

City, University of London Institutional Repository

Citation: Robbins, E., King, A. & Howe, J. M. (2020). Backjumping is Exception Handling.

Theory and Practice of Logic Programming, 21(2), pp. 125-144. doi:
10.1017/S1471068420000435

This is the published version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/24797/

Link to published version: https://doi.org/10.1017/S1471068420000435

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

TPLP 21 (2): 125–144, 2021. c© The Author(s), 2020. Published by Cambridge University Press.

This is an Open Access article, distributed under the terms of the Creative Commons Attribution

licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribu-

tion, and reproduction in any medium, provided the original work is properly cited.

doi:10.1017/S1471068420000435 First published online 16 November 2020

125

Backjumping is Exception Handling

ED ROBBINS and ANDY KING
University of Kent, Canterbury, CT2 7NF, UK

(e-mails: edd.robbins@gmail.com, a.m.king@kent.ac.uk)

JACOB M. HOWE
City, University of London, EC1V 0HB, UK

(e-mail: j.m.howe@city.ac.uk)

submitted 15 September 2017; accepted 24 August 2020

Abstract

ISO Prolog provides catch and throw to realize the control flow of exception handling. This
pearl demonstrates that catch and throw are inconspicuously amenable to the implementation
of backjumping. In fact, they have precisely the semantics required: rewinding the search to a
specific point and carrying of a preserved term to that point. The utility of these properties is
demonstrated through an implementation of graph coloring with backjumping and a backjump-
ing SAT solver that applies conflict-driven clause learning.

KEYWORDS: backjumping, exception handling, conflict-driven clause learning, SAT

1 Introduction

The ISO Prolog reference manual (Deransart et al . 1996) explains how catch and throw

can pass control from one point of the program to another. The default behavior of

catch(Goal, Catcher, RecoveryGoal) is to simply invoke Goal. However, if during

execution, there is a call to throw(Ball) then control (and bindings) are unwound to the

closest ancestor catch in the call stack which matches against the term Ball. Specifically,

if the Catcher argument of the closest catch unifies with a copy of Ball, then the

RecoveryGoal meta-call of that catch is invoked. Otherwise, control is unwound further

until a matching catch is found. Since bindings are undone as the call stack is unwound,

Ball might also be used to communicate information to RecoveryGoal, for example, to

report the nature of a failure.

The power of this control flow construct is that it can transfer control to a specific

point in the call stack using the Ball to target a specific catch. This is exactly what is

required for backjumping. Backjumping (Stallman and Sussman 1977; Gaschnig 1979),

in contrast to chronological backtracking, leaps across multiple levels in a search tree

directly to the decision that triggered failure, rather than stepping through each decision,

one by one. Backjumping has found application in truth maintenance systems (De Kleer

1986), logic programming (Bruynooghe 1980), constraint solving (Dechter 1990), and

most recently in SAT to realize (Marques-Silva and Sakallah 1996) conflict-driven clause

https://doi.org/10.1017/S1471068420000435 Published online by Cambridge University Press

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S1471068420000435
https://orcid.org/0000-0002-8179-1355
https://orcid.org/0000-0001-5806-4822
mailto:edd.robbins@gmail.com
mailto:a.m.king@kent.ac.uk
https://orcid.org/0000-0001-8013-6941
mailto:j.m.howe@city.ac.uk
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1471068420000435&domain=pdf
https://doi.org/10.1017/S1471068420000435

126 E. Robbins et al.

learning (CDCL). A CDCL solver requires not only search to be unwound to a specific

decision (by backjumping), but also a term (a learnt clause) to be preserved and carried

to that decision. Fortuitously, this facility is also provided by catch and throw.

The problem of adding control to the logic of a search algorithm sits at the very heart of

logic programming (Kowalski 1979). However, how control is added, and the clarity of the

control component, can be controversial. The problem of adding control is particularly

acute when programming search problems like SAT, where the problem statement can be

very simple, but the best algorithms analyze the decisions to focus search (as in CDCL).

Moreover, backjumping is at odds with chronological backtracking, and as a consequence

certain classes of algorithms that at first glance appear well suited to logic programming

are, in fact, almost incompatible with the paradigm, at least in its purest form.

This pearl proposes catch and throw for programming backjumping, work that grew

out of the (irritating) problem of how to clearly code CDCL in Prolog. This chimes with

Bentley who coined the term programming pearl, and wrote, “Just as natural pearls grow

from grains of sand that have irritated oysters, these programming pearls have grown

from real problems that have irritated real programmers” (Bentley 1986). In contrast to

a previous pearl (Bruynooghe 2004), which used a mutable database to orchestrate all

aspects of intelligent backtracking, this paper breaks down the problem of implement-

ing CDCL into its various components which are then matched against the language

constructs of Prolog. The net result is clarity. To be precise, CDCL decomposes into

three components: (1) rewinding search and bindings, (2) communication of a newly

learned clause to its insertion point in the search tree, and (3) retaining learned clauses

(across backtracking and backjumping). This paper argues that catch and throw pro-

vide (1) and (2), whereas (3) is naturally provided by a mutable database that might be

implemented with a dynamic predicate, blackboard (De Bosschere and Jacquet 1993),

or non-backtrackable global variables (Wielemaker et al . 2012). Applications are not

limited to SAT, or even SMT (Robbins et al . 2015); to demonstrate versatility, the

approach is first illustrated on the classic problem of graph coloring, providing a tem-

plate for backjumping with catch and throw, then, second it is applied for SAT with

learning.

Catch and throw have been advocated for programming backjumping before as part

of a comp.lang.prolog discussion (Baljeu 2005), but the authors are not aware of any

studies which actually demonstrate the viability of the idea. Deploying catch and throw

in backjumping is unconventional since exception handling is intended to support ex-

ceptional behavior, whereas in backjumping these constructs are used for the intended

control flow, which is in turn exceptional in the context of Prolog’s execution model.

