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Abstract

We introduce backtesting methods to assess Value-at-Risk (VaR) and Expected Shortfall (ES)
that require no more than desktop VaR violations as inputs. Maintaining an integrated VaR
perspective, our methodology relies on multiple testing to combine evidence on the frequency and
dynamic evolution of violations, and to capture more information than a single threshold can
provide about the magnitude of violations. Contributions include a formal finite sample analysis
of the joint distribution of multi-threshold violations, and limiting results that unify discrete and
continuous definitions of cumulative violations across thresholds. Simulation studies demonstrate
the power advantages of the proposed tests, particularly with small samples and when underlying
models are unavailable to assessors. Results also reinforce the usefulness of CaViaR approaches
not just for VaR but also as ES backtests. Empirically, we assess desktop data by Bloomberg on
exchange traded funds. We find that tail risk is not adequately reflected via a wide spectrum of
models and available measures. Results provide useful prescriptions for empirical practice and,
more generally, reinforce the recent arguments in favor of combined tests and forecasts in tail risk
management.
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1 Introduction

Statistical risk assessment techniques have attracted increased attention, reflecting the evolution of
regulatory environments. In this context, diagnostics based on Value-at-Risk (VaR) are in wide use,
despite research on arguably more informative alternative measures such as expected shortfall (ES,
sometimes also denoted as CVaR); see Perignon and Smith (2010) and Berkowitz et al. (2011) for a
unified treatment on VaR backtests.

The original appeal of VaR-based methods was their simplicity. Their long-standing endorsement in
the industry can also be tied to input requirements. Conformably, Berkowitz et al. (2011) recommend
VaR backtests that do not require model assumptions and depend only on the observed profit and loss
data. However, VaR is insensitive to the severity of tail losses, by its definition as a quantile. Recent
regulatory accords have thus shifted emphasis to ES. Testing ES is much harder, particularly without
assuming an underlying model and when returns or risk measures are not observed (by the assessor).

This paper proposes VaR and ES backtests that account for tail risk and, in line with Berkowitz
et al. (2011), require no more than desktop VaR violations as inputs. Such procedures are particularly
useful to bridge the gap between academic research and risk management practice. In line with
this objective, we illustrate the usefulness of our proposed methods using Exchange-Traded Funds
(ETFs) VaR and CVaR data. Despite remarkable growth and widespread acceptance in the market,
formal backtests are surprisingly lacking on available ETF risk measures. Recent wild market swings
have drawn the industry’s attention, amid the blow-up of volatility ETFs. The swelling importance
of ETFs is not just challenging traditional managers but starting to profoundly impact financial
systems. Regulators are reacting to these challenges as reflected in e.g. Europe’s Markets in Financial
Instruments Directive (Mifid) II that came into effect in January 2018.

Our methodology relies on model-free induced testing, which involves: (i) combining several s-
tatistical procedures, and (ii) a non-parametric treatment of tail risk.1 Our primary motivation for
combined backtests is to exploit the incremental advantage of various statistics on, e.g., the number,
dynamic evolution and magnitude of violations. Another more fundamental objective is to reconcile
model-free VaR and ES monitoring, building on the definition of ES as an integrated VaR. The crucial
point is the appropriate definition of VaR thresholds, in conjunction with simulation-based algorithms
that provide a model-free approach to assess ES.

In this context, our contributions include: (i) a formal finite sample analysis of the joint distribution
of multi-threshold violations, in contrast to existing methods [Leccadito et al. (2014), Perignon and
Smith (2008), Du and Escanciano (2017), Kratz et al. (2018)] that analyze cumulative violations
(CVs) which in the discrete case amount to their sum (over thresholds); (ii) limiting results that unify
discrete and continuous definitions of CVs; (iii) an induced test approach that allows us to channel the
wide set of tools that have been shown to inform on VaRs, towards inference on ES; (iv) an adaptive
combinatorial procedure that embeds non-uniform weights across the considered thresholds to capture
revealing violations more effectively than available statistical approaches.

Additionally we extend the so called CaViaR methods to assess ES. CaViaR tests rely on a re-
gression of VaR violations, on lags and other possible predictors. Significant predictors refute VaR
accuracy at the considered threshold. Further restrictions on the regression intercept resulting from
the VaR’s frequency implications provide additional unconditional coverage checks. ES analysis in
this way is another contribution of our paper.

1For recent references on combination-based risk analysis, see Hurlin and Tokpavi (2006), Perignon and Smith (2008),
Colletaz et al. (2013), Leccadito et al. (2014), Danielsson and Zhou (2016) and Kratz et al. (2018), on combinations across
various VaR thresholds, or Taylor (2020) on combining forecasts across competing models; for insights and perspectives
on model-free forecasting environments broadly, refer to Diebold (2015) and companion comments.
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Three primary advantages underscore the practical relevance of our approach, when it comes down
to making inference with desk level data. First, our VaR-based ES tests may be preferred on the basis
of robustness and applicability. Indeed, VaR is more commonly used than ES yet is less informative
on tail risk because of its insensitivity to the latter, which controversially, makes it a more robust
measure to backtest. Second, our CaViaR perspective allows risk managers to expand the information
set they use beyond past violations, which, in addition to statistical power, may shed light on possible
modeling improvements.

The third and most crucial advantage is our Monte Carlo [Dufour (2006)] test (MCT) based
finite sample implementation. A large number of observations is rarely available for backtesting,
so asymptotic irregularities cannot be ruled out; see e.g. Danielsson and Zhou (2016). Despite the
important contributions of related research, exact distribution-free methods remain restricted to single-
threshold backtests [Christoffersen and Pelletier (2004), Berkowitz et al. (2011)] or to CVs [Leccadito
et al. (2014), Kratz et al. (2018)]. In contrast, we show that the exact joint distribution of the multi-
threshold violation series is nuisance-parameter free under a correct risk model and can be simulated
with no further assumptions. It follows that an exact distribution-free MCT p-value can be derived for
any statistic that depends on the data only through these violations. The generality of this result and
the wide horizon in flexibility that it entails distinguish our contribution from existing distribution-free
risk management tools.

The properties of our proposed tests are illustrated via empirically relevant simulation experiments.
We document concrete advantages relative to available methods, maintaining our model agnostic
approach. Our empirical analysis particularly with Bloomberg ETFs further illustrates the usefulness
of a mode-free analysis. While ETF markets have grown dramatically, research assessing their ex-ante
VaR and CVaR forecasts was evidently slow to follow suit. Our approach is useful not only because of
its simplicity, but because we require no more information than was originally disclosed by Bloomberg.
This suggests that informative backtests can be customized into professional desktop tools.

The paper is organized as follows. Section 2 discusses our multi-threshold VaR and ES perspectives.
Section 3 presents presents our combined backtesting procedures. In Section 4, we evaluate the
performance of the proposed tests relative to several alternative testing procedures via an extensive
Monte Carlo analysis. Our empirical analysis is discussed in Section 5. Section 6 concludes.

2 ES: a multi-threshold VaR perspective

VaR violations are time periods where, at a given threshold, the realized loss exceeds the risk estimate
arising from the strategy or model under test. Formally, let Ft denote the information set up to time
t. The VaR for threshold α at time t + 1, given Ft, satisfies P

(
rt+1 ≤ −VaRt+1|t(α)|Ft

)
= α, where

rt+1 is the realized time t+ 1 return. In this paper, we use the term “threshold” to indicate the VaR
or ES coverage probability, and “level” to denote the critical rejection probability associated with a
backtest. Conformably, violations are defined via the exception indicator series:

It+1 =

{
1 if rt+1 ≤ −VaRt+1|t(α)

0 if rt+1 > −VaRt+1|t(α)
. (1)

Two broad approaches are available to assess the resulting process of zeros and ones, where clearly
the latter correspond to a violation. The first, which includes the test of Kupiec (1995), is the so-called
unconditional coverage analysis based on comparing the observed frequency of violations to its expected
counterpart, assuming forecast accuracy or a correct model specification. The second approach includes
e.g. the Markov tests of Christoffersen (1998), the duration based test of Christoffersen and Pelletier
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(2004) and the above cited CaViaR tests of Engle and Manganelli (2004). When combined with
unconditional coverage checks, the latter can be described as conditional checks in the following sense:
accurately predicted time-t violations cannot be explained using information available at time t, while
clustering in the violation sequence should signal rejection provided the underlying estimate of VaR
has been updated conformably.

The MCT methodology (Christoffersen and Pelletier, 2004; Berkowitz et al., 2011) which we also
extend here, defines the null hypothesis as

It+1
iid∼ Bernoulli (α, α(1− α)). (2)

Conformably, given α, a series of violations at threshold α under the null hypothesis can be easily
simulated. If a statistic depends on the data only via violations, then a bootstrap-type p-value can
be obtained by computing a simulated counterpart to the observed statistic based on each draw from
the Bernoulli distribution knowing α, and then computing an empirical p-value based on the rank of
the observed statistic relative to the simulated one.

