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Highlights 

 Combinations of compartmental and mean field models needed in the Big Data era 

 Mathematical proof of a multiscale approach for explaining M/EEG data 

 M/EEG data can reveal laminar differences in neural dynamics 

 

Abstract 

Background  

In the era of Big Data, large scale electrophysiological data from animal and human studies are 

abundant. These data contain information at multiple spatiotemporal scales. However, current 

approaches for the analysis of electrophysiological data often contain information at a single 

spatiotemporal scale only. 

 

New method 

We discuss a multiscale approach for the analysis of electrophysiological data. This is based 

on combining neural models that describe brain responses at different scales. It allows us to 

make laminar-specific inferences about neurobiological properties of cortical sources using 

non invasive human electrophysiology data.  

 

 Results 

We provide a mathematical proof of this approach using statistical decision theory. We also 

consider its extensions to brain imaging studies including data from the same subjects 

performing different tasks. As an illustration, we show that changes in gamma oscillations 

between different people might originate from differences in recurrent connection strengths of 

inhibitory interneurons in layers 5/6. 
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Comparison with Existing Methods 

This is a new approach that follows up on our recent work. It is different from other approaches 

where the scale of spatiotemporal dynamics is fixed.  

 

Conclusions 

We discussed a multiscale approach for the analysis of human MEG data. This uses a neural 

mass model that includes constraints informed by a compartmental model. This has two 

advantages. First, it allows us to find differences in cortical laminar dynamics and understand 

neurobiological properties like neuromodulation, excitation to inhibition balance etc. using non 

invasive data. Second, it also allows us to validate macroscale models by exploiting animal 

data. 

Keywords: computational psychiatry; dynamic causal modelling; 

compartmental models; multiscale approaches; MEG data; statistical 

decision theory 

 

Introduction 
 

Recent developments in brain recording techniques allow one to record data with high  

spatiotemporal resolution (Jun et al., 2017). At the same time, the ability to collect human brain 

recordings from large numbers of subjects have revolutionised the study of neurological 

diseases and disorders (Braund et al., 2018; Williams et al., 2011). We can now study details 

at the scale of a local cortical circuit using animal models and describe differences between 

very large numbers of individuals at the macroscopic scale with non-invasive human 

electrophysiology. These developments suggest the need to develop multiscale approaches. 

These will allow us to connect animal and human models.  So far, approaches for the analysis 

of brain data contain information at a single spatiotemporal scale only. We here discuss a 

multiscale approach for brain imaging data analysis. This is based on combining neural models 

that describe brain responses at different scales. 

 

We focus on a neural mass model that can explain both animal data obtained with thin laminar 

probes and human MEG data. Neural masses are biophysical models describing neural 

population responses where ensemble activity is considered as a point process. For a general 

Jo
ur

na
l P

re
-p

ro
of



3 

 

introduction to these and other models, see (Deco et al., 2008; Moran et al., 2013). This and 

other nomenclature used below are defined in Table 1. Following our earlier work (Pinotsis et 

al., 2017), we provide a mathematical proof that the neural mass model makes similar 

predictions to a microscopic, compartmental model. This is based on statistical decision theory 

(Berger, 2013) and shows that both models can be thought of as rules belonging to the same 

equivalence class. We show that a Bayesian observer could not distinguish between the data 

predicted separately by each model. Alternatively, if both models are fitted to the same data 

using Bayesian inference then these fits will have the same error. This suggests the similarity 

of their predictions. 

 

 As an illustration, we considered laminar differences in the excitation to inhibition balance (E-

I) in human MEG data reported in (Schwarzkopf et al., 2012). We asked whether cortical 

function changes at various depths, and focus on differences in the (E-I) balance relevant to 

both pathophysiology  (Chen et al., 2003) and  information processing in the brain 

(Auksztulewicz and Friston, 2015; Friston et al., 2015a; Pinotsis et al., 2014). We find that 

differences in the E-I balance are expressed in the recurrent connection strengths of inhibitory 

interneurons in layers 5/6. Although MEG does not provide direct access to laminar data, the 

use of a neural mass model that makes laminar predictions allowed us to disclose details about 

cortical function that would otherwise be accessible only by using invasive recordings. In 

(Pinotsis et al., 2013), we analysed the same dataset using a neural field model. Here, we used 

a neural mass model instead. Neural masses are a limiting case of neural fields when intrinsic 

delays on the cortical manifold are neglected, see also Table 1. We did not use a field model 

because it does not have the same number of parameters as the compartmental model 

considered below (see Lemma 1 in the Theory and Calculations section). 

 

Table 1 Terminology used and definitions 

Term     

 
 
Definition and relevant 
references 

Neural mass model  Describes the coarse grained 
responses of neuronal 
populations using few, 
biophysically meaningful 
parameters (Deco et al., 2008, 
Moran et al., 2013) 
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Neural field model Similar to a neural mass but also 
includes explicit parameterization 
of the location on a cortical 
manifold (Deco et al., 2008, 
Pinotsis et al., 2014) 

Steady state responses Neuronal population responses 
after steady conditions have been 
reached and perturbations due to 
sensory drive have decayed. They 
reflect synchronous activity of 
many neurons whose variance is 
preserved over time (Moran et al., 
2009, Pinotsis et al., 2013) 

Big data (computational 
psychiatry) 

Advanced data analytics methods 
to extract information from large 
datasets that can be used to 
understand and treat diseases 
(Williams et al., 2013,  Rutledge et 
al., 2019; this term has a similar 
meaning in other fields like 
economics, meteorology etc). 

