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Abstract

Recent years saw a sharp increase in antibiotic resistance world-wide. The increase in resistance
poses a serious threat to society and health systems. Over-prescription of antibiotics in primary
care represents one of the key reasons for the surge in resistance. This thesis analyses the
effectiveness of EU-wide policies in reducing over-prescription. This work then explores spatial
dependence in antibiotic prescription in England. Lastly, this thesis analyses the impact of
pharmaceutical regulation on social welfare and innovation. Understanding the impact of
pharmaceutical regulation on innovation is important in addressing antibiotic resistance as
one of the reasons behind the surge in resistance consists of a lack of newly developed antibiotics.

Chapter 2 studies the effectiveness of stewardship programmes in reducing antibiotics
consumption across European countries. Using data from the Eurobarometers 72.5 (Nov-Dec
2009), 79.4 (April 2013), 85.1 (April 2016), and 90.1 (September 2018), I estimate the impact
of stewardship programmes on antibiotic consumption via difference-in-difference analysis,
run on a representative sample of the European population. I identify a negative impact of
stewardship programmes on antibiotic consumption by means of diff-in-diff analysis. The effect
is significant across years, as well as for individual years of policy implementation. I identify
inter-temporal effects of the policy, with significant lead effects following its introduction. The
results on stewardship are confirmed, even when accounting for alternative national policies,
such as National Action Plans (NAP). Stewardship programmes present an impact also on
alternative dependent variables, such as receiving antibiotics from a doctor, patient’s intention
to consult a doctor for future use, as well as patients opinions on antibiotics.

Chapter 3 explores spatial dependence in antibiotic prescription across English GP practices,
by means of a spatial panel analysis developed from presentation level data for the years
2013-2017. I link antibiotic prescription rates to the local characteristics of GP practices, consid-
ering demographics, quality of care, condition prevalence, access to services, and supply-side
variables. I estimate the role of spatial dependence via SLX models. I test two alternative
measures of distance across practices: institutional and geographical proximity. I explore
different channels of spatial dependence by means of interaction effects, spatial error and spatial
autoregressive models. This paper finds that local demographics, supply side factors, condition
prevalence and proxies of access to services all influence antibiotic prescription. Lastly, this
paper identifies evidence of spatial dependence in prescription rates for all antibiotics as well
as for individual antibiotic classes across English GP practices.

Chapter 4 analyses the impact of price regulation and patent length in influencing social
welfare in a dynamic pharmaceutical market with innovation. After introducing a dynamic
two-period model with R & D, I explore the trade-off between static efficiency, in which the
regulator optimizes for surplus in individual periods, and dynamic efficiency, in which the
regulator optimizes welfare in both periods, accounting for the firm’s investment decisions. I
then explore the impact of Value-Based Pricing (VBP) regulation, by which the regulator sets
prices proportional to expected health benefits. I find an inter-temporal trade-off between static
and dynamic welfare. I study the price vs patent trade-off which the regulator might exploit
to obtain desired policy results. I compare welfare in an alternative market where the firm is
allowed to maximise profits, studying the impact on the amount of market innovation. Lastly, I
identify that VBP policy influences consumer surplus and innovation decisions.
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Chapter 1

Introduction

This thesis presents three selected health economics studies on antibiotic prescribing and phar-
maceutical innovation.

Antibiotic resistance is a growing health threat world-wide. With a total number of 700,000
deaths a year globally, the number of deaths associated with antibiotic resistance is expected
to increase to an estimated 10 million deaths per year by 2050 (O’Neill, 2014). Even when
individuals are not at immediate risk of death, in most cases, antibiotic-resistant infections
require prolonged and/or costlier use of healthcare resources (CDC, 2013). Antibiotic resistance
thus constitutes a serious global health risk that needs to be addressed to avoid excessive
societal costs (European Observatory on Health Systems and Policies, 2019).

Increased resistance translates into higher costs for national health systems. In the EU alone
antibiotic resistance has caused 33 thousand deaths every year, with an estimated 1.5 billion
euros of yearly healthcare and productivity costs (European Observatory on Health Systems
and Policies, 2019). Global healthcare costs have been estimated to reach a maximum of 1 billion
dollars a year, with an economic burden of 3 trillion dollars in GDP costs, although estimates
vary across studies (Naylor et al., 2018).

Antibiotic resistance consists of the reduced effectiveness of antibiotics in treating infections
following repeated consumption (Mera et al. (2006), Monroe and Polk (2000)). An indiscriminate
exposure to antibiotics over time decreases the organism’s ability to resist to infections, thus
decreasing drug effectiveness. In turn reduced effectiveness translates into increased risk of
serious infections (Major, 2018), particularly among immunosuppressed and fragile patients
(Vincent, 2015).

The excessive provision of antibiotics to individuals is one of the key reasons for the global
increase in antibiotic resistance (Fleming-Dutra et al. (2016), Smieszek et al. (2018)). Resistance
is also influenced by indirect factors, such as exposure to individuals infected by mutated
bacteria, potentially occurring in places such as hospitals or airports, or due to environmental
factors such as the direct provision of antibiotics to animals in food production chains (Qiao
et al., 2018). Such indirect factors generate negative externalities on the health of individual
populations by increasing the risk of spreading antibiotic resistant infections. The complex
interaction of both direct and indirect factors associated with resistance might contribute to
increased costs for society. Policy makers need to account for such externalities to effectively
address antibiotic resistance, thus reducing risks for society.

Several actions have been taken by the World Health Organisation (WHO), the European

7



Union and by individual states to address this phenomenon. The WHO developed a global
action plan to address resistance which became a blue print for individual countries (World
Health Organisation, 2015).1 A specific policy initiative has been developed also at an European
level, with the "One Health" action plan against resistance (European Commission, 2017).2 At
an individual country level, the UK developed a number of recommendations which culmi-
nated in a series of guidelines introduced by NICE, the English National Institute providing
guidance on clinical practice, and targeted at reducing unnecessary prescription (Department of
Health and Social Care (2011), NICE (2018)). In the UK additional policy commitments against
resistance were taken forward by National Government (House of Commons, 2018), which,
among other indications, highlighted the need to address market failure for the development of
new antibiotic drugs.3

Despite these efforts, there still exists a wide heterogeneity in the approaches used to deal
with antibiotic resistance across individual countries. Some National Action Plans, for instance,
provide specific and measurable targets, while others, although presenting important principles,
appear to be more vague in nature. Similarly, many countries are still lagging behind in the
introduction of such policies (European Observatory on Health Systems and Policies, 2019).

Addressing the issues of antibiotic resistance requires economic thinking. This thesis, while
certainly not exhausting the conversation on this complex issue, provides a contribution in
addressing antibiotics provision through the lens of health economics.

This thesis serves the following purposes. First, I evaluate the effectiveness of stewardship
programmes, a policy action aiming at minimising unnecessary prescribing by GPs, in influenc-
ing antibiotic consumption in European countries. The specific research question of the first
chapter is "what is the impact of stewardship programmes in affecting antibiotic prescribing in European
Countries?". This question is examined using Eurobarometer data for the years 2009, 2013, 2016
and 2018. This survey data is analysed via difference-in-difference analysis. By confronting the
dynamics of different countries in the percentage of respondents who reported having used
antibiotics in the last 12 months, I identify a reduction in antibiotic consumption following the
introduction of stewardship programmes.

The second chapter provides an econometric analysis to identify the potential presence of
spatial dependence in antibiotic prescription across English GP practices. The specific research
question I answer is "what is the role of spatial dependence in influencing GPs antibiotic prescription
rates?". This study uses NHS prescription data together with available data on individual prac-
tices. This data is analysed via techniques from the spatial econometrics literature, including
spatial lag (SLX), spatial autoregression (SAR) and spatial error model (SLX).

Lastly, the third chapter addresses the issue of pharmaceutical regulation in a market with
innovation following the introduction of value-based pricing regulation, a price policy aimed at
linking prices to realised health benefits. The specific research question of the third chapter is
"what is the impact of value-based pricing in influencing social welfare in a dynamic market with innova-
tion?". This question is answered in a two-period dynamic model with innovation. This chapter
also presents some simulations to gain additional insights on this type of price regulation using
realistic model coefficients.

1This plan included five strategic objectives, namely: improving awareness, strengthening surveillance and research,
improve sanitation, hygiene and prevention measures, optimise the use of antibiotics in human and animal health, and
develop the economic case for sustainable investments in medicines, diagnostic tools, vaccines and other interventions.

2This approach was based on three pillars: making the EU a best practice region, boosting research and innovation,
and intensifying EU efforts to shape the global agenda against resistance

3See BBC news for a discussion on why it is difficult to develop new antibiotics (BBC Health, 2017).
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The consumption of antibiotic medication can be considered as an economic issue. An-
tibiotic overconsumption, in fact, gives rise to an increase in resistance, in turn reducing the
effectiveness of such medication to the wider population. The generation of a social cost (or
gain) following the consumption of a good is widely analysed in the economic field under
the term of externality4. The reduced effectiveness of antibiotic medication introduced by
resistance following overconsumption can therefore be interpreted as a negative externality on
consumption affecting future use. Coast et al. (1996) and Elbasha (2002) provide some initial
results concerning the economic implications of such externality on society. Coast et al. (1996)
identify weak incentives from practitioners to internalise social costs as a result of difficulties
in measuring the externality. Elbasha (2002) provides initial estimates of the deadweight loss
arising from such externality to be an annual 225 million dollars in the US for outpatient
prescription of amoxicillin alone. Hermann and Gaudet (2009) explore the dynamics of such
externality identifying that antibiotics efficacy and infection rates affect social optimum inter-
temporally by means of the use of antibiotics being made in individual periods. Laxminarayan
and Brown (2001) provide a theoretical framework for the development of antibiotic resistance,
showing that resistance emerges from selective pressure on non-resistant strains due antibiotic
consumption.

Economists have often addressed the issue of externalities, identifying potential ways to
reduce social cost arising from consumption. One of the instruments identified by economists
to reduce the social cost introduced by externalities is the concept of Pigou tax. A Pigouvian
tax is an instrument that policy makers might use in order to tax goods who generate negative
externalities on the wider society. The purpose of such instruments is to internalise the cost of
externalities into consumers’ decisions, thus reducing potential harm.

One of the main criticism to the application of a Pigouvian tax stands with the ability of the
Government to effectively measure the cost of the externality produced, and therefore, in the
estimation of the appropriate tax level required to reduce such externality. In the case of antibi-
otic resistance, it is certainly challenging to correctly estimate the amount of overconsumption
leading to a negative externality originated from resistance. The use of a Pigouvian tax in the
context of antibiotic prescription is therefore of difficult application.

Some commentators considered the information asymmetries and cost of administration to
give rise to imperfection in optimal taxes and regulation Christiansen and Smith (2016). In the
context of antimicrobial resistance, some commentators have explored whether a Pigouvian Tax
would be useful in reducing externalities arising from resistance Vagsholm and Hojgard (2010).
The optimal level of taxation, however, appeared to be linked to the uncertainty of the amount
of time required for the development of a new antibiotic type.

Chapters 2 and 3 of this thesis provide additional economic perspectives on the difficulty
of finding practical implementations of instruments such as a Pigouvian tax in the context of
antibiotic consumption. Chapter 2 identifies significant differences in both policy implementa-
tion and baseline levels of antibiotic consumption, therefore highlighting practical limitations in
identifying the degree of overconsumption leading to resistance. Chapter 3 provides evidence of
the existence of spatial dependence in antibiotic consumption across practices, thus highlighting
potential practical limitations in effectively measuring overconsumption.

The issues addressed in this thesis relate a number of topics which are central in health
economics, a field of economic knowledge which has seen important developments in recent

4For an economic discussion on externalities see Varian (2010).
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times.

One key element in the economic theory of policy evaluation is the concept of natural
experiment. Natural experiments arise when a set of agents, or a set of administrative areas,
are affected by a given intervention at random, thus mimicking the behaviour of randomised
control trials experiments.5 The random assignment of treatment among individuals, or ad-
ministrative areas, allows for the identification of an effective treatment and control group.
When the treatment and control group are balanced, we can identify the causal effect of the
policy by means of a valid counter-factual. The presence of a valid counter-factual is at the
basis of the difference-in-difference methodology (diff-in-diff), a regression technique allowing
for policy estimation.6 Diff-in-diff has been applied extensively in health economics.7 Examples
of application include the estimation of food stamp programmes (Hoynes et al., 2016) and
tax reforms on infant health (Hoynes et al., 2015). The topic of antibiotic resistance has seen
very little attention when it comes to the application of counter-factual analysis. To the best
of the author’s knowledge, the work presented in this thesis is the first attempt to apply this
methodology at a EU level.

Spatial economics is a field of applied economics and econometrics which aims to address
the identification issues arising when estimating models where spatial dependence plays a
role in influencing either the dependent variable, its covariates, or where spatial dependence
arises as a random component.8 Starting with the work of Paelinck and Klaassen (1979) and
Anselin (1988), this strand of literature first addressed the issue of spatial correlation and the
ways to address it with model estimation. Spatial econometric techniques have been applied
to the field of health economics (Lippi Bruni and Mammi, 2016), and to the topic of antibiotic
prescription in primary care (Filippini et al. (2014), Gonzalez-Ortiz and Masiero (2013)). The
review proposed by Gibbons et al. (2015) explains clearly three key different types of mod-
elling allowing for spatial correlation. These include spatial autoregressive (SAR), spatial lag
(SLX) and spatial error models (SEM). SAR models allow for spatial lags in the dependent
variable, thus addressing spatial auto-correlation in the dependent variable. SLX models allow
for direct effects of neighbours’ characteristics on own outcomes. SEM models introduce a
random spatial component in the estimated relation. Gibbons et al. (2015) also indicate the
fundamental challenges with this strand of literature.9 One key element behind spatial analysis
is the definition of spatial weights. In health economics spatial weights have been defined both
in terms of averages of administrative weights, as well as in terms of geographical weights.
Identifying the appropriate definition of spatial weights is part of the art of spatial econometrics.

The third topic considered in this thesis is the interplay of pharmaceutical innovation and
pricing regulation. One of the potential reasons why antimicrobial resistance is the lack of
progress by drug developers to bring forward new antibiotics. The latest antibiotic substances
invented in the last 30 years were variations of drugs discovered by 1984 (BBC Health, 2017).
Understanding the dynamics of innovation in pharmaceutical markets, and developing regula-
tion that does not negatively impact on innovation, are therefore key elements to be addressed
to ensure that resistance is kept to a minimum in the long-run. The literature on pharmaceu-
tical innovation has an established tradition in health economics. Early works date back to
Arrow (1962), Nordhaus (1969) and Scherer (1972). These studies originally focused on patent
protection and the appropriation of realised profits by innovating firms. The third chapter of

5see Meyer (1995) for a detailed explanation on this topic
6See Abadie (2005) for a discussion of the diff-in-diff methodology. See Bertrand et al. (2010) for a discussion of the

limitations of such methodology
7See Wing et al. (2018) for an effective review of the applications od diff-in-diff methodology to health economics.
8See the work by Gibbons et al. (2015) for a through review of spatial methods in economics.
9The key limitations are: the reflection problem, the presence of omitted variables and problems caused by sorting.
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this thesis addresses the issue of pharmaceutical innovation focusing on three key components.
First, this chapter analyses static versus dynamic optimisation. In a nutshell, static optimisation
aims to obtain the maximum possible welfare in the current period. Dynamic optimisation, on
the contrary, requires welfare optimisation inter-temporally. Second, this chapter identifies the
role of price and patent variation in influencing optimal welfare. Lastly, this chapter addresses
price regulation. Price regulation is important to ensure price control and the affordability of
new pharmaceuticals for the national health system. In line with existing literature (Ghislandi
(2011), Bardey et al. (2010)), this thesis shows that pricing regulation might have an impact on
innovation distorting the general market dynamics.

The analysis of antibiotic resistance could be subject to a number of counter-claims. For
instance, commentators might say that resistance is a complex issue which cannot be effectively
addressed from a single perspective only. Similarly, commentators might argue that resistance
is an emerging phenomenon of a complex system, hence analysis based on assumption of
linearity might not consider potential tipping points which are difficult to identify ex-ante.
Similarly, counter-arguments might be that healthcare systems could be ill-prepared in ad-
dressing resistance, or that top-down policies might prove to be ineffective in addressing this
problem. While these counter arguments may stand, the purpose of this thesis is not to provide
a conclusive view on antibiotic resistance as a whole, but rather to focus on specific issues of
this multi-faceted phenomenon.

This thesis aims to expand the existing knowledge on the introduced topics. More specif-
ically, this thesis first aims to fill the gap on the analysis of the effectiveness of stewardship
programmes in reducing antibiotic over-consumption. Despite the importance of the topic
of controlling antibiotic consumption, very little has been said regarding the effectiveness of
existing policies in reducing consumption. The first chapter of this paper aims to provide an
answer to this question. Second, this thesis aims at providing additional evidence concerning
the spatial effects of antibiotic consumption. While there have been few studies analysing spatial
effects in health economics issues, the analysis of spatial dependence in antibiotic consumption
are limited. Existing studies in this field mostly use cross-sectional analysis. This limited
literature also did not reach a final agreement on the sources of those dependences. The second
chapter of this contribution aims to shed some light on this issue by providing a spatial panel
analysis for England and by providing additional model specifications to explain the potential
sources of spatial dependence. Lastly, very little has been said on the impact of value-based
pricing of pharmaceuticals in affecting welfare and the probability of innovation. The third
chapter of this thesis provides an analysis of the impact of this pricing policy on the dynamics
of the pharmaceutical market.

The analysis presented in this thesis contributes to additional strands of literature. For
instance, the analysis of stewardship programmes fits in the literature centred on cross-country
comparison of antibiotic consumption (Klein et al. (2018), Blommaert (2014)). This strand of
literature aims at identifying patterns of antibiotic consumption across countries. The purpose
of this literature is to understand how different health systems address the issue of antibiotic
consumption. The first chapter complements the healthcare literature that uses econometric
techniques to obtain plausible causal effects from observational data (Hoynes et al. (2015),
Hoynes et al. (2016), Wing et al. (2018)). This literature, already established in applied eco-
nomics and econometrics, aims to identify the impact of specific policies and interventions.
Based on the concept of natural experiment, this strand of literature aims to identify the
impact of interventions. The second paper fits with spatial modelling in healthcare systems
(Anselin (1988), Gibbons et al. (2015), Lippi Bruni and Mammi (2016), Filippini et al. (2014),
Gonzalez-Ortiz and Masiero (2013)). The spatial modelling literature in healthcare systems, and
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in the field of antibiotic prescription more specifically, aims at identifying the sources of spatial
dependence and its impact on a specific target measure. The third chapter fits across a number
of literature strands. First this chapter looks at the issue of welfare maximisation considering
the implications of static and dynamic optimisation (Arrow (1962), Nordhaus (1969), Scherer
(1972)). This literature looked at how social planner might price pharmaceuticals either for the
maximisation of welfare in individual periods, or inter-temporally. The paper also fits in the
literature of innovation in pharmaceutical markets (Arrow (1962), Nordhaus (1969), Scherer
(1972), Van Cayseele (1989), Billette de Villemeur et al. (2019)). More specifically, the modelling
approach is based on a pseudo-deterministic innovation probability function. This papers
also fits in the strand of literature analysing rent-seeking behaviour and innovation (Krueger
(1974), Boldrin and Levine (2013)). Lastly, this paper fits in the literature analysing price regu-
lation and its impact on welfare and innovation (Brekke (2007), Miraldo (2010), Ghislandi (2011)).

This thesis is organised as follows. Chapter 2 explores the effectiveness of EU-wide policies,
such as stewardship programmes, in influencing the reduction of the provision of antibiotics.
This analysis is performed adopting difference-in-difference analysis based on Eurobarometer
survey data. Chapter 3 analyses GPs patterns of antibiotic provision in England for the years
2013-2017 adopting techniques from spatial econometrics. Chapter 4 explores the dynamics of
pharmaceutical regulation and its impact on innovation. By introducing a dynamic two-period
theoretical model, this analysis first focuses on static-versus-dynamic objectives of innovation,
then introducing an focus on the impact of regulation such as value-based pricing. Section 5
provides the conclusions.

12



Chapter 2

Estimating the impact of
stewardship programmes on
antibiotic consumption in EU.
Evidence from the Eurobarometer
for the years 2009-2018.

I. Introduction

This paper estimates the impact of the introduction of stewardship programmes in reducing
antibiotic consumption across European countries.

The use of antibiotics increased globally over the past few years (Klein et al., 2018). Over-
prescription of antibiotics is associated with higher antibiotics resistance (Mera et al. (2006),
Monroe and Polk (2000)). Antibiotic resistance leads to reduced health outcomes and to in-
creased costs for the national health systems. According to O’Neill (2014), antibiotic-resistant
infections currently claim at least 50,000 lives each year across Europe and the US alone, with a
potential global rise close to 10 million expected deaths per year by 2050. In the EU, antimi-
crobial resistance is expected to lead to 33 thousand deaths every year, with an estimated 1.5
billion euros of yearly healthcare and productivity costs (European Observatory on Health
Systems and Policies, 2019). Reducing overconsumption of antibiotics might thus reduce costs
for national health systems worldwide and prevent unnecessary deaths.

O’Neill (2014) identifies considerable variation in the patterns of global antibiotics resistance,
with country-specific differences in prescription rates being a key source of variation. The
authors also identify overconsumption being facilitated by over-the-counter availability and
provision without prescription. Significant variation on antibiotic consumption was identified
also within Europe (Megraud et al. (2013), Goossens et al. (2005), ESAC (2007), ESAC (2011),
Ferech et al. (2006)). Fleming-Dutra et al. (2016) and Smieszek et al. (2018B) state that a sub-
stantial fraction of antibiotic prescriptions in primary care are likely to be inappropriate. Some
authors identify health inequalities and income per capita as factors associated with antibiotics
misuses and regional variation in prescription rates (Llor and Bjerrum (2014), Filippini et al.
(2006), Koller et al. (2013)). Antibiotic resistant infections, which are linked to over-prescription,
have an increased risk of worse clinical outcomes and death, and consume more healthcare
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resources, compared to infections with non-resistant bacteria (World Health Organization, 2014).

Currently, most EU countries have well-established national and international surveillance
systems for Antimicrobial Resistance (AMR), whereas countries in other parts of the European
Region require strengthening or establishing surveillance (World Health Organization, 2014).

Policy makers world-wide introduced policies targeted to the reduction of the risks asso-
ciated with antibiotic resistance. These include, for instance, the application of Stewardship
Programmes and National Action Plans (NAP) (World Health Organisation, 2015). Stewardship
programmes are quality improvement initiatives aimed to optimise the use of antibiotics via
evidence-based recommendations targeted to health professionals (Tamma and Cosgrove (2011),
Charani and Holmes (2013)). According to World Health Organisation (2015) optimised antibi-
otic consumption for human health requires prescription decisions to be based upon effective
diagnosis and evidence-based prescribing. Evidence-based prescribing can be achieved via
stewardship programmes, which allow the monitoring and promotion of antimicrobial use at
national and local levels.

National action plans are coordinated national policies aiming to develop specific action to
address antibiotic resistance, ensuring accountability and civil society engagement (Bonk, 2015).
Despite global efforts by the WHO, many countries lag behind on the introduction of national
policies (European Observatory on Health Systems and Policies, 2019).

Concerning the effectiveness of individual policies, CDC (2013) identifies stewardship pro-
grammes as one key action against antibiotic resistance. Effective stewardship ensures that every
patient gets the maximum benefit from antibiotics, while preserving the life-saving potential
of these drugs for the future. Prudent prescribing, arising from evidence-based stewardship,
has been identified as one way to reduce the potential for resistance (Goossens (2009), van de
Sande-Bruinsma et al. (2008)).

Conversely, despite the World Health Organisation’s (WHO) efforts for the harmonisation of
NAPs (WHO et al., 2016), Bonk (2015) identifies considerable variation internationally concern-
ing NAP’s implementation, with differences holding both in terms of areas of action, as well as
expressed goals.1 In addition, while National Action Plans often mention the introduction of
stewardship programmes as part of the national strategy European Commission (2017), they
often lack the amount of detail provided by evidence-based guidelines reported in stewardship
programmes.2 Due to the variation in their implementation at a national level, we do not make
assumptions on NAPs being either complement or substitute to stewardship programmes.

According to WHO, not all EU countries have implemented antibiotic stewardship pro-
grammes3 and NAPs at the same time.4 Different temporal patterns in the implementation
of national policies across EU countries, create the conditions to analyse the impact of such

1For instance, the Italian NAP clearly indicates a goal for the reduction of systemic antibiotics prescription by more
than 10% at a local level and more than 5% in hospitals (Ministero della Salute, 2017), while the UK NAP, although
stating priorities and calls to action, focuses more on defining the policy framework for containing over-prescription,
without providing a target goal for prescription reduction (Department of Health and Department for Environment
and Rural Affairs, 2013).

2For instance, the UK 2013 NAP states the intention to introduce stewardship programmes (among other policy
actions) (Department of Health and Department for Environment and Rural Affairs, 2013), while it is not until the 2015
National Institute of Care Excellence (NICE) that quantitative and evidence-based guidelines are provided in primary
care (NICE, 2015).

3See https://ecdc.europa.eu/en/publications-datadirectory-guidance-prevention-and-controlpruden

t-use-antibiotics/antimicrobial
4https://www.who.int/antimicrobial-resistance/national-action-plans/library/en/
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policies on antibiotic consumption as a natural experiment. Due to the important differences in
NAPs implementations across individual countries, this paper will focus mostly on stewardship
programmes. Information concerning NAPs will be used only for sensitivity analysis.

This paper estimates the impact of stewardship programmes in reducing antibiotic consump-
tion via difference-in-difference (diff-in-diff) analysis. We estimate our results on a repeated
cross-section of a representative sample of the European population, using Eurobarometer
survey data for the years 2009, 2013, 2016 and 2018. Our key dependent variable is a survey
question asking respondents whether they consumed antibiotics orally in the last 12 months.
Our results are identified taking into consideration respondents’ characteristics as well as
national level covariates. We estimate the impact of stewardship programmes in reducing
antibiotic consumption by pooling it across treated and control groups, as well as estimating
its impact for individual years of introduction. We confirm the robustness of our results by
estimating an alternative difference-in-difference model introducing NAPs as a control variable.

The provision of antibiotics can be linked to both demand- and supply-side factors. Demand-
side factors might include a higher requests from consumers, possibly due to beliefs of an-
tibiotics being effective in addressing their health needs. Supply-side factors, on the contrary,
might be linked to healthcare professionals acting as gate-keepers to antibiotic provision.

This paper estimates the impact of the stewardship programmes on antibiotic consumption.
This effect is estimated for all respondents, as well as individual respondents’ groups. We then
identify the presence of inter-temporal effects of the introduction of stewardship programmes,
by identifying significant lead effects, confirming an impact of stewardship programmes on
antibiotic consumption in the years following its introduction.

We provide a first intuition of whether stewardship programmes are effective in influenc-
ing supply-side factors by estimating whether such programmes have reduced the share of
antibiotics received from doctors and identifying the share of respondents who reported the
intention to consult a doctor for future antibiotic use. We interpret these effects as evidence
for stewardship programmes in being effective in improving the gate-keeping role of health
professionals when it comes to antibiotic prescription.

We analyse the impact on potential demand-side effects by estimating the impact of stew-
ardship programmes on respondent’s beliefs concerning antibiotics. More specifically, the
respondent’s beliefs which are captured by the survey questions are: a) whether antibiotics are
effective against flu, b) whether antibiotics kill viruses, c) whether overuse of antibiotics reduces
their effectiveness, and d) whether antibiotics have side effects. We interpret these beliefs as
proxies for demand-side factors influencing antibiotics consumption.

The estimation of the impact of stewardship programmes on antibiotic consumption, and its
impact on the demand- and supply-side factors defined above, forms the motivation of this
paper.

This paper is organized as follows. Section 2 provides some background on institutional
settings and on the literature. Section 3 provides a description of the available dataset. Section
4 presents the methodology. Section 5 illustrates the results. Section 6 concludes.
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II. Literature review

The available literature on antibiotic consumption identifies a high heterogeneity in the daily
consumption of antibiotics by outpatients across European countries (Elseviers et al., 2007).
Pouwels et al. (2018) show that, among English GP practices, the majority of practice-level vari-
ation in antibiotic prescribing cannot be explained by variation in prevalence of co-morbidities.
Factors such as high consultation rates for respiratory tract infections and high prescribing rates
for corticosteroids could explain much of the variation.

Dolk et al. (2018) suggest that a practice with a higher proportion of young children or
elderly patients would be expected to have higher prescription rates than a practice with mainly
working-age adults. Solomon et al. (2016) state that family physicians have an important role in
combating antibiotic resistance through carefully prescribing antibiotics, communicating with
patients about antibiotic appropriateness, and identifying and reporting unexpected treatment
failures and suspected resistance.

From an empirical perspective, Burkhard et al. (2015) estimate the effect of financial in-
centives for physicians to sell more drugs and to substitute towards more expensive drugs,
finding evidence that physician dispensing increases drug costs by 25% for GPs. This indicates
a potential role for the physician in affecting prescription volumes. Kaiser and Schmid (2016)
extend the previous analysis by exploring regional variation in GP prescribing for the Swiss
case, and identifying that dispensing leads to a drug price increase of 34%. Penthofner (2016)
show that GPs respond to liability pressure by prescribing more antibiotics.

Gonzalez-Ortiz and Masiero (2013) link antibiotic consumption to demographic and socio-
economic characteristics of the population, the supply of health care services in the community
and antibiotic co-payments estimating an Ordinary Least Squares (OLS) model with Fixed
Effects (FE). The authors find that antibiotic use is affected by the age structure of the population
and the supply of community health care. The authors also find a positive effect on antibiotic
consumption by income elasticity and negative effects of co-payments. Huttner et al. (2010)
identify that public interventions might be effective in controlling antibiotic consumption.