2.1 The cumulative violations series: distribution-free criteria

Testing expected shortfall is by far more challenging, particularly from the non-parametric and model
agnostic perspective we adopt in this paper. In fact, because the measure is a population mean, the
well known Bahadur and Savage (1956) critique cautions that its size-correct tests would lack power
unless - typically parametric - restrictions are imposed. From a non-parametric perspective, tests that
are almost surely discontinuous may circumvent this problem; see Dufour (1997), Romano (2004) and
Bertanha and Moreira (2020) for recent insights. The procedures we propose here are motivated by
these considerations.

Formally, ES at threshold α and time t+1 given Ft - denoted thereafter as ESt+1|t(α) - is defined as
the expected loss given that the loss exceeds VaRt+1|t(α). Consequently, ESt+1|t(α) can be represented
as an integrated VaR:

ESt+1|t (α) =
1

α

∫ α

0
V aRt+1|t(u) du. (3)

This suggests that averaging VaRs over a large enough and judicially chosen set of thresholds should
approximate ES. In particular, the integral in (3) can be approximated with a Riemann sum with K
terms, leading to

ESt+1|t(α) ' ESKt+1|t(α) =
1

K

K∑
j=1

VaRt+1|t

(
j
α

K

)
. (4)

See for example Acerbi and Tasche (2002) who consider (4) with K = 4.
In contrast, Du and Escanciano (2017) show that it is possible to avoid approximations when

the objective is backtesting rather than estimation. The idea is to construct an aggregated violation
process building on (3) and assess the properties of this process under a correct risk model. The
so-called time t CV process is given by

Ht(α) =
1

α
[α− ut] I (ut ≤ α) (5)

where ut = G(rt| Ft−1) is the Probability Integral (PIT) transform [(Rosenblatt, 1952)] andG( ·| Ft−1) =
P(rt ≤ ·|Ft−1) is the conditional cumulative distribution function (cdf) of rt.

2

2We refer the reader to the surveys of Corradi and Swanson (2006) and Tay and Wallis (2000) for more details on
density forecast and its evaluation using the PIT and to contributions like Diebold et al. (1998), Berkowitz (2001), or
Diks and Fang (2020) for a number of applications in finance and risk management.

4



The principle difficulty in developing formal procedures based on the Ht(α) series is that it requires
the parametric estimation of G( ·| Ft−1). This impedes applications beyond fully parametrized risk
models, and even there, the asymptotic theory on which estimators of G( ·| Ft−1) are based necessitates
a large sample. Instead, Kratz et al. (2018) propose a discrete alternative to (5) by aggregating the
sequence of VaRs from (4):

N̄K
t+1(α) =

K∑
j=1

ĪKj,t+1(α), (6)

ĪKj,t+1(α) =

{
1 if rt+1 ≤ −VaRt+1|t

(
(K − j + 1) αK

)
0 if rt+1 > −VaRt+1|t

(
(K − j + 1) αK

) j = 1, . . . ,K. (7)

Building on the properties of this measure under a correct risk model, Kratz et al. (2018) propose
a non-parametric test of the underlying VaRs, all together, and argue intuitively that such a test
implicitly assesses ES.

Expanding on the multithreshold VaR idea, we first show that N̄K
t+1(α)/K converges weakly to

Ht(α) for large K. This result which formalizes the intuitive argument of Kratz et al. (2018) and
provides a useful unification of existing works, forms the basis for the alternative induced test procedure
we propose in this paper.

Theorem 1. Given an ES threshold α, consider the K equally spaced measures from (4), VaRt+1|t
(
j αK
)
,

j = K, . . . , 1, and the associated total violations criteria N̄K
t+1(α) as defined in (6). Then as K →∞

and assuming that underlying returns are absolutely continuous

N̄K
t+1(α)

K

D−→ Ht(α).

Proof: See Appendix B.1.
Independently, Leccadito et al. (2014) and Perignon and Smith (2008) use an aggregate of this

form, given a vector of thresholds α = (α1, . . . , αK)′, with α1 > α2 > . . . > αK :

Nt+1(α) =

K∑
j=1

Ij,t+1, (8)

Ij,t+1 =

{
1 if rt+1 ≤ −VaRt+1|t(αj)

0 if rt+1 > −VaRt+1|t(αj)
. (9)

It is straightforward to see that (6) corresponds to (8) with

αj = (K − j + 1)
α

K
. (10)

For further reference, the special case K = 4 leads to

α1 = α, α2 = .75α, α3 = .5α, α4 = .25α. (11)

The key main difference in the construction of (6) is that the VaR thresholds are based on (4);
N̄K
t+1(α)/K thus converges to Ht(α) for large K yet the properties of the former can be assessed non-

parametrically for fixed K. A discontinuous formulation thus enables one to: (i) avoid approximating
the integral in (3) and capture the information on tail risk without imposing any further distributional
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assumptions; and (ii) eschew Bahadur-Savage type critiques and ensure size-controlled power non-
parametrically in finite samples.

Differently from available methods, here we use the properties of the N̄K
t+1(α) process to derive

the finite sample joint distribution of the K series of violations ĪKj,t+1(α). Formally, we show that this
distribution is nuisance-parameter-free under a correct risk model, does not rely on any parametric
dynamics for the underlying returns, and can be simulated without any further assumptions. Then
any statistic that depends on the data only through these violations will inherit this property. Our
results open up a wide spectrum of possibilities for ES testing, that are not restricted to CVs as has
been suggested so far. From there on, we propose an induced test approach along with a novel adaptive
combinatorial approach that allows us to better capture tail behavior.

Moving from the theory underlying Theorem 1 to practical reliance on many quantiles raises
enduring overlap issues, particularly when the thresholds are small or are too close to each other.
In principal, one can consider recognizably different thresholds α1 > α2 > . . . > αK so that, under
standard continuity assumptions, associated quantiles are distinct. The fact remains that finite samples
counterparts are not necessarily distinguishable as K increases and one is driven far into the tail.
Standard inference procedures may lead to spurious rejections in this case. This is in contrast to
our induced test approach, as tests on each of the thresholds are performed independently, and then
combined. As may become clear in what follows, the simulation-based procedure we propose to control
the family-wise error rate is not invalidated by finite sample overlaps.

2.2 The multi-threshold violations series: joint distributional theory

By the definition of a VaR under the correct risk model, each of the measures in Theorem 1 satisfies
the following hypothesis:

H0j : P
(
rt+1 ≤ −VaRt+1|t

(
j
α

K

)
|Ft
)

= α, j ∈ {K, . . . , 1}, (12)

so a correct ES corresponds to these hypotheses jointly, viewed as a continuum. Said differently, the
adequacy of (3) can be mapped to H∗ = ∩Kj=1H0j , K → ∞. This forms the basis of the discretized
counterpart, for fixed K:

H0 = ∩Kj=1H0j , j = K, . . . , 1. (13)

In this context, we next derive finite sample distributional results for the multivariate violation vector
ĪKj,t+1(α) from (7). To do this, we first consider the joint distribution of the Ij,t+1 series from (9) which
is associated to a vector of unrestricted thresholds, that is, relaxing (10).

Theorem 2. Given a vector of thresholds α = (α1, . . . , αK)′ with α1 > α2 > . . . > αK , and K series
of exception indicators Ij,t+1 as defined in (9). Then any set of test statistics to assess (13) that depend
on the data only through the Ij,t+1 series will have a nuisance-parameter free joint null distribution
that can be simulated as follows:

{I1,t+1 = . . . = Ij,t+1 = 1, Ij+1,t+1 = . . . = IK,t+1 = 0} ⇔ Nt+1(α) = j
{I1,t+1 = I2,t+1 = . . . = IK,t+1 = 0} ⇔ Nt+1(α) = 0

(14)

where Nt+1(α) as defined in (8) satisfies the following

Nt+1(α)= j with probability θj for j = 0, . . . ,K, (15)

N t+1(α) ⊥⊥ Nt+1−h(α), ∀h 6= 0,

⊥⊥ denotes independence, αK+1 = 0, α0 = 1, and

θj = αj − αj+1, j = 0, 1, . . . ,K. (16)
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Proof: See Appendix B.2.
For further reference, two key ingredients underlying the proof of Theorem 2 are worth emphasizing.

1. The K critical thresholds considered are ordered such that VaRt+1|t(α1) < VaRt+1|t(α2) < . . . <
VaRt+1|t(αK) and αj − αj+1 > 0 for any given finite K.

2. The probability that rt+1 falls in between the VaR quantiles associated to αj and αj+1 is equal
to θj under a correct risk specification in which case it is easy to see that

P (Nt+1(α) = x,Nt+1−j(α) = y) = θxθy, ∀x, y. (17)

Theorem 2 extends the simulation-based implications of (2). Indeed, given α1 > α2 > . . . > αK
which uniquely define the θjs: (i) a series of Nts of length T can be easily simulated under a correct
risk model that entails a multiple hypothesis involving the K VaRs, and (ii) it is straightforward to
map this generated series into the corresponding K × T matrix of VaR violations Ii,t+1. This allows
us to propose tests of (13) that utilize violations beyond their sum across thresholds, in contrast to
available works.

The joint distribution of the indicators ĪKj,t+1(α) follows from Theorem 2 by substituting αj =
(K − j + 1) αK , j = 1, . . . ,K, so the thresholds are equally spaced, that is αj − αj+1 = α/K. For
completion, and to reinforce the ES testing foundations, we state this result in the following corollary.