 

In  (Pinotsis et al., 2017), we analysed  data from laminar electrodes recorded from a single 

subject. Compared to that earlier work, our current paper includes two new contributions: the 

analysis of non invasive data and also of data from multiple subjects. Here we analysed  MEG 

data  using a hierarchical Bayesian approach (Parametric Empirical Bayes ; PEB) that 

downweighs neural model parameter estimates from subjects with less reliable data.  The 

neural models used to explain invasive vs non invasive data are different. Although the neural 

circuitry is the same, the neural model that explains invasive data outputs responses at different 

depths, while the model that explains non invasive data sums responses across depths. In our 

earlier work, laminar predictions were fitted to separate electrode tips. These recorded neural 

activity  from superficial and deep cortical layers separately (cf. Figure 7 in Pinotsis et al., 

2017). These recordings corresponded to the outputs of neural populations occupying different 

cortical layers. Here, we used MEG data. Fitting entailed summing up output responses across 

all layers. The best fit was achieved via a joint optimization of different weights with which 

different populations contribute to the MEG signal as well as observation (lead field) 

parameters of the virtual electrode. Also, the analysis presented here focuses on variability in 

the structure and function of neural sources between different people that might account for the 

variability in observed brain responses.  

 

 

Materials and Methods 
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Data. We used MEG source reconstructed responses reported in (Schwarzkopf et al., 

2012). We considered visually induced oscillations between 30-80Hz from the visual cortex of 

16 subjects. In that task, subjects paid attention to the centre of a screen that showed a static, 

high-contrast, square-wave, vertical grating.  MEG data were obtained using a CTF axial 

gradiometer including 275 sensors, with a sampling rate of 600 Hz. Subject head movement 

was also recorded and data were preprocessed with the use of SPM8 routines 

(http://www.fil.ion.ucl.ac.uk/spm).  An LCMV beamformer algorithm extracted oscillatory 

amplitude in an epoch between 0.5 and 1.5 s after stimulus normalised to the prestimulus epoch. 

This epoch was chosen because neural activity and the corresponding power increase during 

this epoch was stationary. This is an assumption of the DCM for steady state responses used 

here (Moran et al., 2009). Peak gamma responses were found in the medial occipital cortex, 

and at this peak location we used beamforming to obtain virtual electrode responses. Source 

areas were identified bilaterally. Here we analysed data from source activations in the right 

hemisphere only. Power spectra are shown in the Supplementary Figure. Peaks were calculated 

in  (Schwarzkopf et al., 2012) using a multitaper spectral estimate. They were identified after 

fitting a Gaussian function. 3 subjects were excluded from further analysis due to poor 

goodness of fit. 31% (5 out of 16) of the subjects showed clear peaks (see arrows). 

 

Biophysical models. We implemented a neural mass model that describes the local 

cortical circuit shown in Figure 1. This is based on the DCM toolbox of SPM12, 

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/, see spm_fx_cmc_BS.m in 

https://github.com/pinotsislab/MicroMacro/.  Then we fitted this model to the simulated data 

above using DCM and estimated its parameters. We also used the symmetric compartmental 

model of our earlier work (Pinotsis et al., 2016a, 2017) based on the model from (Jones et al., 

2007). That model comprised 10 PNs in layers 2/3, 10 PNs in layer 5, and 10 INs in both layers. 

The synaptic architecture followed general tenets of cortical micro-circuitry  where FF 

connections target the granular layer and FB connections target agranular layers, see e.g. 

(Pinotsis et al., 2013) for a further discussion. Modelling of single neuron morphology and 

physiology followed (Bush and Sejnowski, 1993), using the same parameters as in (Jones et 

al., 2007). Details can be found in (Pinotsis et al., 2017). 
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This is the compartmental model of the local microcircuit shown in Figure 1 introduced 

by (Bush and Sejnowski, 1993). In our variant, we changed conductance values and increased 

the number of inhibitory units from 3 to 10, so that the distribution of E-I neurons is uniform. 

To ensure that relative differences in interneuron densities were accommodated, we multiplied 

the maximum conductance values of the corresponding connections by a factor of 0.3. A further 

simplification was carried out by reducing the network to a single minicolumn, consisting only 

of one superficial, and one deep PN, and an IN in each layer. Thus, the number of connection 

parameters (synaptic strengths) in the microscopic and macroscopic models was the same. 

These parameters are included in Table 2 of the Results section.   This satisfies the theoretical 

requirements suggested by statistical decision theory  see  the Theory and Calculations section 

below. It assumes symmetry constraints on horizontal connectivity (within each cortical layer) 

of the sort assumed in mean field models that describe aggregate activity over hundreds of 

neurons. A detailed description of the correspondence between the parameters of the two 

models is provided in the next section. 

 

Parameter estimation. To fit the neural mass model m to simulated and MEG data we used 

DCM for steady state responses ( )Yg  , that is implemented in the function spm_dcm_csd.m 

of the DCM toolbox. Steady state responses are neuronal population responses after 

perturbations due to sensory drive have decayed. They reflect coordinated activity of many 

neurons under stationarity and ergodicity assumptions (Moran et al., 2009) , see also Table 1. 

DCM for steady state responses estimates the connection strengths of a biophysical model that 

reflect the E-I balance and neurotransmission described by microscale (compartmental) and 

macroscale (neural mass) models. The optimization of the likelihood model uses a gradient 

scheme on the negative Free energy, F. It minimizes it with respect to a variational density 

over model parameters  , ( ) ( , )q C  . After convergence, the variational density 

approximates the true posterior ( ) ( | ( ), )Yq p g m    and the Free energy approximates 

the model evidence ln ( ).F p y m   Thus, the variational density provides posterior 

estimates of connection parameters. 

 

Parametric Empirical Bayes. To model between-subject effects we used a hierarchical 

Bayesian inference approach known as Parametric Empirical Bayes (PEB), see (Friston et al., 
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2015b; Pinotsis et al., 2016b; Preller et al., 2019) and the function spm_dcm_peb_bmc.m in the 

DCM toolbox. This provides an efficient scoring and averaging of large sets of (nested) models 

(Friston and Penny, 2011). It employs Bayesian model reduction to estimate the posterior 

density over hidden model parameters for a reduced model (defined in terms of a prior density) 

using just the posterior density estimated from a full model (with a complete set of parameters). 

