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Abstract

Nanophotonic devices has led to many interesting applications in optical sensing, fibre lasers,
fibre amplifiers, optical signal processing, and many others. Modelling and optimisation
of such devices depends upon the numerical methods employed for modal analysis, such
as finite difference method, finite element method, beam propagation method, and others
to compute various optical properties including effective index, power confinement, mode
effective area, dispersion, confinement loss, etc. One of the aims of this dissertation is to
develop a finite element based time domain technique, similar to finite difference time domain
method, that can have varying mesh resolutions for spatial discretisation of the computational
domain. Parallel programming has been employed to speed up the simulations.

However, various design parameters of the optical devices are generally optimised before
fabrication. This becomes an iterative process of trying and testing different design parame-
ters which may require significant time and computer resources when dealing with complex
optical structures. In this research work, the power of artificial intelligence techniques has
been employed to quickly estimate the various properties of different photonics devices (slot,
strip, and directional coupler waveguides) and photonic crystal fibre. An in-house code using
a machine learning (an application of artificial intelligence) regression approach has been
developed. Accuracy of these techniques are described by comparing their outputs with the
actual outputs. PyTorch and Python programming languages are extensively used during the

development of machine learning approach.



Additionally, a silicon directional coupler having a metallic heater for each waveguide
for thermal compensation has been studied to tackle possible fabrication tolerances. The
respective metal heater (either or both) can be activated or heated depending on whether
there is a fabrication error in one or both of the waveguides. Fabrication errors change the
coupling length of the directional coupler which is thermally compensated by placing heaters

at different positions with respect to the waveguides.
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Chapter 1

Introduction

1.1 Objectives and Motivations

Design, fabrication, characterisation, analysing error and possible redesigning can be time
consuming steps in many industrial applications including the development of photonic
devices. In the last decades, silicon photonics has become one of the most promising
photonic integration platforms [1-4], as it provides a high index contrast device structure
that leads to reduction in footprint of the waveguides. This smaller footprint helps in
fabricating miniaturized sensors that can be extensively used for clinical analysis, healthcare,
environmental monitoring, and biomedical sensing. Also, nanophotonic structures which
depend on a large number of device parameters are being designed and used for novel
photonics applications [3, 4].

To reduce both time and cost of development, many numerical models and software
programs (open source and commercial) have been developed for various photonics appli-
cations. Accuracy for these modelling techniques has been increasing tremendously with
the advancement in computational technology. Different models and simulators can be used
to study two- and three- dimensional optical devices. While two-dimensional calculations

are sufficient to explain some concepts and phenomena, full three-dimensional simulations
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are necessary for determining the parameters of the devices intended to be used in real
systems. Moreover, if the time response of the device needs to be studied, it can make the
simulation process computationally expensive depending on the dimensions of the optical
device. The Finite Difference Time Domain (FDTD) method is commonly used to study the
three-dimensional time response, and it generally comprises a rectangular mesh with one
grid resolution for the computational domain. This grid technique can become inefficient
for complex devices with curved boundaries. To overcome this, an in-house Finite Element
Time Domain (FETD) code has been developed which uses triangular mesh and can have
different mesh resolutions in the computational domain as desired.

Inspite of having fast and advanced computers, a rigorous optimisation of the waveguide
design parameters through parameter sweep often becomes a time consuming task. For
example, the FDTD method may require between several minutes to hours to analyse the
optical transmission response of a single photonic device, depending on its design. Recently,
researchers started applying machine learning (ML) methods to optical communication
systems to quickly optimise various parameters [5-9]. Technology companies like Google,
Microsoft, Facebook, IBM, Baidu, Apple, Netflix, and others use machine learning models
in their day-to-day applications. This becomes the motivation to explore the new domain
of employing machine learning techniques to quickly and efficiently estimate outputs for
various nanophotonics devices (slot, strip and directional coupler waveguides) and photonic
crystal fibres.

After numerical modelling, the next step is to fabricate the device. Although, associated
fabrication technologies have improved a lot in the past decades but these still incur some
errors when fabricating optical devices. Thus, the major requirements include corrections of
fabrication inaccuracies along with the reconfiguration of the system characteristics. Hence,

a thorough study has been performed to understand how to compensate phase mis-matching
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in a silicon directional coupler occurring due to fabrication inaccuracies using integrated

metallic heaters close to each waveguide.

1.2 Thesis Outline

This thesis comprises eight chapters, including the current chapter on introduction and two
Appendices. The chapter contents are briefly described as follows:

Chapter 2 presents the review of analytical and numerical methods used in the litera-
ture for design, optimisation, and performance analyses of the optical waveguides. These
numerical methods generally use Maxwell’s equations (in differential or integral form) when
solving the computational domain for electromagnetic wave propagation. It is identified that
the mesh size plays a crucial role in improving the accuracy of the numerical methods. A
trade-off is required as decreasing the mesh element size might significantly increase the
computation time and resources.

Chapter 3 focuses on the governing equations used for the two-dimensional structures for
Finite Element Time Domain (FETD) method. Space discretisation of the two-dimensional
computational domain is described. Next, it is explained how open source software, Gmsh
is used to generate two different meshes which are used to store various electromagnetic
field components at their nodes. In the next section, time discretisation of the problem/com-
putational domain is achieved, followed by a brief introduction about the use of perfectly
matched layers (PMLs) at the boundaries to reduce the reflection.

Chapter 4 discusses the proposed FETD code (generated using C++ programming
language and OpenMP) for two-dimensional structures. First, the validity of FETD code
is checked by comparing the obtained speed of light using FETD code with the actual
normalised assumption. Next, a planar waveguide is considered for different types of input
sources (point and mode sources), and normalised field profiles from FETD and an in-house

FEM (already well developed and verified) codes are compared. The coupling length for
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a directional coupler has been calculated by using the newly developed FETD code and
compared with the FEM solutions for different mesh resolutions.

Chapter 5 discusses using machine learning based optimisation techniques for integrated
silicon photonics devices. Machine learning is an application of artificial intelligence that
focuses on the development of computer algorithms which learn automatically by extracting
patterns from the data provided. Here, the finite element simulations and machine learning
techniques are combined for the prediction of effective indices, power confinement and
coupling length of different integrated photonics devices. Initially, a dataset using COMSOL
Multiphysics is prepared and then this data is used for training while optimising various
parameters of the machine learning model. Waveguide width, height, operating wavelength,
and other device dimensions are varied to record different modal solution parameters. A
detailed study has been carried out for a slot waveguide structure to evaluate different
machine learning model parameters including the number of layers, number of nodes, choice
of activation functions, and others. After training, this model is used to predict the outputs
for new input device specifications. This method predicts the output for different device
parameters faster than direct numerical simulation techniques. An absolute percentage error
of less than 5% in predicting an output has been obtained for slot, strip and directional
waveguide coupler designs.

Chapter 6 discusses using machine learning techniques to compute various optical
properties including effective index, effective mode area, dispersion and confinement loss
for a solid core photonic crystal fibre (PCF). These machine learning algorithms based on
artificial neural networks, are able to make accurate predictions of the above mentioned
optical properties for an usual parameter space of wavelength ranging from 0.5-1.8 um, pitch
from 0.8-2.0 um, diameter by pitch from 0.6-0.9 and number of rings as 4 or 5 in a silica
solid core PCF. The use of simple and fast-training feed forward artificial neural networks

that predict the output for unknown device parameters faster than conventional numerical
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simulation techniques has been demonstrated. Computation runtimes required with neural
networks (for training and testing) and Lumerical Mode Solutions are also compared.

Chapter 7 describes a design of a Silicon-on-Insulator (SOI) directional coupler inte-
grated with metallic heaters to compensate possible phase mismatching which may arise due
to fabrication inaccuracies. A detailed study has been carried out to obtain the temperature
profiles, thermally compensated field matching conditions, optical mode profiles, and time
domain evolution of optical power transfer for different heater positions and heater power.
It has been shown that heating the waveguides changes their isolated effective indices and
hence power coupling between waveguides is also changed. Power transfer between the
waveguides is examined using the time domain approach with and without fabrication defects
for different heater powers. The heater power needed to obtain the field matching condition
can be further reduced if the gap between the heater and waveguide is decreased, but this
potentially increases the modal loss due to absorption in the metallic heater.

This thesis concludes with Chapter 8 which summarises all the findings and explores

possible directions of future work.






Chapter 2

Overview of Numerical Methods for

Electromagnetics

2.1 Maxwell’s Equations

Maxwell’s equations are used to describe the propagation of electromagnetic waves, including
light in optical waveguides. Maxwell’s equations named after James Clerk Maxwell form
the basis of the classical electromagnetism. These equations demonstrate the relationship
between the electric and magnetic fields propagating in any medium. These equations form
a set of four partial differential equations that can be presented in differential and integral

forms.

2.1.1 Differential Form

The differential form of Maxwell’s equations can be used to find time and space dependent
electromagnetic field values in an optical waveguide. This form of the equations is more
frequently used to solve analytical and numerical problems for calculation of the electro-

magnetic fields in more complicated (less symmetric) situations. The wave equation derived
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using the differential form is more popular for various finite difference and finite element
analyses [10].
The differential form of Maxwell’s equations for the time varying electromagnetic fields

is more widely used, and is defined as follows:

V-D=p 2.1)
V-B=0 (2.2)
0B
VxE= - (2.3)
oD
VxH=J+ 5 (2.4)

2.1.2 Integral Form

The integral form of Maxwell’s equations is used to describe the underlying physical laws.
This form of the equations is needed to establish the boundary conditions. It is often used to
describe electromagnetic fields having a higher degree of symmetry. These equations can be
easily derived from the differential form by applying Stokes theorem [11]. They can also be
used in some finite difference algorithms [12, 13] and finite integration methods [14]. The

integral form of Maxwell’s equations is as follows:

%D -dS = Qenclosed (25)
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%H-dl:fJ-dS —i—i/D-dS (2.8)
s ot Js

where dS, dl are the vectors denoting the change in the surface S and the change on the
line 1, respectively.

The quantities involved in Equations 2.1-2.8 and their respective units are listed below:

Table 2.1 Electromagnetic quantities and units

Quantity Description Units

E Electric field amplitude Volt/meter (V/m)

H Magnetic field amplitude Amp/meter (A/m)

D Electric flux density Coulomb/meter*(C/m?)
B Magnetic flux density ~ Weber/meter*(Wb/m?)
J Current density Amp /meter*(A/m?)

p Charge density Coulomb /meter®(C/m?)
Q Charge Coulomb (C)

E and H denote the amplitudes describing the strength of a field at a given point in the

space and time. D and B denote the fluxes.

2.1.3 Constitutive Relations

The electric and magnetic flux densities (D and B) are related to the electric and magnetic field
amplitudes (E and H) by the constitutive relations. The functional form of the relationship
depends upon the nature of the medium. For linear and isotropic media, the relations between

electric flux, magnetic flux, electric field and magnetic field are given by:
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B—uH (29)

D =¢E (2.10)

where U is the magnetic permeability of the medium (in Henry/meter) and € is the
electrical permittivity of the medium (in Farad/meter). The values of ¢ and € in vacuum are

symbolically denoted by ug and &, respectively and are given as:

Uo =4m x 1077 Henry/m

g = 8.854 x 1072 Farad /m

2.1.4 The Wave Equation

The electromagnetic wave equation can be derived using Maxwell’s equations. For a source
free (p =0, J = 0), linear (i and € are independent of E and H), and isotropic medium

conditions, Equations 2.1-2.4 become:

V.-D=0 2.11)
V-B=0 (2.12)
0B
VxE= =’ (2.13)
oD
VxH= == (2.14)
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2.2 Analytical and Semi-Analytical Methods

Equations 2.11-2.14 are strongly coupled first-order differential equations and it is not
easy to implement these equations in a computer program for the solution of many problems.
Therefore, it is usual practice for many algorithms to use decoupled second-order differential
equations that consist of only one field value (either E or H). It should be noted that the
choice of a coordinate system is critical in obtaining the wave equation.

The wave equation in terms of the electric field amplitude is given by [11]:

9°E
VZE—MW =0 (2.15)

While, the wave equation in terms of the magnetic field amplitude is given by [11]:

H
VZH—ugW =0 (2.16)

As both wave equations consist of only one field amplitude, discretisation of the com-
putational domain for different numerical methods becomes easier in comparison to when

using the coupled equations [15].

2.2 Analytical and Semi-Analytical Methods

Analytical methods are appropriate for the solution of the basic electromagnetic equations
to describe the propagation of light through the optical devices and therefore only provide
solutions for simple structures. It is only possible to use an analytical solution for pla-
nar/slab optical waveguides. Even for the two-dimensional optical waveguide structures
some approximations are needed to obtain the analytical solutions [15]. In 1969, Marcatili

[16] proposed a famous approximate analytical method that describes the propagation of
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light through a low refractive index contrast rectangular dielectric optical waveguide. The
Effective Index Method (EIM) for the analysis of optical waveguides proposed by Knox
and Toulios in 1970 [17] is an extension of the Marcatili method. The EIM method was the
most popular among the approximate methods, in which the rectangular structure is replaced
by an equivalent slab structure having an effective index. The effective index is defined as
the ratio of propagation constant in the waveguide to the free-space propagation constant.
The drawback of the conventional EIM is that it only produces accurate results when the
waveguide modes are operated in the far-from-cutoff region. Different variants of the EIM
were developed, including the EIM based on linear combinations of solutions [18] and with
a perturbation correction [19].

However, in the last few decades, high refractive index contrast waveguides have attracted
strong interest for use in photonic integrated devices. High refractive index contrast provides
strong light confinement in such devices that allows a small device footprint. In 2015,
Westerveld er al. [20] described an approximate model of how light travels through a
rectangular high refractive index contrast waveguide. Westerveld et al. improved Marcatili’s
model by adjusting the amplitudes of the electromagnetic field components. This improved
model also shows good agreement with rigorous numerical simulations for the high index

contrast waveguides.

2.3 Numerical Methods

Complex nanophotonic structures are being designed and fabricated to enable novel applica-
tions in optics and integrated photonics. Due to the large number of parameters used in the
modern optical devices, analytical methods are not sufficient to understand the behaviour of
such structures. Simulation and modelling using numerical methods play an important role
in any scientific work. With continuous improvement of computational power at a reduced

cost, modelling has become the key approach for developing improved photonic devices.

12
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There exists a wide range of numerical methods that are constantly being improved for the
design, development, and optimisation of the photonic components. Finite differences, finite
elements, boundary integral, surface integral, volume integral, and hybrid methods are some
of the widespread numerical approaches that are derived from the classical electrodynamics.
For the accurate modelling of the optical devices a clear understanding of pros and cons of the
available numerical methods is necessary when choosing an appropriate computational/nu-
merical method for a photonics design problem. Most of the numerical modelling techniques
use Maxwell’s equations in some form as a starting point while solving the problem domain.
The following includes some of the most widely used numerical analyses techniques for the

design, development and characterisation of photonic devices.

2.3.1 Modal Analysis

The analysis of modal characteristics is an important subject in photonic waveguides and
devices. The modal analysis method is used to find the propagation constant or effective
index of the guided modes in a waveguide. It also provides the field profiles (of E and H
fields) of all the modes supported by a waveguide. For the modal analysis method, it is
assumed that the waveguide is uniform in the direction of propagation and a cross-sectional
plane (for a 3D structure) or line (for a 2D structure) is considered. This method calculates
the propagation constant or effective index for one frequency at a time. The solver can be
used with both scalar and full-vectorial formulations. The vector H-field formulation can be

written as [21, 22]:

, [(VxH)"-1
[H* 1 -HdQ

(2.17)
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where @ and Q are the angular frequency of the electromagnetic wave and the waveguide

cross-section, respectively.

2.3.2 Beam Propagation Method

The Beam Propagation Method (BPM) can be used to simulate the propagation of light
in slowly varying optical waveguides and is inaccurate for the modelling of discretely or
fast varying structures. It is typically used to describe and study the evolution of total field
propagating along the longitudinally varying designs, such as bent, tapered, Y-junctions, and
terminated waveguide structures. The BPM algorithms take the initial field provided at the
input and march it along the direction of propagation to produce the expected field at the
output. This method can be inaccurate for the modelling of devices with high refractive index
contrast, for example silicon-on-insulator structures.

Initially the BPM was reported in 1980 [23] based on the Fast Fourier Transformation
(FFT). It is used to generate the mode related properties such as propagation constants, relative
mode powers and group delays with high precision, which are required for the analysis of the
optical fibre dispersion. Several numerical algorithms employing finite difference techniques
for the vector BPM have been reported in the literature [24-26]. Subsequently in 1996 [27],
Tsuji and Koshiba presented a unified finite element based BPM for both TE and TM waves
propagating in a strongly guiding and longitudinally varying optical waveguides. Later in
2000 [28], Obayya et al. reported a finite element based full-vectorial BPM algorithm to

accurately characterise 3D optical waveguide devices.

2.3.3 Finite Difference Method

The Finite Difference Method (FDM) is one of the simplest and oldest method used to solve
differential equations that are difficult or impossible to solve analytically. The advent of finite

difference techniques in numerical applications began in the early 1950s. In mathematics,
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FDM solves the differential equations by approximating them with difference equations. It
converts linear (non-linear) ordinary/partial differential equations into a system of linear
(non-linear) equations. The resulting equations are then solved using matrix algebra. Modern
computers can be efficiently used to solve these matrix equations. FDMs discretise the
computational/problem’s domain in space and time. Then approximations of the solution
are computed at the space or time points. The computation domain is usually divided into
a uniform grid. The error between the numerical solution and the exact solution is called
discretisation error.

FDMs application to optical waveguide modelling are dated back to the early eighties. To
restrict the computational domain for the numerical simulation of optical devices using FDM,
a finite cross-section is defined which encloses the dielectric waveguide. Boundaries of this
cross-section are either electric or magnetic walls and it is assumed that the field at these
boundaries are very small. Perfectly matched layer (PML) at the boundaries can also be used
which absorbs the fields at the edges without reflection [29]. The enclosed cross-section is
divided into rectangular grids called as a mesh. This mesh consists of various nodal points
which are used to store one or more field variables. A uniform mesh is most commonly used
but can result in a large number of nodes depending upon the element size of the defined
mesh. The accuracy of this method depends on the mesh element size. If the mesh element
size is large, simulation is quick, but can result in inaccurate results. Decreasing the mesh
element size too much may increase the accuracy, but it takes longer time to process and

would be computationally inefficient.

2.3.4 Finite Element Method

The Finite Element Method (FEM) is a numerical technique used for solving a wide variety
of engineering problems, including computational electromagnetics and is particularly used

for problems involving irregular geometries and steep gradients. The FEM was initially
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introduced for the modelling of mechanical applications related to aerospace and civil
engineering structures. Later on, it was employed in different areas of interest including
structural analysis, heat transfer, fluid flow, biomechanics, biomedical, electromagnetics,
among others.

The main feature of FEM is to break the spatial domain (one-, two- or three-dimensional)
into a number of simple geometric elements such as triangles or quadrilaterals. Each element
may have different material properties in terms of its relative permeability and permittivity.
These elements are assumed to be connected to one another, but only at interconnected
joints, known as nodes. The complete arrangement of the elements is known as a mesh.
The FEM formulation of the problem results in a system of algebraic equations. Each
element represents a set of equations. All sets of element equations are then systematically
recombined into a global system of equations that models the entire problem. FEM theory
is well developed and offers great freedom in the selection of discretisation. The accuracy
of this method also depends upon the mesh. A finer mesh across the whole domain may
yield more accurate results but at the cost of increased computing time. In order to reduce
this computation time different element sizes for the discretisation can also be considered.
A finer mesh can be used in the areas of the problem domain where the field has a rapid
variation. On the other hand, a coarser mesh can be used where there is a little variation or

almost negligible field amplitudes.

2.3.5 Finite Difference Time Domain Method

Finite Difference Time Domain (FDTD) belongs to the class of finite difference numerical
modelling method and involves stepping the system through discrete periods of time. FDTD
is a time-domain approach and provides a solution for a wide range of frequencies with each
simulation. FDTD method was first proposed in 1966 by Yee [30] for solving Maxwell’s

curl equations on staggered grids in space and time. In 1980, Taflove [31] validated the
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application of FDTD method to sinusoidal steady-state electromagnetic fields penetrating an
arbitrary dielectric or conducting body. In 1988, FDTD modelling of microstrips was
introduced by Zhang er al. [32]. Since 1990, FDTD has been the most widely used
method to computationally model many time-domain engineering problems dealing with
electromagnetics. FDTD modelling applications include antennas, wireless communications,
photonic crystals, nanoplasmonics, solitons, biophotonics, and others.

A computational domain must be established first to implement a FDTD solution that
is simply a physical region over which the simulation is performed. The material of each
cell (formed by the grids) within the computational domain must be specified in advance
depending upon the device dimensions. Grid materials are defined in terms of permeability,
permittivity, and conductivity. The source is then specified, for example the current on a
wire or the applied electric field. FDTD method discretises the time-dependent Maxwell’s
equations to the space and time partial derivatives. The resulting finite-difference equations
are then solved in a leapfrog manner. Electric field vector components for the computational
domain are solved at a given time-step and then at the next time-step the magnetic field vector
components are computed from the previously obtained electric field vector components
for the same computational domain. This process is repeated and at each time-step the
electric and magnetic field components are updated until steady-state or transient electro-
magnetic fields are obtained for the computational domain. The time taken and required
computer memory is proportional to the size of the computational domain that depends on
the dimensions of the photonic structure to be modelled.

Yee [30] proposed spatially staggering the electric and magnetic field vector components
about rectangular unit cells of a computational grid, as shown in Fig. 2.1. Each electric field
vector component is located midway between a pair of magnetic field vector components,
and conversely. This is also known as a Yee lattice. Yee’s proposed algorithm solves for both

electric and magnetic fields using the coupled Maxwell’s equations instead of using the wave

17



Overview of Numerical Methods for Electromagnetics

Fig. 2.1 3D cuboid representation for FDTD.

equation. The most commonly used grid truncation techniques in FDTD modelling are the
perfectly matched layer (PML) formulations. PML can provide orders of magnitude lower
reflections than other truncation techniques. There is a limit on the chosen time step value
(Ar) to ensure the stability of the FDTD algorithm. This stability factor (§), also known as

Courant—Friedrichs— factor for three dimensional geometry is given by [33]:

1 1 1
S=c-At \/(M)2 AR TEARY (2.18)

where c is the wave propagation speed, At is the time step value, Ax, Ay and Az are the

space increments in the x, y and z directions, respectively, and the stability factor is § < 1.

