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Highlights
e Combinations of compartmental and mean field models needed in the Big Data era
e Mathematical proof of a multiscale approach for explaining M/EEG data
e M/EEG data can reveal laminar differences in neural dynamics

Abstract
Background

In the era of Big Data, large scale electrophysiological data from animal and human studies are
abundant. These data contain information at multiple spatiotemporal scales. However, current
approaches for the analysis of electrophysiological data often contain information at a single

spatiotemporal scale only.

New method

We discuss a multiscale approach for the analysis of electrophysiological data. This is based
on combining neural models that describe brain responses at different scales. It allows us to
make laminar-specific inferences about neurobiological properties of cortical sources using

non invasive human electrophysiology data.

Results

We provide a mathematical proof of this approach using statistical decision theory. We also
consider its extensions to brain imaging studies including data from the same subjects
performing different tasks. As an illustration, we show that changes in gamma oscillations
between different people might originate from differences in recurrent connection strengths of

inhibitory interneurons in layers 5/6.


mailto:*pinotsis@mit.edu

Comparison with Existing Methods

This is a new approach that follows up on our recent work. It is different from other approaches

where the scale of spatiotemporal dynamics is fixed.

Conclusions

We discussed a multiscale approach for the analysis of human MEG data. This uses a neural
mass model that includes constraints informed by a compartmental model. This has two
advantages. First, it allows us to find differences in cortical laminar dynamics and understand
neurobiological properties like neuromodulation, excitation to inhibition balance etc. using non
invasive data. Second, it also allows us to validate macroscale models by exploiting animal
data.

Keywords: computational psychiatry; dynamic causal modelling;
compartmental models; multiscale approaches; MEG data; statistical
decision theory

Introduction

Recent developments in brain recording techniques allow one to record data with high
spatiotemporal resolution (Jun et al., 2017). At the same time, the ability to collect human brain
recordings from large numbers of subjects have revolutionised the study of neurological
diseases and disorders (Braund et al., 2018; Williams et al., 2011). We can now study details
at the scale of a local cortical circuit using animal models and describe differences between
very large numbers of individuals at the macroscopic scale with non-invasive human
electrophysiology. These developments suggest the need to develop multiscale approaches.
These will allow us to connect animal and human models. So far, approaches for the analysis
of brain data contain information at a single spatiotemporal scale only. We here discuss a
multiscale approach for brain imaging data analysis. This is based on combining neural models

that describe brain responses at different scales.

We focus on a neural mass model that can explain both animal data obtained with thin laminar
probes and human MEG data. Neural masses are biophysical models describing neural

population responses where ensemble activity is considered as a point process. For a general



introduction to these and other models, see (Deco et al., 2008; Moran et al., 2013). This and
other nomenclature used below are defined in Table 1. Following our earlier work (Pinotsis et
al., 2017), we provide a mathematical proof that the neural mass model makes similar
predictions to a microscopic, compartmental model. This is based on statistical decision theory
(Berger, 2013) and shows that both models can be thought of as rules belonging to the same
equivalence class. We show that a Bayesian observer could not distinguish between the data
predicted separately by each model. Alternatively, if both models are fitted to the same data
using Bayesian inference then these fits will have the same error. This suggests the similarity

of their predictions.

As an illustration, we considered laminar differences in the excitation to inhibition balance (E-
[) in human MEG data reported in (Schwarzkopf et al., 2012). We asked whether cortical
function changes at various depths, and focus on differences in the (E-I) balance relevant to
both pathophysiology (Chen et al., 2003) and information processing in the brain
(Auksztulewicz and Friston, 2015; Friston et al., 2015a; Pinotsis et al., 2014). We find that
differences in the E-I balance are expressed in the recurrent connection strengths of inhibitory
interneurons in layers 5/6. Although MEG does not provide direct access to laminar data, the
use of a neural mass model that makes laminar predictions allowed us to disclose details about
cortical function that would otherwise be accessible only by using invasive recordings. In
(Pinotsis et al., 2013), we analysed the same dataset using a neural field model. Here, we used
a neural mass model instead. Neural masses are a limiting case of neural fields when intrinsic
delays on the cortical manifold are neglected, see also Table 1. We did not use a field model
because it does not have the same number of parameters as the compartmental model

considered below (see Lemma 1 in the Theory and Calculations section).

Table 1 Terminology used and definitions

Term Definition and relevant
references

Neural mass model Describes the coarse grained
responses of neuronal
populations using few,
biophysically meaningful

parameters (Deco et al., 2008,
Moran et al., 2013)



Neural field model Similar to a neural mass but also
includes explicit parameterization
of the location on a cortical
manifold (Deco et al., 2008,
Pinotsis et al., 2014)

Steady state responses Neuronal population responses
after steady conditions have been
reached and perturbations due to
sensory drive have decayed. They
reflect synchronous activity of
many neurons whose variance is
preserved over time (Moran et al.,
2009, Pinotsis et al., 2013)

Big data (computational Advanced data analytics methods

psychiatry) to extract information from large
datasets that can be used to
understand and treat diseases
(Williams et al., 2013, Rutledge et
al., 2019; this term has a similar
meaning in other fields like
economics, meteorology etc).