Corollary 1. Given an ES threshold α and K series of exception indicators ĪKj,t+1(α) as defined in
(7) with reference to equally spaced VaR measures. Then under a correct risk model which entails
(13), any set of test statistics that depend on the data only through the ĪKj,t+1(α) series will have a
nuisance-parameter free joint distribution that can be simulated as follows{

ĪK1,t+1(α) = . . . = ĪKj,t+1(α) = 1, ĪKj+1,t+1(α) = . . . = ĪKK,t+1(α) = 0
}
⇔ N̄K

t+1(α) = j{
ĪK1,t+1(α) = ĪK2,t+1(α) = . . . = ĪKK,t+1(α) = 0

}
⇔ N̄K

t+1(α) = 0
(18)

where N̄K
t+1(α) as defined in (6) satisfies the following

N̄K
t+1(α) = j with probability α/K, j = 0, . . . ,K

N̄K
t+1(α) ⊥⊥ N̄K

t+1−h(α), ∀h 6= 0.
(19)

The above results imply that the joint distribution of the K series of violations can be fully
simulated under the null hypothesis (13), which is itself the intersection of adequacy at each threshold.
We propose induced test procedures, by statistically combining VaR tests for each threshold. The
primary statistical challenge in testing ES is thus diverted from the familiar problem of comparing
a forecasted expectation with its model-based estimate, to the problem of controlling false-positive
multi-threshold VaR backtests. The former problem is much more tedious than the latter and, perhaps
more to the point here, often calls for additional inputs or assumptions.

Theorem 2 and Corollary 1 are not incompatible with possible finite sample quantile overlap, which
would entail identical violation series. Some violation series may be identical for various other reasons,
even if the thresholds are far apart. Such occurrences can actually reveal useful information, beyond
what can be gleaned from a cumulative series. Conformably, and building on the distributional results
we have shown, the tests we propose next require no more inputs than the violation series.
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3 Induced test procedures

Regardless of the choice of K, the thresholds themselves and the tests to combine, false discoveries
should be managed because the criteria in question are not independent. In fact, it is this dependence
that conveys a formal ES interpretation to our multi-threshold formulation. To account for correlation
of tests thus ensures the definitional relation from our multiple hypothesis to (4). For this purpose,
we consider two strategies.

We first reformulate the existing multi-threshold tests of Perignon and Smith (2008) (PS hence-
forth) and Leccadito et al. (2014) for our purpose, by selecting the thresholds as in (4). The PS

criterion is given by LRPS = 2
(∑K

i=0 ln(π̂i/θi)
∑T

t=1 Ji,t
)

, where π̂i = 1
T

∑T
t=1 Ji,t and Ji,t is defined

in Appendix B.2, eq. (33) . Its (limiting) null distribution is χ2(K). Here we propose a MCT-based
modification which will control its size in finite samples under our agnostic adequacy null. The Pearson

test of Leccadito et al. (2014) assesses (8) in conjunction with (17). Denoting by T
(j)
x,y the number of

observations for which Nt = x and Nt−j = y, the test statistic is

Xm =

m∑
j=1

∑
x,y

(T
(j)
x,y − (T − j)θxθy)2

(T − j)θxθy
. (20)

Leccadito et al. (2014) propose a MCT p-value for Xm, which we also consider here.
Both statistics may be restrictive for various reasons, in view of the broad range of methods

available to assess VaR. In particular, no information except lagged violations can be used, even
when available and relevant. We thus next propose alternative statistical combinations methods. The
following discussion uses any given set of αis, not necessarily as in (11).

3.1 Combined criteria

To concretize concepts, we focus on combining CaViaR tests from Engle and Manganelli (2004) across
thresholds, which allows one to add relevant predictors. CaViaR tests have also been reported by
Berkowitz et al. (2011) to outperform various contenders. Consider K individual autoregressions for
each threshold i, each of order m:

Ii,t = νi +
m∑
k=1

βi,kIi,t−k +

Q∑
q=1

β̄i,qZ̄i,t−q + ui,t (21)

where the Z̄ are desired predictors. Since each dependent variable is binary, we estimate K individual
logit regressions and implement, in each case, a Wald test to verify, jointly, whether the βi,k and
β̄i,q are statistically significant and whether P

(
Ii,t = 1

∣∣βi,1 = . . . = βi,m = β̄i,1 = . . . = β̄i,Q = 0
)

=
eνi/(1 + eνi) = αi. The (limiting) null distribution of the resulting test statistic is χ2(m+ 1 +Q). The
individual tests are then combined, as described below.

The statistics literature has established various procedures to combine tests; the related body of
works is too large to be usefully reviewed here. We focus on concepts that can be traced back to
Fisher (1932) and Simes (1986). Recent modifications of Fisher’s test include the truncated product
method of Zaykin et al. (2002), the adaptive rank truncated product method of Yu et al. (2009) and
Zhang et al. (2013). Improved versions of both procedures have also been proposed by Dong et al.
(2015). These works also provide useful reviews and statistical references.

Denote by pi the p-value associated to the single-threshold test with threshold αi, i = 1, . . . ,K
and by pPS the p-value of the PS procedure for the same thresholds. Let p̄i be the i-th element of the
(K + 1)-vector (p1, . . . , pK , pPS)′.

8



The multi-threshold combinations we first consider are

[Fisher] : SF = −2
∑K

i=1 log pi, [Simes] : SSi = −2 log
[
min1≤i≤K

{
p(i)

K
i

}]
(22)

where p(1) ≤ p(2) ≤ . . . ≤ p(K) are the ordered p-values. When applying the Simes method, we consider
a monotonic transformation of the test statistic commonly considered in the statistical literature, i.e.
min1≤i≤K

{
p(i)

K
i

}
. The transformation, which has no impact when using the MCT technique of

Dufour (2006), maps the interval [0, 1] into [0,+∞], so that SSi has the same order of magnitude of
SF . This, in turn, allows to use (23) below as a proper test statistic.

Since Simes’ method performs well when the total evidence against the global null is concentrated in
few of the combined p-values, whereas Fisher’s method is powerful when the number of false individual
hypotheses is instead large, we consider: the sum of the two

[Fisher + Simes] : SFSi = SF + SSi, (23)

and the sum of individual single-threshold test statistics

[Sum of CaViaR] : SΣ =
∑K

i=1 LR
CaV iaR
i , (24)

where LRCaV iaRi is the Wald statistic introduced after (21). We also consider the combinations of
the K single-threshold tests with the PS procedure. The resulting statistics, denoted by S̄F , S̄Si, and
S̄FSi, are obtained by using p̄i instead of pi. Using the LRPS statistic of Section 3, the sum statistic
is S̄Σ =

∑K
i=1 LR

CaV iaR
i + LRPS .

3.2 Which violations to boost? Adaptive combinations

So far, we have not discussed the choice of K. In fact, we find - via simulations - some evidence in
favor of K = 4 as proposed by Acerbi and Tasche (2002), yet no clear optimal choice emerges. To
address this concern, we propose an omnibus procedure that does not only take several VaR thresholds
into account, but also flexibly adjusts to their information content. Contrary to the application of
the average in (4), the K VaR measures are not directly aggregated to approximate the integral in
(3). In fact, little is known about their consolidation and joint interpretation for backtesting ES, and
there is no reason to expect that VaR deviations are evenly revealing across thresholds. The issue
can be resolved by weighting thresholds unequally as backtests are combined. We assess the various
standard combination strategies for this purpose as discussed in section (3.1); again, no clear choice
emerges. We thus propose instead to combine a series of tests that are themselves combination tests
across several values of K. For a clarity, and to emphasize its distinctive features relative to existing
ones, we formally define the proposed combinatorial strategy as follows.

Definition 1. Let S(Kj) be the test statistic (e.g. Fisher’s) that combines a given series of VaR tests
with thresholds i αKj

, i = 1, . . . ,Kj, as in Theorem 1. The test based on the statistic

S =
∑
j∈J

S(Kj) (25)

where J is a set of indices used to identify the number of combined thresholds, is defined as a “double
combination” [DC] procedure. In particular, if J = {j, j + 1, . . . , j}, then Kj and Kj are the smallest
and largest K entering the combination.
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The “DC” notation we introduce here aims to mimic the concept of the “double bootstrap” where
in our framework, the idea of combining the combined tests mimics bootstrapping the bootstrap. As
an alternative to optimizing K, which in our model-agnostic setting may be hard (if not impossible) to
formalize, DC provides non-uniform weights across the considered thresholds which seem to capture
revealing violations more effectively.

To see this, consider e.g. moving from the S(2) to the S(4) statistic. Increasing K from 2
to 4 expands the set of tested thresholds from {0.5α, α} to {0.25α, 0.5α, 0.75α, α}, which enables
more complete screening through the tail. Yet this breadth of scope may dilute signal strength from
violations that are most at odds with the null hypothesis. Instead, using S = S(2)+S(4) increases the
weights attributed to VaRα and VaR0.5α, which will leverage information at these thresholds thereby
increasing power when effective detection is associated with them. Doubling is thus equivalent to a
weighted combinatorial method. If, by means of that, informative signals are enhanced, substantial
gains of power can result.

