

City, University of London Institutional Repository

Citation: Kechagias-Stamatis, O., Aouf, N., Dubanchet, V. & Richardson, M. A. (2020).

DeepLO: Multi-projection deep LIDAR odometry for space orbital robotics rendezvous
relative navigation. Acta Astronautica, 177, pp. 270-285. doi:
10.1016/j.actaastro.2020.07.034

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/24734/

Link to published version: https://doi.org/10.1016/j.actaastro.2020.07.034

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

1

1. Introduction

Odometry for space robotics applications is an active research area due to the increasing number of robotics

platforms deployed into space and the necessity for their autonomous operation. Relative space navigation of a

Source spacecraft platform in relation to a non-cooperative Target platform, i.e. with unknown attitude (pose) is

DeepLO: Multi-projection Deep LIDAR Odometry for Space

Orbital Robotics Rendezvous Relative Navigation

O. Kechagias-Stamatis a,b,*, N. Aouf b V. Dubanchetc and M. A. Richardson a

a Centre of Electronic Warfare, Cranfield University Defence and Security, Shrivenham, SN6 8LA, UK

b Department of Electrical and Electronic Engineering, City University of London, EC1V 0HB, UK

 c Department of Space Robotics and GNC/AOCS, Thales Alenia Space, Cannes, France

Abstract

This work proposes a new Light Detection and Ranging (LIDAR) based navigation architecture that is appropriate

for uncooperative relative robotic space navigation applications. In contrast to current solutions that exploit 3D

LIDAR data, our architecture suggests a Deep Recurrent Convolutional Neural Network (DRCNN) that exploits

multi-projected imagery of the acquired 3D LIDAR data. Advantages of the proposed DRCNN are; an effective

feature representation facilitated by the Convolutional Neural Network module within DRCNN, a robust modelling of

the navigation dynamics due to the Recurrent Neural Network incorporated in the DRCNN, and a low processing

time. Our trials evaluate several current state-of-the-art space navigation methods on various simulated but credible

scenarios that involve a satellite model developed by Thales Alenia Space (France). Additionally, we evaluate real

satellite LIDAR data acquired in our lab. Results demonstrate that the proposed architecture, although trained solely

on simulated data, is highly adaptable and is more appealing compared to current algorithms on both simulated and

real LIDAR data scenarios affording better odometry accuracy at lower computational requirements.

Keywords: Convolutional Neural Networks, Deep learning, LIDAR, Multi-dimensional processing, Recurrent Neural

Networks, Relative navigation, Robotics

* Corresponding author

E-mail address: o.kechagiasstamatis@Cranfield .ac.uk

mailto:o.kechagiasstamatis@Cranfield%20.ac.uk

2

considered a hot research topic. This is because precise relative space navigation will enable a Source spacecraft to

perform autonomous close-proximity maneuvers and achieve uncooperative rendezvous with a non-cooperative

Target platform, contributing towards autonomous active space debris removal and satellite inspection and docking

operations. In any of these scenarios, the Target platform is likely to be non-cooperative and therefore unable to

exchange with the Source platform its pose actively or passively, e.g. via known markers placed on the Target.

Therefore, the Source spacecraft must estimate its relative position and attitude with respect to the Target platform

by utilizing only its onboard sensors. Current solutions involve 2D visual data in a monocular [1,2] or a stereo

camera configuration [3–6], 2D Infrared (IR) thermal data [7], and 3D Light Detection and Ranging (LIDAR) data

[8,9,18–24,10–17]. A comprehensive review of spacecraft pose determination techniques for close-proximity

operations is presented in [25].

Even though each modality has its own strengths and weaknesses, LIDAR is preferred due to its proven

robustness in the outer space environment [23]. Although visual [26] and IR [7] sensors have already been exploited,

with the latter having several advantages over the former such as operating during day and night under harsh

illumination conditions. However, the accuracy of IR thermal odometry relies on the temperature of the Target’s

components that may be affected by internal parameters, e.g. heat dissemination of the platform’s components, and

by external parameters, e.g. reflection of the sun’s radiation. This temperature fluctuation may affect the robustness

of the IR feature detection and matching process, which are the core modules in [7]. On the contrary, odometry

based on 3D LIDAR data outmatches its 2D counterparts (visual and IR) as it operates during day, night and under

poor visibility conditions, is independent of the Target’s thermal properties, is capable of revealing the underlying

structure of an object [27,28], and can provide both 3D position and intensity data [25].

 Spurred by the advantages of 3D LIDAR odometry for space robotics applications, the research community

suggests quite a few techniques that use LIDAR data. Specifically, [15] exploits RGB-D data and suggests a sliding

window filtering scheme that is combined with a Gauss-Newton method, while initial pose estimation is generated

by an OPnP algorithm. Galante et al. [13] propose the Argon relative navigation system that comprises of a stereo

optical camera setup and a flash LIDAR device. On the data acquired, Argon applies edge detection and a custom

Iterative Closest Point (ICP) scheme to estimate a 6-degrees of freedom pose. Other solutions perform pose

initialization via template matching and then apply the typical ICP [29] for frame-to-frame pose estimation

[9,16,17,30,31]. Variants of that architecture substitute template matching either with Principle Component Analysis

3

(PCA) [9,32] or with global 3D feature matching using the Oriented Unique Repeatable Clustered Viewpoint

Feature Histogram (OUR-CVFH) [14,33]. Other solutions available in literature fuse pose estimation based on

OUR-CVFH or on Spin Images [34] (a 3D local feature descriptor) combined with ICP, with gyroscopic data and

then perform Target platform tracking using a Multiplicative Extended Kalman Filter (MEKF) [10,19,32]. Volpe et

al. [11] utilize 2D features from the visual domain combined with LIDAR based distance estimation and Unscented

Kalman Filtering (UKF) for performance improvement. Alternatives to pure ICP registration for pose estimation

have also been proposed, by substituting ICP with a UKF filter, an iterative least-squares (LS) scheme, or with an

Extended Kalman Filter (EKF) [21], [20]. Lately, in [18] the HoD-S 3D local feature matches are recursively

filtered via an adaptive H∞ filter affording an accurate space navigation solution. This work is further extended in

[35] where several combinations of 3D features and recursive filtering schemes are evaluated on both real and

simulated scenarios. Kechagias-Stamatis et al. [24] suggest a non-standard space navigation solution where 3D

LIDAR data are remapped into multiple 2D planar projections. On the latter ones, 2D keypoint detection, 2D feature

description, and cross-plane feature matching are applied, and 2D correspondences are back-projected in the initial

3D space and are then filtered via a Kalman or an H∞ filter. The novelty of this architecture is the combination of

advantages of both the 3D and 2D data space and ultimately affording accurate odometry at a low processing time.

A comprehensive list of current 3D space odometry methods is presented in Table 1.

It is worth noting that in contrast to space robotics odometry, terrestrial odometry (ground and aerial) is more

mature, spreading over several data domains such as 2D visual in a monocular or stereo camera configuration

[36,37], 2D IR [38], fusion of visual with IR data [39], fusion of 3D LIDAR with visual data [40], 3D LIDAR fused

with inertial data [41], purely on 3D data [42] or exploiting RGB-D data [43–45]. For completeness, the reader is

referred to [46] for an extensive review on the odometry methods for terrestrial applications. However, simply

extending current algorithms designed for terrestrial robotics odometry into the field of space robotics odometry is

not an optimum solution because the space environment is completely different posing additional challenges. Major

differences are; first the lack of surrounding objects forcing odometry to rely on a relatively limited number of

vertices belonging to a single and usually small-sized object, and second, the low point cloud complexity of space

objects reducing the unique and non-degenerated geometries on the Target, which are important for the odometry

solution to converge to an acceptable estimation.

4

Table 1.

Current 3D space odometry architectures

No Reference Year
Point cloud

type
Hardware Method

1 Galante et al. [13] 2012 Real
stereo camera

and LIDAR
2D edge tracking and custom ICP for pose estimation

2 Sell et al. [14] 2014 Real LIDAR
OUR-CVFH features for pose initialization and ICP for point

cloud registration and pose estimation

3 Opromolla et al. [16] 2014 Simulated LIDAR
optimized template matching for pose initialization and ICP

for point cloud registration and pose estimation

4 Opromolla et al. [17,30] 2015 Simulated LIDAR
optimized template matching for pose initialization and ICP

for point cloud registration and pose estimation

5 Rhodes et al. [32] 2016 Simulated

Gyroscope,

star tracker,

LIDAR

OUR-CVFH or Spin Images features for pose initialization

and ICP for point cloud registration and pose estimation that

is fused with sensor inputs via a MEKF module

6 Liu, Zhao and Bo [31] 2016 Simulated LIDAR template based pose initialization and ICP object tracking

7 Woods and Christian [10] 2016 Simulated

Gyroscope,

GPS, star

tracker,

LIDAR

OUR-CVFH features for pose initialization and ICP for point

cloud registration and pose estimation that is fused with

sensor inputs via a MEKF module

8 Opromolla et al.[9] 2017 Real LIDAR
optimized template matching or PCA for pose initialization

and ICP for point cloud registration and pose estimation

9 Song [15] 2017 Simulated
RGB-D

camera

sliding window filter (SWF) smoothing to estimate the

structure and pose on SE(3). Gauss-Newton (GN) method is

implemented for each window with an initial guess

generated by OPnP algorithm

10 Volpe et al. [11] 2017 Simulated
Optical camera

and LIDAR

2D feature tracking based odometry combined with LIDAR

for distance measurement and UKF

11 Martinez et al. [12] 2017 Simulated ToF camera

geometrical based orientation estimation for pose

initialization, ICP for pose estimation and EKF for kinematic

estimation

12
Rhodes, Christian and Evans

[19]
2017 Simulated LIDAR

OUR-CVFH features or OUR-CVFH combined with MEKF

for trajectory smoothing

13 Dietrich and McMahon [20] 2017 Simulated LIDAR point cloud registration using UKF

14 Dietrich and McMahon [21] 2018 Simulated LIDAR point cloud registration using UKF, LS and EKF

15 Jalalabadi and Malaek [23] 2018 Simulated LIDAR

NN ICP registration using kd-tree, M-UKF trajectory

filtering and Upper Bound fusion for multi observer data

acquisition

16
Kechagias-Stamatis and

Aouf [18]
2019 Real LIDAR HoD-S local features with adaptive H∞ recursive filtering

17
Kechagias-Stamatis, Aouf

and Richardson [24]
2019 Simulated LIDAR

3D-to-multi-2D point cloud data remapping followed by

multi-2D keypoint detection, description, and cross-plane

feature matching. 2D correspondences are then back-

projected to the 3D space and filtered via Kalman or H∞.