In (Pinotsis et al., 2017), we analysed data from laminar electrodes recorded from a single
subject. Compared to that earlier work, our current paper includes two new contributions: the
analysis of non invasive data and also of data from multiple subjects. Here we analysed MEG
data wusing a hierarchical Bayesian approach (Parametric Empirical Bayes ; PEB) that
downweighs neural model parameter estimates from subjects with less reliable data. The
neural models used to explain invasive vs non invasive data are different. Although the neural
circuitry is the same, the neural model that explains invasive data outputs responses at different
depths, while the model that explains non invasive data sums responses across depths. In our
earlier work, laminar predictions were fitted to separate electrode tips. These recorded neural
activity from superficial and deep cortical layers separately (cf. Figure 7 in Pinotsis et al.,
2017). These recordings corresponded to the outputs of neural populations occupying different
cortical layers. Here, we used MEG data. Fitting entailed summing up output responses across
all layers. The best fit was achieved via a joint optimization of different weights with which
different populations contribute to the MEG signal as well as observation (lead field)
parameters of the virtual electrode. Also, the analysis presented here focuses on variability in
the structure and function of neural sources between different people that might account for the

variability in observed brain responses.

Materials and Methods



Data. We used MEG source reconstructed responses reported in (Schwarzkopf et al.,
2012). We considered visually induced oscillations between 30-80Hz from the visual cortex of
16 subjects. In that task, subjects paid attention to the centre of a screen that showed a static,
high-contrast, square-wave, vertical grating. MEG data were obtained using a CTF axial
gradiometer including 275 sensors, with a sampling rate of 600 Hz. Subject head movement
was also recorded and data were preprocessed with the use of SPMS8 routines

(http://www.fil.ion.ucl.ac.uk/spm). An LCMV beamformer algorithm extracted oscillatory

amplitude in an epoch between 0.5 and 1.5 s after stimulus normalised to the prestimulus epoch.
This epoch was chosen because neural activity and the corresponding power increase during
this epoch was stationary. This is an assumption of the DCM for steady state responses used
here (Moran et al., 2009). Peak gamma responses were found in the medial occipital cortex,
and at this peak location we used beamforming to obtain virtual electrode responses. Source
areas were identified bilaterally. Here we analysed data from source activations in the right
hemisphere only. Power spectra are shown in the Supplementary Figure. Peaks were calculated
in (Schwarzkopf et al., 2012) using a multitaper spectral estimate. They were identified after
fitting a Gaussian function. 3 subjects were excluded from further analysis due to poor

goodness of fit. 31% (5 out of 16) of the subjects showed clear peaks (see arrows).

Biophysical models. We implemented a neural mass model that describes the local
cortical circuit shown in Figure 1. This is based on the DCM toolbox of SPM12,

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/, see spm_fx_cmc_BS.m in

https://github.com/pinotsislab/MicroMacro/. Then we fitted this model to the simulated data
above using DCM and estimated its parameters. We also used the symmetric compartmental
model of our earlier work (Pinotsis et al., 2016a, 2017) based on the model from (Jones et al.,
2007). That model comprised 10 PNs in layers 2/3, 10 PNs in layer 5, and 10 INs in both layers.
The synaptic architecture followed general tenets of cortical micro-circuitry where FF
connections target the granular layer and FB connections target agranular layers, see e.g.
(Pinotsis et al., 2013) for a further discussion. Modelling of single neuron morphology and
physiology followed (Bush and Sejnowski, 1993), using the same parameters as in (Jones et
al., 2007). Details can be found in (Pinotsis et al., 2017).


http://www.fil.ion.ucl.ac.uk/spm
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/

This is the compartmental model of the local microcircuit shown in Figure 1 introduced
by (Bush and Sejnowski, 1993). In our variant, we changed conductance values and increased
the number of inhibitory units from 3 to 10, so that the distribution of E-1 neurons is uniform.
To ensure that relative differences in interneuron densities were accommodated, we multiplied
the maximum conductance values of the corresponding connections by a factor of 0.3. A further
simplification was carried out by reducing the network to a single minicolumn, consisting only
of one superficial, and one deep PN, and an IN in each layer. Thus, the number of connection
parameters (synaptic strengths) in the microscopic and macroscopic models was the same.
These parameters are included in Table 2 of the Results section. This satisfies the theoretical
requirements suggested by statistical decision theory see the Theory and Calculations section
below. It assumes symmetry constraints on horizontal connectivity (within each cortical layer)
of the sort assumed in mean field models that describe aggregate activity over hundreds of
neurons. A detailed description of the correspondence between the parameters of the two

models is provided in the next section.

Parameter estimation. To fit the neural mass model m to simulated and MEG data we used
DCM for steady state responses Oy (), that is implemented in the function spm_dcm_csd.m

of the DCM toolbox. Steady state responses are neuronal population responses after
perturbations due to sensory drive have decayed. They reflect coordinated activity of many
neurons under stationarity and ergodicity assumptions (Moran et al., 2009) , see also Table 1.
DCM for steady state responses estimates the connection strengths of a biophysical model that
reflect the E-1 balance and neurotransmission described by microscale (compartmental) and
macroscale (neural mass) models. The optimization of the likelihood model uses a gradient
scheme on the negative Free energy, F. It minimizes it with respect to a variational density

over model parameters 6, q(@)[1 NV (x,C). After convergence, the variational density

approximates the true posterior q(@) ~ p(@| g, («), m) and the Free energy approximates

the model evidence F=-In p(y|m). Thus, the variational density provides posterior

estimates of connection parameters.

Parametric Empirical Bayes. To model between-subject effects we used a hierarchical

Bayesian inference approach known as Parametric Empirical Bayes (PEB), see (Friston et al.,



2015b; Pinotsis et al., 2016b; Preller et al., 2019) and the function spm_dcm_peb_bmc.m in the
DCM toolbox. This provides an efficient scoring and averaging of large sets of (nested) models
(Friston and Penny, 2011). It employs Bayesian model reduction to estimate the posterior
density over hidden model parameters for a reduced model (defined in terms of a prior density)
using just the posterior density estimated from a full model (with a complete set of parameters).
These model parameters were used as regressors in the design matrix. This was part of a GLM
with dependent variables gamma peak frequency and V1 size.