When considering country-level phenomena associated with antibiotic consumption, Eu-
ropean Observatory on Health Systems and Policies (2019) indicate that factors such as weak
healthcare systems, lack of sustainable healthcare funding, prevalence of over-the-counter (OTC)
sales of antimicrobials, plus unhygienic living conditions, might all contribute to a higher
diffusion of infectious diseases, thus potentially contributing to higher resistance. The authors
also identify a potential link between antibiotic resistance and GDP per capita, particularly
when comparing low- and middle-income countries to more developed ones. Similarly to
Rousham et al. (2018), the authors highlight the pathways for antimicrobial resistance to be an
interplay between human, animal and environmental factors.

There exists a stream of literature analysing the diffusion of professional know-how on
antibiotic prescription across practitioners. In particular, there are studies focusing on health
education interventions and their impact on prescription behaviour. These studies identify that
such interventions are effective in achieving better alignment to national prescription guidelines
reducing the provision of broad spectrum antibiotics (Dyrkorn et al., 2016). Comparison and
peer effects were also found to be effective in ensuring that practitioners follow national guide-
lines (see Meeker et al. (2016) and Clegg et al (2019)), in reducing inappropriate prescription
(see Gjelstad et al. (2013) and Linder et al. (2017)) and in the adoption of new drugs (Donohue
et al, 2018). These results are in line with other streams of behavioural literature identifying that
practitioners expect peers to know if they are overprescribing (Pinder et al., 2015) and with the
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results by Hallswort et al 2016, which indicate that social norm feedback to prescribers can be
an effective method to reduce overall consumption in ambulatory care (Hallsworth et al., 2016).
Additional studies identify the importance of opinion leaders in influencing antibiotic pre-
scription of other practitioners Nair et al. (2010). Other authors, however, highlight limitations
in implementing large scale peer-audit and feedback mechanisms on general prescription in
primary care (Trietsch et al., 2017). The WHO recognises the importance of knowledge diffusion
on influencing antibiotic prescription, however it also highlights the need to acknowledge local
cultural contexts to ensure behavioural change is achieved (Ledingham, 2019). This result
appears to highlight potential persistence of local patterns in prescription behaviour.

Mueller and Olofystergren (2016) provide evidence of an existing relationship between
the degree of regulation and antibiotic consumption in European countries. In particular,
the authors highlight the importance of implementing specific regulatory items, such as the
presence of Standard Treatment Guidelines, non-availability of drugs without prescriptions and
pharmacist training modules, on reducing antibiotic consumption. The authors also highlight
the importance of contextual aspects, such as the quality of the country’s healthcare system, the
overall governmental structure, the amount of healthcare resources and specific health policies
and legislation as factors influencing antibiotic consumption. A variation in such factors may
therefore underline potential cross-country variation in consumption. McGowan (1994) provide
a detailed literature review of articles highlighting a negative link between antibiotic control
and monitoring and susceptibility patterns to resistance. Similarly, Baur et. al. (2017) provide a
review of studies exploring stewardship programmes, finding evidence of such programmes to
be effective in reducing antibiotic consumption and resistance in hospital settings. Arda et al.
(2007) find antibiotic control to be cost-saving and effective in reducing resistance. Filippini
et al. (2012) identify an effectiveness of public education campaigns in reducing antibiotic
consumption. Horowitz and Mohering (2004) identify a potential negative link between patent
expiration and antibiotic resistance. A broader review of studies analysing policies targeted at
reducing antibiotic resistance is provided by Sipahi (2008) and Brown and Laxminarayan (1998).

A separate strand of policy interventions aimed at reducing antibiotic consumption are
the pay-for-performance policies. Pay-for-performance policies aim to incentivize quality im-
provement by rewarding health-care providers who reach pre-defined targets (Ellegard et al.,
2018). Ellegard et al. (2018) study the effectiveness of pay-for-performance policies in reduc-
ing inappropriate antibiotic prescription behaviour in Swedish primary care, identifying an
effectiveness in such policies in favouring the diffusion of narrow-spectrum antibiotics, which
contribute less to resistance. An example of pay-for-performance policies are provided by
the English Quality Premium. These policies aim to provide incentives to CCGs, statutory
bodies of the National Health System (NHS) responsible for the planning and commissioning
of healthcare services in local areas, to reach specific antibiotic prescription targets. Among
the considered areas of intervention, these policies introduce incentives for CCGs to reduce
antibiotic prescription among GP practices. Such incentives occur for both all antibiotics as a
whole and for broad-spectrum antibiotics which are highly related to resistance NHSE (2016).
According to the available evidence, such policies proved to be effective, as their introduction in
2015 coincided with a 3% drop in antibiotic prescribing (see Bou-Antoun et al. (2018)). This
reduction proved to be sustained over time, consistently with PHE (2017) findings showing that
GP practices respond to variation in guidelines.

Antibiotic stewardship programmes are specific policies whose scope is to ensure that all
patients are treated with the most effective and least costly drug for the appropriate amount of
time, all while minimizing treatments’ potential side effects (MacDougall and Polk, 2005). One
of the specific implementations of stewardship programmes is the provision evidence-based
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guidelines to healthcare practitioners, so as to preserve the effectiveness of antibiotics by reduc-
ing resistance while achieving satisfactory health outcomes (Dellit et al, 2007). More generally,
the term stewardship programme is used as an umbrella term enclosing an overarching policy
aiming at changing antibiotic provision and directing its use. When introducing stewardship
programmes, healthcare organizations may use a plethora of individual practices (see Mac-
Dougall and Polk (2005) and Dellit et al (2007)). Specific practices considered under stewardship
programmes might include: formulary restrictions and preauthorization requirements, the
development of evidence-based guidelines, combination therapy, optimisation of antibiotic
prescription based on patients’ characteristics, conversion from parenteral to oral prescription
(see Brown and Laxminarayan (1998) and Dellit et al (2007) for an in-depth discussion on this
topic). Expert recommendation on antibiotic stewardship suggests the monitoring of both
outcome and process measures (Dods Ashley et al, 2014). Allerberger et al (2009) explore the
implementation of antibiotic stewardship programmes across European countries identifying
significant differences in country-level implementation as a result of heterogeneity in organisa-
tional aspects of healthcare delivery, financing and insurance across member states. A similar
result is obtained by Bruce et al. (2009). In addition, MacKenzie et al (2007) highlights differences
in staffing and in educational level of medical specialists as a source of variation in the actual
implementation of stewardship programmes across European countries. When analysing stew-
ardship programmes at an European level, a significant cross-country variation is to be expected.

Elzinga and Mills (1997) develop a theoretical framework to show that antibiotics prescrip-
tion is elastic to price discounts, identifying that discounts increase consumer welfare in the
managed care sector. This result identifies a role for price in affecting the probability of antibiotic
use. Filippini et al. (2014) investigate the role of dispensing physicians in influencing antibiotics
consumption. The authors develop a theoretical framework to show that when introducing
an interaction between competing physicians and patients exposed to bacterial infections, the
spatial effect of consumption may generate ambiguous results. Trottmann et al. (2016), on the
contrary, identify no immediate evidence of GP prescription to be leading to higher drug costs
compared to other forms of prescribing. The Turkish Ministry of Finance, which is responsible
for the majority of healthcare expenditures, adopted formulary restrictions n 2003, leading to
a reduction of 19.6% in antibiotic costs following the introduction of such policy Arda et al.
(2007). The application of guidelines appeared to reduce inappropriate prescribing in pedriatic
care Goreki et al. (2002) and in teaching hospitals Carling et al. (2003), while MacDougall and
Polk (2005) identify several cases of stewardship programmes reaching cost-effectiveness in
secondary care.

Wing et al. (2018) provide a review of the diff-in-diff methodology in public health policy
research. Examples of its application include the estimation of the impact of taxes on tobacco
consumption (Simon, 2016), alcohol consumption (Marcus and Siedler, 2015), preventative
care (Kolstad and Kowalski, 2012). Diff-in-diff has also been applied to the estimation of the
impact of new health policies on drug prescription in the US (Ketcham and Simon, 2014). A
methodology to estimate the effects of introducing a policy in separate years is reported in
Stevenson and Wolfers (2006) who introduce the staggered diff-in-diff.

To the best of our knowledge there are no papers estimating the impact of national policies
on antibiotic consumption at an EU level via the application of diff-in-diff methodology.
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III. Data

The European Commission has an established tradition of using the Eurobarometer to survey
Europeans’ public opinion on matters related to society at large, economics and current affairs.5

The Eurobarometer is often targeted to measure specific topics of interest for policy makers.
This study uses the results of the Eurobarometer 72.5 (Nov-Dec 2009), 79.4 (April 2013), 85.1
(April 2016) and 90.1 (September 2018) which survey the use of and attitudes towards antibiotics
across European countries.

The Eurobarometer provides a nationally representative sample of the population of individ-
ual EU countries. Sample size in each country consisted of 1000 individuals, with the exception
of Luxemburg and Malta which both had 500 respondents. Two additional exceptions were
included for specific regions, namely, Germany, which had 1000 respondents in west Germany
and 500 in East Germany. The United Kingdom, also had 1000 observations for Great Britain,
and 300 observations for Northern Ireland. Individuals included in the survey were those above
15 years of age. The survey allowed for post-stratification sample weighting and population
size weighting.

For the Eurobarometer 72.5, 79.4, 85.1 and 90.1 the fieldwork was carried out respectively
in November 13 2009 to December 09 2009, May 24 to June 9 2013, April 09 to April 18 in
2016, and September 08 2018 to September 26 2018. Interviews were conducted face-to-face in
people’s home in the respective national language6. Where the techniques were available, CAPI
(Computer Assisted Personal Interview) was used.

Survey responses were checked for completeness, missing data, duplicated records, illegal
codes, consistency in response patterns and questions routing. Potential errors were address at
source.

In the survey, the use of antibiotics was measured by asking respondents whether they
consumed any antibiotics orally in the last 12 months. Responses to this question formed the
main dependent variable of this study.

The barometer also includes questions concerning the source of antibiotics and the inten-
tion to consult a doctor for future antibiotic consumption. We used these two questions as
alternative dependent variables, focusing on doctors as a source of antibiotics. Lastly, we con-
sidered questions on antibiotic beliefs as additional dependent variables. Beliefs were measured
by respondents opinions on statements such as whether antibiotics are effective against flu,
whether antibiotics kill viruses, whether antibiotics overuse might reduce their effectiveness,
and whether antibiotics have side effects. All these responses were turned into dummy variables.

The Eurobarometer provides information about respondents’ demographics, including re-
spondents’ nationality, the country in which the survey was asked, respondents age, gender,
educational level, marital status, occupational status, household composition, and whether
respondents had financial difficulties.

The information contained in the survey was subject to a data cleaning process. For instance,
information concerning the country in which the survey was asked, and respondent’s nationality
were turned into dummies.7 Observations related to Croatia were removed from the analysis,

5See http://ec.europa.eu/commfrontoffice/publicopinion/index.cfm
6Notice that by carrying out interviews in people’s homes some specific categories of antibiotic users, such as elderly

individuals living in care homes, might have been left out of the analysis.
7Considered countries were: Belgium, Denmark, Germany, Greece, Spain, France, Ireland, Italy, Luxembourg,
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as observations for this country were not available in the 2009 Eurobarometer. We computed a
"foreign" dummy set equal to one when the nationality of the respondent was different from
the country in which survey was held. We also included dummies for individual years.

The survey allowed for questions with dichotomous answers, that is questions allowing for
"Yes or No" answers, or any variation of this sort. Two scale variables were: use of antibiotics
in the last 12 months, opinion on antibiotics use against viruses, opinion on antibiotics use
against flu, opinion on antibiotics overuse, opinion on antibiotics side effects. Responses to
these questions were turned into dummy variables.

Respondents age was organised in a series of dummies, namely being a teenager (15 to
17), being an adult (18 to 64) and being elderly (above 65). Gender was coded as two separate
dummy variables.

Regarding education, respondents were asked to indicate the year in which they finished
full-time education. Education was organised into a series of dummies. Considered levels were:
early childhood or no education, primary, secondary and above secondary education. Age
bands were respectively: less than 6, between 6 and 12, between 13 and 18, above 18.8

Occupation was organised into three main categories: non active, self-employed and em-
ployed. We implemented a dummy variable for each occupational category.

Marital status was turned into a series of dummies. More specifically we considered the
following categories: being single, being single living with partner, being divorced or separated,
being widow and having an "other" relationship status.

We created a dummy variable to indicate whether the household had any kids (age below
10) or teenagers (age 10 to 14).

Financial status indicated whether the respondent experienced any financial difficulty in
paying bills at the end of the month. This variable was organised as a dummy, with 1 indicating
"most of the time" and "from time to time" responses, and 0 otherwise.

Respondents’ trust on information sources was measured by asking the respondents to
indicate up to three trusted source.9 Answers to this question varied across years. For this
reason, prior to 2013, we included in the "other" category the answers "Government Website",
"National Public Health Institute", "EU Website", "Health Related Website", "Medical Encyclo-
pedia", "National Health Body", "Health Related Magazine". For 2016 onwards the "other"
category included "Official Website", "blog", "Other website", "social media", "TV", "Radio",
"other". Respondents’ level of trust on the sources of information concerning antibiotics was
turned into a series of dummies.

In the data cleaning process, all "don’t know" or "non applicable" answers were turned into
NA.

We then considered a number of country-level covariates, namely: GDP per capita, popula-
tion density, and unemployment rate. All these variables were time varying. Other national-level

Netherlands, Portugal, United Kingdom, Austria, Sweden, Finland, Cyprus, Czech Republic, Estonia, Hungary, Latvia,
Lithuania, Malta, Poland, Slovakia, Slovenia, Bulgaria, Romania, Croatia, Other countries.

8Notice that setting those age bands could lead to an approximation as educational stages may vary across countries.
9Available sources were: "A doctor", "A nurse", "A pharmacy", "A hospital", "Another health care facility", "Family

or friends", "TV", "Newspapers or magazines", "The radio", "The internet" and "Other".
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indicators associated with weak healthcare systems, lack of sustainable healthcare funding,
prevalence of over-the-counter (OTC) sales of antimicrobials, plus unhygienic living conditions
were considered, however they were not included due data limitations.10 All national-level
indicators were obtained from Eurostat database.11

To account for the severity of antibiotic resistance, we included the percentage of invasive
staphylococcus aureus isolates with resistance to meticillin (MRSA).12 Due to the positive
feedback loop between antibiotic over-prescription and antibiotic resistance (Mera et al. (2006),
Monroe and Polk (2000)), including the rate of antibiotic resistance among the covariates might
lead to "bad controls" due to endogeneity (Angrist and Pischke, 2009). For this reason, antibi-
otic resistance was used only as a compositional changes check; that is to verify whether the
introduction of stewardship policy was associated with the severity of antibiotic resistance.

To estimate the impact of national policies in influencing antibiotics consumption, we col-
lected information on the application of those policies at a country level. Information on the
year of implementation of stewardship programmes in individual countries was obtained from
ECDC’s website.13 Information on the introduction of national action plans was obtained from
WHO’s library on national action plans.14

Table 2.1 presents a summary of implemented national policies. This table indicates the
country division in treatment groups (column 2), the year of introduction of stewardship
programmes (column 3), and the year of the introduction of a national action plan (column
4). Reported years indicate the years in which the policy was implemented. Stewardship
programmes and national action plans were turned in a series of dummies equal to one from
the years in which the policy was first implemented.15

The final dataset included 105556 observations.

IV. Methodology

Our key dependent variable consists of a dummy variable indicating respondents’ antibiotic
oral consumption in the last 12 months.16

As alternative dependent variables we consider the percentage of respondents who reported
receiving antibiotics from a doctor, respondents’ intention of consulting a doctor for future

10These included: a) healthcare expenditure per capita, b) out-of-pocket expenditure, c) income inequality (missing
for most countries in 2018), d) antibiotics provided to animals (which starts from 2010 and ends in 2016), e) health
personnel per 1000 inhabitants, f) hospital beds (data ends in 2017), g) hospital days of in-patients (ends in 2017), h)
long-term care beds in nursing and residential care facilities, i) the number of air transport passengers, and l) number
of households with internet access.

11https://ec.europa.eu/eurostat/data/database
12While this indicator is not the only indicator associated with antibiotic resistance, it captures one of the most

common causes of bacterial infections in Europe https://ecdc.europa.eu/sites/portal/files/documents/EARS-N

et-report-2017-update-jan-2019.pdf.
13https://ecdc.europa.eu/en/publications-data/directory-guidance-prevention-and-control/prudent-use-

antibiotics/antimicrobial
14http://www.who.int/drugresistance/action-plans/library/en/
15Notice that our measure of antibiotic consumption refers to antibiotics consumed in the last 12 months. Germany,

whose stewardship guidelines were published in December 2013, was included in treatment 2 group, as the fieldwork
of the Eurobarometer ended in June 2013. On the contrary, the Netherlands, were included in treatment group 2 as the
guidelines explicitly mention that they refer to the "prevailing professional standard in March 2016", hence they were in
place by the time of the survey fieldwork.

16The specific survey question was: "Have you taken any antibiotics orally such as tablets, powder or syrup in the
last 12 months?". This question allowed for "yes" or "no" answers.

21

https://ec.europa.eu/eurostat/data/database
https://ecdc.europa.eu/sites/portal/files/documents/EARS-Net-report-2017-update-jan-2019.pdf
https://ecdc.europa.eu/sites/portal/files/documents/EARS-Net-report-2017-update-jan-2019.pdf


Table 2.1: Summary of national policies. Country division across control and treatment groups is related to the year
of introduction of the stewardship programme. Reported years indicate the year of implementation of
individual policies.

Country Treatment group Stewardship programme National action plan
Austria Control - 2014
Belgium Control - 2014-2019
Bulgaria Control - -
Croatia Control - -
Cyprus Control - 2012

Czech Republic Control - 2011-2013
Estonia Control - -
Finland Control - 2017-2021
Greece Control - 2008-2012

Hungary Control - -
Italy Control - 2017 - 2020

Latvia Control - -
Lithuania Control - 2017 - 2021

Luxembourg Control - -
Malta Control - -

Portugal Control - 2013
Romania Control - -
Slovakia Control - -
Slovenia Control - -
Sweden Control - 2016 - 2020
France Treatment 0 2008 2011-2016
Ireland Treatment 0 2009 2017 - 2020

Denmark Treatment 1 2012 2017
Poland Treatment 1 2011 -
Spain Treatment 1 2012 2014 - 2018

Germany Treatment 2 2013 2015-2020
Great Britain Treatment 2 2015 2013-2018

Northern Ireland Treatment 2 2015 2013-2018
Netherlands Treatment 2 2016 2015 - 2021
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antibiotic use. these variables are interpreted as potential supply-side proxies for doctors acting
as gate-keepers to drug provision in primary care.

In addition, we check whether the introduction of national policies changed respondents’
beliefs on antibiotics, as measured by the percentage of respondents who provided a positive
response to any of the following statements: antibiotics kill viruses, antibiotics are effective
against cold and flu, unnecessary use of antibiotics makes them become ineffective and an-
tibiotics have side effects. We interpret these variables as demand-side factors affecting the
potential demand for antibiotics from patients.

We first provide descriptive statistics of the variables considered in this analysis. Variables
with a high percentage of missing values were removed from the analysis. To avoid potential
collinearity we remove highly correlated variables.

To understand whether countries with higher antibiotic consumption were also the ones
not adopting the policy, we first grouped antibiotic consumption per capita in individual
years. Antibiotic consumption per capita was defined as Defined Daily Doses (DDD) per 1000
inhabitants per day. In the analysis we considered antibiotics in the ATC group J01 in both the
community sector. Data was downloaded from the ECDC website.17 To ease interpretation
prescription rates were grouped across treatment and control groups. We used the methodology
proposed by the World Bank in computing per capita consumption rates across treated and
control groups. More specifically, we used the denominator (total population) in single years
as a weight when computing average rates.18 Population estimates in single years by country
were downloaded from the World Bank.1920

We consider stewardship programmes as our policy of interest. Due to its variation in
its implementation across countries, we consider national action plans only for sensitivity
analysis.21

To estimate the impact of the implementation of stewardship programmes on antibiotic
consumption, we adopt a difference-in-difference model (Imbens and Woolridge, 2007).

Diff-in-diff framework requires the dependent variable to present parallel trends between
the treated and non-treated groups. We provide an initial test for the presence of parallel trends
by means of descriptive statistics for pre-treatment and post-treatment periods for the control
and treated groups (Ho et al. (2007), Imbens and Rubind (2015)). We also test parallel trends
hypothesis by means of graphical analysis. More specifically, we plot the dependent variable
averaged across control and treated groups in single years (Antwi et al., 2013). To ensure fair
comparison we considered non-treated countries as a control group, and 2009, 2013 and 2016
treatments as individual treated groups.

17Data were downloaded from https://www.ecdc.europa.eu/en/antimicrobial-consumption/database/rates

-country. Site accessed on 29th May 2020.
18See https://datahelpdesk.worldbank.org for a discussion on the approaches to use when computing average rates.

Site accessed on 31st May 2020.
19See https://databank.worldbank.org/reports.aspx?source=2&series=SP.POP.TOTL Site accessed on 31st

May 2020.
20Notice that in the computation of population-adjusted DDD rates Liechtenstein was removed as it was DDD rates

were missing in the observation period.
21As stated in the introduction, we interpret NAPs as either complement or substitute to stewardship programmes

due to their variability across countries.
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Our baseline model for the difference-in-difference analysis is

yijt = αj + δt + β1x′1,ijt + β2x′2,jt + γDjt + εijt (2.1)

where yijt represents an outcome for individual i in country j in year t, αj represents individual
country dummies, δt represents year dummies, x′1,ijt represents a vector of respondent’s charac-
teristics, x′2,jt represents country-level covariates, and Djt is a variable equal to 1 for country j
adopting the policy at time t, and εijt is an error term.

In our analysis countries have all been treated in different time periods. To estimate the
impact of individual years of introduction, we develop a staggered version of difference-in-
difference model as proposed by Stevenson and Wolfers (2006). Staggered models generalize
the standard difference-in-difference analysis to allow treatments to occur in different time
periods.

More specifically, the staggered model can be written as

yijt = αj + δt + β1x′1,ijt + β2x′2,jt + ∑
k

γkDjk + εijt (2.2)

In our case we have t ∈ {2009, 2013, 2016, 2018}. In model 2.2, Djk, is a dummy variable indi-
cating whether stewardship programmes were introduced in years 2013 or 2016 respectively.22

We estimate a number of different models based on the approach of equation 2.1. Model
DiD1 represents an empty model containing only year- and country-specific effects. Model
DiD2 contains respondents characteristics. Model DiD3 includes trust on information sources.
Model DiD4 includes interaction effects. Model DiD5 includes country-level covariates. Notice
that by including respondent characteristics we ensure that the impact of the policy is not due
to unobserved covariates (Bellou and Bhatt, 2013).

Models 2.1 and 2.2 present a model estimated at a respondent level, however the source of
variation arising from stewardship is at a country-level. This might lead to potential estimation
bias in the standard errors of the model coefficients arising from residuals being clustered at
a country level (Donald and Lang (2007), Bertrand et al. (2010), Cameron and Miller (2015)).
To overcome this potential bias we introduce clustered residuals (Donald and Lang (2007),
Bertrand et al. (2010), Cameron and Miller (2015)). We compute cluster-robust standard errors
via Huber-White method, thus correcting for heteroskedasticity occurring at a country-level.
Cluster-robust standard errors are applied to all presented models. Robust standard errors
were computed using the R package car, with the function hccm with option type set equal to hco.

Our identifying assumptions are as follows. We assume that the majority of the variability
of our dependent variable stands at a respondent level. We assume that the respondent’s
characteristics are capable of identifying most of that variance. We assume that country-level
differences can be effectively captured by country fixed effects and by country-level covariates.
We also assume that the country decisions to introduce stewardship programmes are exogenous
and not linked to our set of covariates. The data generating process is thus assumed such that
patients might be less likely to receive antibiotics if their doctors receive clear guidelines on
provision, ceteris paribus.

We run a series of alternative models to test the robustness of our results.

22Treatment occurring in year 2009 is removed from the staggered analysis as we do not have a pre-treatment period.
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First we run a series of robustness checks related to our identifying assumptions. We
estimate the impact of introducing a dummy related to the implementation of the National
Action Plan (NAP) among the independent variables.

To avoid potential identification issues arising from the staggered approach, we estimate the
difference-in-difference model for individual years, that is we compare the control groups with
treated groups in separated equations.

We then run our reference model 2.1 estimated across different population groups, namely
teenagers, elderly, females, individuals with financial difficulties and foreigners. The same
model is run on their complements groups. This check allows us to verify whether estimated
results are robust for individual respondents groups.

To test the common trend assumption, we run an F-test between our reference model
2.1 with group-specific time trends and the same model without group-specific time trends.
Rejecting the null hypothesis of the F-test will imply the invalidity of the common trend
assumption. Group-specific time trends have been verified for individual countries and for
individual respondents groups, namely teenagers, elderly, female respondents, respondents
with financial difficulties and foreign respondents.

The inclusion of multiple years allow us to verify the potential lasting of policy effects
over time (Bellou and Bhatt (2013), Marcus and Siedler (2015), Paik et al. (2016), Kolstad and
Kowalski (2012)).

To test for this hypothesis, we introduce the following model specification

yijt = αj + βt + β1x′1,ijt + β2x′2,jt + ∑
k

γkDjt +
S

∑
s=1

Dj,t+sγs +
M

∑
m=1

Dj,t−mλm + εjt, (2.3)

where S are the maximum future period, and M are the maximum previous periods considered.
Under strict exogeneity, we expect future policy changes not to be associated with current
outcomes, hence we expect γs = 0∀s ∈ {1, ..., S}. The values of the parameter γs indicate the
effect of the policy s periods after its introduction. We call this effect lead effect. The parameter
λm refers to the effect of the policy m periods prior its introduction. We call this effect lag effect.
A positive lead effect will indicate a reinforcement of the policy over time, while positive lag
effect indicate potential policy anticipation effects. This model is developed in three separate
formats: one with only lead effects, one with only lag effects and one with both lead and lag
effects simultaneously.

Our identification strategy requires the absence of endogenous selection of stewardship
programmes by different countries at different points of time. The absence of endogenous
selection would imply that countries’ decision to adhere to stewardship programmes is not
influenced by antibiotic consumption or resistance levels. Policy exogeneity, in fact, is a key
element in interpreting its implementation as a natural experiment (Angrist and Pischke, 2009).
The endogenous introduction of policies might occur for a number of reasons, including states
changing regulation in response to changes in outcome variables (Besley and Case, 2000). To
test for the absence of endogenous introduction of stewardship policies, we verify whether
treatment exposure is anticipated by outcomes measured in an earlier period (Wing et al.,
2018). Similar checks on the exogeneity of policy introduction are standard in the difference-in-
difference analysis in health policy research (see Bachhuber et al. (2014), Raifman et al. (2017),
Alpert (2016), Brot-Goldberg et al. (2017)). To check for this exogeneity, Wing et al. (2018)
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state that the entire sequence of past and future treatment exposures must be independent
of unmeasured determinants of outcome variables. In other words, the timing of treatment
exposures must be statistically independent of the potential outcome distribution, thus ensuring
exogeneity in treatment application. The idea we test for is that, after conditioning for time and
country-specific fixed effects, treatment exposure is not influenced by outcome in earlier periods.

To test for this assumption, we run an OLS model defined as follows

Djt = αj + δt + β2x′2,jt + φŷj(t−1) + ηjt (2.4)

where αj are country-specific effects, δt are year-specific effects, x′2,jt are country-level covariates,
ŷj(t−1) is the average outcome variable in country j in period t− 1, and ηjt is an error term.

As an additional check, we test for the absence of compositional changes in potential co-
variates by running compositional balance regression. The idea behind covariate balance is to
test whether potential covariates of the outcome change following the treatment introduction
(Pimentel et al., 2015) . To test for this we run a separate difference-in-difference model defined
as Cijt = αj + bt + β1x1,ijt + β2x2,jt + Djtδ + εijt, where Cijt are separate potential covariates (see
Wing et al. (2018)). The model will tell us whether there are no compositional changes, if the
coefficient δ is not significantly different from zero.

We then run a second series of robustness tests related to potential heterogeneity in the
results. More specifically, we check if diff-in-diff models are significant by age group. We do so
by running separate diff-in-diff models for different respondents’ age groups.

Lastly, we estimate the impact of stewardship programmes on demand- and supply-side
factors related to antibiotic consumption. This is achieved by estimating model 2.1 based on the
alternative dependent variables and on the beliefs variables on the left-hand side.

V. Results

i. Baseline results

Table 2.2 provides the descriptive statistics of the variables shortlisted in the analysis.

Figure 2.1 shows the country average of the percentage of respondents who reported using
antibiotics in the last 12 months. The figure shows important variation across countries in the
dependent variable.23

To test for the soundness of the difference-in-difference approach, we first tested for the
robustness of the parallel trend hypothesis in two ways.

First we computed the descriptive statistics of potential covariates aggregated across treated
and control groups. The descriptive statistics, reported in table 2.7 in the Appendix, indicate
consistency in the independent variables across treated and control groups. The only minor
exceptions were the percentage of married respondents, the percentage of single respondents,
trust in information received from pharmacists, and trust in information received from hospi-

23A similar cross-country variation was identified for the alternative dependent variables and for the opinion variables.
These results are not reported for simplicity.
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Table 2.2: Descriptive statistics

Variable mean std.dev nbr.na
Year 2009 0.25 0.44 0
Year 2013 0.25 0.44 0
Year 2016 0.25 0.44 0
Year 2018 0.24 0.43 0

Antibiotic use (in last 12 months) 0.35 0.48 0
Antibiotic source: Doctor 0.34 0.48 17, 430

Intention to consult doctor a for future use 0.71 0.45 92, 357
Opinion: antibiotics kill viruses 0.55 0.50 7, 996

Opinion: antibiotics cure flu 0.41 0.49 5, 881
Opinion: overuse of antibiotics reduce effectiveness 0.91 0.28 6, 005

Opinion: antibiotics have side effects 0.80 0.40 14, 474
Foreign patient 0.04 0.18 0
Female patient 0.55 0.50 0
Male patient 0.45 0.50 0

Education level: Before primary 0.02 0.13 0
Age band: adult 0.71 0.45 0

Age band: elderly 0.26 0.44 0
Relationship status: married 0.52 0.50 65

Relationship status: having a partner 0.11 0.31 65
Relationship status: single 0.17 0.38 65

Relationship status: divorced 0.09 0.27 65
Relationship status: widow 0.10 0.30 65

Occupation status: non-active 0.51 0.50 0
Occupation status: self-employed 0.07 0.26 0

Patient with kids 0.18 0.39 1
Patient with teenagers 0.12 0.32 2

Patient with financial difficulties 0.37 0.48 393
Trust in information received from doctors 0.87 0.34 515

Trust in information received from hospitals 0.20 0.39 515
Trust in information received from family members 0.06 0.24 515

Trust from no source of information 0.03 0.17 515
Real GDP per capita 25140.0 14444.0 0
Population density 142.1 163.52 2955

Unemployment 8.72 4.6 2005
Resistance (MRSA) 17.32 14.22 6057

Stewardship programme 0.21 0.41 0
National action plan 0.43 0.50 0
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Figure 2.1: Percentage of respondents who used antibiotics in the last 12 months - average by country (years 2009,
2013, 2016 and 2018).

tals.24 Financial difficulties saw the highest difference, with an average of 0.42 in the control
group, and an average of 0.22 and 0.2 in the 2013 and 2016 treatment groups respectively. All
country-level variables saw a change across treated and control groups (possibly because of
country-level differences).