It is broadly known that informative violations are not uniformly spread across the tail. Fur-
thermore, because the true spread is unknown and variable, there is no clear indication as to which
violations to boost, and this is likely to vary across models and tests. Doubling - rather than just
increasing K - provides a flexible omnibus “signal booster”, to improve detection within a broad range
of departures from accurate VaRs.

3.3 Combined p-values, finite sample validity

All of the above combined criteria have non-standard null distributions. Yet, importantly, all satisfy
the conditions of Theorem 2 or Corollary 1. Indeed, the combined functions of the data depend, on
the data, only through the joint series of underlying violations. It follows that their null distributions
- individually and jointly - can be simulated with no further assumptions so that the MCT technique
of Dufour (2006) is applicable, although tie-breaking is necessary, since the statistics are not strictly
continuous. To obtain a p-value for any of the above test statistics (and right tailed tests), we apply
the following.

Step 1: using (15) or (19), generate M time series replications of Nts or N̄ts, each of length T . In
each case, using (14) or (18), map the generated series into the corresponding K × T matrix of VaR
violations.

Step 2: for each j = 1, . . . ,M , calculate the test statistic and denote it by Sj ;
Step 3: compute the p-value as

p̃M (S0) =
M × G̃M (S0) + 1

M + 1
,

G̃M (S0) = 1− 1

M

M∑
j=1

I(S0 ≥ Sj) +
1

M

M∑
j=1

I(S0 = Sj)× I(U0 ≤ Uj)
(26)

where I(·) is the indicator function, S0 is the test statistic calculated from the original sample, and
Uj , j = 0, . . . ,M , are independent standard uniform random variates.

Theorem 3. Given any test statistic that satisfies the conditions of Theorem 2 or Corollary 1, let
p̃M (S0) denote its MCT p-value derived as in (26) where S0 refers to the test statistic calculated from
the original sample, and its simulated counterparts Sj, j = 1, . . . ,M , are derived applying (14) or
(18) to independant draws from the discrete process in (15) or (19). Then for 0 < ᾱ < 1 and when
ᾱ (M + 1) is an integer:

P[p̃M (S0) ≤ ᾱ] = ᾱ. (27)
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It is evident from Theorem 3 that quantile overlap that may entail identical violation series for
different thresholds (in observed or simulated samples for that matter) does not invalidate our proposed
method, in the sense that the resulting p-value will nevertheless satisfy (27). Quantile overlap conveys
factual information on the tail of the distribution, despite the irregularities it may reflect. This
reinforces the usefulness of finite sample and discrete procedures such as those we propose here, that
require no regularity assumptions on the tail.

All of the above can be used with violations from parametric, non-parametric, Historical Simulation
(HS) or Monte Carlo risk models as inputs. This paper does not take a stand on any risk model, as
proposed procedures are model-agnostic. On balance, power remains a documented general problem
for backtesting, which motivates our multiple testing approach.

From a practical perspective, VaRs for the various thresholds underlying Corollary 1 may be not be
readily supplied by financial institutions. At the same time, PIT-based and parametric counterparts
presume that: (i) institutions would readily part with information on underlying models, and (ii)
stable models that allow for consistent estimation of intervening parameters are in fact maintained.
On such trade-offs, expanding the set of quantiles to backtest may be easier to request relative to full
model disclosure, as the regulatory environment evolves towards tail risk monitoring.

4 Statistical properties of proposed procedures

To illustrate the usefulness of our proposed procedure, we first report a numerical case study that doc-
uments concrete shortcomings of single-threshold methods even when ES is not the ultimate objective.
We next consider various simulation experiments, all of which are calibrated for a fair comparison with
existing methods.

4.1 Monte Carlo Experiments

In this section, we evaluate the proposed tests relative to several alternative procedures: the standard
model-free regression method (see Christoffersen, 2012, p. 308-309), the conditional [denoted CES ] and
unconditional [denoted UES ] tests of Du and Escanciano (2017, equations (5) and (6)), and two tests
[denoted Z1 and Z2] from Acerbi and Székely (2014, equations (4) and (6)). Designs are calibrated to
provide fair comparisons with relevant contenders. Three settings are maintained for this purpose.

First, CES and UES are applied with a large estimation window to avoid the over-rejections - or the
costly corrections - as documented by the authors in small samples. Second, we calculate the p-values
for the PS test using the asymptotic chi-square distribution and our MCT correction which we refer
to under the heading PS MC. Third, we implement (21) with just lagged violations. We consider two
choices for equally-weighted coverage probabilities:

K = 3, with α1 = 5%, α2 = 2.5%, α3 = 1%, (28)

and our ES-motivated prescription as in (11):

K = 4, with α1 = 5%, α2 = 3.75%, α3 = 2.5%, α4 = 1.25%, (29)

in which case we compare power relative to ES(5%) benchmarks. For the test in (25) the values of K
we combine are K ∈ 2, 4, . . . , 10, leading to S = S(2) + S(4) + ... + S(10). In all cases, the p-values
for our proposed tests are applied with our MCT method. Some designs are based on a GARCH(1,1)
model with intercept 0.05, ARCH parameter =0.05, and GARCH parameter =0.9. In addition, we
simulate returns according to the Generalized Lambda Distribution (GLD). The GLD distribution has
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four parameters: location and scale (λ1 and λ2), and shape parameters (λ3 and λ4) explicitly related
to skewness and kurtosis (κ3 and κ4). We set κ3 = −0.8, κ4 = 3.5 and fix λ1 and λ2 leading to the
GLD distribution with zero mean and unit variance.

4.2 Varying K in ES Tests

We first report our baseline study designed to document the choice ofK in standard combined methods.
Panel (a) of Figure 1 plots against K the rejection frequencies for S̄FSi for the case in which returns
are generated using a normal-GARCH model, VaR is estimated assuming a normal distribution and
the ES level is α = 5%. Panel (b) is instead for the case in which returns are generated using a
t-GARCH model and VaR is again estimated assuming a normal distribution.

[Figure 1 about here.]

One way to read these figures is that K = 4 provides the most efficient power improvement,
which lends support to the thresholds proposed by Acerbi and Tasche (2002); see also Kratz et al.
(2018). However, further improvements are not ruled out, particularly as the sample size grows. In this
baseline design, the hypothesized VaR is the simple i.i.d. normal and, nevertheless, no further concrete
recommendations emerge regarding K. This study motivated our proposed doubling strategy, since
it reveals that just increasing K although useful, does not suffice. Our results with the DC methods
reported below confirm their power advantage over all available ES tests that control size.

4.3 Size

When (15) is used to draw violations directly, (27) implies that all tests that depend on the data via
no more than these violations3, which includes the formula for the test statistic and the critical point,
will be provably size-correct. To investigate the size of the tests when (15) is not explicitly imposed, we
draw returns rather than violations using DGPs with: (i) GARCH-type volatility clustering imposing
and relaxing conditional normality, and (ii) i.i.d. non-normal fundamentals. Yet to calculate the
observed VaRs, we proceed as follows.

In experiment (i), we maintain the hypothesized DGPs yet we estimate the underlying parameters.
Estimation error may intervene; for this design in particular, it matters with reference to the considered
competing methods. In the (ii) case, we use HS since the unconditional quantile comes close to
approximating the null VaR because of the i.i.d. setting. We aim to evaluate the practical worth of
our tests under these empirically relevant parametric and non-parametric assumptions.

As a first experiment, we generate 5,000 time series according to the GARCH(1,1) model

ht+1 = ω + αe2
t + βht, (30)

with et =
√
htut. We use the following parameters ω = 0.05, α = 0.05, β = 0.9. The results reported

in Panel A of Table 1 refer to the case where ut ∼ t(5), i.e. the distribution of the innovation is
Student-t with 5 degrees of freedom, and the VaR is estimated out-of-sample using the GARCH-t
VaR. Panel B of Table 1 reports instead the results for the case in which ut has a standard normal
distribution and the VaR is estimated out-of-sample using the Normal-GARCH model. In both cases
we use a rolling window of length 500 for VaR estimation.

[Table 1 about here.]

3Tests will also depend on underlying exogenous predictors when considered, as in CaViaR tests.
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From the results of Panel A and B of Table 1 it is evident that size is controlled which is noteworthy
since parameters are estimated here. The parametric DGP in question is prominently considered in
this literature, in both academia and practice. Escanciano and Olmo (2010) and Escanciano and
Pei (2012) document problems arising from estimation and model specification risk in the asymptotic
distribution of some out-of-sample backtests. Many methods require quite large estimation windows to
satisfy the regularity conditions underlying usual asymptotic methods. These include the ES methods
we consider below, where in contrast to the present estimation window of 500 observations, we use
2500. This point deserves notice for further reference.

We next simulate returns according to the Generalized Lambda Distribution (GLD) and estimate
VaR using the HS method. Panel C of Table 1 reports the results. The GLD distribution has
four parameters (λ1, λ2, λ3, λ4): λ1 and λ2 are the location and scale parameters and λ3 and λ4 are
shape parameters explicitly related to the coefficients of skewness and kurtosis (κ3 and κ4). In our
experiments we set κ3 = −0.8 and κ4 = 3.5 and fix the location and scale parameters so that we
simulate from the GLD distribution with zero mean and variance equal to one.