The discussion of Baljeu (2005) is centered on the use of these non-logical ISO language

features in Prolog programming.

The rest of this paper is structured as two case studies on backjumping, the first

on graph coloring and the second on SAT. The graph coloring study has been chosen

as a minimal example of depth-first search with backjumping, and the code provides a

template for other examples. Section 2 explains how catch and throw can be used to

realize backjumping for a graph coloring problem, where the edge constraints are realized

as tests which check the color assigned to each vertex as it becomes bound. Section 3

moves onto SAT, building on the template provided by the graph coloring study to

https://doi.org/10.1017/S1471068420000435 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000435

Exception handling is backjumping 127

Fig. 1. Graph coloring with backjumping.

illustrate how catch and throw can be deployed to communicate (learnt) information

back to the catch, necessary when guiding search using CDCL. Section 4 presents the

concluding discussion.

2 Graph coloring

The first of the two worked examples in this paper considers graph coloring, adding

backjumping to depth-first search. This example has been chosen as a minimal illustrating

example, with the code in Figure 3 providing a template for other search problems,

including the motivating example of SAT solving with CDCL.

Figure 1 illustrates depth-first search with backjumping for a coloring problem, where

the objective is to assign red or green to each of the six vertices of the graph so that

vertices which share an edge are colored differently. The example uses just two colors for

simplicity. The vertices of the graph are ordered, as indicated by the numbering. Coloring

commences at vertex 1, red is tried before green at each vertex, and white indicates the

absence of a color assignment. Each partially colored graph is augmented with a map

which associates each vertex with a (possibly empty) set of conflicts. A conflict is a

https://doi.org/10.1017/S1471068420000435 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000435

128 E. Robbins et al.

set of vertices with a color assignment that cannot be extended to satisfy all the edge

constraints.

The conflict map is initially empty and is extended as each vertex is colored and

contracted on backtracking and backjumping. The first conflict occurs in diagram 4 of

Figure 1 between vertices 1 and 3 and is recorded in the conflict map for vertex 3; the

conflict is always logged on the most recently assigned vertex. For expositional purposes,

1 and 3 are colored red indicating the partial color assignment when the conflict is

detected.

Green has yet to be tried for vertex 3; hence, backtracking is applied to undo the

assignment at vertex 3 and reassign it green (diagram 5). The conflict {1, 3} is retained:

the assignment to vertex 1 is still red but vertex 3 is now green. Thus, both vertices of

the conflict, with the possible exception of the last, preserve their initial colors, which is

a general pattern.

The next conflict arises at vertex 5 (diagram 7), causing the conflict {2, 5} to be

recorded. Not all colors have been considered at vertex 5 so again backtracking undoes

the assignment to vertex 5 and it is reassigned green. Next, vertex 6 is colored red, which

conflicts with vertex 2 (diagram 9). Again, not all colors have been tried at vertex 6,

thus the vertex is reassigned to green, which then conflicts with vertex 3 (diagram 10).

Notice that the first vertices (in the vertex ordering) of {2, 5}, {2, 6}, and {3, 6} retain

their initial color.

2.1 Conflict analysis for graph coloring

Now that all colors have been tried at vertex 6, backjumping is deployed after a form

of conflict analysis which infers the target of the backjump. The conflicts for vertex 6

are {2, 6} and {3, 6}, indicating that the conflicts at vertex 6 involve the assignments

of vertices 2, 3, and 6, but not vertices 4 and 5. Moreover, one conflict occurs when

vertices 2 and 6 are both red, and the other occurs when vertices 3 and 6 are both

green. Hence, {2, 3} is also a conflict, where 2 is red and 3 is green, since this partial

assignment is incompatible with the edge constraints, irrespective of the color assigned

to vertex 6. Therefore, a solution cannot be found without either reassigning the color at

vertex 2, or vertex 3, or both. The conflict set of vertex 3 is augmented with {2, 3} to give

{{1, 3}, {2, 3}} (diagram 11). Since vertex 3 was assigned more recently than vertex 2, it

is selected as the target of the backjump and search resumes at vertex 3.

It should be noted that although the vertices of each conflict are colored in Figure 1,

it is not necessary to introduce additional color assignments, one per conflict, to record

these colors. To see this, observe how the colors of 2 and 3 in {2, 3} align with the current

color assignment because the 2 of {2, 6} and the 3 of {3, 6} also match with the current

color assignment. Thus, the first vertices of both {1, 3} and {2, 3} match the current color

assignment. Hence, the colors of the vertices of a conflict, with the possible exception of

the last, match those of the current color assignment, a property which holds inductively.

Vertex 3 has already been assigned to both red and green, so again a form of conflict

analysis is applied to infer that the partial assignment on the vertices 1 and 2 cannot

be extended to a complete solution, whatever the color of vertex 3. Therefore, {1, 2} is

also a conflict, which is associated with vertex 2. Note how the colors of {1, 2}, which are

both red, match the current color assignment. This conflict cannot be remedied without

reassigning either vertex 1 or vertex 2 or both. The higher of the two, vertex 2, is thus

https://doi.org/10.1017/S1471068420000435 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000435

Exception handling is backjumping 129

taken as the target of the backjump, which is then colored green (diagram 13). Conflicts

on vertex 3 result in reassignment of that vertex to green (diagram 15), before the search

proceeds to find a complete satisfying color assignment (diagram 18).