Figure 2.2 plots the averages of the dependent variable across treated and control groups.
From this figure we can see that the observations treated in 2016 (in purple) appeared to present
a parallel trend with the control group (in red) in the pre-treatment period. As we do not have
observations prior 2009, it is not possible to check for parallel trends for observations treated in
2013. For these observations we rely on the differences for the covariates balance described at
the previous point.

A similar graphical analysis was reported for the alternative dependent variables and for
respondents beliefs. Results are reported in Figures 2.4 and 2.5 and 2.6 in the appendix. All fig-
ures appear to present a parallel trend across the control group and observations treated in 2016.

To verify whether there was a link between antibiotic consumption and the adoption of
stewardship policy at a national level, we computed the amount of Defined Daily Doses (DDD)
of antibiotics per 1000 antibiotics per day across single years by country. For simplicity, DDD
rates are aggregated across treatment and control groups. Results are reported in Figure 2.3.
The results appear to indicate an absence of clear relation between control and treatment groups.
These figures show that the computed rate is always higher in treatment group zero compared
to the control group. The opposite holds for the treatment two. The rate in the treatment

24These first two variables moved respectively from an average of 0.53 and 0.16 in the control group, to 0.47 and 0.25
in the 2016 treatment group. The trust variables changed respectively from an average of 0.43 in the control group, to
0.56 in the 2016 treatment group, and from 0.19 in the control group, to 0.24 in the 2016 treatment group.
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Figure 2.2: Average of antibiotics consumption in last 12 months across control and treated groups. Red = control
group, green = treatment group 0 (treated in 2009), blue = treatment group 1 (treated in 2013), purple
= treatment group 2 (treated in 2016).

one group appears to be lower than the control group at the beginning of the series, and it
becomes higher than the control group at the end of the observed period. This result appears to
indicate that the countries who adopt the policy are not necessarily the ones with the highest
consumption rates.

Table 2.3 provides the estimation results for the difference-in-difference models. Results
on top refer to the estimated coefficients for model (2.1). Results at the bottom represent the
results for the staggered model (2.2).

Model DiD1 included only country and time dummies. Model DiD2 included patient
characteristics. Model DiD3 included interaction effects. Model DiD4 included other questions
from the Eurobarometer regarding the trustworthiness of information sources on antibiotics.
Model DiD5 included country-level covariates.

Table 2.3 shows a negative and significant effect of antibiotic stewardship on antibiotic
consumption in the last 12 months. This result is significant both when estimated across all
years (top), as well as when estimated for individual years (bottom). Results of the estimated
coefficients for the model covariates have not been reported for simplicity.

The table shows that the model including country-level covariates (model DiD5) presents
the lower AIC. We therefore select the latter as our reference model

ii. Robustness checks

We verified the validity of our results via a number of robustness checks. The results of these
checks are reported in table 2.8 in the appendix.

Table 2.8 shows that the estimated coefficient of stewardship programmes are negative and
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Figure 2.3: Defined Daily Doses (DDD) of antibiotics per 1000 antibiotics per day across single years and averaged
across control and treatment groups.
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Table 2.3: Difference-in-difference baseline model. Above: stewardship pooled across years. Below: Stewardship
estimated for individual years (stagered approach). DiD1 = model with time and country effects. DiD2
= model with patient characteristics. DiD3 = model with interaction effects. DiD4 = model with
additional survey questions (trust in information sources on antibiotics). DiD5 = model with country-
level covariates. Year refers to the year of the year of introduction of the policy. Estimated coefficients for
covariates other than estimated effects variables have not been reported for simplicity (see main text for
details).

Dependent variable:

Antibiotic consumption in last 12 months
DiD1 DiD2 DiD3 DiD4 DiD5

(1) (2) (3) (4) (5)

Stewardship −0.019∗∗∗ −0.019∗∗∗ −0.019∗∗∗ −0.019∗∗∗ −0.028∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

Observations 105,556 105,110 105,110 87,289 84,152
R2 0.360 0.360 0.360 0.530 0.520
Akaike Inf. Crit. 140,975.000 139,706.000 139,492 105,702 101,630

Stewardship 2013 −0.040∗∗∗ −0.040∗∗∗ −0.041∗∗∗ −0.047∗∗∗ −0.046∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

Stewardship 2016 −0.028∗∗∗ −0.025∗∗∗ −0.025∗∗∗ −0.012∗∗∗ −0.032∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

Observations 105,556 105,110 105,110 87,289 84,152
R2 0.360 0.360 0.360 0.530 0.520
Akaike Inf. Crit. 140,961 139,694 139,479 105,689 101,615

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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significant also when introducing a dummy indicating National Action Plan (NAP) among the
covariates (see model "DiD5 with NAP"). The results holds both for the model (2.1) (on top)
and for the staggered model 2.2 (at the bottom).

We then estimated diff-in-diff results of the staggered model 2.2 confronting individual
treatment years with observations in the control group (see models "2013 only" and "2016 only"
in Table 2.8). The estimated effect of stewardship is negative and significant for both treatment
groups, however the magnitude of the estimated effect of stewardship in 2016 is reduced.

We then tested the inter-temporal effects of stewardship programmes described in model 2.3.
We first estimated a model with leading variables only for the treatments in periods 2013 and
2016, thus setting λm = 0.25 Results of this model are reported in Table 2.8 (see model "Lead").
The model presented negative and significant estimated effects of stewardship in both 2013
and 2016. Lead one effects were positive and significant for stewardship introduced in both
2013 and 2016, while they were positive but not significant for a lead two effect of stewardship
introduced in 2013.

We checked for the effect of the common trend assumption on our regression results. The
presence of common trends has been estimated for both individual respondents groups as
well as for individual years. The results, non reported for simplicity, identify the presence of
group-specific time trends present for elderly, female and respondents with financial difficulties.
Although time trends are present for these groups, the estimated impact of stewardship policy
is consistent in both sign and magnitude with results of DiD5 reported in table 2.3. The analysis
identified the presence of a significant common trend being present at a country level. In this
case the model with a country-level common trend identified a positive and significant effect
for stewardship when considering it as pooled across all years, while the effect was negative
and significant for stewardship introduced in 2016.

We checked for the independence of the timing of introduction of the dependent policy by
estimating the value of single policies as a function of lagged outcome variables, as indicated in
equation 2.4. To achieve that we first aggregated data at country level. We then regressed indi-
vidual policy variables on lagged outcome (antibiotic use in last 12 months). Lagged outcomes
resulted as non-significant in the OLS model.26 These results, non-reported for simplicity, seem
to suggest the exogeneity of policy treatment.

We checked for the absence of compositional changes. The purpose of this check was
to verify whether individual policies had an impact on potential covariates of the outcome
variables. We tested the impact of the policies on the following potential covariates: age teen,
age elderly, financial difficulties, foreign. We also tested the potential impact of stewardship
policy on national-level covariates. The results, non-reported for simplicity, were estimated
including both the pre-treatment and post-treatment period as suggested in Wing et al. (2018).
Stewardship 2013 treatment was negatively associated with being a teenager, having financial
difficulties, being a foreigner and population density. The same variable was positively linked
to being elderly and to unemployment. Stewardship 2016 was negatively linked to having
financial difficulties and to unemployment, and positively linked to population density. These
estimated effects may highlight a potential presence of compositional changes across treated
and control groups.

25We tested also two alternative versions of the model: one with lagged treatment variable and one with both lagged
and lead treatment variable. These models, however, presented non-identified lagged effects, hence they have not been
considered in this analysis.

26The estimated coefficient for the average antibiotic use in last 12 months was equal to 0.17, with standard error
equal to 0.64.
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iii. Extensions: group-specific effects and demand- and supply-side factors

We checked the significance of difference-in-difference estimated for a version of models 2.1 and
2.2 estimated for different respondent groups. Results are reported in Table 2.4. Considered
respondents groups were: teenager (and non-teenager), elderly (and non-elderly), female (and
male), with financial difficulties (and without financial difficulties), foreign (and non-foreign).
These models show that antibiotic stewardship were negative and significant for all respondents
groups.

We tested a number of additional difference-in-difference models to identify whether the
introduction of antibiotic stewardship programmes might impact either demand- or supply-
side factors related to antibiotic consumption. For simplicity, this extension model has been
computed only for the staggered version of the model (2.3).

First, we estimate the impact of stewardship programmes on supply-side factors. This is
achieved by estimating whether such programmes influenced the provision of antibiotics from
a doctor, and the intention of consulting a doctor for future antibiotics use.

The results, reported in table 2.5, indicate that stewardship had a negative and significant
effect on receiving antibiotics from doctors in both 2013 and 2016 treatments (see model "An-
tibiotic source: doctor"). The two treatments had different lead effects, with stewardship in
2013 reporting a positive lead 1 and lead 2 effect, and with stewardship in 2016 reporting a
negative lead effect. The model estimated with the alternative dependent variable indicating the
intention to consult a doctor for future antibiotic use reported a positive and significant effect for
both 2013 and 2016 stewardship. Stewardships introduced in the two years presented different
lead one effects, with 2013 stewardship presenting a negative and significant lead one effect,
and 2016 stewardship presenting a positive and significant lead one effect. 2013 stewardship
presented a negative and significant lead 2 effect. These results appear to suggest that the
introduction of stewardship programmes might have affected the provision of antibiotics by
influencing gate-keepers behaviour.

We then estimated the impact of stewardship on variables associated with beliefs concerning
antibiotics as a proxy for demand-side factors. Results are reported in Table 2.6. Stewardships
programmes appeared to have reduced respondents beliefs on antibiotics being effective against
flu and viruses. Stewardships introduced in 2013 appeared to have reduced the belief that
overconsumption leads to a reduced effect of antibiotics and the opinion that antibiotics might
have side effects, while the opposite might hold true for stewardships introduced in 2016.
Stewardship programmes appeared to have a negative lead effect on opinion against flu. The
opposite holds true for beliefs on antibiotics being effective against viruses, with the exception
of 2013 stewardship lead two effect which is negative and significant. The belief on overcon-
sumption reducing antibiotics effectiveness has a negative lead one effect for the 2013 treatment,
while the opposite holds true for 2016 treatment. The lead 2 effect is not significant on this belief.
The belief of antibiotics having side effects presents a a positive lead 1 effect for stewardship
introduced in 2013, and a negative lead one effect for stewardship introduced in 2016. The lead
2 effect of stewardships introduced in 2013 is negative and significant. These results appear to
indicate that stewardship programmes might have had an impact on demand-side factors by
influencing respondents perceptions to such drugs.
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Table 2.4: Diff-in-diff model by respondent’s groups.

Dependent variable:

Antibiotic use in last 12 months

Teenager Elderly Female Fin. difficulty Foreign

Stewardship −0.110∗∗∗ −0.030∗∗∗ −0.022∗∗∗ −0.029∗∗∗ −0.240∗∗∗

(0.003) (0.001) (0.001) (0.001) (0.001)

Observations 1,915 21,190 46,293 31,853 1,873
R2 0.560 0.530 0.540 0.540 0.800
Akaike Inf. Crit. 2,467.000 25,491.000 57,557.000 39,800.000 1,569.000

Stewardship 2013 −0.140∗∗∗ −0.056∗∗∗ −0.032∗∗ −0.052∗∗∗ −0.800∗∗∗

(0.005) (0.001) (0.001) (0.001) (0.025)

Stewardship 2016 −0.066∗∗∗ −0.029∗∗∗ −0.025∗∗∗ −0.044∗∗∗ −0.071∗∗∗

(0.004) (0.001) (0.001) (0.001) (0.004)

Observations 1,915 21,190 46,293 31,853 1,873
R2 0.560 0.530 0.540 0.540 0.800
Akaike Inf. Crit. 2,468.000 25,487.000 57,555.000 39,795.000 1,570.000

No Teen No Eld. Male Fin. stable National

−0.027∗∗∗ −0.028∗∗∗ −0.036∗∗∗ −0.025∗∗∗ −0.028∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

Observations 82,237 62,962 37,859 52,299 82,279
R2 0.520 0.520 0.500 0.510 0.510
Akaike Inf. Crit. 99,193.000 76,139.000 44,003.000 61,772.000 99,894.000
Stewardship 2013 −0.044∗∗∗ −0.043∗∗∗ −0.062∗∗∗ −0.042∗∗∗ −0.045∗

(0.005) (0.001) (0.001) (0.001) (0.025)

Stewardship 2016 −0.032∗∗∗ −0.033∗∗∗ −0.043∗∗∗ −0.026∗∗∗ −0.030∗∗∗

(0.004) (0.001) (0.001) (0.001) (0.004)

Observations 82,237 62,962 37,859 52,299 82,279
R2 0.520 0.520 0.500 0.510 0.510
Akaike Inf. Crit. 99,179.000 76,130.000 43,989.000 61,765.000 99,882.000
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Table 2.5: Diff-in-diff model: alternative dependent variables.

Dependent variable:

Antibiotic consumption Antibiotic source: Consult doctor

In last 12 months doctor for future use

Stewardship 2013 −0.068∗∗∗ −0.067∗∗∗ 0.033∗∗∗

(0.001) (0.001) (0.001)

Stewardship 2016 −0.036∗∗∗ −0.037∗∗∗ 0.170∗∗∗

(0.001) (0.001) (0.001)

Stewardship 2013 Lead1 0.032∗∗∗ 0.029∗∗∗ −0.041∗∗∗

(0.001) (0.002) (0.001)

Stewardship 2013 Lead2 0.029∗∗∗ 0.001∗∗∗ −0.065∗∗∗

(0.001) (0.003) (0.001)

Stewardship 2016 Lead1 0.054∗∗ −0.130∗∗∗ 0.140∗∗∗

(0.001) (0.003) (0.001)

Observations 84,152 79,739 11,182
R2 0.520 0.370 0.730
Akaike Inf. Crit. 101,602.000 103,032.000 13,391.000

VI. Conclusions

This paper analysed the impact of stewardship programmes in reducing antibiotic consumption
in EU countries. The relationship between the introduction of this policy on consumption was
explored by means of a difference-in-difference analysis estimated on Eurobarometer data,
which provides a representative sample of the European population.

Our study identifies an effectiveness of stewardship programmes in reducing antibiotic
consumption in EU countries. This result is consistent to a number of robustness checks, such
as including alternative national policies such as National Action Plans among the covariates.

The presence of non-trivial inter-temporal effects on antibiotics consumption, with 2013 and
2016 treatment presenting positive lead one effect, and a positive lead 2 effect for stewardship
in 2013, suggests a reduction of the effectiveness of such policy over time, thus highlighting the
need for policy-makers to continuously assess the effectiveness of this policy.

Stewardship programmes appear to be effective also across individual respondents groups,
suggesting an effectiveness of such policy in influencing antibiotics consumption of individual
respondent groups. The magnitude of such effect, however, appears to be higher among
teenagers and foreign respondents, while it appears to be comparatively lower for elderly and
female respondents as well as respondents reporting financial difficulties. These variations in
the magnitude of the estimated effect may suggest that policy makers should draw targeted
communications aimed at specific segments of the national population to improve stewardship
effectiveness.
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Table 2.6: Difference-in-difference: Respondent’s beliefs.

Dependent variable:

Antibiotic Opinion: Opinion Opinion Opinion

consumpt. flu viruses overcons. side eff.

(12 months)

Stewardship 2013 −0.068∗∗∗ −0.012∗∗∗ −0.038∗∗∗ −0.007∗∗∗ −0.012∗∗∗

(0.001) (0.001) (0.013) (0.001) (0.001)

Stewardship 2016 −0.036∗∗∗ −0.036∗∗∗ −0.045∗∗∗ 0.019∗∗∗ 0.012∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

Stewardship 2013 Lead 1 0.032∗∗∗ −0.018∗∗∗ 0.018∗∗∗ −0.015∗∗ 0.005∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

Stewardship 2013 Lead 2 0.029∗∗∗ −0.047∗∗∗ −0.038∗∗∗ 0.001 −0.014∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

Stewardship 2016 Lead 1 0.054∗∗∗ −0.019∗∗∗ 0.013∗∗∗ 0.032∗∗∗ −0.027∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

Observations 84,152 76,610 78,648 78,481 70,460
R2 0.520 0.620 0.520 0.920 0.830
Akaike Inf. Crit. 101,602.000 100,525.000 100,812.000 13,516.000 62,765.000

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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The estimated effect of the introduction of stewardship policies is approximately a 2 to 3%
decrease in the probability of consuming antibiotic orally in the last 12 months. This estimated
effect appears to be consistent with other interventions aimed at the reduction of antibiotic
consumption, such as the ones identified by Bou-Antoun et al. (2018) on the impact of Quality
Premia on antibiotic prescriptions among English GP practices.

The introduction of such programmes appear to have influenced supply-side factors repre-
sented by doctors behaviour as gate-keepers to antibiotic provision and proxied in our study by
two indicators, namely: receiving antibiotics from doctors and the intention to consult a doctor
for future antibiotic use. These results appear to indicate that stewardship programmes were
successful in improving the gate-keeping function of doctors in providing access to such drugs.

Stewardship programmes appear to have an influence also on demand-side factors related
to antibiotic consumption, namely respondents’ beliefs. More specifically, such policies appear
to influence the share of respondents who believe that antibiotics are effective against flu
or viruses. Such programmes, on the contrary, appeared to have obtained mixed results in
influencing the beliefs of antibiotics overconsumption leading to reduced effectiveness or side
effects. These result appear to indicate that stewardship programmes were, at least partially,
effective in influencing also demand-side factors, with some limitations on beliefs related to
overconsumption and awareness of side effects.

The results provided in this paper might be useful to policy-makers who wish to use evi-
dence to improve the effectiveness of policies targeted at reducing antibiotic consumption. First,
those countries who haven’t yet introduced stewardship programmes might implement this
policy to reduce consumption. Second, policy makers might develop policies which are targeted
to specific segments of the population to increase effectiveness. Third, policy-makers might
use the results presented in this paper to combine efforts to instruct doctors and at the same
time develop campaigns aimed at improving awareness on antibiotics among the general public.

This paper has extended the literature on the estimation of the impact of policies aimed at
reducing antibiotics consumption. We provide a novel analysis with a nationally-representative
sample of the EU countries on a health matter of relevance. This study expands the current
literature on difference-in-difference analysis applied to problems in healthcare and in policy
evaluation. To the best of our knowledge this study is the first paper estimating the impact of
antibiotic stewardship programmes European countries via difference-in-difference analysis.

The results presented in this paper shows a variety of implementations of both stewardship
programmes and National Action Plan programmes. Some of the countries, such as Germany or
the Netherlands, considered in the analysis have adopted both policies, sometimes during the
same years (suggesting that those countries see the two policies as complementary), while other
countries, such as Poland, adopted just one of the two policies (suggesting that they are seen as
complementary). For this reason, the data sources analysed in this paper do not present enough
variation to rigorously test for the substitutability or complementarity of the two policies,
making it challenging to estimate individual effects. The adopted approach allowed for the
inclusion of a NAP dummy as a sensitivity analysis. This sensitivity check aimed at controlling
for the introduction of NAPS. The results do not seem to present considerable variation when
NAP dummy is introduced. Due to the heterogeneity in NAPs goals and implementations
across countries, it is possible that some National Action Plans include the introduction of
stewardship programmes, thus playing as substitute to stewardship programmes. The analysis
of whether stewardship programmes are complement or substitutes to NAPs would be an
interesting question for future research. The analysis of the interplay of NAPs and stewardship
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across countries is beyond the scope of this paper.

Our study is subject to a number of limitations. First, due to limitations in the survey, our
study does not include reasons for antibiotic consumption among its covariates. Second, we do
not include other potential covariates which may affect choices in antibiotics consumption, such
as co-payments, again due to data limitations. Third, by comparing countries which are very
different in nature, our study might be exposed to limitations in compositional balance across
control and treated groups. Fourth, due to limitations in the number of observed periods, our
study provided little evidence for the satisfaction of parallel trends hypothesis. Fifth, our study
does not include other potentially relevant country-level covariates which might impact on
antibiotic consumption, such as the amount of expenditure in healthcare of individual countries.
Sixth, some specific categories of antibiotic users, such as elderly people in care homes, were
not included in the analysis due to data limitations. Lastly, our study might be influenced
by a potential link between antibiotic resistance levels and countries’ decision to introduce
stewardship programmes which might hamper the proposed identification strategy. Our anal-
ysis does not identify a link between lagged outcomes and the introduction of stewardship
programmes, thus indicating a potential exogeneity in policy introduction. Considering the
impact of resistance on antibiotic consumption, however, is beyond the scope of this paper
and it would require additional research. The results of our study do not explicitly model the
impact of issues potentially affecting antibiotic consumption, such as contamination effects in
prescription behaviour across countries. The analysis of such contamination effect is beyond
the scope of this paper.
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VII. Appendix A: Data Tables and figures

Table 2.7: Descriptive statistics across control and treated groups. Mean of single variables. Standard deviation in
brackets.

Variable Control Stewardship: Stewardship 2016
group 2013 2016

Antibiotic consumption in last 12 months 0.35 (0.48) 0.31 (0.46) 0.33 (0.47)
Antibiotic source: doctor 0.35 (0.48) 0.31 (0.46) 0.33 (0.47)

Intention to consult a doctor 0.71 (0.45) 0.72 (0.45) 0.67 (0.47)
Opinion: virus 0.59 (0.49) 0.53 (0.5) 0.41 (0.49)

Opinion: flu 0.45 (0.5) 0.44 (0.5) 0.23 (0.42)
Opinion: overuse 0.9 (0.3) 0.94 (0.24) 0.95 (0.22)

Opinion: side-effects 0.8 (0.4) 0.84 (0.37) 0.74 (0.44)
Foreign patient 0.04 (0.21) 0 (0.07) 0.04 (0.2)
Female patient 0.55 (0.5) 0.54 (0.5) 0.51 (0.5)

Edu: before primary 0.02 (0.13) 0.02 (0.15) 0.01 (0.11)
Age: adult 0.72 (0.45) 0.69 (0.46) 0.68 (0.47)

Age: elderly 0.25 (0.43) 0.29 (0.45) 0.29 (0.45)
Relationship: married 0.53 (0.5) 0.54 (0.5) 0.47 (0.5)
Relationship: partner 0.11 (0.31) 0.1 (0.3) 0.12 (0.32)
Relationship: single 0.16 (0.37) 0.17 (0.37) 0.25 (0.43)

Relationship: divorced 0.08 (0.27) 0.08 (0.27) 0.07 (0.26)
Relationship: widowed 0.11 (0.31) 0.1 (0.3) 0.07 (0.26)

Relationship: other 0.01 (0.1) 0.01 (0.08) 0.02 (0.12)
Occupation: non active 0.5 (0.5) 0.55 (0.5) 0.51 (0.5)

Occupation: self-employed 0.07 (0.26) 0.07 (0.25) 0.08 (0.27)
Family: with kids 0.18 (0.38) 0.17 (0.38) 0.18 (0.39)

Family: with teenagers 0.12 (0.32) 0.1 (0.31) 0.11 (0.32)
Financial difficulty 0.42 (0.49) 0.22 (0.41) 0.2 (0.4)

Trust: doctor 0.86 (0.34) 0.88 (0.33) 0.86 (0.35)
Trust: nurse 0.13 (0.34) 0.1 (0.3) 0.14 (0.35)

Trust: pharmacist 0.43 (0.5) 0.39 (0.49) 0.56 (0.5)
Trust: hospital 0.19 (0.39) 0.15 (0.36) 0.24 (0.43)
Trust: family 0.07 (0.25) 0.05 (0.22) 0.04 (0.21)

Trust: no interest 0.03 (0.17) 0.03 (0.17) 0.02 (0.12)
Resistance: MRSA 19.42 (16.14) 14 (8.15) 8.39 (9.15)

GDP per capita 21344.67 (14411.77) 28979.5 (12216.66) 34771.41 (4495.64)
Population density 117.41 (171.52) 147.28 (52.83) 372.33 (116.42)

Unemployment 8.93 (4.42) 9.05 (6.28) 5.79 (1.52)
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Figure 2.4: Average of alternative dependent variables across control and treated groups. Top = receiving antibiotics
from a doctor, bottom = intention to consult a doctor for future antibiotic use. Red = control group,
green = treated in 2013, blue = treated in 2016, purple = treated in 2018.
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Figure 2.5: Average of respondents beliefs across control and treated groups (1 of 2). Top = antibiotics are effective
against flu; bottom: antibiotics kill viruses, bottom left: antibiotics overuse reduce effectiveness, bottom-
right: antibiotics have side effects. Red = control group, green = treated in 2013, blue = treated in 2016,
purple = treated in 2018.
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Figure 2.6: Average of respondents beliefs across control and treated groups (2 of 2). Top: antibiotics overuse reduce
effectiveness; bottom: antibiotics have side effects. Red = control group, green = treated in 2013, blue =
treated in 2016, purple = treated in 2018.
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Table 2.8: Diff-in-diff model. Robustness checks.

Dependent variable:

Antibiotic use in last 12 months

DiD5 DiD5 with NAP 2013 only 2016 only Lead

Stewardship −0.019∗∗∗ −0.030∗∗∗

(0.001) (0.001)

Observations 84,152 84,152
R2 0.521 0.521
Akaike Inf. Crit. 101,615 101,631

Stewardship 2013 −0.046∗∗∗ −0.046∗∗∗ −0.048∗∗∗ −0.068∗∗∗

(0.001) (0.001) (0.001) (0.001)

Stewardship 2016 −0.032∗∗∗ −0.041∗∗∗ −0.029∗∗∗ −0.036∗∗∗

(0.001) (0.001) (0.001) (0.001)

Stewardship 2013 L1 0.032∗∗∗

(0.001)

Stewardship 2013 L2 0.029
(0.001)

Stewardship 2016 L1 0.054∗∗

(0.001)

Observations 84,152 84,152 66,327 68,463 84,152
R2 0.521 0.520 0.530 0.510 0.520
Akaike Inf. Crit. 101,630 101,615 79,868 82,556 101,602

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Chapter 3

Spatial dependence in antibiotics
prescriptions in English GP
practices: a panel analysis

This paper explores spatial dependence in antibiotics prescription rates among English GP
practices by looking at presentation level data for the years 2013-17.

The use of antibiotics has increased globally over the past few years (Klein et al., 2018).
Several authors identified that over prescribing is associated with increased antibiotics resistance
(Mera et al. (2006), Monroe and Polk (2000)). Antibiotic resistance has already been identified
as a major health threat worldwide, with 20% of neonatal deaths resulting from infections
Li et al. (2015), and with deaths associated to antimicrobial resistance being approximately
700,000 a year, with an estimated 10 million deaths per year by 2050 (O’Neill, 2014). Even when
individual lives are not at immediate risk, in most cases, antibiotic resistant infections require
prolonged and/or costlier use of healthcare resources (CDC, 2013).

The majority of antibiotic prescriptions are provided in primary care settings, with 90% of
all antibiotic prescriptions issued by general practitioners and with respiratory trait infections
being among the leading reasons for prescribing (Llor and Bjerrum, 2014). In the UK, primary
care accounts for approximately three-quarters of human antibiotic prescriptions (PHE, 2016).
Fleming-Dutra et al. (2016) and Smieszek et al. (2018) state that a substantial fraction of antibiotic
prescriptions in primary care are likely to be inappropriate. Prudent prescribing has been
identified as one of the most effective ways to reduce resistance (Goossens (2009), CDC (2013)).
Prudent prescribing, includes avoiding unnecessary prescriptions, delaying prescriptions if
possible, favouring narrow-spectrum over broad-spectrum antibiotics, and optimizing treatment
duration (Spivak et al., 2016). Antimicrobial stewardship programmes can facilitate reaching
those goals (CDC, 2013).

Dolk et al. (2018) find that antibiotic prescription rates vary significantly across English GP
practices, suggesting that there is potential to reduce prescribing in at least some practices.
Pouwels et al. (2018) identify that variation in comorbidities prevalence alone cannot explain the
variation in GPs’ prescription patterns. The authors identify the role played by consultations on
respiratory trait infections and prescriptions for corticosteroids as key factors in explaining vari-
ation of prescription rates in English primary care. LeSage and Dominguez (2012) suggest that
in settings considering local behaviour, public choices might be affected by spatial dependence.
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A limited number of studies analysing prescription identified evidence of spatial depen-
dence in antibiotic prescription rates (Filippini et al. (2014), Gonzalez-Ortiz and Masiero (2013)).
Spatial dependence is identified as spatial correlation in prescription rates resulting from two
key channels, namely: a reduction in the risk of infections in neighbouring areas following
antibiotic consumption (positive externality), a reduced effectiveness of antibiotics prescription
in neighbouring areas arising from increased resistance following prescription (negative exter-
nality) (Gonzalez-Ortiz and Masiero, 2013).

The economic interpretation of these two effects is better understood when considering the
practitioner’s decision to prescribe antibiotics as a decision taken under imperfect informa-
tion. When deciding whether to prescribe antibiotics, GPs, in fact, might be facing a trade-off
between infection prevention, that is curing infections that might spread to other individuals
in the community, and resistance prevention, that is the need to balance the use of antibiotics
in order to avoid reducing their effectiveness and preventing higher treatment costs in the future.