From Panel C of Table 1, it is clear that the proposed tests have good size properties even when
returns are drawn without explicitly imposing (15). This experiment also serves as a baseline to assess
deviation from a normal VaR. Given the empirical properties of returns, any test to be useful should
detect violations of this nature with high probability.

Finally, we also verify that size is controlled for the designs underlying the power study reported
in Tables 6–7. These results, available upon request, pertain to an estimation window of length 2500
to respect the asymptotic theory in Du and Escanciano (2017). To sum up, our simulations - reported
below - will objectively inform on the relative advantage of all competing methods, maintaining our
focus on practical considerations.

4.4 Power Analysis

To study the power of the tests we consider the following cases:

Design DGP Table
Hypothesized

VaR
Estimation

window
Thresholds

I GARCH(1,1)-t 2/3 HS/FHS 500/2500 (29)/(29) and DC
II AR(1) Nt 4 – – (28)
III i.i.d. GLD 5/6 i.i.d. Gaussian 250 (28)/(29) and DC
IV GARCH(1,1)-t/GARCH(1,1)-Normal 7/8 i.i.d. Gaussian 2500 (29) and DC/(29) and DC

Design I: Conditional heteroskedasticity and HS. We generate 5,000 time series according to
a GARCH(1,1) model with Student-t innovations. VaR is estimated out-of-sample using HS and a
rolling window of length 500. The relevance of this power experiment stems from the fact that HS
slowly adapts to the dependence of returns. Yet the latter DGP features key empirical properties of
returns, on which informative backtests are required. Results are reported in Table 2 conforming with
an ES(5%) test.

[Table 2 about here.]

Two key findings emerge from Table 2. First is the good relative power properties of our tests.
Although less vulnerable to estimation error, HS-based tests raise other methodological issues sum-
marized in e.g. Escanciano and Pei (2012) and Pelletier and Wei (2016). HS estimates VaR via
unconditional empirical quantiles that account for return dynamics mainly through rolling samples.
By contrast, VaRs are quantiles of the distribution of returns conditional on available information.
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We study below methods based on filtered HS, that have more recently been proposed to circumvent
this problem.

With (unfiltered) HS, unconditional quantiles by construction forgo conditional features such as
time varying conditional volatility, which will result in underestimating the probability of an increase
in VaR at time t + 1 given it was correctly estimated at time t (Pritsker, 2006). Said differently, HS
slowly updates risk measures as volatility rises, which may translate into power losses. This is clearly
reflected in the power of the PS test, and all tests based on lagged violations with m = 1. As T and m
increase, our combined CaViaR tests dominate although we did not make full use of their flexibility by
extending the information set beyond violations. Despite ignoring this clear and evident advantage,
our result underscore of superiority of our multiple test procedure.

The second result which emerges from Table 2, is the drastically poor performance of the familiar
ES backtest even with T = 2500. To construct the test, on each window we calculate ES as the
average of the 25 observations which are smaller or equal than the 5% quantile. It is worth recalling
the prevalence of GARCH features empirically. Our combined VaR approach succeeds where this
popular test fails, while maintaining a non-parametric perspective. This result is worth noting as we
interpret the recent parametric ES tests below.

We generate 5,000 time series according to a GARCH(1,1) model with t-innovations. VaR is
estimated out-of-sample using FHS and a rolling window of length 2500. Results are reported on
Table 3. Filtering imposed the same GARCH process with estimated parameters. Nevertheless, since
FHS is not a fully parametric method, the reported empirical rejections may be analyzed as power. We
do not rule out their interpretation as mis-specification signals, yet in line with our agnostic approach
and given the main motivation for filtering, comparing Table 3 to Table 2 may be seen a legitimate
illustration of the power advantage of FHS. Results indeed confirm that filtering improves power. More
important are our findings on our proposed DC method. Indeed, in addition to filtering, Panels B and
C also compare our proposed ES test with K = 4 to our DC method. The power improvements of
doubling are concrete and sizeable. These results are reinforced in other designs as we compare this
method to more recent parametric ES tests.

[Table 3 about here.]

Design II: non-parametric scenarios, correlated violations. We simulate 5,000 time series
each of length T ∈ {250, 500, 1000, 2500} for the total number of violations in day t, that we now
denote N ′t . The simulations are such that N ′t has still associated the vector (α1, α2, α3)′ but N ′t
and N ′t−1 are not independent. In particular, we draw from the following Gaussian AR(1) process:
zt = βzt−1 + εt, for t = 2, . . . , T , z1 ∼ N(0, s) and εt ∼ N(0, σ) and obtain N ′t as

N ′t = F←Nt
(Φ(zt/s)) , s2 = σ2/(1− β2) (31)

where F←Nt
is the generalized inverse of the cdf of Nt, and Φ is the standard normal cdf. Results for

σ = 1 and β = 0.95 are reported on Table 4. This design is intended to mimic realistic desk-level
systematic unobservables leading to correlated violations. Table 4 illustrates the superiority of our
combined CaViaR tests with small T . Unconditional coverage tests cannot detect such violations; the
relatively weak performance of the PS is thus not surprising. However, rejections with the Pearson
test are at most of 38.2%, while rejections via our tests range from 93.5% to 100% with T = 250.
Any of the combination methods we propose is thus particularly useful as an addition to practitioners’
toolkits.

[Table 4 about here.]
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Design III: Benchmarking Gaussian VaR, i.i.d. directions. In Table 5, we simulate returns
according to the Generalized Lambda Distribution (GLD) and estimate VaR assuming a normal model.
While all tests show very good power for large T , our proposed tests are clearly superior for small
samples, in particular for the case of T = 250. While lagged violations are not the source of power
in this design, we find that the CaViaR tests detect deviations in frequency quite well, via their
implications on the regression intercept. With small T , the Pearson test has no power, and despite its
good relative performance, the PS test is dominated by any combination method we propose. The null
and alternative models are both i.i.d. in this design, and this may drive the power (or lack thereof)
with just 250 violations. The fact remains that the excess skewness and kurtosis that one realistically
may miss here allow serious extreme events. Again, our multiple hypothesis approach achieves very
useful improvements, when and where they are mostly needed.

[Table 5 about here.]

The design underlying Table 5 is next utilized by varying the thresholds, to compare our tests with
the ES tests of Du and Escanciano (2017). Recall that we restrict our analysis here to an estimation
window of 2500 observations. Results are reported in Table 6.

[Table 6 about here.]

Furthermore, recall that the Z1 and Z2 tests were oversized, despite the simplicity if the considered
null model. While results are reported for completion, their interpretation for power comparisons lacks
validity. One of the findings in Table 6 is the lack of power of CES(1) and CES(5). This test perhaps
forgoes the frequency implications, in contrast to the CaViaR approach. The UES test dominates
in this design relative to our proposed test based on K = 4. However, our proposed DC method
outperforms UES for all sample sizes.

One broad conclusion we also draw from this design is that some conditional tests may weakly detect
frequency deviations, when their key constituents focus mostly on the time dependence and clustering
properties of violations. Indeed, we find that our tests which combine the PS and CaViaR tests
together almost match the parametric unconditional test of Du and Escanciano (2017), although they
just approximate ES. This result illustrates another advantage of our test combinations, particularly
when large estimation windows are infeasible, a stable parametric model is not utilized or is unavailable
to the assessor.

Design IV: Benchmarking Gaussian VaR, dependent directions. We now move to a design
which should suit the conditional test of Du and Escanciano (2017). In line with their own designs,
we reconsider the same GARCH-t model of the above experiment I, and assume that the model used
in estimation is the normal distribution. Table 7 reports the results using a window of length 2500.
Additionally, Table 8 displays the power of the different tests when returns are generated according
to a GARCH model with normal innovations and VaR is estimated using the normal model.

[Table 7 about here.]

Interestingly, and despite the dependent alternative we purposely consider, UES still outperforms
CES(5) for T = 250 and CES(1) for T up to 1000. Both tests are however dominated, and by a
wide margin, by our modified PS and our combined CaViaR tests, whether K = 4 or using our DC
approach.

In the context of this experiment, in addition to setting K = 4, we also considered combining
K = 20 CaViaR tests. The comparison is meaningful because 20 is the number of different thresholds
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that are used in the combinations of combinations tests for K ∈ 2, 4, . . . , 10. The results (not reported
here, but available upon request) show that the DC combination method systematically outperforms
the tests based on K = 20. This reinforces the power advantage of doubling, in contrast to just
increasing K.

[Table 8 about here.]

Results collected together reinforce the superiority of multi-threshold combined methods for back-
testing ES. In view of the minimal inputs we need relative to clear and evident power advantages, our
proposed MC and model-free combination method emerges with concrete promise.

5 Empirical Analysis: ETF VaR and ES

5.1 A case study: ETFs in financial crises

To concretize the multiple hypothesis concerns with familiar data and measures, consider assessing
the HS VaR for the iShares Core S&P 500 ETF, over the 2007-2010 period. The financial crisis
underscores the considered time span which, for the record, pre-dates the Basel III international
regulatory framework for banks. Out of sample backtests are performed based on T = 250 observations
and coverage probabilities α1 = 5%, α2 = 2.5%, and α3 = 1%. Though it departs from (11), this
choice reflects available multi-threshold works in line with our benchmarking objective in this section.