Finally, observe that the map data structure can be simplified by replacing each set of

conflicts with a single set which is the union of all its conflicts (Bruynooghe 2004). Thus,

the map for diagrams 9, 10, 11, and 12, are replaced by:

1 �→ ∅
2 �→ ∅
3 �→ {1, 3}
4 �→ ∅
5 �→ {2, 5}
6 �→ {2, 6}

1 �→ ∅
2 �→ ∅
3 �→ {1, 3}
4 �→ ∅
5 �→ {2, 5}
6 �→ {2, 3, 6}

1 �→ ∅
2 �→ ∅
3 �→ {1, 2, 3}

1 �→ ∅
2 �→ {1, 2}

Observe how entry 3 �→ {1, 2, 3} of the third map given immediately above can be found

by unioning the vertex sets for 3 �→ {1, 3} and 6 �→ {2, 3, 6} of its predecessor and then

eliminating vertex 6, which is the vertex whose coloring induced the conflict analysis.

In fact, not all the map needs to be accessed simultaneously: only the set of vertices

for the highest identifier. This allows the map to be organized as a stack of lists, where

only the topmost list of vertices on the stack is modified at any one time. This gives a

straightforward data structure for implementing conflict analysis.

Notice that it is possible that an assignment leads to several conflicts. Here, the stan-

dard approach is taken – one conflict is selected to inform the backjump, and it is possible

that one of the other conflicts is then encountered as search continues. An alternative

approach would be to record all conflicts and backjump to the shallowest point in the

search tree to guarantee that none of these would be encountered again. In the Prolog

implementation considered in the next section, if there are several conflicts, the scheduler

will determine which conflict is first encountered and used to make the backjump. The

correctness of backjumping is addressed by Kondrak and van Beek (1997).

2.2 Backjumping in Prolog

Coloring can be realized by adopting a test-and-generate model in which checks suspend

on their variables until they become sufficiently instantiated to apply the test. These

checks then coroutine with a generator phase which binds the variables, one by one,

that represent the colors of the vertices. SICStus code is provided to achieve this, where

Figure 2 sets up the checks which define the coloring problem and Figure 3 applies

labeling, with backjumping, to search for a satisfying assignment.

Setting up the checks for coloring. The predicate colour(Vars, Values, Cs) solves a

coloring problem, where Vars is a list that specifies the color which is assigned to each

vertex, Values defines the range of colors that can be assigned at each vertex, and Cs is a

list of disequalities specifying the edge constraints. For the problem instance in Figure 1,

the initial call would have

Vars = [One, Two, Three, Four, Five, Six]

Values = [red, green]

Cs = [One \= Three, Two \= Five, Two \= Six,

Three \= Six, Three \= Four]

https://doi.org/10.1017/S1471068420000435 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000435

130 E. Robbins et al.

Fig. 2. Setting up the checks for graph coloring.

The initial call first invokes problem_setup(Vars, Values, Cs, Pairs, AllIds)

that is responsible for setting up Vars, Pairs, and AllIds and has as its second goal,

search(Pairs, [], AllIds) for controlling the search. In setting up the problem, the

predicate pairs(Vars, 1, Values, Pairs, AllIds) instantiates each element of the

Pairs list to a term Var-Values where Var is itself instantiated to a pair Value-Id

such that Value is drawn from the list Values and Id is a (ground) identifier; AllIds

is instantiated to a list of all identifiers. The identifiers are numeric, indicating the po-

sition of Var-Values within Pairs, which tallies with the order in which variables are

(later) assigned. The predicate setup_checks(Cs) posts each check given in a list of

disequalities Cs. Each goal post(X-XId \= Y-YId) invokes suspend(X, Y, XId, YId)

whose block declaration specifies that the suspend goal should not be called until both

X and Y are instantiated. If inconsistency is detected on instantiation, then the term

ball(MaxId, CIds) is thrown where MaxId is the largest identifier of the set CIds formed

from XId and YId which identify the variables involved in the conflict. Note that corou-

https://doi.org/10.1017/S1471068420000435 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000435

Exception handling is backjumping 131

Fig. 3. Backjumping search for graph coloring.

tining is described here using SICStus’s block declarations (Carlsson and Mildner 2012).

Although coroutining is not part of the ISO standard, other mainstream Prolog systems

provide similar control constructs for delaying goals, such as when or freeze.

Backjumping for coloring. The predicate search(Pairs, ConflictIds, and AllIds)

assigns the variables of Pairs to satisfy the constraints, failing if there is no solution.

The ConflictIds argument maintains a conflict set for the variable of the first pair of

Pairs.

Consider first the second clause of search which is responsible for orchestrating back-

jumping. Each meta-call catch(Goal, Catcher, and RecoveryGoal) has Goal that is

concerned with assigning one variable, identified by Id, to the color Value. Binding Var

to Valuemight wake up blocked calls to suspend, which will lead to consistency checks. If

binding Var to Value does not lead to inconsistency, then search proceeds to search for an

assignment to the remaining Pairs. If inconsistency is discovered, ball(MaxId, CIds)

is thrown by a check in suspend and the call stack is unwound to the first enclosing

catch for which Catcher unifies with ball(MaxId, CIds). The Catcher term of each

meta-call is ball(Id, CIds) where Id is ground and CIds is a variable, thus any catch

which intercepts ball(MaxId, CIds) must possess an identifier Id which matches MaxId.

In fact, this realizes backtracking; if a call to bind assigns Var (with identifier Id), wakes

https://doi.org/10.1017/S1471068420000435 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000435

132 E. Robbins et al.

suspend in Figure 2 and inconsistency is discovered, then both variables are instanti-

ated; hence, MaxId must be Id and the catch directly enclosing the call to bind handles

the exception. This then allows the conflict information in CIds to be passed back to

the point where search resumes. An earlier ancestor will only intercept a ball thrown

in update_conflict which is realizing backjumping. Note that bind(Var, Value) can

unblock several suspend goals. Yet when the first goal resumes it will throw its ball,

undoing the binding, so that the other suspend goals become blocked again.