As GPs might not have complete and timely information on the extent of infections occurring
in the community, nor on the degree of antibiotic resistance, GPs might be reliant on informal
(and unobserved) professional networks when deciding the amount of antibiotics to be used in
treating symptoms presented by patients. Spatial dependence in prescription rates might thus
arise from GPs learning from each other, via knowledge-sharing in their professional network.
These informal networks might be affected by either institutional or spatial distances across
practitioners. Institutional distance might influence peer effects by means of local efforts in
reducing prescription, for example through local communication and education campaigns.
Spatial distance might influence peer effects by means of direct sharing of best practices occur-
ring between practitioners concerning the risks of infections and resistance.

The literature on antibiotic prescription has identified other potential channels for spatial
dependence, such as individual administrative areas introducing specific targets related to
antibiotic consumption. Spatial dependence might, therefore, be present also due to local
programs promoting the achievement of specific health targets (Iezzi et al., 2014). This could
be the case for antibiotic prescription in England where, following the introduction of Quality
Premiums, which linked premiums to those Clinical Commissioning Groups (CCGS) who
reached specific targets for average antibiotic prescription rates by GPs in their jurisdiction
(NHSE, 2016). Spatial correlation in prescription rates might thus arise due to higher tier local
authorities influencing prescription decisions of individual practices.

Lastly, according to Filippini et al. (2009) and Gonzalez-Ortiz and Masiero (2013) regional
antibiotic consumption might be affected by heterogeneous attitudes towards antibiotics pre-
scription in local areas. The identification of spatial dependence in antibiotic prescription is
relevant in the fight against antibiotic resistance, as it allows policy makers to identify the correct
ways to reduce such resistance, therefore avoiding unnecessary health costs. Understanding the
impact of such channels in influencing spatial dependence in antibiotic prescription, forms the
motivation of this paper.

Peer effects might influence practitioners’ prescription decisions concerning not only the
amount of antibiotics to be prescribed, but also the type of antibiotic provided to the community.
The National Institute of Health Excellence (NICE) recommends practitioners to prescribe gen-
eral spectrum antibiotics only when narrow spectrum antibiotics fail in treating infections(NICE,
2015a). The former type of antibiotics, in fact, is more subject to a risk of generating antibiotic
resistance as it might potentially be effective against a broader type of bacteria, as compared to
narrow spectrum antibiotics. The presence of peer effects might therefore be related also to the
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practitioners decision to adhere to such advice, thus influencing practitioners’ trade-off between
infection and resistance prevention.

This paper expands the literature on spatial dependence in antibiotic prescription by propos-
ing a spatial panel analysis of prescription rates among English GP practices across multiple
years using a novel and nationally representative dataset. We use a spatially lagged independent
variable model (SLX) as a baseline for the estimation of spatial dependence. Using an SLX
model as a baseline allows to reduce the risk of misspecification when adjusting for spatial
correlation (see Gibbons et al. (2015) and Halleck Vega and Elhorst (2015)). We estimate spatial
dependence considering both institutional and geographical distances across GP practices, as
well as a linear combination of the two. We use the percentage of antibiotic prescriptions over
all practice prescriptions as an alternative dependent variable for robustness check.

We test for alternative channels of spatial dependence by considering different modeling
approaches. First, we account for potential low-tier administrative effects arising from inter-
vention introduced by low-tier commissioning bodies, namely Clinical Commissioning Groups
(CCGs). In the English National Health System (NHS), CCGs are NHS bodies with the goal of
organising the delivery of health and social care services. We account for potential interventions
occurring at a commissioning level by introducing year and CCGs interactions. The presence
of spatial dependence in the SLX model with interaction factors would indicate that spatial
dependence is not arising from unobserved interventions occurring at a local level.

Our analysis aims to identify the role of individual channels of spatial dependence by esti-
mating alternative spatial models. Starting from our SLX FE model as a point of departure for
the analysis of spatial effects (Halleck Vega and Elhorst, 2015), we estimate alternative sources
of spatial dependence by estimating a spatial autoregressive (SAR) and spatial error model
(SEM), to account for externalities arising from antibiotic resistance and infection prevention
respectively. To deepen our analysis of individual channels of spatial dependence, we introduce
a number of fixed effect estimation strategies to isolate individual spatial effects, thus allowing
us to explore the role of individual channels of spatial dependence. Second, following Filippini
et al. (2009) and Gonzalez-Ortiz and Masiero (2013), we test for spatial dependence arising
from random health shocks and from unobserved resistance rates by estimating respectively an
spatial error model (SEM) and spatial autoregressive models (SAR).

Lastly, we test for the ability of spatial dependence, interpreted as the result of peer effects,
in influencing practitioners’ decision to prescribe narrow- versus broad-spectrum antibiotics.
Narrow- and broad- spectrum antibiotics are identified by means of British National Formulary
(BNF) codes, as reported by Open Prescribing (2020). Identifying spatial dependence in the
use of broad spectrum antibiotics might be interpreted as a relevant sign of peer effects in
influencing practitioners prescription behavior when it comes to prescribing antibiotics which
are less linked to resistance, and ultimately, less likely to generate negative externalities on the
healthcare system via resistance.

The presence of spatial dependence in antibiotic prescription might have policy implications
as policies targeted at reducing prescription won’t depend on individual rates only, but also on
the externalities arising from institutional and physical proximity. Spatial dependence might
imply that the consumption of antibiotics cannot be regarded as independently generated
within regions (Gonzalez-Ortiz and Masiero, 2013). For this reason, if policy makers do not take
such dependence into consideration, they may fail to identify the optimal antibiotic prescription
rates (Filippini et al., 2014) thus leading to potential inefficiencies in local policies. The presence
of spatial dependence leads therefore to the need of introducing regionally-coordinated policies
when it comes to reducing antibiotics prescription (Filippini et al., 2014). This paper aims at
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helping policy makers in achieving better policies related to the reduction of inappropriate
prescription behaviour by means of identifying the correct channels of spatial dependence.
Taking those channels into consideration when defining locally coordinated policies, in turn,
might translate info reduced healthcare costs resulting from antibiotic resistance or the spread
of infections in the community.

In addition, this study aims to provide more accurate estimates of the socio-economic
determinants of antibiotic prescription by taking spatial dependence into account. Other studies
focusing on explaining the socio-economic determinants of antibiotic consumption ignore the
presence of spatial effects (Matuz et al. (2005), Filippini et al. (2006) and Nitzan et al. (2010)).
Ignoring the effect of spatial autocorrelation in the residuals might lead to potentially inflated
significance of estimated regression coefficients (Kelly, 2019).

This paper is organized as follows. Section 2 provides an introduction to the literature on
antibiotics prescription. Section 3 provides a description of the available dataset. Section 4
provides a description of the methodology we used. Section 5 illustrates the results. Section 6
concludes.

I. Literature

The literature on antibiotics prescription suggests a link between consumption and a rise in
antibiotic resistance (Monroe and Polk (2000), Mera et al. (2006)). Despite this evidence, UK
outpatients are often prescribed antibiotics for self-limiting and/or non-bacterial infections
(Gulliford et al., 2009).

Pouwels et al. (2018) show that, among English GP practices, the majority of practice-level
variation in antibiotic prescribing cannot be explained by variation in the prevalence of co-
morbidities. Factors such as high consultation rates for respiratory tract infections and high
prescription rates for corticosteroids could explain much of the variation. Dolk et al. (2018)
identified substantial variation in prescription rates across age groups, stating that a practice
with higher proportion of young children or elderly patients would be expected to have higher
prescription rates than a practice with mainly working-age adults. When considering the reason
for antibiotic prescribing, the authors identify a majority of antibiotics being prescribed against
infections of the respiratory and urinary tracts (Dolk et al., 2018).

Gonzalez-Ortiz and Masiero (2013) provide a thorough review of the determinants of an-
tibiotic prescriptions. Age and demographic structure are key factors considered by several
authors (Matuz et al. (2005), Nitzan et al. (2010), Filippini et al. (2006), Filippini et al. (2009),
Kern et al. (2006), Gonzalez-Ortiz and Masiero (2013), Pouwels et al. (2018)). Pouwels et al.
(2018) also include patient’s gender among the covariates. Other authors, such as Matuz et al.
(2005), Filippini et al. (2006), Filippini et al. (2009) and Kern et al. (2006), Gonzalez-Ortiz and
Masiero (2013), consider individual income as a determinant of consumption.

Individual studies differ in the considered determinants. Matuz et al. (2005), Nitzan et al.
(2010) and Pouwels et al. (2018) consider disease prevalence to be a key determinant of antibiotic
prescription. Filippini et al. (2006) also include the share of foreigners on total population.
Additional factors include education levels (Filippini et al., 2006), unemployment rates (Kern et
al., 2006), drug prices (Filippini et al. (2006), Filippini et al. (2009)), and incidence of infections
(Filippini et al., 2006). Matuz et al. (2005) also considers population density, number of individ-
uals receiving free pharmaceuticals and social assistance, and yearly number of consultations.
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Pouwels et al. (2018) allow for practice size, as proxied by the number of registered patients, as
a relevant factor associated with prescription. Pouwels et al. (2018) also allow for the number of
other prescribed drugs, such as immunosuppressive drugs and steroids, and consultations for
other conditions.

Antibiotics consumption presents a high level of variations across regions within the same
country (Kern et al., 2006). Looking at the UK, researchers identified significant variation in
prescription patterns across the country (Hawker et al., 2014). As identified by Shallcross et al.
(2017), antibiotic prescription appears to be uneven across the English population, with about
half of such drugs prescribed in primary care being provided to less than 10% of patients. The
presence of such an important geographical variation in antibiotic prescription suggests for the
exploration of spatial dependence in antibiotic prescription rates.

There exists an extensive literature focusing on estimating the correlation of observations
generated by the spatial structure of the data (Anselin (1988), LeSage and Pace (2010), Elhorst
(2010)). Spatial econometrics methods have been used extensively to identify spatial dependence
in health expenditures in secondary care (Revelli (2006), Lippi Bruni and Mammi (2016)) and in
mental healthcare (Moscone et al., 2007). Gibbons et al. (2015) provide an extensive description
of the econometric techniques necessary for the correct identification of spatial models. A review
of spatial econometrics methods for health economics is provided by Moscone and Tosetti (2014).

The analysis of spatial dependence in antibiotic prescription received little attention. Fil-
ippini et al. (2014) investigate the role of the dispensing physician in influencing antibiotic
consumption in 240 Swiss regions in the year 2002. The authors propose a spatial econometrics
analysis combining both a spatial error and a spatial lag component (SARAR model). The
authors find that dispensing practices induce higher rates of antibiotic consumption, even after
controlling for patient characteristics, epidemiological variables, access to drug treatment, and
spatial dependence. Gonzalez-Ortiz and Masiero (2013) apply spatial econometrics techniques
to estimate spatial dependence in antibiotic consumption for the Italian case. The authors
estimate the role of alternative channels of spatial dependence, namely resistance externalities
due to prescriptions from neighbouring practices, and random health shocks by means of spatial
lag (SAR) and spatial error (SEM) models respectively. The authors identify evidence of spatial
dependence across regions, even when factors such as the demographic and socio-economic
characteristics of the local population, the supply of health care services in the community and
antibiotic co-payments are accounted for. Lippi Bruni and Mammi (2016), who analyse spatial
dependence in hospital expenditures, provide a useful methodological reference in the speci-
fication of spatial weights matrices to model distance across districts, including institutional
distance (indicating whether two practices were in the same administrative area), geographical
distance and a convex combination of the two. The authors test the presence of dependence
across districts by estimating both direct and indirect effects.

Compared to the work by Filippini et al. (2014) we allow for multiple years of observations.
Our study differs from other studies analysing spatial dependence in antibiotic prescription
in that we use a SLX model with practice-level fixed effects as our reference model, as this
approach might prove more robust to misspecification arising from spatial autocorrelation in the
residuals (Halleck Vega and Elhorst, 2015). Similarly to Gonzalez-Ortiz and Masiero (2013) we
estimate a number of models to verify the presence of alternative channels of spatial dependence
in antibiotic prescription. Compared to the studies by Gonzalez-Ortiz and Masiero (2013) we
provide an additional analysis of potential channels of spatial dependence by introducing a
model with CCG times year fixed effects. We follow the work by Lippi Bruni and Mammi
(2016) in identifying an optimal definition of spatial weights based on a convex combination of
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administrative and geographical weights. Lastly, we deepen the analysis by estimating spatial
dependence on individual antibiotic classes.

Despite the importance in addressing spatial correlation to avoid biased estimation results
(Kelly, 2019), care should be given in estimating spatial dependence. As suggested by Gibbons
et al. (2015) an improper specification of the econometric model with spatial effects might lead
to three main sources of bias: the reflection problem, the presence of omitted variables, and
biases arising due to sorting issues.

Public interventions have been found to be effective in controlling antibiotic consumption
(Huttner et al., 2010). In 2008 the National Institute for Health and Care Excellence (NICE)
published guidelines on prescription recommending the avoidance of antibiotic treatment for
self-limiting respiratory tract infections (RTIs), except if the patient is at high risk of serious
complications because of pre-existing comorbidity (NICE, 2008). In 2015 NICE published a
guideline introducing antibiotic stewardship programmes. The purpose of this guideline was
to ensure that healthcare practitioners would reduce misuses to avoid a raise in antibiotic
resistance (NICE, 2015).

In 2016 NHS England published a Quality Premium (QP) for Clinical Commissioning
Groups (CCGs), providing financial incentives to those who reached set quality standards,
including reaching a reduction in the number of antibiotics prescribed in primary care, as well
as a reduction in the proportion of broad spectrum antibiotics (NHSE, 2016). Bou-Antoun
et al. (2018) identify a 3% drop in antibiotic prescribing in April 2015, coinciding with the
introduction of the Quality Premium. This reduction was sustained over time: 2 years after QP
there was a 3% decrease in prescribing relative to that expected had the pre-intervention trend
continued, there was also a concurrent 2% relative reduction in the rate of broad-spectrum
antibiotic prescribing. This is consistent with the findings of PHE (2017) showing that GP
practices respond to variation in guidelines.

In addition, 2016 saw the introduction of direct letters sent by the Chief Medical Officer
(CMO) to over-prescribing practices. These letters were sent annually by the CMO to top
20% prescribing practices, informing them that they were in the top prescription quantile and
including information on how to reduce prescription. This intervention was introduced fol-
lowing a trial period indicating that treated practices reduced overall prescription (Hallsworth
et al., 2016). All of these policy efforts were in line with the commitment by the UK Govern-
ment set up to halve inappropriate prescriptions of antibiotics by 2020 (AMR Policy Team, 2016).

II. Data

We computed GPs antibiotic prescription rates from presentation level data. Practice level
prescription data for the years 2013 to 2017 were acquired from the Practice Level Prescribing
Data datasets provided by NHS England.1

For each GP practice, prescription level data includes a list of all medicines, dressings and
appliances that are prescribed and dispensed by GP practices each month. The data covers
NHS prescriptions written in England. Included prescriptions are those written by GPs and
other non-medical prescribers (such as nurses and pharmacists) who are linked to the single

1These open data are available at https://digital.nhs.uk/data-and-information/publications/statistical
/practice-level-prescribing-data.

50

https://digital.nhs.uk/data-and-information/publications/statistical/practice-level-prescribing-data
https://digital.nhs.uk/data-and-information/publications/statistical/practice-level-prescribing-data


GP practices. Private prescriptions are excluded from presentation level data.2

We focus on the number of prescribed items, which are identified via British National
Formulary (BNF) codes. Individual practices were identified by their practice code.

Antibiotics names and their respective BNF codes were obtained from section 5.1 of the BNF
relating to antibacterial drugs, registered under chapter 5 who relates to infections.3 Section 5.1
of the BNF is further divided into 13 subsections.4

We performed a number of data cleaning steps on prescription data.

First, we mapped prescription data to single antibiotic classes. This was done by linking
prescribed items to BNF codes, using the first 6 digits of the reported items in the monthly
prescription data. At the end of this process we obtained a version of the GP prescription level
data including dummies for individual antibiotic categories (one for each subsection of section
5.1. of the BNF) as well as a dummy indicating whether the single prescription referred to
an antibiotic or not. To ensure the robustness of the linkage, we checked whether all single
antibiotics prescription codes were matched across tables.

Second, we computed a number of aggregated indicators for each prescription category. The
prescription categories we considered are: a) single 6-digits BNF chapters, b) antibiotic class
(aggregated), c) non antibiotic prescriptions, d) all prescribed items. For each aggregated class
we focused on the number of prescribed items.

Third, we aggregated the number of prescribed items at an annual level (from monthly data).

All GP practices registered in England are included in the GP prescription data. To ensure
homogeneity in the analysis we included only practices which are available in each of the
months in the years 2013-2017. Practices which are not present in each one of the considered
months were removed from the analysis.5 At the end of this process our dataset included 9104
GP practices, for a total of 591605 records.

We considered a number of practice-level covariates for antibiotic prescription rates.6 Un-
less otherwise specified, all data related to the characteristics of individual GP practices was
available at annual level.

First we consider practice size, as measured by number of registered patients. To avoid
scaling issues, we considered this variable in logs. The number of registered patients was down-

2More information is available here https://digital.nhs.uk/data-and-information/areas-of-
interest/prescribing/practice-level-prescribing-in-england-a-summary/practice-level-prescribing-data-more-
information

3BNF information can be obtained at https://openprescribing.net/bnf/0501/.
4These are: 1) penicillins, 2) cephalosporins and other beta-lactams, 3) tetracyclines, 4) aminoglycosides, 5) macrolides,

6) clindamycin and lycomycin, 7) some other antibacterials, 8) sulfonamides and trimethoprim, 9) antitubercolosis
drugs, 10) metronidazole, tinidazolo andd ornidazole, 12) quinolones, 13) urinary-tract infections.

5The reasons for a GP practice for not being present in each single might include: a) opening of new practices, b)
closure of single practices, c) merging, d) division into smaller practices. See https://digital.nhs.uk/data-and-in

formation/areas-of-interest/prescribing/practice-level-prescribing-in-england-a-summary/practice

-level-prescribing-data-more-information
6Confront Table 1 by Gonzalez-Ortiz and Masiero (2013) for a review of the main socio-economic determinants in

antibiotic prescription in outpatient settings.
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loaded from NHS Digital General Practice Data Hub 7 and from NHS Digital website.8 Notice
that the number of registered patients is available since 2013 with quarterly data. Annual data
was computed by averaging quarterly data.9 To account for differences in the population com-
position of individual practices, we computed the weighted composition of registered patients
of individual practices by STAR-PU (Specific Therapeutic Group Age-sex weightings Related
Prescribing Units) weights (cfr. Table 1 in Pouwels et al. (2018)). A summary of the weight asso-
ciated to each age and gender band is reported in table 3.3 in the appendix. We also included
information on the percentage of female patients and on the proportion of patients by age bands.

Second, we considered a number of measures related to the demographic composition
of individual practices. All indicators related to practice composition were obtained from
PHE Fingertips.10 More specifically, we considered: a) percentage of over 65, b) percentage of
children (under 18), c) percentage of female patients, d) percentage of patients with long-term
conditions e) percentage of patients with caring responsibilities, f) percentage of unemployed
patients, g) percentage of patients in nursing homes, h) life expectancy - MSOA based (male), i)
life expectancy - MSOA based (female), l) deprivation score, m) income deprivation for older
people (IDAOPI), n) income deprivation for children (IDACI).11 In addition we included a
number of indicators related to the prevalence of specific conditions12: a) total QOF points,
b) QOF prevalence for hypertension (all ages), c) QOF prevalence for obesity (18+), d) QOF
estimated smoking prevalence, e) blood pressure <= 150/90 mmHg in people with hypertension
(HYP006). We also include a number of indicators related patient experience with their GP
practice, namely: a) percentage of patients satisfied with phone access, b) percentage satisfied
with practice appointment times, c) percentage reporting good overall experience of making
appointment, d) percentage who would recommend the practice, e) percentage satisfied with
opening hours, f) percentage who saw or spoke to a GP on the same day. Note that for the
percentage of female patients in 2017 we used only the percentage of female patients in quarter
1, as this information was not available for other quarters.

We obtained quality outcome framework indicators for individual conditions. Data on spe-
cific conditions were obtained from NHS General Practice Data Hub.13 Considered conditions
were: a) cardiovascular group, b) respiratory group, c) lifestyle group, d) long-term conditions
group, e) mental health group, f) muscoloskeletal group, g) fertility, h) quality and productivity,
i) patient experience).

We considered supply-side information by looking at GP workforce statistics.14 The infor-
mation obtained on workforce included: a) GP density (head counts per 1000 patients), b) GP
density computed as full-time equivalents per registered patient, c) percentage of GPs under 40
years of age, d) percentage of female GPs, e) proportion of GPs trained in the UK, f) nurses
density (head counts per 1000 registered patients, g) administrative staff density (head counts
per 1000 registered patients.

7https://digital.nhs.uk/data-and-information/data-tools-and-services/data-services/general-prac

tice-data-hub
8See https://digital.nhs.uk/data-and-information/publications/statistical/patients-registered-a

t-a-gp-practice
9Note that for 2013, quarterly data was available only for Q2, Q3 and Q4.

10https://fingertips.phe.org.uk/profile/general-practice
11All deprivation scores were available for the year 2015 only.
12https://digital.nhs.uk/data-and-information/publications/statistical/quality-and-outcomes-fram

ework-achievement-prevalence-and-exceptions-data
13https://digital.nhs.uk/data-and-information/data-tools-and-services/data-services/general-prac

tice-data-hub
14These are available at https://digital.nhs.uk/data-and-information/publications/statistical/general

-and-personal-medical-services/2005-2015-as-at-30-september-provisional-experimental-statistics
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Workforce statistics also included GPs’ contract type. These were general medical services
(GMS), personal medical services (PMS), alternative provider medical services (APMDS), and
primary care trust medical services contract (PCTMS). GMS contract types concern the delivery
of a set of nationally agreed core medical services, with funding related to the number of
registered patients. PMS contracts might include extra services compared to GMS ones, such
as special clinics for the homeless or other local needs. APMS contracts allow for primary
care organisations to contract non-NHS bodies such as commercial providers, or for general
or personal medical services to provide additional primary care services. GMS contracts are
contracted nationally, while PMS and APMDS contracts are contracted locally. Under PCTMS
primary care trusts are allowed to provide services directly via the direct employment of staff.15

Individual contract types were transformed into dummy variables, with GMS as a reference
contract type.

We collected information concerning letters sent by the Chief Medical Officer (CMO) to GPs
with high prescription rates.16 These letters were submitted by the CMO to GPs in the top
20% based on antibacterial items per STAR-PU per 1000 population in the 12 months running
from July 2014 to June 2015. The content of the letters reminded GPs of the threat of increasing
antibiotic resistance and that their practice was among the highest percentiles of antibiotic
prescriptions (at least top 20%). The letters also indicated a number of actions the GP could
take to reduce antibiotic prescription .17 A second round of letters was sent again in April 2017,
and in the following years. We captured this information by setting a time-varying dummy
equal to one from the year when the practice received a letter from the CMO.

We computed measures of spatial distance across GP practices. These were computed in
two steps. First we computed spatial coordinates from GP addresses. Second we computed
geographical distance across GPs using Harversine distance. Harversine distance was computed
using the R package geosphere (Williams et al., 2016). We also created a dummy indicating
whether practices were in the same CCG. Both these measures were used as alternative distance
indicators to estimate spatial effects.

Compared to the indicators listed in Table 1 of Gonzalez-Ortiz and Masiero (2013), our study
does not consider variables related to ethnicity, individual’s choice of patient clinic, income,
incidence of bacterial infections, and social assistance and number of consultations. While these
indicators have been found to be associated with antibiotic prescription by other authors, they
have not been included in this study due to data limitations.

At the end of the data cleaning process our dataset on antibiotics included 7168 GP practices
for a total of 35840 records.18

15A description of what each contract type entails can be found at the following link (accessed on September 26th
2019) https://practicebusiness.co.uk/gp-contracts-updates-to-gms-pms-and-apms/. Additional details on
PCTMS are described in Ellins et al. (2008)

16Information was obtained from this website https://www.prescqipp.info/our-resources/webkits/antimicro

bial-stewardship/
17These included: a) give patients advice on self-care instead b) consider offering a back-up (delayed) prescription

instead, c) talk to other prescribers in their practice to ensure they are also changing their antibiotic prescribing.
18The original prescription dataset presented 12476 unique practices. Of these, 9104 practices were contemporaneously

present across all years. 8103 practices were present in the workforce dataset including information on practice patients.
7510 practices with workforce and patients information are also present across all years. A further 342 practices are
removed because they lack patients’ data.
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III. Methodology

We estimate antibiotic prescription via regression analysis, considering the role of spatial de-
pendence across GP practices.

Spatial dependence arises when agents are able to interact with each other across space
(Gibbons et al., 2015). The result of such interaction is the presence of spatial correlation in
agents’ behaviour. Spatial dependence might affect the expression we aim to estimate in either
the dependent variable, the covariates or the error term. The use of traditional OLS models
might lead to misspecification in the presence of such dependence (Gibbons et al., 2015). The
spatial econometrics literature provides a number of methods to estimate relationships across
the dependent variable and its covariates in the presence of spatial dependence.

When analysing spatial dependence, Gibbons et al. (2015) warns against three potential
identification issues: unobservable factors varying at the group level (reflection problem),
omitted variables, endogenous group membership (sorting).

In the context of antibiotic prescription, Filippini et al. (2014) also highlight the following
identification issues: endogeneity in antibiotic prescription and health needs of the local pop-
ulation, the presence of unobserved heterogeneity in local areas due to unobserved infection
rates, and spatial correlation across different local areas (see Filippini et al. (2014).

To minimise the risk of potential misspecification we will first introduce a simple OLS model,
linking antibiotic prescription rates to the characteristics of the areas served by the GP practice.
We will then test for the presence of Practice-level Fixed Effects (FE) and Random Effects (RE).
We will use a Hausman test to select between fixed- and random- effects.

We then introduce a set of models for the estimation of spatial dependence.

We start our analysis on spatial dependence by means of an Spatially Lagged Model (SLX),
which represents our baseline for the analysis. The SLX model consists of a simple OLS
model where the covariates are introduced as a spatially weighted average of the neighbouring
areas. The type of spatial dependence captured by the SLX model is related to contextual (or
exogenous) spatial correlation where practices respond to observable and exogenous character-
istics of their group (Gibbons et al., 2015). Halleck Vega and Elhorst (2015) indicate that the
SLX model is a useful baseline model as in this model spatial dependence coincides with the
parameter estimates of the exogenous spatial lags, providing a simpler representation of spatial
dependence and lower risks of identification issues compared to models allowing for spatial
autoregression Gibbons et al. (2015). We will test the SLX model both in its simple form, as
well as with extensions given by Fixed Effects (FE) and Random Effect (RE). We will use the
Hausman test to select between the two.

Gibbons et al. (2015) indicate alternative types of spatial dependence, namely a spatial
dependence generated by endogenous effects where individual behaviour responds to the antic-
ipated behaviour and choices of other agents in the same reference group and an "correlated
effect" where peer group specific unobservable factors influence individual and peer behaviour
(common shocks) (Manski, 1993). These two effects are captured by the Spatial Autoregression
Model (SAR) and the Spatial Error Model (SEM) respectively. SAR allows for a spatially lagged
dependent variable among the set of covariates, while SER allows for spatial dependence in the
error term. While these models provide useful representations of spatial dependence, Gibbons
et al. (2015) indicate that the identification of the SAR model introduces the challenge of the
reflection problem, that is only the overall effect of neighbourhood characteristics is identified
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but not whether they are resulting from endogenous or exogenous effects. The SEM model,
on the contrary, only requires no inter-group correlation. These models will be explored as a
departure from the baseline SLX model. These expansions follow closely the approach proposed
by Gonzalez-Ortiz and Masiero (2013) and Lippi Bruni and Mammi (2016).

Notice that we do not make explicit a-priori assumptions regarding the sign of spatial
correlation. In principle, spatial correlation in antibiotic prescription might be either positive or
negative. A positive spatial correlation might identify a positive feedback loop derived from
practices prescribing more as a result of random health shocks in neighbouring areas or as a
result of geographical clusters in high-prescribing prescription behavior, with the result of high-
prescribing doctors being geographically close to each other. On the contrary, a negative spatial
correlation might imply that doctors reduce their prescriptions following a random health shock
as a result of neighbouring practices increasing their prescription in response to higher infection
rates thus reducing the need for antibiotics in neighbouring areas, or by practices deciding to
reduce prescription in order to mitigate resistance in case they are geographically close to a
high prescribing practice.

We control for the presence of spatial by means of Moran I statistics (Moran (1950), Cliff
and Ord (1981)). Moran I is a weighted correlation coefficient defined as the quadratic form
of the variables considered for spatial correlation. The considered variables are standardised
by subtracting the sample mean and adjusted by the variance (Anselin and Bera, 1998). One
advantage of Moran I statistics is that it can be interpreted as a correlation coefficient, with
absolute values of one representing perfect correlation and values of zero representing no
spatial correlation. Similarly, Moran I statistics can be transformed into z-scores for hypothesis
testing (Gonzalez-Ortiz and Masiero, 2013).

Our dependent variable is the log of the number of prescribed antibiotics per STARPU-
patients. Computing logs allows us to avoid scaling issues in the model estimation.

Our baseline SLX model is defined as follows. Letting Yt to indicate the vector of N × T
observations of the dependent variable (number of prescribed antibiotics per 1000 STARPU-
patient) prescription of antibiotic at time t, we have

Yt = Xtγ + WXtθ+ µ + αt + ut (3.1)

where Xt is a matrix of regressors, the N× N matrix W symbolises the pairwise spatial relation-
ships between the individual practices, µ is a vector of time-invariant GP-specific fixed effects,
αt represents a vector of time fixed effects, and ut is a vector of spatially and time uncorrelated
disturbances19.

We first consider a baseline OLS model, obtained by estimating model 3.1 without spatial
effects and without GP-Fixed Effects, that is, we first set W = 0 and µ = 0.