We first apply three single-threshold CaViaR tests, using (21) with just lagged violations and
m = 1. The p-values we obtain are 14.106%, 0.350%, and 6.620%, respectively. A single-threshold
interpretation at the 5% significance level thus rejects VaR(2.5%) and fails to reject both VaR(5%)
and VaR(1%). What then, can we conclude about the underlying HS VaR? The familiar 1% threshold
does not reveal enough to reject the model relative to its 2.5% counterpart. Conceivably, extreme
tail events can be rare with the aggregate data at hand, which may drive such discordance across
thresholds. However, the time frame we purposely consider spans the financial crisis; such disclaimers
are thus weakly relevant here. Regardless, any decision on the HS VaR based on the three CaViaR tests
interpreted as is, entails a type I error of up to 3×5 = 15%. A Bonferroni-based equal weight decision
would validate rejection at any level larger than 3 × 0.350 = 1.050%. Yet, this approach side-steps
rather than models the dependence between tests. In contrast, dependence should be intrinsically
accounted for to accurately approximate tail risk, our ultimate objective.

So using the statistics (22)–(24) we formally combine for this purpose, we find SF = 20.657,
SSi = 9.113, SFSi = 29.770, and SΣ = 20.657 with MCT p-values 0.464%, 0.370%, 0.390%, and
1.118%, respectively. Applying the PS test, we find LRuc = 13.003 and a p-value equal to 0.463%.
Integrating the latter into our combination strategy, we find S̄F = 31.408, S̄Si = 9.364, S̄FSi = 40.772,
and S̄Σ = 33.660 with MCT p-values of 0.292%, 0.402%, 0.306%, and 0.498%, respectively. All of
these confirm rejecting the underlying VaRs, controlling type I error with each statistic, this time, to
the desired 5%. The Pearson test, eq (20), is not significant at the 5% level, given that the resulting
p-values are 39.573% for the test with m = 1, which is noteworthy since our CaViaR tests use no more
than lagged violations as predictors.

For completeness, we replicate the above experiment in the case in which the proposed tests (again
with m = 1) are used to backtest 5%-ES assuming the HS method to predict VaRs. When we use
the ES approximation based on 4 thresholds, see eq. (4) and eq. (11), all the testing procedure we
consider give p-values smaller than 1%, with the only exception of the ‘Sum of CaViaR’ test which
gives an observed test statistic SΣ = 27.964 corresponding to a p-value of 1.458%. When using instead
the DC combination scheme, in particular, a combination of tests with K ∈ 2, 4, . . . , 10, the smallest
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p-values we obtain is again the one associated to SΣ (p-value of 0.04%). Finally we consider the filtered
historical simulation method (based on the residuals from a GARCH(1,1) model with t-distributed
innovations) instead of HS. Also in this case we strongly reject the null (all p-values are smaller or
equal than 0.03%) both in the case K = 4 and in the case in which we combine tests across K.

5.2 Bloomberg ETFs

We consider the iShares Core S&P 500 ETF (Ticker IVV), the iShares Core FTSE 100 UCITS ETF
(Ticker BCYIF), and the iShares MSCI Hong Kong ETF (Ticker EWH). We solely rely on the pub-
lished VaR and CVaR of Bloomberg according to three methods: 1 year Historical (HS based on 1
year of past data), Monte Carlo4, and parametric (assuming that returns are normally distributed).
We consider the coverage probabilities as in (29) to assess ES(5%). Since VaRs and CVaRs are only
available from 2009, we consider the 2009-2016 period. We also analyze the 2010-2014 sub-sample, to
reflect the fundamentals leading to and underlying the Basel III accords. Specifically, the G20 had
advocated that “national authorities should develop and agree by 2010 a global framework for promot-
ing stronger liquidity buffers at financial institutions.” Conformably, the Basel Committee on Banking
Supervision proposed reforms on the Liquidity Coverage Ratio to be implemented as of January 2015.
The Basel framework is relevant for the financial system beyond its direct targets (namely banks), as
surrounding consultations and resulting regulations reflect the risk environment at large, and shapes
monitoring tools and measures. Tables 9, 10 and 11 report results on IVV, BCYIF, and EWH ETF,
respectively.

[Table 9 about here.]

[Table 10 about here.]

[Table 11 about here.]

In the following discussion, rejection refers to the 5% statistical significance level, and the existing
tests/methods refer to our modified ES-targeted implementation of the PS and Pearson tests as well
as the standard regression-based model-free ES test, as we analyze the value added of our combined
CaViaR tests.

Regarding the IVV ETF, Table 9 reveals clear differences between the sub-period and full-sample
results. Specifically, when focus is restricted to 2010-2014: (i) all tests fail to reject accuracy for all
considered models if m = 1 (when relevant), and (ii) all combined tests concur in rejecting all models
if m = 5 while the existing tests are insignificant, with the exception of the Pearson test which rejects
the parametric VaR. Evidence on the Monte Carlo measure is similar over the full sample, in that no
test rejects accuracy with m = 1 while when m = 5 all combined tests are significant, in contrast to the
PS and conformable Pearson test. Evidence on the full sample HS measure stands in sharp contrast:
existing tests are insignificant whereas combined tests are significant. The full sample normal model
is rejected throughout except with the Pearson test and m = 1.

We find more noteworthy conflicts regarding the other two ETFs, with which combined tests are
significant throughout for all three VaR estimation methods over the full and sub-sample, and for both
m = 1 and m = 5. In contrast, in each case except the Normal BCYIF, there is at least one of the
existing tests that is insignificant.

4Bloomberg uses linear factor models for VaR estimation. In the case of the Monte Carlo approach, the joint
distribution of future factor is estimated assuming Student’s t marginal distributions and a normal or a Student’s t copula
to model the dependence structure between factors. VaR and ES estimates are based on 10,000 random simulations of
factor returns.
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Conflict in decisions with different values of m are a familiar problem. Indeed, with daily data, a
5 days lag can be more informative. One result stands out in this regard: with the IVV ETF, many
of our tests are insignificant with m = 1 whereas one lag suffices to reject accuracy for the other
markets. This may reflect structural specificities of the aggregate S&P 500 index. More to the point
are the disagreements we find between existing and combined tests, which illustrate the superiority of
the latter for both lag choices.

These results underscore the usefulness of combined tests. Aside from methodological improve-
ments, our findings reveal that tail risk is not adequately reflected via the considered publicized
measures, a result which may have escaped formal notice to date. Admittedly, the profession still
struggles to define useful measures so our findings do not single Bloomberg out. As model-agnostic
checks gain credibility, backtests that share the flexibility of our methodology may easily be built
interactively and perhaps in real-time, into portfolio managers’ and on-line toolkits.

6 Conclusions

In this paper we presented backtesting methods to assess VaR and ES that require no more than VaR
violations as inputs. Contrary to existing procedures, our tests do not require modelling assumptions.
Our methodology relies on multiple testing for two purposes: (i) to process evidence on the frequency
and dynamic evolution of violations jointly; and (ii) to capture more information about the magnitude
of violations.

Simulation results illustrate the usefulness of our combined approach, particularly with small sam-
ples and when underlying models are unavailable to assessors. Results also reinforce the superiority
of CaViaR approaches beyond their original focus on VaR, as ES backtests. Empirically, we assessed
desktop data by Bloomberg on ETFs, and provided evidence of statistical mis-measurement in their
risk exposure. Taken collectively, our simulation and empirical results provide useful practical pre-
scriptions and underscore the usefulness of combined tests in finance.

Appendix

A Existing ES Testing Procedures

We first consider the familiar model-free ES test based on the regression

rt+1 − ESt+1 = b0 + b1VaRt + εt+1 for t+ 1 where rt+1 ≤ −VaRt+1

The testing procedure checks, by the means of a Wald test, the null

b0 = b1 = 0. (32)

In addition, when the design allows us to do so, we study the test of Du and Escanciano (2017) who
propose using the CVs as defined as in eq. (5), for conditional and unconditional ES tests. Basically,
the demeaned CVs should be a martingale difference sequence if the risk model is appropriate. To
compute these CVs, the assessor needs to impose a distribution for the underlying data5; the tests are
also asymptotic and may require costly size corrections in finite samples. Consider a probability level

5Du and Escanciano (2017) suggest that distribution free conditional ES tests may “require more than the ex-ante
ES and the ex-post returns” (endnote 7, p. 957). This also applies to the ES backtests of Acerbi and Székely (2014).

18



α, for example α = 5%. In the notation of Du and Escanciano (2017), the α-violation at time t is
defined as ht(α) = I

(
rt ≤ G−1(α| Ft−1)

)
. Here G−1(α| Ft−1) = inf{u : Gi(u| Ft−1) ≥ α} is the αth

percentile of the distribution G. The CV at time t is defined as the integral of the hit sequence over
the coverage threshold in the left tail:

Ht(α) =
1

α

∫ α

0
ht(u)du

and it is shown to be equivalent to the expression in eq. (5). Since {ut}t is a sample of independent
and identically distributed (i.i.d.) standard uniform variables, both violations and CVs are distribu-
tion free. It is easy to show that Ht(α) has mean α/2 and variance α(1/3 − α/4). Since the cdf G
generally is unknown, Du and Escanciano (2017) suggest specifying a parametric conditional distribu-
tion G( ·,Ft−1, θ0) for some unknown parameter vector θ0 and using in (5) ût = G(rt,Ft−1, θ̂n) where
θ̂n is a consistent estimator θ0 based on n observations. The unconditional test they propose based

on T CVs is given by UES =
√
T(H̄(α)−α/2)√
α(1/3−α/4)

, where H̄(α) =
∑T

t=1 Ĥt(α)/T and Ĥt(α) = 1
α [α− ût].