18 Chen et al. [47] 2019 Real Optical camera

a deep network predicts the position of the predefined

landmark points in the input image and pose estimation is

performed by establishing the 2D-3D correspondences

between the input image and the created 3D Target model

19
Kechagias-Stamatis, Aouf

and Dubanchet [35]
2019

Real and

Simulated
LIDAR

Evaluation of multiple combinations of 3D features and

recursive filtering schemes

Spurred by the advantages of 3D LIDAR odometry and the appealing performance of deep learning for

terrestrial odometry applications [46], we present a Deep Recurrent Convolutional Neural Network (DRCNN) that is

appropriate for space relative navigation. Our deep LIDAR odometry solution incorporates a Convolutional Neural

5

Network (CNN) module and a Recurrent Neural Network (RNN) module. Despite the CNN and RNN modules are

applied on 2D data, we exploit 3D LIDAR point cloud data by properly remapping the 3D vertices to the 2D data

domain. Advantages of the proposed DRCNN architecture are:

a. Effective feature representation, via adopting a CNN module, where features can be generalized and

ultimately used in untrained environments.

b. Robust and automatic modeling of the navigation dynamics due to the RNN module.

c. Transforming the acquired 3D LIDAR data into multiple 2D depth maps to reduce the processing burden but

simultaneously minimize information loss.

d. DRCNN is highly adaptive as it can be exclusively trained on simulated data and tested on both simulated as

well as real LIDAR data affording better odometry accuracy than current algorithms even if the data modality

changes. This feature is very important because DRCNN is capable of offline training on simulated data but still

capable of accurate odometry on untrained data of a different modality, increasing the flexibility of the robotic

platform to perform odometry on a broad spectrum of scenarios.

The remainder of the article is organized as follows: Section 2 introduces the proposed DRCNN odometry

architecture and Section 3 evaluates the suggested technique against current ones on realistic simulated and real

LIDAR data scenarios. Our conclusions are presented in Section 4.

2. DRCNN Odometry

The problem addressed in this work is LIDAR odometry for relative space robotics navigation of a Source

platform equipped with a 3D LIDAR sensor that moves in the 3D space relative to a Target platform with an

unknown pose. Therefore, given two consecutive Target point clouds
1{ ,..., }a

k k kp p=P and
1

1 1 1{ ,..., }b

k k kp p+ + +=P

captured by the Source’s LIDAR sensor, with each vertex being in the form pk=(xk,yk,zk) and pk+1=(xk+1,yk+1,zk+1), the

generic odometry process aims to calculate a rigid body transformation,

 *

0 1

R T
R

=

 (1)

where R is the rotation and T the translation component, that remap Pk to Pk+1:

 1k kp Rp T+ = + (2)

6

1 11 12 13

1 21 22 23

1 31 32 33

k k x

k k y

k k z

x r r r x T

y r r r y T

z r r r z T

+

+

+

= +

 (3)

Despite that attitude R may originate from Euler or Quaternion angle encodings, we express R via a rotation matrix

[2,48–50] but we ensure it conforms to the SO(3) constraints both during the training and the evaluation phases

presented in Section 3. We chose this angular representation as it is suitable for the regression we develop through

the last part of our network and it is also meeting the motion estimation manner used in the competitor filtering

approaches presented in Section 3. Hence, maintaining the same way of regressing the motion quantities is useful for

the comparison of the results, because inevitably the performance difference between the proposed technique and

the competitor methods is not due to the angular representation but purely to the odometry pipeline. Regarding the

SO(3) constraints of the rotation matrix elements, our training scheme also considers learning these constraints from

the known ground truth R that is used. In fact, the DRCNN during training is naturally imposed to learn the SO(3)

constraints because the ground truth R is free of these constraints. Thus, implicitly the R estimation is practically

optimized during training to meet the SO(3) constraints and this embedded knowledge of DRCNN is then used

during testing, providing rotation matrices respecting these constraints. However, if during testing DRCNN delivers

a rotation matrix that does not meet the SO(3) constraints, then the solution is rejected and the odometry solution is

recalculated with additional randomness to overcome the previous local minimum. In case the new odometry

solution still does not conform to the constraints, then it is discarded and * *

1k kR R+ = . However, due to optimizing the

R estimation to meet the SO(3) constraints, in the vast majority of pose instances the initial rotation matrix delivered

met these constraints. It is worth noting that in contrast to [2,48–50] that express R via a rotation matrix without

explicitly dealing theoretically with the SO(3) constraints, in our work we practically tackle the theoretical aspect of

these constraints.

Additionally, it should be noted that Eq. (1) – (3) should ideally involve the true point correspondences between

the kP and 1k +P point clouds that exactly link the same physical points. Typical methods for establishing point

correspondences between kP and 1k +P involve 3D local or global feature matching of a subset of the vertices

belonging to kP and 1k +P . However, in real-world scenarios, point correspondences are unknown, and depending on

the relative motion between kP and 1k +P there might not be an actual one-to-one point correspondence at all. In that

7

case, the odometry method seeks the optimum point correspondences based on a minimum feature matching error,

where each feature is the representative description of the surroundings of each point. The optimum point

correspondences are then input to Eq. (1) – (3) aiming at ultimately presenting the minimum error between the

calculated and the ground truth R and T values, respectively. Though the point correspondence quality defines the

odometry accuracy and any deviation of the estimated R and T compared to the corresponding ground truth values

can only be presented during controlled experimental setups and not during real-world scenarios.

Then at instance u, the position of the Source platform relative to the d uncooperative Target platform is given

by:

 * *

1

u

uR R

=

= (4)

In the space-related literature, *R is typically estimated by a two-stage process, i.e. coarse Target pose initialization

via template matching or 3D feature matching (global or local features), and then fine Target pose estimation via an

iterative process. However, as presented in Section 3, current solutions suffer from; a high processing burden,

template/feature mismatching, and ICP not always converging to an optimum odometry solution.

2.1. Pre-processing LIDAR data

Despite 3D data offering quite a few advantages over their 2D counterpart (see Section 1), the 3D data modality

imposes a higher computational burden [28]. Therefore, in our proposed space robotics navigation architecture we

take advantage of both data modalities (3D and 2D) by remapping
kP and

1k +P from the 3D to the 2D domain where

we create three 2D depth images. Specifically, for
kP and accordingly for

1k +P , we transfer the XYZLIDAR reference

frame that is aligned and centered at the LIDAR sensor coordinate frame onboard the Source platform to the

geometric center of the target point cloud
kP and create the XYZTarget reference frame. Then, we quantize the

floating-point vertex coordinates 1{ ,..., }a

k k kp p=P into
1

_ _ _{ ,..., }a

Q k Q k Q kp p=P with,

 () ()_ _ _ _, , , ,fQ k Q k Q k Q k kp yqx y z p x z = (5)

where
fq is a quantization factor, the bottom-round process, and α the point cloud cardinality. Next, we project

_Q kP on each plane of the XYZTarget reference frame by utilizing an orthographic projection process orthoP :

8

1 _

2 _

_ _
3 _

0 0 0

0 0 0

0 0 0

1 0 0 0 1 1

q Q k

q Q k
orthoQ k Q k

q Q k

x c x

y c y
p P p

z c z

 = = =

 (6)

Depending on the projection plane, we substitute with zero the appropriate binary remapping coefficient

 1 2 3, , 0,1c c c of orthoP , e.g. for c1=c2=1 and c3=0, the XY depth image
_

XY

Q kp is created. The three orthographic

projections _ _ _, ,XY XZ YZ

Q k Q k Q kp p p are depth images created in a form of parallel projection of the point cloud onto the

corresponding planes of the XYZTarget reference frame, which are simplified versions of
_Q kP . The depth value of

each pixel within each _Q kp is unique and represents the distance between the Target and the XYZTarget reference

frame. An advantage of this projection scheme is its fast execution time. The reason for translating the XYZLIDAR to

the Target platform and create the XYZTarget reference frame is to preserve the Target’s details during the

quantization process of Eq. (5), while in parallel keep the projection images _ _ _, ,XY XZ YZ

Q k Q k Q kp p p small to afford low

memory and processing requirements. Given that the x-axis is towards the Target platform, the z-axis is upwards

with respect to the LIDAR sensor and the y-axis is at right angles, by projecting the Target point cloud on the

XYZLIDAR frame the _

XZ

Q kp and the _

XY

Q kp would contain no depth information for the distance between the Source and

the Target, but would inevitably increase the _

XZ

Q kp and the _

XY

Q kp images. It is worth noting that we also investigated

preserving the original XYZLIDAR frame and applying range gating to create projections that contain only the Target.

Though, the processing time for range gating was slightly more processing deficient than translating the reference

frame.

Selecting fq is not trivial as it highly affects the size of the multi-2D projections and the number of details

contained in each projection. In fact, high fq values create large non-uniform 2D projections that impose a greater

computational burden and memory requirement of the processing platform. On the contrary, small fq values

discard the point cloud topology information during the 3D to 2D remapping process by subsampling the projected

data. For our trials we set 20fq = such as to fully exploit the memory capability of our computer platform, while

still preserving the Target’s point cloud topology. For completeness, Fig. 1 presents the _

XY

Q kp for several fq values.

9

(a) (b) (c)

(d) (e) (f)

Fig. 1 Interplay between the _

XY

Q kp projection and fq (a) 3D point cloud model and _

XY

Q kp projection with a fq value of (b) 5 (c) 10 (d) 20 (e)

40 (f) 80 (closer pixels are hotter, best seen in color)

2.2. Deep Recurrent Convolutional Neural Network

Given the three depth images of
_Q kP , i.e. _ _ _, ,XY XZ YZ

Q k Q k Q kp p p , we create a stacked image,

 _ _ _

XY XZ YZ

k Q k Q k Q kI p p p= (7)

where || () is a 1D vertical concatenation process. Then we create
, 1 1k k k kI I I+ += that is input to our proposed

DRCNN network, which comprises of a CNN module that is followed by an RNN module.

However, the image size of each projection _ _ _, ,XY XZ YZ

Q k Q k Q kp p p is not consistent and thus all three projections must

be resized to apply Eq. (7). Hence, prior to creating kI we resize each projection to 128x32 pixels by applying to it

a Nearest-neighbor interpolation scheme. For this work, the advantage of the Nearest-neighbor interpolation over the

bilinear and bicubic interpolations is not smoothing the topology information of the projections and thus attaining

lower odometry errors. It is worth noting that during our preliminary trials we evaluated several image size

combinations but concluded that the 128x32 image size per projection was the optimum. Hence, the depth image

input images kI and 1kI + have a size of 384 pixels x 32 pixels. A study on several depth image input sizes and

interpolations schemes is presented in Section 3.4. An example of the kI processing stages is presented in Fig. 2.

10

(a) (b) (c)

Fig. 2 (a) _

XY

Q kp projection with 20fq = (b) Nearest-neighbor interpolated of _

XY

Q kp (c) stacked image containing the interpolated

_ _ _, ,XY XZ YZ

Q k Q k Q kp p p (closer pixels are hotter, best seen in color)

The CNN module performs feature extraction on
, 1k kI +

 and since both components of
, 1k kI +

 involve 2D depth

images, the associated features are geometric rather than texture-based. This is important as the features can be

generalized increasing the overall robustness. The configuration of the CNN module is presented in Table 2 (layers

1-8). Initially, the 2D depth image
, 1k kI +

 of size 768 pixels x 32 pixels is input to layer 1. The size of
, 1k kI +

 is

experimentally defined during training and is the largest possible such as to preserve the details of Pk and Pk+1 and

ultimately afford an appealing odometry solution. However, the size of
, 1k kI +

 is limited by the available GPU

memory. The following six layers are three convolutional layers, each of which is followed by a Rectified Linear

Unit (ReLU) activation layer. The reasoning for exploiting a shallow CNN architecture rather than a deep one is

linked to the
, 1k kI +

 image size and the selection of the fq , both of which determine the level of details within
, 1k kI +

.

