

Conv-128 

@5x5 

+ReLU 

Conv-64 

@5x5 

+ReLU 

Conv-128 

@5x5 

+ReLU 

Conv-256 

@5x5 

+ReLU 

Conv-512 

@5x5 

+ReLU 

  

Conv-256 

@5x5 

+ReLU 

Conv-256 

@5x5 

+ReLU 

Conv-256 

@5x5 

+ReLU 

Conv-64 

@5x5 

+ReLU 

Conv-128 

@5x5 

+ReLU 

Conv-256 

@5x5 

+ReLU 

Conv-512 

@5x5 

+ReLU 

   

Conv-512 

@5x5 

+ReLU 

Conv-512 

@5x5 

+ReLU 

    

    

Conv-

1024 

@5x5 

+ReLU 

    

FC-1024 FC-1024 FC-1024 FC-1024 FC-1024 FC-1024 FC-1024 FC-1024 FC-1024 
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Fig. 13  DRCNN performance for various CNN configurations (Table 11) altering layer depths and channel size per convolutional layer  

(dashed column height is for illustration purposes showing GPU memory-limited cases) 

 

 

The next trial investigates the interplay between varying the receptive filter size and the overall DRCNN 

performance. The network configurations evaluated are presented in Table 12, with the corresponding DRCNN Terror 

presented in Fig. 14. The latter figure highlights that, as expected, the filter size has to be matched with the size of 

the extracted features. Hence, a fixed size of 5x5 or 7x7 is appealing attaining 0.69% and 2.88% Terror, respectively. 

We also evaluate variable sized-filters that either gradually increase or reduce size. Results in Fig. 14 confirm that 

indeed the extracted features are large and thus the 3x3/5x5/7x7 filter pattern is more appealing than its reversed 

variant.  
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Table 12. 

Various DRCNN configurations by altering the receptive filter size, one per column, presented as; Fully Connected layers “FC-(number of 

units)”, Convolutional layers “Conv-(number of feature maps)@ filter size”, LSTM layers “LSTM-(number of hidden values)” 

 Network configuration 

C
N

N
 m

o
d
u
le

 
Conv-64 

@3x3+ReLU 

Conv-64 

@5x5+ReLU 

Conv-64 

@7x7+ReLU 

Conv-64 

@9x9+ReLU 

Conv-64 

@3x3+ReLU 

Conv-64 

@7x7+ReLU 

Conv-128 

@3x3+ReLU 

Conv-128 

@5x5+ReLU 

Conv-128 

@7x7+ReLU 

Conv-128 

@9x9+ReLU 

Conv-128 

@5x5+ReLU 

Conv-128 

@5x5+ReLU 

Conv-256 

@3x3+ReLU 

Conv-256 

@5x5+ReLU 

Conv-256 

@7x7+ReLU 

Conv-256 

@9x9+ReLU 

Conv-256 

@7x7+ReLU 

Conv-256 

@3x3+ReLU 

FC-1024 FC-1024 FC-1024 FC-1024 FC-1024 FC-1024 

      

R
N

N
 

m
o
d
u
le

 LSTM-1000 LSTM-1000 LSTM-1000 LSTM-1000 LSTM-1000 LSTM-1000 

LSTM-1000 LSTM-1000 LSTM-1000 LSTM-1000 LSTM-1000 LSTM-1000 

LSTM-1000 LSTM-1000 LSTM-1000 LSTM-1000 LSTM-1000 LSTM-1000 

FC-1024 FC-1024 FC-1024 FC-1024 FC-1024 FC-1024 

 

 
Fig. 14 DRCNN performance for various receptive filter sizes 

(3/5/7 and 7/5/3 refer to a changing receptive filter size per convolutional layer with a pattern of 3x3/5x5/7x7 and 7x7/5x5/3x3 respectively) 

 

Another important contributor in DRCNN is the layer that bridges the CNN and the RNN modules. As a 

reminder, Eq. (1) and Eq. (3) require a 4x4 R* transformation matrix, and thus a Fully Connected (FC) layer in 

the form of a 16x1 matrix is the minimum bridge-layer size. In the following trials we evaluate several FC 

configurations including various FC matrix sizes (in the form of a column matrix) and multiple FC layers (Table 

13). It should be noted that altering the FC size is affecting the RNN’s input and output, with the excessive FC 

elements being discarded (elements 17 up to the matrix cardinality). The first batch of trials involves a single FC 

layer of various sizes. Fig. 15 shows that indeed selecting an FC-16 layer, i.e. 16x1 matrix, is appealing, but still 

this is not the optimum choice (5.67% Terror). Increasing the FC layer size elements and exploiting the first 16 

entries can be beneficial for an FC layer size of at least1024. Further increasing the FC size is not possible due to 

GPU memory limitations, but following the trend in Fig.15, the FC-2048 case can be appealing. We also 

evaluate the multi-layer FC case by investigating the effectiveness of the FC-1024/16 and FC-1024/512/16 cases, 

where each number refers to the matrix size per FC layer. Despite the FC-1024/16 not being the optimum 

configuration, it still stands between the performance of the two individual layer cases with 4.10% Terror, i.e. FC-

1024 attains 0.69 Terror and FC-16 5.67% Terror, indicating that indeed the FC-1024 setup case encodes well the 
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R* of Eq. (1). Unexpectedly, further increasing the bridge-layer size and combining the top-3 performing FC 

layers, i.e. FC-1024/512/216, does not provide performance close to the average value of the involved FC layers. 