2.3.5.1 Strengths of FDTD modelling

* FDTD is a very powerful numerical approach to obtain a full time response over

a wide range of frequencies with a single simulation. This is particularly useful in
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applications where resonant frequencies are not exactly known or when a broadband

result is needed.

* The FDTD method does not create any global matrix to find the values at the next
time-step. All calculations for the evolution of the fields are done locally to each Yee’s

lattice.

* It is suitable for any type of parallel computing as the governing equations are inde-

pendent of each other, which further speeds up the simulations.

2.3.5.2 Weaknesses of FDTD modelling

* FDTD technique is computationally more expensive and normally requires relatively
longer simulation times than other numerical methods. Modern computers have
overcome this problem to some extent because they have large amounts of memory

storage and fast processor speeds.

* FDTD method requires only one grid resolution throughout the computational domain,
and hence the grid dimensions should be sufficiently fine to resolve the smallest
geometrical feature in the model. Models with long, thin features (like wires) are
difficult to model in FDTD. Eigenmode Expansion can be used as an alternative as it

does not require a finer grid along the z-direction [34].

* Complex structures that do not conform to the rectangular grids introduce errors in
the results. A stair case approximation is a better choice for the simulation of such

designs.

2.3.6 Finite Element Time Domain Method

The problems with the FDTD methods are mostly associated with the grid. Therefore,

a better grid or meshing technique is required to improve the overall transient response
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performance. Finite Element Time Domain (FETD) methods are better alternatives based
on a geometry-conforming mesh (structured or unstructured) [35]. In contrast to FDTD,
the FETD method allows more accurate representations of arbitrarily irregular and complex
structures by means of a flexible triangular and curvilinear mesh. FETD formulation has
been widely investigated in the engineering computational electromagnetics in the literature
[36]. These methods vary from each other depending upon the requirement of the implicit
solution, the use of large matrices or the need for higher order Maxwell’s equations solutions,
etc. FETD also allows different mesh resolutions (dense and coarse) simultaneously in the
same computational domain. For FETD to be an alternative of FDTD it should possess most
of the advantages of FDTD and be able to discretise the computational domain efficiently,

especially for the structures with curved geometry.

2.4 Summary

In summary, the Maxwell’s equations in the differential and integral forms have been
introduced. Maxwell’s equations are generally used as a starting point for solving the
computational domain when using different numerical approaches such as finite differences,
finite elements, boundary integral, surface integral, and others. Finite difference time domain
method has been extensively used by the researchers in the last decades for studying the
propagation of the electromagnetic light. A rectangular mesh is used in the finite difference
time domain method which makes the simulation computationally expensive. A finite element
time domain method can be used as an alternative to the finite difference time domain method.
A triangular or curvilinear mesh can be used with the finite element time domain method for

more accurate representation of complex structures.
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Chapter 3

Equations for Two-dimensional

Structures

The differential form of Maxwell’s equations was chosen for the derivation of the governing

equations for two-dimensional structures as given below:

JH 1
JE 1
E_EVXH (3.2)

where H = XH, + yH, +ZH,, E = XE, + JE, +ZE,, 1 and € are the vector magnetic field,
vector electric field, permeability and permittivity of the medium, respectively. X, ¥, and Z are
the unit vectors in the x, y, and z directions, respectively.

The partial differential operator, V, is given by:

. d . d . d
V:’CE*ya_y”&_z (3.3)
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For the two-dimensional structure, the propagation of light is considered in the x-y plane,

d
hence — becomes equal to zero. Equations 3.1 and 3.2 can now be expanded as:
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Equations 3.4 and 3.5 are used to obtain equations for Transverse Electric (TE) and

Transverse Magnetic (TM) propagation modes.

For TE propagation, there is no electric field in the direction of propagation. The TE

propagation equations are given by:

dH,
dt

dH,

dt

dE,

dr

&

1 OE,

p dy

108,
U dx

1 (8Hy B 8Hx>

ox  dy

(3.6)
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For TM propagation, there is no magnetic field in the direction of propagation. The TM

propagation equations are given by:
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3.1 Space Discretisation

dE, 10H,

at ey (39
dE,  10H,

o eox (3.10)
dH, 1 (JE, OE,
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The computational domain is initially discretised to solve the governing Eqgs. 3.6-3.11.
The electric (E) and magnetic (H) field components in these equations are functions of both
space and time. The right hand side of these equations is used to calculate the evolution
of field components in space, while the left hand side describes the time evolution of the
fields. To discretise the computational domain in both space and time, nodal elements are
used. Space evolution is calculated at different spatial nodes of the nodal elements at a fixed

time, while time evolution is obtained at different time intervals at fixed spatial nodes.

3.1 Space Discretisation

Among the different numerical approaches reported in the literature, the finite element method
(FEM) has established itself as a powerful method for electromagnetic problems [37, 38]. To
employ FEM the cross-section of the optical waveguide was suitably divided into a number
of subdomains or nodal elements [39]. One-, two-, or three-dimensional elements can be
used for finite element analyses. For two-dimensional simulations the simplest case is to use
triangular elements where the trial function within each of these elements was approximated

using first order polynomials.
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3.1.1 Shape Functions

The continuous field function ¢ (x,y) in the problem domain may be replaced by a set of
discrete values (¢,, p =1,2,3,...,m), where m is the total number of nodes. The function
is continuous across adjacent triangular elements. ¢ is interpolated continuously inside each
first order triangle and can be achieved by introducing the nodal shape function, N; (x,y).

The field inside an element, ¢, (x,y) can be written as [15]:

3
¢, (x,y) = Y Ni(x,y) -9, (3.12)

i=1

where ¢; are the nodal field values. The matrix form of Eq. 3.12 is defined as follows:

¢,
¢, (x,y)=[N1 N2 N3] ¢ ¢, (3.13)

03

where [N] is the shape function matrix and {¢, } corresponds to the element nodal field
values. Linear shape functions with first order polynomials were considered to describe
the spatial variation of the fields inside an element. First order triangular elements use a
first-degree polynomial (a + bx + cy) over each element. The element shape function {N} =

[N]” can be written as:

Ni X2y3—X3Y2 Y2—Y3 X3—X2 1
1
(Nt = | M | =50 | xayi—xy3 y3—y1 x1—x3 x (3.14)
24,
N3 X1y2—X2Y1 Y1 —Y2 X2—X| y

where T denotes the transpose, A, denotes the area of the triangular element and x,
X2, X3, Y1, ¥2, and y3 are the x,y coordinates of three nodes of the triangular nodal element,

respectively. {N} can also be written as:
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3.1 Space Discretisation

Ny a; bix cpy
{N}= | M | = | a2 box cay
N3 a3 bix c3y

Comparing Egs. 3.14 and 3.15, the coefficients a;, b;, c; are calculated as:

ar — X2y3 —X3Y2
! 24,
2= Y3
py =223
17 74,
X3 —Xp
C1 =
17 4,

(3.15)

(3.16)

(3.17)

(3.18)

Similarly, ay, by, c2, a3, b3, c3 can be calculated using a cyclic exchange of 1 — 2 — 3

in Egs. 3.16 — 3.18.

Consider the typical point P in the triangular element in Fig. 3.1 with vertices 1, 2, and 3.

N1, N>, and N3 can be given by:

area of the triangle P12

Ny =
'™ area of the triangle 123
N area of the triangle P23
27 area of the triangle 123
area of the triangle P31

N3 =

area of the triangle 123

and the area is given by:

Ni+Ny+N3 =1
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Y2

Yi

X

X, X5 X,

Fig. 3.1 Coordinates and node numbers of a typical first order triangular element.

It should be noted that the shape function of any order can be incorporated using the
proposed method. However, linear elements are chosen for the space discretisation as they
require the least computation time. More computer memory space would be required to store

higher order elements in comparison to simple linear elements.

3.1.2 Two-dimensional Mesh

The accuracy of a finite element based code mostly depends on how efficiently the mesh
discretises the computational domain. Many commercial and open source software packages
are available for mesh generation including Pointwise, Gmsh [40], Netgen [41], Tetgen [42],
Meshlab [43].

In this research work an open source software, Gmsh, is used to generate the mesh.
Gmsh is a finite element mesh generator capable of generating 2D and 3D meshes using a
built-in CAD engine. It is a fast and user-friendly interactive software tool that can easily
create geometries and meshes with parametric input and advanced visualization capabilities.

Gmsh’s scripting language and its in-built graphical user interface can be used to generate
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Fig. 3.2 Structured irregular mesh arrangement using GMSH software.
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a mesh structure for any kind of design specifications. Mesh coordinates and elements
generated using open source or commercial software can be taken as an initial point or input
for the proposed FETD code.

Figure 3.2 shows a structured irregular type mesh, generated using Gmsh, for a directional
coupler design. Layers or meshes on extreme ends in the vertical direction represent the
substrate (lower layer) and cladding (top layer). The centre layer separates the two cores
of the directional coupler. The remaining two layers are the core layers that are used to
propagate the electromagnetic wave. In an irregular mesh arrangement, element dimensions
may vary as can be seen from Fig. 3.2 that different layers can have different vertical lengths
of an element. If all the elements have similar dimensions, it would be a regular mesh
arrangement.

Generally, more mesh elements having smaller element sizes are used in the core layers
for a structured irregular mesh arrangement, while the lesser elements are reserved for the
substrate and cladding layers. As most of the light (or power) travels through the core layers,
it is logical to use dense mesh in the core layer in comparison to the substrate and cladding
layers. This type of mesh arrangement helps by saving computation resources in comparison

to the structured regular mesh arrangement.

3.1.3 Spatial Meshes - First and Second Mesh

Two-dimensional structures with right-angled triangular mesh elements arrangement have
been considered to discretise the computational domain. This initial triangular arrangement
of mesh, as shown in Fig. 3.3a [10] is termed as the First Mesh. The triangular element
node numbers and their corresponding (x,y) coordinate values were generated using the open
source mesh generator software, Gmsh. For TE propagation, the E, field component values
were stored at the nodes of the first mesh elements. Once the electric field component values

were stored at each node, the values of magnetic field components (H, and Hy) corresponding
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Fig. 3.3 (a) First mesh generation with triangular elements, (b) Generating second mesh
by connecting the centroids of the first mesh, (c) Discarding unwanted elements from both
meshes to save the computation time.

to each nodal element of the first mesh were calculated. Each triangular element of the first
mesh (having E; value stored at each of the three nodes) generates only one future value
of both H, and Hy, field component. These generated H, and H), values were subsequently
stored at the centroid of the same nodal element from which it was generated, shown by
black dots in Fig. 3.3a. Another triangular mesh is required which is constructed using the
centroids of the first mesh elements, as shown in Fig. 3.3b [10]. This new mesh generated
from the centroids of the first mesh can be termed as the second mesh. Next value of the E,
field component were then generated using obtained H, and H, fields. This newly obtained
value of E; is then stored at the nodes of the first mesh by replacing the previously stored
values provided that each element of the second mesh must surround one of the nodes of the
first mesh.

For example, the centroids of the first mesh elements numbered 2, 5 and 6 (in Fig. 3.3a)
become the three nodes of the element number 1 (in Fig. 3.3b) of the second mesh (shaded
in light blue). It can be seen that the centroids of elements numbered 1, 2, 3, ..., 9 (in Fig.
3.3b) of the second mesh coincide with the nodal coordinates of the first mesh. Half of
the first and second mesh elements shown by white colours in Figs. 3.3a and 3.3b can be

discarded to save the computation time. Although, half of the nodal elements are removed in
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the generated code technique, none of the nodes are removed, as can be seen in Fig 3.3¢ [10].
All of the three nodes associated with those triangles are still updated during calculation at

each time-step.

3.2 Time Discretisation

The computation domain has been spatially discretised and now the time axis discretisation

is obtained as:

P .
v=Y 0 v (3.19)
=1

J

where W can be any field component (H,, Hy, H;, Ey, Ey, E;) inside the element, and l[/j
is the field component at the jth time node, and P is the number of time nodes. For linear
elements, P is 2. Here, Q; is the shape function for the j’h time node, and for the linear

shape function it is given as:

Qj=pjt+q; (3.20)

where p;, g; are the coefficients of the line passing through the nodes of the time

element.

3.2.1 Time Meshing System

linear elements with two nodes has been considered to achieve the time discetisation. Higher
order time elements can also be considered, but it increases the computation resources and
the time required for the simulation.

The time discretisation is achieved by considering two different time meshes, M and

N, associated with the first and second mesh, respectively, as shown in Fig. 3.4 [10]. At
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Fig. 3.4 Time mesh system with equal time spacing.

time, t = 0 (time mesh - M), electric field component values are stored at the nodes of the
first mesh. From the stored electric field values, the magnetic field component values are
calculated at the next time-step, i.e. time = t/2 (time mesh - N), and then again future values
of electric field components are obtained at the next time-step, i.e. time = t (time mesh - M),
etc. Therefore, the electric and magnetic field components cannot be calculated at the same
time node. The time-step size for the calculation of the magnetic field components from
electric field components and vice versa is considered to be of the same duration, i.e. t/2. For
TE propagation, the E; field components were calculated at 0, t, 2t, ..., while H, and H,
field components were calculated at t/2, 3t/2, 5t/2, .. .. Similarly, time discretisation can be
obtained for TM propagation.

Using Eqs. 3.12 and 3.19 discretised versions (employing spatial and time meshing

systems) of Eqgs. 3.6-3.11 for TE and TM propagation are as follows:
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(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

where n+ 1,n and n — 1 denotes the component’s respective future, current and the past

value.

3.3 Perfectly Matched Layer (PML) Boundary

A perfectly matched layer (PML) is an artificial absorbing layer that is most commonly used

to truncate the computational domain in the numerical methods [33, 44]. This layer strongly

absorbs outgoing waves from the interior of a computational region without reflecting them

back into the interior [45].
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3.3 Perfectly Matched Layer (PML) Boundary

PML was originally formulated by Berenger in 1994 [29] for solving unbounded elec-
tromagnetic problems with the finite-difference time-domain method. The PML boundary
conditions have been effectively used in the literature for applications in optical wave propaga-
tion [46-50]. Several reformulations of PML has been reported in the past, and implemented
in different ways including coordinate stretching, convolution or uniaxial PML, etc [51].
However, small numerical reflections may appear (which disappear with increased numerical
resolution) when the wave equation is discretised for simulation using a computer.

The partial differential operator, V, has to be modified to implement any kind of PMLs.
For a Cartesian coordinate system implementation, PML can be classified into three different

categories: X axis PML, Y axis PML, and Corner PML, as shown in Fig. 3.5.

Corner PML Corner PML
Y Axis PML
2D
Computational
Domain
Y Axis PML
Corner PML Corner PML

Fig. 3.5 X axis, Y axis, and corner PML in a general 2D computational domain.

3.3.1 X Axis PML

The X axis PML absorbs any wave having a X component value moving towards the

computational boundary. The modified partial differential operator is given by:
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~x .0 o1 0 0
A (l—l-]E) Hig g (3.27)

where o, is the function of x. Any X component while using Eq. 3.27 is affected by
the operator, but all other components remain unchanged. Various PML equations used are

shown in Appendix A.1.

3.3.2 Y Axis PML

The Y axis PML absorbs any wave having a Y component value moving towards the
computational boundary. Likewise, the modified differential operator for the Y axis PML is
as follows:

d

~ 0 0 o\ !
y_o9 9 Oy .9
Vs +yay<1+]w) 25 (3.28)

where oy is the function of y. Any Y component while using Eq. 3.28, is affected by
the operator, but all other components remain unchanged. Various PML equations used are

shown in Appendix A.2.

3.3.3 Corner PML

Corner PML is used only at the corners of the computational domain to absorb waves in both

the directions. Likewise, the modified differential operator for the corner PML is as follows:

~ d -1 d oy ! d
Ve (142) 9o (14)22) 425 3.29

25 +]w +yay +]w —|—Z&Z (3.29)
where 0, 0y are the functions of x and y, respectively. Various PML equations used are

shown in Appendix A.3.
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3.4 Summary

3.4 Summary

In summary, mesh discretisation equations in the space and time for the two dimensional
structures have been described. Open source software, Gmsh, is used to generate the mesh.
A first mesh is generated using Gmsh and then a second mesh is generated from the centroids
of the first mesh. Perfectly matched layers are used at the boundaries of the computational

domain to reduce the unwanted reflections.
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Chapter 4

FETD Method for Two-dimensional

Structures

C++ programming language has been chosen to perform all the numerical simulations. C++
is a highly portable language with a rich function library. C++ is widely used for multi-
device and multi-platform app development. It provides facilities for low-level memory
manipulation along with object-oriented and generic programming features. OpenMP (Open
Multi-Processing) was also employed for parallel programming. OpenMP is an application
programming interface (API) which supports multi-platform shared memory multiprocessing
programming in C++. It helps in reducing the simulation times. The output field values
obtained during the FETD simulations were stored as a text file format. All the field plots
presented in this current work were generated using MATLAB. The speed of light in free
space is 3 X 108 ms~!. However, in order to implement a dimensionless simulation, all speed

values were normalised and hence lie in the range O to 1.
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4.1 Free-Space Propagation

A continuous sinusoidal point E, field source with a normalised wavelength of 1.55 um
(using the normalised light speed, ¢ = 1) was placed at the centre of the 2D computational
domain to perform the free-space propagation of the electromagnetic wave. For the free-space
propagation, permeability (€) was set 1. The computation domain is also surrounded by the
perfectly matched layer (PML) before the boundaries. Presence of the PML helps in reducing
the reflection of electromagnetic waves from the boundaries to the minimum or almost zero
values.

The evolution of E,, H, and H), field components in free-space are shown in Fig. 4.1. The
mesh resolution was set to 20 per unit length. The red, blue and green colours correspond to
the positive half, negative half, and zero amplitude of the corresponding field, respectively.
E, field is radially symmetric (expands uniformly in all directions) as shown in Fig. 4.1a.
The amplitude of E, field reduces with the distance from the point source in all directions.
Figure 4.1b shows the decrease in E, field amplitude along the horizontal (y) axis, as the
electromagnetic wave from the point source travels away from the centre of the computation
domain. The E; point source subsequently generates other magnetic field components (H,
and Hy), as shown in Figs. 4.1c and 4.1e. Unlike E,, H, and H, are not symmetric. H, and
Hy, field extrema’s are in the x and y directions, respectively with zero value along the y and
x axes, as shown in Figs. 4.1c, and 4.1e. H, and H,, field components also decay when the
electromagnetic wave moves away from the centre of the computation domain towards the

PML boundaries, as shown in Figs. 4.1d and 4.1f.
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Fig. 4.1 (a) E, field contour in free-space, (b) E; field profile in free-space along horizontal
axis at centre of computation domain, (c) H, field contour in free-space, (d) Hy field profile
in free-space along vertical axis at centre of computation domain, (e) Hy, field contour in
free-space, and (f) H, field profile in free-space along horizontal axis at centre of computation
domain.
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Fig. 4.2 (a) E, field contour in free-space at time equals 3.86 us, (b) E; field profile in
free-space along horizontal axis at centre of computation domain at time equals 3.86 us, (c)
E, field contour in free-space at time equals 6.96 us, and (d) E, field profile in free-space
along horizontal axis at centre of computation domain at time equals 6.96 us.

From the FETD numerical simulations performed the speed of the electromagnetic wave
was calculated as the ratio of the distance travelled by the wave to the time taken. Figure 4.2
shows the varying distances travelled by the wave at different times, considering the E, point
source in free-space at the centre of the computation domain. Figures 4.2a and 4.2c show the
E, field profile at time of 3.86 us and 6.96 s, respectively. It should be noted that at time of

6.96 us field has expanded radially in comparison to when the time is 3.86 us. Figures 4.2b
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4.2 Planar Waveguide

and 4.2d show the E; field profile along the y-direction through the centre of the computation
domain at time 3.86 us and 6.96 us, respectively.

From Figs. 4.2b and 4.2d the distance was calculated as the difference between the
point values in the y-direction, where the wave terminates and the centre of the computation
domain. This distance value was then divided by the respective time taken to obtain the speed
of the electromagnetic wave. The ratio comes out to be 0.977, approximately 1, which is
consistent with the initial assumption (c = 1) taken. Therefore, it justifies the effectiveness of

the FETD solver.

4.2 Planar Waveguide

4.2.1 Point Source Waveguide

Here, a Silicon core planar waveguide excited using a E, point source at a wavelength (1) of
1.55 um was considered. Cladding and substrate materials for this design were taken to be
air having refractive index of 1.0 (ng; = n.; here). The refractive index of silicon (ng; = n,
here) was taken to be 3.44 at A = 1.55 um. The width of the silicon core layer (centre layer)
was taken as 0.2 um. The width of both substrate (the bottom layer) and the cladding (the
top layer) were considered to be 4.2 um each.