Specifically, from Fig. 2 (c) it is obvious that the level of details in
, 1k kI +

 is not high and thus the high-level domain-

based features produced by the deep convolutional layers regularly used in RGB based odometry and classification

applications are not optimum for our work. Instead, low-level features extracted from shallow CNNs are more

appropriate for our
, 1k kI +

 projections. The receptive filter size of each convolutional layer is fixed to 5x5, which for

the quantization factor
fq used during the multi-projection process, enhances capturing large features. Regarding

the number of channels in each convolutional layer, we intentionally double them in any successive convolutional

layer to afford the CNN module to learn more features. Finally, the CNN module concludes with a Fully Connected

layer to bridge the CNN and RNN modules. This is because the cardinality of the output tensor ReLU_3 exceeds the

GPU memory limitations of our testing platform and thus we use the Fully Connected_1 layer to reduce the tensor

size of the CNN output. The size of the latter layer is experimentally defined and is the largest possible based on the

available GPU memory to minimize information loss. An example of the activated responses from the 256 channels

11

at layer Convolution_3 is presented in Fig. 3, confirming that the extracted features are quite generic without being

stable on any particular characteristics of the Target due to the minor depth variations of the
, 1k kI +

. A study on

several CNN depths, number of channels, receptive filter sizes, and CNN-RNN bridge-layer configuration is

presented in Section 3.4.

Table 2.

DRCNN configuration

Layer

No

Network

type
Layer type Variables

1

C
N

N

Input 768x32 depth image

2 Convolution_1 filter size 5x5, padding 3, stride 2, channels 64

3 ReLU_1 -

4 Convolution_2 filter size 5x5, padding 2, stride 2, channels 128

5 ReLU_2 -

6 Convolution_3 filter size 5x5, padding 2, stride 2, channels 256

7 ReLU_3 -

8 Fully Connected_1 1024x1 matrix

9

R
N

N

LSTM_1
per LSTM layer: hidden values 1000, tanh activation function for cell and

hidden states, sigmoid activation function for gates, mini Batch Size 10
10 LSTM_2

11 LSTM_3

12 Fully Connected_2 1024x1 matrix

13 Regression 1024x1 matrix converted to matrix R*

(a) (b)

Fig. 3 CNN activation response (a)
, 1k kI +

 (b) response example at layer Convolution_3

(closer pixels/highest response respectively are hotter, best seen in color)

The RNN module aims at automatically modeling the Source – Target platform dynamics and the relations

between the
, 1k kI +

 features extracted by the CNN module. It is worth noting that compared to handcrafted models

used to describe motion and geometry, the RNN module is more flexible to learn the motion model. This is because

RNN and specifically the Long Short-Term Memory (LSTM) layers used in our DRCNN architecture can learn

long-term dependencies between image projections that exceed two sequential depth image projections, i.e. frame k

and k+1. For an analysis on the operating principles of LSTM layers, the reader is referred to [51]. The proposed

RNN module consists of three LSTM layers to enhance the RNN capability in learning a high-level representation

and model complex dynamics. For completeness, it is worth mentioning that in Section 3.4 we evaluate several

12

LSTM layer depths, number of hidden values, and activation functions. However, due to GPU memory limitations,

the maximum number of hidden values is limited to 1000 for three LSTM layers.

The three LSTM layers are then followed by the Fully Connected_2 layer that has the same tensor cardinality as

Fully Connected_1. Finally, the last layer of the RNN module is a Regression layer the output of which is converted

into R* by exploiting elements 1-12 so that,

11 12 13 21 22 23 31 32 33 []T

x y zregression layer r r r r r r r r r t t t= (8)

while the remaining tensor elements 13-1024 are discarded. This is because the CNN output layer Fully

Connected_1, along with the input and the output layers of the RNN module need to be of the same size, i.e.

1024x1, while the R* is a 4x4 matrix containing the 12 rotational and translational values. As a reminder, the size of

the Fully Connected_1 layer is the largest possible to balance information loss and the memory limitations of our

GPU. Finally, the configuration of the RNN module along with the parameters per layer are presented in Table 2

(layers 9-13), while the proposed DRCNN architecture for space robotics navigation is presented in Fig. 4. A study

on several RNN depths, LSTM activation functions, and the number of LSTM hidden values is presented in Section

3.4.

The suggested DRCNN architecture is appealing for the following reasons:

a. Classic odometry involves local feature detection, matching, and then motion estimation based on the

matched frame-to-frame features. The data domain used is usually 3D LIDAR, 2D visual, 2D IR, or a mixture of

these. In DRCNN, we rely on a fully autonomous system that exploits the CNN module features and the robust

navigation dynamics modeling of the RNN module, without involving any process of the typical odometry pipeline,

i.e. feature detection and matching.

b. Compared to current deep learning odometry solutions for space robotics odometry [22], DRCNN exploits

3D LIDAR data rather than 2D visual imagery, affording the advantages of LIDAR over visual data as presented in

Section 1. In contrast to the DRCNN proposed in this paper, space odometry literature in [22] purely relies on CNN

and does not involve any type of RNN module. Additionally, the solutions presented in [52,53] propose deep

learning odometry methods for terrestrial applications that combine CNN with RNN layers. However, these

techniques exploit 2D visual data rather than 3D LIDAR data as done in this work and also suffer from the

limitations of visual imagery, e.g. day operating conditions. An additional advantage of the proposed DRCNN over

13

the networks of [52,53] is that due to the larger information content per pixel of the visual imagery compared to the

LIDAR projections exploited here, our CNN module is shallower empowering its generalization capability and

ultimately affording DRCNN to be trained on simulated data and achieving appealing accuracy on real LIDAR data.

It should be noted that despite DRCNN attains an appealing odometry accuracy, it also has a few constraints that

are mainly linked to the available GPU memory of our computer platform, which in turn impose limitations to the

entire architecture and performance of DRCNN. Specifically, the weaknesses and sensitivities of DRCNN are:

a. the
, 1k kI +

 depth image size, which along with the quantization factor fq determine the level of details within

each point cloud projection. From our preliminary tests, we observed that the higher the level of details, the better

the odometry accuracy is, but also a deeper CNN architecture is required to exploit the fine details. However, both

these features impose larger GPU memory requirements.

b. The FC_1 size, which links the CNN and the RNN modules. Inevitably due to memory constraints, we

exploited the largest possible FC_1 size by trading off accuracy because the layer’s size is linked with the amount of

information input to the LSTM module.

c. The hidden values within each LSTM layer are constrained to 1000, while based on our preliminary trials,

increasing the number of hidden values may benefit the odometry accuracy.

d. The memory limitations presented above inevitably limit the DRCNN application to Targets with a known

satellite model. This is because the selection of fq is linked to the distinct topology information and the size of the

Target model and thus cannot be generalized to facilitate a broad spectrum of satellites that contain different levels

of details.

14

Projections at k

Projections at k+1

Input

image

Legend

Recurrent Neural

Network

Convolutional Neural Network

Point cloud at k

Point cloud at k+1

Depth

image

384x32

Depth

image

384x32

Conv

ReLU

LSTM

time

\

Fully

Connected

k-1

k+2

Regression

Stacked

projections

Fig. 4 Suggested DRCNN architecture

3. Experiments

Trials involve both simulated and real 3D LIDAR data of a non-cooperative but known Target satellite. Real

LIDAR data (point cloud) of a satellite mockup are acquired in our lab by a LIDAR sensor placed on a Source

platform that is moving within the lab.

3.1. Experimental setup

Prior to evaluating DRCNN, we train it using the Elite satellite Target platform developed by Thales Alenia Space

(France) that is inspired by the Globalstar-2 and Iridium constellations. The Elite Target satellite is a complete 3D

point cloud model P3D from which we create self-occluded point cloud views emulating realistic views of the Target

platform as observed by the virtual motion of the Source platform. These views are created by applying the Hidden

Point Removal (HPR) [54] algorithm on the Target platform.

15

HPR initially remaps the coordinates of each vertex 3Dp belonging to P3D by exploiting an imaginary ray that

connects each 3Dp vertex with the viewpoint set on the LIDAR sensor onboard the Source. The output of this stage

is a mirror image of P3D as observed from the Source, which is then projected onto a sphere of radius R that is

centered at the LIDAR sensor. The latter process is named “spherical flipping” and the resulting point cloud consists

of the sfqP vertices:

3

3 3

3

2() D

D D

D

sfq

p
p p R p

p
= + − (9)

In out trials R is automatically calculated as suggested in [55]. Finally, the convex hull of the resulting point cloud,

associated with a weight factor qa for each point of the cloud is given by:

| | | |

1 1

| (: 0) 1)
sfq sfqP P

q sfq q q

q q

a p q a a
= =

 =

 (10)

Summarizing, a vertex 3Dp of the raw Target point cloud P3D is considered as visible and belongs to Pk, only if its

spherical flipped form sfqP is on the convex hull. In our trials, depending on the Source – Target relative position

and distance, the cardinality of Pk varies from 8000 vertices down to only 30 vertices.

Once Pk is created, we train the proposed DRCNN to link the response of the deepest CNN layer with the relative

Source – Target platform position, by utilizing three LSTM layers. For that purpose, the Elite satellite Target

platform performs a simulated sinusoidal trajectory with 2sin(),y x z x= = with { 0.2 | {1,..., 25000}}x g g= . This

trajectory has the advantage of repeatedly training our network on combined curved and straight trajectories. For the

training process we use an initial learning rate of 0.01 with a gradient threshold of 1. As a reminder, the size of

, 1k kI + and the cardinality of the fully connected layers in the DRCNN are governed by the GPU memory limitations

of our computer platform and are experimentally defined during the training stage. Finally, it should be noted that

once DRCNN is trained on the sinusoidal trajectory it is then evaluated on both simulated and real LIDAR data

scenarios. As a reminder DRCNN is trained to meet the SO(3) constraints because the ground truth R is free of these

constraints (see Section 2).

3.1.1 Trials on simulated data

The first batch of trials considers three trajectories of the Elite satellite Target platform that we also use during the

DRCNN’s training stage. For our simulated data trials, we consider three scenarios, namely a straight-line approach

16

(SLA), an ellipse of inspection (EoI), and a helical (Helix). Similar to the training process, for all three scenarios we

create self-occluded point cloud views emulating realistic views of the Target platform by applying the HPR

algorithm. An example of the Elite Target platform along with the simulated ground truth trajectories are presented

in Fig. 5 (a)-(d). It should be noted that for the simulated data scenarios we intentionally extend the Source – Target

ranges beyond the standard ones to push the limits of odometry and investigate the performance of the evaluated

methods. The odometry accuracy is compared against the fictitious ground truth position of the Source platform

utilizing the metrics presented in Section 3.1.3.