We perform a Shaphiro-Wilk test for the normality of the estimated residuals, and a Bresuch-
Pagan test for heteroskedasticity. In case of absence of normality and heteroskedasticity in the
residuals, we estimate a model with GP-clustered residuals.

As latent common factors might induce dependence leading to inconsistent estimations in
case of correlation with such unobserved factors (Greene, 2012), we introduce a second version

19The notation used in equation (3.1) follows the standard notation for spatial econometrics as described in Gibbons
et al. (2015). In the standard microeconometric notation the model could be written as yit = γxit + φ ∑J wi,jxi,t + µi +
αt + ui,t
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of the model accounting for GP-level Fixed Effects (FE) and Random Effects (RE).

We run a Hausman test to select between random or fixed effects represented by the param-
eter uzt in equation 3.1.

We test for the presence of spatial autocorrelation in the residuals by applying Moran’s I
statistic (see Kelejian and Prucha (2001)). Having identified signs of cross-sectional dependence,
we address spatial correlation across practices by means of spatial weights.

Following Lippi Bruni and Mammi (2016), we estimate two different versions of proximity:
institutional and geographical proximity. We define institutional weights as

W(i,j),INST =

{
1, if GPs i and j are in the same CCGs,
0, otherwise.

(3.2)

We define geographical weights across practices as

W(i,j),GEO =
1

di,j
, (3.3)

where di,j represents the Haversine distance across coordinates of the two GP practices.20 As
standard in the literature, weights are row standardised, meaning that each neighbour weight
is divided by the sum of all neighbour weights (Gibbons et al., 2015).

To ensure we capture the best weighting system of neighbouring dependent variables, we
estimate an alternative model taking a linear combination of institutional and geographical
distances. More specifically, this additional version of the spatial weights is defined as

W(i,j),CONV = φW(i,j),INST + (1− φ)W(i,j),GEO (3.4)

where φ > 0. We first estimate the model with φ = 1, hence estimating a purely geographical
weight. We then reduce φ in steps of measure 0.1 by means of a gridding procedure, until
obtaining a purely institutional weight (φ = 0).

Administrative weights allow for the consideration of spatial dependence arising from an
administrative grouping of GP practices. This approach, however, does not allow for depen-
dence arising from geographical proximity. In addition, in this weighting system, all practices
in the same administrative area are weighted equally. The geographical weight, on the contrary,
allows for dependence arising from geographical distance, at the cost of ignoring administrative
components. The weighted average of the two methods allow for a balance between these two
components of spatial dependence. The literature on spatial methods provides additional details
for the definition of alternative weight matrices (Gibbons et al., 2015), including time-varying
weights. In particular, Halleck Vega and Elhorst (2015), allow for parametric spatial weights
which can be useful to estimate the strength of connections from cross-sectional observation,
rather than defining them in advance. Although this definition of spatial weights could prove
useful, parametrized weights have not been included in the analysis to ensure model paucity.

We identify the best performing SLX model by selecting the model with the lowest Akaike
Information Criterion (AIC).

20The distance of a practice with itself is set to zero.
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To explore the role of different channels of spatial dependence described in the introduction,
we introduce a number of alternative spatial dependence models. More specifically, to account
for the role of the channel of common policies, we estimate an SLX defined as

Yt = Xtγ + WXtθ+ µ + αt + γt + ut, (3.5)

where γt represents the interaction of CCG fixed effects with year. The presence of spatial
dependence in the SLX component of the model, even after introducing this interaction effect,
will provide us with evidence for the presence of alternative channels for spatial dependence.

We test for the presence of spatial dependence arising from random health shocks by
estimating a spatial error model similar to the one proposed by Gonzalez-Ortiz and Masiero
(2013) and Lippi Bruni and Mammi (2016), namely

Yt = Xtγ + µ + αt + ut,

ut = ρWut + εt,
(3.6)

where εt is a spatially non-correlated error term.

We test for the presence of spatial dependence arising from unobserved risk factors by
estimating a spatial autoregressive model similar to the one proposed by Gonzalez-Ortiz and
Masiero (2013) and Filippini et al. (2014), namely

Yt = WYtβ + Xtγ + µ + αt + ut (3.7)

Lastly, we run a separate version of the model where we estimate spatial dependence for
the prescription of broad-spectrum antibiotics as a percentage of total antibiotic prescription.
Open Prescribing (2020) provides an indication of the antibiotics which can be considered as
broad-spectrum, namely: co-amoxiclav, cephalosporins and quinolones. These antibiotics have
to be prescribed sparingly to reduce the risk of resistance. This model allows us to verify for
spatial dependence in prescription behaviour for this specific class of drugs. For simplicity, we
report the results of this additional model in SLX format with FE (SLX RE model was estimated,
however it reached singularity).

Notice that while a strand of literature suggests that antibiotic prescriptions are influenced
by patients’ expectations (Fletcher-Lartey et al., 2016), systematic reviews rejected the hypothesis
of complacency (i.e. fulfilling patients expectations) playing a role in prescription behaviour,
due to conflicting evidence among studies (Teixeira Rodrigues et al., 2013). Similar conclusions
were found in other reviews (Lopez-Vazquez et al., 2011). It is therefore plausible that patients
do not switch GP practices on the basis of prescription patterns. This is consistent with a
different strand of literature stating that patients choice to switch GP practice is a multi-factorial
one, and depending on issues such as: rudeness or attitude of the doctor, accessibility, and
distance to the practice (Ghandi et al., 1997). We therefore consider the risk of sorting, as
described by Gibbons et al. (2015) not to play a role when it comes to patients selecting GPs
based on prescription patterns.

The OLS and SLX models are estimated with the R package plm (Croissant and Millo, 2008).
The spatial error and the spatial autoregressive model are estimated with the R package splm
(Millo and Piras, 2012).
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IV. Results

i. Baseline analysis

Table 3.1 presents the descriptive statistics of shortlisted variables. We removed from the
analysis those variables that presented a high number of missing observations (more than 5%
of observations).21

Table 3.1: Descriptive statistics

mean std.dev min max

(Log of) STARPU-items per 1000 patients 6.933 0.291 0.538 11.704
(Log of) registered patients 8.780 0.603 2.708 11.020

Female patients (%) 49.915 2.254 13.799 63.347
Over 65 patients (%) 16.9 6.59 0 50.87

GP density (head counts) 0.700 0.758 0 100
Female GPs (%) 47.279 25.585 0 100

Under 40 GPs (%) 28.561 25.046 0 100
Foreign GPs (%) 33.820 35.124 0 100

Nurse density (head counts) 0.424 0.584 0 66.667
QOF points (%) 95.534 6.457 2.500 100

Unemployed patients (%) 5.710 5.001 0 62.180
Patients with caring responsibilities (%) 18.107 5.047 0 44.877

Prevalence: asthma 5.934 1.316 0 16.667
Prevalence: diabetes mellitus 6.553 2.045 0 25

GP contract: APMS 0.028 0.166 0 1
GP contract: GMS 0.628 0.483 0 1
GP contract: PMS 0.341 0.474 0 1

GP contract: PCTMS 0.003 0.057 0 1
Letters from CMO 0.073 0.260 0 1

Correlation analysis of independent variables identified high positive correlation across
most prevalence groups. To avoid collinearity we focused on specific conditions. Dolk et al.
(2018) found that cough was one of the main conditions, among the prescriptions that could be
linked to a body part. Also, Nitzan et al. (2010), found that antibiotic prescriptions were linked
to antibiotic mellitus prevalence. To account for these two factors, we considered prevalence of
Asthma, as a proxy of cough, and prevalence of diabetes mellitus (the two conditions showed a
low correlation (0.24).

We found mild correlation across the percentage of female patients, age and unemploy-
ment.22 We found a mild correlation across patient age and asthma prevalence.23 We found
small negative correlation across asthma prevalence and working full-time (-0.33). We also
found small negative correlation across working full-time and having caring responsibilities
(-0.35). As correlation was mild across these variables we did not remove them from the analysis.
GMS contracts were included as the reference category. The year 2013 has been included as the

21These variables are IMD2015, children’s income deprivation (IDACI), and income deprivation for older people
(IDAOPI).

22The correlation of the percentage of female patients with the percentage of over 85 was 0.37, and with percentage
of unemployed was -0.4.

23Correlation across patients in the 65-74 age band and asthma was 0.4.
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reference year.24

We explored time variation of the shortlisted covariates by means of graphical analysis.
The following covariates reported a low-time variation (maximum absolute average year-on-
year lower than 3%): (Log of) registered patients, Female patients (%), Over 65 patients (%),
QOF points (%), Prevalence: asthma, Good appointment experience (%), Patients with caring
responsibilities(%).

We first estimate an OLS model with no spatial effects, as defined in model 3.1 setting w = 0
and uj = 0 for all j. Results of the baseline OLS model are reported in column 1 of table 3.2.

The preliminary OLS model provided an adjusted-R2 0.277. The F-test indicates that we can
reject the null hypothesis of all regressors being equal to zero (p-value < 2.2e-16). Shapiro-wilk
test indicates a rejection of the null hypothesis of normal residuals (p-value < 2.22e-16).25.
The Breusch-Pagan test indicates that we cannot accept the null hypothesis of residuals ho-
moskedasticity (p-value < 2.2e-16). To account for heteroskedasticity in the regression residuals
we cluster residuals at a CCG level. All reported regression results thus present CCG-level
clustered residuals.

Preliminary regression results indicate a positive coefficient for the year 2014, and a negative
one for the years 2015 onwards. This is consistent with the introduction of the stewardship
programme in 2015.26 The following factors were positively associated with prescription: per-
centage of female patients, percentage of over 65 patients, percentage of patients with caring
responsibilities, percentage of unemployed patients, percentage of foreign GPs, nurse density,
APMS contracts, prevalence (both asthma and diabetes), having received a letter from CMO.
The following factors were negatively associated with prescription: percentage of patients
reporting a positive appointment experience, percentage of female GPs, percentage of under 40
GPs, QOF score, PCTMS contracts.

We run Hausman test to check for the significance of introducing alternatively CCG-level
Fixed Effects (FE) or Random Effect (RE) (Wooldridge, 2010) to the model 3.1. The test indicated
that we cannot accept the null hypothesis of RE being consistent, providing a p-value close to 0.
For this reason the second column of table 3.2 provides the results of a regression model with
practice-level Fixed Effects.

Compared to the simple OLS model, the OLS model with practice-FE provides a higher
adjusted R2 (0.84).27 The estimated coefficients were comparable across the OLS and OLS FE
model, with a number of exceptions. The following regression coefficients changed sign from
positive in the OLS to negative in the OLS FE: year 2014, diabetes mellitus prevalence, APMS
and PMS contract. The following regression coefficients changed from negative to positive:
percentage of patients reporting a positive appointment experience. The following regressors
gained significance: log of registered patients (negative), GP density (positive), PMS contract
(negative), while the following regressors lost significance: percentage of female GPS, percent-
age of patients with caring responsibilities, percentage of unemployed patients, PCTMS contract.

24We tried an alternative specification of the model with no intercept however the estimated model presented signs
of strong collinearity.

25We perform Shapiro-Wilk test with the R function shapiro.test This function allows a maximum of 5000 observations,
hence we run the test on a random sample of 5000 residuals.

26We attempted to report a policy dummy being equal to 1 for any observation registered from the year 2015 onwards.
This variables, however, ended up being non identified when considered jointly with individual year effects.

27Notice that the OLS FE model is estimated using a demeaned equation (see Wooldridge (2010) and Croissant and
Millo (2008) for details).
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Before running a spatial model, we checked for evidence of spatial autocorrelation in depen-
dent variable applying Moran’s I test. This test provided an estimated value of 0.195, with a
p-value lower than 2.2e-16, thus rejecting the null hypothesis of absence of spatial dependence
in the log of antibiotic items per 1000 STARPU patients. Moran’s I has been tested for each year
and for two alternative spatial weight matrices (administrative and spatial). Each version of test
confirmed the rejection of the null hypothesis of no spatial autocorrelation. Moran’s I test was
computed using the function Moran.I from the R package ape (Paradis et al., 2004).

60



Table 3.2: Regression results. Dependent variable: (Log) prescribed antibiotics per 1000 STARPU patients

Dependent variable:
(Log of) prescribed antibiotics per 1000 STARTPU Patients.

OLS OLS FE OLS RE SLX SLX FE SLX RE

(1) (2) (3) (4) (5) (6)

Year 2014 0.028∗∗∗ −0.028∗∗∗ −0.013∗∗ 0.230∗∗∗ 0.003 0.064∗∗∗

(0.008) (0.006) (0.005) (0.029) (0.020) (0.017)

Year 2015 −0.097∗∗∗ −0.067∗∗∗ −0.079∗∗∗ −0.052∗∗∗ −0.039∗∗ −0.041∗∗∗

(0.005) (0.003) (0.003) (0.015) (0.018) (0.013)

Year 2016 −0.192∗∗∗ −0.095∗∗∗ −0.116∗∗∗ −0.245∗∗∗ −0.069∗∗∗ −0.075∗∗∗

(0.005) (0.004) (0.003) (0.024) (0.024) (0.016)

Year 2017 −0.178∗∗∗ −0.140∗∗∗ −0.160∗∗∗ −0.121∗∗∗ −0.130∗∗∗ −0.119∗∗∗

(0.005) (0.005) (0.003) (0.018) (0.032) (0.017)

(Log of) registered patients −0.002 −0.244∗∗∗ −0.061∗∗∗ 0.004 −0.223∗∗∗ −0.043∗∗∗

(0.004) (0.034) (0.010) (0.004) (0.034) (0.010)

Female patients (%) 0.009∗∗∗ 0.005 0.006∗∗∗ 0.010∗∗∗ 0.001 0.005∗∗

(0.001) (0.004) (0.002) (0.001) (0.005) (0.002)

Over 65 patients (%) 0.005∗∗∗ 0.004∗ 0.005∗∗∗ 0.004∗∗∗ 0.002 0.004∗∗∗

(0.0003) (0.003) (0.001) (0.0003) (0.003) (0.001)

GP density (Head counts) 0.001 0.011 0.014∗ 0.010∗∗ 0.013 0.018∗∗

(0.005) (0.009) (0.008) (0.005) (0.009) (0.008)

Female GPs (%) −0.001∗∗∗ −0.0001 −0.0002∗∗∗ −0.0004∗∗∗ −0.0001 −0.0002∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Under 40s GPs (%) −0.0003∗∗∗ −0.0002∗∗∗ −0.0002∗∗∗ −0.0004∗∗∗ −0.0003∗∗∗ −0.0003∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Foreign GPs (%) 0.001∗∗∗ 0.0001∗ 0.0003∗∗∗ 0.001∗∗∗ 0.0001 0.0002∗∗∗

(0.00005) (0.0001) (0.00005) (0.00005) (0.0001) (0.0001)

Nurse density (head counts) 0.080∗∗∗ 0.038∗∗∗ 0.053∗∗∗ 0.066∗∗∗ 0.036∗∗∗ 0.048∗∗∗

(0.008) (0.010) (0.008) (0.007) (0.011) (0.009)

QOF points (%) −0.002∗∗∗ −0.0002 −0.002∗∗∗ −0.002∗∗∗ −0.0002 −0.001∗∗∗

(0.0002) (0.0003) (0.0002) (0.0003) (0.0003) (0.0002)

Prevalence: asthma 0.051∗∗∗ 0.016∗∗∗ 0.038∗∗∗ 0.039∗∗∗ 0.016∗∗∗ 0.031∗∗∗

(0.001) (0.004) (0.002) (0.002) (0.004) (0.003)

Prevalence: diabetes mellitus 0.008∗∗∗ −0.004∗∗∗ −0.0005 0.012∗∗∗ −0.005∗∗∗ −0.0001
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Good appointment experience(%) −0.001∗∗∗ 0.001∗∗∗ 0.00003 −0.001∗∗∗ 0.001∗∗∗ 0.00005
(0.0002) (0.0002) (0.0001) (0.0002) (0.0002) (0.0001)

Patients with caring responsibilities (%) 0.005∗∗∗ −0.0001 0.001∗∗∗ 0.004∗∗∗ −0.0001 0.001∗∗∗

(0.0003) (0.0002) (0.0002) (0.0003) (0.0002) (0.0002)

Unemployed patients (%) 0.004∗∗∗ 0.0002 0.001∗∗∗ 0.003∗∗∗ 0.0002 0.001∗∗∗

(0.0004) (0.0003) (0.0003) (0.0004) (0.0003) (0.0003)

GP contract: APMS 0.235∗∗∗ −0.033 0.091∗∗∗ 0.068∗∗∗ −0.047 0.004
(0.019) (0.038) (0.028) (0.018) (0.038) (0.026)

GP contract: PMS 0.002 −0.012∗∗∗ −0.003 0.007∗∗ −0.001 0.006∗

(0.003) (0.005) (0.003) (0.003) (0.005) (0.004)

GP contract: PCTMS −0.075∗∗ 0.003 0.004 −0.069∗∗ 0.019 −0.001
(0.031) (0.019) (0.018) (0.034) (0.027) (0.024)

Letters from CMO 0.293∗∗∗ 0.010∗∗∗ 0.038∗∗∗ 0.281∗∗∗ 0.008∗∗ 0.036∗∗∗

(0.006) (0.004) (0.003) (0.006) (0.004) (0.004)

(Log of) registered patients W0.1 0.037 −1.462∗∗∗ −0.459∗∗∗

(0.076) (0.487) (0.140)

Female patients (%) W0.1 −0.026 0.104∗∗ 0.081∗∗∗

(0.017) (0.047) (0.025)
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Table 3.2: Regression results. Dependent variable: (Log) prescribed antibiotics per 1000 STARPU patients

Over 65 patients (%) W0.1 −0.021∗∗ 0.091∗∗∗ 0.012
(0.008) (0.034) (0.011)

GP density (head counts) W0.1 −1.249∗∗∗ −0.241∗∗ −0.659∗∗∗

(0.129) (0.116) (0.106)

Female GPs (%) W0.1 0.006∗∗∗ 0.005∗ 0.003∗

(0.002) (0.003) (0.002)

Under 40 GPs (%) W0.1 −0.002 0.002 0.002
(0.003) (0.004) (0.003)

Foreign GPs (%) W0.1 0.009∗∗∗ 0.001 0.004∗∗∗

(0.001) (0.001) (0.001)

Nurse density (%) W0.1 1.282∗∗∗ 0.170 0.758∗∗∗

(0.173) (0.204) (0.171)

QOF points (%) W0.1 −0.005 0.001 −0.010∗∗

(0.004) (0.006) (0.004)

Prevalence: asthma W0.1 0.212∗∗∗ 0.010 0.186∗∗∗

(0.033) (0.078) (0.041)

Prevalence: diabetes mellitus W0.1 −0.042∗∗∗ −0.003 −0.014∗∗∗

(0.007) (0.004) (0.004)

Good appointment (%) W0.1 0.004 −0.001 −0.003
(0.004) (0.007) (0.005)

Caring responsibilities (%) W0.1 0.033∗∗∗ 0.011 −0.001
(0.011) (0.011) (0.009)

Unemployed patients (%) W0.1 −0.062∗∗∗ −0.006 −0.012
(0.011) (0.015) (0.011)

GP contract: APMS W0.1 5.827∗∗∗ 3.711∗∗∗ 5.508∗∗∗

(0.447) (1.250) (0.718)

GP contract: PMS W0.1 −0.327∗∗∗ −0.397∗∗∗ −0.512∗∗∗

(0.065) (0.100) (0.079)

GP contract: PCTMS W0.1 0.650∗ −0.877∗∗ −0.300
(0.383) (0.364) (0.283)

Letters from CMO W0.1 −0.563∗∗∗ −0.020 −0.070∗

(0.073) (0.040) (0.036)

Constant 6.304∗∗∗ 7.013∗∗∗ 6.286∗∗∗ 6.961∗∗∗

(0.072) (0.143) (0.071) (0.144)

Observations 35,840 35,840 35,840 35,840 35,840 35,840
R2 0.278 0.348 0.288 0.321 0.355 0.310
Adjusted R2 0.277 0.185 0.288 0.321 0.192 0.309
F Statistic 625∗∗∗ 696∗∗∗ 14,491∗∗∗ 424∗∗∗ 393∗∗∗ 16,088∗∗∗

F Statistic (df = 22; 35817) (df = 22; 28650) (df = 40; 35799) (df = 40; 28632)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Having identified the presence of spatial correlation, we estimate different versions of the
SLX model 3.1, setting w 6= 0.

More specifically, we first estimate a simple version of the spatially lag (SLX) model. We
then introduce an SLX model with alternatively GP-level Fixed Effects (SLX FE) and Random
Effects (RE). We run a Hausman test to select between Fixed and Random Effects. The Hausman
test rejects the null hypothesis of unique errors being correlated with the regressors, hence the
FE should be preferred. Results of the spatial models are reported in columns 3 and 4 of Table
3.2. This table also presents the SLX RE model for comparison purposes.
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Results of the spatial model have been obtained with a linear combination of administrative
and spatial weights, as indicated in equation 3.4. The weights associated to φ, the administrative
spatial component, was equal to 0.1. This value of φ has been obtained from the value that
minimizes the Akaike Information Criterion (AIC) of the SLX model. Additional details on the
optimal AIC associated to different combinations of spatial weights is reported in Figure 3.2 in
the appendix.28

Compared to the OLS models, the spatial lag models presented regression coefficients with
comparable sign and magnitude. Both the SLX and the SLX FE model presented a negative
time trend, with the SLX presenting a positive coefficient for 2014 as in the baseline OLS model.

The key differences across the SLX and the OLS model were that GP density gained signifi-
cance. The key differences across the SLX FE and the OLS FE model were that in the former the
year 2014, the percentage of female patients, the percentage of over 65 patients, the percentage
of foreign GPs, the percentage of QOF points, PMS contracts all lost significance, while the
percentage of female patients became significant.

By looking of the averaged regressors of neighbouring practices (see regressors ending
with W0.1 in Table 3.2) the SLX model identifies positive spatial dependence for the percent-
age of female GPs, the percentage of foreign GPs, nurse density, asthma prevalence, caring
responsibilities, and GP contract type APMS and PCTMS. Similarly, the SLX identified negative
spatial dependence for GP density, prevalence of diabetes mellitus, the percentage of unem-
ployed patients, GP contract type PMS, and receiving letters from the CMO for over prescription.

The SLX FE model confirmed positive spatial dependence for the percentage of female
GPs, and for GP APMS contract type (see last column of table 3.2). Similarly, negative spatial
dependence was confirmed for GP density and PMS contract. Compared to the SLX results, in
the SLX FE spatial average of the number of registered patients became negative and significant,
as did PCTMS contract type. The percentage of female patients, the percentage of over 65
patients, became positive and significant. The percentage of foreign GPs, nurse density lost
significance, percentage of patients with caring responsibilities, the percentage of unemployed
patients and prevalence measures lost significance.

Among the estimated models, the SLX FE was the one minimising the Akaike Information
Criterion (AIC), hence it should be the model to be preferred.29

Figure 3.1 provides a graphical representation of spatial dependence by presenting a map of
the sum of the residuals grouped by individual practices and estimated for the OLS FE model
(top) and the SLX FE model (bottom). The figure shows that for the simple OLS FE model
there is a presence of spatial correlation in the residuals with clear spatial patterns appearing in
the map. The same geographical clusters appear not to be present once spatial correlation is
accounted for with the SLX FE model. This result appears to indicate that the presence of a
spatial correlation of the residuals arising from the OLS FE model. This figure also shows that
the SLX FE model captures the majority of such spatial correlation.

The spatial coefficients of the estimated SLX and SLX FE models might be capturing spatial
dependence across GP practices. This spatial dependence might be arising from a number rea-
sons, including institutional factors across different CCGS, different rates of bacterial resistance
across local areas, area specific health shocks across areas or different prevention efforts in

28Notice that the optimal φ for the SLX FE was 0.2. Nonetheless we set φ to 0.1 for both models for simplicity.
29The AIC values of the estimated models were: OLS = 1530.53, OLS with FE = -60673.29, SLX = -676.97, SLX with FE

= -60984.35.
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Figure 3.1: Sum of residuals by GP practice, OLS FE model (top) and SLX FE model (Bottom). Blue = positive
sum, Red = negative sum.
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bacterial resistance. We estimate a number of alternative models to verify the importance of
different channels of spatial dependence.

Notice that in all estimated models, the dummy related to CMO letters was positive. This
suggests that this dummy allows for the identification of high prescribers, and it provides no
evidence that CMO letters had an effect in reducing prescription, while other covariates are
accounted for.

ii. Exploring alternative channels of spatial dependence

We now report the estimated results of alternative spatial models used to explore alternative
channels of spatial dependence. The results of these alternative models are reported in table 3.4
in the appendix.

First we estimate an alternative SLX FE model including CCG and year interaction effects, as
defined in equation 3.5. These interactions are aimed to capture specific policy actions occurring
at the CCG level in individual years. Results of this model are reported in the second column
of Table 3.4 (see "SLX FE CCG*Year Interactions"). Compared to the SLX FE model, individual
year dummies, except for 2016, became non-significant. The percentage of foreign GPs gained
significance. Concerning spatially-weighted coefficients, the percentage of over 65 patients
and GP density both lost significance, while nurse density and the percentage of unemployed
patients both gained significance. These results seem to suggest that policy effects occurring at
a CCG level had little impact on the nature of spatial dependence in antibiotic prescription.

We have then estimated an alternative form of spatial dependence, by introducing a spatial
error model, as defined in equation 3.6. This model is used in Gonzalez-Ortiz and Masiero
(2013) and Lippi Bruni and Mammi (2016) to estimate spatial dependence potentially arising
from random health shocks in antibiotic prescription and in hospital expenditures respectively.
In this case we can see that the parameter ρ, is equal to −0.961 and it is significant to the
0.01 level. This result indicates that the spatial component of the error model, is negative and
significant, thus representing a negative spatial dependence across neighbouring practices in
antibiotic prescription arising from random health shocks.

We’ve then considered an alternative channel of spatial dependence, by estimating a spatial
dependence model as defined in equation 3.7. This model is used by Gonzalez-Ortiz and
Masiero (2013) to estimate dependence arising from the prescription rates of neighbouring
practices, and in and Lippi Bruni and Mammi (2016) to estimate spatial dependence in hospital
expenditures. The estimated value of spatial dependence, indicated by the spatial autoregressive
component β, reported in the last column of table 3.4, is equal to 0.133, however it fails to reach
significance. This result indicates the absence of a significant spatial dependence (see model
SAR).

The results of the analysis of the channels of spatial dependence appear to indicate that
spatial dependence might be influenced by the characteristics of neighbouring practices (as
captured by the SLX models). Spatial dependence appears to be only mildly influenced by
CCG-specific policies (as indicated by the SLX model with CCG times year interactions). The
estimated results in the SEM and SAR model appear to indicate that spatial dependence is
more likely to occur via random health shocks, while it does not appear to be influenced by
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the prescription rates of neighbouring practices ceteris-paribus.30 31 While care should be
taken in interpreting the results of the SAR and SEM models due to the potential identification
issues arising from potential endogeneity, these result might be interpreted as an indication of
the absence of negative externalities due to antimicrobial resistance from over-prescribing. In
addition, care should be given in the interpretation of these results on spatial correlation, as the
estimated correlation is close to one, thus potentially identifying stationarity issues.

iii. Extensions

To deepen our analysis, we performed a second version of the SLX FE model estimated on
broad-spectrum antibiotics. This additional model aims to identify whether spatial dependence
is present also for this specific antibiotics class. Broad-spectrum antibiotics are of relevance
for the analysis of antibiotic prescription as this specific class tends to be highly associated
with increased antibiotic resistance. The results of this model are reported in table 3.5 in the
appendix. For ease of comparison in each table we reported the results of the SLX and SLX
FE on all antibiotic classes (left-most column). The SLX RE model is not reported as it reached
singularity.

As indicated in the tables, spatial dependence appeared to be present also for broad-
spectrum antibiotics, as indicated by the significance of the spatially lagged covariates. The
sign of spatial dependence of individual covariates, where significant, was generally aligned
with the sign of spatial dependence estimated for all antibiotics considered together, with the
exception of the spatially-weighted letters from the CMO. Where significant, spatial dependence
estimated on broad-spectrum antibiotics presented a higher magnitude compared to spatial
dependence estimated on all antibiotics considered together.

Compared to the SLX FE model estimated on all antibiotics, the coefficient of the log of
registered patients, GP density, GP contract PCTMS presented a higher negative magnitude in
the broad-spectrum SLX FE model, while the coefficient on female GPs and GP contract APMS
presented a higher positive magnitude. The coefficients on spatially weighted share of GPs
under 40, nurse density, the percentage of patients reporting a good experience, and the letters
all gained significance, while the same coefficients on the percentage of female patients and
the percentage of over 65 patients lost significance. This result appears to indicate that spatial
dependence on broad-spectrum antibiotics is affected more by supply side factors and policy
interventions, compared to the demographics of the local population.

As a last robustness check, we compared the results of our SLX FE model with an alternative
SLX FE model estimated on alternative dependent variables, namely the percentage of STARPU-
adjusted antibiotics items (in logs) over all STARPU-adjusted prescribed items (in logs). Results
are reported in Table 3.6 in the appendix. We found consistency in the presence of spatial
dependence for the sign and significance of the following spatially weighted covariates: log of
total patients (negative), percentage of female patients (positive), percentage of over 65 patients
(positive), GP density (negative), percentage of female GPs (positive). In the alternative SLX FE

30Estimating the spatial error model (SEM) without practice fixed effects led to a positive and significant spatial
error λ, with an estimated coefficient of 0.999 and standard error 0.172 (significant at 1% level). Similarly, the spatial
autoregressive (SAR) model without practice fixed effects led to a positive and significant spatial autocorrelation ρ,
with an estimated coefficient of 0.104 and standard error 0.012 (significant at 1% level).

31The estimated results have been obtained with a ML estimation of the spatial models. We estimated a separate
version of the spatial models with GMM estimation. The GMM approach did not appear to influence the estimated
results. The spatial error component coefficient rho is equal to 0.99, with variance equal to 0.01, hence significant. The
estimated spatial autoregression component lambda is equal to 0.08 and it fails to reach significance (0.12 standard
deviation).
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model, the following spatially lagged covariates became significant: percentage of foreign GPs
(positive). In the alternative models GP contracts presented the same sign and significance as
the reference SLX FE model for all contract types.