At first, a transverse-electric (TE) simulation was performed using a E; point source.
The E, point source was placed at the coordinates (y, x) = (4.95, 4.3) um, which is inside
the silicon core layer. The placement of the E, point source can also be visualized as the
intersection point between an imaginary vertical line (formed by two pink colour dots) and
horizontal line (formed by two black colour dots) in Figs. 4.3a, 4.3c, and 4.3e. The 2D
computational domain is discretised with a mesh having resolution, A = 20 per unit length
and time resolution, AT = A/2. Regular mesh elements have been considered here, which

means that the number of elements per unit length is same in all layers.
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Fig. 4.3 E, field profile for a dielectric planar waveguide (a) at time equals to 8.6025 us, (b)
along horizontal axis at centre of computation domain at time equals to 8.6025 us, (c) at
time equals to 17.205 us, (d) along horizontal axis at centre of computation domain at time
equals to 17.205 us, (e) at time equals to 28.675 us, and (f) along horizontal axis at centre of
computation domain at time equals to 28.675 us. Various parameters: A is 1.55 um, w, is
0.2 um, wg and w,; are 4.2 um each, n. is 3.44, n.; 1s 1.0, and mesh resolution is taken as 20
per unit length.
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4.2 Planar Waveguide

Figures 4.3a, 4.3c, and 4.3e show the evaluation of the E, field component at three
different times, 8.6025 us, 17.205 us, and 28.675 us, respectively. It can be observed that
the E, field is mostly confined inside the silicon core. This confinement of the electromagnetic
wave in the dense silicon layer is based on the principle of total internal reflection (TIR) [52].
As the time increases from 8.6025 us to 17.205 us and then to 28.675 us, the electromagnetic
wave travels longer distances in the right-side direction. But the field amplitude decays to
almost zero value in the left-side direction. This is due to the presence of PML layers around
the boundaries, which makes the electromagnetic field die out more quickly on the left side
in the simulations. However, some of the fields radiate away from the silicon waveguide.
Therefore, besides its evolution to a propagating mode, other higher order modes were also
generated and radiated subsequently. Figures 4.3b, 4.3d, and 4.3f show the E, amplitude field
profile along the y-direction through the centre of the computation domain at times 8.6025

us, 17.205 us, and 28.675 us, respectively.

Table 4.1 Variations in the speed of wave (using FETD code) and effective index (n.r7) with
respect to A. The core width (w,) is 0.2 wm, substrate width (w;) and cladding width (w.;)
are 4.2 um each. Resolution is taken as 20 i.e. number of elements per unit length.

Wavelength | Resolution In | Effective Index | Speed of Wave
(um) Total (Ress)
1.30 172 2.82402 0.553
1.40 172 2.76725 0.600
1.50 172 271157 0.653
1.55 172 2.68418 0.683
1.60 172 2.65712 0.700

The effect of operating wavelength on the electromagnetic wave propagation is sum-
marised in Table 4.1. The speed of the electromagnetic wave through the silicon waveguide

was calculated using the generated FETD code. The wavelength (1) was increased from
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1.30 um to 1.60 pum, keeping the width of the core (w,) fixed at 0.2 um. The effective index
(neryr) at different A for the design parameters was obtained using our in-house 1D-FEM
code. As A increased from 1.30 pm to 1.60 um, n, s decreases from 2.82402 to 2.65712,
respectively. The speed of the electromagnetic wave increases with the decrease in n. sy and
a similar trend is in evidence when the values obtained using the generated FETD code were
used. The speed of the electromagnetic wave increases from 0.553 to 0.700 as n, sy decreases

from 2.82402 to 2.65712 or as A increases from 1.30 um to 1.60 pwm.

Table 4.2 Variations of the speed of the wave (using FETD code) and n, s with respect to
refractive index of core at A = 1.55 um. Core width (w,) is 0.2 pm, substrate width (w;) and
cladding width (w.;) are 4.2 um each. Resolution is taken as 20.

Refractive | Resolution In | Effective Index | Speed of Wave
Index Total (ness)
2.00 172 1.38115 0.838
3.00 172 2.25056 0.709
3.44 172 2.68418 0.683
4.00 172 3.25277 0.567

Table 4.3 Variations of the speed of the wave (using FETD code) and n, s with respect to we
at A = 1.55 um. Substrate width (wy) and cladding width (w.) are 4.2 um each. Resolution
is taken as 20.

Core Width | Resolution In | Effective Index | Speed of Wave
(um) Total (ness)
0.1 172 2.01518 0.787
0.2 172 2.68414 0.683
0.3 172 2.98192 0.503
0.4 172 3.13405 0.451
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4.2 Planar Waveguide

Increasing the refractive index of the core material, keeping A and w, fixed, increases the
ners, as shown in Table 4.2. When the refractive index of the core was increased from 2.0 to
4.0, ne sy increases from 1.38115 to 3.25277, respectively. As n, sy increases the speed of the
electromagnetic wave decreases through the waveguide from 0.838 to 0.567, as shown in
Table 4.2.

Gradually increasing w, while keeping A and refractive index of core as fixed values,
leads to an increase in the n, s and subsequently decreases the propagation speed of the wave
through the waveguide. A similar trend can be observed in Table 4.3 where n, sy increases
from 2.01518 to 3.13405, and speed of the electromagnetic wave decreases from 0.787 to

0.451 when w, increases from 0.1 um to 0.4 yum, respectively.

4.2.2 Mode Source Waveguide

The E,; mode source (generated using in-house FEM code) was considered as an input source
to the waveguide. The specifications of the waveguide dimensions were same as in the case
of the point source considered in Section 4.2.1. Regular mesh type elements were considered
in this case. The width of the silicon core layer (centre layer), width of substrate (bottom
layer) and width of the cladding (top layer) were taken as 0.2 um, 4.2 um, and 4.2 um,
respectively. A normalised mode source (amplitude values of respective mode field was
converted in the range 0—1) was used as an input at y of 4.95 um along the vertical axis (in
the x-direction). It can be observed from Fig. 4.4a that the propagating field is confined
mostly to the core layer. In comparison to when the point source is taken as an input (in
Section 4.2.1), there is less leakage field outside of the core when the mode source is taken
as an input. Figure 4.4b shows the amplitude variation along the horizontal axis at x = 4.3
um. The maximum amplitude values are close to 1 along the horizontal axis, which implies

that there is very low loss of the propagating field in this case.
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Fig. 4.4 Using regular mesh arrangement: (a) E, field profile for a dielectric planar waveguide

with a E; mode source, and (b) E; field profile for a dielectric planar waveguide along the
horizontal axis through the centre of the computation domain.
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Fig. 4.5 Comparison of E;, field profile from the proposed FETD method and in-house FEM
code having regular mesh arrangement.
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4.2 Planar Waveguide

A comparison of the normalised input mode source (generated from the FEM code) at y
of 4.95 um and the amplitude of the propagating electromagnetic wave (using FETD code
output) along the x-axis at y = 14 um (between the blue colour dots in Fig. 4.4a) is compared
in Fig. 4.5. They both overlap each other which confirms that the wave is propagating

efficiently (with very low loss) through the waveguide core.
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Fig. 4.6 Using regular mesh arrangement: (a) H, field profile for a dielectric planar waveguide
with a E; mode source, (b) H, field profile for a dielectric planar waveguide along vertical
axis between blue colour dots, (c) H, field profile for a dielectric planar waveguide with a E;,
mode source, and (d) H,, field profile for a dielectric planar waveguide along vertical axis
between blue colour dots.
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The magnetic field components (H, and Hy) generated from the input £, mode source

using Maxwell’s equations are shown in Fig. 4.6.

E
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Fig. 4.7 Using irregular mesh arrangement: (a) E;, field profile for a dielectric planar waveg-
uide with a £, mode source, and (b) E, field profile for a dielectric planar waveguide along
the horizontal axis at the centre of the computation domain.

In Fig. 4.7, an irregular mesh has been considered with the mode source input for the same
specifications of the design as used with the regular mesh arrangement. The purpose of using
the irregular mesh elements arrangement is that a greater number of elements per unit length
could be used in the dense core layer through which the wave propagates in comparison to
the substrate and cladding layers. This may result in better accuracy of the model and it can
be computationally more efficient in comparison to regular mesh arrangement.

The overlapping of the FEM input and FETD output at the far position (as shown in
Fig. 4.8) confirms that the irregular mesh arrangement is also working accurately with the

generated FETD code.
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Fig. 4.8 Comparison of E;, field profile from the proposed FETD method and in-house FEM
code having irregular mesh arrangement.

4.3 Directional Coupler

A directional coupler with two silicon cores separated by varying distances is considered
with a mode source input. A mode source input generated from the FEM code was input to
into the lower waveguide. A directional coupler couples light from one waveguide to another
and then back to the original waveguide. The coupling length (L) of a directional coupler
can be calculated as half the distance between two peak values of the field in any waveguide.

Figure 4.9a shows the coupling of E; field from one waveguide to another. The widths
of both of the silicon core layers were taken as 0.2 yum. Air is considered as the substrate
and cladding material. The separation between the silicon waveguides was taken as 0.3
um. The mode source input was generated using the FEM code which was fed aty = 15
um along the vertical axis formed between two pink colour dots. Figure 4.9b shows the E,

field amplitude along the horizontal axis through the center of the lower waveguide. The
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4.3 Directional Coupler

E, field amplitude alternatively falls from peak to zero and rises to the peak again. The
E, field amplitude along the vertical axis at two different y-positions (along vertical axes
formed by two black colour dots and two blue colour dots in Fig. 4.9a) is shown in Fig. 4.10.
It shows that when the amplitude is maximum in one waveguide, it is approximately zero
in the other waveguide and vice-versa. Aty = 32 um, most of the field is confined in the
upper waveguide, while at y = 50.25 um, most of the field has been transferred to the lower
waveguide. The horizontal distance between the two waveguides when maximum field is

transferred from one waveguide to another corresponds to the L. of the directional coupler.
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Fig. 4.11 Using regular mesh arrangement with resolution of 20 per unit length: (a) E; field
profile for a directional coupler with a E, mode source having waveguides separation equals
to 0.2 um, and (b) E, field profile for a directional coupler along horizontal axis through the
centre of lower waveguide.

Figures 4.11 and 4.12 show the coupling of an electromagnetic wave from one waveguide
to another when the separation between the waveguides was 0.2 um and 0.1 pm, respectively.
It can be seen from Figs. 4.9b, 4.11b, and 4.12b that if the separation is reduced between
the waveguides, the minimum field amplitude value does not reach zero and it still has some
remaining amplitude value. This can be stated as the dip ratio. The dip ratio is defined as

the ratio of maximum field amplitude near to the zero axis to the maximum field amplitude

51



FETD Method for Two-dimensional Structures

[

z 1.2
8/ 1
0.8
0.6
0.4
0.2
0 1
-0.2]
-0.4;
-0.6
-0.8
1+
0 ¢ -1 -1.2 .
0 10 20 30 0 4 8 12 16 20 24 28 32

y(pm) y(pm)
() (b)

®
-

e e
4 e ' | .t’nmm‘t'wl‘ | ‘«'n‘lyum‘tlw\ 1 V’:IIIIHI.II‘ i !‘li’lllllll‘lll l 'Ilmlmll“ " ||uu||||llw! | |l’l‘lll|lllil>|‘ I "4 o 10

x(pm)
Field amplitude(Ez)

Fig. 4.12 Using regular mesh arrangement with resolution of 20 per unit length: (a) E; field
profile for a directional coupler with a £, mode source having waveguides separation equals
to 0.1 um, and (b) E, field profile for a directional coupler along horizontal axis through the
centre of lower waveguide.

near to the peak, as shown in Fig. 4.12b. It is well known that as the separation between
the waveguides is reduced, complete power transfer between the waveguides is not possible,

which increases the cross-talk.

Table 4.4 Comparison of coupling length (L.) for TE propagation as calculated from FETD
code and FEM code with varying separations between the waveguides cores. Various
parameters: A is 1.55 um, wy and w,; are 4.2 um each, n. is 3.44, n. is 1.0, and mesh
resolution is taken as 20 per unit length. Dip ratio variations are also shown with respect to
separation between the waveguides cores.

Separation | L, (FEM) | L. (FETD) | % difference (L.) | Dip Ratio
(um) (um) (um)
0.1 2.10 2.12 0.943 0.190
0.2 5.94 6.02 1.328 0.076
0.3 16.59 17.25 3.826 0.032
0.4 46.23 46.9 1.428 0.010
0.5 128.32 129.95 1.025 0.006
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Fig. 4.13 (a) Comparison of coupling length (L.) for TE propagation calculated from FETD
code and FEM code on logarithmic scale, (b) Dip ratio variations shown with respect to
separations between the waveguides cores. Various parameters: A is 1.55 um, wy and w,; are
4.2 um each, n, is 3.44, n; is 1.0, and mesh resolution is taken as 20 per unit length.

The L. obtained from the FETD code was compared with the FEM code and summarised
in Table 4.4. It can be seen that L. matches for the FETD and FEM codes when separation
was increased from 0.1 um to 0.5 um. The dip ratio value calculated using FETD code
decreases from 0.190 to 0.006 when separation is increased from 0.1 um to 0.5 um. The
resolution (number of mesh elements per unit length) can also be increased, which may lead
to even closer results for L, from FETD and FEM codes. However, increasing the resolution
is at the cost of increased simulation times. Therefore trade-off is necessary between the
accuracy of the results and the time taken to obtain a simulation result. The L. shown on a
logarithmic scale and the dip ratio variation with the separation for both FETD and FEM
codes are plotted in Figs. 4.13a and 4.13b, respectively.

The L. using FETD and FEM codes for TM propagation are compared in Table 4.5 and
Fig. 4.14a. The L. increases from 1.31 yum to 5.40 um and 1.32 yum to 5.95 um using FEM
and FETD codes when separation increases from 0.1 ym to 0.5 yum, repectively. The L.

values obtained from both FETD and FEM codes are close. The dip ratio decreases with
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separation for TM propagation, similar to TE propagation. Dip ratio falls from 0.52 to 0.18

when separation is increased from 0.1 ym to 0.5 yum, as shown in Fig. 4.14b.

Table 4.5 Comparison of coupling length (L) for TM propagation as calculated from FETD
code and FEM code with varying separations between the waveguides cores. Various
parameters: A is 1.55 um, wy and w,; are 4.2 um each, n. is 3.44, n. is 1.0, and mesh
resolution is taken as 20 per unit length. Dip ratio variations are also shown with respect to
separation between the waveguides cores.

Separation | L, (FEM) | L. (FETD) | % difference (L.) | Dip Ratio
(um) (m) (um)
0.1 1.31 1.32 0.757 0.52
0.2 2.00 1.92 4.166 0.40
0.3 2.81 3.07 8.469 0.30
0.4 3.88 4.22 8.056 0.23
0.5 5.40 5.95 9.243 0.18

[3,]

Coupling length, Lc(um)
Dip Ratio

0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
Separation(um) Separation(zm)

(a) (b)

Fig. 4.14 (a) Comparison of coupling length (L.) for TM propagation calculated from FETD
code and FEM code, (b) Dip ratio variations shown with respect to separations between the
cores. Various parameters: A is 1.55 um, wy and w,; are 4.2 um each, n. is 3.44, n.; is 1.0,
and mesh resolution is taken as 20 per unit length.
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4.3.1 Regular Mesh - Varying Resolution

Table 4.6 Comparison of coupling length (L.) for TE propagation calculated from FETD and
FEM codes for varying resolutions. Various parameters: A is 1.55 um, wy and w,; are 4.2
um each, n is 3.44, n; is 1.0. Dip ratio variations are also shown.

Separation | Resolution In | L. (FEM) | L. (FETD) | % difference (L.) | Dip Ratio
(um) Total (um) (um)
0.2 172 5.94 6.02 1.328 0.076
0.2 344 6.01 6.13 1.957 0.058
0.2 688 6.03 6.17 2.269 0.052

The dip ratio variations for TE propagation with increased number of elements in all layers of
the computation domain is compared in Table 4.6. A regular mesh arrangement is considered
in this case which implies that the mesh elements in all layers have the same dimensions.
It can be observed that the dip ratio decreases from 0.076 to 0.052 when the resolution is
increased from 172 to 688. However, a denser mesh structure gives more accurate results,

but also increases the simulation time.

4.3.2 Irregular Mesh - Varying Resolution

An irregular mesh arrangement was also employed for the directional coupler design. When
considering irregular mesh, if the number of elements are nominal and aspect ratio (defined
as the ratio of number of elements per unit length in core and substrate) is high, then the dip
ratio does not fall to lower values in comparison to when the regular mesh arrangement is
considered. It can be seen from Fig. 4.15a that the electromagnetic wave is not able to couple
efficiently from the lower waveguide to upper waveguide. It can be observed that the lower

waveguide still retains a large field amplitude at approximately y = 12 um. However, ideally
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Fig. 4.15 Using irregular mesh arrangement: (a) E, field profile for a directional coupler with
a £, mode source having waveguides separation equals to 0.2 um, and (b) E, field profile for
a directional coupler along the horizontal axis through the centre of lower waveguide.

it should fall down to nearly zero at y = 12 um. Consequently, the dip ratio is more if there

is a high aspect ratio for irregular mesh type arrangement having nominal mesh elements.

The following mesh arrangements are proposed for the high aspect ratio condition:
1. Progressive mesh arrangement

2. Extra mesh elements arrangement

4.3.2.1 Progressive Mesh Arrangement

In a progressive mesh type arrangement, the element size is progressively increased (in
geometric progression) towards the boundaries of the computational domain having minimum
element dimension near to the interface of the core. It has been chosen to use a minimum
element dimension of progressive mesh arrangement similar to the desired element size in
the core layer.

The L. and dip ratio are compared for the FETD code having a progressive type mesh

arrangement with the FEM code in Table 4.7. The dip ratio decreases from 0.08 to 0.05 when
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the total number of elements arranged in a progressive type mesh increases from 172 to 688,

respectively.

Table 4.7 Comparison of coupling length (L.) for TE propagation calculated from FETD
and FEM codes for varying resolution using progressive type irregular mesh arrangement.
Various parameters: A is 1.55 um, wy and w,; are 4.2 um each, n, is 3.44, n; is 1.0, and
mesh resolution is taken as 20 per unit length. Dip ratio variations are also shown.

Separation | Resolution In | L. (FEM) | L. (FETD) | % difference (L.) | Dip Ratio
(um) Total (um) (um)
0.2 172 6.00 6.09 1.477 0.08
0.2 344 6.02 6.14 1.954 0.05
0.2 516 6.03 6.17 2.269 0.05
0.2 688 6.03 6.17 2.269 0.05

Table 4.8 Comparison of coupling length (L) for TE propagation calculated from FETD and
FEM codes for varying resolution using progressive type irregular mesh arrangement for
different combinations.

Separation | Wavelength | Type | Resolution In | L. (FEM) | L. (FETD) | Dip
(um) (um) Total (um) (um) Ratio
0.1 1.55 TE 320 2.15 2.16 0.12

0.1 1.25 TE 320 3.35 3.34 0.07

0.2 1.55 TE 344 6.02 6.14 0.05

0.3 1.25 ™ 368 12.93 12.8 0.01

Other cases with random separations or wavelength or TE type, TM type or resolution

are summarized in Table 4.8 for a progressive mesh arrangement in order to show the validity

of the generated FETD code. L. values compared from FETD and FEM codes are close for

all the different cases, and dip ratio values are also nominal.
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This shows that the problem of high dip ratio (when aspect ratio is high) can be overcome

by using mesh elements whose dimensions increase progressively towards the boundaries.

4.3.2.2 Extra Mesh Elements Arrangement

In this type of arrangement, extra elements are introduced near to the interface. The dip
ratio was compared with the increase in number of extra elements around the core-substrate
and core-cladding interface. As shown in Table 4.9, the dip ratio falls from 0.670 to 0.075
to 0.050 when resolution was increased from 172 (0 extra element near to the interface) to
178 (6 extra elements near to the interface) to 220 (48 extra elements near to the interface),
respectively. The more the number of extra elements, quicker the dip ratio converges to an

optimum value.

Table 4.9 Comparison of coupling length (L) for TE propagation calculated from FETD and
FEM codes for varying resolution using extra mesh elements type irregular mesh arrangement.
Various parameters: A is 1.55 um, wy and w,; are 4.2 um each, n. is 3.44, n; is 1.0, and
mesh resolution is taken as 20 per unit length. Dip ratio variations are also shown.

Separation | Resolution In | L. (FEM) | L. (FETD) | Dip Ratio
(um) Total (nm) (um)
0.2 172 6.00 5.95 0.670
0.2 174 6.00 5.95 0.140
0.2 176 6.00 5.95 0.100
0.2 178 6.00 5.95 0.075
0.2 184 6.00 5.95 0.050
0.2 196 6.00 5.95 0.050
0.2 220 6.00 5.95 0.050

Both the progressive and extra elements type irregular mesh arrangements were compared

in terms of dip ratio and the results are shown in Table 4.10. The dip ratio falls from 0.08
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to 0.05 and 0.67 to 0.05 when the resolution was increased from 172 to 196 for progressive
and extra elements type mesh, respectively. It can be observed that the dip ratio reaches the
optimum value quicker with progressive mesh arrangement type irregular mesh. Hence, it
can be observed that progressive mesh arrangement is performing better than extra mesh

elements arrangement.

Table 4.10 Comparison of dip ratio for TE propagation calculated from FETD and FEM
codes for progressive mesh type and extra mesh elements type irregular mesh arrangement.
Various parameters: A is 1.55 um, wg and w,; are 4.2 um each, n, is 3.44, n.; is 1.0.

Separation | Resolution In Dip Ratio Dip Ratio
(um) Total (Progressive Mesh) | (Extra Elements Mesh)
0.2 172 0.08 0.67
0.2 174 0.07 0.14
0.2 178 0.05 0.07
0.2 196 0.05 0.05

4.4 Summary

In summary, the proposed FETD has been validated by performing several benchmarking
simulations, and comparing the results with in-house FEM code. The speed of the electro-
magnetic wave was calculated using the FETD code in the free-space propagation (which is
equal to 0.977) which was found to be very close to the initial assumption value of 1.0. The
normalised shapes and values of different field components e.g. E,, H,, H) obtained using
FETD code were compared with FEM code, which were also in a good agreement. Increasing
the resolution of elements may increase the accuracy, but at the cost of increased simulation
times. An irregular mesh with only increased resolution inside the core with generated FETD
code can be used. This does not increase the simulation times significantly, unlike regular

mesh arrangement. Different types of mesh arrangements including progressive type and

59



FETD Method for Two-dimensional Structures

extra elements type mesh has been discussed. Hence, the FETD method has been used as an

alternative of FDTD technique as it provides better meshing.
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Chapter 5

Machine Learning Regression Approach

to the Nanophotonic Waveguide Analyses

5.1 Introduction

Machine learning (ML) technology is being extensively used in many aspects of modern
society: web searches, social networking, smartphones, bioinformatics, robotics, chatbots,
and self-driving cars [53]. ML techniques are also used to classify or detect objects in images,
speech to text conversion, pattern recognition, natural language processing, sentiment analysis
and recommendations of products/movies for users based on their search preferences. ML
algorithms can be trained to perform exceptionally well when it is difficult to analyze the
underlying physics and mathematics of the problem [54]. ML algorithms extract patterns
from the raw data provided during the training without being explicitly programmed. The
learned patterns can be used to make predictions on some other data of interest. ML systems
can be trained more efficiently when a large amount of data is present [55, 56].