For completeness, the discarded excessive FC elements from 17 up to the matrix cardinality were close to zero 

and did not provide any useful information. Overall, a deeper explanation of the influence of the bridge-layer to 

the DRCNN performance is not obvious, enhancing the necessity of further progress in the Explainable Artificial 

Intelligence (XAI) domain.  

 

Table 13. 

Various DRCNN configurations by altering the Fully Connected bridge-layer setup between the CNN and the RNN modules, one per 

column, presented as; Fully Connected layers “FC-(number of units)”, Convolutional layers “Conv-(number of feature maps)@ filter size”, 

LSTM layers “LSTM-(number of hidden values)” 

 Network configuration 

C
N

N
 m

o
d
u
le

 

Conv-64 

@5x5+ReLU 

Conv-64 

@5x5+ReLU 

Conv-64 

@5x5+ReLU 

Conv-64 

@5x5+ReLU 

Conv-64 

@5x5+ReLU 

Conv-64 

@5x5+ReLU 

Conv-64 

@5x5+ReLU 

Conv-64 

@5x5+ReLU 

Conv-128 

@5x5+ReLU 

Conv-128 

@5x5+ReLU 

Conv-128 

@5x5+ReLU 

Conv-128 

@5x5+ReLU 

Conv-128 

@5x5+ReLU 

Conv-128 

@5x5+ReLU 

Conv-128 

@5x5+ReLU 

Conv-128 

@5x5+ReLU 

Conv-256 

@5x5+ReLU 

Conv-256 

@5x5+ReLU 

Conv-256 

@5x5+ReLU 

Conv-256 

@5x5+ReLU 

Conv-256 

@5x5+ReLU 

Conv-256 

@5x5+ReLU 

Conv-256 

@5x5+ReLU 

Conv-256 

@5x5+ReLU 

FC-16 FC-64 FC-256 FC-512 FC-1024 FC-2048 FC-1024 FC-1024 

      FC-16 FC-512 

       FC-16 

R
N

N
 

m
o
d
u
le

         

LSTM-1000 LSTM-1000 LSTM-1000 LSTM-1000 LSTM-1000 LSTM-1000 LSTM-1000 LSTM-1000 

LSTM-1000 LSTM-1000 LSTM-1000 LSTM-1000 LSTM-1000 LSTM-1000 LSTM-1000 LSTM-1000 

LSTM-1000 LSTM-1000 LSTM-1000 LSTM-1000 LSTM-1000 LSTM-1000 LSTM-1000 LSTM-1000 

FC-16 FC-64 FC-256 FC-512 FC-1024 FC-2048 FC-16 FC-16 

 

 
Fig. 15 DRCNN performance for various CNN-RNN bridge-layer configurations, FC-1024/16 and FC-1024/512/16 refer to multi-layered 

configurations with a pattern of FC-1024 layer succeeded by an FC-16 layer and succeeded by an FC-512 followed by an FC-16 layer 

respectively. (dashed column height is for illustration purposes showing GPU memory-limited cases) 

 

The final batch of our trials involves modifying the RNN module parameters. Hence, we alter the RNN depth by 

evaluating several LSTM layer depths ranging from one up to eight, and for each LSTM layer we also vary the 

number of hidden values ranging from 100 up to 1000. The performance of the RNN variants is presented in Fig. 16. 

A common feature is that all RNN configurations attain a global minimum Terror and thereafter present a minor 

fluctuation at higher Terror values. Overall, increasing the LSTM layers improves performance, while for more than 

six LSTM layers the Terror metric stabilizes indicating that for our image projections , 1k kI +  a shallow to medium 
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depth is sufficient. Considering the number of hidden values, these do not considerably contribute to the DRCNN 

performance, especially for up to two or more than six LSTM layers. For the intermediate two-to-five LSTM layers 

case, a minor performance variation is observable with the three LSTM-1000 configuration network being the 

optimum choice and the five LSTM-100 structure closely following. Again, a clear explanation of the interplay 

between the number of hidden values in each LSTM layer and the DRCNN performance is not obvious and further 

study in the XAI domain can be enlightening.  

 

 
Fig. 16 Various RNN depth and LSTM hidden values configurations 

 

Finally, we evaluate the interplay between the Terror metric and the LSTM’s activation function for the cells and 

hidden states, and the gates. As expected, from Table 14 it is obvious that setting the sigmoid as the activation 

function for the gates presents on average lower odometry errors. Additionally, choosing the softsign activation 

function for the cells and hidden states also affords lower Terror values. However, from Table 14 it is clear that the 

combination of the latter two activation functions is not optimum highlighting that the internal operations within the 

LSTM are still an open case for further study. 

 

Table 14. 