RecoveryGoal has two calls, the first to update_conflict maintains conflict informa-

tion for backjumping and the second continues search. If there are further colors to be

tried, the second clause of update_conflict merges the conflict information for the cur-

rent failure with that for previous failures, without duplication. The call to search will

then assign the next color from RestValues. If there are no further colors to be tried, that

is RestValues is empty, backjumping should occur. The first clause of update_conflict

enables this. Conflict information is merged, the current assignment identifier is removed

from the conflict list, and then the highest identifier remaining is the backjump level;

hence, this and the conflict information are thrown as ball(MaxId, RestConflictIds).

This achieves backjumping by unwinding the call stack to where the variable with iden-

tifier MaxId is bound, while communicating the new conflict RestConflictIds to that

part of the search. At this point, either a color remains to be assigned or backjumping

is again applied, and so search continues. Observe that undoing and then reassigning a

variable to another color, which is the essence of backtracking, is realized entirely using

catch and throw.

If the first clause of search is matched, then all variables will have been assigned a

color. This clause of search invokes the goal succeed(AllIds), which will immediately

succeed thereby returning the solution to the coloring problem. If another answer is

requested, then a throw is used to reactivate search, the MaxId selected from AllIds

which is list of all the variable identifiers. This results in search backtracking into the

nonconflicting solution. The call to succeed(AllIds) can be omitted if it is sufficient

to compute a single answer. It should be noted that all control is provided by catch and

throw: it is not necessary to resort to a mutable database to maintain the conflicts and

direct search (Bruynooghe 2004).

Search as presented in Figures 2 and 3 provides a template for implementing backjump-

ing. Predicate search wraps catch(Goal, Catcher, RecoveryGoal) where the role of

Goal is to bind variables to values, but if conflicts arise they are described by the term

ball(Id, CIds) and caught by Catcher, and then the role of RecoveryGoal is to update

conflict information and either continue search, or backjump, as appropriate.

3 SAT

Figure 4 lists the code for a Prolog SAT solver, adapted from Howe and King (2010; 2012)

that uses watched literals to realize unit propagation. Given a propositional formula f

in CNF over a set of variables X, and a partial (truth) function θ : X → {true, false},
unit propagation examines each clause of f to deduce another partial function θ′ : X →
{true, false} that extends θ and that, if θ can be extended to satisfy f , necessarily holds.

For example, suppose X = {x, y, z, u, v, w}, f = (¬x ∨ z ∨ ¬y) ∧ (¬z ∨ ¬u) ∧ (u ∨ w ∨
¬v) ∧ (¬w ∨ v) and θ = {x �→ true, y �→ true}. In this instance, the clause (¬x ∨ z ∨ ¬y)

https://doi.org/10.1017/S1471068420000435 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000435

Exception handling is backjumping 133

Fig. 4. A (vanilla) SAT solver using watched literals Howe and King (2010; 2012).

is unit, because it has only one unbound variable, z. Therefore, it can be deduced that,

given θ, for the clause to be satisfied z �→ true. Moreover, for (¬z ∨ ¬u) to be satisfied,

it follows that u �→ false. The satisfaction of the remaining two clauses depends on two

unknowns, v and w; hence, no further information can be deduced from them. Therefore,

θ′ = θ ∪ {z �→ true, u �→ false}.
Searching for a satisfying assignment of f proceeds as follows: starting from an empty

truth function θ = ∅, unit propagation is applied to θ until either no further propagation

is possible or a contradiction is established. In the first case, if all clauses are satisfied

then f is satisfied, else an unassigned variable occurring in f , for instance x, is selected

and the assignment x �→ true is added to θ. In the second case, search backtracks to a

https://doi.org/10.1017/S1471068420000435 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000435

134 E. Robbins et al.

previous assignment, y �→ true say, then adds y �→ false to θ and continues with unit

propagation.

The watched literals technique is founded on the simple observation that a particular

clause is unit if it does not contain two unassigned variables (Moskewicz et al . 2001).

Therefore, for each clause of a problem, two unassigned variables are watched; propa-

gation may occur once either is assigned. It is not enough to watch just one variable

because this is, in general, not sufficient for detecting if a clause becomes unit: the watch

might be on the other, unassigned variable. The SAT solver in Figure 4 takes a problem

in CNF, specified as a list of clauses, and a list of variables. Each clause is itself a list

of pairs Pol-Var, where Var is a propositional variable, and Pol indicates whether the

variable has positive or negative polarity by being either true or false, respectively. For

the introductory example above, the initial call to sat/2 would have

Clauses = [[false-X, true-Z, false-Y], [false-Z, false-U],

[true-U, true-W, false-V], [false-W, true-V]]

Vars = [X, Y, Z, U, V, W]

For each clause, the watch_clause predicate invokes set_watch that, in turn, selects

the first two variables in the clause to be watched. In the above, for the first clause. this

leads to the invocation of watch(X, false, Z, true, [false-Y]); with neither X nor Z

instantiated, this goal suspends via a delay declaration (specified using block in SICStus

syntax). When a variable is instantiated, watch resumes and executes update_watch. If

the instantiated variable matches its polarity, the clause is satisfied, and update_watch

exits successfully, otherwise another variable is selected for watching. For the clause being

considered, if X is bound to true, then set_watch([false-Y], Z, true) will be called

which in turn will lead to the suspended watch(Z, true, Y, false, []). If only one

unbound variable remains, set_watch realizes unit propagation and assigns that variable

so that the clause is satisfied. So if Y is bound to true, after waking watch, set_watch

instantiates Z to be true by unit propagation; further, the second clause leads to U being

instantiated to false. If there are no unassigned variables, or assigned and satisfying

variables, then the clause is unsatisfiable and the set_watch goal will fail, and search

will backtrack. If the example being considered is further extended by binding V to true,

then the third clause will infer by unit propagation that W is instantiated to true. The

fourth clause, which was suspended as watch(W, false, V, true, []) will wake and

lead to the call set_watch([], true, false), which fails. The search is realized using

the search predicate to assign variables to true or false. The search for a satisfying

assignment then proceeds as previously described, simply through Prolog backtracking.