Theory and Calculations

Here, we present a mathematical proof of the functional equivalence between the
compartmental and neural mass model used here and in (Pinotsis et al., 2016a, 2017). We also
discuss extensions of our approach that could include computational models predicting data
from different modalities (e.g. EEG/fMRI) or tasks (e.g. resting state, task evoked responses).
Our proof relies on statistical decision theory. For a primer on this topic, see Appendix and
(Berger, 2013).

Assume two Bayesian decision rules 51 and 52With corresponding estimates (of the true states

of the world &), 8=(&,,4,,...,4,) and b =(b,,b,,...,b,). Then, the complete class theorem

(Berger, 2013) implies that the two rules have the same expected loss, C(9,4a) (see Equation

A.2), that is,

C(4,8)=C(9,b) 1)

We show below that this property of Bayesian decision rules has interesting implications for
Bayesian estimates of parameters from different biophysical models that describe the same
brain network. Consider two computational models of neural population activity, model M1
and model M2. M1 is a mesoscopic and M2 is a microscopic model. For concreteness we here

consider a compartmental and a neural mass model. They describe the cortical circuit shown



in Figure 1. Our approach however could be straightforwardly applied to other kinds of

computational models describing different scales (e.g. point processes, neural fields etc).

Cortical microcircuit and neural mass model equations

Inhibitory cells in supragranular layers (1)

V2K Ay = Ky, co(v) - a,-o(v )+ D)

l a” ‘ (IH I

Superficial pyramidal cells in supragranular layers (4)

v, + 2K, + KV, =k, —a, co(w)—a, a(v,))
- o) - . -
. yl iy 4% ° 34 a‘l
Inhibitory cells in infragranular layers (2) E :
v, + 25,7V, + K3V, = K,(ay, o (vy) —ay, ra(vy)

Iau AL A a:,l

Deep pyramidal cells in infragranular layers (3)

V, + 25,0, + K0V = Ky (—ay, ca(v,) —ay, co(w) —ag, o (vy) +ay, - a(vy))

Fig. 1. The Bush and Sejnowski microcircuit. Excitatory (black) and inhibitory (red)
populations occupy superficial and deep cortical layers. Firing rates within each population
provide inputs to other populations and convolution of presynaptic activity produces
postsynaptic depolarization. Arrows denote excitatory and inhibitory connections. All
recurrent connections are inhibitory. The same microcircuit was implemented both as a mean
field (Pinotsis et al., 2017) and a compartmental model (Jones et al., 2007). Evolution

equations describe the flow of hidden states representing population responses.

Let model parameters be given by $=(4,%,...%,) and $=(¢,8,...4,) for models M1 and

M2 respectively. Fitting them to brain data 0 € O using Bayesian inference, we obtain Bayesian



I'

parameter estimates given by & =(a,,8,,,-.,4,) and a,=(a,,d,,..4,). Assume now that

0 € O are non invasive electrophysiology data, like the MEG data we considered here. Fitting
model M1 is possible using DCM or some other approach. On the other hand, fitting the model
M2 is hard due to large number of parameters that the compartmental model has. However,
we show below that parameter estimates of model M1 (maximum a posteriori or MAP

estimates) will be equal to a variant of model M2, which we call M2

Lemma 1. Consider a variant of M2, called M2°, with the same number of parameters as M1.
Then, the MAP estimates ,u(é9|L9) and ,u(éq,|(o) of parameters @ and @ of M1 and M2’

obtained by fitting the same data o € O are equal.

Proof. First, we construct a variant of model M2 with the same number of parameters as M1,

g. Models M1 and M2 are described by the following general equation
Yx =T (0)+ &y 2)

where X indexes the two models, X ={mM1,M2}, I, (&) represents the differential

equations of the model that generates responses y, with parameters 9 ={9,¢} and &y is

observation noise. Specifically, I", (&) is given by

FM1(¢):ZLq(¢)Vq(t)1 q:11---14

V, = f,(V,,U,§) =24V, - AN, + 4, (v, U, ¢) X =M1 3)
a,-ov,)-a, c,)+U, q=1
a,.-ov,)—a, o(v,), g=2

fq(Vq,U,¢): 23 3 22 2

—8y - 0(Vy) — 8y -0 (V) — ;-0 (V5) + 85, -0(v,), =3
=8y, -o(v,)—a,-o(v,), q=4
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for the neural mass model and

1_‘Mz(‘g) = ZAnImLim‘]m(t)

2
sz—”p*“vxvm X =M2 4)
Pa

V, =h(v,,U,9) =, TL (27,2, )V (ALY, V) +U]

for the compartmental model. M1 is the neural mass analogue of M2 introduced in (Pinotsis et
al., 2017, 2016a). M2 is a well-known conductance based (microscopic) model (Bush and
Sejnowski, 1993). In this model, neurons and their constituent parts (axonal arbours, soma etc)
are considered as cylindrical conductors (segments) and transmembrane potentials are given

by aggregates of Ohmic currents. These currents flow across the compartment, forming an RC

circuit and obey Kirchhoff’s law. L, are lead field coefficients for each compartment and
sensor, A“Jm are the cross-sectional area and the length of compartment m (projected in a
direction perpendicular to apical dendrites). p,, C, are the axial resistivity and membrane

capacitance andJm(t) is the longitudinal current density. This model yields detailed

descriptions of intracellular longitudinal currents — within the long apical dendrites of
synchronized cortical pyramidal cells — that follow from cable theory. Neuronal populations
are modelled as spatially organised networks with the soma of principal cells in supragranular
and infragranular layers. This model captures the laminar structure of cortical columns and can
characterize the cellular and circuit level processes that are measured with multi-electrode
arrays or MEG. It also provides a model of neuronal morphology and how neurons are grouped

together to form spatially extended networks, with precise connectivity.