3.1.2 Trials on real LIDAR data

The next set of trials considers real data acquired by a Velodyne VLP-16 Puck Lite LIDAR sensor. Trials

evaluate the proposed space robotics odometry architecture on several scenarios where the LIDAR sensor is placed

on a moving Source platform, in relation to a scaled Target EnviSat satellite model. The odometry accuracy is

evaluated against the ground truth position of the Source that is determined from an Optitrack setup [56] that tracks

the Source platform within our lab. Optitrack provides the position of objects that are within its field of view and are

visible in the Near Infrared (NIR) bandwidth in sub-millimeter accuracy. Thus, we place highly NIR reflective

markers on the VLP-16. The accuracy of the pose solution used as ground truth is 10-3 m.

In our trials we consider three trajectories, namely a Forward-backward (FB), a FB curved, and a single leg

curved (Curved). On average, the point cloud cardinality of Pk is 190 vertices. Fig. 2 (e)-(i) present the Target

platform, an example of the acquired Pk and the ground truth trajectories of the real data scenarios. As a reminder,

despite this set of scenarios involves real LIDAR data, the proposed DRCNN architecture is still trained on the

simulated sinusoidal trajectory presented in Section 3.1.1.

17

(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Fig. 5 (a) Target point cloud and evaluated simulated trajectories (b) SLA (c) EoI (d) Helix where motion is from low towards high z-axis

values – (e) Target mockup (f) Target point cloud and evaluated real trajectories (g) FB (h) FB curved (i) Curved

3.1.3 Evaluation criteria

We challenge the suggested DRCNN architecture against current space navigation techniques and specifically

against ICP [9,16,17,30,31], HoD-S combined with adaptive H∞ recursive filtering [18], OUR-CVFH combined

with ICP [10,14,32], and Spin Images combined with ICP [32]. For the latter two cases, we apply the OUR-

CVFH/ICP and Spin Images/ICP on a frame-to-frame basis. Similarly, it should be noted that in our trials the ICP

algorithm is used to perform odometry rather than Target tracking, and thus at instance 1k + ICP does not initialize

with the pose estimated at instance k . Additionally, the parameters of the proposed architecture and the competitor

methods are tuned for optimum odometry based on the sinusoidal trajectory used to train DRCNN. Table 3 presents

the tuned parameters, while the parameters not tuned are fixed either to the ones originally proposed by their authors

or to their PCL implementation [57–59]. In our trials we consider that the initial position and pose R* of the Source

is known and that all the evaluated methods aim to build-up an accurate odometry solution. It is assumed that this

prior knowledge is obtained before commencement of any of the methods examined in this work and can be based

on Earth-based range and Doppler measurements or spacecraft-based optical images [21]. Despite several more

space odometry architectures exist (see Table 1), in most cases their implementation is not available and re-

implementing these methods might lead to a non-optimal performing solution. Additionally, simply utilizing

odometry methods that were initially designed for terrestrial applications is also a non-optimum solution as the

projected LIDAR imagery and the RGB imagery have a large domain gap. Hence, for fairness, we constrain our

evaluation to the competitor methods with an available code, which are presented above. For completeness, it is also

18

worth mentioning that the design of DRCNN is constraint to the data domain and level of details presented here, i.e.

LIDAR imagery projected on the planes of a local reference frame. Thus, simply applying DRCNN on the LIDAR

data of the popular Kitti dataset [60], would lead to a non-optimum solution as the finer features of that dataset

require high-resolution depth images
, 1k kI +

 and deeper CNNs exceeding the three convolutional layers of our

DRCNN. However, redesigning and tuning the DRCNN to meet these requirements is another research topic that is

beyond the scope of this paper.

In our trials performance is evaluated in terms of drift, i.e. RMSE between the estimated endpoint and the ground

truth (GT) endpoint, Terror presenting the overall translational error as a percentage over the GT distance traveled, eT

representing RMSE of the true and the estimated position, and finally t the processing time required per frame. All

trials are implemented on a desktop with an Intel i7, an NVIDIA Quadro K2200 GPU, and 16GB of RAM, running

Windows 10 and MATLAB 2019a. For completeness, it is worth mentioning that real space platforms use space-

grade field-programmable gate arrays (FPGA), however in the context of evaluating the conceptual validity and

performance of DRCNN against current space robotics odometry methods, we believe that the computer platform

used during trials is acceptable.

Table 3.

Tuned parameters

Category Tuned parameters

OUR-CVFH 5° angular threshold, curvature threshold 1, axis ratio 0.8

Spin Images description radius 0.02, 8 resolution bins

ICP point-to-point variant, 1% translational tolerance in consecutive iterations, 1000 iterations

HoD-S description radius 20 x average Pk+1 resolution, encoding quality 10 bins

adaptive H∞ recursive filtering 510dt −= and 0.1g = parameters of H∞, iterations equal to the HoD-S matches cardinality

3.2. Simulated data odometry trials

3.2.1 SLA scenario

This is a constant Target pose scenario where the Source –Target range is increasing. From Table 4 it is evident

that the suggested architecture is overall more accurate than the competitor techniques challenged, while the

processing burden is only 60ms. Next to follow is HoD-S/H∞, while ICP does not present an appealing odometry

19

solution despite the frame-to-frame motion being relatively small. This is mainly due to the sparse nature of Pk and

Pk+1 prohibiting ICP to settle to a globally optimum solution and due to implementing ICP on a frame-to-frame basis

without initializing ICP at frame 1k + with the pose estimated at instance k . Regarding the Spin Image/ICP and

OUR-CVFH/ICP solutions, both fail to present a valid odometry solution because Spin Images and OUR CVFH do

not afford any correct feature matches between Pk and Pk+1, mainly due to the sparse nature of the Target point

cloud. For OUR-CVFH specifically, the lack of distinctive vertex clusters on the Target point cloud automatically

degrades the high performing OUR-CVFH feature estimation to the VFH features that are typically less robust.

Hence, Spin Image/ICP and OUR-CVFH/ICP preserve during each frame-to-frame motion the R* initialization

value, i.e. unity rotation matrix and zero translation matrix. Therefore, the performance metrics of these two

methods are omitted from Table 4.

Considering the processing burden imposed by each method, DRCNN is the fastest to execute despite being a

two-phase method, i.e. 3D to multi-2D point remapping and activating the DRCNN. This is due to the space

environment’s lack of background and the small-sized Targets, making the remapping process highly efficient

requiring less than a millisecond. The activation of the DRCNN is also fast executing within a few milliseconds.

Among the methods offering a valid odometry solution, HoD-S/H∞ is the least processing efficient as it involves 3D

data manipulation, which is well known for imposing a higher processing burden.

Fig. 6 presents the trajectory plots of DRCNN against HoD-S/H∞ and the ground truth (GT). For better

readability and due to their large error, we eliminate the presentation of the trajectory plots of ICP, Spin Images/ICP,

and OUR-CVFH/ICP.

(a) (b) (c)

Fig. 6 SLA scenario (a) XY (b) z and error plots (c) eT. Due to large errors and for better readability, Spin Image/ICP, OUR CVFH/ICP and ICP

are neglected from (a)-(c)

GT DRCNN HoD-S/H∞ ICP OUR-CVFH/ICP Spin Images/ICP

0

200

400

600

0 100 200 300 400 500 600

y
(m

)

x (m)

1

101

201

301

401

501

0 500 1000 1500 2000 2500

z
(m

)

frame

1.E-02

1.E+01

1.E+04

1.E+07

0 500 1000 1500 2000 2500

eT
(l

o
g

 s
ca

le
)

frame

20

Table 4.

Performance Metrics for the SLA Scenario

 drift (m) Terror (%) eT t (s)

DRCNN 10.29 0.69 2.97 0.06

HoD-S/H∞ 17.66 1.19 3.44 0.20

ICP 107 106 4 x106 0.13

3.2.2 EoI scenario

This scenario considers a simultaneously frame-to-frame varying Target pose and Source – Target distance,

emulating the Source platform orbiting around the Target platform. Table 5 presents the performance metrics of the

evaluated methods and Fig. 7 shows the trajectory plots of DRCNN against HoD-S/H∞ and GT.

This scenario is more challenging because in addition to the sparse Target point cloud, the trajectory is curved

and altitude (z-axis) also varies. Despite that, the accuracy of the proposed architecture affords overall low errors

and a low processing time. It should be noted that despite this scenario is more challenging compared to the SLA

scenario, the performance of DRCNN is better because the trajectory is shorter and thus errors do not build up.

However, despite the relatively short trajectory, ICP still presents large errors, while Spin Images/ICP and OUR

CVFH/ICP also fail to offer correct feature matches for relative motion estimation. An analysis for these methods’

failure to offer a valid space odometry solution is presented in the SLA scenario. Despite HoD-S/H∞ and ICP being

the fastest to execute, DRCNN is overall more appealing due to the small eT error it attains and its low

computational requirements.

Table 5.

Performance Metrics for the EoI Scenario

 drift (m) Terror (%) eT t (s)

DRCNN 0.14 0.03 0.84 0.06

HoD-S/H∞ 65.13 21.24 5.42 0.01

ICP 1.5x104 3x104 5x104 0.01

(a) (b) (c)

Fig. 7 EoI scenario (a) XY (b) z and error plots (c) eT. Due to large errors and for better readability, Spin Image/ICP, OUR CVFH/ICP and ICP

are neglected from (a)-(c)

GT DRCNN HoD-S/H∞ ICP OUR-CVFH/ICP Spin Images/ICP

-30

-20

-10

0

10

20

30

-60-50-40-30-20-10 0 10 20 30 40 50 60

y
(m

)

x (m)

-60

-40

-20

0

20

40

60

0 200 400 600 800

z
(m

)

frame

1.E-03

1.E-01

1.E+01

1.E+03

1.E+05

0 100 200 300 400 500 600 700 800

eT
(l

o
g
 s

ca
le

)

frame

21

3.2.3 Helix scenario

This is the most challenging scenario evaluated in this work due to the large curvature of the trajectory in the X-Y

plane, the large translational disposition in all three axes, and the small Target point cloud cardinality. Despite that,

we intentionally push the limits of odometry requirements and investigate the performance of the evaluated

methods. Table 6 presents the performance metrics, while Fig. 8 shows the corresponding trajectories. From Table 6

it is evident that the performance hierarchy of all methods is preserved with the suggested DRCNN method still

offering an appealing solution.

Interestingly, from Fig. 8 we observe that HoD-S/H∞ from frame 651 onwards presents an unexpected behavior

with large errors. This is because from that frame till the end of this trajectory, the relative Source – Target position

and distance are such that they prohibit HoD-S from achieving feature matches and thus, the R* remains at its

initialization value, i.e. unity rotation matrix and zero translation matrix.

Table 6.