V. Conclusions

This paper explores spatial dependence in antibiotic prescription rates among English GP
practices by estimating a spatial panel analysis of presentation level data for the years 2013-17.

Several previous studies analysing socio-economic determinants of antibiotic prescription
performed cross-sectional analysis of prescription data, hence not accounting for individual year
effects (Matuz et al. (2005), Filippini et al. (2014), Kern et al. (2006)). Furthermore, studies report-
ing panel analysis were based on more limited number of observations compared to this paper
(Gonzalez-Ortiz and Masiero (2013), Filippini et al. (2014)). In addition, several previous studies
on the determinants of antibiotic prescription did not take into account spatial dependence
(Matuz et al. (2005), Kern et al. (2006), Nitzan et al. (2010)), hence potentially overestimating
coefficients significance (Kelly, 2019). Existing studies on antibiotic prescription adopting a
spatial approach, such as Filippini et al. (2014) and Gonzalez-Ortiz and Masiero (2013) rely on
estimated spatial models such as spatial error models (SEM) and spatial autoregressive models
(SAR), which according to Gibbons et al. (2015) might pose higher identification challenges.

The study presented here is novel in a number of ways. First, by considering the data of over
seven thousand GP practices for the years 2013-2017, we present a rich dataset, both in terms of
explanatory variables, as in terms of number of available observations. Second, we estimate
spatial dependence using an SLX approach as our baseline model, thus reducing the risk of
misspecification. Third, we explore different channels of spatial dependence by confronting
our SLX FE model, with SLX FE with CCG and year interaction effects, SEM and SAR models.
Fourth, we estimate spatial models for overall antibiotic prescription, as well as broad-spectrum
antibiotic prescriptions, thus allowing us to draw conclusions on GPs prescription behaviour.
Lastly, the richness of our dataset allows us to analyse novel factors such as the introduction of
relevant policy variables such as the effect of the introduction of letters from the Chief Medical
Officer (CMO) to high-prescribing primary care practitioners.

This paper provides a contribution to the field of spatial methods applied to antibiotics
prescription in primary care. This study does so by estimating a panel model over a dataset
which is representative of antibiotics prescriptions in English primary care. To the best of our
knowledge, this paper is also the first one to analyse spatial dependence in antibiotic prescribing
among English GP practices.

This study confirms that antibiotic prescriptions are influenced by the demographics of
the local population, supply-side factors connected to the provision of primary care services,
condition prevalence and patients’ experience in accessing services. The richness of our dataset
allows us to study novel factors in antibiotic prescription in primary care. Our study allows us
to identify differences in prescription rates across different GP contracts, thus identifying the
effect of alternative contracts on prescription behaviour. In addition, we are able to control for
relevant policy variables, such as receiving a letter from the CMO.

This study provides an in-depth exploration of the channels of spatial dependence in in-
fluencing antibiotic prescription rates. Our reference SLX model shows that a key source of
such dependence is given by the characteristics of neighbouring practices, in particular practice
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size, demographics of the local population and supply-side factors, such as GP density or the
share of female GPs. This result appears to indicate that spatial dependence is affected by a
combination of the specific needs of the local population and by the ability of the local health
care system in addressing those needs. As infections tend to spread across the population, the
identified spatial dependence from neighbouring characteristics is consistent with the presence
of an externality arising from being close to a practice which is at lower risk of diffusion
and which is better suited to address such infection. This effect of spatial dependence might
be useful in identifying fragile nodes in the spatial network of primary care provision in its
response to infections, thus providing a starting point for policy makers to identify weak points
to address for the prevention of infection diffusion. Local decision makers, such as clinical
commissioning groups might decide, for instance, to increase GP head counts in such areas
that are more vulnerable to infections in terms of needs of the local population and that have
weaker primary care, and that are closer to other practices with high risk and low capacity.
Taking the spatial network of practices into account when planning prevention measures might
thus maximise the effect of externalities arising from spatial dependence.

Our analysis has explored alternative channels of spatial dependence. In particular, we have
explored the role of CCG-specific policies in influencing spatial dependence (as indicated by
the SLX FE model with interaction effects). When taking into account the effect of specific
CCG-level interventions, we see only a slight change in the spatial effects identified with our
reference model. Although some spatially lagged covariates change significance (for example
GP density becoming non-significant, or unemployed patients gaining significance), spatial
dependence in practice size, demographics and supply-side factors seem to hold, thus highlight-
ing a potential robustness to the identified spatial effect. This result might be useful to policy
makers in understanding that year-specific interventions occurring at a local level might have
little impact in addressing spatial differences across the country, which might require more
long-term interventions to reach effectiveness. This result might be of particular importance for
interventions targeted at preventing infections.

Lastly, our analysis on the channels of spatial dependence appears to indicate that such
dependence is consistent with random health shocks, as identified by our spatial error model,
while we find little evidence of prescription rates being influenced by externalities arising
from resistance, as indicated from our spatial autoregressive model. This result might be
indicating that the professional network of primary care practitioners is more responsive in
sharing information on the local diffusion of infections than in sharing information on the local
level of resistance and its implications on antibiotic effectiveness. The specific mechanics of this
potential dynamics would require additional analysis, potentially including instruments related
to antibiotic resistance.

The analysis on broad-spectrum antibiotics highlighted a different spatial pattern in the
prescription of this antibiotic class compared to the dependence identified on all antibiotics.
In particular, the spatial dependence for broad-spectrum antibiotics appeared to be less in-
fluenced by the demographics of the local population, and more by supply-side factors and
policy intervention in neighbouring practices. This result is consistent with practices being
influenced by higher standards of care and by the reception of a letter from CMO from a
neighbouring practice. This result might be useful for policy makers as it indicates that a
nudge to high-prescribing practices might induce a change in prescription behaviour in neigh-
bouring areas concerning the provision of antibiotics which are highly related to an increase
in resistance. This result is also consistent with an effective flow of information across the
professional network of general practitioners when it comes to benchmarking of prescrip-
tion behaviour. This result might be useful for policy makers as it indicates that a nudge to
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a specific high-prescribing GP is effective in influencing the behaviour of neighbouring practices.

The results presented in this paper might be a useful starting point for policy makers who
are interested in influencing antibiotic prescription taking the spatial structure of primary
care provision into account. Stewardship programmes, in particular, have been identified as
useful policy tools targeted to the optimisation of antibiotic prescriptions through the creation
of evidence-based recommendations (Tamma and Cosgrove (2011) and Charani and Holmes
(2013)). The results presented in this paper might be useful in identifying the influence of
spatial dependence on such policies.

First, an analysis of such policies might take into consideration spatial dependence resulting
from the characteristics of local areas and supply side factors related to primary care provision.
Additional efforts on such policies might be targeted in those areas which are more affected by
negative effects of spatial dependence. Second, this paper highlighted a role of information
flows and professional benchmarking influencing prescription behaviour. Policy makers might
increase the effectiveness of interventions such as stewardship programmes by facilitating
the share of prescription best practices from the bottom-up via professional meetings and
prescription benchmarking across practices. Third, this paper highlighted the importance of
spatial dependence arising from nudges, such as receiving a letter from the CMO. Policy makers
might consider providing the appropriate amount of visibility to such interventions to ensure
the effectiveness of such letters on the prescription behaviour of neighbouring practices.

This study is subject to a number of limitations. First, this study does not include co-
payment variables. Co-payments might have a relation to antibiotic provision as they might
influence demand-side factors related to provision, hence they may represent an important
factor related to prescription. Second, the analysis presents several interacting factors, such as
prevalence, quality of local services and provision of primary care services. The interaction
of these variables might lead to identification issues due to omitted variables. Third, this
study does not consider time-varying weights when computing spatial dependence nor does it
consider parametrized weights (for simplicity). It is possible that spatial dependence might have
changed over time, particularly after the introduction of stewardship programmes. The impact
of the introduction of stewardship programmes on spatial weights is beyond the scope of this
paper. Future studies might explore the impact of different weights on the estimated results.
Lastly, this study does not include antibiotic resistance variables, which nonetheless might
be captured from individual practice fixed effects. Including instruments related to antibiotic
provision might shed additional light on the effect of increased resistance of prescription. The
analysis of the effect of resistance on antibiotic provision will require additional research.
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VI. Appendix B

i. Data tables

Table 3.3: Specific Therapeutic Group Age-sex weightings Related Prescribing Units

Agend band (years) Gender - male Gender - female
0-4 0.8 0.8

5-14 0.3 0.4
15-24 0.3 0.6
25-34 0.2 0.6
35-44 0.3 0.6
45-54 0.3 0.6
55-64 0.4 0.7
65-74 0.7 1.0
75+ 1.0 1.3

(a) AIC SLX Model (b) AIC SLX FE Model

Figure 3.2: Akaike Information Criterion (AIC) estimated for different linear combinations of administrative and
geographical weights. Indicated weights refers to the proportion of administrative weights. Left = SLX
model. Right = SLX FE Model.

ii. Additional estimated models
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Table 3.4: Regression results for alternative estimated channels. Dependent variable: (Log) prescribed antibiotics
per 1000 STARPU patients

SLX FE SLXFE SEM FE SAR FE

CCG*Year Interactions

Year 2014 0.003 -0.049 -0.028∗∗∗ -0.056∗∗∗

(0.020) (0.052) (0.004) (0.008)

Year 2015 -0.039∗∗ -0.100. -0.067∗∗∗ -0.080∗∗∗

(0.013) (0.053) (0.002) (0.011)

Year 2016 -0.069∗∗∗ -0.118∗ -0.094∗∗∗ -0.118∗∗∗

(0.017) (0.053) (0.003) (0.016)

Year 2017 -0.130∗∗∗ -0.092. -0.140∗∗∗ -0.244∗∗∗

(0.019) (0.053) (0.003) (0.007)

(Log of) total patients -0.223∗∗∗ -0.226∗∗∗ -0.240∗∗∗ 0.005∗∗∗

(0.008) (0.008) (0.007) (0.001)

Female patients 0.001 0.002 0.004∗∗ 0.004∗∗∗

(0.002) (0.002) (0.001) (0.001)

Over 65 patients 0.002. 0.001 0.004∗∗∗ 0.011∗∗∗

(0.001) (0.001) (0.001) (0.002)

GP density (head counts) 0.013∗∗∗ 0.015∗∗∗ 0.012∗∗∗ 0.011.

(0.002) (0.002) (0.002) (0.000)

Female GPs 0.001∗ 0.001∗∗ 0.001. 0.001∗∗∗

(0.000) (0.000) (0.000) (0.000)

Under 40 GPs 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗

(0.000) (0.000) (0.000) (0.000)

Foreign GPs 0.001. 0.001∗∗ 0.001∗∗ 0.038∗∗∗

(0.000) (0.000) (0.000) (0.002)

Nurse density (head counts) 0.036∗∗∗ 0.034∗∗∗ 0.038∗∗∗ 0.001∗

(0.003) (0.003) (0.002) (0.000)

QOF score 0.001 0.001 0.001∗ 0.016∗∗∗

(0.000) (0.000) (0.000) (0.002)

Prevalence: asthma 0.016∗∗∗ 0.017∗∗∗ 0.016∗∗∗ -0.004∗∗∗

(0.002) (0.002) (0.002) (0.001)

Prevalence: diabetes mellitus -0.005∗∗∗ -0.003∗∗∗ -0.004∗∗∗ 0.001∗∗∗

(0.001) (0.001) (0.001) (0.000)

Good appointment experience 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001
(0.000) (0.000) (0.000) (0.000)

Caring responsibilities 0.001 0.001 0.001 0.001
(0.000) (0.000) (0.000) (0.000)

Unemployed patients 0.001 0.001 0.001 -0.033∗∗

(0.000) (0.000) (0.000) (0.011)

GP contract: APMS -0.047∗∗∗ -0.049∗∗∗ -0.036∗∗∗ -0.012∗∗∗

(0.012) (0.012) (0.011) (0.003)

GP contract: PMS -0.001 0.004 -0.010∗∗ 0.004
(0.004) (0.004) (0.003) (0.011)

GP contract: PCTMS 0.019 -0.028
(0.015) (0.020)

Letters from CMO 0.008∗ 0.004
(0.004) (0.004)

(Log of) total patients W.01 -1.462∗∗∗ -1.453∗∗∗

(0.235) (0.336)

Female patients W.01 0.104∗∗ 0.256∗∗∗

(0.034) (0.074)
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Over 65 patients W.01 0.091∗∗∗ -0.037
(0.025) (0.041)

GP density (head counts) W.01 -0.241∗ -0.225.

(0.095) (0.127)

Female GPs W.01 0.005∗ 0.008∗∗

(0.002) (0.003)

Under 40 GPs W.01 0.002 0.005
(0.002) (0.003)

Foreign GPs W.01 0.001 0.001
(0.001) (0.002)

Nurse density (head counts) W.01 0.170 0.412∗

(0.125) (0.165)

QOF score W.01 0.001 0.012.

(0.004) (0.006)

Prevalence: asthma W.01 0.010 -0.165.

(0.061) (0.094)

Prevalence: diabetes mellitus W.01 -0.003 0.001
(0.004) (0.004)

Good appointment experience W.01 -0.001 0.003
(0.005) (0.006)

Caring responsibilities W.01 0.011 -0.009
(0.009) (0.011)

Unemployed patients W.01 -0.006 -0.046∗∗

(0.012) (0.015)

GP contract: APMS W.01 3.711∗∗∗ 1.759∗

(0.562) (0.750)

GP contract: PMS W.01 -0.397∗∗∗ -0.468∗∗∗

(0.077) (0.138)

GP contract: PCTMS W.01 -0.878∗∗∗ -1.399∗∗∗

(0.213) (0.346)

Letters from CMO W.01 -0.020 -0.028
(0.042) (0.090)

Constant 4.012. 8.547∗ 8.596∗∗∗ -0.026∗∗∗

(2.195) (4.238) (0.098) (0.004)

ρ - - -0.961∗∗ (0.332) -
λ - - - 0.133 (0.097)

Observations 35,840 35,840 35,840 35,840
R2 0.355 0.390
Adjusted R2 0.192 0.214
F Statistic 27.53∗∗∗ (df = 7207; 28632) 20.159 (df = 883; 27789)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3.5: Regression results. Antibiotics prescriptions vs broad spectrum antibiotics

Dependent variable:
(Log of) prescribed antibiotics per 1000 STARPU patients

All antibiotics Broad spectrum antibiotics
SLX SLX FE SLX SLX FE

Year 2014 0.230∗∗∗ 0.003 0.229∗∗∗ 0.003
(0.029) (0.020) (0.060) (0.038)

Year 2015 −0.052∗∗∗ −0.039∗∗ −0.099∗∗∗ −0.096∗∗

(0.015) (0.018) (0.028) (0.038)

Year 2016 −0.245∗∗∗ −0.069∗∗∗ −0.365∗∗∗ −0.222∗∗∗

(0.024) (0.024) (0.046) (0.050)

Year 2017 −0.121∗∗∗ −0.130∗∗∗ −0.257∗∗∗ −0.368∗∗∗

(0.018) (0.032) (0.034) (0.060)

(Log of) registered patients 0.004 −0.223∗∗∗ 0.051∗∗∗ −0.116∗∗∗

(0.004) (0.034) (0.006) (0.044)

Female patients (%) 0.010∗∗∗ 0.001 0.018∗∗∗ −0.003
(0.001) (0.005) (0.002) (0.008)

Over 65 patients (%) 0.004∗∗∗ 0.002 0.013∗∗∗ 0.010∗∗

(0.0003) (0.003) (0.001) (0.005)

GP density (Head counts) 0.010∗∗ 0.013 0.030∗∗∗ 0.029∗∗

(0.005) (0.009) (0.009) (0.014)

Female GPs (%) −0.0004∗∗∗ −0.0001 −0.001∗∗∗ −0.0004∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001)

Under 40s GPs (%) −0.0004∗∗∗ −0.0003∗∗∗ −0.001∗∗∗ −0.0005∗∗∗

(0.0001) (0.0001) (0.0001) (0.0002)

Foreign GPs (%) 0.001∗∗∗ 0.0001 0.0002∗ 0.0001
(0.00005) (0.0001) (0.0001) (0.0001)

Nurse density (head counts) 0.066∗∗∗ 0.036∗∗∗ 0.043∗∗∗ 0.027∗

(0.007) (0.011) (0.010) (0.015)

QOF points (%) −0.002∗∗∗ −0.0002 −0.002∗∗∗ −0.001
(0.0003) (0.0003) (0.0004) (0.0005)

Prevalence: asthma 0.039∗∗∗ 0.016∗∗∗ 0.039∗∗∗ 0.013∗

(0.002) (0.004) (0.003) (0.007)

Prevalence: diabetes mellitus 0.012∗∗∗ −0.005∗∗∗ 0.002 −0.007∗∗∗

(0.001) (0.001) (0.002) (0.002)

Good appointment experience(%) −0.001∗∗∗ 0.001∗∗∗ −0.002∗∗∗ 0.0005
(0.0002) (0.0002) (0.0002) (0.0003)

Patients with caring responsibilities (%) 0.004∗∗∗ −0.0001 0.006∗∗∗ −0.0003
(0.0003) (0.0002) (0.001) (0.0004)

Unemployed patients (%) 0.003∗∗∗ 0.0002 0.003∗∗∗ 0.001
(0.0004) (0.0003) (0.001) (0.001)

GP contract: APMS 0.068∗∗∗ −0.047 0.076∗∗∗ −0.091
(0.018) (0.038) (0.021) (0.056)

GP contract: PMS 0.007∗∗ −0.001 0.010∗ −0.019
(0.003) (0.005) (0.006) (0.012)

GP contract: PCTMS −0.069∗∗ 0.019 −0.005 0.081∗

(0.034) (0.027) (0.057) (0.043)

Letters from CMO 0.281∗∗∗ 0.008∗∗ 0.348∗∗∗ −0.007
(0.006) (0.004) (0.013) (0.008)

(Log of) registered patients W0.1 0.037 −1.462∗∗∗ 0.090 −2.280∗∗∗

(0.076) (0.487) (0.145) (0.758)

Female patients (%) W0.1 −0.026 0.104∗∗ −0.161∗∗∗ 0.075
(0.017) (0.047) (0.032) (0.090)
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Table 3.5: Regression results. Antibiotics prescriptions vs broad spectrum antibiotics

Over 65 patients (%) W0.1 −0.021∗∗ 0.091∗∗∗ −0.128∗∗∗ 0.101
(0.008) (0.034) (0.017) (0.075)

GP density (head counts) W0.1 −1.249∗∗∗ −0.241∗∗ −0.598∗∗ −1.019∗∗∗

(0.129) (0.116) (0.244) (0.271)

Female GPs (%) W0.1 0.006∗∗∗ 0.005∗ 0.029∗∗∗ 0.015∗∗∗

(0.002) (0.003) (0.004) (0.006)

Under 40 GPs (%) W0.1 −0.002 0.002 −0.057∗∗∗ 0.013∗

(0.003) (0.004) (0.006) (0.007)

Foreign GPs (%) W0.1 0.009∗∗∗ 0.001 0.008∗∗∗ 0.001
(0.001) (0.001) (0.002) (0.002)

Nurse density (%) W0.1 1.282∗∗∗ 0.170 0.500 0.681∗∗

(0.173) (0.204) (0.328) (0.336)

QOF points (%) W0.1 −0.005 0.001 0.073∗∗∗ 0.019
(0.004) (0.006) (0.008) (0.012)

Prevalence: asthma W0.1 0.212∗∗∗ 0.010 −0.232∗∗∗ −0.264
(0.033) (0.078) (0.061) (0.169)

Prevalence: diabetes mellitus W0.1 −0.042∗∗∗ −0.003 −0.067∗∗∗ 0.001
(0.007) (0.004) (0.013) (0.007)

Good appointment (%) W0.1 0.004 −0.001 0.046∗∗∗ −0.031∗∗

(0.004) (0.007) (0.008) (0.013)

Caring responsibilities (%) W0.1 0.033∗∗∗ 0.011 0.117∗∗∗ −0.00002
(0.011) (0.011) (0.022) (0.021)

Unemployed patients (%) W0.1 −0.062∗∗∗ −0.006 −0.173∗∗∗ 0.035
(0.011) (0.015) (0.021) (0.031)

GP contract: APMS W0.1 5.827∗∗∗ 3.711∗∗∗ 6.284∗∗∗ 8.532∗∗∗

(0.447) (1.250) (0.511) (1.870)

GP contract: PMS W0.1 −0.327∗∗∗ −0.397∗∗∗ −0.579∗∗∗ −0.118
(0.065) (0.100) (0.129) (0.234)

GP contract: PCTMS W0.1 0.650∗ −0.877∗∗ 1.422∗∗ −1.860∗∗∗

(0.383) (0.364) (0.692) (0.597)

Letters from CMO W0.1 −0.563∗∗∗ −0.020 −0.497∗∗∗ 0.176∗∗

(0.073) (0.040) (0.139) (0.079)

Constant 6.286∗∗∗ 3.127∗∗∗

(0.071) (0.109)

Observations 35,840 35,840 35,838 35,838
R2 0.321 0.355 0.208 0.369
Adjusted R2 0.321 0.192 0.207 0.210
F Statistic 424∗∗∗ 393∗∗∗ 234∗∗∗ 418∗∗∗

F Statistic df = 40; 35799) (df = 40; 28632) (df = 40; 35797) (df = 40; 28630)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3.6: Regression results: comparison of STARPU Items and percentage of antibiotics over all STARPU
prescribed items.

Dependent variable: (Log of) prescribed items per 1000 STARPU patients (left)
Percentage of prescribed antibiotic items (logs) over total prescribed items (logs) per 1000 STARPU patients (right)

SLX FE SLX FE

(1) (2)

Year 2014 0.003 −0.003∗∗

(0.020) (0.001)

Year 2015 −0.039∗∗ −0.006∗∗∗

(0.018) (0.001)

Year 2016 −0.069∗∗∗ −0.010∗∗∗

(0.024) (0.002)

Year 2017 −0.130∗∗∗ −0.016∗∗∗

(0.032) (0.002)

(Log of) registered patients −0.223∗∗∗ −0.007∗∗∗

(0.034) (0.002)

Female patients (%) 0.001 0.0003
(0.005) (0.0003)

Over 65 patients (%) 0.002 −0.001∗∗∗

(0.003) (0.0002)

GP density (Head counts) 0.013 0.001
(0.009) (0.001)

Female GPs (%) −0.0001 −0.00000
(0.0001) (0.00001)

Under 40s GPs (%) −0.0003∗∗∗ −0.00001∗∗

(0.0001) (0.00001)

Foreign GPs (%) 0.0001 0.00001
(0.0001) (0.00000)

Nurse density (head counts) 0.036∗∗∗ 0.0004
(0.011) (0.001)

QOF points (%) −0.0002 −0.00000
(0.0003) (0.00002)

Prevalence: asthma 0.016∗∗∗ 0.001∗∗∗

(0.004) (0.0002)

Prevalence: diabetes mellitus −0.005∗∗∗ −0.001∗∗∗

(0.001) (0.0001)

Good appointment experience(%) 0.001∗∗∗ 0.0001∗∗∗

(0.0002) (0.00001)

Patients with caring responsibilities (%) −0.0001 −0.00001
(0.0002) (0.00001)

Unemployed patients (%) 0.0002 0.00003
(0.0003) (0.00003)

GP contract: APMS −0.047 −0.002
(0.038) (0.002)

GP contract: PMS −0.001 −0.001
(0.005) (0.0004)

GP contract: PCTMS 0.019 0.002
(0.027) (0.003)

Letters from CMO 0.008∗∗ 0.0002
(0.004) (0.0003)

(Log of) registered patients W0.1 −1.462∗∗∗ −0.162∗∗∗

(0.487) (0.038)

Female patients (%) W0.1 0.104∗∗ 0.011∗∗∗
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Table 3.6: Regression results: comparison of STARPU Items and percentage of antibiotics over all STARPU
prescribed items.

(0.047) (0.004)

Over 65 patients (%) W0.1 0.091∗∗∗ 0.008∗∗∗

(0.034) (0.003)

GP density (head counts) W0.1 −0.241∗∗ −0.026∗∗∗

(0.116) (0.009)

Female GPs (%) W0.1 0.005∗ 0.001∗∗∗

(0.003) (0.0002)

Under 40 GPs (%) W0.1 0.002 0.0002
(0.004) (0.0003)

Foreign GPs (%) W0.1 0.001 0.0001∗∗

(0.001) (0.0001)

Nurse density (%) W0.1 0.170 0.011
(0.204) (0.014)

QOF points (%) W0.1 0.001 0.0004
(0.006) (0.0004)

Prevalence: asthma W0.1 0.010 0.002
(0.078) (0.006)

Prevalence: diabetes mellitus W0.1 −0.003 0.0001
(0.004) (0.0003)

Good appointment (%) W0.1 −0.001 −0.0002
(0.007) (0.001)

Caring responsibilities (%) W0.1 0.011 0.0003
(0.011) (0.001)

Unemployed patients (%) W0.1 −0.006 0.001
(0.015) (0.001)

GP contract: APMS W0.1 3.711∗∗∗ 0.327∗∗∗

(1.250) (0.095)

GP contract: PMS W0.1 −0.397∗∗∗ −0.038∗∗∗

(0.100) (0.008)

GP contract: PCTMS W0.1 −0.877∗∗ −0.081∗∗

(0.364) (0.033)

Letters from CMO W0.1 −0.020 −0.0004
(0.040) (0.003)

Observations 35,840 35,840
R2 0.355 0.419
Adjusted R2 0.192 0.273
F Statistic (df = 40; 28632) 393.278∗∗∗ 516.895∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Chapter 4

A Dynamic Approach to
Pharmaceutical Regulation:
Value-based Pricing versus Welfare
Maximisation

I. Introduction

This paper analyses the dynamic effects of price and patent regulation in a market with R&D. We analyse
how market prices influence the trade-off between static and dynamics welfare optimisation, when an
innovating firm is allowed to gain profits from its endogenous R&D activities. We explore the relationship
between price and patent length, when the latter is allowed to vary. Lastly, we explore different policy
schemes, including a Value-Based Pricing scenario (VBP) in which price is set as a fixed proportion of
expected health benefits of the produced drugs.1 2

Pharmaceuticals is a highly regulated market (Handoo et al., 2012). While the development of new
drugs has provided high benefits for consumers in improving treatment and prevention of specific con-
ditions (Weisfeldt and Zieman, 2007) and produced overall positive social benefits (Garthwaite (2012),
Thanh et al. (2012), Lichtenberg (2007), Murphy and Topel (2006)), pharmaceutical prices have been rising
steadily in several healthcare systems (Cameron et al. (2015), Cameron et al. (2015), Carone et al. (2012)).
The steady increase in pharmaceutical costs raised the question of price containment to ensure drugs
sustainability for healthcare systems (Zaprutko et al., 2017). At the same time, some authors indicated
the need for a certain degree of market power by innovating firms to allow for the development of new
drugs (Grabowski and Vernon, 1992). The achieved market power arising from patents and intellectual
property rights, while allowing for innovation, might induce a certain degree of rent-seeking behaviour,
where firms provide an innovation rate disproportionally low compared to the realised profits (Scherer,
2010). Balancing the need for innovation in pharmaceuticals, which leads to improved health outcomes for
patients, with the potential for rent-seeking risks might be challenging in a market prone to moral hazard.

The regulation of pharmaceutical markets aims at maximising social welfare, in this paper we take
into consideration two approaches to efficiency: static and dynamic. Static efficiency maximises social
welfare in the current period. Dynamic efficiency, on the contrary, ensures that the optimal degree of
innovation is achieved inter-temporally to maximise social welfare. Analysing the trade-off between static
and dynamic efficiency is key when considering a market in which the regulator aims to optimise welfare,
while at the same time requiring for innovation.

1This paper is a joint work with Prof. Alistair McGuire (LSE), Mireia Jofre-Bonet (City, University of London), and
Sabine Grimm (Maastricht University Medical Centre).

2I am grateful to Shira Fano from Fondazione Nord Est for her useful comments on this chapter.
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The study of the inter-play between the alternative goals of welfare maximisation and innovation
originated with the analysis of patent protection, which dates back to the seminal work by Arrow (1962).
The theory of patent protection analyses how the correct patent can be achieved, allowing innovators to
be endowed with intellectual property rights, while at the same time avoiding the risks of dead-weight
losses arising from monopolies (see Nordhaus (1969) and Scherer (1972) for an early formalisation of
these concepts). Scherer (1972) later identified this optimal patent length to be finite and positive. Further
contributions on the topic of patent protection were provided by Tirole (2002), who indicated that the
definition of optimal R&D efforts were difficult to estimate in a setting with uncertain investment returns.
The author, however, clearly indicated that the welfare effects of innovation depended on the degree of
patent protection, with low patent protection leading to reduced R&D efforts, and viceversa.

The empirical literature on pharmaceutical markets appears to have identified a degree of overprotec-
tion when it comes from patent length. For example, Arora et al. (2008) found a 10% patent premium
in pharmaceutical products compared to other patent protected markets. Alternative studies exploring
the implications of patents on influencing the static versus dynamic trade-off identified that a no-patent
scenario would increase immediate consumer surplus, while reducing the surplus of future consumers by
three times (Hughes, Moore and Snyder). Similarly, Horowitz and Lai (1996) identified that the degree of
patent protection that would optimise the amount of innovation exceeded the degree of patent protection
required to optimise surplus. These studies thus highlight the need for the social planner to strike the
right balance between innovation and welfare.

An alternative strand of empirical literature analysed how price regulation might negatively affect
pricing of generics, influencing time to market and reducing patent protection (Danzon et al. (2000),
Danzon et al. (2005), Kyle (2007)). While these studies provide useful indications on the implications of
price regulation in pharmaceuticals, they provide no welfare considerations, nor conceptual frameworks
for the analysis of such effects. When looking at the drivers of R&D decisions of innovating firms, Civan
and Maloney (2007) identify that innovation is positively linked to the price of existing drugs treating
similar conditions. Similarly, Dubois et al. (2015) found that elasticity of innovation positively depended
on expected market size of the new drug. These studies thus show that price regulation might thus
influence innovation dynamics.