Recently, research on the application of ML techniques for optical communication
systems and nanophotonic devices has gained popularity. Several developments in ML

over the past few years has motivated the researchers to explore its potential in the field of
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photonics, including multimode fibres [S], power splitters [6], plasmonics [7], grating coupler
[8], photonic crystals [9], metamaterials [57], label-free cell classification [58], molecular
biosensing [59], optical communications [60, 61] and networking [62, 63].

Complex nanophotonic structures are being designed and fabricated to enable novel
applications in optics and integrated photonics. Such nanostructures comprise a large number
of parameters which needs to be optimised for efficient performance of the device and can be
computationally expensive. For example, the finite-difference time-domain (FDTD) method
may require several minutes to hours to analyze the optical transmission response of a single
photonic device depending on its design. The ML approach offers a path for quick estimation
of the optimised parameters for the design of complex nanostructures, which are critical for
many sensing and integrated optics applications.

ML algorithms consider general function approximations to learn a complex mapping
from the input to the output space. The most popular ML frameworks for building and training
neural networks includes SciPy [64], Scikit-learn [65], Caffe [66], Keras [67], TensorFlow
[68] and PyTorch [69]. PyTorch makes use of tensors for training neural networks along
with strong graphical processing unit (GPU) acceleration. It provides separate modules
to build a neural network and automatically calculates gradients for backpropagation [70]
that are required during the training of a neural network. PyTorch appears to be more
flexible with Python and NumPy/SciPy stack compared to TensorFlow and other frameworks,
which allows easy usage of popular libraries and packages to write neural network layers
in Python. Scikit-learn is another simple and efficient ML library used for data mining and
data analysis. PyTorch and Scikit-learn numerical computing environment to handle the
front-end modelling and COMSOL Multiphysics for the back-end data acquisition were used
in the implementation. The commercial 2D FEM software such as COMSOL Multiphysics
and Lumerical can provide the modal solution of any waveguide within a few minutes.

However, a rigorous optimisation of the waveguide design parameters through parameter
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sweep often becomes intensive for a modern workstation depending on the complexity of a
design. In this chapter, an in-house developed ML-algorithm is reported as a stepping stone
for the multi-parameter optimisation process where only the algorithm training (one time
process) requires a few minutes of computational time to learn the features of similar types
of waveguides.

Main concepts of ML related to integrated photonics applications are discussed in Section
5.2. In Section 5.3, results from ML algorithms using PyTorch and Scikit-learn with FEM
results for commonly used silicon photonic waveguides and devices are compared, and finally

the chapter is concluded in Section 5.4.

5.2 Neural Network Training

The most common form of machine learning is the supervised learning in which the training
dataset consists of pairs of inputs and desired outputs, which are analyzed using ML algo-
rithms to produce an inferred function. It is then used to obtain output values corresponding
to any unknown input data samples. Supervised learning can be further categorised into a
classification or regression problem, depending on whether the output variables have dis-
crete or continuous values, respectively. In this chapter, the output predictions of different

integrated photonics structures were considered as a regression problem.

5.2.1 Artificial Neural Network (ANN)

An ANN consists of a network of nodes, also called neurons. An ANN is a framework which
is used to process complex data and it learns from the specific input data without being
programmed using any task-specific rules. One of the commonly used ANN is the multilayer
perceptron (MLP). An MLP consists of three or more layers. In Fig. 5.1, an MLP with four

layers of nodes: an input layer, two hidden layers and an output layer is shown. These layers
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Input layer Output layer

Fig. 5.1 General artificial neural network (ANN) representation, i.e. one input layer, two
hidden layers, and one output layer.

operate as fully connected layers, which means that each node in one layer is connected to
each node in the next layer. All the nodes have a variable weight assigned as an input which
are linearly combined (or summed together) and passed through an activation function to

obtain the output of that particular node.

5.2.2 Algorithm of ANN

The training procedure is illustrated in Fig. 5.2. Firstly, a sufficient number of randomly
generated data samples are collected from the simulations using COMSOL Multiphysics
for slot, strip and directional coupler structures. Each case has an array of inputs, called
features, and an array of numerically solved outputs, called labels. Waveguide width, height,
material, gap between the waveguides, and operating wavelength values can be taken as
the input variables which are assigned to the nodes of the input layer. The effective index
(nesr), power confinement (P, ), or coupling length (L) are taken as the output variables,
which are assigned to nodes of the output layer depending on the specific design requirement.
Next, preprocessing of the collected data is carried out by normalizing the input variables
values between the range 0—1 to use a common scale. This is followed by shuffling of the

normalized input data, otherwise the model can be biased towards particular input data values.
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Accumulation of Simulation/Experimental data

Pre-processing of collected data including
Normalization and Shuffling

Splitting the collected data into Training and
Validation dataset

Training the ANN model using MLPRegressor or
PyTorch framework, and checking model
performance on Validation dataset to
optimise the hyperparameters

Evaluating the performance of optimised model on
Test dataset

Fig. 5.2 The flow chart of ANN implementation.

The next step is to split the normalised input dataset into training and validation dataset.
Validation dataset is used to provide an unbiased evaluation of a model fit on the training
dataset while tuning various model parameters, also called hyperparameters. 5-25% of data
has been allocated for the validation dataset in this work, while the rest was used for training
the ANN model.

Neural networks have a tendency to closely or exactly fit a particular set of data during
training, but may fail to predict future observations reliably, which is known as overfit-
ting. During overfitting, the model learns both the real and noisy data, which negatively
impacts on new data. Overfitting can be avoided through regularization such as dropout [71],
while regularly monitoring the performance of the model during training on the generated
validation dataset. Underfitting can be another cause of poor performance of an ANN in
which the trained model neither closely fits the initial data nor generalizes to the new data.
Hyperparameters need to be tuned to reduce the mean squared error (MSE) between the

actual and predicted output values of the ANN model for a regression problem. During this
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optimisation process, weights and biases of the model are repeatedly updated with each
iteration or epoch using the backpropagation algorithm [70]. Various hyperparameters of
choice includes activation functions, type of optimiser, number of hidden layers, number of

nodes in each hidden layer, learning rate, number of epochs, and others.

5.2.2.1 Activation Functions

An ANN connects inputs and outputs through a set of non-linear functions, which is approxi-
mated using a non-linear activation function. Sigmoid, Tanh (hyperbolic tangent), and ReLU

(rectified linear unit) are some of the commonly used activation functions [54].

1
Si id : = 5.1
igmoid : 6(z) = (5.1
bol h coe” 5.2
H ic T: t (T : = .
yperbolic Tangent (Tanh) : 6(z) e (5.2)
Rectified Linear Unit (ReLU) : 6(z) = max(0,z) (5.3)

Among these, ReLLU is used mostly as it trains the model several times faster in compari-

son to when using a Tanh function, as discussed in [72].

5.2.2.2 Optimisation Solvers

LBFGS, stochastic gradient descent (SGD), and Adam [73] solvers can be used to optimise
the weights values during ML training process. Adam optimiser is a preferable choice as it

works well on relatively large datasets.
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5.2.2.3 Hidden Layers and Nodes

The number of layers or number of nodes in each layer of an ANN are decided by experimen-
tation and from the prior experience of similar problems. There is no fixed rule to pre-decide

their optimal values.

5.2.2.4 Learning Rate

Learning rate decides how much the weights of the network are adjusted with each epoch or
iteration. Choosing the lower value of learning rate means the model needs more epochs and
a longer time to converge. If the input dataset is big, it may take a very long time to optimise
the ANN model. On the other hand, if the learning rate has a large value, then the model
might fail to converge at all with gradient descent [74, 75] overshooting the global minima.
Learning rate can be chosen to have constant or adaptive value when using Scikit-learn

MLPRegressor.

5.2.2.5 Epochs

The number of epochs to train a model should be decided by the user when MSE value
converges to an acceptable lower limit. Depending on the dataset size, model training can
carried out using batches of inputs. In the case when using MLPRegressor, an automatic
batch size was used, while all the inputs were trained in one batch with PyTorch.

Once the optimal hyperparameters are obtained, the final step is to evaluate the per-
formance of the optimised trained model on the previously unseen test dataset (generated

separately from the initially generated dataset) to observe the accuracy of the ANN model.
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5.3 Numerical Results and Discussion

5.3.1 Slot Waveguide

Slot waveguide design structures are extensively used for optical sensing applications [76, 77],
as the light is confined in low refractive index region, which allows strong interaction with

the analyte leading to a large waveguide sensitivity.

Cladding

Width

‘ . Height
Gap

Substrate:
SiO,
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Fig. 5.3 An example of a slot waveguide showing E| field profile.

A cross-sectional view of a slot waveguide with E, field profile is shown in Fig. 5.3. A
range of slot waveguides was simulated by changing the width, height, and gap between
the silicon waveguides as the input parameters. In this case, use of ML algorithms is
demonstrated to predict the effective index (n.rr) and power confinement (P, ) in a slot

waveguide design, but first various hyperparameters of the ANN model are optimised.

5.3.1.1 Histogram of Datasets

The training process requires a dataset of examples, which plays a crucial role in any ML

algorithm. The accuracy of the trained model depends on the quality of the input data. A
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Fig. 5.4 Histogram of different datasets for slot waveguide with varying (a) width of waveg-
uides, (b) nrr, and (¢) Peony-
good training dataset which is well aligned with the problem to be solved is needed for the
ML code to work properly.

Three different datasets to predict effective index (n. ) and power confinement (P, 1)
for a slot waveguide structure, shown in Fig. 5.4 were collected. Width, height, and gap
between the waveguides in a slot waveguide design have been varied initially to record
the n.rr and P,y values for each dataset. n.sr and P,y values recorded for a particular
combination of width, height, and gap between the slot waveguides become one datapoint.
Dataset-1 has 108 datapoints with nearly equal intervals between width, height, and gap.

Dataset-2 also has points with nearly equal intervals but more values, 196 points. However,
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dataset-3 has higher frequency of data points for waveguide width in the range 200-250 nm,
with 236 values in total. Figure 5.4a shows the histogram of different datasets plotted with
respect to different widths of the waveguides. It should be noted here that these datasets are
not explicit, which implies that the dataset-1 is a subset of dataset-2 and similarly, dataset-2
is a subset of dataset-3. Figures 5.4b and 5.4¢ show the frequency of n. ¢ and P, for each
of these 3 datasets. For the simulation setup, it took 2-3 minutes to record one datapoint,
which means it took approximately 200, 400, 500 minutes to obtain dataset-1, dataset-2, and
dataset-3, respectively. The time needed to collect one datapoint value may vary depending

on the simulation/experimental setup.

5.3.1.2 Mean Squared Error

Mean squared error (MSE) is considered as the loss function in a regression problem, which

is defined as the average squared difference between the estimated and true values, given as:

=

1 ~
MSE — v (y; —vi)? (5.4)

i

where yAl. and y; are the estimated and true data point values, respectively.

A smaller value of MSE means the predicted regression values are closer to the original
values and hence the model is well trained. Next, the MSE values are compared to predict
the n, ¢y for a slot waveguide design with different numbers of nodes or layers in an ANN
model for dataset-3 using MLPRegressor from Scikit-learn. Dataset-3 is chosen as it has the
maximum number of data points among the 3 datasets generated. Figure 5.5a shows that
MSE decreases faster to a stable value when number of nodes is larger. MSE for nodes = 50
quickly reaches a stable low value of 0.0025 at epochs = 1500, shown by the orange line in
comparison to 0.0192, 0.0820, and 0.3954 when nodes are taken as 25, 10 and 5, respectively.
Random weights were assigned at the start of the algorithm. Hence, MSE for more number of

nodes at first epoch can be larger than that for less number of nodes, as can be seen from blue
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and red lines having values of 0.2112 and 0.1423 at first epoch, respectively. It can also be
observed from the red and blue lines that the model with the greater number of nodes attains
optimal updated weights quicker than those with the lower number of nodes, as the MSE for
nodes = 25 (blue line) decreases quickly. Simulations were run upto 4000 epochs so as to
be sure that MSE decreases to a lower value. At epochs = 4000, MSE values are 0.21279,
0.04685, 0.00109, and 0.00018 when number of nodes are 5, 10, 25, and 50, respectively.
This shows that more neurons/nodes helps in achieving better accuracy for the ANN model

by quickly decreasing the MSE value to the minimum, but the computational loading also

increases.
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Fig. 5.5 Mean squared error (MSE) using training dataset-3 for (a) different number of nodes
with 2 hidden layers, (b) different number of hidden layers with 50 nodes in each hidden
layer.

The MSE variations when number of layers are varied in an ANN model having 50 nodes
in each layer, as shown in Fig. 5.5b. The MSE values of 0.0025 and 0.0006 are obtained for
models with 2 and 3 hidden layers, respectively at epochs = 1500 in comparison to 0.0243
when number of layers is equal to 1. Lower stable MSE values at epochs = 4000 are 0.00412,
0.00018, and 0.00009 when number of layers are 1, 2 and 3, respectively, with each layer

having 50 nodes. Following this study, the number of layers as 2 with 50 nodes in each layer
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are considered for future optimisation, to avoid more computational loading compared to

when the number of layers was chosen as 3.

5.3.1.3 Activation Functions
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Fig. 5.6 Variation of (a) n.rs and (b) P, s with waveguide width for different activation
functions at waveguide height = 225 nm using training dataset-3.

Sigmoid, Tanh and ReLU activation functions were tested to predict the n.rr and P, s
using MLPRegressor trained model with 2 layers having 50 nodes in each layer. Dataset-3 is
used during the training process. It can be seen from Fig. 5.6a that Tanh and ReLLU closely
predict the n. ¢ values compared to the true values at a waveguide height = 225 nm of the
slot design. The data corresponding to a waveguide height = 225 nm has not been recorded
or provided during the training of the model. However, data for other waveguide heights was
used for the training. On the other hand, the Sigmoid function predicts an almost horizontal
line as shown by the red circle symbols. Sigmoid function fails to predict the n,rr values
accurately, as it might converges well for a classification problem. When tested to predict
the P.on s of slot design, only ReLU activation function is able to predict the pattern much
better, shown by orange star symbols and black rectangle symbols solid line in Fig. 5.6b,

hence seems to be a better choice.

72



5.3 Numerical Results and Discussion

5.3.1.4 Comparing PyTorch Framework and MLPRegressor models

In-house codes using PyTorch framework and MLPRegressor from Scikit-learn were devel-
oped. 2 fully connected hidden layers each with 50 nodes were used. The ReLLU activation
function and Adam optimiser were employed for both of the generated codes. The learn-
ing rate was chosen to be 0.0001 or less. The dropout fraction value of 0.5 was used for
regularization to prevent over-fitting when using the PyTorch framework, while dropout
regularization was not available in the MLPRegressor. The number of epochs was decided

based on when the MSE was reduced to a stable value for the considered photonics design

structure.
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Fig. 5.7 Mean squared error (MSE) using (a) training dataset-3 for MLPRegressor and
PyTorch (b) training, validation, and test dataset-3 for PyTorch, having 2 hidden layers with
50 nodes in each layer.

In Fig. 5.7, MSE values are compared using MLPRegressor and PyTorch for training,
validation and test datasets. It should be noted here that the MSE or loss function for
validation and test datasets are not readily available in MLPRegressor. The loss curve in
MLPRegressor also depends on the initially defined tolerance for the optimisation (le~3,
used in this case). MLPRegressor training automatically stops when the loss or score is not
improving by at least the tolerance level in the consecutive iterations, which is shown by the

orange solid line in Fig. 5.7a, where the MSE curve stops by itself at around 4000 epochs.
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PyTorch can be used to visualise the MSE at very large epochs (>>4000) for training,
validation, and test datasets, as shown in Fig. 5.7b. The fluctuations in the MSE curves with
PyTorch are due to the use of the dropout fraction. The MSE for training, validation, and
test datasets with PyTorch follow similar trend, and achieves a stable value at around 4000
epochs. The MSE for training dataset at epochs = 4000, 10000, and 30000 are 0.00808,
0.00451, and 0.00300, respectively. It can be observed here, that the MSE is almost similar
and decreases slowly when the epochs is greater than 4000. Hence, it is good to fix the
epochs when the MSE achieves a stable low value, rather than allowing the algorithm to
run for very large epochs. MLPRegressor shows a lower MSE for the training dataset in
comparison to PyTorch, as shown in Fig. 5.7a. Using the above mentioned parameters, the
nerr and P, p are now predicted for a slot waveguide structure using PyTorch framework

and MLPRegressor library for different datasets.

5.3.1.4.1 Effective Index (n.rr) Figure 5.8 shows the prediction of 7.y at waveguide
height = 225 nm for a slot waveguide design. It should be noted that the datasets did not have
any value corresponding to this particular waveguide height of 225 nm. True n, ¢ values of
test dataset are compared with predicted values for PyTorch and MLPRegressor models at
500, 2000 and 5000 epochs using dataset-1 and dataset-2 during training. Figures 5.8a and
5.8b show the training prediction of n.rs at a waveguide height = 225 nm using PyTorch
and MLPRegressor, respectively and using dataset-1. It can be observed when epochs =
500 (shown by red circle symbols), the predicted values are relatively far apart from the
actual or true values obtained from the numerical simulations. When epochs were increased
to 2000 (shown by blue triangle symbols) for both PyTorch and MLPRegressor, predicted
values starts to follow the pattern of n, ¢ but the absolute values are still not sufficiently
close. The epochs were further increased to 5000 (shown by orange star symbols) for both
PyTorch and MLPRegressor. It can be seen that the predicted values are almost similar to

the true values when dataset-1 was considered. Dataset-2 was also considered which has
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Fig. 5.8 Slot waveguide design predicting n.rr at waveguide height = 225 nm with (a)
PyTorch using dataset-1, (b) MLPRegressor using dataset-1, (c) PyTorch using dataset-2,
and (d) MLPRegressor using dataset-2.
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Fig. 5.9 Slot waveguide design showing contour of absolute percentage error for predicting
nerr at waveguide height = 225 nm with (a) PyTorch using dataset-1, (b) MLPRegressor
using dataset-1, (c) PyTorch using dataset-2, and (d) MLPRegressor using dataset-2.
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more datapoints that dataset-1. Again almost 5000 epochs are required using dataset-2 to
efficiently predict the n. 7z, as can be seen in Figs. 5.8¢c and 5.8d, respectively. This shows
that epochs = 5000 are required to efficiently predict the n.rr values of test dataset for both
PyTorch and MLPRegressor models using either dataset-1 or dataset-2. Predicted and true
values are almost identical in all four cases, shown by the orange star symbols and black
rectangle symbols with solid line, respectively.

Fig. 5.9 shows the percentage error in predicting the n, ¢y values using both PyTorch and
MLPRegressor using dataset-1 and dataset-2. Here, percentage error has been calculated by
comparing the predicted solutions with the numerically simulated results using COMSOL
Multiphysics. The absolute percentage error at epochs = 500 for both datasets varies between
5-10% (Figs. 5.9a and 5.9¢) using the PyTorch model. However, as the epochs are increased
to 2000, this absolute error falls to 1-4% for both the datasets. Further increasing the epochs
to 5000 decreases the absolute percentage error below 2% when PyTorch model was used.
Similarly, when the epochs = 500 for both datasets with the MLPRegressor model, the
absolute percentage error was between 6-20% (Figs. 5.9b and 5.9d). Increasing the epochs
to 2000 decreases this percentage error to approximately 4-8%. This error further decreases
to 1-3% when epochs were increased to 5000. This shows that the absolute percentage
error at epochs = 500 for both datasets varies between 5-10% and 6-20% for PyTorch and
ML Pregressor models, respectively. As the epochs are increased to 5000, absolute percentage
error reduces to only 1-3% for all the cases which may be acceptable in predicting n. sy

values for a slot design.

5.3.1.4.2 Power Confinement (F.,,r) Here, the model is trained using PyTorch and
MLPRegressor for different datasets to predict the P, . Figures 5.10a and 5.10b show the
training prediction for a waveguide height = 225 nm using PyTorch and MLPRegressor,
respectively using dataset-1. It can be seen that even at epochs = 10000 (shown by the orange

star symbols), the predicted value of P,y is much different from the true values especially
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Fig. 5.10 Slot waveguide design predicting P, at waveguide height = 225 nm with (a)
PyTorch using dataset-1, (b) MLPRegressor using dataset-1, (c) PyTorch using dataset-2, (d)
MLPRegressor using dataset-2, (e) PyTorch using dataset-3, and (f) MLPRegressor using
dataset-3.
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Fig. 5.11 Slot waveguide design showing contour of absolute percentage error for predicting
Peony at waveguide height = 225 nm with (a) PyTorch using dataset-1, (b) MLPRegressor

using dataset-1, (c) PyTorch using dataset-2, (d) MLPRegressor using dataset-2, (e) PyTorch
using dataset-3, and (f) MLPRegressor using dataset-3.
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when the width is between 200-250 nm for both the algorithms. This error originated from
the neural network modelling probably due to the insufficient data points in the parameter
space of width between 200-250 nm in dataset-1, which may lead to underfitting of the
trained model. Next, the neural network using dataset-2 was trained, which contains more
data points compared to dataset-1, which is shown in Fig. 5.4a. Figures 5.10c and 5.10d
show the predictions of the trained model using dataset-2 for PyTorch and MLPRegressor,
respectively. It was observed that the trained model performed better than the dataset-1
case, but still not good enough for widths in the range 200-250 nm. This error can be
further reduced by collecting more data points in the widths ranging from 200-250 nm during
training. Figures 5.10e and 5.10f show the trained model performance using dataset-3, which
has more data values in the range 200-250 nm, as shown in Fig. 5.4a. It can be observed
that the PyTorch trained model (Fig. 5.10e) did not perform efficiently at epochs = 10000,
predicting almost constant values in the waveguides width ranging between 200-250 nm.
This error can be minimised if the dropout factor is reduced or taken as zero, but this may
lead to over-fitting of the model. On the other hand, MLPRegressor (Fig. 5.10f) predicts the
Peonf curve better at epochs = 10000, shown by the orange star symbols, which is similar
to the true shape (black square symbols solid line). However, the predicted F,,s values
at waveguide width = 150 nm deviate significantly, but this can be further improved by
collecting more data points in this range of waveguides width. For respective PyTorch and
MLPRegressor models, it can be observed that prediction of F,,,s using dataset-3 is better
than dataset-2, which in turn is better than dataset-1 at epochs = 10000, shown by the orange
star symbols in Figs. 5.10a-5.10f. This shows that the quality of dataset plays an important
role along with the choice of the algorithm and optimised values of hyperparameters.