Performance Metrics for the Helix Scenario

 drift (m) Terror (%) eT t (s)

DRCNN 9.04 0.64 2.03 0.58

HoD-S/H∞ 468.26 33.00 51.35 0.78

ICP 5x105 3x104 1.7x105 0.11

(a) (b) (c)

Fig. 8 Helix scenario (a) XY (b) z and error plots (c) eT. Due to large errors and for better readability, Spin Image/ICP, OUR CVFH/ICP and

ICP are neglected from (a)-(c)

3.3. Real data odometry trials

Compared to the simulated scenarios of Section 3.2, the three real data scenarios evaluated in this section are

more challenging due to the highly sparse Pk, the limited structure of the EnviSat Target point cloud (Fig. 5 (f)), and

GT DRCNN HoD-S/H∞ ICP OUR-CVFH/ICP Spin Images/ICP

-300

-200

-100

0

100

200

-200 -100 0 100 200 300 400

y
(m

)

x (m)

0

20

40

60

0 200 400 600 800 1000 1200

z
(m

)

frame

1.E-01

1.E+01

1.E+03

1.E+05

0 200 400 600 800 1000 1200

eT
(l

o
g
 s

ca
le

)

frame

22

most importantly, due to the different data domain of the training and testing data, i.e. simulated vs. real LIDAR

data.

3.3.1 FB scenario

This scenario considers a straight-line Forward – Backward motion of the Source with respect to the Target,

where point clouds are acquired by a LIDAR sensor that is placed on the Source platform. The performance metrics

attained by each method are presented in Table 7, while the corresponding trajectory and error plots in Fig. 9. From

the results presented it is evident that DRCNN affords the lowest eT errors and a low processing burden making it a

very appealing solution, despite it is trained solely on simulated data. It should be noted that similar to the trials

relying on simulated data (Section 3.2), Spin Images/ICP and OUR-CVFH/ICP do not attain valid feature matches

forcing R* to preserve its initialization values. Hence, in the performance metrics of Table 7 and Fig. 9 we neglect

presenting these two methods.

In contrast to the simulated data scenarios, on the FB trajectory DRCNN, HoD-S/H∞, and ICP have notably better

accuracy. This is because the Source platform is moving slow, and thus Pk and Pk+1 present a smaller frame-to-frame

variation. Regarding ICP, despite being more accurate compared to the simulated scenarios, it still attains larger

translational errors compared to DRCNN and HoD-S/H∞. It is worth noting that the ICP’s performance on the FB

trajectory is in line with [18] because in this work we tune ICP according to Table 3.

(a) (b) (c)

Fig. 9 FB scenario (a) XY (b) z and error plots (c) eT. Due to large errors and for better readability, Spin Image/ICP, OUR CVFH/ICP and ICP

are neglected from (a)-(c)

Table 7.

Performance Metrics for the FB Scenario

 drift (m) Terror (%) eT t (s)

DRCNN 0.08 1.08 0.03 0.06

HoD-S/H∞ 0.12 1.65 0.08 0.24

ICP 0.44 5.91 0.29 0.05

GT DRCNN HoD-S/H∞ ICP OUR-CVFH/ICP Spin Images/ICP

-0.6

-0.4

-0.2

0

0.2

0.4

-4.5 -3.5 -2.5 -1.5 -0.5

y
(m

)

x (m)

0.6

0.8

1

1.2

1
6
0

1
1
9

1
7
8

2
3
7

2
9
6

3
5
5

4
1
4

4
7
3

5
3
2

5
9
1

6
5
0

7
0
9

7
6
8

8
2
7

z
(m

)

frame

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 100200300400500600700800900

eT
(l

o
g
 s

ca
le

)

frame

23

3.3.2 FB curved scenario

This is a highly curved real data trajectory that is more challenging compared to the FB scenario. Despite that,

DRCNN and HoD-S/H∞ achieve low eT errors with DRCNN requiring less processing time. Similarly to the FB

trajectory, Spin Images/ICP and OUR-CVFH/ICP fail to present feature matches and thus provide a poor odometry

performance. Table 8 presents the performance metrics and Fig. 10 the corresponding trajectories of DRCNN, HoD-

S/H∞, and ICP. Comparing Table 8 with the corresponding tables of the previous scenarios we observe that the

performance hierarchy of the evaluated methods is still preserved and that the suggested DRCNN method remains

an appealing solution.

3.3.3 Curved scenario

Similar to the previous scenarios exploiting real LIDAR data, in this trial DRCNN manages a low translational error

with a highly appealing computational efficiency. Despite the eT error of DRCNN not being optimum, it is still close

to that of the competitor methods. Performance metrics are presented in Table 9, while Fig. 11 presents the

corresponding trajectory plots.

(a) (b) (c)

Fig. 10 FB Curved scenario (a) XY (b) z and error plots (c) eT. Due to large errors and for better readability, Spin Image/ICP, OUR CVFH/ICP

and ICP are neglected from (a)-(c)

Table 8.

Performance Metrics for the FB Curved Scenario

 drift (m) Terror (%) eT t (s)

DRCNN 0.03 0.24 0.05 0.06

HoD-S/H∞ 0.13 1.05 0.08 0.23

ICP 2.70 21.79 0.80 0.06

GT DRCNN HoD-S/H∞ ICP OUR-CVFH/ICP Spin Images/ICP

-3
-2.5

-2
-1.5

-1
-0.5

0
0.5

1
1.5

-6.5-6-5.5-5-4.5-4-3.5-3-2.5-2-1.5-1-0.5

y
(m

)

x (m)

0.75

1

1.25

1.5

1.75

0 200 400 600

z
(m

)

frame

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

0 200 400 600

eT
(l

o
g
 s

ca
le

)

frame

24

(a) (b) (c)

Fig. 11 Curved scenario (a) XY (b) z and error plots (c) eT. Due to large errors and for better readability, Spin Image/ICP, OUR CVFH/ICP and

ICP are neglected from (a)-(c)

Table 9.

Performance Metrics for the Curved Scenario

 drift (m) Terror (%) eT t (s)

DRCNN 0.04 0.96 0.02 0.06

HoD-S/H∞ 0.13 3.48 0.04 0.36

ICP 2.09 55.57 0.43 0.06

3.4. DRCNN variations

For completeness, we also evaluate various DRCNN configurations to highlight the contribution of each of the

DRCNN’s parameters to the odometry solution. Specifically, given the core DRCNN architecture presented in Table

2, in the following trials we modify one of DRCNN’s parameters while the remaining ones are preserved. The

evaluated parameters are the
, 1k kI +

 input size and interpolation scheme, CNN depth, number of channels and filter

size per convolutional layer, RNN depth, LSTM number of hidden values and activation function, and finally

several CNN-RNN bridge layer configurations. To keep the paper in a reasonable length, evaluation is performed on

the SLA scenario using the Terror metric.

The first trial evaluates the performance of DRCNN under several fixed 1:1 and variable height/width ratio input

image sizes of
kI . Evaluation involves sizes up to 128pixels per dimension, which is a limiting factor of our GPU

memory, with Fig. 12 presenting the corresponding performance. The latter figure shows that the lowest Terror

attained for the 1:1 case is at 32x32 pixels
kI image size (4.53%), while for the variable height/width ratio case at

128x32 pixels (0.69%). For the fixed 1:1 ratio case, despite increasing the
kI size the odometry performance does

not improve mainly due to the quantization factor (20fq =), and the receptive filter size within the CNN module

(5x5 pixels), which all three parameters have a strong interaction on the DRCNN’s performance. For the variable

height/width ratio case, the optimum image size is the 128x32 pixels, revealing that indeed the 32pixels width is

GT DRCNN HoD-S/H∞ ICP OUR-CVFH/ICP Spin Images/ICP

-1.5
-1

-0.5
0

0.5
1

1.5
2

2.5

-1.75-1.5-1.25-1-0.75-0.5-0.25 0 0.250.50.75

y
(m

)

x (m)

0.7

0.8

0.9

1

1.1

0 50 100 150 200 250 300 350

z
(m

)

frame

1.E-07
1.E-06
1.E-05
1.E-04
1.E-03
1.E-02
1.E-01
1.E+00
1.E+01

0 100 200 300 400

eT
(l

o
g
 s

ca
le

)

frame

25

well linked to the
fq and receptive filter size selected. This is also evident from the 64x32pixels size, which attains

a Terror value close to the average of the 32x32 and 64x64pixels sizes. On that basis, it would be interesting to

evaluate the 128x128pixels case to reveal if indeed the 128pixels would further benefit the DRCNN’s odometry.

Though our GPU memory limits our trials up to 64x64pixels and 128x32pixels for the 1:1 and the variable

height/width ratio cases, respectively.

Fig. 12 DRCNN performance for various input image sizes and height/width ratio

(dashed column height is for illustration purposes showing GPU memory-limited cases)

One of the important parameters affecting the details in
kI is the interpolation method applied to the

quantized depth images while resizing them to obtain
kI . Thus, we evaluate three interpolation schemes, namely

the nearest neighbor, the bilinear, and the bicubic. The first one is the simplest technique where the output pixel

in the interpolated image is assigned the value of the pixel that the point falls within. For the bilinear

interpolation, the output pixel value is a weighted average of pixels in the nearest 2x2 neighborhood, while the

bicubic interpolation is an extension of the bilinear involving the nearest 4x4 neighborhood. Depending on the

application, each method has its own strengths. For the odometry scenarios examined in this work, we observed

that preserving the depth variations in the
kI is crucial as these trigger the responses within each DRCNN layer.

Indeed, from Table 10 it is evident that as
kI becomes smoother the Terror metric is increasing. In terms of

processing time, all methods are of the same order.

Table 10.

DRCNN performance for various interpolation schemes applied on
kI

 Terror (%) t (s)

nearest 0.69 2

bilinear 1.54 3

bicubic 3.64 3

0

2

4

6

8

10

T
er

ro
r
(%

)

Input image size (pixels)

1:1 ratio variable ratio

26

A major contributor in DRCNN is the CNN module. The main parameters affecting the CNN’s performance are

its depth, the number of channels in each convolutional layer, and the receptive filter size used for each convolution.

The first batch of trials considers the DRCNN configurations presented in Table 11, where the CNN depth ranges

from three layers up to 11 layers with the convolution channels altering from 64 up to 1024. Fig. 13 highlights that

extending the CNN’s depth does not improve the odometry accuracy of the DRCNN (network configurations A-E of

Table 11). This is due to the coarse level of details in
kI , which are capable of providing generic features and thus

the fine details extracted by the deeper layers (exceeding the three convolutional layers) are reducing the overall

DRCNN’s performance. This does not contrast the mainstream CNN approach for RGB imagery where commonly

deeper architectures are more robust because the information content per pixel in the visual imagery is larger

compared to the LIDAR projections exploited in this work. Considering the number of channels per convolutional

layer, from Fig. 13 it is obvious that preserving the same number of channels for all convolution layers is not an

optimum choice (network configurations F-I of Table 11). This is because as the CNN depth increases, the features

extracted by each convolutional layer become finer, and thus more channels are required to learn these features [52].

Accordingly, setting a large channel size for the entire CNN structure is also not optimum as the channel size is not

matched to the level of details of the extracted features. Overall, the optimum CNN depth and channel size

combination is found at the network configuration C of Table 11. However, given that the level of details in
kI is

low, evaluating the network configuration B could potentially provide an appealing Terror metric. Though, this shall

pose future work as currently for our computer platform this is a GPU memory-limited case.

27

Table 11.