The crucial difference between the two models is that M1 operates at the mesoscale and cannot

describe microscopic effects like dendritic delays or back propagation. The model predicts

activity Yy, based on a local microcolumn depicted in Figure 1. M2 on the other hand, operates

at the microscale and assumes that predictions Yy are generated by an ensemble of smaller

structures called mini-columns. Below we considered ten mini-columns. These comprise the
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macro-column shown in Figure 1. In this setting, activity predicted from the compartmental

model M2 (see (Jones et al., 2007)) is a simple superposition of minicolumn activities Y, (t, )

Yie(t.8) = D Ya(t.9)

a<{q}

(5)
Y.(Lo)=Y, [Z Ay Ly dg (0, Q0 Ly, Gy §)t€{q}J

q

where the index g'< g runs over a subset of compartments q' that comprise each mini-
column and a=1,...,10 runs over the mini-columns. Each mini-column comprises the
compartments of superficial PN, deep PN and superficial and deep interneurons, and
Q(J,,L,C., &) stands for the exogenous input — that depends on activity in proximate
compartments indexed by k e{q},k = g". The argument in the factor Q in Equation (5) above
simply means that this input depends upon the current density in the adjacent mini-columns,

their lead fields, anatomical parameters ¢ and the strength of connections C, .

We assumed that C,, are the same between any mini-column pair and that all mini-columns

have the same anatomy. Thus, the number of parameters in model M2 was reduced by a factor
equal to the number of minicolumns comprising one macrocolumn. Because M2 describes the
same circuit as M1 and all minicolumns have the same parameters, the resulting model (which
we call, the symmetric compartmental model and denote by M2°) has the same number of

connection parameters as the mean field model M1. These parameters are included in Table 2.

We denote the M2’ parameters by @ = (¢, @,,..., (Dq) and the corresponding Bayesian estimates

by 4, :(é%,é(/,z,...,é%). Despite the reduction in the number of parameters, predictions of

laminar dynamics from models M2 and M2’ were very similar, see (Pinotsis et al., 2017).
Activities of minicolumns lie on an invariant subspace in the full phase space of the network
and have the same dynamics; see (Afraimovich et al., 2001; Breakspear et al., 2003) for a discussion
of invariant subspaces. In this case, it is not possible to distinguish between minicolumns and

describe horizontal interactions within a cortical layer. Assuming the same connection
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parameters across mini-columns comes at a cost: it means that we have neglected horizontal
interactions within the same cortical layer mediated by recurrent synaptic coupling. On the
other hand, we have described laminar interactions with a mean field model. Following DCM
for steady state (Moran et al., 2009), we here considered that the neural mass model M2 is
perturbed around a fixed point attractor state. We also considered that the compartmental model
M1 operates in the same dynamical regime. In (Pinotsis et al., 2017), we found a very high
correlation between the responses of the two models (r=0.9343, p < 0.001). We did not
consider other non-trivial bifurcations and richer dynamics that M1 can exhibit. To sum up, we

assumed that all mini-columns in the compartmental model M2 have the same anatomy and

the connection weights C,, are the same between any mini-column pair.

Consider now the connection parameters of models M1 and M2 as the true states of the world
(in the language of statistical decision theory). Then M1 and M2’ can be thought of as two

Bayesian decision rules 51and 52that the statistician used to infer them. In this case, the

corresponding estimates of the true states &, are given by :(égl,égz,...,égq) and

a,=(8,,8,,-4,). Also, Equation (1) above implies
Cg(g,é ) :C(p(.9, éw) (6)
The corresponding Bayes loss satisfies (see also Equation A.2)

[R(9.4)p(9)d9=[R(p.a ) p(p)de (7)

Assuming the same priors of the statistician about the true states, p(%) = p(¢), we get
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R(%.4,) =R(¢.4,)
(8)

[L(9.8,)p(a,]9)da, = [L(p.4,) p(a, |p)dd,

Considering point density probability distributions, the above Equation implies an Equality of

MAP estimates £(&,|9) = (8, |¢).

This concludes the proof of Lemma 1.QED.

To sum up, the MAP estimates for the M1 and M2~ are equal (&%) = u(& |p), that is,

< p(&; [9) >=< p(&, |) >and we assumed that M1 and M2~ describe the cortical microcircuit

equally well, i.e. p(:%) = p(w) . Motivated by these results we now prove the second

Lemma that establishes the construct validity of M1 with respect of M2, i.e. that the two

models predict similar data —and M1 is a neural mass model that predicts laminar responses.

Lemma 2. Let 0O be simulated data from A72’ (the symmetric compartmental model). The

Maximum Likelihood (ML) problems for models M1 and M2’

n(a,|9) =arg n;in[f(S)Jr f(0)]
f(9) = -KL(q(&, |[9)|p(9) 9)
f(0) = [logp(o[4,, Ha(a,|Hd9

and

p(d,|¢) =argmin[f (¢)]
f(p) =—KL(q(&,|¢)|p(¢))

(10)
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are the same.