The absolute percentage error was compared for predicting P, s using dataset-1, dataset-
2, and dataset-3. When using dataset-1, both PyTorch and MLPRegressor have error ranging

between 10-40% when epochs vary from 1000 to 10000, as shown in Figs. 5.11a and 5.11b,

80



5.3 Numerical Results and Discussion

respectively. Figures 5.11c and 5.11d show that by taking more data values as in dataset-2,
this error was reduced to between 7-30% with epochs. Dataset-3 shows a better performance
with trained model using both PyTorch and MLPRegressor, as shown in Figs. 5.11e and
5.11f, respectively. The absolute percentage error ranges between approximately 7-10% and
1-4% for PyTorch and MLPRegressor at epochs = 10000, respectively. This shows that the
MLPRegressor performed better than PyTorch for this particular set of design specifications
of the slot waveguide with dataset-3. This performance difference between MLLPRegressor
and PyTorch is due to the different functionalities available in the algorithms. For example,
dropout can only be implemented with PyTorch, while MLPRegressor uses exponential decay
rates and numerical stability functions with Adam optimiser. Furthermore, the advantage of

ANNSs can be more pronounced if the sample space is also large.

5.3.1.5 Training Dataset Sizes

In the proposed model algorithms, the initially collected data was split into training and
validation datasets depending on the percentage parameter. Figure 5.12 compares the true
Peony values with predicted values at a waveguide height = 225 nm using the MLPRegressor
trained model with 25%, 50%, 75%, or 95% of initial collected data as training dataset. The
data points were randomly selected for each case so that the final trained model was not
biased towards any particular data points.

When only 25% or 50% of data was considered, the algorithm showed higher errors in
predicting the values, especially in the waveguide width range of 150-225 nm, shown by
red circles and blue triangles symbols, respectively. For epochs = 10000, true solutions are
shown by the black line. This is understandable as ANN prediction error after training can
be large if the sample space has limited dataset points. When 75% of the data was taken as
input (shown by the green diamond symbols), it can observed that most of the data points

were satisfactory, except in the width ranging from 150-175 nm that are not well predicted.
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Fig. 5.12 Variation of P, with width at waveguide height = 225 nm for different data sizes
of training dataset-3 for epochs = 10000 using MLPRegressor.

It can be seen that when 95% of data was used for training, the trained model predicted the
true values more accurately, as shown by the orange star symbols. Therefore, if the dataset is
overly reduced, error values of prediction increases significantly, as in the case of 25% in
Fig. 5.12. Predicting an output only takes few milliseconds, once the model is trained by
either MLPRegressor or PyTorch. On the other hand, it takes few minutes to get an output
for particular waveguide dimensions with direct numerical simulation, which also depends

on the density of the considered mesh.

5.3.2 Strip Waveguide

An ANN model was trained to obtain optimised hyperparameters for predicting the n,rs
values of a strip waveguide. For a strip waveguide (Fig. 5.13), the width, height of the waveg-
uides and wavelength were taken as input variables, while effective index was considered as
the output variable. An MLPRegressor model was considered to train the initially recorded

225 data points with varying operating wavelength, height and width of the strip waveguide.
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Hyperparameters were optimised while training the model to obtain low and stable MSE.
The optimal weights of the model were then used or saved (to be used later) to predict the

ners values on unseen test datasets.
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Fig. 5.13 An example of a strip waveguide showing H,, field profile.

Figures 5.14a, 5.14c¢, and 5.14e show the true and predicted n, 7y values for different
epochs with waveguide width, height and wavelength, respectively. Figures 5.14b, 5.14d, and
5.14f show the contour of absolute percentage error between true and predicted n, ¢ values
with epochs (on logarithmic scale). It can be seen that the percentage error is approximately
16-20% when epochs = 250 and it decreases to approximately 2% when epochs = 2000 for
all the above mentioned cases. When epochs = 4000, the percentage error is further reduced
to less than 1%. Hence, the trained model is performing well at epochs = 4000. The trained

model weights at epochs = 4000 can be saved for future testing.
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Fig. 5.14 Strip waveguide design (a) predicting n.¢s at waveguide height = 230 nm and
wavelength = 1.55 um, (b) showing contour of absolute percentage error for predicting n, s
at waveguide height = 230 nm and wavelength = 1.55 um, (¢) predicting n, sy at waveguide
width = 510 nm and wavelength = 1.55 um, (d) showing contour of absolute percentage error
for predicting n, s at waveguide width = 510 nm and wavelength = 1.55 um, (e) predicting
nesr with change in wavelength at waveguide width = 510 nm and height = 230 nm, and (f)
showing contour of absolute percentage error for predicting n, ¢y at waveguide width = 510

nm and height = 230 nm.
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Table 5.1 Comparing predicted with true .7 values and corresponding absolute percentage
error for random wavelength, height, and width of strip waveguide design.

Predicted - n.sr Absolute % error - n.z¢
Wavelength | Height | Width True -
epochs - | epochs - epochs - epochs -

(um) (nm) | (nm) Neff

1000 4000 1000 4000
1.52 210 490 | 2.323764 | 2.418138 | 2.424294 4.14 0.25
1.52 230 510 | 2.333022 | 2.541238 | 2.528034 7.71 0.52
1.54 210 490 2.32193 | 2.396881 | 2.402842 3.36 0.24
1.54 230 510 | 2.342372 | 2.520985 | 2.50819 6.61 0.51
1.56 210 490 | 2.328336 | 2.370507 | 2.38129 2.22 0.45
1.56 230 510 | 2.354483 | 2.489118 | 2.488223 5.37 0.03
1.58 210 490 | 2.330601 | 2.34713 | 2.359644 1.23 0.53
1.58 230 510 2.35926 | 2.45187 | 2.468138 4.41 0.65

The performance of the saved model was checked for some random strip waveguide
design parameters which are not available in the training dataset. The resulting true and
predicted n. sy values are compared in Table 5.1 when all the input parameters (operating
wavelength, waveguides height and width) were unknown to the trained model, which implies
that the outputs corresponding to these parameters have never been recorded during the initial
data collection. It can be observed that when epochs = 4000, the absolute value of percentage
error to predict n. 7 is less than 1% for randomly chosen different input design parameters.
This demonstrates that the model is performing well to predict n, sy for a strip waveguide

design.
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5.3.3 Directional Coupler

The directional coupler has been a major component in many photonic devices including
spot-size converter [78], mode demultiplexer [79], polarization rotator [80], polarization
splitter [81], etc. A directional coupler can couple light from one waveguide to another, and
then couples back to the original/first waveguide, and so forth. A cross-sectional view of a
directional coupler showing H), field profile for even and odd supermodes is shown in Figs.
5.15a and 5.15b, respectively. Width, height, and gap between the silicon waveguides are

changed to record the coupling lengths for a directional coupler design.

Cladding Odd supermode

0.9 0.8
0.8 Width 0.6
0.7 — 0.4
0.6 Height | 0.2
N - ‘I eight | 0

0.4 é" -0.2
0.3 ai 0.4
0.2 Substrate: 82
8-1 Si0, :

(a) (b)

Fig. 5.15 An example of a directional coupler showing H,, field profile for (a) even supermode,
and (b) odd supermode.

The application of ML algorithm using MLPRegressor to predict the coupling length (L)
of a directional coupler is presented. Again, The model parameters are optimised to obtain
minimum stable MSE value using training dataset for a directional coupler design. Different
height, width and gap between the waveguides are considered as the input parameters, and L.
is taken as the output parameter during the ANN training. Figure 5.16a shows the predicted
L. when epochs were taken as 500, 1000, 5000, and 10000. It can be observed that predicted
L. values are closer to the true values when epochs were 5000 or 10000 at a waveguide

height = 230 nm. It should be noted that the training dataset did not have L. values when the
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Fig. 5.16 Directional coupler design (a) predicting L. at waveguide height = 230 nm and (b)
showing contour of absolute percentage error for predicting L. at waveguide height = 230
nm.

waveguide height = 230 nm. Figure 5.16b shows that there is approximately 6—10% absolute
percentage error in L. value at different widths when epochs = 5000. This error is reduced
to 1-4% for different widths when the model was trained to 10000 epochs. Increasing the
initially recorded data points to train the model can help in further reducing this absolute
percentage error between predicted and true L. values of a directional coupler. This model can
be trained to calculate L. for any given height, width, separation and operating wavelength

of a directional coupler.

5.4 Summary

In summary, a machine learning model for predicting the effective index, power confinement
and coupling length in a slot waveguide, strip waveguide and directional coupler design
structure has been developed. Dataset-3 was the better choice in comparison to other datasets
for the considered slot waveguide design, as it contained a greater number of input data points,

which helps the machine learning model to be trained better. The absolute percentage error
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in predicting the effective index for a slot waveguide design was lower than 2% using both
PyTorch or MLPRegressor. PyTorch and MLPRegressor models give an absolute percentage
error of approximately 7-10% and 1-4%, respectively for predicting the power confinement,
which shows that MLPRegressor model performs better. A ReLLU activation function was
preferred as it better predicts the n,rr and P, better in comparison to when using Tanh
or Sigmoid functions. MLPRegressor model has also been used to predict the effective
index in a strip waveguide design with 99% accuracy. Similarly, hyperparameters have been
optimised for a separate MLPRegressor model to predict the coupling length for a directional
coupler design, giving only 1-4% of absolute percentage error. To the best of our knowledge,
this is the first time machine learning is used in conjugation with rigorous finite element
method for various nanophotonic waveguide analyses. The approach can accurately predict
the waveguide parameters without extensive use of the computationally expensive time- and

frequency-domain numerical methods.
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Chapter 6

Machine learning approach for
computing optical properties of a

photonic crystal fibre

6.1 Introduction

Photonic crystal fibre (PCF) was first proposed by Knight ez al. [82] in 1996, which consisted
of a core with the periodic arrangement of air holes running along the length of the fibre. The
core of the PCF can be solid or hollow. For a solid core PCF, there is a positive refractive
index difference between the core and equivalent index of the cladding, and light is guided
using the modified total internal reflection (TIR) phenomenon. On the other hand, hollow
core PCF has a negative refractive index difference between the core and cladding, and light
guidance is based on photonic band gap (PBG) mechanism [83]. Such structures exhibit the
novel properties of being low loss and endlessly single mode propagation. Other specific
fibre properties, including effective index (n.g), propagation constant, effective mode area
(A¢p), dispersion (D), non-linearity, birefringence and confinement loss () can be easily

controlled by changing the holes size, the spacing between them and the number of air-hole
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rings. The unique properties of PCF over standard optical fibres has motivated researchers to
use PCF for supercontinuum generation [84, 85], Raman scattering [86, 87], fibre lasers [88],
optical sensors [89, 90], spectroscopy [91], among other applications.

Accurate modelling and optimisation of photonic crystal fibres generally rely upon
numerical methods such as finite difference method [92], finite element method (FEM)
[93], block-iterative frequency-domain method [94], and the plane wave expansion method
[95, 96]. However, these methods require significant computer resources when dealing with
complex photonic crystal fibre designs which need to be simulated multiple times to obtain
an optimised design. Such iterative analyses also depend upon the number of input design
parameters that need to be optimised.

In 2018, extreme learning machine and deep learning have been used for computing
dispersion relations [9] and optimisation of Q-factors [97] for photonic crystals. Here, it is
proposed to use machine learning (ML) techniques for computing various optical properties of
the PCF. The finite element simulations and artificial neural networks (ANN) were combined
for the quick and accurate computation. The focus of this chapter is to design a simple feed
forward multilayer perceptron (MLP) model which can be trained quickly to estimate the
nef, Aefr, D, and o for a PCF structure. The computational platform used was a laptop with
Intel Core 17 CPU @ 2.80 GHz, 16 GB RAM having the Windows 10 operating system.

This work is organized as follows. Section 6.2 describes the ANN/MLP concepts and
modelling parameters. Section 6.3 presents the assessment of the modeled ANN on testing
PCF by comparing their estimations with actual values and computing runtime, and finally

the chapter is concluded in Section 6.4.

6.2 PCF modelling with ANN

The ANN/MLP architecture parameters are introduced in this section along with the PCF

type that was used for generating the dataset. The first step of the training procedure of
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6.2 PCF modelling with ANN

an ANN model is to have a finite and appropriate labeled dataset. This initially generated
dataset plays a crucial role for any ANN model. The accuracy of the model depends upon
how well the dataset is aligned to the problem to be solved. Different PCFs were simulated
by changing some geometric property values and their optical properties were calculated. In
this case, the set of PCF geometric data including the diameter of the holes (d), separation
between the centre of holes (pitch, A), refractive index of the core (n.), wavelength (), and
the number of rings (N,) of a solid core PCF (as shown in Fig. 6.1) were taken as input
variables of the labeled dataset. Subsequently, n.4, Ao, D, and o values were calculated
using Lumerical Mode Solutions for more than 1000 samples, which are considered as the
output variables of the labeled training dataset. A.g, D, and o values can be defined by using

the following equations [98]:

(2 dxay)”

Appr= 6.1

I T B dxdy (©-1
A d2 Re(neff)

p=-2=—"""d) 2

c dA? ©.2)

0o = 8.686 x 10° ko Im(n,r7) dB/m (6.3)

where Hy is the transverse magnetic field vector, Q is the area enclosed within the
computational domain. Re and Im stand for the real and imaginary parts, respectively. ¢ and
ko are the free-space speed of light and wavenumber, respectively.

An ANN/MLP model with 3 hidden layers having 50 nodes/neurons in each layer was
used throughout this chapteras shown in Fig. 6.2. These hidden layers are fully intercon-
nected, which means that each node/neuron of a layer is connected to each node/neuron
in the following layer. 10% of the data samples were randomly removed from the training
dataset and allocated to the validation dataset to provide an unbiased evaluation for tuning

the ANN model parameters (weights and biases). The rectified linear unit (ReLU) [54]
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Fig. 6.1 Cross-section of a solid core hexagonal PCF with five rings of air holes.

activation function and Adam [73] optimiser were used for approximating the non-linear
function and to optimise the weights during the training process, respectively. The ANN
model predicts some outputs after each iteration/epoch. The mean squared error (MSE)
value between this predicted and actual output is then calculated and back-propagation [70]
was used repeatedly to update the weights of the hidden layers for each epoch. The number
of epochs used was decided by the user when the MSE converges to an acceptable value.
After optimising the model, having stable MSE value, suitable outputs were generated for
the new input data which was not provided during the training process. Machine learning
techniques are used to compute various optical properties including effective index, effective
mode area, dispersion and confinement loss for a solid-core PCF. These machine learning
algorithms, based on artificial neural networks are able to make accurate predictions of the
above mentioned optical properties for new/unseen input data for usual parameter space of
wavelength ranging from 0.5-1.8 pm, pitch from 0.8-2.0 um, diameter by pitch from 0.6-0.9

and number of rings as 4 or 5 in a silica solid-core PCF.
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Fig. 6.2 Artificial neural network (ANN) representation with one input layer (5 input nodes),
three hidden layers (50 nodes in each layer), and one output layer (4 output nodes).

6.3 Numerical Results and Computation Runtimes

In this section, the trained ANN model was validated by evaluating their outputs for a solid
core PCF at an unknown design parameters, and finally the computational runtimes of the

ANN model are compared with the numerical simulations.

6.3.1 Effective Index (n.)

Figure 6.3 shows a scatter plot of the n.4 values of the dataset used for training of the ANN
model. Predicted values of n,4 obtained from the ANN model were plotted against the actual
values from FEM simulations. Each circle represents a single datapoint. For a well trained
model, these values should be aligned closer to the y=x line (shown by the black solid line).

It can be stated that for epochs = 1000, the model is not well trained as the n.y values

(shown by blue circles) in the parameter space of 1.15-1.30 are not close to the y=x line.
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Fig. 6.3 The scatter plot of training dataset produced by ANN for different epochs, comparing
nef values from the simulation (x-axis) and the ANN predictions (y-axis) along with the ideal
linear model (y = x). Inset shows the mean squared error (MSE) obtained with epochs when
training the ANN model.

This can also be explained from the MSE curve shown in the inset of Fig. 6.3. The MSE
gives the average squared difference between the estimated and true values. Predictions were
closer to the original values when the MSE values are smaller. It can be observed that the
MSE decreases with epochs from 0.31113 for epoch =1 to 0.00367 for epochs = 1000. For
epochs = 2500, MSE reduces further to 0.00134. This implies that the n.4 scatter plot should
be closer to the y=x line for epochs = 2500, as can be seen by the red circles data. The
ANN model was ran until 5000 epochs at which MSE reached a stable value of 0.00065. For
epochs = 5000, the trained ANN model for predicting n.4 agrees reasonably well with the
actual n.g values, being closest to the y=x line, as shown by green circles.

Next, in Fig. 6.4 actual and predicted n,4 were compared for different epochs using
the trained ANN model at an unknown PCF parameters, A = 1.5 um, d/A = 0.7, and N,
= 4. It should be noted that the generated input training dataset did not have any value

corresponding to A = 1.5 um. Generally, the n.4 of the fundamental mode of PCF decreases
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Fig. 6.4 Comparing actual (simulation) and predicted (ANN model) n.4 for different epochs
at an unknown pitch, A=1.5 um, d/A =0.7, and N, = 4.

with the increase in A. For epochs = 1000, ANN model is not able to accurately predict the
actual pattern (shown by the black solid line) well, and the predicted values (shown by the
blue filled circles) steered away from the actual values as A increases from 1.4 umto 1.8 um.
When the epochs were increased to 2500 or 5000, the MSE reaches to a more stable value of

0.00134 and 0.00065, respectively. Hence, the predicted and actual values are closer for both

cases, having a lower error. This also shows that 5000 epochs are sufficient for the training.

6.3.2 Effective Mode Area (A )

Acfr plays an important role in the context of the waveguiding properties of PCF, and can
be calculated using Eq. 6.1. A smaller Ay is useful in applications with enhanced fibre
nonlinearity, while a large A, can be useful in high power transmission applications.

Here, the previously trained ANN model is used to predict the A4 values of the solid
core PCF. Figure 6.5a shows that how well the dataset is trained for A4 values for epochs
equal to 1000, 2500, and 5000, shown by blue, red and green circles, respectively. It can be

seen that some datapoints for epochs equal to 1000 and 2500 are not well trained, especially
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Fig. 6.5 (a) The scatter plot of training dataset produced by ANN for different epochs,
comparing A values from the simulation (x-axis) and the ANN predictions (y-axis) along
with the ideal linear model (y = x), (b) Comparing actual (simulation) and predicted (ANN
model) A,z for different epochs at an unknown pitch, A=1.5 um, d/A =0.7, and N, = 4.

for A,y values greater than 4 wm?. When the epochs were increased to 5000, these datapoints
become closer to the y=x line. The epochs can be further increased but this increases the
simulation time, and may also lead to the overfitting problem. This trained ANN model was
then used to predict the A4 values for unknown PCF parameters, A = 1.5 um, d/A = 0.7, and
N, =4, as shown in Fig. 6.5b.

The A, data corresponding to these parameters was never recorded or provided during
the training of the model. However, the ANN model was still able to predict them. Figure
6.5b shows the curve of actual and predicted A4 values for epochs = 1000, 2500, and 5000.
When epochs were increased from 1000 to 5000, the predicted A values become closer
to actual values, which is also justified by the fact that MSE is decreased with increase in
epochs, as shown in inset of Fig. 6.3. However, it should be noted that even for epochs =
5000, the solutions were not very accurate especially in the wavelength range from 1.3-1.7

pm.
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Fig. 6.6 Comparing actual (simulation) and predicted (ANN model) A for different datasets
at an unknown pitch, A=1.5 um, d/A =0.7, and N, = 4.

Figure 6.6 compared the actual and predicted A,y values for two different datasets at
epochs = 5000. Dataset-2 is composed of all the values of dataset-1 and has some additional
datapoints especially in the wavelength range from 1.3-1.7 um, where previous predictions
were poor. It can be seen that the error between the actual and predicted values are further
reduced when ANN model is trained using dataset-2 (shown by red circles) in comparison
to initial dataset-1 (shown by green diamonds), which clearly shows improved predictions

in the higher wavelength range. Figures 6.5b and 6.6 show that both number of epochs and

dataset quality play an important role during the training of the ANN model.

6.3.3 Dispersion (D)

The chromatic dispersion (D) of a PCF is an important parameter for many applications, such
as supercontinuum generation, which may be calculated using Eq. 6.2. The D depends on
the second order derivative of . with respect to A.

The scatter plot showing training of the ANN model for D is shown in Fig. 6.7a. It

can be observed that at epochs = 1000, the predicted D values significantly deviate from
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Fig. 6.7 (a) The scatter plot of training dataset produced by ANN for different epochs,
comparing D values from the simulation (x-axis) and the ANN predictions (y-axis) along
with the ideal linear model (y = x), (b) Comparing actual (simulation) and predicted (ANN
model) D for different epochs at an unknown pitch, A = 1.5 um, d/A =0.7, and N, = 4.

the actual D values, especially when D is less than -400 ps/km.nm, as shown by the blue
circles. This error is reduced if the model is trained until epochs = 2500 (red circles) or 5000
(green circles). However, at epochs = 5000, it can be observed that some datapoints are not
close to the y=x line when D is less than -600 ps/km.nm. This error comes from the neural
network modelling as there were insufficient number of datapoints in the parameter space of
D between -1200 and -600 ps/km.nm. This leads to underfitting of the trained model for D
values. The model is more biased to be trained towards D values greater than -300 ps/km.nm
as there are more datapoints in that range. Increasing the datapoints in the lower D range
further improves the training and accuracy of the ANN model for D calculations.