Various DRCNN configurations by altering the CNN depth and channels, one per column, presented as; Fully Connected layers “FC-(number of

units)”, Convolutional layers “Conv-(number of feature maps)@ filter size”, LSTM layers “LSTM-(number of hidden values)”

 Network configuration

A B C D E F G H I
C

N
N

 m
o
d
u
le

Conv-64

@5x5

+ReLU

Conv-64

@5x5

+ReLU

Conv-64

@5x5

+ReLU

Conv-64

@5x5

+ReLU

Conv-64

@5x5

+ReLU

Conv-64

@5x5

+ReLU

Conv-128

@5x5

+ReLU

Conv-256

@5x5

+ReLU

Conv-512

@5x5

+ReLU

Conv-128

@5x5

+ReLU

Conv-128

@5x5

+ReLU

Conv-128

@5x5

+ReLU

Conv-128

@5x5

+ReLU

Conv-64

@5x5

+ReLU

Conv-128

@5x5

+ReLU

Conv-256

@5x5

+ReLU

Conv-512

@5x5

+ReLU

Conv-256

@5x5

+ReLU

Conv-256

@5x5

+ReLU

Conv-256

@5x5

+ReLU

Conv-64

@5x5

+ReLU

Conv-128

@5x5

+ReLU

Conv-256

@5x5

+ReLU

Conv-512

@5x5

+ReLU

Conv-512

@5x5

+ReLU

Conv-512

@5x5

+ReLU

Conv-

1024

@5x5

+ReLU

FC-1024 FC-1024 FC-1024 FC-1024 FC-1024 FC-1024 FC-1024 FC-1024 FC-1024

R
N

N
 m

o
d
u
le

 LSTM-

1000

LSTM-

1000

LSTM-

1000

LSTM-

1000

LSTM-

1000

LSTM-

1000

LSTM-

1000

LSTM-

1000

LSTM-

1000

LSTM-

1000

LSTM-

1000

LSTM-

1000

LSTM-

1000

LSTM-

1000

LSTM-

1000

LSTM-

1000

LSTM-

1000

LSTM-

1000

LSTM-

1000

LSTM-

1000

LSTM-

1000

LSTM-

1000

LSTM-

1000

LSTM-

1000

LSTM-

1000

LSTM-

1000

LSTM-

1000

Fig. 13 DRCNN performance for various CNN configurations (Table 11) altering layer depths and channel size per convolutional layer

(dashed column height is for illustration purposes showing GPU memory-limited cases)

The next trial investigates the interplay between varying the receptive filter size and the overall DRCNN

performance. The network configurations evaluated are presented in Table 12, with the corresponding DRCNN Terror

presented in Fig. 14. The latter figure highlights that, as expected, the filter size has to be matched with the size of

the extracted features. Hence, a fixed size of 5x5 or 7x7 is appealing attaining 0.69% and 2.88% Terror, respectively.

We also evaluate variable sized-filters that either gradually increase or reduce size. Results in Fig. 14 confirm that

indeed the extracted features are large and thus the 3x3/5x5/7x7 filter pattern is more appealing than its reversed

variant.

0
2
4
6
8

10
12

A B C D E F G H I

T
er

ro
r
(%

)

Network configuration

variable size

fixed size

28

Table 12.

Various DRCNN configurations by altering the receptive filter size, one per column, presented as; Fully Connected layers “FC-(number of

units)”, Convolutional layers “Conv-(number of feature maps)@ filter size”, LSTM layers “LSTM-(number of hidden values)”

 Network configuration

C
N

N
 m

o
d
u
le

Conv-64

@3x3+ReLU

Conv-64

@5x5+ReLU

Conv-64

@7x7+ReLU

Conv-64

@9x9+ReLU

Conv-64

@3x3+ReLU

Conv-64

@7x7+ReLU

Conv-128

@3x3+ReLU

Conv-128

@5x5+ReLU

Conv-128

@7x7+ReLU

Conv-128

@9x9+ReLU

Conv-128

@5x5+ReLU

Conv-128

@5x5+ReLU

Conv-256

@3x3+ReLU

Conv-256

@5x5+ReLU

Conv-256

@7x7+ReLU

Conv-256

@9x9+ReLU

Conv-256

@7x7+ReLU

Conv-256

@3x3+ReLU

FC-1024 FC-1024 FC-1024 FC-1024 FC-1024 FC-1024

R
N

N

m
o
d
u
le

 LSTM-1000 LSTM-1000 LSTM-1000 LSTM-1000 LSTM-1000 LSTM-1000

LSTM-1000 LSTM-1000 LSTM-1000 LSTM-1000 LSTM-1000 LSTM-1000

LSTM-1000 LSTM-1000 LSTM-1000 LSTM-1000 LSTM-1000 LSTM-1000

FC-1024 FC-1024 FC-1024 FC-1024 FC-1024 FC-1024

Fig. 14 DRCNN performance for various receptive filter sizes

(3/5/7 and 7/5/3 refer to a changing receptive filter size per convolutional layer with a pattern of 3x3/5x5/7x7 and 7x7/5x5/3x3 respectively)

Another important contributor in DRCNN is the layer that bridges the CNN and the RNN modules. As a

reminder, Eq. (1) and Eq. (3) require a 4x4 R* transformation matrix, and thus a Fully Connected (FC) layer in

the form of a 16x1 matrix is the minimum bridge-layer size. In the following trials we evaluate several FC

configurations including various FC matrix sizes (in the form of a column matrix) and multiple FC layers (Table

13). It should be noted that altering the FC size is affecting the RNN’s input and output, with the excessive FC

elements being discarded (elements 17 up to the matrix cardinality). The first batch of trials involves a single FC

layer of various sizes. Fig. 15 shows that indeed selecting an FC-16 layer, i.e. 16x1 matrix, is appealing, but still

this is not the optimum choice (5.67% Terror). Increasing the FC layer size elements and exploiting the first 16

entries can be beneficial for an FC layer size of at least1024. Further increasing the FC size is not possible due to

GPU memory limitations, but following the trend in Fig.15, the FC-2048 case can be appealing. We also

evaluate the multi-layer FC case by investigating the effectiveness of the FC-1024/16 and FC-1024/512/16 cases,

where each number refers to the matrix size per FC layer. Despite the FC-1024/16 not being the optimum

configuration, it still stands between the performance of the two individual layer cases with 4.10% Terror, i.e. FC-

1024 attains 0.69 Terror and FC-16 5.67% Terror, indicating that indeed the FC-1024 setup case encodes well the

0

5

10

15

20

25

3x3 5x5 7x7 9x9 3/5/7 7/5/3

T
er

ro
r
(%

)

Convolutional layer - filter size

fixed size

variable size

29

R* of Eq. (1). Unexpectedly, further increasing the bridge-layer size and combining the top-3 performing FC

layers, i.e. FC-1024/512/216, does not provide performance close to the average value of the involved FC layers.

For completeness, the discarded excessive FC elements from 17 up to the matrix cardinality were close to zero

and did not provide any useful information. Overall, a deeper explanation of the influence of the bridge-layer to

the DRCNN performance is not obvious, enhancing the necessity of further progress in the Explainable Artificial

Intelligence (XAI) domain.

Table 13.

Various DRCNN configurations by altering the Fully Connected bridge-layer setup between the CNN and the RNN modules, one per

column, presented as; Fully Connected layers “FC-(number of units)”, Convolutional layers “Conv-(number of feature maps)@ filter size”,

LSTM layers “LSTM-(number of hidden values)”

 Network configuration

C
N

N
 m

o
d
u
le

Conv-64

@5x5+ReLU

Conv-64

@5x5+ReLU

Conv-64

@5x5+ReLU

Conv-64

@5x5+ReLU

Conv-64

@5x5+ReLU

Conv-64

@5x5+ReLU

Conv-64

@5x5+ReLU

Conv-64

@5x5+ReLU

Conv-128

@5x5+ReLU

Conv-128

@5x5+ReLU

Conv-128

@5x5+ReLU

Conv-128

@5x5+ReLU

Conv-128

@5x5+ReLU

Conv-128

@5x5+ReLU

Conv-128

@5x5+ReLU

Conv-128

@5x5+ReLU

Conv-256

@5x5+ReLU

Conv-256

@5x5+ReLU

Conv-256

@5x5+ReLU

Conv-256

@5x5+ReLU

Conv-256

@5x5+ReLU

Conv-256

@5x5+ReLU

Conv-256

@5x5+ReLU

Conv-256

@5x5+ReLU

FC-16 FC-64 FC-256 FC-512 FC-1024 FC-2048 FC-1024 FC-1024

 FC-16 FC-512

 FC-16

R
N

N

m
o
d
u
le

LSTM-1000 LSTM-1000 LSTM-1000 LSTM-1000 LSTM-1000 LSTM-1000 LSTM-1000 LSTM-1000

LSTM-1000 LSTM-1000 LSTM-1000 LSTM-1000 LSTM-1000 LSTM-1000 LSTM-1000 LSTM-1000

LSTM-1000 LSTM-1000 LSTM-1000 LSTM-1000 LSTM-1000 LSTM-1000 LSTM-1000 LSTM-1000

FC-16 FC-64 FC-256 FC-512 FC-1024 FC-2048 FC-16 FC-16

Fig. 15 DRCNN performance for various CNN-RNN bridge-layer configurations, FC-1024/16 and FC-1024/512/16 refer to multi-layered

configurations with a pattern of FC-1024 layer succeeded by an FC-16 layer and succeeded by an FC-512 followed by an FC-16 layer

respectively. (dashed column height is for illustration purposes showing GPU memory-limited cases)

The final batch of our trials involves modifying the RNN module parameters. Hence, we alter the RNN depth by

evaluating several LSTM layer depths ranging from one up to eight, and for each LSTM layer we also vary the

number of hidden values ranging from 100 up to 1000. The performance of the RNN variants is presented in Fig. 16.

A common feature is that all RNN configurations attain a global minimum Terror and thereafter present a minor

fluctuation at higher Terror values. Overall, increasing the LSTM layers improves performance, while for more than

six LSTM layers the Terror metric stabilizes indicating that for our image projections , 1k kI + a shallow to medium

0
10
20
30
40

T
er

ro
r
(%

)

Bridge-layer configuration

single-layer

multi-layer

30

depth is sufficient. Considering the number of hidden values, these do not considerably contribute to the DRCNN

performance, especially for up to two or more than six LSTM layers. For the intermediate two-to-five LSTM layers

case, a minor performance variation is observable with the three LSTM-1000 configuration network being the

optimum choice and the five LSTM-100 structure closely following. Again, a clear explanation of the interplay

between the number of hidden values in each LSTM layer and the DRCNN performance is not obvious and further

study in the XAI domain can be enlightening.

Fig. 16 Various RNN depth and LSTM hidden values configurations

Finally, we evaluate the interplay between the Terror metric and the LSTM’s activation function for the cells and

hidden states, and the gates. As expected, from Table 14 it is obvious that setting the sigmoid as the activation

function for the gates presents on average lower odometry errors. Additionally, choosing the softsign activation

function for the cells and hidden states also affords lower Terror values. However, from Table 14 it is clear that the

combination of the latter two activation functions is not optimum highlighting that the internal operations within the

LSTM are still an open case for further study.