There exists a small theoretical literature analysing optimal pricing under reference pricing, one
of the most diffused price regulations of pharmaceuticals (see Merino (2000), Brekke (2007), Miraldo
(2010) and Ghislandi (2011)). The key contribution of these studies stands in the understanding of the
endogenous nature of reference pricing. Generally speaking, all of these models identify a reduction in
consumer surplus following the introduction of price regulation. These studies thus identify the potential
distortionary effects of price regulation (although patent length plays no role).

When analysing market innovation, it is important to identify the factors leading to the creation of
new drugs. The small number of theoretical studies analysing pharmaceutical innovation propose a
positive relationship between R&D investments and the development of new drugs (Camejo et al. (2011),
Bardey et al. (2010) and Isaac and Reynolds (1988)). Investments are, in turn, influenced by expected
revenues of new drugs, market uncertainty, revenue appropriability, market size, the degree of competition,
demographic factors and intellectual property protection. The regulatory environment is generally found
to have a negative impact on innovation. From an empirical perspective Grabowski and Vernon (1992),
and later Vernon (2005), found that expected returns and firm’s cashflows were important determinants of
investments. Dubois et al. (2015) and Acemoglu and Linn (2004) identify a similar positive effect given by
market size. Giaccotto et al. (2005) identifies that a 10% increase in pharmaceutical prices results in a 6%
increase in R&D investment, thus highlighting an important relationship between price and investments.
In line with this strand of literature, we find that price regulation in the pharmaceutical market might
affect the amount of R&D investments and innovation via the impact on expected revenues and internal
finance. Distortionary effects could potentially be offset by patent protection. The interplay between price
and patent regulation has received little attention in the literature, thus the analysis of the endogenous
dynamics of innovation stresses the need to explore this relationship more in detail.
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All major European markets present a high degree of regulation (Panteli et al., 2016), with the majority
of those markets being regulated via reimbursement schemes. Under this regulation product reimburse-
ment affects innovative value, where the latter is determined by clinical evidence and the comparison of
competing therapies (Bridges et al. (2009), Mossialos and Oliver (2005)). Alternatives based on value-based
pricing, where pharmaceutical prices are based on drug’s expected health benefits, have been proposed,
however they have not been analysed in detail (Office of Health Economics (2007), Moise and Docteur
(2007)). As stated by Claxton (2007), VBP might emphasize static welfare in order to compensate for firms’
market power arising from patented pharmaceuticals. Although VBP aims at incentivising research in
areas with high disease prevalence, the implementation of this policy might risk reducing welfare due to
the long time between research and market entry of new drugs (McGuire et al., 2008). This may result in
VBP jeopardising current welfare and reducing welfare outcomes in the long run. Determining welfare
implications of VBP forms part of the motivation of this study.

Despite few efforts looking at the impact of VBP on demand elasticity (Yeung et al., 2018), to our
knowledge, very little attention has been devoted to the analysis of the aforementioned topics. This paper
aims at filling this gap by providing a dynamic two period model with R&D. Our analysis contributes
to the literature by first identifying a trade-off between static and dynamic efficiency. We then provide
an indication of the impact of price and patent regulation on overall welfare. We then show that VBP
influences the market by altering price’s impact on welfare. Our paper allows for an extension of the
baseline model by comparing the results of welfare maximisation with an alternative framework where
firm’s profits are maximised. Our paper also provides some numerical illustrations based on realistic
coefficients identified from the empirical literature.

This paper is organised as follows. Section 2 provides a brief literature review. Section 3 introduces
the baseline model. Section 4 solves the model with a static and dynamic approach. Section 5 explores
the trade-off between price and patent-length in terms of welfare. Section 6 introduces explores the
implications of the introduction of a VBP regulation. Section 7 provides some modelling extensions.
Section 8 reports numerical simulations. Section 9 concludes.

II. Literature review

Scherer (2010) provides an in-depth analysis of the empirical aspects of pharmaceutical innovation. In his
review, the authors cites the work by DiMasi et al. (1991) and DiMasi et al. (2003) which identified an
overall survival rate of new drugs (around 21%), with an indication of R&D costs being higher towards
latter stages of drug development. The author also identified a link between gross margins and R&D
investments, both presenting periodic fluctuations. Danzon et al. (2006) identified variation in success
probabilities across therapeutic classes, with negative correlation with mean sales by category (consistently
with dynamic competitive entry). DiMasi (2000) identifies a reduction in concentration of innovation in
the pharmaceutical industry, with increased turnover in top producers and idiosyncratic differences in
firm’s innovation productivity. The importance of firm’s characteristics was later confirmed by Kyle (2006).
Cockburn (2006) identified a reduction in overall productivity of new drugs in the early 2000s, providing
evidence of firms avoiding late stages of drug development on purely economic reasons. Highlighting
the fragility of innovation in pharmaceutical markets, DiMasi and Paquette (2002) found a decrease in
the time in which innovators enjoy the results of breakthroughs in new drug categories, following the
diffusion of "me-too" drugs and suggesting a reduction in entry barriers. These specific types of drugs
occur in those cases where an innovator develops a compound which is similar to existing ones to avoid
huge research costs (Garattini, 1997). A similar increase in "addition to class" or "me too" drugs in the
period 1987-2011 was found also by Lanthier et al. (2013). Harfhoff and Scherer (2000) showed that the
distribution of the industry’s portfolio is insufficiently diverse to eliminate significant variation in profits.

The earlier analyses on patent protection date back to the seminal work by Arrow (1962). Nordhaus
(1969) then developed the idea further, explicitly modelling the trade-off between static and dynamic
welfare, indicating that patent protection required a balance between social gains arising from innovation
and cost reduction. In his analysis, the author identified an ambiguous effect of patent duration on welfare.
Further work was developed by Nordhaus (1972) who extended the analysis to allow patent breadth in
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influencing welfare results. With the introduction of patent breadth, the analysis was enriched by the
degree to which innovation revenues can be appropriated by the innovator. The theory proposed by
Nordhaus (1969) was later developed by Scherer (1972) who introduced an invention possibility function
which linked innovation probability to R&D intensity. Under the new framework, welfare gains and losses
due to variations in patent duration depended on price elasticity of demand, thus highlighting the link
between price and patent.

Billette de Villemeur et al. (2019) develop a dynamic model of innovation with uncertainty, identifying
that patents should be restrictive enough to provide sufficient incentive for innovation, however allowing
for dynamic competition among innovators. Van Cayseele (1989) provides dynamic efficiency consider-
ations introducing an analytical framework for optimal institutional arrangements for pharmaceutical
patents. Frank and Salkever (1992) identify only limited variation in pharmaceutical prices following
patent expiry. On the theoretical side, early works date back to the input by Dorfman and Steiner (1954),
which indicates that profit maximising R&D investments should be increasing with price cost-margins
(see Scherer (2010) for a simple explanation). More recent theories appeared to agree on the presence of
rent-seeking behaviour, that is firms investing competitively in R&D to ensure monopoly gains. Early con-
tributions on firm’s rent-seeking behaviour date back to Krueger (1974). Boldrin and Levine (2013) argue
against the need for patent, suggesting that patents lead to rent-seeking and sub-optimal innovation. The
literature on innovation also looked at the optimal timing of innovation, with early studies highlighting
the possibility of innovations being introduced prematurely in the market, when the latter were based on
public knowledge (Barzel, 1968).

Puig-Junoy (2010) provides a detailed review of price regulation pharmaceuticals, identifying a lev-
elling off of generic prices arising with price regulation. While tighter regulatory environments led to
lower inflation in EU, the same regulatory environment appeared to have induced to a reduction in the
number of new drugs developed in the same market (Golec and Vernon, 2010). Grabowski et al. (2017)
identified that new regulatory environments might induce behavioural changes, with increased patent
litigation from generic firms, following reduced branding periods. Cockburn et al. (2016) identify that
patent and price protection affect the timing in which new drugs enter the market, with price regulation
increasing the length of entrance of new drugs, and patent regulation reducing it. Jobjörnsson et al. (2016)
find a non-monotonic relationship between willingness to pay and optimal pricing under reimbursement
schemes. Using evidence from a natural experiment, Brekke et al. (2011) found a negative impact of
reference pricing on the pricing of both branded and generic pharmaceuticals. Addressing the issue
from a theoretical perspective, Brekke et al. (2016) found that reference pricing induces branded-name
producers to price more aggressively, discouraging generic entry. Danzon et al. (2000b) found that strict
price regulation tends to reduce prices for older and diffused molecules. Ekelund and Persson (2006)
found a negative relation between price regulation and competition among branded drugs.

Value-Based Pricing (VBP) aims to achieve a balance between static and dynamic efficiency (Danzon,
2018). Sussex et al. (2010) show that VBP, when not intended as a simple function of realised Quality-
Adjusted Life Years (QALY), requires to be considered as a multi-criteria assessment, including subjective
considerations. Similarly, Garner et al. (2018) suggests that there is no clear definition of value associated
to drugs. Pauly (2017) shows that there is not ordinarily a single VBP, but rather a schedule of different
prices associated with varying volumes of buyers at each price. Levaggi (2014), while confirming that
price regulation has distortionary effects on the market, identifies that value-based pricing is a preferable
option compared to price bargaining when it comes to welfare maximisation.

III. The model

In this paper, we present a highly stylized welfare function associated to pharmaceutical innovation. Our
benchmark model includes the determinants of innovation, R&D intensity and generic entry. We first
provide the results for optimal prices with fixed patent length. We then introduce comparative static
exercises to explore the trade-off in terms of welfare between applying a dynamic approach and applying
a static one. Subsequently, we provide comparative static results when patent length is allowed to vary.
We also introduce a number of policy considerations, including a model to explore the impact of VBP on
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market dynamics. Lastly, we propose a number of model extensions.

i. The baseline model

We introduce a model whose social welfare baseline function is the result of the sum of the producer
surplus (PS) generated by an innovating firm and the associated consumer surplus (CS) resulting from the
drugs introduced in the market. Our model includes a social planner ( interested in maximising social
welfare), an innovating firm, a set of consumers consuming drugs, and a competitive fringe. The baseline
model we propose is composed of two periods. In each period, an individual drug is launched. We use the
index i to indicate individual drugs, hence i = 1, 2. To focus on the impact of price and patent regulation
on R&D dynamics, we assume that each drug has a commercial life-span of T > 0. Each drug has a
fixed launch date τi. For simplicity we assume that the first drug is available at the beginning of time,
hence τ1 = 0. For the moment we assume a fixed patented length s > 0, which is equal for each drug.
We incorporate the uncertainty surrounding R&D by including the term ρi, indicating the probability of
successful innovation. For simplicity we assume that drug 1 is already available on the market at the start.
We assume R&D costs to be a fixed amount R1. This is in line with Camejo et al. (2011) who indicate that
R&D costs are paid in the early stages of drug development. We assume fixed marginal costs mci for each
product i. Each drug has a patented period followed by an out-of-patent period. We use the suffix g to
indicate the non-patented sub-period, while we use no suffix to indicate the patented period. During the
patented period all consumers use the branded version of the drug. During the patented period the firm
sells quantity Qm

i at a price pi. After the patent expires generic entry occurs straight away (Hughes (Moore
and Snyder)). Competition is represented by a competitive fringe entering the market.3. The competitive
fringe has supply function equal to Q f

i , with Q f
i being twice differentiable and increasing in price. After

patent expiration, the original firm is left with a fraction of the demand, defined as QD
i = QM

i −Q f
i . In

the baseline model, all the indicated parameters are assumed to be constant over time. For simplicity
we assume a linear demand function of the form pm

i = am
i − bm

i Qm
i . We assume Qm

i and Qd
i to be twice

differentiable and decreasing with price. We assume Q f
i to be twice differentiable and increasing with

price. More specifically, we assume q f
i = a f

i + b f
i pi The generic expression of CS and PS for a generic

product i = 1, 2, ..., can thus be defined as

CS(pi, s) =
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(4.1)

Similarly, PS for any drug i becomes

PS(pi, s) =
∫ s
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i dt +

∫ T
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+
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(4.2)

The social welfare associated to a drug over its lifetime can thus be written as:

W(pi, s) =
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(4.3)

We present a version of the model with two products i = 1, 2 launched at different times whereas the
R&D of product 2 depends on the profits made from the commercialisation of product 1. We assume that
product 2 is launched at a time t = τ, which we assume to be fixed. The launch occurs with a probability
ρ2 > 0 which is a function of R&D investments which are a fraction of the firm’s period 1 profits. We also
introduce a generic expression of R&D costs R > 0. The social welfare in a two period model is thus given
by the social welfare from drug one plus the expected welfare from drug 2.

3Our model of competitive fringe is based on the model proposed by Church and Ware (2000) A graphical intuition
of this model in a generic case is provided in Figure 4.3 in the appendix
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The social welfare thus becomes

W(p1, p2, s) =
∫ s
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(4.4)

We model innovation using an Innovation Probability Function (IPF). Our IPF incorporates 2 factors:
R&D intensity, and the innovation production function. According to Grabowski and Vernon (1992) and
Vernon (2005) firm’s R&D decisions depend on the cash flow by profits or products currently in the
market, and on the expected return to R&D obtained through future profits. We thus assume that R&D
costs, R2, to be a fraction m of the revenues generated in the previous patented period, with 0 < m < 1.4

Hence we define
∫ s

0 ump1qm
1 dt, which simplifies to 1

r ump1qm
1 (1− ers). The literature on R&D expenditures

and its relationship to innovation is limited. One strand of literature focused on a "low hanging fruit"
scenario. Jensen (1987) found a correlation between R&D expenditures and the probability of drug
discovery and that probability decreased over the examined time. Later studies have confirmed this
(Pammolli et al., 2011). Everson (2003) stated that opportunities of drug discovery might be finite with
easy targets exhausted first. This would lead to increasing efforts required to achieve a research success.
These hypotheses encourage the use of an IPF with decreasing marginal productivity. As Baily (1972)
noted, the IPF should not depend on R&D expenditure alone but if so, then the function should exhibit
diminishing marginal returns. Further work on the IPF has been done by Arora et al. (2008) who modelled
the number of innovations depending on R&D expenditure employing the elasticity of innovation as a
main factor. A second strand of literature, namely the models analysing the relation between rent seeking
behaviour and innovation, allowed for a deterministic innovation (see for example the work by Boldrin
and Levine (2013)). For ease of analysis we follow this second strand of literature. More specifically, we
assume a fixed cost K for innovation. We assume that the firm pays for this amount using its stream of
profits generated during the patented part of period 1. We assume that prior to reaching this amount
innovation might occur with a given probability. Upon reaching this amount, the innovation is certain5.
We assume that the firm invests a fraction m of its profits into R&D activities, with 0 < m < 1.

h(ps
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ρ2
K

(4.5)

The IPF simplifies to
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1
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K
(4.6)

where u is a scaling parameter. The expression of the social welfare with the two drugs model thus
becomes.6
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(4.7)
where we assume that mci ≤ pi(1− um), so as to ensure that R&D costs are always lower than net profits.

4At this stage the fraction m of profits invested in R&D is assumed to be fixed. We will relax this assumption later
on in the analysis.

5Note that reaching the amount K might induce strategic behaviour concerning the timing of the introduction of
new drugs. For the moment we assume no strategic delay.

6Notice that as um ≤ 1, we have that R&D costs are always lower or equal to the firm’s profits.
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IV. Results with fixed patent length

We now solve the two-period welfare maximisation problem defined in equation 4.7, assuming a fixed
patent length s. We first identify the optimal prices. We then explore the static versus dynamic trade-off.

The comparative static results presented in the following pages aim to provide intuitions of the
dependency of social welfare and prices on model parameters. As the expressions provided in this
framework could not be solved analytically, illustrations of model solutions are provided via numerical
simulations.

i. Optimal prices with fixed patent length

With a fixed patent length s, the prices maximising welfare is set by the social planner are:

p∗1 = umK
rK+um(W2−K) [(
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(4.8)

Proof : provided in the appendix.

Discussion: with the exception of the patented period of period 1, a welfare maximising social planner
will always select prices that minimize the dead-weight loss arising from the firm’s market power. The
social planner will allow some market power for the firm in period 1 in order to allow for R&D activities.
In this case prices during the patented part of period 1 will positively depend on marginal costs and the
prices in period 2.

ii. Welfare and price

We now explore the impact of varying prices on consumer surplus, producer surplus and social welfare.

Starting from the generic expression of consumer surplus, an increase of the during-patent price of
product 1 will directly affect CS in period 1 and producer surplus in period 1 associated to that product.
The revenues during the patented life of product 1 will be higher and this will have a positive impact on
the level of R&D invested in the development of a second period product and the probability that this
investment is successful. All other components in the welfare function will not be affected by an increase
in the first product price. We can therefore write

∂CS
∂p1

= ∂CS1
∂p1 +

∂ρ2
∂p1

CS2
∂PS
∂p1

= ∂PS1
∂p1

+
∂ρ2
∂p1

PS2 − R2
∂p1

(4.9)

Thus, ∂W
∂p1

> 0 iff | ∂CS1
∂p1
− ∂R2

∂p1
| < ∂PS1

∂p1
+

∂ρ2
∂p1

(CS2 + PS2) (a proof is provided in the appendix).

This expression tells us that welfare increases with price of product 1 only if the first period loss in
terms of CS minus the loss in R&D (R2) is smaller than the gain from increase in both periods PS plus the
increase in the future product. R&D investment thus has an ambiguous effect on welfare: the larger R&D
is, the smaller becomes the producer surplus, due to the increased R&D costs in period 1, and the larger
becomes the future welfare due its impact on the innovation probability.

Given the specifications provided to social welfare, we have that the net effect of a patented period 1
price increase in social welfare is higher than zero provided that price is lower than a threshold price p∗1 ,
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indicated in expression 4.8.

A graphical intuition of this result is provided in the appendix.

Proof: provided in the appendix.

V. Results with varying patent length

We now consider the dynamics of model 4.7, when patent length s is allowed to vary.

i. Optimal patent length

The optimal patent length is the
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The expression of optimal patent length s∗ is analytically complex.7 An analysis of the optimal patent

length is provided in the numerical simulation section.

ii. Impact on welfare from varying patent length

We explore the impact of a varying patent length on consumer surplus, producer surplus and social welfare.

The impact of a variation in patent length is defined by

∂CS
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(4.11)

An extension of patent length s will directly affect CS and PS in both periods by extending the
duration of the firm’s monopoly. An extension of the firm’s market power will impact R&D investments,
as additional funds will be available, thus influencing the innovation probability.
The extension of the period will alter the consumer and producer surplus in the second period by altering
the composition of the competitive and non-competitive portion of total drug’s lifetime.

The expression of a variation of patent length on social welfare stems from solving:
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This expression gives the following intuition: the impact of varying patent length on social welfare
is given by the variation in welfare in period one, which is altered due to the varying lengths of the
patented and non-patented sub period, plus the variation in the innovation probability arising from the
extended flux of patented profits, plus the variation in the expected welfare in period 2 arising from
different patented sub-periods, minus the increased R&D investments.

The effect of a variation of patent length s on welfare W is positive provided that | ∂W1
∂s −

∂R2
∂s | <

| ∂ρ2
∂s W2 + ρ2

∂W2
∂s |. This means that, in order for a variation in patent length s to have a positive effect on

7A description of the optimal patent length s∗ is provided in the appendix.
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social welfare over the two periods, the impact of the variation of patent length on welfare in period one mi-
nus the variation in the in R&D to develop the second drug must be less than the total effect of lengthening
the patent time on the second period’s welfare via the indirect effect of the patent length on the prob-
ability of successful innovation (rho 2) and the direct effect on the W2. A proof is provided in the appendix.

iii. Impact of varying patent length on prices

We now consider the impact that varying the patent length has on the welfare maximising price p∗1
indicated in equation 4.8.

The price of product one during the patent, p1, and patent length s are intrinsically related. A variation
in patent length will imply a variation in the price maximising welfare.

The relation between optimal patent price in period 1 and welfare maximising patent length is provided
by:
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Proof: provided in the appendix.

The expression above indicates that the effect of patent length on the optimal period one patent price
will necessarily depend on the trade off between extending the period in which the innovative firms can
charge higher price in period one and thus invest more on R&D for a second product and the reduction of
the consumer surplus that having to pay a higher price for longer will entail.

In the given settings, the relationship between price p1 and patent length s is not immediately intuitive
and it cannot be solved analytically.

VI. Policy extensions

We now provide a number of policy extensions to the baseline model 4.7. The objective of this section is to
identify how our results with alternative policy goals. In particular, we consider the case of firm’s profit
maximisation vis-a-vis a welfare maximising social planner, and value-based pricing.

Where analytically possible, we will compare the alternative policy options in terms of prices pi, social
welfare Wi and innovation probability hi.

For simplicity, the results provided in the following sections have been obtained setting a fixed patent
length s.

i. Welfare maximisation versus profits maximisation

We now confront the results obtained in equation 4.7 with an alternative framework where the firm is
allowed to set prices to maximise profits.

The purpose of this section is to provide a comparative exercise where we confront optimal prices,
welfare and the probability of innovation achieved under welfare maximisation with the ones achieved
under profits maximisation.
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The firm’s profits maximisation problem is defined as:
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The set of prices maximising profits is defined as
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where A = e−rτ [(p2 −mc2)qm
2 (1− e−rs) + λ(pg

2 −mc2)(qm
2 − q f

2)(e
−rs − e−rT)].

Comparing the welfare and profit maximising prices, we can obtain the following proposition.

Proposition 1 provided that sales independent of price, am
1 , are high enough, patented prices are

higher under profit optimisation, than under welfare optimisation. Social welfare is lower under profit
optimisation, but the probability of innovation is higher.

Proof: provided in the appendix.

Discussion: provided a high enough potential demand independent of prices, represented by the
parameter am

1 , compared to inter-temporal profits maximisation, the inter-temporal maximisation of social
welfare comes at a cost of reduced investments in R&D activities.

Policy makers who are interested in optimising social welfare might thus be aware that achieving
optimal welfare might imply a sub-optimal probability of innovation.

ii. Value-based pricing

We now explore the results of model 4.7 when Value Based Pricing (VBP) is applied. In this case price is
set to pi = zhi, where hi are the expected heath benefits associated to drug 1, and z is the fixed proportion
of the health benefit that the regulator is willing to pay to the producer.

Notice that when the firm makes investments decisions, it makes decisions based on the expected
benefits of the drug. There may be an expectation of this benefit when the drug is submitted for approval
(based on clinical trials or other), but in a practical application, h1 could be updated as new data appears.

Under VBP social welfare becomes

W(zh1, zh2, s) = [ 1
2 (aM

1 + zE(h1))−mc1]qM
1 (1− e−rs)

+[ 1
2 [(

b f
1 aM

1 +bm
1 a f

1

bm
1 +b f

1

) + zE(h1)]−mc1]qm
1 (e
−rs − e−rT) + [ 1

2 (am
1 − a f

1) + mc1 − pg
1 ]q

f
1(e
−rs − e−rT)]

+
umzE(h1)qm

1 (1−e−rs)
rK e−rτ

[
[ 1

2 (aM
2 + zE(h2))−mc2]qM

2 (1− e−rs) + [ 1
2 [(

b f
2 aM

2 +bm
2 a f

2

bm
2 +b f

2

) + zE(h2)]−mc2]qm
2 (e
−rs − e−rT)

+[ 1
2 (am

2 − a f
2) + mc2 − pg

2 ]q
f
2(e
−rs − e−rT)

]
− 1

r umzE(h1)qm
1 (1− e−rs)

(4.16)
Defining the optimal proportion z resulting from equation 4.16 is analytically complex. An expression

of the resulting First Order Conditions is reported in the appendix. The exact value of optimal fraction z
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of realised health benefits hi will be identified by numerical simulation.

We define the impact of a variation of the share z on CS, PS and Welfare. The impact of a variation of
z on CS and PS is defined as
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From which, the derivative of social welfare with respect to z can be written as
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This expression illustrates the impact of a variation in the fixed proportion z of expected health benefits
on social welfare. This expression indicates that by setting price to a fixed fraction of health gains, the
consequences on welfare are complex. In this case, in fact, social welfare is influenced by the impact of
price variation on R&D costs, on its impact on the innovation probability times period two welfare, and
on the expected welfare in individual periods, which, under VBP, is given by the effect of price variation
of the branded drug even after patent expiry. Social planners, therefore, when value-based pricing is
introduced, need to consider the impact of a price variation on welfare during the whole life-time of the
branded product, even after patent expiration.

VII. Numerical simulation

We now provide a numerical simulation of the results provided in model 4.7. The purpose of our simula-
tion is two-fold. First we identify the optimal prices and patent length in a simple case. We then simulate
varying degrees of z on social welfare under value-based pricing. Simulating these two results allow us to
shed light on the optimal patent length and the optimal value of z, which are both analytically ambiguous.

i. Model calibration

For simplicity, we assume that the two drugs have the same price, that is p1 = p2 and equal health benefits,
h1 = h2.

ii. Parameter values

To populate our model, we use plausible parameters extracted from the existing literature.

Probability of success, ρ1 = 1: As product 1 already exists, we set the probability of successful R&D
of product 1 to 1. No value is fixed for ρ2 as it is defined by the IPF.

Discount rate, r = 0.035: The discount rate is 3.5%. For comparison purposes, the discount rate chosen
is 3.5% as this is used for both costs and benefits in NICE guidance (2008).

Total useful product life, T = 30: The average life time of any product is 30 years, orientated at 25
years estimated by Hughes (Moore and Snyder).

Launch time of product 2, τ = 10: The assumed time of launch of product 2 if successful is 10 years
after launch of product 1.

Health benefit, h2 = h1 = 30,000: The health benefit of both products i = 1,2 expressed in monetary
value is GBP 30,000. We assumed the health benefit to be 1 QALY. The literature on assigning a monetary
value to a QALY is relatively sparse and issues such as the margin at which QALYs are bought rarely
taken into account. Different approaches include using the existing WTP-based ‘value of preventing a
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statistical fatality’ (Mason et al., 2009). Their results indicate a value range of approximately GBP 24,000
to GBP 70,000 per QALY. Other approaches found were direct valuation (cf. Gyrd-Hansen (2003)), and
the use of statistical value of a life (cf. Murphy and Topel (2006)) and different approaches might yield
different results. We therefore test two other values of health benefit, hi = 10,000 and hi = 50,000.

Marginal cost, mci = 4,000: The marginal cost per unit is assumed to be GBP 4,000. Camejo et al.
(2011) stated that marginal cost of production was negligible compared with the large R&D costs. The
value is chosen somewhat arbitrarily.

R&D expenditure, K = 800,000,000: We estimate that the amount required to make an innovation K is
equal to GBP 0.8 billion. DiMasi et al. (2003) estimated drug development costs and found that they were
at US$ 800 million at the time. Estimates from Congressional Budget Office (2006) suggest similarly that
drug development costs were between US$ 800 million and 1 billion at the time and indicated that they
were still rising. The R&D cost R2 of product 2 will be defined by the R&D intensity function.

R&D intensity, m = 0.2: Fraction of present value revenues invested in R&D. This is the R&D expen-
diture as percentage of present value of accumulated revenues. The value of 20% is a rounded estimate
resulting from values retrieved from the OHE report on the pharmaceutical industry Office of Health
Economics (2007) (between 17% to 31%) and the Congressional Budget Office (2006) that estimated 19%.

Innovation Production Function (IPF), u = 0.035: Constant scale parameter. This parameter has been
set to a value such that the IPF in the baseline model is equal to 14%. This is the estimated rate of R&D
innovation in pharmaceuticals found by Wong et al. (2019).

Prices, p2 = p1: The price of product 2 is equal to price of product 1, pi ≥ mci > 0 for i = 1, 2, ..., n.
When looking for the optimal patent length, price is fixed at pi = 20, 000, a cost per QALY commonly
used by NICE as a cost-effectiveness threshold.

Patent length, s = 10: The average patent life for all products is set at 10 when optimal prices are
observed. Hughes (Moore and Snyder) found an average commercial patent life of eight to ten years.

Demand function, qi = 120, 000− 0.1pi: The demand function has parameters ai = 120,000 and bi
= 10 for both products i = 1,2. The demand function was chosen such that it exhibited an elasticity of
demand with respect to price of -20% at a point estimate of pi = 20,000. This was based on Costa-Font et
al. (2013) who found that health care was a highly inelastic good, meaning that it is a necessity.

Competitive fringe supply function, q f (pi) = 24000 + 0.5 ∗ p1d: With this we set that the branded
quantity demanded after patent expiry is 20% of the demand during the patent period. Hughes (Moore
and Snyder) found that market shares of incumbents fell to about 20% within one year after the patent
expired.

iii. Results

We provide the results of social welfare simulated across the model parameters p1 and s. The results of
the simulation are reported in Figure 4.1.

The figure shows that social welfare is optimised for high values of patent length, and for average
value of prices. Social welfare appears to be increasing with patent length, while it appears to present a
concave relationship with price.

A graphical intuition of consumer surplus and producer surplus is provided in the appendix.
Figure 4.1 shows a concave relationship between price p1 and welfare. Welfare increases with price

p1 up to a maximum to then decrease. For low values of patent length s, welfare presents an increasing
relationship with price p1. Welfare is generally increasing with patent length, expect for high price levels,
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Figure 4.1: Simulated social welfare for varying price 1 (x-axis) and patent length (y-axis).

Table 4.1: Optimal combination of price and patent for respectively social welfare, consumer surplus and producer
surplus.

Objective function value price patent
Welfare 13964388773 570526.3 30

Consumer surplus 4509351822 4000 30
Producer surplus 23182091418 633473.7 30

for which welfare decreases with an increase in patent length.

Table 4.1 indicates the combinations of prices and patents that lead to a maximisation of the alternative
objective functions. 8

We then provide an estimation of optimal VBP parameter z, for different values of expected health
benefits.

Figure 4.2 shows optimal value-based factor z as a function of expected health benefits h1. The figure
shows a negative relationship between the VBP factor z and health benefits. Value-based pricing parameter
z varies with the realisation of the drug’s health benefits.

Table 4.2 below provides a numerical example to illustrate the dynamics of the negative relation
obtained between the health benefits parameter h1 and the VBP proportion z.