These model parameters were used as regressors in the design matrix. This was part of a GLM 

with dependent variables gamma peak frequency and V1 size.  

 

 

Theory and Calculations 

 

Here, we present a mathematical proof of the functional equivalence between the 

compartmental and neural mass model used here and in (Pinotsis et al., 2016a, 2017). We also 

discuss extensions of our approach that could include computational models predicting data 

from different modalities (e.g. EEG/fMRI) or tasks (e.g. resting state, task evoked responses). 

Our proof relies on statistical decision theory.  For a primer on this topic, see Appendix and 

(Berger, 2013). 

 

Assume two  Bayesian decision rules 1 and 2 with corresponding estimates (of the true states 

of the world  ), 1 2( , ,..., )qa a a a  and 1 2( , ,..., )qb b b b . Then, the complete class theorem  

(Berger, 2013) implies that the two rules have the same expected loss, ( , )C a  (see Equation 

A.2), that is,  

 

( , ) ( , )C a C b              (1) 

 

We show below that this property of Bayesian decision rules has interesting implications for 

Bayesian estimates of parameters from different biophysical models that describe the same 

brain network. Consider two computational models of neural population activity, model M1 

and model M2.  M1 is a mesoscopic  and M2 is a microscopic model. For concreteness we here 

consider a compartmental and a neural mass model. They describe the cortical circuit shown 
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in Figure 1. Our approach however could be straightforwardly applied to other kinds of 

computational models describing different scales  (e.g. point processes, neural fields etc).  

 

 

 
 

 

 

Fig. 1. The Bush and Sejnowski microcircuit. Excitatory (black) and inhibitory (red) 

populations occupy superficial and deep cortical layers. Firing rates within each population 

provide inputs to other populations and convolution of presynaptic activity produces 

postsynaptic depolarization. Arrows denote excitatory and inhibitory connections. All 

recurrent connections are inhibitory. The same microcircuit was implemented both as a mean 

field (Pinotsis et al., 2017) and a compartmental model (Jones et al., 2007). Evolution  

equations describe the flow of hidden states representing population responses.  

 

Let model parameters be given by 1 2( , ,..., )q    and 1 2( , ,..., )r     for models M1 and 

M2 respectively. Fitting them to brain data o O  using Bayesian inference, we obtain Bayesian 
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parameter estimates given by 
1 2

( , ,..., )
q

a a a a
     and 

1 2
( , ,..., )

r
a a a a    . Assume now that 

o O are non invasive electrophysiology data, like the MEG data we considered here. Fitting 

model M1 is possible using DCM or some other approach. On the other hand, fitting the model 

M2  is hard due to large number of parameters that the compartmental model has. However, 

we show below that parameter estimates of model M1 (maximum a posteriori or MAP 

estimates) will be equal to a variant of model M2, which we call M2’.  

 

Lemma 1. Consider a variant of M2, called M2’, with the same number of parameters as M1. 

Then, the MAP estimates ( )a   and ( )a   of parameters  and  of M1 and M2’ 

obtained by fitting the same data o O are equal. 

 

Proof. First, we construct a variant of model M2  with the same number of parameters as M1, 

q.  Models M1 and M2 are described by the following general equation 

 

( )X X Xy                                     (2) 

 

where X indexes the  two models, { 1, 2}X M M , ( )X   represents the differential 

equations of the model that generates responses 
Xy with parameters { , }    and X  is 

observation noise. Specifically, ( )X   is given by 

 

2

2

14 4 11 1

23 3 22 2

( ) ( ) ( ),     1,..., 4

( , , ) 2 ( , , )                                  

( ) ( ) ,                               1

( ) (
( , , )

M 1 q q

q

q m q q q q q q q

q q

L V t q

V f V U V V f v U X M 1

a v a v U q

a v a v
f v U

 

    

 

 


  

     

    

  




32 2 31 1 33 3 34 4

41 1 44 4

),                                    2

( ) ( ) ( ) ( ),     3

( ) ( ),                                 4

q

a v a v a v a v q

a v a v q

   

 






        
     

                           (3) 
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for the neural mass model and    

 

2

2

1 2

( ) ( )

                                                    2

( , , ) [1/ (2 ) ( ) ]

M m m im m

m

m
m x m

m

m m m m m x m x m

A l L J t

A
J v X M

v h v U c A A v U







 

 

   

    



                                                  (4)

   

for the compartmental model. M1 is the neural mass analogue of M2 introduced in (Pinotsis et 

al., 2017, 2016a). M2 is a well-known conductance based (microscopic) model (Bush and 

Sejnowski, 1993). In this model, neurons and their constituent parts (axonal arbours, soma etc) 

are considered as cylindrical conductors (segments) and transmembrane potentials are given 

by aggregates of Ohmic currents. These currents flow across the compartment, forming an RC 

circuit and obey Kirchhoff’s law. imL  are lead field coefficients for each compartment and 

sensor,  ,m mA l  are the cross-sectional area and the length of compartment m (projected in a 

direction perpendicular to apical dendrites). m , mc  are the axial resistivity and membrane 

capacitance and ( )mJ t  is the longitudinal current density. This model yields detailed 

descriptions of intracellular longitudinal currents – within the long apical dendrites of 

synchronized cortical pyramidal cells – that follow from cable theory. Neuronal populations 

are modelled as spatially organised networks with the soma of principal cells in supragranular 

and infragranular layers. This model captures the laminar structure of cortical columns and can 

characterize the cellular and circuit level processes that are measured with multi-electrode 

arrays or MEG. It also provides a model of neuronal morphology and how neurons are grouped 

together to form spatially extended networks, with precise connectivity.   