Actual and predicted D values for unknown A = 1.5 um, d/A =0.7, and N, = 4 are shown
in Fig. 6.7b. At epochs = 1000, the error (or gap between the simulated and ANN values) is
more because the ANN model is not able to learn the curve shape well and predicts it almost

as a straight line. Increasing the epochs to higher values of 2500 (red triangles) or 5000
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(green diamonds) reduces this error gap. It can be noted that epochs = 5000 were sufficient

to predict the D pattern in this case.

6.3.4 Confinement Loss (0,)

Confinement loss (&) in PCF depends on the structural parameters, that is, changing the
lattice pitch and number of rings in the cladding. As the confinement loss can result in worse
system performance, it is necessary to optimize its incidence. It depends on the imaginary

part of the complex effective index, n,f, and can be computed using Eq. 6.3.
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Fig. 6.8 The scatter plot of training dataset produced by ANN for different epochs, comparing
o values from the simulation (x-axis) and the ANN predictions (y-axis) along with the ideal
linear model (y = x).

Figure 6.8 displays the predictions of . of the fundamental mode with actual values
when using the trained ANN model. It can be seen that for different epoch values of 1000,
2500 and 5000, the scatter plot looks significantly different. The majority of the scatter plot

values lie in o, ranging from 0-10 dB/cm for epochs equal to 1000, 2500 and 5000 as shown
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Fig. 6.9 Actual values of . from the simulation and in logarithm with wavelength for a
general case.

by the blue, red and green circles, respectively. Only a few values are present for o greater
than 20 dB/cm and these values are not close to the y=x line which means that the data
corresponding to these ¢, values is not well trained. To understand the reason behind this,
the general trend of o, with A for a particular set of PCF parameters has to be understood, as
shown by the blue line in Fig. 6.9. It can be clearly seen that for A in the range 0.8-1.4 um,
o values are quite small and it rapidly increases up if A is greater than 1.5 yum. This implies
that when the dataset is recorded for different A, d/A, N,, and A, the majority of the output o,
values lie in one zone with only a small number of values in the another zone. Generally, the
devices operate in narrow bandwidth around 1.55 pm, but a broad range between 0.8—1.7um
was considered to show the validity of the algorithm. When the majority of values lie in one
zone, the ANN model becomes biased towards these values. Similar behaviour was observed
in this case when training the ANN model for o values of the PCF.

The solution proposed to avoid this problem was to take the logarithm (logig) of the
initially collected o, values when the dataset was collected for different variations in A, d/A,
N,, and A. Taking the logarithm converts the values to new values having regular variations,
which can be efficiently trained using the ANN model. This can be seen by the red line in

Fig. 6.9, which is the logarithm of the values of the blue line. The red line represents the
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logarithm of the general trend (absolute values) of o, with A for the particular set of PCF
parameters. The logarithmic values of o, were trained by the ANN model as in the training
case for the n.g, Ay and D, and o.. During testing of the PCF with unknown parameters,
first use the ANN model trained using the logarithm of ¢, values and in the final step take
the anti-logarithm to obtain the predicted absolute . values and compare their accuracy

with the actual o, values.
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Fig. 6.10 (a) The scatter plot of training dataset produced by ANN for different epochs,
comparing Q. values in logarithm from the simulation (x-axis) and the ANN predictions
(y-axis) along with the ideal linear model (y = x), (b) Comparing actual (simulation) and
predicted (ANN model) o, in logarithm for different epochs at an unknown pitch, A =1.5
um, d/A=0.7,and N, = 4.

Comparison of the predicted and actual . values using logarithmic conversion during
training of the ANN model is shown in the Fig. 6.10a. For different epochs, it can be
observed that the scatter plot values are closer to the y=x line, showing a well trained model.
Without taking the logarithm of &, values, the same ANN model was not trained well as
shown earlier in Fig. 6.8. The o, values obtained using logarithmic conversion from the

simulation and ANN models for different epochs at an unknown A = 1.5 um, d/A = 0.7, and
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Fig. 6.11 Comparing actual values from the simulation and ANN model for different epochs
at an unknown pitch, A= 1.5 um, d/A =0.7, and N, =4 or 5.

N, =4 are shown in Fig. 6.10b. As the epochs were increased from 1000 to 2500 to 5000,
the error decreases for o,.

Next, the trained ANN model was used to predict and compare the o values for different
epochs with the actual o, values. The same trained model was used to efficiently predict
a. for different N, = 4 or 5 at an unknown A = 1.5 um, d/A = 0.7, as shown in Fig. 6.11.
But before comparing, anti-logarithm was taken as the ANN model was trained with ¢, in
logarithm values. For N, = 4 and epochs = 1000, it can be seen that predicted ¢, values
(shown by blue filled circles) are still far from actual o, values (shown by solid black line).
As the epochs were increased to 5000 (shown by green diamond symbols), the estimations
become closer to the actual . values. Similarly, the predicted and actual a. values have
been shown when N, =5 is taken for epochs = 5000. Predicted and actual values of o,
are closely matched as shown by orange star symbols and dotted black line, respectively.

This implies that the ANN model performs better when logarithm of ¢, values are taken to
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train the model, and 5000 epochs are sufficient to closely predict the actual values for a PCF

structure.

6.3.5 Computing Performance

The runtime to train the artificial neural network model depends on the training parameters
including dataset size, number of hidden layers, number of neurons in each hidden layer and
number of epochs, among others. For the particular model using 3 hidden layers with 50
nodes in each layer running for 5000 epochs, it takes around 20 seconds to train the model
with the generated dataset. Once the training was completed, model weights and parameters
were saved in the computer. The next step was to predict the output for unknown inputs,
which typically takes only a few milliseconds to compute. This prediction was carried out
using the already saved weights rather than first training the ANN again. On the other hand,
the numerical computation using Lumerical Mode Solutions requires a few minutes for each
point to be calculated, and can take even longer if a denser mesh is used. In this case, multiple
outputs can also be predicted simultaneously within milliseconds with the ANN model when
sets of input parameters are given, while it can take even longer in numerical simulations

where multiple sweeps might be required.

6.4 Summary

In summary, machine learning techniques have been employed to accurately predict the
important properties for a silica core photonic crystal fibre design. This chapter has shown
that how to predict the effective index, effective mode area, dispersion and confinement loss
of a photonic crystal fibre within milliseconds, in contrast of needing a few minutes with
standard numerical simulations. Three hidden layers with 50 neurons in each layer were

used throughout the investigation, which offer rapid convergence and sufficient accuracy in
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predicting outputs for unknown geometric dimensions. The comparison between actual and
predicted values in computing various optical properties are shown, and the errors between
these values decrease when the number of epochs are increased, as the mean squared error
value reduces with the number of epochs. The machine learning models are an efficient
alternative and have potential to support computation solvers for both forward and inverse
problems. In future, the code can be easily extended to different core materials as well as

hollow core photonic crystal fibre.

Code and Data Availability

The open source machine learning framework - PyTorch [69] was used to build and test
the artificial neural networks. The datasets and complete Python code used to generate the
presented results during the current study are available via https://github.com/sunnychugh/
ML_PCF and Appendix B. An additional dataset for testing purposes is also provided at the

mentioned link.
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Chapter 7

Thermal Compensation of Phase
Mis-matching in a Silicon Directional

Coupler

7.1 Introduction

The development of Si photonics can be traced back to the pioneering work carried out
by Soref et al. [99] in mid-1980s. Following that, there has been a rapid increase of
research interest for integrated silicon photonic technology [2—4, 100, 101], based on the
silicon-on-insulator (SOI) platform. Strong modal confinement due to a high refractive index
contrast allows a small bending radius which facilitates large-scale integration of photonic
devices and thus enhanced functionalities with an unprecedented level of flexibility and
scalability. It has the potential to reduce power consumption along with enhanced reliability
of a Photonic Integrated Circuit (PIC). Potential applications of Si photonics include photonic
interconnects, data communication, telecommunication, optical signal processing, optical

storage, electro-optical logic, and others [99].
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Although complementary metal-oxide semiconductor (CMOS) fabrication technology is
continuously improving, it is never perfect and more advanced devices need strict fabrication
tolerances. Heating elements are often used to tune the optical properties of Si photonic
devices, to stabilize operating temperatures, and to compensate for fabrication variations.
Reconfiguration of Si photonics devices can be actively achieved using free-carrier-plasma
dispersion [102], all-optical tuning, electrooptic [103], active thermooptic techniques [104—
106], but these approaches increase the power consumption and complicate the device with
active control circuitry. On the other hand, post-fabrication trimming of the devices [107] has
also been considered but this increases the fabrication cost. The thermooptic effect can be
efficiently used to tune photonic devices with negligible insertion loss and has been employed
for the implementation of reconfigurable filters and add-drop multiplexers (ROADMs),
dispersion compensators, and switches [108]. The thermooptic effect can be utilized by
heating the photonic devices, which can be achieved by integrating metallic heaters close to
the Si device.

Integrating metal-strip heaters to reconfigure Si photonics devices has been widely used
exploiting the large thermo-optic coefficient of bulk silicon crystal [109] that can be easily
implemented using CMOS front-end technology. The waveguide core is mostly heated
using metallic (Ti, TiN, CrAu, NiCr, graphene etc.) heater placed above the waveguide at a
distance from the core [104, 108, 110]. Alternatively, metallic heaters can also be aligned
parallel to the guiding axis at a safe lateral distance from the core [111]. Heating induces
a transverse temperature gradient (AT) proportional to the dissipated electric power by the
heater and hence, provides an extra effective index difference [112]. However, integrating
metallic heater incurs additional optical absorption loss by the metal, but this can be reduced
to a low value if the heater is placed at a distance from the waveguide core. It remains a
challenging task to design a silicon photonics thermo-optic devices fulfilling the desired

features, viz. compact design for large scale integration, lower optical insertion loss, low
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power consumption, faster response time, etc. Therefore, a detailed study of the heat transport
model is necessary to achieve an optimum design.

This chapter is organised as follows: In Section 7.2, related early work is reviewed.
Proposed device design geometry with various heater positions are discussed in Section
7.3. Fabrication characterization details are presented in Section 7.4. Device optimisation
for various separations, fabrication inaccuracies, heater power, and losses are presented in

Section 7.5, and the chapter is concluded in Section 7.6.

7.2 Related Work

In 2010, Atabaki et al. [108] presented simulated and experimental results for the improve-
ment of the reconfiguration speed of the thermally-tuned Si photonic devices, where the
effects of device parameters such as width, thickness, and distance from the waveguide were
studied. In 2013, Masood et al. [113] compared different resistive heaters compatible with
CMOS processes: resistors in doped silicon, Ni-silicide, and Tungsten metallization. They
demonstrated that the choice of the specific type of heater is determined by factors such as
thermal speed (rise and fall times) instead of heating efficiency. In 2016, Kaushal and Das
[114] presented a model to estimate the temperature profile along a single-mode SOI rib
waveguide integrated with an active microheater in the slab region. The Fabry-Perot modu-
lation technique has been used to extract the differential change in temperature, sensitivity,
and response time of the microheater. Recently, Bahadori et al. [115] presented a modelling
approach for characterizing the stationary and transient thermo-optic responses of microring
resonators in Si photonics platform using integrated microheaters. They investigated pulse
width modulation (PWM) drive scheme for microheaters and experimentally demonstrated
its use in stabilizing microring resonators. Gupta et al. [110] presented a detailed theoretical
and experimental study of metal-microheater integrated silicon waveguide phase-shifters. It

has been also shown that temperature sensitivity can be improved significantly by proper
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choices of waveguide design parameters, closer proximity of microheater to the waveguide

core, and suitably folding the waveguide microheater phase-shifter system.

7.3 Device Geometry

Unwanted change in waveguide dimension deteriorates performance of all photonic devices,
but more critically that of a directional coupler. Directional couplers are important compo-
nents for many key photonic devices, such as mode demultiplexers [79], polarization splitters
[81], polarization rotators [80], spot-size converters [78], etc. The light from a tunable laser
source is input through one waveguide. The 3D schematic diagram of the proposed device
design is shown in Fig. 7.1, which consists of two silicon cores with two Cu nanoheaters
placed close to each waveguide. The light introduced to one port slowly transfers back and
forth between these two waveguides because of the periodic power transfer between the
adjacent waveguides. By choosing the distance between the waveguides and the length of the
coupling region, it is possible to couple any desired fraction of the light from one waveguide
to another. The cladding material is SiO,. Silicon waveguide and the corresponding Cu
nanoheater placed on the top position of each waveguide is separated by a distance, gy. Here,
two silicon waveguides are surrounded by SiO; as the cladding material. Cu nanoheaters
are placed on top of each waveguide separated by a distance, gy. A minimum separation
between the waveguide and heater restricts the undesirable modal field overlap with the metal
electrode, which can cause polarization dependent attenuation [116]. The silicon waveguides
are separated from the silicon substrate by a silicon dioxide (Si0,) buffer layer. The refractive
indices of silicon and silicon dioxide are taken as ng; = 3.478 and ng;jpy = 1.444, respectively
at the 1550 nm operating wavelength (Ag).

The cross-section of the directional coupler with Cu nanoheaters is shown in Fig. 7.2. Itis
assumed here that the desired rectangular cross-section for both of the Si waveguides are w1

X h=w2 x h=500 nm x 220 nm. Typically, a 1.5-2.0 um thick SiO; buffer layer is used,
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Y
Cladding: w

SiO, X

Fig. 7.1 3D schematic diagram of a directional coupler with Cu nanoheater at top position of
each waveguide.

but as the mode does not extend beyond the SiO, layer, the lower Si substrate was ignored in
all simulations. However, other combinations including an asymmetrical directional coupler
for use as a polarization rotator and mode splitter can also be considered. The coupling
strength of light from one waveguide to another is very sensitive to the separation between
the guides, which is denoted by s. The coupling length of a directional coupler is calculated
by [117]:

L—_ T _ M (7.1

(Be—Bo)  2(ne—ny)

where 3, and 3, are the propagation constants of the even and odd supermodes, respectively.

Here, n, and n, are the effective indices of these even and odd supermodes, respectively.
The separation between the Cu nanoheater (height = i) and Si waveguide is denoted by

gn- The plasmonic absorption loss is induced by the presence of a metal nanoheater, hence

gn should be carefully chosen to produce a low plasmonic absorption loss, which is given by

[118]:

o, = 20log;o[exp(—PBimlo)] (7.2)
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where B, is the imaginary part of the propagation constant and [ is the propagation distance.
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Fig. 7.2 Cross-section of the directional coupler with Cu nanoheater at three different possible
positions: A (top), B (top-left), and C (bottom-left).

It is important to ultimately choose a design that can function acceptably for different
types of imperfections expected from a given manufacturing process. Deviations in waveg-
uide dimension results in degradation of the optical devices. Standard deviations (0.83—-1.00
nm in width and 0.24-0.30 nm in height) in a waveguide cross-section of 440-nm-wide/220-
nm-thick waveguide for a single 300-mm wafer has been reported in [119]. In this work, the
focus was on the effects of deviations in width of the Si waveguide due to manufacturing/fab-
rication tolerances on the behavior of a directional coupler. The heaters can be placed either
directly at the top of the waveguide, shown as ’A’ in Fig. 7.2 or above the waveguide but
laterally shifted, shown as B’ or on the outside but at a lower height, shown as *C’. As it is
not possible to predict the likely fabrication error, so two sets of heating electrodes need to be
incorporated in a more practical design. In the case of an asymmetric error, the heater located
closer to the waveguide which is narrower is activated. In the case of an identical error, when
both waveguides are slightly narrower, although they remain phase matched, but resulting
reduced coupling length can be corrected by switching ON both the heaters. Commercially
available simulation tools, COMSOL Multiphysics and Lumerical were used in this study

to investigate the effects of thermal tuning of the Si waveguides directional coupler with
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the metallic heaters at different positions. The thermal tuning and coupling efficiency were

studied by using the 2D thermal and 3D FDTD simulations, respectively.

7.4 Fabrication Process

The waveguide structure shown in the Fig. 7.2 can be constructed by etching two straight
silicon ridges into a commercially available SOI wafer. A commercially available SOI
wafer typically has a 220 nm thick Si layer on top of a buried silica layer. First, a metal
mask of similar waveguide width needs to be prepared by a plasma etch of the photoresist.
After metal masking, the rest of the Si section can be etched away to the bottom SiO,
layer using the Reactive Ion Etching (RIE) tool to form a Si ridge waveguide with vertical
sidewalls. However, any change in its dimensions may violate the phase matching condition
of a waveguide coupler. This fabrication imperfection could be rectified by incorporating
micro-heaters. After etching and fabrication of the Si ridges, a SiO; layer could be deposited
on top of the waveguides, to act as a cladding layer. A metal microheater can be deposited at

a certain optimised position using the thermal evaporation technique.

7.5 Thermal Tuning of a Directional Coupler for Fabrica-
tion Inaccuracies

Various tuning approaches have been reported, including, the integrated micro-heater, elec-
trooptic, and photothermal heating [113—-115]. Among them, the integrated micro-heater is
often preferred. However, a relatively thick upper cladding is required for the micro-heater
configuration, which limits the tuning speed. Cu nanoheaters are used for thermal correction
with uniform heating power along the length of the device. Various thermal and electrical

parameters used for Cu, Si, and SiO, in calculating thermo-optic effects, which are taken

111



Thermal Compensation of Phase Mis-matching in a Silicon Directional Coupler

as default values from the library of the Lumerical Device Heat Transport simulator are

included in Table 7.1.

Table 7.1 Thermal and Electrical parameters used for the simulation.

Property Cu Si | SiO,

Material Mass Density (kg/m>) | 8933 | 2330 | 2203

Specific Heat Capacity (J/kg.K) | 385 | 711 | 709

Thermal Conductivity (W /m.K) | 397 | 148 | 1.38

7.5.1 Temperature Profiles

The 2D steady state simulation was carried out using the Lumerical DEVICE with a total
heating power (P,) of 25 mW, which was uniformly distributed along the waveguide of 25
um length. The gap between heater and waveguide, g, was initially taken as 400 nm and the
separation between the waveguides was maintained constant as s = 200 nm. Heat generated
by the metal heater flows to the sink (substrate) through the cladding and core materials.
Such heat dissipation not only depends on the waveguide materials, but also on the size
and shape of the waveguide and heater. Figure 7.3 shows the transverse temperature profile,
T(x,y), around the Si waveguides and cladding when the Cu nanoheater was located at the top
of the wgl (position - A). The temperature decreases gradually towards the substrate, having
a maximum value in close proximity to the heater. It can be observed that the temperature
in wgl is more than that in wg2 as the Cu heater is closer to wgl than wg2. The heat
dissipation not only depends on the waveguide materials, but also on the size and shape

of the waveguide and heater. Analytically, the temperature increase of the heater can be
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Fig. 7.3 Temperature distribution profile across the directional coupler cross-section with
heating power (P,) of 25 mW, gy = 400 nm, dW = 5 nm, and s = 200 nm having Cu
nanoheater at the top position.

approximately estimated using the following [120]:

0.5 (Ph tw)
lh Wy Ksio, (1 +0.88 fTWh)

AT, = (7.3)

where [;, and wj, are the length and width of the heater, respectively. Ks;o, is the thermal
conductivity of Si0,. 1, = gu + tsi0,, Where t5;0, is the thickness of substrate layer, and
only half of the heater power contributes to the gradient of temperature in each direction.
When B, =25 mW, [, =25 um, wy, = 0.5 um, Ksip, = 1.38 W/m.K and tg;0, is considered to
be infinitely extended in comparison to the waveguide dimensions, then Eq. 7.3 results in
AT;, =411 K which leads to the heater temperature of approximately 711 K, which agrees
reasonably well with the temperature profile shown in Fig. 7.3. However, to obtain the
temperature profile T(X,y) more accurately and the resulting effect on the modal properties, a
more rigorous numerical approach is needed, as presented below.

Figure 7.4a shows the temperature profile along the x-axis at y = 0 um (through the
centre of the Si waveguides) for three different values of gz when the Cu nanoheater was
placed at the top position with s = 200 nm. The solid black line (g = 400 nm) has a peak

constant temperature value of approximately 548 K at x = 0 yum, at the centre of wgl, and
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Fig. 7.4 Temperature distributions along the x-axis through centre of Si waveguides with P,
=25 mW, dW =5 nm, and s = 200 nm having (a) Cu nanoheater at top position for different
gH, and (b) Cu nanoheater at three different positions with gz =400 nm.

approximately 512 K at the centre of wg2 (x = 0.7 um) yielding a temperature difference,
AT =36 K. The red and blue solid lines show the temperature variations when gg is 300 nm
and 200 nm, respectively. The peak values of temperature in wg1 was increased to 579 K,
and increased to 522 K in wg2, when gp is reduced to 200 nm. It is clearly shown as the
distance to the top heater is reduced, the local temperature inside both waveguides increased
as the Si waveguides were heated more due to the reduced gap.

However, it is more critical to observe that the temperature difference between the two
waveguides also increases as the heater distance is reduced. The difference in the temperatures
(AT) between these two waveguide cores were 36 K, 45 K, and 57 K when gy was 400
nm, 300 nm, and 200 nm, respectively at P, = 25 mW and s = 200 nm. Therefore, AT
increases when the gap between the heater and waveguide (gg) is reduced and thus can be
more effective for correcting defects due to fabrication tolerances.

The effect of heater position was also studied. Temperature variations along the x-axis
at y = 0 um for three different heater positions (top, top-left, and bottom-left) are shown

in Fig. 7.4b for P, = 25 mW, gy = 400 nm, and s = 200 nm. It can be observed that for
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the same gy = 400 nm in all three heater positions, wgl and wg2 have higher temperature
values when the heater was located in the top position in comparison to the heaters at the
top-left and bottom-left positions. However, the temperature difference (AT) between these
two waveguide cores (wgl and wg2) are approximately 36 K, 44 K, or 56 K when the heater
was placed at the top, top-left or bottom-left position, respectively. In the case of the heater
located at the top-left and bottom-left position, the peak temperature values are not at the
centre of wgl (i.e at x =0), but at x =-0.5 um and -0.9 yum, respectively. It should be noted
that AT between the waveguides is higher for the lower left electrode position, and this may

give a better option to correct phase mismatching.