3.1 Backjumping in a Prolog SAT solver

The goal of this paper is to augment the Prolog SAT solver in Figure 4 with CDCL.

This is achieved by following the backjumping template from the previous section, where

alongside the backjump, learnt clauses are added to the problem description. This section

describes how backjumping for SAT is built, including the subtleties arising from accom-

modating clause learning. Figures 5, 6, 7, 8, and 10 extend the SAT solver of Figure 4

with infrastructure for backjumping and conflict analysis.

https://doi.org/10.1017/S1471068420000435 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000435

Exception handling is backjumping 135

Fig. 5. Initial call and setup.

Variables and implication graphs. In Figure 5, the initial call to the CDCL solver is

given, along with the setup of the variables. An identifier map, IdMap, which asso-

ciates a ground identifier with the variable it represents, is created during setup to

later reconstruct clauses during learning. This mapping is constructed up-front prior

to invoking watch_clauses. An implication graph (Marques-Silva et al . 2009) for a

variable Var is conceptually a DAG in which each node is represented as a term

imp(Level, Id, Value, Whys) where Level records the decision level at which Var

was assigned; Id is a (ground) identifier that is unique to the variable (used solely for

deriving a ground representation of a learnt clause); Value is the truth value bound

to the variable; and Whys is itself a list of implication graphs, interpreted as subtrees.

Each propositional variable of the vanilla solver is replaced with a compound term

Var-Why that pairs the variable Var with an implication graph Why that explains its

instantiation. At the setup stage, the Why term of each pair Var-Why is unified with

imp(_Level, Id, _Value, _Whys) where Id is the identifier for Var that ensures that

each implication graph always carries its identifier.

Recall that in coloring, the decision level at which a variable is instantiated matches

the position of the variable in the list Vars which also corresponds to its identifier.

A consequence of unit propagation, however, is that the instantiation order does not

necessarily follow the ordering of Vars; hence, the decision level does not necessarily

match the identifier. Therefore, Level and Id are separately recorded in the imp structure.

Furthermore, a learning solver reasons about the order in which variables are instantiated.

Since, even at the same decision level, the instantiation of one variable can trigger the

instantiation of another, the first element of imp is actually a pair Level-SubLevel where

the integer SubLevel records the order in which a variable is instantiated within a given

Level.

Setting up propagators for SAT. Figure 6 presents an enhanced version of watch_clause

that supports conflict analysis. Unit propagation is extended to record the reason why

a propositional variable is bound to a particular truth value. Since the Var argument of

https://doi.org/10.1017/S1471068420000435 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000435

136 E. Robbins et al.

Fig. 6. Setting up the propagators for SAT.

watch_clause is replaced by a pair Var-Why, the two Var1 and Var2 arguments of watch

are accompanied with two additional arguments Why1 and Why2. Then, the goal conflict

uses the Why for Var and a list of implication graphs, Whys, for the other variables of the

clause to diagnose the cause of the conflict, which is summarized as a clause. The goal

ultimately terminates by throwing a ball which includes the learnt clause or triggers

https://doi.org/10.1017/S1471068420000435 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000435

Exception handling is backjumping 137

failure when an inconsistency is found with the clauses posted during setup. Notice how

Whys is accumulated as each clause is traversed in update_watch.

The unit(Var-Why, Pol, Whys) goal calculates the decision level for a variable as

part of the construction of its implication graph Why. This predicate is only invoked from

set_watch when Var is either uninstantiated or bound to Pol. The latter case is vacuous,

but the former case of unit binds Var to the truth value Pol and creates Why which

records the reason for the binding. The max_member predicate harvests the maximum

of the levels of implication graphs Whys of the other variables collected as the clause is

traversed. The additional imp(0-0, _, _, _) term ensures that MaxLevel is well defined

even when inconsistency is detected prior to any assignment by search. The predicate

increment_sublevel merely increments the sublevel. The unification Var = Pol follows

the bind to Why to ensure that every instantiated propositional variable is associated with

a complete implication graph.

Search with backjumping for SAT. Figure 7 gives code which realizes backjumping search

for SAT. The main search predicate is search(VarWhys, IdMap, Level) where, like be-

fore, VarWhys is a list of pairs, but here each pair is a variable conjoined with an impli-

cation graph which explains its binding. Search is controlled by overlaying backjumping

with learning, in which the reason for a conflict is summarized by a conjunction of propo-

sitional literals whose negation gives a clause that is implied by the SAT instance. The

clause (often referred to as a blocking clause) is then added to the problem to steer search

away from the conflict. The map IdMap associates a ground identifier with the variable

it represents, needed to reconstruct a (non-ground) clause from a conflict. Level is the

decision level which a variable adopts if it is assigned by search rather than propagation.

The first decision level is taken to be 1 (though, as discussed later, decision level 0 can

also occur).