 

The crucial difference between the two models is that M1 operates at the mesoscale and cannot 

describe microscopic effects like dendritic delays or back propagation. The model predicts 

activity Xy based on a local microcolumn depicted in Figure 1. M2 on the other hand, operates 

at the microscale and assumes that predictions Xy  are generated by an ensemble of smaller 

structures called mini-columns.   Below we considered ten mini-columns. These comprise the 
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macro-column shown in Figure 1. In this setting, activity predicted from the compartmental 

model M2 (see (Jones et al., 2007)) is a simple superposition of  minicolumn activities ( , )aY t   

 

{ }

' ' ' ' { }
''

( , ) ( , )

( , ) ( ), ( , , , )

M2 a

a q

a a q q q q k k ka k q
k qq

y t Y t

Y t Y A l L J t Q J L c

 

 








 
  

 




     (5) 

 

where the index 'q q  runs over a subset of compartments 'q  that comprise each mini-

column and 1,...,10a   runs over the mini-columns. Each mini-column comprises the 

compartments of superficial PN, deep PN and superficial and deep interneurons, and  

( , , , )k k kaQ J L c   stands for the exogenous input – that depends on activity in proximate 

compartments indexed by { }, 'k q k q  . The argument in the factor Q in Equation (5) above 

simply means that this input depends upon the current density in the adjacent mini-columns, 

their lead fields, anatomical parameters   and the strength of connections kac . 

 

We assumed that kac are the same between any mini-column pair and that all mini-columns 

have the same anatomy. Thus, the number of parameters in model M2 was reduced by a factor 

equal to the number of minicolumns comprising one macrocolumn. Because M2 describes the 

same circuit as M1 and all minicolumns have the same parameters, the resulting model (which 

we call, the symmetric compartmental model and denote by M2’) has the same number of 

connection parameters as the mean field model M1. These parameters are included in Table 2. 

We denote the M2’ parameters by 1 2( , ,..., )q     and the corresponding Bayesian estimates 

by 
1 2

( , ,..., )
q

a a a a    . Despite the reduction in the number of parameters, predictions of 

laminar dynamics from models M2 and M2’ were very similar, see (Pinotsis et al., 2017).  

Activities of minicolumns lie on an invariant subspace in the full phase space of the network 

and have the same dynamics; see (Afraimovich et al., 2001; Breakspear et al., 2003) for a discussion 

of invariant subspaces. In this case, it is not possible to distinguish between minicolumns and 

describe horizontal interactions within a cortical layer. Assuming the same connection 
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parameters across mini-columns comes at a cost: it means that we have neglected horizontal 

interactions within the same cortical layer mediated by recurrent synaptic coupling. On the 

other hand, we have described laminar interactions with a mean field model. Following DCM 

for steady state (Moran et al., 2009), we here considered that the neural mass model M2 is 

perturbed around a fixed point attractor state. We also considered that the compartmental model 

M1 operates in the same dynamical regime. In (Pinotsis et al., 2017), we found a very high 

correlation between the responses of the two models (r=0.9343, p < 0.001).  We did not 

consider other non-trivial bifurcations and richer dynamics that M1 can exhibit. To sum up, we 

assumed that all mini-columns  in the compartmental model M2 have the same anatomy and 

the connection weights kac are the same between any mini-column pair.  

 

Consider now the connection parameters of models M1 and M2’ as the true states of the world 

(in the language of statistical decision theory). Then  M1 and M2’ can be thought of as two  

Bayesian decision rules 1 and 2 that the statistician used to infer them. In this case, the 

corresponding estimates of the true states  , are given by 1 2( , ,..., )qa a a a     and 

1 2( , ,..., )qa a a a    . Also, Equation (1) above implies  

 

( , ) ( , )C a C a
                                                                                                                      (6) 

 

The corresponding Bayes loss satisfies (see also Equation A.2) 

 

( , ) ( ) ( , ) ( )R a p d R a p d
 

                                                                                              (7) 

 

Assuming the same priors of the statistician about the true states, ( ) ( )p p  , we get   
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( , ) ( , )

( , ) ( ) ( , ) ( )

R a R a

L a p a da L a p a da


 

    

 

   



 

                                                                           (8) 

 

Considering point density probability distributions, the above Equation implies an Equality of 

MAP estimates ( ) ( )a a     . 

This concludes the proof of Lemma 1.QED. 

 

  

To sum up, the MAP estimates for the M1 and M2’ are equal 
1 1( ) ( )a a     , that is, 

1 1( ) ( )p a p a     and we assumed that M1 and M2’ describe the cortical microcircuit 

equally well, i.e. ( ) ( )p p  . Motivated by these results we now prove the second 

Lemma that establishes the construct validity of M1 with respect of M2’, i.e. that the two 

models predict similar data –and M1 is a neural mass model that predicts laminar responses. 

 

Lemma 2. Let o O be simulated data from M2’ (the symmetric compartmental model). The 

Maximum Likelihood (ML) problems for models M1 and M2’  

 

 ( ) arg min ( ) ( )

( ) ( ( ) ( ))

( ) log ( , ) ( )

a
p a f f o

f KL q a p

f o p o a q a d






 

 

  

  

 

 

 

                    (9) 

 

and  

 

 ( ) arg min ( )

( ) ( ( ) ( ))

a
p a f

f KL q a p






 

  



 

                                                                                                            (10) 
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are the same. 

 

Proof. The  ML estimation problem for a model M is the problem of finding the posterior 

distribution of model parameters ( )p a    by optimizing the free energy, ( , ),F o   see e.g. 