Proof. The ML estimation problem for a model M is the problem of finding the posterior
distribution of model parameters p(é9|l9) by optimizing the free energy, F(o,9), see e.g.
(Pinotsis et al., 2012) for details:

p(&, |9 =argmin F (0, 9)

(11)
F(0,9) =—KL(a(&,9)|p(9) + [logp(o[a,, 9)a(,|Hd9

Here p(0[d,,9) is the data log-likelihood and q(&, |9) is the approximate posterior. The Free
Energy F(o,9) has two parts

F(0,9) = f () + f (0) (12)

One depends on prior beliefs about the model parameters p() and the other on observations

0€ 0. Thus the posterior should not move too far from our prior guess and also maximize the
data log-likelihood. Then Equation (11) for model M1 is the same as Equation (9). Using

Lemma 1, we can also replace & by ¢ in Equation (9)

p(@, |p) =argmin[ () + ()]
f(9) =—KL(a(d, o) () (13)
f(0) = [logp(o|a,, p)a(@, [p)de

To sum up, Equation (13) is equivalent to Equation (9). Because 0 €O are simulated data from
M2, p(o‘éw,go) =1 and Equation (13) yields Equation (10).

This concludes the proof of Lemma 2.QED.
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Since the ML estimation problem for the two models are the same, it follows that fitting the
neural mass (M1) model to simulated data O from the compartmental model (M2°), we perform
the same parameter inference as if we were fitting the compartmental model itself. In the
context of statistical decision theory , the free energy can be thought of as a cumulative loss
function of the form of Equation (12). Then Bayesian inference is a decision problem that
optimizes (12). The statistician collects observations 0O to infer parameters. Assume that

we sample the data space successively O, obtaining brain data O first, then O,,0; etc. with
0,,0,,05,...€O. This is known as Bayesian belief updating (Cooray et al., 2016) and suggests
that that we can assume that the loss function (12) can optimized in the same successive,

optimal and rational manner after observing each data sample 0, €O j=72 .., that is

F(0,9) = Z( f,(9)+ f,(0)) Let us then assume that the first sample O, was simulated data

from M2’ similarly to Lemma 2 and that the second sample 0, €O was the MEG source

reconstructed data that we considered in the Results section below. Similarly to Equation (11),

the inference problem for model M1 and sample O, can be written as

p(@;|$) =argmin| f,(9) + f,(0*) |
f,(9) = —KL(a(&;|9)| p(9)) (14)
f,(0°) = [logp(o’ |43, 9)a (&} [9)d 9

where we use an upper index, i=2, in éig to denote the parameter estimates obtained after
observing the data sample O; € O and a lower index in f,(9), f,(0) to denote step wise
components of F(o, ) as above. For simulated data, the expectation of p(9), < p(9) >=
y(é§|9) = ,u(é; |(o). It is equal to the MAP estimate obtained from the previous step (fitting
01) . Thus, instead of fitting the mean field model M1 to the MEG data 0, €O (as done in

traditional DCM), we consider an extended data space comprising simulated and empirical data

0,,0, €0 and successively fit M1 to O; and O,. The first fit ensured that model M1 makes
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the same predictions as the compartmental model M2’ when fitted to MEG data. This
corresponds to our two-step approach—where each step corresponds to a different sample. Step
one: construct a micro-scale (e.g. compartmental) model that captures biophysical properties

of single neurons. Test it with intracranial recordings from animals, O,. Step two: tune the
parameters of a neural mass model to give similar predictions as the compartmental model.

Test it with human M/EEG data, O, .

One could also consider a third sample 0,, with 0;,0,,0,...€ O . This could correspond to
data from a different modality that model M1 can predict and fit the model to the new dataset
using the posteriors obtained from fitting O, as priors. This is the approach taken by (Jafarian
et al., 2019; Wei et al., 2020) to achieve Bayesian fusion. In that work, the neural model M1 is
coupled with different observation models that predict EEG and fMRI data: 0, and O;are
source reconstructed EEG data and deconvolved fMRI data respectively. Similarly, one could
use the approach described above to fit the model to different datasets from the same subjects.
Let for example, 0, and O be resting state and task data and assume that model M1 predicts
both for different values of its input, e.g. it is a canonical microcircuit neural mass model that
predicts both steady state responses O, (Pinotsis et al., 2018) and evoked potentials 0; (Diez

et al., 2017; Ranlund et al., 2016). This will be pursued elsewhere.

Results

As an illustration, we applied our approach to human MEG data from (Schwarzkopf et al.,
2012). We fitted power spectra of visually induced oscillations between 30—80Hz from
different people, similar to our previous work (Pinotsis et al., 2013). The corresponding
gamma-band frequency correlated with the retinotopically determined surface area of central
V1 (Schwarzkopf et al., 2012). Data were recorded from the visual cortex of 16 subjects while

they viewed a static, high-contrast vertical grating.



17

We used the neural mass model shown in Figure 1 described in detail in (Pinotsis et al., 2017).
This model includes two pairs of excitatory-inhibitory populations, one in superficial and the
other in deep layers. Each population pair is connected with intralaminar connections.
Superficial and deep populations are also connected with interlaminar connections. Arrows

correspond to excitatory (black) and inhibitory (red) connections.

To fit these data, the parameters of the neural mass model had been tuned to predict similar
laminar data as a compartmental model. The mathematical basis and constraints for this are
described in the Theory and Calculations section. In Figure 2A, model predictions and data are
shown in dashed and solid lines along with 95% confidence intervals across subjects for the
data from (Schwarzkopf et al., 2012). These quantify variability across subjects and overlap
for model predictions and data. In Figure 2B, percentage variance explained for individual
subject fits is shown. A Welch t-test yielded non-significant differences in the accuracy of fits
to the five subjects that had strong gamma peaks compared to the rest (shown with arrows in
Supplementary Figure). Mean and standard deviation of the accuracy of fits for the five subjects
with pronounced gamma peaks (“strong”) is shown in the left bar of Figure 2B; while mean
and standard deviation of fits of the remaining subjects in the right bar (“weak”). Example fits
from individual subjects are shown in Figure 2C. The parameters of the tuned neural mass
model were used as priors for subsequent fits using Dynamic Causal Modeling (DCM) for
steady state responses (Moran et al., 2009). They were obtained by fitting the neural mass
model of Figure 1 to simulated data from the compartmental model of (Jones et al., 2007).