For illustrative purposes, we will consider 3 cases: (a), (b) and (c). For case (a) we fix an arbitrary
value of h1 to 8000. From the numerical simulation, we know that the corresponding optimal value of z is
1. Case (a) is then represented by the vector (h1,a = 8000, za = 1). We then consider a second point (b)
with an arbitrary value of h1 set to 20000. For illustration purposes we leave the value of z unchanged to 1.

8The results on optimal prices appear to be highly sensitive to variations in other parameters. In particular, setting the
demand function parameter a1m to respectively 120000 (the original value), 60000 and 20000 introduced a dependence
in the optimal patent and prices with respect to the discount rate r. The results of this sensitivity analysis are reported
in Figure 4.6 in the appendix.
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Figure 4.2: VBP factor z as a function of health benefits h1.
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Case (b) is then represented by the vector (h1,a = 20000, za = 1). We then consider a third case, case (c),
where the parameter z is fixed to the optimal parameter resulting from the simulation and corresponding
to the health benefits value of h1. Case (c) is then represented by the vector (h1,a = 20000, za = 0.58).
Table 4.2 decomposes the value of social welfare W into its individual components, allowing us to better
understand its dynamics.

The table shows that, starting from point (a), an increase in health benefits does translate into an
increase into the probability of innovation, with a subsequent increase in welfare in period 2. This increase
in health benefits, however, is associated with a slight decrease in period 1 welfare. In turn, the trade-off
between period 1 and period 2 welfare, leads to a reduction in z in order to achieve higher period 1 welfare
to balance the higher period 2 welfare.

Table 4.2: Worked example of optimal welfare as a function of varying health benefits h1 and VBP proportion z.

Case h1 z W (mln) W1 (mln) W2 (mln) ρ2
(a) 8000 1 3246 3192 53 0.05
(b) 20000 1 3231 3113 1190 0.10
(c) 20000 0.58 3260 3175 84 0.07

VIII. Conclusions

This paper analysed the introduction of price regulation in a two-period dynamic model with innovation.

Our analysis explored the trade-off between static and dynamic optimisation of social welfare with
R&D. We explored the impact of a variation in patent length, identifying a trade-off with optimal price.
Lastly, we explore the introduction of value-based pricing, providing numerical simulations.

The results presented in this paper show that, by varying prices, the social planner might alter the
composition of welfare in the first period to achieve optimal welfare inter-temporally via endogenous R&D.

Policy-makers can use this trade-off to ensure that welfare is maximised inter-temporally. Regula-
tors might also exploit the relationship between price and patent length to ensure that welfare is optimised.

Our analysis shows that value based pricing alters market dynamics influencing the optimal price after
patent expiration. Our numerical simulation provides indications of the negative relationship between the
value based factor z and expected health benefits h1. This shows that choosing the right VBP parameter z
is risky when health benefits are not known ex-ante.

This paper has shown the impact of alternative pricing policies on social welfare. In particular, we saw
the implications on social welfare from a pharmaceutical pricing resulting from a welfare-maximising
social planner versus a value-based pricing policy. This analysis has shown that the two pricing policies
lead to different dynamics of social welfare following a variation in price. In particular, compared to
the welfare maximising price, value-based pricing introduces a dependence on the variation of expected
welfare in period two following a variation in the VBP proportion. The variation of social welfare in the
second period, following the variation in the VBP proportion, alters the value of social welfare achieved in
period one as well as the optimal amount of innovation.

The inverse relationship between social welfare and the VBP proportion z has important implications
when considering the link between VBP proportion, disease prevalence and innovation. For example,
consider the case where the innovating firm operates under a VBP regime and it intends to invest its
period one profits in the innovation towards a drug to cure a disease with high prevalence. In that case, a
slight variation in the VBP proportion would alter the expected welfare arising from the expected health
benefits of the period 2 drug, as its price would also depend on the VBP proportion. This variation in
expected benefits in period 2 would alter the trade-off with welfare in period one, leading to an increase

91



in social welfare in period one and a lower innovation probability.

Policy makers should therefore be careful in considering a pricing policy linked to health benefits in
individual periods, as it may alter the firm’s investments decisions, leading to variations in the degree of
innovation.

Our analysis is subject to a number of limitations. First it does not obtain complete determination of
analytical solutions, hence the need to use numerical simulation. Second, our analysis does not account
for extensions such as multiple innovating firms.

The presented model was developed to explore the theoretical implications of the introduction of a
VBP policy on innovation and inter-temporal welfare. The features of the presented model did not aim to
represent the specifics of some regulatory frameworks. In particular, the model accounted for a social
welfare-maximising regulator. In some healthcare systems, such as the English NHS, drug prices are
set between healthcare departments and the producer. The former, in particular might be interested in
maximising achieved welfare for a given budget, hence not considering price implications on producer
surplus. The difference with these specific regulations and the model may represent a limitation of this
work.

Future research will allow for additional policy extensions and for a setting allowing for a portfolio of
drugs developed by the innovating firm.
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Figure 4.3: Pricing models. Monopoly pricing (left). Competitive fringe pricing (right).

IX. Appendix C - Proofs

i. Baseline model

Competitive fringe
Figure 4.3 provides a graphical intuition of the competitive fringe settings, in comparison to the

monopoly pricing. The graph is derived from Church and Ware (2000).

Optimal prices, with fixed patent length

The First Order Conditions (FOC) of expression 4.7 are defined as
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The optimal prices are found by inserting the expression of linear demand and supply functions in
equation 4.19. More specifically, we assumed that qm

i =
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1 −pm
1

bm
1

and q f
i = a f

1 + b f
i p1. Doing so, after some

algebra, leads to the optimal prices defined in 4.8.

Considerations on model coefficients

Optimal prices: notice that the expression 4.8 provides some implications on model parameters. In
particular, it would be reasonable to assume that p2 = pg

2 , as otherwise we would have that either: a) the
price of the generic is higher than the branded drug, b) the firm produces the drug at a price lower than
marginal costs. Setting p2 = pg

2 implies that mc2 = (2bm
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2 ). Also, it would

be reasonable to assume that |bm
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2 |, as otherwise the element on the RHS of the equality would be
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Innovation function: Inserting p∗1 into h(x) leads to
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Static versus dynamic welfare optimisation

Generic expression of consumer surplus
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Consumer surplus in individual periods
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The derivative of CS with respect to price thus becomes
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Producer surplus in individual periods is
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The derivative of PS with respect to price thus becomes
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We now consider the derivative of W with respect to p1.

∂W
∂p1

= 1
2 qm

1 −
1
b1
( 1

2 (aM
1 + p1)−mc1) + ( um

rK (q1 −
∂p1
b1

))C2

− 1
r um(qm

1 −
p1
b1
)

(4.32)

which simplifies to
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A graphical intuition of this results in provided in Figure 4.4.

ii. Proofs with varying patent length

Impact of patent length on prices

Starting from expression 4.52, the derivative of CS with respect to s becomes
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Figure 4.4: Graphical intuitions for Consumer Surplus (CS), Producer Surplus (PS) and Social Welfare (W) for
varying price.
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which is higher than zero provided that

s < τlog(
A
B
) (4.36)

where A =
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Notice that the derivative of CS with respect to s can be positive provided that A
B > 1.

Similarly, starting from expression 4.26, the derivative of PS with respect to s becomes

∂PS
∂s = re−rs

[
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] (4.37)

which is higher than or equal to zero provided that

s ≤ − log(C)
r

(4.38)

where C = 1
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]
. Notice that if C is higher than zero, then producer surplus

is always increasing with s. If 0 < C < 1, then producer surplus is first increasing and then decreasing
with s. If A < 0 then the sign of the derivative of PS with respect to s is not defined.

The derivative of welfare W with respect to patent length s is defined as
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(4.39)

From which, after some algebra, the definition of optimal patent length becomes of the form

s∗ = −1
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.

Derivative of price with respect to patent length.

The derivative of price p1 with respect to patent length s follows from the definition of optimal patent
length provided in equation 4.8.
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After some algebra, we can show that the derivative of p1 with respect to s is higher or equal than
zero provided that

s ≤ −1
r

log(− D
rE

) (4.41)
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iii. Proofs with policy extensions

The firm’s profits in an individual period are defined as
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Similarly,
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Therefore
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The FOC for equation 4.44 are
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(4.45)
From which optimal prices when firm’s profits are optimized are
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where A = e−rτ [(p2 −mc2)qm
2 (1− e−rs) + λ(pg

2 −mc2)(qm
2 − q f

2)(e
−rs − e−rT)].

Proof of Proposition 1
Now, we let p∗,W1 indicate the price optimizing welfare under patents in period 1, and p∗,Π1 to indicate
the price optimizing firm profits under during the period 1 patented period. We then check under which
condition p∗,Π1 > p∗,W1 . Substituting the expressions 4.8 and 4.46 in, we obtain
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which is satisfied when
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]
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Now, assuming that condition 4.48 and 4.25, we have that patented price in period 1 is higher when
firm’s profits are maximised, compared to when welfare is maximised, and the effect on welfare is negative.

When considering innovation probability, we have that h(p∗,Π1 ) ≥ h(p∗,W1 ). Inserting optimal prices in
the IPF expression 4.6, we have
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which simplifies to
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which is always satisfied, as p∗,Π1 is by definition the price maximising firm’s profits.

Value based pricing
With VBP we have that the innovation probability function becomes
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Generic expression of consumer surplus
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Consumer surplus in individual periods
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The derivative of CS with respect to price thus becomes
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(4.55)
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We can thus write that
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(4.56)

Notice that the components ∂CSi/∂z for i = {1, 2} is now different to the previous expression, as it
now includes the consumer surplus generated by drug i after patent expiration.

The generic expression of producer surplus becomes
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Producer surplus in individual periods are
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and
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The derivative of PS with respect to z thus becomes
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which can be written as
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We now consider the derivative of W with respect to z.
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Figure 4.5: Numerical simulations for Consumer Surplus (in green to the left) and Producer Surplus (in blue to the
right) for varying values of price (x-axis) and patent length (y-axis).

which can be written as

∂W
∂z = ∂W1

∂z +
ρ2
∂z W2 + ρ2

∂W2
∂z (4.63)

which is higher than zero iff | ∂CS1
∂z

∂ρ2
∂z | <

∂ρ2
∂z (PS2 + CS2) + ρ2(

∂CS2
∂z + ∂CS

∂z ).

Equations concerning the sign of the derivatives of CS, PS and W with respect to z are not reported
because of their analytical complexity.

iv. Proofs with modelling extensions

v. Numerical simulations

We provide the results for the numerical simulations of consumer and producer surplus for varying prices
and patent length. Results are reported in Figure 4.5.

The figure shows that consumer surplus is defined as a convex curve in the price p1 and patent length
s space. The opposite relation holds for producer surplus, which is defined as a concave curve in the price
and patent space.

Figure 4.6 provides the results for the sensitivity analysis exercise showing optimal price and optimal
patent as a function of the discount rate r for different values of the parameter a1m.

101



Figure 4.6: Sensitivity analysis for optimal price (left) and patent (right) as a function of the discount rate r,
computed for varying values of the demand function parameter a1m.
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Chapter 5

Conclusions

The purpose of this thesis was to analyse the topic of antibiotic prescription and pharmaceutical innovation
through the health economics lens.

The topic of antibiotic prescription is a relevant health issue worldwide due to its association with
antibiotic resistance. Research has shown that higher antibiotic consumption leads to increased resistance
(Monroe and Polk (2000), Mera et al. (2006)). Resistance, in turn, is associated with a reduced effectiveness
of antibiotic drugs in curing infections (Major, 2018). The number of deaths attributed to antibiotic
resistance are approximately 700,000 deaths a year globally, with an estimated increase to 10 million deaths
worldwide by 2050 (O’Neill, 2014). Even when antibiotic resistance does not imply risk of death, resistant
infections require prolonged and/or costlier use of healthcare resources(CDC, 2013). Higher antibiotic
resistance, therefore, translates into increased costs for society and for national healthcare systems (Euro-
pean Observatory on Health Systems and Policies (2019), Naylor et al. (2018)). Estimates of healthcare and
productivity costs in the EU, for example, amount to 1.5 billion euros per year (European Observatory on
Health Systems and Policies, 2019), while the economic burden of antibiotic resistance worldwide has been
estimated to a maximum of 3 trillion dollars in GDP costs, although estimates may vary(Naylor et al., 2018).

One of the reasons related to the increase in resistance is the relative lack of innovation in antibiotic
drugs. Recent years have seen very little R&D efforts being invested by pharmaceutical companies in
the development of new types of antibiotics. The latest versions of antibiotics were, in facts, variations
of drugs developed in the early 1980s (BBC Health, 2017). The lack of new types of antibiotic drugs
being introduced in the market limits the doctors’ prescription possibilities available when treating infec-
tions, thus reducing healthcare effectiveness upon the increase of resistance. The fight against antibiotic
resistance, therefore, requires a clear understanding of the dynamics of innovation in pharmaceutical
products. One way to analyse the dynamics of pharmaceutical markets is to explore how price and
patent length affect patients welfare and the probability of innovation. Identifying the impact of price
and patent regulation on the development of new drugs, is relevant for the development of new antibiotics.

This thesis addressed the topics of antibiotic prescription and pharmaceutical innovation by introduc-
ing three related research questions.

The first research question asked "what is the impact of stewardship programmes in affecting antibiotic
prescribing in European Countries?". Stewardship programmes are coordinated health interventions aimed
at reducing antibiotic prescription via the selection of optimal drug regimens (Fishman, 2012). One of the
purposes of this policy is to reduce unnecessary prescriptions which are one of the key factors related
to the world-wide increase in resistance World Health Organization (2014). This first research question
of this thesis was addressed using survey data from the Eurobarometer, a nationally representative
EU-wide survey on citizens’ perceptions, which provided data on antibiotic consumption for the years
2008, 2013, 2016 and 2018. The varying degree of implementation of stewardship programmes in European
countries makes it important to estimate the impact of such policy in reducing prescription rates. 1 The

1See https://www.who.int/antimicrobial-resistance/national-action-plans/library/en/ for an
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asymmetric adoption of stewardship programmes across European countries allowed consideration of
the introduction of such policies as a natural experiment. According to the definition provided by the UK
Medical Research Council, natural experiments (NE) are events not under the control of the researcher
and that divide the observed population into exposed and unexposed groups (Craig et al., 2012). The
possibility to replicate some characteristics of Randomised Control Trials (RCTs) in situations where the
researcher cannot replicate an experiment made NEs widely used for the estimation of the effects of public
health interventions (Craig et al., 2017). This thesis addressed the first research question by adopting a
difference-in-difference approach. Diff-in-diff analysis has been widely used in the healthcare literature to
study causal relationship in public health settings (Wing et al., 2018). In proposed study treated countries
were those in which stewardship programmes were introduced. The control group was composed of
countries where stewardship programmes were still lacking. The analysis controlled for country-specific
covariates and for the role of alternative policy measures. Sensitivity analysis exercises were performed to
verify the robustness of the results.

The second research question of this thesis asked "what is the role of spatial dependence in influencing GPs
antibiotic prescription rates?". The concept of spatial dependence has long been an important concept in the
healthcare literature, with early contributions dating back to John Snow’s pioneering studies in mapping
cholera in the area of Soho in London (Snow, 1855). The concept of spatial dependence had its foundations
in the econometrics literature with the work by Paelinck and Klaassen (1979) and Anselin (1988). In more
recent years, the concept of spatial dependence in antibiotic prescriptions has been addressed by scholars,
who identified a role of spatial dependence in influencing antibiotic prescription rates (Gonzalez-Ortiz
and Masiero (2013), Filippini et al. (2014)). The third chapter of this thesis addressed the question of the
role of spatial dependence in antibiotic prescription rates among English primary care practices using GP
prescription data obtained from the English National Health System (NHS) for the years 2013-2017. This
data, aggregated at individual practice level, was linked to a set of covariates describing the characteristics
of local areas. Spatial dependencies were identified by means of spatial regression analysis, including
Spatial Lag (SLX) models, Spatial Autoregressive Models (SAR) and Spatial Error Models (SEM). The use
of alternative spatial dependence models allows us to explore the potential sources of spatial dependence
to verify the role of random health shocks and resistance externalities from neighbouring areas as potential
sources of spatial dependence (Gonzalez-Ortiz and Masiero (2013) and Filippini et al. (2014)). Among the
set of confounders we also included a policy variable, namely a dummy indicating the letters received
from the Chief Medical Officer (CMO) to over-prescribing GPs to account for the role of local interventions.
The inclusion of such indicators allows this research to account for policy interventions occurring at an
individual practice level. This study also introduced sensitivity analysis to verify the robustness of the
analytical approach.

The third research question of this work was "what is the impact of value-based pricing in influencing social
welfare in a dynamic market with innovation?". The study of the alternative goal of maximising social welfare
while guaranteeing innovation traces back to the seminal work of Arrow (1962) on patent protection.
Additional studies in this area looked at guaranteeing intellectual property rights, while at the same time
minimising dead-weight losses arising from monopolies (Nordhaus (1969) and Scherer (1972)), although
optimal degrees of patent protection were difficult to estimate (Tirole, 2002). In line with this literature, the
third chapter looked at the dynamics of pharmaceutical innovation, considering both static and dynamic
welfare optimisation, the impact of varying patent length on welfare, and the effect of Value-Based Pricing
(VBP) on market dynamics. VBP is a specific pharmaceutical regulation were drug prices are set on
drug’s expected health benefits (Office of Health Economics (2007) and Moise and Docteur (2007)). The
purpose of this regulation is to incentivise research in areas of higher unmet need, while at the same time
guaranteeing price containment. Understanding the interplay of static and dynamic trade-off in a market
with prices related to realised health benefits might shed new light on the effectiveness of VBP policy.
The third research question of this thesis is related to the topic of antibiotics as one of the reasons why
resistance is on the rise is thought to be the lack of newly developed antibiotic drugs (BBC Health, 2017).
Analysing the conditions for pharmaceutical innovation is thus important to understand how to tackle
antibiotic resistance.

Answering these three research questions provides a broad perspective on the topic of antibiotic

indication of the implementation of stewardship programmes in EU countries.
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prescription. In this thesis the topic of antibiotics prescription is addressed by looking at the role played
by policy interventions in reducing antibiotic consumption, the role of geographical and spatial linkages
across practices in influencing prescription behaviour, and the role that pharmaceutical innovation and
regulation might have on the development of new antibiotic drugs. These three perspectives, considered
together, might provide policy makers with insights on different angles of antibiotic resistance.

The first paper provides a number of contributions to existing knowledge on the effectiveness of
antibiotic policies in European countries. First, we identify that the introduction of stewardship pro-
grammes had an impact in reducing the provision of antibiotics across European countries. This result
might prove useful for countries that have not yet adopted stewardship programmes. In addition, this
study finds that stewardship programmes are effective in reducing prescription rates both for all antibiotic
prescription as well as for individual antibiotic classes. This result appears to indicate that stewardship
programmes are effective across the whole range of antibiotic prescriptions. The results identified in the
second chapter of this thesis are robust to a number of alternative specification and robustness checks, such
as introducing alternative policy variables such as National Action Plans (NAP). We interpret this result as
an indication that stewardship programmes are effective in reducing prescription rates because they affect
doctors’ behaviour, while NAPs, which are certainly useful in the policy debate, might be less effective
in immediately influencing prescription. Stewardship programmes are also found to impact patients’
beliefs concerning antibiotics. This result is relevant because it indicates that stewardship programmes
have the potential to change patients’ perspective on antibiotics and the risk of resistance arising from
over-prescription. The results found in the second chapter of this thesis expand the limited literature on
the effectiveness of policy interventions in reducing antibiotic consumption (Bou-Antoun et al., 2018).

The analysis proposed in the second chapter of this thesis extends the existing literature on the com-
parison of antibiotic consumption across different nations, with a particular focus on European countries.
The existing literature on cross-country comparison of antibiotic prescription rates has found a high
degree of heterogeneity in prescription rates across different healthcare systems (see Elseviers et al. (2007)
and O’Neill (2014)). In addition, the literature on cross-country comparison of antibiotic prescription
rates highlights that healthcare systems might provide different incentives for the adoption of antibiotics
(Blommaert (2014) and Klein et al. (2018)). Also, cross-national comparisons allow for benchmark in the
performance of different healthcare systems. The analysis proposed in the third chapter of this thesis
confirms the results proposed by the literature on cross-country comparison, confirming the results
of significant differences across individual countries, once other factors are accounted for. Individual
healthcare systems, therefore, appear to provide different prescription rates even when respondents’,
country and policy variables are introduced in the analysis.

Lastly, the second chapter of this thesis expands the existing literature concerned with applying
difference-in-difference methodology to health economics problems, and to antibiotic consumption more
specifically. The diff-in-diff methodology has been used extensively in the healthcare literature (see Wing
et al. (2018) for a thorough review), however, to the best of our knowledge, it has not yet been used in
the literature to estimate the impact of stewardship programmes on antibiotic prescription. This chapter
shows the effectiveness of diff-in-diff in estimating the impact of policy interventions in reducing antibiotic
consumption, via a repeated cross-section analysis. This analysis, therefore, provides an additional
case highlighting the usefulness of such approach in helping policy-makers in estimating the impact of
healthcare interventions.

The second paper of this thesis identifies the presence of spatial dependence in antibiotic prescription
rates across English GP practices. Spatial dependence is found to be significant for varying definitions
of spatial weights, namely administrative and geographical weights. This result confirms the approach
proposed by Lippi Bruni and Mammi (2016), highlighting the usefulness of adopting a mixture of spatial
and administrative weights in estimating spatial dependence in antibiotic prescription. In addition,
dependence is found both when considering prescription rates of all antibiotics as well as for individual
antibiotic classes. This result indicates that spatial dependence is therefore present across the whole
spectrum of antibiotic prescriptions. Model results are robust to alternative specification of the dependent
variable, such as the total prescribed antibiotics over all prescribed drugs of the individual practice. This
chapter also highlights potential alternative explanations for spatial dependence. This is inferred by
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identifying significant spatial effects in the SLX and SEM model, but not in the SAR model. This result
appears to indicate that spatial dependence is driven mostly by random health shocks rather than by
the direct consequence of antibiotic resistance in neighbouring areas. These results provide additional
evidence in determining the reasons behind of spatial dependence in antibiotic prescription extending the
type of results presented by Gonzalez-Ortiz and Masiero (2013) and Filippini et al. (2014) concerning the
source of spatial dependence. Although these initial results are promising, an in-depth understanding of
the mechanics behind spatial dependence in antibiotic prescribing will require additional research.

The analysis presented in the third chapter of this thesis expands the current knowledge on spatial
dependence methods applied to health economics problems, and on antibiotic prescription more specifi-
cally. This is achieved by applying spatial dependence techniques to a new dataset for the English case. In
addition, given the data availability for the years 2013 to 2017, the dataset allows for the development of a
panel analysis, while other existing studies were based on cross-section analysis (Filippini et al., 2014).
The richness of the dataset allows for the spatial analysis of individual antibiotic classes. To the best of
our knowledge, an analysis of spatial dependence of individual antibiotic classes has not been attempted
before. In addition, this study expands the strand of literature of spatial dependence by providing a
more thorough analysis of the potential motivations of its presence in antibiotic prescriptions. Lastly, the
identification of spatial dependence in antibiotic prescription rates might imply that quantitative studies
on antibiotic prescription which did not account for spatial dependence may be subject to bias due to the
lack of integration of the spatial dimension of the phenomenon.

The fourth chapter of this thesis identifies a number of results concerning innovation in the pharma-
ceutical market. First it identifies a trade-off between static and dynamic optimisation of social welfare
in a two periods model of a pharmaceutical market with innovation. This trade-off highlights a balance
between welfare optimisation in individual periods and the need for R&D investments to optimise welfare
inter-temporally. Second, this paper provides insights concerning the impact of a variation of patent length
on social welfare. Patent length is therefore found to influence social welfare, allowing various degrees
of appropriation of intellectual property rights to the innovating firm. Third, this chapter identifies that
VBP policy introduces distortions in the dynamics of pharmaceutical markets. By fixing prices to the
expected health benefits of the newly introduced drug, price regulation alters market dynamics. Lastly,
the numerical simulation proposed in this chapter identify a link between realised health benefits of
newly discovered drugs and the optimal proportion used as pricing decided by the regulator. This result,
therefore, highlights that policy makers would need to be careful in fixing prices to the right proportion of
realised health benefits if their goal is to optimise realised welfare.

The fourth chapter of this thesis provides a contribution to different strands of the health economics
literature. First, this chapter expands the literature on static versus dynamic optimisation of social welfare
in pharmaceutical markets with R&D. This is achieved by exploring the impact that price variation has
on single period welfare and on innovation. This work therefore is in line with the work introduced by
Dorfman and Steiner (1954) and Arrow (1962) related to R&D investments and patent protection, which
highlight a need of balance between patent protection and welfare. Second, this chapter expands the
existing knowledge on the implications of patent length on welfare optimisation by estimating the impact
of patent variation on optimal welfare. This second type of results fits in the strand of literature defined
by the work by Tirole (2002) concerning the determination of optimal patent length. In our case the
determination of optimal patent length is provided via numerical simulation. Third, this paper expands
the literature on pharmaceutical regulation by providing an in-depth analysis of value-based pricing,
expanding the still limited literature on VBP and its impact on static versus dynamic efficiency (Danzon,
2018).

The studies presented in this thesis have a number of policy implications.

The results of the second chapter of this thesis shows the effectiveness of stewardship programmes
in reducing antibiotic consumption. The identified effectiveness of these programmes in reducing con-
sumption appear to be robust to sensitivity analysis. The results presented in this chapter could provide
a basis for further economic evaluation of stewardship programmes and their cost-effectiveness. Policy
makers from countries that have not yet introduced such policies should consider developing stewardship
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programmes to reduce antibiotic consumption. Similarly, stewardship programmes proved to be effective
in influencing public opinion on antibiotics and their appropriate use. Policy makers should consider
developing stewardship programmes together with targeted communication interventions to increase
public awareness on the correct use of antibiotics. Lastly, over-national bodies should consider the presence
of country-specific differences in antibiotic prescription rates when developing targeted policies, and in
developing specific interventions aimed ad closing the gap between worst and best performing countries.
While these result do not exhaust the possible evidence available on stewardship programmes, they
provide a useful starting point for policy makers to evaluate the effectiveness of such policies.

The results of the third chapter of this thesis suggest that policy makers should take spatial dependence
into account when developing new policies related to antibiotic consumption. Correctly identifying the
mechanisms through which spatial dependence occurs, even via qualitative methods, is important to
ensure effectiveness of future policies targeted at reducing antibiotic prescription. This chapter identifies
that spatial dependence is clearly not only due to CCG-wide factors. On the contrary, the study presented
in this chapter favours random health shocks as a source of spatial dependence, as opposed to dependence
arising from resistance externalities from neighbouring practices. Policy makers who are interested in
reducing antibiotic prescription rates should be careful in identifying effective ways to influence doctors’
behaviour, even when random health shocks are at play. Future policies might also allow for a coordina-
tion of national and local interventions to address spatial dependence in prescription. Institutional and
geographical considerations should be considered when developing policies targeted to the reduction of
antibiotic prescription, thus requiring a higher coordination in the policy efforts of local bodies.

When it comes to pharmaceutical innovation, policy makers should take into consideration the
inter-temporal aspects of R&D. The introduction of pharmaceutical pricing regulation aimed at welfare
maximisation in individual periods might alter optimal welfare inter-temporally, therefore the develop-
ment of new policies should consider their impact over time. Second, policy makers aiming for a specific
goal such as welfare optimisation or cost containment should be aware of the impact of proposed policies
on pharmaceutical innovation. To achieve a goal of cost containment without impacting innovation,
policy makers might use additional regulatory levers such as the trade-off between price and patent
length. Identifying the correct patent and price trade-off might guarantee the right amount of welfare and
innovation, while achieving cost containment. Third, pharmaceutical regulators who are interested in
considering value-based pricing regulation should be aware of its potential distortionary effects on market
dynamics. In addition, as shown via simulation, regulators interested in introducing VBP should be aware
that the introduction of such policy requires careful consideration concerning the appropriate proportion
of realised health benefits as price of the new pharmaceuticals.

The studies presented in this thesis were subject to a number of limitations. The first chapter of
this thesis, concerning the impact of stewardship programmes on antibiotic consumption, is subject
to data limitations concerning potential confounders of antibiotics prescription. Including variables
such as co-payments or the amount of healthcare expenditure per head might have an association with
antibiotic prescription. Data associated to those variables, however, was not available for all countries
in the considered years. Second, the studies on the impact of stewardship programmes and on spatial
dependence in antibiotic prescription did not take into consideration the role of antibiotic resistance.
While considering antibiotic resistance might introduce issues related to endogeneity, it is important to
recognise that antibiotic consumption and antibiotic prescription might both be affected by resistance
levels. The introduction of resistance was not possible because of data limitations and because of the lack
of possible instruments to address endogeneity on antibiotic consumption and prescription rates. The
chapter on value-based pricing regulation was subject to limitations related to the possibility of solving the
model analytically, therefore numerical simulation was used. In addition, we allowed for VBP to be a fixed
proportion of realised health benefits of newly developed drugs. Alternative specifications of value-based
pricing could be conceived, such as considering different pricing proportions for different drug classes.

Future research might build on the results presented in this thesis. The analysis of stewardship
programmes could be enriched by introducing the role of antibiotic resistance. Estimating the effectiveness
of stewardship programmes on reducing antibiotic resistance might provide additional evidence of the
usefulness of such programmes. A similar result could be explored for the analysis of spatial dependence
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in antibiotic prescription rates. The inclusion of antibiotic resistance as a confounder would requires
addressing the issue of endogeneity, resulting from the simultaneity of both consumption and prescription
with resistance, by identified appropriate instruments. Nonetheless, the introduction of proxies of
antibiotic resistance among the covariates of the analysis might provide further evidence on the sources of
spatial dependence in antibiotic prescription rates allowing researcher to explore the sources of spatial
dependence further. Lastly, researchers could use the results provided in value-based pricing paper to
explore alternative specification of the VBP policy in a dynamic context. Alternative specifications of VBP
might thus prove to reduce the potential distortionary effects of this pricing policy, while at the same time
fulfilling its purposes, namely satisfying unmet needs while guaranteeing cost containment.
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