(Pinotsis et al., 2012) for details: 

 

( ) arg min ( , )

( , ) ( ( ) ( )) log ( , ) ( )

a
p a F o

F o KL q a p p o a q a d




  

 

     



   
                          (11) 

Here ( , )p o a   is the data log-likelihood and ( )q a  is the approximate posterior. The Free 

Energy ( , )F o   has two parts  

 

( , ) ( ) ( )F o f f o                                                    (12) 

 

One depends on prior beliefs about the model parameters ( )p    and the other on observations 

o O . Thus the posterior should not move too far from our prior guess and also maximize the 

data log-likelihood. Then Equation (11) for model M1 is the same as Equation (9). Using 

Lemma  1, we can also replace   by  in Equation (9)  

 

 ( ) arg min ( ) ( )

( ) ( ( ) ( ))

( ) log ( , ) ( )

a
p a f f o

f KL q a p

f o p o a q a d






 

 

  

  

 

 

 

                                                                                                        (13) 

 

To sum up, Equation (13) is equivalent to Equation (9). Because o O  are simulated data from 

M2’, ( , ) 1p o a    and Equation (13) yields Equation (10).  

 

This concludes the proof of Lemma 2.QED. 
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Since the ML estimation problem for the two models are the same, it follows that fitting the 

neural mass (M1) model to simulated data o from the compartmental model (M2’), we perform 

the same parameter inference as if we were fitting the compartmental model itself. In the 

context of statistical decision theory , the free energy can be thought of as a cumulative loss 

function of the form of Equation (12). Then Bayesian inference is a decision problem that 

optimizes (12). The statistician collects observations o O   to infer parameters. Assume that 

we sample the data space successively O , obtaining brain data 1o first, then 2o , 3o  etc. with 

1 2 3, , ,... .o o o O   This is known as Bayesian belief updating (Cooray et al., 2016) and suggests 

that  that we can assume that the loss function (12) can optimized in the same successive, 

optimal and rational manner after observing each data sample io O , i=1,2,…, that is 

 ( , ) ( ) ( )i i

i

F o f f o    Let us then assume that the first sample 1o was simulated data 

from M2’  similarly to Lemma 2 and that the second sample 2o O  was the MEG source 

reconstructed data that we considered in the Results section below. Similarly to Equation (11), 

the inference problem for model M1 and sample 2o  can be written as 

 

2 2

2 2

2

2

2 2 2 2

2

( ) arg min ( ) ( )

( ) ( ( ) ( ))

( ) log ( , ) ( )

a
p a f f o

f KL q a p

f o p o a q a d






 

 

  

  

   

 

 

                                                                                                  (14) 

 

where we use an upper index, i=2, in 
ia to denote the parameter estimates obtained after 

observing the data sample io O  and a lower index in ( ), ( )i if f o  to denote step wise 

components of  ( , )F o   as above.  For simulated data, the expectation of  ( )p  , ( )p  

1 1( ) ( )a a     . It is equal to the MAP estimate obtained from the previous step (fitting 

1)o . Thus, instead of fitting the mean field model M1 to the MEG data 2o O  (as done in 

traditional DCM), we consider an extended data space comprising simulated and empirical data  

1 2,o o O  and successively fit M1 to 1o  and 2o . The first fit ensured that model M1 makes 
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the same predictions as the compartmental model M2’ when fitted to MEG data. This 

corresponds to our two-step approach—where each step corresponds to a different sample. Step 

one: construct a micro-scale (e.g. compartmental) model that captures biophysical properties 

of single neurons. Test it with intracranial recordings from animals, 1o . Step two: tune the 

parameters of a neural mass model to give similar predictions as the compartmental model. 

Test it with human M/EEG data, 2o . 

 

One could also consider a third sample 3o ,  with 1 2 3, , ,...o o o O  . This could correspond to 

data from a different modality that model M1 can predict and fit the model to the new dataset 

using the posteriors obtained from fitting 2o as priors. This is the approach taken by (Jafarian 

et al., 2019; Wei et al., 2020) to achieve Bayesian fusion. In that work, the neural model M1 is 

coupled with different observation models that predict EEG and fMRI data:  2o  and 3o are 

source reconstructed EEG data and deconvolved fMRI data respectively. Similarly, one could 

use the approach described above to fit the model to different datasets from the same subjects. 

Let for example, 2o  and 3o be resting state and task data and assume that model M1 predicts 

both for different values of its input, e.g. it is a canonical microcircuit neural mass model that 

predicts both steady state responses 2o  (Pinotsis et al., 2018) and evoked potentials 3o  (Díez 

et al., 2017; Ranlund et al., 2016). This will be pursued elsewhere. 

 

 

 

Results 

 

As an illustration, we applied our approach to human MEG data from (Schwarzkopf et al., 

2012). We fitted power spectra of visually induced oscillations between 30—80Hz from 

different people, similar to our previous work (Pinotsis et al., 2013). The corresponding 

gamma-band frequency correlated with the retinotopically determined surface area of central 

V1 (Schwarzkopf et al., 2012). Data were recorded from the visual cortex of 16 subjects while 

they viewed a static, high-contrast vertical grating.  
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We used the neural mass model shown in Figure 1  described in detail in (Pinotsis et al., 2017). 

This model includes two pairs of excitatory-inhibitory  populations, one in superficial and the 

other in deep layers. Each  population pair is connected with intralaminar connections. 

Superficial and deep populations are also connected with interlaminar connections. Arrows 

correspond to excitatory (black) and inhibitory (red) connections. 

  

To fit these data, the parameters of the neural mass model had been tuned to predict similar 

laminar data as a compartmental model. The mathematical basis and constraints for this are 

described in the Theory and Calculations section. In Figure 2A, model predictions and data are 

shown in dashed and solid lines along with 95% confidence intervals across subjects for the 

data from (Schwarzkopf et al., 2012). These quantify variability across subjects and overlap 

for model predictions and data. In Figure 2B, percentage variance explained for individual 

subject fits is shown. A Welch t-test yielded non-significant differences in the accuracy of fits 

to the five subjects that had strong gamma peaks compared to the rest (shown with arrows in 

Supplementary Figure). Mean and standard deviation of the accuracy of fits for the five subjects 

with pronounced gamma peaks (“strong”) is shown in the left bar of Figure 2B; while mean 

and standard deviation of fits of the remaining subjects in the right bar (“weak”). Example fits 

from individual subjects are shown in Figure 2C. The parameters of the tuned neural mass 

model were used as priors for subsequent fits using Dynamic Causal Modeling (DCM) for 

steady state responses (Moran et al., 2009). They were obtained by fitting the neural mass 

model of Figure 1 to simulated data from the compartmental model of (Jones et al., 2007). 