Assuming that both n → ∞ and T → ∞, such that T/n → 0, UES converges in distribution to the
standard normal.

Conditional procedures test the null that autocorrelations of Ht(α) − α/2 are zero up to lag
m. In our simulation studies we use the Ljung-Box test and hence the test statistic is CES(m) =
T (T + 2)

∑m
j=1 ρ̂

2
Tj , where ρ̂Tj is the estimated lag-j autocorrelation of Ht(α) − α/2, based on a

sample of T violations. If both n → ∞ and T → ∞, such that T/n → 0, CES(m) has a chi-square
distribution with m degrees of freedom.

Finally, wherever possible, we make some comparisons with two testing procedures proposed in
Acerbi and Székely (2014). The first testing procedure used to evaluate the accuracy of ES with level

α, is based on the results that, under the correct model E
[
rt+1

ESt+1
+ 1
∣∣∣ rt+1 + VaRt < 0

]
= 0. Based

on a sequence of T violations, the test statistic is then calculated as Z1 =

∑T
t=1

Itrt
ESt∑T

t=1 It
+ 1 where It is

the exception indicator associated to the VaR with level α, see eq. (1). The second test we consider

is based on the unconditional expectation ESt+1 = −E
[
It+1rt+1

α

]
= 0. The resulting test is given by

Z2 =
∑T

t=1
Itrt

TαESt
+ 1. To derive the significance of the tests, the authors suggest computing the test

statistic, Z0, for the observed sample, simulating returns under the null and computing the p-value as

p̂M (Z0) =
∑M

i=1
I(Zi<Z0)

M , where M is the number of simulations under the null and Zi the value of
the test statistic in the i-th scenario. As in the tests of Du and Escanciano (2017), implementing the
above tests requires specifying a parametric conditional distribution for returns.

B Proofs

B.1 Proof of Theorem 1

Since the result does not depend on t, for simplicity we drop the time index. Therefore we use the
notation N̄K(α) and H(α).

By assumption, the K levels are:

αj = α− (j − 1)
α

K
= (K − j + 1)

α

K
j = 1, 2, . . . ,K

Since

H(α) =
1

α
[α− u]I(u ≤ α)
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with
u = G(r),

when r is a continuous r.v. its cdf is (for 0 < h ≤ 1)

FH(α)(h) = P (H(α) ≤ h) = P
(

1− u

α
≤ h

)
= P (u ≥ α(1− h)) = P

(
r ≥ G−1(α(1− h))

)
= P

(
r ≥ qα(1−h)

)
= 1− α(1− h) = 1− α+ hα,

where qs = −VaR(s) denotes the s-quantile of r. Note that in the above results we have used the fact
that G(·) is the cdf of r. Note also that

P (H(α) = 0) = P (u > α) = P (r > qα) = 1− α.

Consider now the r.v. M̄K(α) = N̄K(α)/K. Then

P
(
M̄K(α) = 0

)
= P (r > qα1) = 1− α1 = 1− α

P
(
M̄K(α) = 1/K

)
= P (qα2 < r < qα1) = α1 − α2 = α/K

P
(
M̄K(α) = 2/K

)
= P (qα3 < r < qα2) = α2 − α3 = α/K

...

P
(
M̄K(α) = (K − 1)/K

)
= P

(
qαK < r < qαK−1

)
= αK−1 − αK = α/K

P
(
M̄K(α) = 1

)
= P (r < qαK ) = αK = α/K

Therefore its cdf is

FM̄K(α)(m) =



0 if m < 0

1− α if 0 ≤ m < 1/K

1− α+ α/K if 1/K ≤ m < 2/K

1− α+ 2α/K if 2/K ≤ m < 3/K
...

1− α/K if (K − 1)/K ≤ m < 1

1 if m ≥ 1

More synthetically,

FMK
(m) =

K−1∑
j=0

(1− α+ jα/K)I(j/K ≤ m < (j + 1)/K) + I(m ≥ 1).

It is easy to see that
lim
K→∞

FM̄K(α)(m) = FH(α)(m) ∀m ∈ R

and therefore
M̄K(α)

D−→ H(α).

�
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B.2 Proof of Theorem 2

Using the notation of Perignon and Smith (2008), let

Jj,t+1 =

{
1 if −VaRt+1|t(αj+1) < rt+1 ≤ −VaRt+1|t(αj)

0 otherwise
. (33)

By convention, αK+1 = 0, α0 = 1, VaRt+1|t(αK+1) = +∞, and J0,t+1 =
∏K
i=1(1 − Ji,t+1). Because

the VaRs are ordered, these random variables are not independent. Furthermore, each indicator can
be expressed as

Jj,t+1 = Ij,t+1 − Ij+1,t+1, j = 1, . . . ,K, (34)

where Ij,t represents the usual exception indicator (1), except for the multi-threshold indexing (αj
instead of α). Thus defined: (i) for any t, only one of Ji,t+1 can be equal to one, and (ii) for
i = 0, . . . ,K, Nt+1 takes on value i when Ji,t+1 = 1. This implies

Nt+1(α)= j with probability θj , for j = 0, . . . ,K,
P (Nt+1(α) = x,Nt+1−j(α) = y) = θxθy, ∀x, y

which proves (15); see also Perignon and Smith (2008) and Leccadito et al. (2014). (34) and the
defintion of Nt+1(α) also yield (6) which completes the proof.

�

B.3 Proof of Theorem 3

When the null hypothesis from Theorem 2 or Corollary 1 holds, Sj , j = 0, . . . ,M , are exchangeable
because the distribution underlying (26) is nuisance parameter free, so all parameters required to draw
Sj , j = 1, . . . ,M , are known (i.e. are set by the tested null). Applying Proposition 2.4 of Dufour
(2006), we then get, under the null hypothesis, the desired result. �
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Figure 1: Rejection frequencies for the S̄FSi test with m = 5. Returns are generated using the normal-
GARCH model (Panel a) or a t-GARCH model (Panel b) and VaR is estimated assuming a normal
distribution.
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Table 2: POWER (ES Test): GARCH-t Model and HSVaR out-of-sample.

Panel A: Existing Testing Procedures

T ES PS PS MC Pearson m = 1 Pearson m = 5
250 0.105 0.069 0.059 0.043 0.047
500 0.061 0.021 0.015 0.110 0.126
1000 0.032 0.014 0.016 0.110 0.127
2500 0.051 0.014 0.013 0.183 0.186

Panel B: m = 1

T SF SSi SFSi SΣ S̄F S̄Si S̄FSi S̄Σ

250 0.113 0.100 0.115 0.116 0.103 0.093 0.105 0.096
500 0.126 0.115 0.123 0.127 0.105 0.101 0.105 0.097
1000 0.120 0.137 0.129 0.120 0.104 0.125 0.113 0.102
2500 0.195 0.215 0.202 0.195 0.159 0.189 0.176 0.148

Panel C: m = 5

T SF SSi SFSi SΣ S̄F S̄Si S̄FSi S̄Σ

250 0.142 0.116 0.143 0.147 0.123 0.114 0.127 0.136
500 0.249 0.228 0.249 0.251 0.223 0.196 0.227 0.231
1000 0.293 0.259 0.290 0.285 0.251 0.227 0.252 0.257
2500 0.495 0.449 0.487 0.497 0.455 0.413 0.449 0.460

Note: The table reports rejection frequencies of multilevel tests at the 5% nominal level and vector of critical levels

(1.25%, 2.5%, 3.75%, 5%). ES denotes the regression-based ES test (see for instance Christoffersen, 2012, p. 308-309).

5,000 time series of length T ∈ {250, 500, 1000, 2500} have been generated according to a GARCH(1,1) model with

Student-t innovations, and VaR is estimated out-of-sample using the Historical Simulation method with a rolling window

of length 500. The test statistics of Panels B and C are combinations of CaViaR tests based on (21).
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Table 3: POWER (ES Test): GARCH-t Model and FHSVaR out-of-sample.