These parameters are included in Table 2.
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Table 2 Synaptic connectivity parameters for the microscale and macroscale models.

a, | SP—>SP | 0.001 4.4
a, | SP->SI 0.003 4.8
a, | SP->DP | 0.00025 233
a, |SI-=>SP [ 0.015 38
a, | SI-=>DP | 0.0003 5.9
a, | SI=>SI 0.0006 4.2
a, | DP—>DP | 0.005 2.2
a,, | DP—DI | 0.0003 4.6
a, | DI->DP | 0.0075 6.9
a, | DI-=>DI | 0.0006 4.16

The fine tuning of the neural mass model based on compartmental model predictions was
described in detail in (Pinotsis et al., 2017). In that earlier work, fine tuning adjusted the priors
of the neural mass model to describe the difference in the timings of neural activity and delays
in signal propagation between superficial vs deep populations, due e.g. to the dispersion of
axons, in the same way as the microscale (compartmental) model. We also validated this model
using laminar data from mice reported in (Pinto et al., 2013), see (Pinotsis et al., 2017) and also
monkey data, see (Pinotsis et al., 2016a). We showed (using Bayesian model comparison
(Pinotsis et al., 2013)) that the neural mass model could correctly distinguish between deep and
superficial neural responses. This established its construct validity. We here used the same
model considered in that earlier work after adapting it to fit MEG data. This has the advantage
that its parameters had been tuned to predict superficial and deep cortical dynamics. In other

words, the model makes predictions of neural responses at different cortical depths.
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Fitting the fine tuned neural mass model to human MEG data his allowed us to perform
laminar-specific inferences. Motivated by earlier results (Muthukumaraswamy et al., 2009;
Schwarzkopf et al., 2012) we asked whether gamma peak frequency variability might relate to
differences in the concentration of the inhibitory neurotransmitter GABA in the occipital lobe,
measured using magnetic resonance spectroscopy (MRS). This has been shown to correlate
with peak gamma- oscillation frequency. We tested this hypothesis and asked what the origin
of differences in cortical inhibition between different people might be. Specifically, we asked
which inhibitory connection strengths can predict V1 size! and gamma peak frequency. We
used a recent approach known as parametric empirical Bayes (PEB; see Materials and Methods
and Friston et al., 2015b; Pinotsis et al., 2016b). This employs a Savage-Dickey approximation
(Verdinelli and Wasserman, 1995) to perform an exhaustive search over all combinations of
model parameters that might drive differences in gamma responses or anatomy between
different people. This approach considers all possible combination of connection strengths
shown as arrows in Figure 1. It scores, in terms of a Bayesian GLM, how well they can predict
a given phenotype; here V1 size and gamma peak frequency that were available for each subject
along with MEG oscillations from the dataset from (Schwarzkopf et al., 2012).

Y In (Schwarzkopf et al., 2012) V1 size had been measured using retinotopic mapping with fMRI: this calculated
the stimulus location at which each voxel responded (Sereno et al., 1995) and these data were subsequently used
to delineate V1 surface using Freesurfer (Fischl et al., 1999).
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A) Grand average model fits to MEG data C) Example fits to individual subjects
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Fig. 2. A) Empirical responses (power spectra) and model fits are shown in dashed and solid
lines along with 95% confidence intervals across subjects in data from (Schwarzkopf et al.,
2012). B) Percentage variance explained in individual subject fits. No significant differences
were found in the accuracy of fits between spectra including strong and weak peaks (see text
and Supplementary Figure). C)Example model fits to individual subjects. Red and blue lines

correspond to data and model predictions.
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Fig. 3. PEB analysis. We scored alternative GLMs where predictors of
variability in V1 included any combination of the connections (arrows) in
Fig.1. We found that for the data from (Schwarzkopf et al., 2012). V1 size
could be best predicted by the recurrent connectivity of deep inhibitory

[ interneurons, a,, (orange arrow). Evidence was very strong p>0.95.
"‘flp >(.95
2 fa,

We found that gamma peak frequency variability was not predicted by connection changes
between subjects. However, V1 size variability was. Using PEB, single subject estimates of
the recurrent connection strengths in the deep inhibitory population could predict the
corresponding size of V1 (Figure 3). This was in agreement with our earlier results in (Pinotsis
et al., 2013) where we had also found (using a different, neural field model), that individual
differences in gamma oscillations correlated with variations in the excitatory drive to
GABAergic interneurons. The current results are also similar to results in (Pinotsis et al.,
2016b), where we found using the same neural field model and a similar MEG dataset that
differences between subjects correlated with interneuron output. Both those earlier results used
a model that describes spatially distributed spectral responses over the cortical manifold (neural
field), that is, within the same cortical layer. However, that earlier model could not make
predictions of differences in cortical dynamics between different layers, like the model we
considered here. To sum up, we here confirmed that individual variability in V1 size correlated
with differences in the excitation to inhibition balance that we had found earlier. We also found

a novel result: these differences suggest differences in deep inhibitory interneuron activity.