Table 14.

DRCNN performance Terror (%) for various LSTM activation functions

 Cell and hidden states

 tanh softsign average

Gates
sigmoid 0.69 3.12 1.90

hard-sigmoid 13.08 1.65 7.36

 average 6.88 2.38

3.5. Discussion

From the trials performed in Sections 3.2 and 3.3, it is evident that DRCNN is capable of low error space robotics

odometry with an appealing processing time. Indeed, for the scenarios involving simulated data (Section 3.2), the

0.1

1

10

100

1 2 3 4 5 6 7 8

T
er

ro
r
(%

)
lo

g
ar

it
h
m

ic

sc
al

e

LSTM layers
100 200 500
1000 average

31

proposed deep learning network attains smaller errors compared to the competitor methods, without compromising

computational efficiency. Regarding HoD-S/H∞ in the EoI and the Helix scenarios, it fails to correctly estimate the

z-axis translation. Since this method and the DRCNN share the same odometry estimation scheme (Eq. (2) and Eq.

(3)), the performance difference is purely due to their architecture. Specifically, the odometry accuracy of HoD-

S/H∞ depends on the number of the true positive correspondences, forcing this technique to fail if the point

correspondences between the kP and 1k +P point clouds are only a few because the H∞ filtering process performs a

limited number of iterations that are equal to the cardinality of the correspondences. Considering the Spin

Image/ICP and OUR-CVFH/ICP solutions, these fail to present a valid odometry solution because both feature

matching methods, i.e. Spin Images and OUR CVFH, do not attain true positive correspondences due to the sparse

nature of the Target point cloud. Finally, ICP presents a low odometry accuracy mainly due to implementing it

individually on a frame-to-frame basis rather than initializing it with the pose estimated at the previous instance.

However, we follow this strategy to preserve a uniform frame-to-frame pose estimation scheme for all techniques

evaluated here. For the real data scenarios (Section 3.3), DRCNN is still an appealing space robotics navigation

solution with HoD-S/H∞ closely following. For the latter method, it presents more accurate odometry compared to

the simulated data scenarios due to the short trajectory path of this scenario and the fact that the HoD-S feature

descriptor is specifically designed for sparse point clouds. Likewise, ICP is more accurate compared to the simulated

data scenarios due to the short trajectory path. Finally, Spin Image/ICP and OUR-CVFH/ICP are still prone to the

highly sparse Target point clouds and thus fail to establish true positive correspondences and ultimately a valid

odometry solution.

The most important attribute of DRCNN is its adaptive capability that permits DRCNN to be trained on simulated

data and evaluated on real 3D LIDAR data, and still attain a space robotics odometry solution with low errors. This

feature is quite important as it enables the capability of offline training on a wide variety of low-cost simulated data

scenarios neglecting the current requirement of setting up facilities to acquire real 3D LIDAR data to train a deep

learning network. The adaptability of our DRCNN architecture is due to the following reasons:

a. Multi-projection of the frame-to-frame point clouds Pk and Pk+1 enabling the CNN module to extract 2D

depth image features from a large portion of the Target point cloud that depends on the Target pose relative to the

LIDAR sensor onboard the Source. Within our multi-projection process (Section 2.1) we intentionally quantize the

projected point clouds (Eq. (5)) assisting in the establishment of feature correspondences between Pk and Pk+1

32

despite minor changes due to the relative Source – Target motion.

b. The CNN module involves a shallow network, i.e. only three convolutional layers, forcing the extracted

features to be quite generic, e.g. corners, blobs and edges [61,62]. The latter enables the trained-on-simulated-data

CNN module to generalize to such an extent that it is still capable of real data processing.

c. The RNN module exploits feature maps that rely on generic features and thus regardless of the domain,

navigation dynamics are still accurately modeled.

4. Conclusion

In this work, we present a Deep Recurrent Convolutional Neural Network that poses a low error and

computationally efficient space robotics odometry solution. Our methodology combines the advantages of 3D

implementation, the processing efficiency of manipulating 2D data, and finally the advantages of CNN and RNN

architectures. Specifically, our method relies on LIDAR data that are remapped into multiple 2D depth image

projections affording a lower computational burden compared to directly manipulating 3D data. Our suggested

DRCNN comprises of a CNN module and an RNN module to combine the advantages of both these networks, i.e.

feature extraction and learning by the CNN and robust complex dynamics modeling by the RNN.

To evaluate the efficiency and robustness of DRCNN, we initially train our network on a simulated space

navigation scenario and then challenge it on realistic simulated space navigation scenarios and real 3D LIDAR data.

Our trials demonstrate that the proposed DRCNN architecture is more accurate than current methods while imposing

a very low processing burden. Additionally, one of the highlights of our architecture is its adaptive capability, as it is

trained on simulated data and is still capable of providing accurate odometry on data of a different modality (real

data). This adaptive nature of our proposed architecture affords extending the odometry capabilities of future space

robotic platforms.

Despite the promising performance of DRCNN, it is limited by the capabilities of our computer platform. Hence,

future work involves implementing DRCNN on a computer platform with a larger GPU memory so that the full

potential of the DRCNN can be revealed without the constraints presented in this paper. Furthermore, future scope

shall also evaluate DRCNN on more complex real data scenarios with a longer trajectory path.

Conflict of interest statement

None declared

33

Funding Sources

This research was supported by the European Union’s Horizon 2020 research and innovation program, under the

project “Integrated 3D Sensors (I3DS)” with grant agreement No 730118.

Acknowledgments

The authors would like to thank Thales Alenia Space (France) for providing the simulated space platform model

and the anonymous reviewers for their constructive comments.

References

[1] M.S. Krämer, S. Hardt, K. Kuhnert, Image Features in Space - Evaluation of Feature Algorithms for Motion Estimation

in Space Scenarios, in: Proc. 7th Int. Conf. Pattern Recognit. Appl. Methods, SCITEPRESS - Science and Technology

Publications, Funchal, Madeira, Portugal, 2018: pp. 300–308. doi:10.5220/0006555303000308.

[2] D. Rondao, N. Aouf, Multi-View Monocular Pose Estimation for Spacecraft Relative Navigation, in: 2018 AIAA Guid.

Navig. Control Conf., American Institute of Aeronautics and Astronautics, Reston, Virginia, 2018. doi:10.2514/6.2018-

2100.

[3] L. Li, J. Lian, L. Guo, R. Wang, Visual odometry for planetary exploration rovers in sandy terrains, Int. J. Adv. Robot.

Syst. 10 (2013) 1–7. doi:10.5772/56342.

[4] T. Tykkala, A.I. Comport, A dense structure model for image based stereo SLAM, in: Robot. Autom. (ICRA), 2011

IEEE Int. Conf., Shangai, China, 2011: pp. 1758–1763. doi:10.1109/ICRA.2011.5979805.

[5] Yang Cheng, M. Maimone, L. Matthies, Visual Odometry on the Mars Exploration Rovers, in: 2005 IEEE Int. Conf.

Syst. Man Cybern., Waikoloa, HI, USA, 2006: pp. 903–910. doi:10.1109/ICSMC.2005.1571261.

[6] M. Maimone, Y. Cheng, L. Matthies, Two years of Visual Odometry on the Mars Exploration Rovers, J. F. Robot. 24

(2007) 169–186. doi:10.1002/rob.20184.

[7] O. Yılmaz, N. Aouf, L. Majewski, M. Sanchez-Gestido, G. Ortega, Using infrared based relative navigation for active

debris removal, in: 10th Int. ESA Conf. Guid. Navig. Control Syst., Salzburg, Austria, 2017: pp. 1–16.

[8] B. Naasz, M. Moreau, Autonomous RPOD technology challenges for the coming decade, Adv. Astronaut. Sci. 144

(2012) 403–425.

[9] R. Opromolla, M.Z. Di Fraia, G. Fasano, G. Rufino, M. Grassi, Laboratory test of pose determination algorithms for

uncooperative spacecraft, in: 4th IEEE Int. Work. Metrol. AeroSpace, Metroaerosp. 2017 - Proc., Padua, Italy, 2017: pp.

34

169–174. doi:10.1109/MetroAeroSpace.2017.7999558.

[10] J.O. Woods, J.A. Christian, Lidar-based relative navigation with respect to non-cooperative objects, Acta Astronaut. 126

(2016) 298–311. doi:10.1016/j.actaastro.2016.05.007.

[11] R. Volpe, G. Palmerini, M. Sabatini, Monocular and Lidar Based Determination of Shape , Relative Attitude and

Position of a Non-Cooperative , Unknown Satellite, in: Int. Astronaut. Congr. (IAC 2017), Adelaide, Australia, 2017:

pp. 25–29.

[12] H. Gómez Martínez, G. Giorgi, B. Eissfeller, Pose estimation and tracking of non-cooperative rocket bodies using Time-

of-Flight cameras, Acta Astronaut. 139 (2017) 165–175. doi:10.1016/j.actaastro.2017.07.002.

[13] J. Galante, J. Van Eepoel, M. Strube, N. Gill, M. Gonzalez, A. Hyslop, B. Patrick, Pose Measurement Performance of

the Argon Relative Navigation Sensor Suite in Simulated-Flight Conditions, in: AIAA Guid. Navig. Control Conf.,

American Institute of Aeronautics and Astronautics, Reston, Virigina, 2012: pp. 1–26. doi:10.2514/6.2012-4927.

[14] J.L. Sell, A. Rhodes, J.O. Woods, J.A. Christian, T. Evans, Pose Performance of LIDAR-Based Navigation for Satellite

Servicing, AIAA/AAS Astrodyn. Spec. Conf. (2014) 1–14. doi:10.2514/6.2014-4360.

[15] J. Song, Sliding window filter based unknown object pose estimation, in: 2017 IEEE Int. Conf. Image Process., IEEE,

2017: pp. 2642–2646. doi:10.1109/ICIP.2017.8296761.

[16] R. Opromolla, G. Fasano, G. Rufino, M. Grassi, Spaceborne LIDAR-based system for pose determination of

uncooperative targets, in: 2014 IEEE Int. Work. Metrol. Aerospace, Metroaerosp. 2014 - Proc., Benevento, Italy, 2014:

pp. 265–270. doi:10.1109/MetroAeroSpace.2014.6865932.

[17] R. Opromolla, G. Fasano, G. Rufino, M. Grassi, A model-based 3D template matching technique for pose acquisition of

an uncooperative space object, Sensors (Switzerland). 15 (2015) 6360–6382. doi:10.3390/s150306360.

[18] O. Kechagias-Stamatis, N. Aouf, H∞ LIDAR odometry for spacecraft relative navigation, IET Radar, Sonar Navig. 13

(2019) 771–775. doi:10.1049/iet-rsn.2018.5354.

[19] A.P. Rhodes, J.A. Christian, T. Evans, A Concise Guide to Feature Histograms with Applications to LIDAR-Based

Spacecraft Relative Navigation, J. Astronaut. Sci. 64 (2017) 414–445. doi:10.1007/s40295-016-0108-y.