DRCNN performance Terror (%) for various LSTM activation functions  

  Cell and hidden states   

  tanh softsign average 

Gates  
sigmoid 0.69 3.12 1.90 

hard-sigmoid 13.08 1.65 7.36 

 average 6.88 2.38  

 

3.5. Discussion 

From the trials performed in Sections 3.2 and 3.3, it is evident that DRCNN is capable of low error space robotics 

odometry with an appealing processing time. Indeed, for the scenarios involving simulated data (Section 3.2), the 
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proposed deep learning network attains smaller errors compared to the competitor methods, without compromising 

computational efficiency. Regarding HoD-S/H∞ in the EoI and the Helix scenarios, it fails to correctly estimate the 

z-axis translation. Since this method and the DRCNN share the same odometry estimation scheme (Eq. (2) and Eq. 

(3)), the performance difference is purely due to their architecture. Specifically, the odometry accuracy of HoD-

S/H∞ depends on the number of the true positive correspondences, forcing this technique to fail if the point 

correspondences between the kP  and 1k +P  point clouds are only a few because the H∞ filtering process performs a 

limited number of iterations that are equal to the cardinality of the correspondences. Considering the Spin 

Image/ICP and OUR-CVFH/ICP solutions, these fail to present a valid odometry solution because both feature 

matching methods, i.e. Spin Images and OUR CVFH, do not attain true positive correspondences due to the sparse 

nature of the Target point cloud. Finally, ICP presents a low odometry accuracy mainly due to implementing it 

individually on a frame-to-frame basis rather than initializing it with the pose estimated at the previous instance. 

However, we follow this strategy to preserve a uniform frame-to-frame pose estimation scheme for all techniques 

evaluated here. For the real data scenarios (Section 3.3), DRCNN is still an appealing space robotics navigation 

solution with HoD-S/H∞ closely following. For the latter method, it presents more accurate odometry compared to 

the simulated data scenarios due to the short trajectory path of this scenario and the fact that the HoD-S feature 

descriptor is specifically designed for sparse point clouds. Likewise, ICP is more accurate compared to the simulated 

data scenarios due to the short trajectory path. Finally, Spin Image/ICP and OUR-CVFH/ICP are still prone to the 

highly sparse Target point clouds and thus fail to establish true positive correspondences and ultimately a valid 

odometry solution.  

The most important attribute of DRCNN is its adaptive capability that permits DRCNN to be trained on simulated 

data and evaluated on real 3D LIDAR data, and still attain a space robotics odometry solution with low errors. This 

feature is quite important as it enables the capability of offline training on a wide variety of low-cost simulated data 

scenarios neglecting the current requirement of setting up facilities to acquire real 3D LIDAR data to train a deep 

learning network. The adaptability of our DRCNN architecture is due to the following reasons:  

a. Multi-projection of the frame-to-frame point clouds Pk and Pk+1 enabling the CNN module to extract 2D 

depth image features from a large portion of the Target point cloud that depends on the Target pose relative to the 

LIDAR sensor onboard the Source. Within our multi-projection process (Section 2.1) we intentionally quantize the 

projected point clouds (Eq. (5)) assisting in the establishment of feature correspondences between Pk and Pk+1 
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despite minor changes due to the relative Source – Target motion. 

b. The CNN module involves a shallow network, i.e. only three convolutional layers, forcing the extracted 

features to be quite generic, e.g. corners, blobs and edges [61,62]. The latter enables the trained-on-simulated-data 

CNN module to generalize to such an extent that it is still capable of real data processing.  

c. The RNN module exploits feature maps that rely on generic features and thus regardless of the domain, 

navigation dynamics are still accurately modeled. 

4. Conclusion  

In this work, we present a Deep Recurrent Convolutional Neural Network that poses a low error and 

computationally efficient space robotics odometry solution. Our methodology combines the advantages of 3D 

implementation, the processing efficiency of manipulating 2D data, and finally the advantages of CNN and RNN 

architectures. Specifically, our method relies on LIDAR data that are remapped into multiple 2D depth image 

projections affording a lower computational burden compared to directly manipulating 3D data. Our suggested 

DRCNN comprises of a CNN module and an RNN module to combine the advantages of both these networks, i.e. 

feature extraction and learning by the CNN and robust complex dynamics modeling by the RNN.  

To evaluate the efficiency and robustness of DRCNN, we initially train our network on a simulated space 

navigation scenario and then challenge it on realistic simulated space navigation scenarios and real 3D LIDAR data. 

Our trials demonstrate that the proposed DRCNN architecture is more accurate than current methods while imposing 

a very low processing burden. Additionally, one of the highlights of our architecture is its adaptive capability, as it is 

trained on simulated data and is still capable of providing accurate odometry on data of a different modality (real 

data). This adaptive nature of our proposed architecture affords extending the odometry capabilities of future space 

robotic platforms. 

Despite the promising performance of DRCNN, it is limited by the capabilities of our computer platform. Hence, 

future work involves implementing DRCNN on a computer platform with a larger GPU memory so that the full 

potential of the DRCNN can be revealed without the constraints presented in this paper. Furthermore, future scope 

shall also evaluate DRCNN on more complex real data scenarios with a longer trajectory path. 
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