These parameters are included in Table 2.  
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Table 2 Synaptic connectivity parameters for the microscale and macroscale models.   

 Description Max 

conductance 

(μS) 

Microscale 

model 

Intrinsic 

connectivity 

Macroscale model 

(a.u) 

44a
 

SP–>SP 0.001 4.4 

14a
 

SP–>SI 0.003 4.8 

34a
 

SP–>DP 0.00025 23.3 

41a
 

SI–>SP 0.015 3.8 

31a
 

SI–>DP 0.0003 5.9 

11a
 

SI–>SI 0.0006 4.2 

33a
 

DP–>DP 0.005 2.2 

23a
 

DP–>DI 0.0003 4.6 

32a
 

DI–>DP 0.0075 6.9 

22a
 

DI–>DI 0.0006 4.16 

 

The fine tuning of the neural mass model based on compartmental model predictions was 

described in detail in (Pinotsis et al., 2017). In that earlier work, fine tuning adjusted the priors 

of the neural mass model to describe the difference in the timings of neural activity and delays 

in signal propagation between superficial vs deep populations, due e.g. to the dispersion of 

axons, in the same way as the microscale (compartmental) model. We also validated this model 

using laminar data from mice reported in (Pinto et al., 2013), see (Pinotsis et al., 2017) and also 

monkey data, see (Pinotsis et al., 2016a). We showed (using Bayesian model comparison 

(Pinotsis et al., 2013)) that the neural mass model could correctly distinguish between deep and 

superficial neural responses. This established its construct validity. We here used the same 

model considered in that earlier work after adapting it to fit MEG data. This has the advantage 

that its parameters had been tuned to predict superficial and deep cortical dynamics. In other 

words, the model makes predictions of neural responses at different cortical depths.  
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Fitting the fine tuned neural mass model to human MEG data his allowed us to perform 

laminar-specific inferences. Motivated by earlier results (Muthukumaraswamy et al., 2009; 

Schwarzkopf et al., 2012) we asked whether gamma peak frequency variability might relate to 

differences in the concentration of the inhibitory neurotransmitter  GABA in the occipital lobe, 

measured using magnetic resonance  spectroscopy  (MRS). This has been shown to correlate  

with  peak  gamma- oscillation frequency. We tested this hypothesis and asked what the origin 

of differences in cortical inhibition between different people might be. Specifically, we asked 

which inhibitory connection strengths can predict  V1 size1 and gamma peak frequency. We 

used a recent approach known as parametric empirical Bayes (PEB; see Materials and Methods 

and  Friston et al., 2015b; Pinotsis et al., 2016b). This employs a Savage-Dickey approximation 

(Verdinelli and Wasserman, 1995) to perform an exhaustive search over all combinations of 

model parameters that might drive differences in gamma responses or anatomy between 

different people. This approach considers all possible combination of connection strengths 

shown as arrows in Figure 1. It scores, in terms of a Bayesian GLM, how well they can predict 

a given phenotype; here V1 size and gamma peak frequency that were available for each subject 

along with MEG oscillations from the dataset from (Schwarzkopf et al., 2012). 

                                                             
1 In (Schwarzkopf et al., 2012) V1 size had been measured using retinotopic mapping with fMRI: this calculated 

the stimulus location at which each voxel responded (Sereno et al., 1995) and these data were subsequently used 

to delineate V1 surface using Freesurfer (Fischl et al., 1999). 
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Fig. 2. A) Empirical responses (power spectra) and model fits are shown in dashed and solid 

lines along with 95% confidence intervals across subjects in data from (Schwarzkopf et al., 

2012). B) Percentage variance explained in individual subject fits. No significant differences 

were found in the accuracy of fits between spectra including strong and weak peaks (see text 

and Supplementary Figure). C)Example model fits to individual subjects. Red and blue lines 

correspond to data and model predictions.  
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Fig. 3. PEB analysis. We scored alternative GLMs where predictors of 

variability in V1 included any combination of the connections (arrows) in 

Fig.1. We found that for the data from (Schwarzkopf et al., 2012). V1 size 

could be best predicted by the recurrent connectivity of deep inhibitory 

interneurons, 
22a  (orange arrow). Evidence was very strong p>0.95. 

 

 

 

 

We found that gamma peak frequency variability was not predicted by connection changes 

between subjects. However, V1 size variability was. Using PEB, single subject estimates of 

the recurrent connection strengths in the deep inhibitory population could predict the 

corresponding size of V1 (Figure 3). This was in agreement with our earlier results in (Pinotsis 

et al., 2013) where we had also found (using a different, neural field model), that individual 

differences in gamma oscillations correlated with variations in the excitatory drive to 

GABAergic interneurons. The current results are also similar to results in (Pinotsis et al., 

2016b), where we found using the same neural field model and a similar MEG dataset that 

differences between subjects correlated with interneuron output. Both those earlier results used 

a model that describes spatially distributed spectral responses over the cortical manifold (neural 

field), that is, within the same cortical layer. However, that earlier model could not make 

predictions of differences in cortical dynamics between different layers, like the model we 

considered here. To sum up, we here confirmed that individual variability in V1 size correlated 

with differences in the excitation to inhibition balance that we had found earlier. We also found 

a novel result: these differences suggest differences in deep inhibitory interneuron activity. 