Consider first the second clause of search which is responsible for backjumping, learn-

ing, and labeling. Each catch meta-call is concerned with assigning one variable if it is

unassigned. The predicate bind realizes labeling and instantiates Var to a truth value,

while recording the value and level in a (leaf) node of an implication graph. Note that

bind is never backtracked into, and assignment to false is not explicitly made. Since this

code is realizing CDCL, failure of a binding will lead to a blocking clause being learnt and

added to the problem description which will guide search away from the assignment that

has failed, directing search to the false branch. If a conflict is discovered during search,

the set_watch predicate in Figure 6 will call conflict(Whys) in Figure 7 and a ball

is created with BackjumpLevel instantiated to the decision level of the backjump. The

throw will thus only match the unique Catcher term ball(Level, Clause) for which

Level = BackjumpLevel. The ground BackjumpLevel and Clause terms are formed by

the predicate analyse_conflict(Whys, BackjumpLevel, Clause) using a conflicting

list of implication graphs Whys discovered when watching a clause (see Section 3.2 and

Figure 10). On recovery, the bindings made by search and propagation are unwound

back to the backjump level as required (though the bindings on the ball are retained).

The RecoveryGoal then uses update_conflict in Figure 8 to add Clause to a database

of learnt clauses (the learning algorithm explained in Section 3.2) which grows as search

proceeds. The ground Clause is translated into its non-ground representation at the

stage of the RecoveryGoal where the decision level reverts to that of BackjumpLevel:

https://doi.org/10.1017/S1471068420000435 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000435

138 E. Robbins et al.

Fig. 7. Backjumping search for SAT.

the variables of the clause can have bindings at later decision levels which do not hold

at the BackjumpLevel. Other elements of the database of learnt clause may also need to

be restored in a similar way.

The predicates get_learnt(Learnt) and put_learnt(Learnt) are merely wrap-

pers to built-ins that read and write a list of (learnt) clauses to a non-backtrackable

database: they can be realized with bb_get/bb_put as illustrated in Figure 8, or

nb_getval/nb_setval (Wielemaker et al . 2012), or using the assert/retract family of

built-ins.

When considering graph coloring in Section 2, colors are always explicitly assigned

in a search phase, and a conflict can only occur during search, after a color is assigned.

However, SAT is different: a variable might be assigned a value before search at the initial

setup. The decision level of such an assignment is taken to be 0. Conflicts which arise

https://doi.org/10.1017/S1471068420000435 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000435

Exception handling is backjumping 139

Fig. 8. Conflict analysis.

at this level are handled by the singleton case in analyse_conflict, which immediately

fails without reaching a throw, since if the problem specification is unsatisfiable then

no further search is necessary. Furthermore, with assignment at decision level 0 possible,

conflict analysis might determine that level 0 is the appropriate decision level to jump to.

This is prior to the call to search, hence the addition of search_setup to handle these

backjumps; this predicate mirrors search, but without the call to bind. In addition, it

is possible that the backjump caught by ball(0, Clause) describes a unit Clause and

this itself leads to assignments at decision level 0.

3.2 Conflict analysis for SAT

When a conflict is encountered, the implication graph leading to it is examined to learn a

clause, which is added to the formula to steer search away from the conflict. To illustrate,

consider the formula f = (¬x1∨x8∨¬x2)∧(¬x1∨¬x3)∧(x2∨x3∨x4)∧(¬x4∨¬x5)∧(x5∨
x6) ∧ (x7 ∨ ¬x4 ∨ ¬x6) and the partial assignment θ = {x7 �→ false, x8 �→ false} where

the variables x7 and x8 are assigned at decision levels 1 and 2, respectively, by search.

Observe that no further bindings are inferred by unit propagation. However, if search

subsequently adds x1 �→ true at decision level 3, then a series of unit propagations ensue

that ultimately lead to a conflict, owing to unsatisfiability of the clause (x7∨¬x4∨¬x6).

Unique Implication Points. Figure 9 illustrates an implication graph rooted at a special

conflict node, κ, that details how the conflict follows from binding x4, x6, and x7. Each

https://doi.org/10.1017/S1471068420000435 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000435

140 E. Robbins et al.

Fig. 9. Implication graph from f and the partial assignment
θ = {x7 �→ false, x8 �→ false, x1 �→ true}.

triple in the figure gives the level and sublevel, the variable assigned, and its truth value.

The implication graph can be inspected to learn a clause. The leaves of the implication

graph, which are circled in Figure 9, are the three bindings x7 �→ false, x8 �→ false, and

x1 �→ true, that together with clauses of f , prohibit the satisfiability of (x7 ∨¬x4∨¬x6).

This combination of bindings can be avoided by adding (x7 ∨ x8 ∨ ¬x1) to f which is

therefore a candidate learnt clause. However, another choice is possible, notably one with

fewer literals. Observe that any path that starts with the binding of x1 at decision level

3, the current decision level, and ends at κ passes through the intermediate node where

x4 is assigned. The single binding x4 �→ true therefore summarizes the net effect of the

two bindings x1 �→ true and x8 �→ false. Thus, an alternative learnt clause is (¬x4 ∨ x7).

In general, any node between the current (most recent) decision variable and the conflict

κ that strictly dominates (Cooper et al . 2006) κ can be used to construct a learnt clause.

Such nodes are termed Unique Implication Points (UIPs). The UIP nearest κ is the first

UIP (the node where x4 is assigned). The last UIP is furthest from κ and is where the

current decision variable is bound (the node where x1 is assigned).

Figure 10 presents code for creating a learnt clause based on the last UIP. The predicate

construct_clause performs a depth-first traversal of the implication graph, starting

from κ, and identifies decision variables by their empty implication graphs (SubWhys).

The constructed clause is made up of literals where variables are identified by the Id

ground term, and polarities are the negation of those that caused the conflict.

The construct_clause predicate also gathers the decision levels at which literals in

the new clause were assigned. These levels are used to find the backjump level, which is

chosen to be such that the learnt clause becomes unit, directing search away from the

conflict. For the last UIP learnt clause x7 ∨ x8 ∨ ¬x1 of Figure 9, construct_clause

will derive the clause [false-x1, true-x8, true-x7] with decision levels [3, 2, 1].