[20] A. Dietrich, J.W. McMahon, Orbit Determination Using Flash Lidar Around Small Bodies, J. Guid. Control. Dyn. 40

(2017) 650–665. doi:10.2514/1.G000615.

[21] A.B. Dietrich, J.W. McMahon, Robust Orbit Determination with Flash Lidar Around Small Bodies, J. Guid. Control.

Dyn. 41 (2018) 2163–2184. doi:10.2514/1.G003023.

[22] S. Sharma, C. Beierle, S. D’Amico, Pose estimation for non-cooperative spacecraft rendezvous using convolutional

neural networks, IEEE Aerosp. Conf. Proc. 2018-March (2018) 1–12. doi:10.1109/AERO.2018.8396425.

[23] M. Zarei-Jalalabadi, S.M.-B. Malaek, Motion estimation of uncooperative space objects: A case of multi-platform

35

fusion, Adv. Sp. Res. 62 (2018) 2665–2678. doi:10.1016/j.asr.2018.07.031.

[24] O. Kechagias-Stamatis, N. Aouf, M.A. Richardson, High-speed multi-dimensional relative navigation for uncooperative

space objects, Acta Astronaut. 160 (2019) 388–400. doi:10.1016/j.actaastro.2019.04.050.

[25] R. Opromolla, G. Fasano, G. Rufino, M. Grassi, A review of cooperative and uncooperative spacecraft pose

determination techniques for close-proximity operations, Prog. Aerosp. Sci. 93 (2017) 53–72.

doi:10.1016/j.paerosci.2017.07.001.

[26] C. Bonnal, J.M. Ruault, M.C. Desjean, Active debris removal: Recent progress and current trends, Acta Astronaut. 85

(2013) 51–60. doi:10.1016/j.actaastro.2012.11.009.

[27] O. Kechagias-Stamatis, N. Aouf, D. Nam, 3D Automatic Target Recognition for UAV Platforms, in: 2017 Sens. Signal

Process. Def. Conf., IEEE, London, UK, 2017: pp. 1–5. doi:10.1109/SSPD.2017.8233223.

[28] O. Kechagias-Stamatis, N. Aouf, M.A. Richardson, 3D automatic target recognition for future LIDAR missiles, IEEE

Trans. Aerosp. Electron. Syst. 52 (2016) 2662–2675. doi:10.1109/TAES.2016.150300.

[29] P.J. Besl, N.D. McKay, A method for registration of 3-D shapes, IEEE Trans. Pattern Anal. Mach. Intell. 14 (1992) 239–

256. doi:10.1109/34.121791.

[30] R. Opromolla, G. Fasano, G. Rufino, M. Grassi, Uncooperative pose estimation with a LIDAR-based system, Acta

Astronaut. 110 (2015) 287–297. doi:10.1016/j.actaastro.2014.11.003.

[31] L. Liu, G. Zhao, Y. Bo, Point cloud based relative pose estimation of a satellite in close range, Sensors (Switzerland). 16

(2016). doi:10.3390/s16060824.

[32] A. Rhodes, E. Kim, J.A. Christian, T. Evans, LIDAR-based Relative Navigation of Non-Cooperative Objects Using

Point Cloud Descriptors, in: AIAA/AAS Astrodyn. Spec. Conf., American Institute of Aeronautics and Astronautics,

Reston, Virginia, 2016. doi:10.2514/6.2016-5517.

[33] A. Aldoma, F. Tombari, R.B. Rusu, M. Vincze, OUR-CVFH – Oriented, Unique and Repeatable Clustered Viewpoint

Feature Histogram for Object Recognition and 6DOF Pose Estimation, in: Lect. Notes Comput. Sci. (Including Subser.

Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 2012: pp. 113–122. doi:10.1007/978-3-642-32717-9_12.

[34] A.E. Johnson, M. Hebert, Using spin images for efficient object recognition in cluttered 3D scenes, IEEE Trans. Pattern

Anal. Mach. Intell. 21 (1999) 433–449. doi:10.1109/34.765655.

[35] O. Kechagias‐Stamatis, N. Aouf, V. Dubanchet, Evaluating 3D local descriptors and recursive filtering schemes for

LIDAR‐based uncooperative relative space navigation, J. F. Robot. (2019) rob.21904. doi:10.1002/rob.21904.

[36] A. Nemra, N. Aouf, Robust Airborne 3D Visual Simultaneous Localization and Mapping with Observability and

Consistency Analysis, J. Intell. Robot. Syst. 55 (2009) 345–376. doi:10.1007/s10846-008-9306-6.

[37] I. Cvišić, J. Ćesić, I. Marković, I. Petrović, SOFT-SLAM: Computationally efficient stereo visual simultaneous

36

localization and mapping for autonomous unmanned aerial vehicles, J. F. Robot. 35 (2018) 578–595.

doi:10.1002/rob.21762.

[38] T. Mouats, N. Aouf, L. Chermak, M.A. Richardson, Thermal Stereo Odometry for UAVs, IEEE Sens. J. 15 (2015)

6335–6347. doi:10.1109/JSEN.2015.2456337.

[39] T. Mouats, N. Aouf, A.D. Sappa, C. Aguilera, R. Toledo, Multispectral Stereo Odometry, IEEE Trans. Intell. Transp.

Syst. 16 (2015) 1210–1224. doi:10.1109/TITS.2014.2354731.

[40] J. Zhang, S. Singh, Visual-lidar odometry and mapping: low-drift, robust, and fast, in: 2015 IEEE Int. Conf. Robot.

Autom., IEEE, 2015: pp. 2174–2181. doi:10.1109/ICRA.2015.7139486.

[41] J. Zhang, S. Singh, LOAM: Lidar Odometry and Mapping in Real- time, IEEE Trans. Robot. 32 (2015) 141–148.

doi:10.15607/RSS.2014.X.007.

[42] Q. Li, S. Chen, C. Wang, X. Li, C. Wen, M. Cheng, J. Li, LO-Net: Deep Real-Time Lidar Odometry, in: 2019

IEEE/CVF Conf. Comput. Vis. Pattern Recognit., IEEE, 2019: pp. 8465–8474. doi:10.1109/CVPR.2019.00867.

[43] M. Jaimez, J. Gonzalez-Jimenez, Fast Visual Odometry for 3-D Range Sensors, IEEE Trans. Robot. 31 (2015) 809–822.

doi:10.1109/TRO.2015.2428512.

[44] D.-H. Kim, J.-H. Kim, Effective Background Model-Based RGB-D Dense Visual Odometry in a Dynamic Environment,

IEEE Trans. Robot. 32 (2016) 1565–1573. doi:10.1109/TRO.2016.2609395.

[45] Y. Zhou, H. Li, L. Kneip, Canny-VO: Visual Odometry With RGB-D Cameras Based on Geometric 3-D–2-D Edge

Alignment, IEEE Trans. Robot. 35 (2019) 184–199. doi:10.1109/TRO.2018.2875382.

[46] M.O.A. Aqel, M.H. Marhaban, M.I. Saripan, N.B. Ismail, Review of visual odometry: types, approaches, challenges,

and applications, Springerplus. 5 (2016). doi:10.1186/s40064-016-3573-7.

[47] B. Chen, J. Cao, A. Parra, T.-J. Chin, Satellite Pose Estimation with Deep Landmark Regression and Nonlinear Pose

Refinement, in: 2019 IEEE/CVF Int. Conf. Comput. Vis. Work., IEEE, 2019: pp. 2816–2824.

doi:10.1109/ICCVW.2019.00343.

[48] M. Estébanez Camarena, L.M. Feetham, A. Scannapieco, N. Aouf, FPGA-based multi-sensor relative navigation in

space: Preliminary analysis in the framework of the I3DS H2020 project, in: 69 Th Int. Astronaut. Congr. (IAC),

Internation Astronautical Federation, Bremen, 2018: pp. 1–8.

[49] M. Boulekchour, N. Aouf, M. Richardson, Robust L∞ convex optimisation for monocular visual odometry trajectory

estimation, Robotica. 34 (2016) 703–722. doi:10.1017/S0263574714001829.

[50] M. Boulekchour, N. Aouf, L∞ norm based solution for visual odometry, Lect. Notes Comput. Sci. (Including Subser.

Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). 8048 LNCS (2013) 185–192. doi:10.1007/978-3-642-40246-3_23.

[51] F. Gers, Long short-term memory in recurrent neural networks, EPFL, 2001.

37

[52] S. Wang, R. Clark, H. Wen, N. Trigoni, DeepVO: Towards end-to-end visual odometry with deep Recurrent

Convolutional Neural Networks, in: 2017 IEEE Int. Conf. Robot. Autom., IEEE, 2017: pp. 2043–2050.

doi:10.1109/ICRA.2017.7989236.

[53] M. Valente, C. Joly, A. de La Fortelle, An LSTM Network for Real-Time Odometry Estimation, in: 2019 IEEE Intell.

Veh. Symp., IEEE, 2019: pp. 1434–1440. doi:10.1109/IVS.2019.8814133.

[54] S. Katz, A. Tal, R. Basri, Direct visibility of point sets, ACM Trans. Graph. 26 (2007) 24.

doi:10.1145/1276377.1276407.

[55] B. Alsadik, M. Gerke, G. Vosselman, Visibility analysis of point cloud in close range photogrammetry, ISPRS Ann.

Photogramm. Remote Sens. Spat. Inf. Sci. II–5 (2014) 9–16. doi:10.5194/isprsannals-II-5-9-2014.

[56] Optitrack, (2018). https://optitrack.com/ (accessed May 22, 2018).

[57] Y. Guo, M. Bennamoun, F. Sohel, M. Lu, J. Wan, N.M. Kwok, A Comprehensive Performance Evaluation of 3D Local

Feature Descriptors, Int. J. Comput. Vis. 116 (2016) 66–89. doi:10.1007/s11263-015-0824-y.

[58] O. Kechagias-Stamatis, N. Aouf, Histogram of distances for local surface description, in: 2016 IEEE Int. Conf. Robot.

Autom., IEEE, Stockholm, Sweden, 2016: pp. 2487–2493. doi:10.1109/ICRA.2016.7487402.

[59] L.A. Alexandre, 3D Descriptors for Object and Category Recognition : a Comparative Evaluation, IEEE/RSJ Int. Conf.

Intell. Robot. Syst. 34 (2012) 1–6. doi:10.1109/TPAMI.2011.263.

[60] A. Geiger, P. Lenz, R. Urtasun, Are we ready for autonomous driving? The KITTI vision benchmark suite, in: 2012

IEEE Conf. Comput. Vis. Pattern Recognit., IEEE, 2012: pp. 3354–3361. doi:10.1109/CVPR.2012.6248074.

[61] O. Kechagias-Stamatis, N. Aouf, Fusing Deep Learning and Sparse Coding for SAR ATR, IEEE Trans. Aerosp.

Electron. Syst. 55 (2019) 785–797. doi:10.1109/TAES.2018.2864809.

[62] O. Kechagias-Stamatis, Target recognition for synthetic aperture radar imagery based on convolutional neural network

feature fusion, J. Appl. Remote Sens. 12 (2018) 1. doi:10.1117/1.JRS.12.046025.