7.5.2 Phase Matching Conditions

Once the temperature profile, T(x,y) was obtained for a particular design, the local refractive
index profile with the change in temperature was also obtained using:
dn

nr =nro—+ (T - T())ﬁ (7.4)

where nro and nr are the refractive indices at ambient temperature (7p) and given temperature
(T), respectively [121]. Here, dn/dT for Si and SiO, were assumed to be 1.86 X 1074k !
and 1.10 x 102 K~!, respectively at Ay = 1.55 um.

For the desired performance, fabrication errors, such as deviations from the designed
width and height in silicon waveguides should be controlled as accurately as possible.
However, in reality it may deviate from the desired design. A case where the fabricated width
of wg2 is more than its desired design width (w2) by dW was considered. As a result, wg1 and
wg2 have different widths (w1 and w2 + dW, respectively), hence n, sy of the isolated wg2 is
greater than the n, ¢ of wgl. Due to the difference in the n, ¢ of the isolated waveguides, the
directional coupler is no longer phase matched and the power coupling from one waveguide

to another is reduced. The coupling length, L. is also different than its designed value as
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Fig. 7.5 Effective index (n.rr) variations for (a) isolated waveguides, wgl and wg2 with
heater power (P,,) for Cu nanoheater at top position for different dW (5 nm and 10 nm), gy =
400 nm and s = 200 nm, (b) even and odd supermodes with heater power (P,) for gi = 200
nm and dW = 10 nm.
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the n,¢r of the isolated waveguides is different due to this fabrication error. Two different
cases were considered for dW (5 nm and 10 nm) and their n, 7y variations with P, for the
fundamental quasi-TE (Hy1 1y mode of each isolated strip waveguide, wg1 and wg2 as shown
in Fig. 7.5a. The n.yr values without heating (P, = 0) for wg1 is 2.44397, and wg2 with dW
=5 nm and 10 nm are 2.45101 and 2.45975, respectively. To obtain the phase matching,
similar n, ¢ values for both of the isolated waveguides are needed, which can be achieved by
activating the Cu nanoheater closer to wgl. In this case, initially it was considered that the
heater is placed at the top of the waveguide. When the heater near to wg1 was activated, it
increases the temperature of wg1 more than that of wg2, and hence the corresponding change
in n.rr of wgl is higher than that of wg2. The blue and red solid lines in Fig. 7.5a show the
increase in n, ¢y for the isolated waveguide, wg2 with heating, P, for dW =5 nm and 10 nm,
respectively. Both of these values increase linearly but have different starting values at P, =0
mW, as their widths are different. The n.rr of wgl shown by the black solid line increases
faster with P, because the local temperature in wg1 is higher than wg2, wgl being closer to
the heater. The n. s of wgl crosses that of wg2 at P, = 20 mW for dW = 5 nm. The zoomed
image of this point is shown as an inset. Similarly, when dW = 10 nm, the n,.ss values of
the isolated waveguides wgl and wg2 cross when P, is 44 mW, as shown in Fig. 7.5a by the
intersection point of the black and blue solid lines. This clearly shows that a higher P, is
required for phase matching of the two waveguides if the fabrication error (dW) is larger.
The phase matching condition shown in Fig. 7.5a is strictly valid only for the isolated
guides. Therefore, the supermodes of the directional coupler were also studied. The variation
of the effective indices for the even and odd supermodes are shown in Fig. 7.5b, when dW
= 10 nm and gy = 200 nm. However, these two effective index curves do not cross at any
point in the range, similar as for any coupled structure. It can be noted that when phase
matching is achieved, the effective indices difference between these two supermodes is a

minimum. The n,r¢ values of even and odd supermodes at this phase matching condition
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Fig. 7.6 Variations of coupling length (L.) with heater power (£,) having Cu nanoheater at
top position for different gz with fixed s = 200 nm, for (a) dW = 10 nm, and (b) dW =5 nm.

(P, =50 mW) are 2.55522 and 2.53887, respectively. Variations of the coupling length with
the heating power for different gy values are shown in Fig. 7.6a for dW = 10 nm. At the
phase matching condition, the coupling length, L. shows a peak value when the effective
index difference between the even and odd supermodes is the lowest. For gz =200 nm, L,
reached the maximum value of 47.4 um when P, was 50 mW, shown by the blue solid line.
It can also be observed that the L. is higher when the separation between waveguide and
heater (gg) is increased, and more heating power, P, is required to obtain this phase matching
condition. L. values of 48.5 um and 50.8 um were obtained at the heating power, P, = 60
mW and 70 mW for g = 300 nm and 400 nm, respectively.

Figure 7.6b shows the variations of L. with heating power for different gz when dW =5
nm. Maximum values of L. were 42.8 um, 43.1 um, and 44.2 um when gy are 200 nm, 300
nm, and 400 nm, respectively. The corresponding heater power values required to achieve
the phase matching for dW =5 nm are 30 mW, 35 mW, and 40 mW for gy values of 200
nm, 300 nm, and 400 nm, respectively. The heater power needed to achieve phase matching

for a given heater separation, gy is smaller for lower dW. It can be noted that the heating
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power required to match n, 7y of isolated waveguides and for phase matching the directional

couplers are similar but not the same.

7.5.3 Mode Profiles and Power Confinement

The dominant field profiles of the even and odd supermodes are strictly symmetrical and
anti-symmetrical, respectively along the centre of the directional coupler when the coupled
waveguides are identical. However, due to the fabrication error, when the two waveguides are
no longer identical, the supermodes are no longer strictly symmetrical or anti-symmetrical.
This causes unequal excitation of the supermodes and the resulting power transfer is not
complete. Power confinements in wg1 and wg2 were studied as the waveguides were heated.
The power confined in the left-half and right-half sections of the directional coupler were
calculated. Power transfer from one waveguide to another is maximum only when both
modes are equally excited. However, it is noted that the power confinement in the two
waveguides by these supermodes is not always equal. Power confinement can be calculated

by integrating the Poynting vector over a given region, using the formula:

r— [[\Re (E x H") -2 dxdy

JJRe (E x H) -2 dxdy (7.5)

where A represents left-half or right-half region of the coupled structure. The full vectorial
E and the complex conjugate of H (H") fields were used to calculate the modal Poynting
vector (S; = (E xH")-2).

The solid black and red lines in Fig. 7.7 show the power confinement in the left-half and
right-half sections of the proposed thermally tuned directional coupler when P, was increased
from 0 mW to 40 mW. In this case the heater was located at the top position with gy =400
nm and s = 200 nm with a fabrication error in the wg2 width, dW =5 nm. When P, was 0,
the power confinement in right-half section is greater than that in the left-half section as the

first supermode (even-like) is better confined in the wider right side waveguide, wg2. The
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Fig. 7.7 Variation of power confinement in the left-half and right-half sections of the direc-
tional coupler for the even supermode with the heater power. Insets show the H, field profile
for even supermode at three different values of P, as indicated.

power fraction in the right-half section is 0.6627, while in the left-half section is 0.3372. This
is also verified from the Hy, field profile shown in the inset (a). At B, = 0, the H, magnitude
in the left wgl is smaller than that in the wg2 on the right. This confirms that more optical
power is confined in wg2 compared to wgl at P, = 0. In this case, power confinement of
the second supermode (odd-like) is more on the left side waveguide, wgl. When the heater
power was increased, it starts heating both the wgl and wg2, but as the heater is closer to
wgl, the temperature in this waveguide is more than the right side waveguide, wg2. Hence,
the increase in n, 7y of the wgl rises higher than the n, ¢ of wg2, which increases the optical
power confinement in wg1 and decreases in wg2. At P, =26 mW, it can be observed that the
power confinement values in the left and right half sections cross and their values are same
and approximately equal to 0.50. At this value of P, it can also be observed from the inset
(b) that H, field has almost the same magnitude in both wg1 and wg2. This crossing point

represents a case when the power confined in both the waveguides is equal. In this case, the
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even and odd supermode profiles are symmetrical and asymmetrical, respectively. So there
would be near ideal power transfer between the waveguides. Increasing P, further, increases
the power in the left-half and decreases in right-half, and the proposed design departs from
the ideal condition. At P, =40 mW, it can be noted that the power in the right-half section is
greater than the power in left-half section. The H, field profiles at P, = 40 mW are shown in
the inset (c), where it can be seen that the H, magnitude is smaller in wg2 compared to that

in wgl.

7.5.4 Time Domain Propagation

To verify the design, a time domain evolution of the optical power along the directional
coupler has also been studied. For the ideal case, when dW = 0 nm, at the propagation
distance, z = Lo = 37.5 um, it was calculated that 99% of the power is transferred from wgl
to wg2. When dW =5 nm and without any compensation by heating, this power transfer
between the waveguides is incomplete, which is shown in Fig. 7.8a. The black arrow shows
the position from where the light is fed in to wg1, which is coupled into wg2 and back again
to wgl. The red dotted horizontal line shows the position of the coupling length for the ideal
waveguides (L.o) and remnant optical power is observed across this position without any
heating. The black solid line in Fig. 7.8a shows that there is some residual H, field in wgl
when dW =5 nm and P, = 0, which implies that power is not fully coupled from wg1 to wg2.

The H, field magnitudes for different heater power (P,) values across the red dotted line
(at Lo = 37.5 um) are shown in Fig. 7.8b. When dW =0 and P, = 0, shown by the black
line, the Hy, field is mostly confined to wg2, as this was the ideal intended design. However,
when dW =5 nm with P, = 0, the H, field magnitude (shown by a red line) in wg2 is reduced
in comparison to the ideal case with dW = 0 due to a lack of phase matching. The ratio of H,
peak values in wgl and wg2 at z = L 1s approximately 0.192 and this represents only 84%

power being transferred to wg2. At the optimised heating level, P, = 26 mW, this ratio is
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=5 nm, B, = 0 mW (b) Hj, field profiles across x-axis at z = L for different values of dW
and P,.
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reduced to 0.0443, shown by the blue solid line, which represents an increased power transfer
of

P, =40 mW, as shown by the orange line, where the maximum H,, ratio is approximately
0.111, and therefore should be avoided.

The power transfer from one waveguide to another along the propagation direction (z)
was also studied. In this case, the heater was located placed at the top position with gy =400
nm and s = 200 nm. The power transfer is shown for four different cases in Fig. 7.9a: (a)
ideal case without any fabrication error (dW = 0), when wl = w2 = 500 nm and heater was
deactivated throughout with P, = 0, shown by the black solid line. In this case, 99% of power
was transferred from wgl to wg2 at z = L.o = 37.5 um. This z position is the desired length of
the device, being equal to the coupling length, L.y of the ideal design, shown by the vertical
black dotted line. When the fabrication error, dW = 5 nm, without heating compensation,
case (b), is shown by the red solid line. At this condition, the waveguide widths are different,
and hence phase matching condition is not satisfied, which leads to a reduced power transfer
from wgl to wg2. It is shown here that 84% power is transferred at Lo, which represents a
15% drop in the power due to this fabrication error of 5 nm in wg2. In case (c), when heating
was introduced, 26 mW of optimised heating power was required to attain the field matching
condition for dW =5 nm, shown by the blue solid line. It can be observed that again 99% of
the power can be transferred from wg1 to wg2 inspite of the fabrication errors provided the
heater is activated to the correct heating power. However, this maximum power is attained
at a new coupling length (denoted by L., which in this case is equal to 43 um), and not at
Lco. In this case, the coupling length is increased as the n, sy of the isolated waveguides also
increases due to an increase in the temperature. An enhanced mode confinement with higher
nery of the even and odd supermodes represents less evanescent field outside core and thus
leads to a longer coupling length value. Although, like in any other design, the power transfer

at the intended device length, L.g is the main concern, and not at the new coupling length, L..
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As can be seen from the intersection point of the black dotted line with the blue solid line in
Fig. 7.9a, approximately 95% of power is transferred at z = L. This can be further increased
by chosing different positions of the heater with respect to the waveguides. A heater power
of 40 mW was used for case (d), shown by the orange solid line, which shows that power
transfer at Lo and L, are approximately 89% and 95%, respectively, which are less than the
values when P, is 26 mW. Therefore, it was observed that by providing the optimum heater
power of 26 mW, power transfer (F,,;) between the waveguides of directional coupler can be
increased from 84% to 95% at the ideal coupling length, L g, for the fabrication error dW =
5 nm with the heater located at the top position.

In practice, directional couplers are fabricated with S-bends which induce extra coupling.
The effect of this coupling in the S-bend section can be accurately calculated using a modal
solution approach [122]. For this structure, it has been calculated that the length of the
straight section needs to be reduced by 1.5 um when the radius of the bend section, R4
was 5 um to compensate for the effect of coupling in the S-bend. Also, maximum power
transfer with S-bends is reduced to 98% compared to 99% when only the straight waveguides
section was considered as shown in Fig. 7.9b. The concept of compensation for fabrication
tolerance is similar, and thus it is sufficient that thermal simulation has been shown for a
simpler case with only a straight waveguides section.

Variations of transferred power to adjacent waveguide, P,,; with the heater power (FP)
are shown in Fig. 7.10 at two different positions along the propagation direction. It shows
the maximum power transfer (shown by the red solid line) at the corresponding coupling
length, L. which also changes with heating. Although, the maximum power transfer can
be obtained at L., in real devices the power transfer at Lo = 37.5 gm is more important,
which is shown by the black solid line. This location is fixed at the design stage and cannot
be changed following the fabrication, as possible error could not have been anticipated. It

should be noted that the L. values depend on the heater power. It can be observed that the
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Fig. 7.9 Power transfer, P,,; along the propagation direction (a) with heater at top position
for different values of dW and P, (b) for S-bend and straight directional couplers, having
parameters values: gg =400 nm, dW =5 nm, and s = 200 nm.
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Fig. 7.10 Power transfer, P,,; with heater at top position at L. and L., having parameters
values: gg =400 nm, dW =5 nm, and s = 200 nm.

P, values at L. and L. are approximately 84% and 86%, respectively for P, = 0. As the P,
is increased, P,,; increases until it achieves a maximum value at the field matching condition.
The maximum value of F,,, at L. is always more than the maximum value of F,,; at L.,
because when the device was heated, the isolated n. s and the coupling length of the heated
device was different than in the case of the original design, and the optimised parameters
were obtained at this new coupling length, L.. If P, is increased further, the field matching
condition is destroyed, and P,,; again starts decreasing at both distances, L.g and L.. As P,
at L. is the main concern, it can be seen that introducing the heater improves the P,,; at L.
from 84% to 96% at the top heater position when P, = 24 mW.

As mentioned earlier, the position of the electrode can influence the performance of
these designs. Figure 7.11a shows the power transfer (P,,;) at L. with the heaters located at
different positions, i.e top, top-left and bottom-left positions for fabrication error, dW =5 nm.
It can be observed that for all three heater positions initially P, is low at L.y (approximately
84% at P, = 0), but as the P, is increased, the design reaches the optimum condition, and

P,.: achieves respective maximum values at different P, for different heater positions. The
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Fig. 7.11 Power transfer, P,,, with heater power (P,) at L. (a) for different heater positions
having gy =400 nm, dW =5 nm, and s = 200 nm, (b) when heater is at bottom-left position
for different gz having dW =5 nm and s = 200 nm.

bottom-left, top-left, and top heater positions yield a field matching condition at P, of 20
mW, 20 mW, 24 mW with maximum P,,; value of 97%, 97%, 96%, respectively. It can be
observed that heaters located at the bottom-left and top-left positions attain field matching at
a lower P, than the heater at the top position and power transfer is slightly better than the top
electrode placement.

On the other hand, if the fabrication error (dW) is 10 nm, P, is only 50% when no
heating was used. This confirms that the power transfer efficiency rapidly deteriorates as
the fabrication error increases. It can be noted that bottom-left, top-left, and top heater
positions have field matching condition at P, values of 35 mW, 38 mW, 46 mW and provide
maximum P,,; values of 94%, 92%, 88%, respectively at z = L. The heater at the top-left
and top positions attain a smaller maximum value than the bottom-left heater and require
more heater power to achieve maximum F,,,. It can be noted that the bottom-left electrode
would therefore be the best choice, giving a higher P,,; and it requires a relatively small
power to achieve this condition.

Next, the power transfer from one waveguide to another (P,,;) for different gaps between

the heater and waveguide was compared. When the electrode was located above wgl, then
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Fig. 7.12 Power transfer (P,,;) at L.y with heater at bottom-left position having gz = 400 nm
and s = 200 nm (a) for different dW, (b) when heater is deactivated (black line) and activated
(red line). The blue line depicts the heater power (P,) needed to attain field match condition
at respective fabrication error, dW.

it is shown in Fig. 7.4a that the differential temperature, AT, between the waveguides is
increased when the distance to the heater, gy, is reduced. Similarly, for the heater at the
bottom-left position, these AT values were calculated as approximately 44 K, 48 K, and
54 K for gy of 400 nm, 300 nm, and 200 nm, respectively. As a result it can be seen from
Fig. 7.11b that a smaller value of P, is needed when gy is 200 nm in comparison to when
gn 1s 300 nm or 400 nm in order to obtain the maximum value of P,,; at L.o. Black, red
and blue solid lines show that P, of 20 mW, 18 mW, and 16 mW are required to obtain a
maximum P,,; at Lo with the heater located at the bottom-left position when gz was 400 nm,
300 nm and 200 nm, respectively. At these conditions, the calculated maximum P,,, values
were 97.3%, 97.6%, and 97.7%. When the heater was located closer to waveguide, less
heating power was required to obtain the field matching condition and at this field matching
condition, the maximum value of P,,; was obtained.

It has been clearly shown that when the fabrication error dW = 5 nm, it is possible
to improve power coupling to 97% using a 20 mW heater power. However, when the

dW became larger, more heater power was needed to correct this shortcoming due to the
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fabrication error. Figure 7.12a compares the P,,; at L.o when the fabrication error, dW was 5
nm and 10 nm for the bottom-left heater position. When the heater was deactivated with P, =
0, P,y for the case with dW = 10 nm was only 50%, much smaller than the P,,; with dW
=5 nm, that was obtained as 84%. As the P, is increased, the temperature and n, sy of the
isolated waveguides increase and P,,, reaches maximum at a particular value of P,. Also, the
Py, required to attain maximum P, is different for designs having a different dW. As can be
seen from Fig. 7.12a, when dW = 5 nm, at optimum heating power, P, = F,,; = 20 mW, a
maximum P,,; is 97%. On the other hand, for dW = 10 nm, a maximum P,,; = 94% can be
achieved when F,,; = 35 mW. A higher value of P, is required when the fabrication error in
width (dW) is greater in order to achieve the field matching condition.

The optimum heater power needed (7, ;) and maximum power transfer possible (P, zmax)
were studied for a range of possible fabrication errors. Variations of P,,; at L.y when the
heater was deactivated (P, = 0) and activated, plotted versus varying dW for the heater at
the bottom-left position are shown by black and red solid lines, respectively in Fig. 7.12b.
When dW = 0 (ideal waveguides with same width), there is no need to activate the heater and
P, 1s approximately 99 % with P, = 0. As the fabrication error, dW was increased keeping
the heater deactivated (P, = 0), P,,; at L. rapidly decreases to only 22% when dW = 15
nm, shown by the black solid line. On the other hand, if the heater is activated to provide
the optimised power value (F,;) in order to the attain field matching condition for different
fabrication errors (dW), it is found that the drop in P, is far less (shown by the red solid
line) in comparison to when the heater is not used (shown by the black solid line). P, at
Lo dropped from approximately 99% to only 88%, even when the dW was increased from 0
to 15 nm. This demonstrates that P,,; at L.o can be significantly increased by choosing an
optimised heater power, F,,; and the variations of optimised F,,; required with dW is shown
using the blue solid line. As expected, the required F,,, increases almost linearly as dW is

increased.
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Fig. 7.13 Power transfer (F,,,) at L.o for different waveguide separation, s with heater at the
bottom-left position having parameters values: gz =400 nm and dW =5 nm.

When the separation between the waveguides, s was reduced, then the coupling length
(or device length) also reduced, but in this scenario cross-talk is likely to increase. A smaller
separation also makes the device more resilient with the fabrication tolerance due to a stronger
coupling. The effect of separation between the waveguides on the thermal compensation
was studied. As the separation (s) increased, ideal coupling length (L) increases as the
light needs to propagate to a longer distance before coupling from one waveguide to another.
The P,,; variations at the respective L. of the design with the heater power (F,) is shown
in Fig. 7.13 for separation values of 200 nm, 250 nm, and 300 nm. It can be observed that
keeping P, =0, P,,; drops from approximately 84% to 70% when s was increased from 200
nm to 250 nm, as shown by the black and red lines, respectively. For s = 300nm, P,,; reduces
further to only 35%, as shown by the blue line. As the P, increased, P,,; also increases for all
the three cases. It can be noted that P,,; is more sensitive to the varying heating power when
the separation is larger. In all 3 cases, P, max 1 in the range between 96-97% when the P,

value is in the range of 18-20 mW. Further increasing the P, again decreases the P,,, as field

130



7.5 Thermal Tuning of a Directional Coupler for Fabrication Inaccuracies

matching is destroyed. An approximately similar P, is required to attain the field matching

condition for all three values of waveguide separation, s.
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Fig. 7.14 Power transfer (P,,;) at Lo with operating wavelength (A) for heater at bottom-left
position having parameters values: gz =400 nm, dW =5 nm, and s = 200 nm.

When all the parameters were optimised including dW, gy, and s, the effect of the
variation of operating wavelength (1) variation could be studied when the heater was located
at the bottom-left position. P,,; with the operating wavelength is shown by the black solid
line in Fig. 7.14, when waveguides are assumed to be ideal without any fabrication error
(dW = 0) and keeping the heater deactivated. P,,, is maximum (approximately 99%) at A
= 1.55 um, as the directional coupler parameters (especially length, L.y) were optimised at
1.55 um with dW =0, gy = 400 nm, and s = 200 nm. P,,, was reduced when A changed
from 1.55 pum, as the wavelength dependent coupling length does not match the device
length. When dW =5 nm with P, = 0, shown by the red solid curve, P, is reduced when
the wavelength deviates from its design value of 1.55 um, but these values are much smaller
than the ideal case without any fabrication error shown by the black solid curve. The effect
of heater power values of 16 mW and 20 mW was investigated to obtain the field matching

condition dependence on the wavelength when there was a fabrication error (dW) of 5 nm. A
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heating power, P, = 20 mW is needed to increase P,,; to approximately 97% at A = 1.55 um.
The maximum value of P, is 99% when A = 1.57 um, as shown by the orange solid curve.
This larger output at A = 1.57 um is due to the fact that smaller L. at higher wavelength

partially compensates the increased L. due to the fabrication error.