Search should resume by backjumping to level 2. Therefore, the call to conflict(Whys)

leads to throw(ball(2, [false-x1, true-x8, true-x7])). More generally, the back-

jump level is the largest level strictly less than the maximum (which is actually the

current decision level); search would not immediately benefit from the new clause if re-

sumed at an earlier decision level. Continuing at the backjump level ensures that the

learnt clause becomes unit almost immediately.

The act of backjumping removes bindings, in particular those induced by recently

added clauses. However, these clauses are retained in the non-backtrackable database

using a ground representation. Figure 8 lists the code for reinstating learnt clauses after

backjumping using the predicate add_learnt_clauses. Learnt clauses are saved together

with the level at which they were learned. Upon backjumping, the calls to watch_clause

for clauses learnt at the backjump decision level or later are lost, and these calls need to

https://doi.org/10.1017/S1471068420000435 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000435

Exception handling is backjumping 141

Fig. 10. Inferring and instantiating learnt clauses.

be made again. This necessitates rebuilding clauses after backjumping from the ground

representation of the database. The unground predicate achieves this using association

list IdMap to map a ground identifier to its propositional variable. This list is built during

problem setup and is passed through search as shown in Figure 7.

Reinstatement of learned clauses can be performed selectively to realize k-learning.

In k-learning (Marques-Silva and Sakallah 1996), learned clauses are only added to the

constraint store permanently if they have less than k variables. It decreases the cost of

learning by lessening pressure on memory and reducing the number of updates to the

store of clauses. Clauses with fewer variables have most influence, but learning will have

little impact if k is set too low. The presented approach can be also modified to allow

first UIP clause learning. This typically produces smaller clauses more tightly focused on

the cause of the conflict (Marques-Silva et al . 2009). First UIP can be realized in Prolog

by running a frontier over the implication graph, starting at κ, repeatedly expanding

the node with the highest level and sublevel. The first UIP is found when the frontier

reduces to contain a single node at the highest level (possibly augmented with nodes of

lower level). First UIP can thus be found in a single pass over the conflict graph without

introducing additional data structures.

https://doi.org/10.1017/S1471068420000435 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000435

142 E. Robbins et al.

Table 1. Performance of learning versus no learning

No learning 8-learning

Benchmark Time Assign Time Assign Throws Jumps

CBS k3 n100 m435 b90 127 2987 179,427 2206 56,329 24,650 31,667
CBS k3 n100 m435 b90 139 3204 193,247 874 26,827 10,163 16,647
flat175-17 22,791 748,377 10,225 107,066 43,546 63,477
flat175-28 15,754 471,521 15,132 154,985 70,895 84,059
flat200-20 16,345 519,868 3252 39,674 16,107 23,524
flat200-39 >30,000 13,326 125,053 54,516 70,502
uf100-0126 4097 248,581 1984 53,320 23,009 30,293
uf100-015 3499 210,330 857 24,676 10,101 14,559
uuf100-0119 9651 634,568 3644 95,553 40,073 55,497
uuf100-0120 5731 350,866 2578 67,868 28,378 39,498

Backjumping is designed to accelerate search which begs the question of whether back-

jumping, when implemented with catch and throw, can ever improve on the default

search mode of Prolog. Table 1 presents timings for a biased sample of classic SAT

benchmarks; biased because they were chosen to be nontrivial in that the execution time

exceeds 2 s for the vanilla solver. Times are in milliseconds, and benchmarking was car-

ried out with SICStus 4.5.1 on a 2.5-GHz Macbook Pro with 16GB RAM. The first two

benchmarks are random 3-SAT instances with controlled backbone size, the next four

originate from flat graph coloring problems, and the final four include two unsatisfiable

and two satisfiable random 3-SAT instances. The table gives data for the vanilla solver

with no learning, and for the backjumping solver given in this paper, augmented with first

UIP CDCL and using k-learning with k = 8. For both solvers, the execution time in mil-

liseconds is given (time), alongside the number of variable assignments made (assign). In

addition, for the backjumping solver, the number of throws made by the solver (throws),

and the number of assignments jumped over (jumps) are given. The balls thrown in

backjumping are the size of the analyzed conflict which is typically less than 20 liter-

als for these benchmarks, though this is problem-dependent. The timings suggest that

catch and throw are not only a useful code structuring device but can enable significant

improvement in performance when used to realize backjumping. As is conventional in

SAT solving, the timings are for finding a single solution. To enumerate all solutions,

the template from graph coloring using the succeed predicate can be adapted to add a

blocking clause for the solution and reactivating search reusing the learnt clauses. Code

for the work presented in this paper is available at https://www.cs.kent.ac.uk/~amk/

backjump.zip, including some variations not discussed here, such as pruning the set of

learnt clauses by removing those which are entailed by a newly learnt clause.

4 Concluding Discussion

The idea of using catch and throw to realize backjumping dates back at least to a dis-

cussion (Baljeu 2005) on comp.lang.prolog but the authors are not aware of any pro-

gramming examples that serve to illustrate the technique. The message of this discussion

is exemplified with two case studies which demonstrate that catch and throw are more

https://doi.org/10.1017/S1471068420000435 Published online by Cambridge University Press

https://www.cs.kent.ac.uk/~amk/backjump.zip
https://www.cs.kent.ac.uk/~amk/backjump.zip
https://doi.org/10.1017/S1471068420000435

Exception handling is backjumping 143

versatile than one would expect, providing exactly what is required for programming

backjumping. In fact, random solver restarts (Howe and King 2012) can also be accom-

modated by adding an outer catch meta-call which intercepts restart exceptions thrown

when the number of backjumps exceeds a threshold.