 

 

Discussion  

 

The ability to process and store big datasets, known as Big Data, has revolutionized cognitive 

and computational neuroscience among other fields. We now have the ability to record 

electrophysiological data at an unprecedented spatial and temporal resolution, e.g. the first 

generation of  Neuropixel  probes could record more than 700 neurons from five brain 

structures (Jun et al., 2017). We can also collect and process data from thousands of healthy 
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and patient subjects in large scale clinical studies with psychiatric patients, like the i-SPOTD 

study of more than 2000 patients with depression (Braund et al., 2018; Williams et al., 2011). 

In brief, as a result of the Big Data revolution, there are new, unparalleled opportunities to 

study brain structure and function. We can study details at the scale of a local cortical circuit 

using animal models and describe differences between very large numbers of individuals at the 

macroscopic scale with non-invasive human electrophysiology. These developments suggest 

that multi-model, multi-scale approaches are required for the analysis of brain data. We 

presented such an approach here. 

 

Specifically, we used a neural mass model to explain non-invasive human MEG data. The 

parameters of this  model were fine tuned so that the model makes similar predictions with a 

compartmental modelthat describes neural activity  at the microscopic scale. This allowed us 

to make laminar-specific inferences regarding the generators of the bulk macroscopic response. 

Our approach is different from some common uses of biophysical models in computational 

neuroscience. Often, in these applications, the scale of spatiotemporal dynamics described by 

the model is fixed. It depends on the available dataset and the researchers’ interests, see e.g. 

(Bassett et al., 2018; Poldrack et al., 2018).  Here, we present an alternative approach that uses 

combinations of  biophysical models that explain spatiotemporal dynamics at the micro- and 

macro- scales (Pinotsis et al., 2016, 2017). This has two advantages. First, it allows us to find 

differences in cortical laminar dynamics using non invasive M/EEG data. Second, it also allows 

us to validate macroscale models of the sort used in Dynamic Causal Modeling (DCM) by 

exploiting animal data.  

Our approach has two steps. Step one: construct a mesoscale (mean field) model that includes 

the same neuronal populations as a validated microscopic (compartmental) model that captures 

biophysical properties of single neurons   (e.g. the geometry of the dendritic tree, kinetics and 

densities of ion channels, inputs from subcortical areas etc; (Bush and Sejnowski,  1993; Jones, 

2016; Kopell et al., 2000)  Fine tune its parameters to give similar predictions as the 

compartmental model. Test it using invasive, animal data, including local field potentials and 

multielectrode unit activity, similarly to (Pinotsis et al., 2016a; Pinotsis et al., 2017).  Step two: 

use the same mescoscale  model  to explain human M/EEG data.  
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We established our approach by constructing a mathematical proof based on statistical decision 

theory. This theory studies optimal decisions in the face of uncertainty in the data (Berger, 

2013). It has found numerous applications in neuroscience and psychology, including 

reinforcement learning (Dayan and Daw, 2008) and decision making (Trommershäuser et al., 

2008). Our proof uses statistical decision theory to reformulate biophysical models as decision 

rules. Then it establishes model equivalence by considering models as admissible rules.   

Besides its mathematical merit, the proof shows how the compartmental model constraints the 

particular mean field model that can be used to explain the same data. This model needs to 

have the same connection parameters as the compartmental model (see also Lemma 1). It can 

be a neural mass (that we used here) but it cannot be any mean field model (even if it predicted 

similar data),  like e.g. a neural field that has an unequal number of connection parameters. The 

proof also dictates simplifications and adaptations of the original model by (Jones et al., 2007).   

In the variant we used here, activities of minicolumns were constrained to lie on an invariant 

subspace neglecting horizontal interactions within layer.  

 

In brief, using the complete class theorem, our proof suggests how to construct low dimensional 

models making similar predictions to detailed models with large number of parameters 

(Lemma 1) and how to test if they are equivalent (Lemma 2). Although parameter estimation 

of the sort we considered here is an ill posed inverse problem (many different parameterizations 

might give rise to the same data features, see e.g. ( Pinotsis et al., 2013)), predicting the same 

data features does not mean that models are equivalent from the point of view of a Bayesian 

observer making decisions. They do not describe the same latent structure (true states of the 

nature). This is actually the essence of Bayesian model comparison where alternative models 

are scored in terms of how well they fit the data, see e.g. (Pinotsis et al., 2012) for a comparison 

of neural masses vs. fields using local field potential data. 

   

Our approach can be used to test  the biological plausibility of mean field models. These 

describe coarse grained neural activity at the macroscale. The approach can assess the 

limitations of simpler, low dimensional models in terms of reproducing predictions from more 

detailed e.g. compartmental or point process models. The latter describe activity at the 

microscale and can be validated in vitro (White et al., 2000). Validating mean field models 

against more detailed descriptions of brain anatomy and structure is important also for effective 
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connectivity studies as when we find causality, we do not want this to be just “model, not 

biological causality” (Mehler and Kording, 2018). 

 

Our approach provides a way to test for biological plausibility of mean field models using 

multiscale data. Before fitting them to M/EEG data, one can do an analysis similar to what we 

discussed here by using animal data. This would correspond to step one of our approach. It 

would fine tune their parameters to reproduce the same predictions as earlier compartmental 

models. Then they could be further validated using invasive, animal data, like we did in 

(Pinotsis et al,, 2016a; Pinotsis et al., 2017) . Thus, while fitting the macroscale, neural mass 

model to MEG data here, the same temporal constraints inherited from the microscale model 

were preserved. Because of constraints imposed upon the parameters of the microscale model, 

spatial effects within the same layer were neglected (e.g. interactions between cortical columns 

and the dependence of gamma peak frequency on the horizontal spread of the underlying 

cortical source).  

 

Our approach provides a way to implement data fusion across scales. Here, we applied the 

approach to explain data with different spatiotemporal resolution. It can also be used to explain 

multimodal datasets similar to  (Jafarian et al., 2019; Wei et al., 2020) and also data from 

different tasks obtained with the same modality.  