7.5.5 Absorption Loss
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Fig. 7.15 Absorption loss variation with gz for heater at bottom-left, top or top-left position.

The introduction of a metal Cu nanoheater to the directional coupler also introduces the
absorption loss (). @, was calculated for isolated waveguides when the heater was placed
at the bottom-left, top or top-left positions for different separations (gg), as shown in Fig.
7.15. oy falls from 0.0654 dB/um to 0.0020 dB/um for the isolated waveguide, wgl (shown
by the black solid line) when gy was increased from 200 nm to 400 nm keeping the heater
power at 0. Using the optimum heater power (F,,,), the absorption loss, ¢, decreases from
0.0632 dB/um to 0.0018 dB/um when gy changes from 200 nm to 400 nm, as shown by the
red solid line in Fig. 7.15. Modal loss is slightly reduced with heating, as the confinement in

the Si core increases with heating, which reduces the overlap of the optical mode field to the
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lossy metal electrode. When the heater was placed at the top position, o, decreases from
0.0715 dB/pum to 0.0044 dB/um as gy increases from 200 nm to 400 nm, shown by the blue
line. When the heater is placed at the top-left position, modal loss decreases from 0.1432
dB/um to 0.0052 dB/um as gg increases from 200 nm to 400 nm, shown by an orange line.
It can be observed that the bottom-left position of heater has smaller waveguide modal loss

in comparison to the heater at the top or top-left position.

7.6 Summary

In summary, a rigorous study on the performance analysis of metallic heaters integrated
with a silicon directional coupler has been presented to identify the optimum design. The
analyses considers the optimisation of various parameters including the position of the heater
(top, top-left, or bottom-left), the gap between heater and waveguide (gg), the separation
between waveguides (s), and heater power (P;) to obtain the maximum power transfer (P,,;)
between the waveguides of a directional coupler. A fabrication error (dW) in the range 0-15
nm is assumed in the width of the Si waveguide which is thermally compensated. P,,; drops
to approximately 84% when there is fabrication error (dW) of 5 nm. Therefore, the use of
metallic heater is proposed for thermal compensation achieving the field matching condition
when the fabrication inaccuracy is present. It is shown here that for dW =5 nm, P,;qx can
be increased from 84% to 97.3% when heater was placed at the bottom-left position by using
only 20 mW of heating power when gy = 400 nm and s = 200 nm. In this case the modal loss
due to the metallic electrode is 0.0020 dB/um. When gy was reduced to 200 nm, Pyzmax
increased to 97.7% at a slightly lower heater power, P, = 16 mW, but modal loss slightly
increased to 0.0654 dB/um. Bottom-left heater performs better as it requires less heating
power (P,), yet gives higher P,,; and also incurs slightly lower plasmonic modal loss. For
dW =10 nm, F,,, increased from approximately 50% (when P, = 0 mW) to 94% (when F,,,

=35 mW) with electrode placed at the bottom-left position. It can be noted that absorption
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loss, a, decreased from 0.0632 dB/um to 0.0018 dB/um at optimum heater power (F,,;)

when gy was increased from 200 nm to 400 nm.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

In this dissertation, consideration was given to modelling, optimisation, and thermal com-
pensation using metallic heaters for nanophotonic waveguides. One of the main objectives
was to develop a finite element time domain approach as an alternative to finite difference
time domain method. The finite element method is more advantageous than other numerical
methods which was briefly discussed in Chapter 2. The formulation of FETD equations
for the two-dimensional propagation and mesh discretisation was presented in Chapter 3.
Space discretisation of the computational domain was obtained using Gmsh, an open source
mesh generator, while linear elements were used for time discretisation. The computation
domain was terminated by a PML boundary to reduce the reflections in the simulations.
Several benchmarking results have been shown in Chapter 4 which shows the validity of
the in-house FETD code written in C++ programming language and using multithreading
to reduce the simulation times. Free space propagation of the electromagnetic wave has
also been shown and the speed obtained with the in-house code was compared with the
normalised value. The propagation of an electromagnetic wave through planar waveguide has

been shown for two different input sources: a point source and mode source (generated using
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in-house FEM code). Furthermore, a directional coupler has been used to show the coupling
of an electromagnetic wave from one waveguide to another. Regular and irregular mesh
arrangements were considered and compared in terms of accuracy and dip ratio. Irregular
meshes can use dense mesh inside the core, while coarse mesh can be used outside the
core to further reduce the computational times in comparison to when using a regular mesh
arrangement.

Time domain simulation can take minutes to hours to obtain results for each set of device
dimensions. Testing of various device dimensions for a particular device through a parameter
sweep can take even longer to obtain an optimised design. Another objective of this research
was to use the artificial intelligence or machine learning techniques to hasten this optimisation
process. An in-house code has been developed using machine learning regression approach
to quickly predict effective index, power confinement for different nanophotonic waveguides,
as presented in Chapter 5. A detailed discussion about the architecture of the used artificial
neural network along with various activation functions and optimisation solvers has been
presented. Slot waveguide design has been used to initially optimise various parameters
of the machine learning models using three different datasets. The greater the number of
datapoints in a dataset, the better is the accuracy of the model. Two different models (using
MLPRegressor and PyTorch framework) have been shown and compared in terms of their
accuracy. The MLPRegressor model was performing better. Hence, MLPRegressor has been
used for strip waveguide and directional coupler designs, which shows approximately 1-4%
of absolute percentage error between the actual values from the simulations and predictions
from the machine learning model for unknown device dimensions. Furthermore, the work
was expanded to use machine learning techniques for more complicated design of photonic
crystal fibre (PCF), as discussed in Chapter 6. The effective index, effective mode area,
dispersion, and confinement loss for a PCF from actual numerical simulations were compared

with the predicted values obtained from machine learning models. Machine learning models
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accurately predict outputs in a few milliseconds in comparison to few minutes needed for
each numerical simulation, which again depends on the mesh density considered.

Metallic heaters have been used to compensate the phase mis-matching occurring due to
the variations in waveguides width of a directional coupler during fabrication as presented in
Chapter 7. These heaters can be aligned at different positions: top, top-left, and bottom-left.
Temperature increases in the waveguide when heater is activated. Power confinements in the
left-half and right-half sections were compared when there was fabrication error of 5 nm, and
it was shown that approximately 26 mW of heater power was needed to obtain similar power
in both sections. Moreover, time domain evolution of optical power along the directional
coupler has also been studied. It has been shown that the heater at the bottom-left position
requires less power in comparison to heater at the top or top-left position to compensate same
fabrication error. The presence of metallic heaters also introduces an absorption loss. Also,
the bottom-left heater has less absorption loss when compared with the heater at the top or
top-left positions. This use of heater significantly increases output coupling power from 84%

to 97% and from 50% to 94% for fabrication error of 5 nm and 10 nm, respectively.

8.2 Future Work

The machine learning methods presented in this thesis has been shown to complement finite
element simulations to quickly predict the outputs for different device parameters faster than
direct numerical simulation techniques. The generated machine learning code can be easily
extended to more exotic directional coupler designs such as asymmetric, tapered, and slot
waveguide based devices. The simulation of the propagation in a solid-core PCF design using
a machine learning based algorithm has been presented in this work. Furthermore, a model
can be created that can be used to predict outputs simultaneously for solid-core, hollow-core
or more complicated PCF designs for different core materials. The range of parameters for

prediction can be quickly extended by collecting more datapoints. This work can also be
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extended to use transfer learning, which is a research problem in machine learning. Transfer
learning uses pre-trained models from one task and re-purposed them on a different but
related task. Transfer learning is an optimisation that allows rapid progress or improved
performance when modelling the second task.

The use of two metallic heaters to compensate phase mis-matching in a silicon directional
coupler for variations in width of waveguides shows promising results. This work can be
extended to consider the variations in the height of the waveguides as well. Practical S-bends
section has been considered briefly in this research, which can be studied for more thorough
results. Adiabatic couplers that generally have different dimensions of the waveguides can be
utilised to observe the impact of heater power when the heater is placed parallel to the guiding
axis. Asymmetric directional couplers can be used for polarisation rotator or mode splitter.
Mode splitter can be very sensitive to the waveguides width variations during fabrication.
The initial results presented in this report will lead to the further exploration of using metallic

heaters for mode splitter.
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Appendix A

PML Equations

A.1 X Axis PML

The affected equations would be Egs. 3.7, 3.8 3.10 3.11. If V* is used instead of V, then Egs.

3.7 and 3.8 can be replaced by the following equations (TE propagation):

ot u Ix oY

JE. 1 (0H, OH,

W—E(W— 2y —“’xw)—"x@
0¥ oH

x[x] . X

ot T dy

where W, is the auxiliary field generated due to X PML.

For TM propagation, Eqs. 3.10 and 3.11 can be replaced by the following:
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PML Equations
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where &, 1s the auxiliary field generated due to X PML.

A.2 Y Axis PML

As aresult, replaced Eqs. 3.6 and 3.8 for TE propagation are as follows:

J0H, 1 JE
S ﬁa_yz — 6,H, (A7)
dE. 1 /0H, OH,
= (GG ) ek A8
0¥ JdH.
e (A9

where Wy is the auxiliary field generated due to Y PML.

Similarly, replaced Eqgs. 3.9 and 3.11 for TM propagation are as follows:
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A.3 Corner PML

where d)y[y]

A.3 Corner PML

is the auxiliary field generated due to Y PML.

Replaced Eqs. 3.6, 3.7 and 3.8 for TE propagation are as follows:

JdH,

JH
=%y

= 0,0,E;

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

where W, ¥y(,) and @y, are the auxiliary fields generated due to corner PML.
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PML Equations

Replaced Egs. 3.9, 3.10 and 3.11 for TM propagation are as follows:

JE, 10H,

TR T (A19)
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where &1, ®,,) and Q) are the auxiliary fields generated due to corner PML.

z[xy]
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Appendix B

Machine Learning Code

import

time

start_time = time.time ()

# print(’start_time: ’, start_time)

import
import
import
import

import

matplotlib

numpy as np
matplotlib.pyplot as plt
math

pandas as pd

from sklearn.neural_network import MLPRegressor

from sklearn.preprocessing import MinMaxScaler

from sklearn.metrics import mean_squared_error

from sklearn.utils import shuffle

from sklearn.model_selection import train_test_split

import
import

import

sys
pickle

torch

from torch import nn, optim

from torchvision import transforms

from collections import OrderedDict
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Machine Learning Code

# Use GPU if it’s available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

print (device)

scalerl = MinMaxScaler ()
scaler2 = MinMaxScaler ()
no_of_output_nodes = 5

df _1 = pd.read_excel(’pcf_modeSoln_data_2.xlsx’,
sheetname=’Si02-air-rings-4-dBYp-0.6’)

datafile_1 = df_1.values ## stored data from xlsx file

HARBHHAHRY taking data from other sheets HARBHARBHAREH

sheets_names = [’Si02-air-rings-4-dBYp-0.87,

’Si02-air-rings-4-dBYp-0.9’, ’Si02-air-rings-4-dBYp-0.7"7,

’Si02-air-rings-5-dBYp-0.6’, ’Si02-air-rings-5-dBYp-0.87,

’Si02-air-rings-5-dBYp-0.9’, ’Si02-air-rings-5-dBYp-0.7"]
# sheets_names = []

for sheet_name in sheets_names:
print (sheet_name)
df _sheet_name = pd.read_excel(’pcf_modeSoln_data_2.xlsx’,

sheetname=sheet_name)

datafile_sheet_name = df_sheet_name.values ## stored data from xlsx
HERBHRA combining data from all sheets of excel file HAHAH
datafile_1 = np.concatenate((datafile_1, datafile_sheet_name) ,axis=0)

HAHRRRGH just to see output variable values HARBHAREHH

out_var_datafile_1 = datafile_1[:,range(6,11)]

out_var_datafile_1 = out_var_datafile_1.reshape(
(-1,no_of_output_nodes)) ## one column with unknown no. of rows

print (out_var_datafile_1)

print (’no. of training points: ’, len(out_var_datafile_1))

scalerl.fit(datafile_1)
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scaler2.fit (out_var_datafile_1)

scaler_datafile_1 = scalerl.transform(datafile_1)
X = scaler_datafile_1[:,range(0,6)] ## input variables columns
y = scaler_datafile_1[:,range(6,11)] ## output variables columns

print (X); print(); print(y)

X, y = shuffle(X, y)
X_train, X_validation, y_train, y_validation = train_test_split(

X, y, test_size = 0.1)

X_train = X_train.reshape(-1, 6)

y_train = y_train.reshape(-1, no_of_output_nodes)

X_validation = X_validation.reshape(-1, 6)

y_validation = y_validation.reshape(-1, no_of_output_nodes)
print (’no. of training points: ’, len(X_train))

print (’no. of validation points: ’, len(X_validation))
HAHARBHAHAH manual testing HUEARBAARH

df _2 = pd.read_excel(’pcf_modeSoln_data_manual_2.xlsx’,
sheetname=’Sheetl’)

datafile_2 = df_2.values ## stored data from xlsx file

print (datafile_2)

scaler_datafile_2 = scalerl.transform(datafile_2)

X_test = scaler_datafile_2[:,range(0,6)] ## input variables columns

y_test = scaler_datafile_2[:,range(6,11)] ## output variables columns

print (X_test); print(); print(y_test)

print (’no. of test points: ’, len(X_test))

X_test = X_test.reshape(-1, 6)

y_test = y_test.reshape(-1, no_of_output_nodes)

HARRAABARRABRBRA AR BRB R R AR RR BB BRB AR RRRHRBHRHY

input_dim = 6 ## = no. of input variables columns

output_dim = no_of_output_nodes ## = no. of output variables columns
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Machine Learning Code

H### model with dropout - 3 layers HARBHAHH
dropout_prob = 0.0
nodes_hidden_1 = 50
nodes_hidden_2 = 50
nodes_hidden_3 = 50
## nn.Linear () is a fully connected layer
model = nn.Sequential (OrderedDict ([
(’fcl1’, nn.Linear (input_dim, nodes_hidden_1)),
(’relu’, nn.RelU()),
(’dropout’, nn.Dropout (dropout_prob)),
(’fc2’, nn.Linear (nodes_hidden_1, nodes_hidden_2)),
(’relu’, nn.RelLU()),
(’dropout’, nn.Dropout (dropout_prob)),
(’fc3’, nn.Linear (nodes_hidden_2, nodes_hidden_3)),
(’relu’, nn.RelLU()),
(’dropout’, nn.Dropout (dropout_prob)),
(’fc4’, nn.Linear (nodes_hidden_3, output_dim)), 1))

print (model)

HHBEABHBHHRA parameters HAHRBRARBRARHRAH
criterion = nn.MSELoss ()
learning_rate = 0.0001

optimizer = optim.Adam(model.parameters(), lr=learning_rate)

epochs = 5000

# Convert numpy array to torch Variable

# inputs torch.from_numpy (X_train) .requires_grad_ ()

# labels

torch.from_numpy (y_train)

inputs = torch.Tensor ((X_train))

labels torch.Tensor ((y_train))

inputs_validation = torch.Tensor ((X_validation))

156




labels_validation = torch.Tensor ((y_validation))
running_loss = []; running_loss_validation = []
for epoch in range (epochs):

epoch += 1

H#RAH RS train the model HAR#HARAS

model.train () # prep model for training

# Clear gradients w.r.t. parameters, else gradients will be added
# up with every previous pass

optimizer.zero_grad ()

# Forward to get output

outputs = model (inputs)

# Calculate Loss

loss = criterion(outputs, labels) ## mean squared error
# Getting gradients w.r.t. parameters

loss.backward ()

# Updating parameters

optimizer.step() ## take a step with optimizer to update weights

running_loss.append(loss.item())

### validate the model (showing fluctuations) ####
outputs_validation = model (inputs_validation)

loss_validation = criterion(outputs_validation,labels_validation)
running_loss_validation.append(loss_validation.item())

print (’epoch: {}, mse_loss: {:.6f}, mse_loss_validation: {:.6f}’

.format (epoch, loss.item(), loss_validation.item()))

#### save the model weights & parameters
torch.save (model.state_dict (), ’checkpoint.pth’)
#### load the saved model

state_dict = torch.load(’checkpoint.pth?’)

model.load_state_dict (state_dict)
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# Purely inference

model .eval ()

predicted_on_X_train = model(torch.Tensor(X_train)) .data.numpy ()

predicted_on_X_validation = model(torch.Tensor (X_validation))
.data.numpy ()

predicted_on_X_test = model(torch.Tensor (X_test)).data.numpy()

end_time = time.time ()
print (’end_time: ’, end_time)

print (’time taken to train in sec: ’, (end_time - start_time))

#### make axis bold for plotting

plt.rcParams.update ({’font.size’: 10})

plt.rcParams["font.weight"] = "bold"
plt.rcParams["axes.labelweight"] = "bold"
mse_training_interval = 10
mse_validation_interval = 10
running_loss = running_loss[::mse_training_interval]
running_loss_index = [i for i in range(l, epochs,
mse_training_interval)]
running_loss_validation = running_loss_validation
[::mse_validation_interval]
running_loss_validation_index = [i for i in range(l, epochs,
mse_validation_interval)l
print (’mse lengths: ’,len(running_loss),len(running_loss_validation))
print (’running_loss_index: ’, running_loss_index)

print (’running_loss_validation_index: 7,

running_loss_validation_index)
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HARBRBHARRBH plotting graphs together - neff ##########
RARBARRRARRRRRRARRRAR R RAR R A AR RHARRRRARHRRRHRRRRR AR R RHRRHHY
plt.figure ()

#### giving title on top of all subplots

plt.suptitle(’pcf - neff - (epochs-{}) - pyTorch’.format (epochs),

fontsize=25, color=’r’, fontweight=’bold’)

plt.subplot (231)
plt.plot (running_loss_index, running loss, ’r-’, linewidth=3,
label=’mse_loss_train’)
plt.plot (running_loss_validation_index, running_loss_validation, ’b-’
,linewidth=3, label=’mse_loss_validation?’)
plt.legend(loc=’best’, fontsize=10)

plt.xlabel(’epochs#’, fontsize=15)

plt.subplot (232)

# Plot true data

plt.plot(scaler2.inverse_transform(y_train)[:,0], ’ro’, markersize=12

,label=’y_train’)

# Plot predictions

plt.plot(scaler2.inverse_transform(predicted_on_X_train)[:,0], ’bx*’,
markersize=12, label=’predicted_on_X_train?’)

# Legend and plot

plt.legend(loc=’best’, fontsize=10)

plt.subplot (233)

# Plot true data

plt.plot(scaler2.inverse_transform(y_validation)[:,0], ’ro’,
markersize=12, label=’y_validation’)

# Plot predictions

plt.plot(scaler2.inverse_transform(predicted_on_X_validation)[:,0],
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Machine Learning Code

’b*?, markersize=12, label=’predicted_on_X_validation?’)
# Legend and plot

plt.legend(loc=’best’, fontsize=10)

plt.subplot (234)

# Plot true data

plt.plot(scaler2.inverse_transform(y_test)[:,0], ’ro’, markersize=12

,label=’y_test’)

# Plot predictions

plt.plot(scaler2.inverse_transform(predicted_on_X_test)[:,0], ’bx’,
markersize=12, label=’predicted_on_X_test’)

# Legend and plot

plt.legend(loc=’best’, fontsize=10)

plt.subplot (235)

xx = scaler2.inverse_transform(y_train)[:,0]

yy = scaler2.inverse_transform(predicted_on_X_train)[:,0]

xx_validation = scaler2.inverse_transform(y_validation)[:,0]

yy_validation = scaler2.inverse_transform(predicted_on_X_validation)
[:,0]

xx_test = scaler2.inverse_transform(y_test)[:,0]

yy_test = scaler2.inverse_transform(predicted_on_X_test)[:,0]

bubble_plot_line_xlyl=[min(np.minimum(xx,yy)) ,max (np.maximum(xx,yy))]

bubble_plot_line_x2y2=[min(np.minimum(xx,yy)) ,max (np.maximum(xx,yy))]

plt.xlim(bubble_plot_line_x1y1[0], bubble_plot_line_x1ly1[1])

plt.ylim(bubble_plot_line_x1y1[0], bubble_plot_line_x1y1[1])

plt.plot (bubble_plot_line_x1yl, bubble_plot_line_x2y2, k-7,

linewidth=2)

plt.grid(linestyle=’--’, linewidth=1)

plt.scatter(xx, yy, label=’train’, marker=’o’, facecolors=’’,
edgecolors=’red’, s=50)

plt.scatter(xx_validation, yy_validation, label=’validation’,
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marker=’0’, facecolors=’’, edgecolors=’blue’, s=50)
plt.scatter(xx_test, yy_test, label=’test’, marker=’o’, facecolors=’’
, edgecolors=’black’, s=50)
plt.legend(loc=’best’, fontsize=10)
plt.xlabel (’true-values’, fontsize=15)

plt.ylabel(’predicted’, fontsize=15)

plt.subplot (236)

true_values = scaler2.inverse_transform(y_test)[:,0]

predicted_values = scaler2.inverse_transform(predicted_on_X_test)
[:,0]

x_index = [i for i in range(len(true_values))]

error_values = predicted_values - true_values

plt.errorbar (x=x_index, y=true_values, yerr=error_values, fmt=’o0’,
color=’black’, ecolor=’black’, elinewidth=2, capsize=10)

plt.grid(linestyle=’--’, linewidth=1)

print ()

print ("o/p of test set:\n", (scaler2.inverse_transform(y_test)[:,0]))

print ("predicted o/p of test set: \n", (scaler2.inverse_transform(
predicted_on_X_test)[:,0]))

print ("mse_test_set: ", mean_squared_error(y_test,

predicted_on_X_test))

plt.show ()
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