Discussion

The ability to process and store big datasets, known as Big Data, has revolutionized cognitive
and computational neuroscience among other fields. We now have the ability to record
electrophysiological data at an unprecedented spatial and temporal resolution, e.g. the first
generation of Neuropixel probes could record more than 700 neurons from five brain

structures (Jun et al., 2017). We can also collect and process data from thousands of healthy
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and patient subjects in large scale clinical studies with psychiatric patients, like the i-SPOTD
study of more than 2000 patients with depression (Braund et al., 2018; Williams et al., 2011).
In brief, as a result of the Big Data revolution, there are new, unparalleled opportunities to
study brain structure and function. We can study details at the scale of a local cortical circuit
using animal models and describe differences between very large numbers of individuals at the
macroscopic scale with non-invasive human electrophysiology. These developments suggest
that multi-model, multi-scale approaches are required for the analysis of brain data. We
presented such an approach here.

Specifically, we used a neural mass model to explain non-invasive human MEG data. The
parameters of this model were fine tuned so that the model makes similar predictions with a
compartmental modelthat describes neural activity at the microscopic scale. This allowed us
to make laminar-specific inferences regarding the generators of the bulk macroscopic response.
Our approach is different from some common uses of biophysical models in computational
neuroscience. Often, in these applications, the scale of spatiotemporal dynamics described by
the model is fixed. It depends on the available dataset and the researchers’ interests, see e.g.
(Bassett et al., 2018; Poldrack et al., 2018). Here, we present an alternative approach that uses
combinations of biophysical models that explain spatiotemporal dynamics at the micro- and
macro- scales (Pinotsis et al., 2016, 2017). This has two advantages. First, it allows us to find
differences in cortical laminar dynamics using non invasive M/EEG data. Second, it also allows
us to validate macroscale models of the sort used in Dynamic Causal Modeling (DCM) by

exploiting animal data.

Our approach has two steps. Step one: construct a mesoscale (mean field) model that includes
the same neuronal populations as a validated microscopic (compartmental) model that captures
biophysical properties of single neurons (e.g. the geometry of the dendritic tree, kinetics and
densities of ion channels, inputs from subcortical areas etc; (Bush and Sejnowski, 1993; Jones,
2016; Kopell et al., 2000) Fine tune its parameters to give similar predictions as the
compartmental model. Test it using invasive, animal data, including local field potentials and
multielectrode unit activity, similarly to (Pinotsis et al., 2016a; Pinotsis et al., 2017). Step two:

use the same mescoscale model to explain human M/EEG data.
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We established our approach by constructing a mathematical proof based on statistical decision
theory. This theory studies optimal decisions in the face of uncertainty in the data (Berger,
2013). It has found numerous applications in neuroscience and psychology, including
reinforcement learning (Dayan and Daw, 2008) and decision making (Trommershduser et al.,
2008). Our proof uses statistical decision theory to reformulate biophysical models as decision
rules. Then it establishes model equivalence by considering models as admissible rules.

Besides its mathematical merit, the proof shows how the compartmental model constraints the
particular mean field model that can be used to explain the same data. This model needs to
have the same connection parameters as the compartmental model (see also Lemma 1). It can
be a neural mass (that we used here) but it cannot be any mean field model (even if it predicted
similar data), like e.g. a neural field that has an unequal number of connection parameters. The
proof also dictates simplifications and adaptations of the original model by (Jones et al., 2007).
In the variant we used here, activities of minicolumns were constrained to lie on an invariant

subspace neglecting horizontal interactions within layer.

In brief, using the complete class theorem, our proof suggests how to construct low dimensional
models making similar predictions to detailed models with large number of parameters
(Lemma 1) and how to test if they are equivalent (Lemma 2). Although parameter estimation
of the sort we considered here is an ill posed inverse problem (many different parameterizations
might give rise to the same data features, see e.g. ( Pinotsis et al., 2013)), predicting the same
data features does not mean that models are equivalent from the point of view of a Bayesian
observer making decisions. They do not describe the same latent structure (true states of the
nature). This is actually the essence of Bayesian model comparison where alternative models
are scored in terms of how well they fit the data, see e.g. (Pinotsis et al., 2012) for a comparison

of neural masses vs. fields using local field potential data.

Our approach can be used to test the biological plausibility of mean field models. These
describe coarse grained neural activity at the macroscale. The approach can assess the
limitations of simpler, low dimensional models in terms of reproducing predictions from more
detailed e.g. compartmental or point process models. The latter describe activity at the
microscale and can be validated in vitro (White et al., 2000). Validating mean field models

against more detailed descriptions of brain anatomy and structure is important also for effective
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connectivity studies as when we find causality, we do not want this to be just “model, not

biological causality” (Mehler and Kording, 2018).

Our approach provides a way to test for biological plausibility of mean field models using
multiscale data. Before fitting them to M/EEG data, one can do an analysis similar to what we
discussed here by using animal data. This would correspond to step one of our approach. It
would fine tune their parameters to reproduce the same predictions as earlier compartmental
models. Then they could be further validated using invasive, animal data, like we did in
(Pinotsis et al,, 2016a; Pinotsis et al., 2017) . Thus, while fitting the macroscale, neural mass
model to MEG data here, the same temporal constraints inherited from the microscale model
were preserved. Because of constraints imposed upon the parameters of the microscale model,
spatial effects within the same layer were neglected (e.g. interactions between cortical columns
and the dependence of gamma peak frequency on the horizontal spread of the underlying

cortical source).

Our approach provides a way to implement data fusion across scales. Here, we applied the
approach to explain data with different spatiotemporal resolution. It can also be used to explain
multimodal datasets similar to (Jafarian et al., 2019; Wei et al., 2020) and also data from

different tasks obtained with the same modality.