 

In all the above three cases, data fusion (across scales, modalities or tasks) rests upon 

constructing  models that can be thought of belonging to the same equivalence class, as 

suggested by our proof (see Theory and Calculations).  For example, for data fusion across 

tasks, the parameters of a neural mass model for a single subject could be estimated 

successively by first fitting it to data from one task (e.g. resting state) and then refining these 

estimates by fitting the model to data from the second task (e.g. oddball response). Importantly, 

the priors for the second fitting would be the posteriors of the first and the drive to the model 

would be adapted to describe the difference of inputs between tasks. This can be important for 

Computational Psychiatry where different aspects of the same pathology might be evident in 

various tasks. 
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In future work, we will also study the relationship between population activity predicted by the 

macroscale model and the symmetric compartmental model we used here. Spatial effects within 

the same cortical layer can be described by extending our approach to a different class of mean 

field models besides neural masses, called  neural fields (Pinotsis et al., 2016b). We will also 

consider datasets from the same human subject recorded with different modalities or 

performing different tasks. In that case, parameter estimates obtained by e.g. fitting resting 

state activity will be used as priors to explain task induced responses. This can be important 

for applications as there might be complementary information in different datasets that could 

lead to a better understanding of the heterogeneity of neurological diseases and disorders than 

what afforded by current diagnostic classifications. 
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Appendix: Elements of statistical decision theory  

 

Consider a sample space O , that is a Borel subset of a Euclidean space, and an observation or 

sample of brain data no O  . A decision rule   is a method that the statistician uses to 

infer the true states of nature   based on brain data .o O  In the context of statistical decision 

theory, there are many decision rules from which the true states can be obtained. These give 

rise to the space A , the space of possible estimates, called also the decision space. Each 

different rule gives a  different estimate of  . Let m , m<n, where  is called the 

space of all possible parameters. Here, 1 2( , ,..., )q      {1,..., }k q , parametrize a 

biophysical model M and the space   includes parameters that give rise to observed brain 

dynamics. This is a generative model of brain data, that is, a mapping from biophysical 

parameters   to  observed data o O .    Parameter inference can be reformulated as a problem 

of statistical decision theory  (Bissiri et al., 2016). The decision rule   is used to obtain an 

estimate of model parameters. Instead of optimizing a likelihood function, this approach entails 

the optimization of a loss function. After applying the decision rule, estimates of the parameters  

  are denoted by ma A   and denoted by  ( )a a o  as they depend on the data .o  They 

are collectively denoted by 1 2( , ,..., )qa a a a . Thus, the decision rule is a mapping from the 

sample space O  into the decision space A , :O A


   . To sum up, the true and estimated 
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model parameters are denoted by k and ka  respectively, where k runs over all model 

parameters.  

 

We here consider a Bayesian decision rule and denote the corresponding estimates of model 

parameters by a tilde, a A . These are distributed according to ( )p a  , that is, the probability 

that  the true states of nature are equal to a  after observing o O . The error the statistician 

makes when obtaining ( )a a o  is given by the loss function  ( , ) : q qL a    . This is a real 

valued function that quantifies the discrepancy between k and ka . The expected value of the 

loss function ( , )L a  after obtaining Bayesian estimates 1 2( , ,..., ),qa a a a  is called Bayes loss 

and is given by 

 

( , ) ( , ) ( )R a L a p a da                                                                                                          (A.1) 

  

In other words, the Bayes loss ( , )R a  quantifies the expectation of the statistician about the 

error they will make when using Bayesian inference.  

 

There are many ways to implement Bayesian inference, each corresponding to a different 

Bayesian decision rule  . All such rules are called admissible, that is, they minimize the same 

expected loss  
:

 ( , )  i n f  ( , )
o O a A

C a C a


 
  

  This is known as the complete class theorem 

(Berger, 2013).  ( , )C a  is given in terms of Bayes loss ( , )R a  by the following relation  

 

( , ) ( , ) ( )C a R a p d                                                                                                           (A.2) 

 

Thus, the expected loss is just the expected value of the Bayes loss under the prior ( )p   .  

Example (adapted from Berger, 2013). A drug company wants to decide whether or not to 

market a new pain reliever. The main factor affecting its decision are the proportion of people 

for which the drug will prove effective 1 . This is the latent variable (true state of nature) that 

is typically unknown. Statistical decision amounts to evaluating costs or losses based on same 

sample information combined with some other, e.g. prior or complementary, information. In 

particular, the use of prior information –outside the experiment considered—is known as 

Bayesian decision theory. In this example, the prior 1( )p   could be calculated based on the 

success of other similar drugs etc. Assume that the drug is effective for a percentage of  users 

which we denote by a , that is, 1 ( , ) 1( ) ( ).ap N    It could also be more detrimental for the 
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company to overestimate 
1 , compared to underestimating it, because of potential fines; this 

can be included in a loss function of a form  

 

1 1

1

1 1

                       0,   
( , )

2( )                     0

a a
L a

a a

 


 

   
 

  
                                                               (A.3) 

 

 The posterior  1( )p a   can be found using Bayes rule and iteratively sampling data points 

1 2 3, , ,...o o o O  

 

1
1 1 1

1

( )
( ) ( )

( )

r

l

l

p
p a p o

p O


 



                                                                                                             (A.4) 

 

where the denominator is given by 

 

1 1 1

1

( ) ( ') ( ') '
r

l

l

p O p p o d  


                                                                                                      (A.5) 

 

To find 1( )kp o  , the drug company could perform tests or surveys asking people whether they feel 

less pain after taking the drug 1 ( , ) 1( ) ( )l a sp o N  . Then equation  (A.2)  furnishes the expected loss  
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                        (A.6) 

 

The above expression yields 1( , )C a , based on the drug company’s prior expectation about 

proportion of people for which the drug will prove effective, a , and the uncertainty of this 

estimate,  . Then after the new drug has entered the market this is updated to 
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