Intelligent backtracking (Bruynooghe 2004) can be combined with learning by restart-

ing the search from scratch and then fast-forwarding to a particular decision point (Howe

and King 2012). However, catch and throw provide a more general solution, not requir-

ing search to be completely restarted, and there seems no reason why this strategy cannot

extend to SMT solving (Robbins et al . 2015) by another instantiation of the template. It

has been recently shown (Drabent 2018) that the vanilla SAT solver of Figure 4 can be

understood as a logic program with added control; however, reasoning about the correct-

ness of learnt clauses is more challenging still, a research problem that is not exclusive

to logic programming.

Realizing backjumping with an ISO feature is undoubtedly attractive, and since ISO

encourages the use of catch and throw, one might hope that increasingly efficient imple-

mentations will emerge over time. Even though SWI-Prolog does not comply with the

ISO specification (since it does not copy the Ball before unifying it with Catcher), the

two case studies are fully portable because the Goal and Catcher goals do not share

variables.

Supplementary material

To view supplementary material for this article, please visit https://doi.org/10.1017/

S1471068420000435.

Acknowledgments

The authors thank the editor and anonymous referees for their thought-provoking com-

ments. This is a better paper for these suggestions. This work was supported, in part,

by EPSRC grants EP/K031929/1 and EP/N020243/1.

References

Baljeu, A. 2005. Using Exceptions to Implement Backjumping? comp.lang.prolog
newsgroup discussion. URL: http://coding.derkeiler.com/Archive/Prolog/comp.lang.

prolog/2005-09/msg00048.html.

Bentley, J. 1986. Programming Pearls. Addison-Wesley: New Jersey.

Bruynooghe, M. 1980. Analysis of dependencies to improve the behaviour of logic programs.
In International Conference on Automated Deduction. Lecture Notes in Artificial Intelligence,
vol. 87. Springer, 293–305.

Bruynooghe, M. 2004. Enhancing a search algorithm to perform intelligent backtracking.
Theory Practice of Logic Programming 4, 3, 371–380.

Carlsson, M. and Mildner, P. 2012. SICStus Prolog – the first 25 years. Theory and Practice
of Logic Programming 12, 1–2, 35–66.

Cooper, K. D.,Harvey, T. J. and Kennendy, K. 2006. A Simple, Fast Dominance Algorithm.
Technical Report TR-06-33870, Rice University, Computer Science. URL: http://www.cs.
rice.edu/~keith/EMBED/dom.pdf.

De Bosschere, K. and Jacquet, J. 1993. Multi-Prolog: Definition, operational semantics and
implementation. In International Conference on Logic Programming. MIT Press, 299–313.

https://doi.org/10.1017/S1471068420000435 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000435
https://doi.org/10.1017/S1471068420000435
http://coding.derkeiler.com/Archive/Prolog/comp.lang.prolog/2005-09/msg00048.html
http://coding.derkeiler.com/Archive/Prolog/comp.lang.prolog/2005-09/msg00048.html
http://www.cs.rice.edu/~keith/EMBED/dom.pdf
http://www.cs.rice.edu/~keith/EMBED/dom.pdf
https://doi.org/10.1017/S1471068420000435

144 E. Robbins et al.

De Kleer, J. 1986. An Assumption-based TMS. Artificial Intelligence 28, 2, 127–162.

Dechter, R. 1990. Enhancement schemes for constraint processing: Backjumping, learning,
and cutset decomposition. Artificial Intelligence 41, 273–312.

Deransart, P., Ed-Dbali, A. and Cervoni, L. 1996. Prolog: The Standard. Springer.

Drabent, W. 2018. Logic + Control: On program construction and verification. Theory Practice
of Logic Programming 18, 1, 1–29.

Gaschnig, J. 1979. Performance Measurement and Analysis of Certain Search Algorithms.
Ph.D. thesis, Carnegie Mellon University, Department of Computer Science, Pittsburgh, Penn-
sylvania 15213. CMU-CS-79-124.

Howe, J. M. and King, A. 2010. A pearl on SAT solving in Prolog. In Functional and Logic
Programming. Lecture Notes in Computer Science, vol. 6009. Springer, 165–174.

Howe, J. M. and King, A. 2012. A pearl on SAT and SMT solving in Prolog. Theoretical
Computer Science 435, 43–55.

Kondrak, G. and van Beek, P. 1997. A theoretical evaluation of selected backtracking algo-
rithms. Artifical Intelligence 89, 365–387.

Kowalski, R. A. 1979. Algorithm = Logic + Control. Communication of the ACM 22, 7,
424–436.

Marques-Silva, J. P., Lynce, I. and Malik, S. 2009. Conflict-driven clause learning SAT
solvers. In Handbook of Satisfiability, A. Biere, M. Heule, H. Van Maaren and T. Walsh, Eds.
IOS Press, 131–153.

Marques-Silva, J. P. and Sakallah, K. A. 1996. GRASP – A new search algorithm for
satisfiability. In Computer Aided Design. IEEE, 220–227.

Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L. and Malik, S. 2001. Chaff: Engineering
an efficient SAT solver. In Design Automation Conference. ACM Press, 530–535.

Robbins, E., Howe, J. M. and King, A. 2015. Theory propagation and reification. Science of
Computer Programming 111, 1, 3–22.

Stallman, R. and Sussman, G. J. 1977. Forward reasoning and dependency-directed back-
tracking in a system for computer-aided circuit analysis. Artificial Intelligence 9, 135–196.

Wielemaker, J., Schrijvers, T., Triska, M. and Lager, T. 2012. SWI-Prolog. Theory and
Practice of Logic Programming 12, 1–2, 67–96.

https://doi.org/10.1017/S1471068420000435 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000435

	Introduction
	Graph coloring
	Conflict analysis for graph coloring
	Backjumping in Prolog

	SAT
	Backjumping in a Prolog SAT solver
	Conflict analysis for SAT

	Concluding Discussion
	References