In all the above three cases, data fusion (across scales, modalities or tasks) rests upon
constructing models that can be thought of belonging to the same equivalence class, as
suggested by our proof (see Theory and Calculations). For example, for data fusion across
tasks, the parameters of a neural mass model for a single subject could be estimated
successively by first fitting it to data from one task (e.g. resting state) and then refining these
estimates by fitting the model to data from the second task (e.g. oddball response). Importantly,
the priors for the second fitting would be the posteriors of the first and the drive to the model
would be adapted to describe the difference of inputs between tasks. This can be important for
Computational Psychiatry where different aspects of the same pathology might be evident in

various tasks.
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In future work, we will also study the relationship between population activity predicted by the
macroscale model and the symmetric compartmental model we used here. Spatial effects within
the same cortical layer can be described by extending our approach to a different class of mean
field models besides neural masses, called neural fields (Pinotsis et al., 2016b). We will also
consider datasets from the same human subject recorded with different modalities or
performing different tasks. In that case, parameter estimates obtained by e.g. fitting resting
state activity will be used as priors to explain task induced responses. This can be important
for applications as there might be complementary information in different datasets that could
lead to a better understanding of the heterogeneity of neurological diseases and disorders than

what afforded by current diagnostic classifications.
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Appendix: Elements of statistical decision theory

Consider a sample space O, that is a Borel subset of a Euclidean space, and an observation or
sample of brain data oc O <1 ". A decision rule & is a method that the statistician uses to
infer the true states of nature .4 based on brain data 0 €O. In the context of statistical decision
theory, there are many decision rules from which the true states can be obtained. These give
rise to the space A, the space of possible estimates, called also the decision space. Each
different rule gives a different estimate of 4. Let ge® <=0 ™, m<n, where ® is called the

space of all possible parameters. Here, 19:(191,192,---,3(1) k e{l,...,q}, parametrize a

biophysical model M and the space ® includes parameters that give rise to observed brain
dynamics. This is a generative model of brain data, that is, a mapping from biophysical
parameters ¢ to observed data 0 O. Parameter inference can be reformulated as a problem
of statistical decision theory (Bissiri et al., 2016). The decision rule & is used to obtain an
estimate of model parameters. Instead of optimizing a likelihood function, this approach entails
the optimization of a loss function. After applying the decision rule, estimates of the parameters
9 are denoted by ae A0 ™ and denoted by a=a(o) as they depend on the data 0. They

are collectively denoted by az(al,az,---,aq). Thus, the decision rule is a mapping from the

2
sample space O into the decision space A, 5:0— A . To sum up, the true and estimated
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model parameters are denoted by & and @, respectively, where k runs over all model
parameters.

We here consider a Bayesian decision rule and denote the corresponding estimates of model
parameters by a tilde, &< A. These are distributed according to p(é|9) , that is, the probability
that the true states of nature are equal to & after observing 0 O. The error the statistician
makes when obtaining a = a(o) is given by the loss function L(g,a):7¢x0¢ -0 . Thisisareal
valued function that quantifies the discrepancy between 3 and &, . The expected value of the

loss function L(9,4) after obtaining Bayesian estimates d=(&,,&,,...,d,), is called Bayes loss
and is given by

R($,8) = j L(%4)p(a|Pda (A.1)

In other words, the Bayes loss R(9,d) quantifies the expectation of the statistician about the
error they will make when using Bayesian inference.

There are many ways to implement Bayesian inference, each corresponding to a different
Bayesian decision rule 5. All such rules are called admissible, that is, they minimize the same
expected loss C @ a )55_ o->| anCS @ This is known as the complete class theorem

(Berger, 2013). C(9,4) is given in terms of Bayes loss R(9,4) by the following relation
C(9,8) = j R(9,8) p(9)d S (A2)

Thus, the expected loss is just the expected value of the Bayes loss under the prior p(9) .

Example (adapted from Berger, 2013). A drug company wants to decide whether or not to
market a new pain reliever. The main factor affecting its decision are the proportion of people
for which the drug will prove effective 6, . This is the latent variable (true state of nature) that
is typically unknown. Statistical decision amounts to evaluating costs or losses based on same
sample information combined with some other, e.g. prior or complementary, information. In
particular, the use of prior information —outside the experiment considered—is known as
Bayesian decision theory. In this example, the prior p(6,) could be calculated based on the

success of other similar drugs etc. Assume that the drug is effective for a percentage of users
which we denote by a, that is, p(¢)=N,, (6). It could also be more detrimental for the
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company to overestimate 4,, compared to underestimating it, because of potential fines; this
can be included in a loss function of a form

6, —-a |9 —a|<0,

2(6,-a) |9 —a|>0 (A3)

H@ﬁ%{

The posterior p(é|01) can be found using Bayes rule and iteratively sampling data points

0,,0,,0;,..€0
< P(&)
6)=—2 |6 A4
p(&|6,) 5(0) IHI p(0,|6) (A4)

where the denominator is given by
p(0) =] p(6,)[ ] p(a/[6,)d6." (A5)
1=1

To find p(o, |01), the drug company could perform tests or surveys asking people whether they feel

less pain after taking the drug p(o, |¢91) =N () . Then equation (A.2) furnishes the expected loss

N a 1 ~
C(Hl’a) :J.o (a_gl)N d91+2I§ (el_a)N(iJ)del

(a0)

1—g 20° (A.6)

2 S
;(—1+a) 5 [ J

=|l-e 2 ‘f—0+—
[ ] T \N2r

The above expression yields C(4,,8), based on the drug company’s prior expectation about

proportion of people for which the drug will prove effective, a, and the uncertainty of this
estimate, o . Then after the new drug has entered the market this is updated to
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