Panel A: Existing Testing Procedures

K = 4 DC

T PS MC Pearson m = 1 Pearson m = 5 PS MC Pearson m = 1 Pearson m = 5
250 0.121 0.056 0.055 0.270 0.138 0.128
500 0.133 0.140 0.166 0.307 0.106 0.102
1000 0.131 0.166 0.185 0.324 0.060 0.061
2500 0.146 0.250 0.296 0.332 0.444 0.566

Panel B: m = 1

K = 4 DC

T S̄F S̄Si S̄FSi S̄Σ S̄F S̄Si S̄FSi S̄Σ

250 0.156 0.139 0.154 0.154 0.279 0.264 0.281 0.284
500 0.192 0.175 0.191 0.194 0.316 0.304 0.316 0.318
1000 0.213 0.205 0.215 0.205 0.408 0.394 0.412 0.423
2500 0.311 0.321 0.315 0.313 0.471 0.464 0.481 0.478

Panel C: m = 5

K = 4 DC

T S̄F S̄Si S̄FSi S̄Σ S̄F S̄Si S̄FSi S̄Σ

250 0.179 0.166 0.184 0.179 0.274 0.288 0.277 0.295
500 0.235 0.214 0.229 0.235 0.389 0.375 0.384 0.426
1000 0.312 0.285 0.304 0.322 0.515 0.488 0.515 0.566
2500 0.525 0.493 0.505 0.525 0.694 0.657 0.690 0.726

Note: The table reports rejection frequencies of multilevel tests at the 5% nominal level for the vector of crit-

ical levels (1.25%, 2.5%, 3.75%, 5%) and for the double combination (DC) test (25). 5,000 time series of length

T ∈ {250, 500, 1000, 2500} have been generated according to a GARCH(1,1) model with normal innovations, and VaR is

estimated out-of-sample with a rolling window of length 2500 with the FHS method. The test statistics of Panels B and

C are combinations of CaViaR tests based on (21).
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Table 4: POWER: ‘serial dependence’ in violations.

Panel A: Existing Testing Procedures

T PS PS MC Pearson m = 1 Pearson m = 5
250 0.776 0.724 0.382 0.379
500 0.751 0.745 0.944 0.990
1000 0.738 0.736 1.000 1.000
2500 0.728 0.727 1.000 1.000

Panel B: m = 1

T SF SSi SFSi SΣ S̄F S̄Si S̄FSi S̄Σ

250 0.999 0.990 0.998 0.998 1.000 0.994 1.000 1.000
500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Panel C: m = 5

T SF SSi SFSi SΣ S̄F S̄Si S̄FSi S̄Σ

250 0.954 0.962 0.957 0.820 0.968 0.975 0.972 0.935
500 0.994 0.999 0.994 0.992 0.994 1.000 0.994 0.994
1000 0.999 1.000 0.999 0.999 0.999 1.000 0.999 0.999
2500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Note: The table reports rejection frequencies of multilevel tests at the 5% nominal level and vector of critical levels

(1%, 2.5%, 5%). We simulate 5,000 time series of length T ∈ {250, 500, 1000, 2500} for the total number of violations in

day t, N ′t , according to equations (31). The simulations are such that N ′t has still associated the vector (α1, α2, α3)′ but

N ′t and N ′t−1 are not independent. Coverage probabilities are α1 = 5%, α2 = 2.5%, and α3 = 1%. The test statistics of

Panels B and C are combinations of CaViaR tests based on (21).
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Table 5: POWER: GLD Model (κ3 = −0.8, κ4 = 3.5) and Normal VaR out-of-sample.

Panel A: Existing Testing Procedures

T PS PS MC Pearson m = 1 Pearson m = 5
250 0.482 0.419 0.052 0.038
500 0.825 0.809 0.783 0.903
1000 0.998 0.998 0.996 0.999
2500 1.000 1.000 1.000 1.000

Panel B: m = 1

T SF SSi SFSi SΣ S̄F S̄Si S̄FSi S̄Σ

250 0.613 0.553 0.600 0.628 0.603 0.538 0.592 0.615
500 0.921 0.885 0.909 0.926 0.925 0.867 0.914 0.925
1000 1.000 0.999 1.000 1.000 1.000 0.999 1.000 1.000
2500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Panel C: m = 5

T SF SSi SFSi SΣ S̄F S̄Si S̄FSi S̄Σ

250 0.563 0.528 0.559 0.612 0.576 0.494 0.562 0.627
500 0.852 0.801 0.840 0.878 0.892 0.792 0.873 0.906
1000 0.997 0.991 0.997 0.997 0.999 0.993 0.998 0.999
2500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Note: The table reports rejection frequencies of multilevel tests at the 5% nominal level and vector of critical levels

(1%, 2.5%, 5%). 5,000 time series of length T ∈ {250, 500, 1000, 2500} have been simulated from the GLD distribution

and VaR is estimated out-of-sample with a rolling window of length 250 assuming a Normal distribution. Coverage

probabilities are α1 = 5%, α2 = 2.5%, and α3 = 1%. The test statistics of Panels B and C are combinations of CaViaR

tests based on (21).
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Table 6: POWER (ES Test): GLD Model (κ3 = −0.8, κ4 = 3.5) and Normal VaR out-of-
sample.

Panel A: Existing Testing Procedures

T PS PS MC Pearson m = 1 Pearson m = 5 UES CES(1) CES(5) Z1 Z2

250 0.453 0.392 0.055 0.034 0.618 0.057 0.069 0.527 0.621
500 0.718 0.702 0.696 0.818 0.863 0.035 0.064 0.776 0.845
1000 0.962 0.960 0.960 0.979 0.990 0.039 0.036 0.960 0.983
2500 1.000 1.000 1.000 1.000 1.000 0.047 0.053 1.000 1.000

Panel B: m = 1

K = 4 DC

T S̄F S̄Si S̄FSi S̄Σ S̄F S̄Si S̄FSi S̄Σ

250 0.577 0.516 0.566 0.583 0.713 0.670 0.715 0.724
500 0.834 0.770 0.813 0.834 0.908 0.890 0.906 0.915
1000 0.987 0.973 0.985 0.986 0.997 0.994 0.997 0.997
2500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Panel C: m = 5

K = 4 DC

T S̄F S̄Si S̄FSi S̄Σ S̄F S̄Si S̄FSi S̄Σ

250 0.541 0.453 0.523 0.581 0.672 0.624 0.668 0.729
500 0.797 0.704 0.778 0.815 0.891 0.854 0.888 0.913
1000 0.977 0.941 0.972 0.980 0.992 0.983 0.993 0.993
2500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Note: The table reports rejection frequencies of multilevel tests at the 5% nominal level for the vector of crit-

ical levels (1.25%, 2.5%, 3.75%, 5%) and for the double combination (DC) test (25). 5,000 time series of length

T ∈ {250, 500, 1000, 2500} have been simulated from the GLD distribution and VaR is estimated out-of-sample with

a rolling window of length 2500 assuming a Normal distribution. The tests in the first four columns of Panel A are for

K = 4. The test statistics of Panels B and C are combinations of CaViaR tests based on (21). UES and CES(m) are the

unconditional and conditional test of Du and Escanciano (2017) for 5%-ES, respectively. Z1 and Z2 denote the tests of

Acerbi and Székely (2014).
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Table 7: POWER (ES Test): GARCH-t Model and NormalVaR out-of-sample.

Panel A: Existing Testing Procedures

T PS PS MC Pearson m = 1 Pearson m = 5 UES CES(1) CES(5) Z1 Z2

250 0.298 0.248 0.060 0.056 0.178 0.098 0.175 0.578 0.136
500 0.419 0.400 0.232 0.301 0.218 0.133 0.243 0.773 0.149
1000 0.670 0.668 0.453 0.611 0.209 0.188 0.354 0.943 0.145
2500 0.965 0.964 0.926 0.969 0.182 0.283 0.573 0.999 0.121

Panel B: m = 1

K = 4 DC

T S̄F S̄Si S̄FSi S̄Σ S̄F S̄Si S̄FSi S̄Σ

250 0.231 0.239 0.240 0.249 0.363 0.369 0.367 0.383
500 0.333 0.330 0.341 0.334 0.497 0.529 0.513 0.529
1000 0.554 0.594 0.575 0.565 0.695 0.741 0.717 0.733
2500 0.930 0.942 0.936 0.932 0.963 0.974 0.968 0.972

Panel C: m = 5

K = 4 DC

T S̄F S̄Si S̄FSi S̄Σ S̄F S̄Si S̄FSi S̄Σ

250 0.229 0.258 0.241 0.235 0.350 0.367 0.355 0.385
500 0.372 0.371 0.378 0.366 0.513 0.537 0.523 0.547
1000 0.639 0.609 0.634 0.615 0.730 0.754 0.748 0.746
2500 0.954 0.951 0.956 0.939 0.973 0.982 0.977 0.973

Note: The table reports rejection frequencies of multilevel tests at the 5% nominal level for the vector of crit-

ical levels (1.25%, 2.5%, 3.75%, 5%) and for the double combination (DC) test (25). 5,000 time series of length

T ∈ {250, 500, 1000, 2500} have been generated according to a GARCH(1,1) model with Student-t innovations, and

VaR is estimated out-of-sample with a rolling window of length 2500 assuming a Normal distribution. The tests in the

first four columns of Panel A are for K = 4. The test statistics of Panels B and C are combinations of CaViaR tests

based on (21). UES and CES(m) are the unconditional and conditional test of Du and Escanciano (2017) for 5%-ES,

respectively. Z1 and Z2 denote the tests of Acerbi and Székely (2014).
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Table 8: POWER (ES Test) : GARCH-normal Model and NormalVaR out-of-sample.

Panel A: Existing Testing Procedures

T PS PS MC Pearson m = 1 Pearson m = 5 UES CES(1) CES(5) Z1 Z2

250 0.126 0.102 0.046 0.047 0.136 0.110 0.171 0.087 0.108
500 0.113 0.107 0.133 0.157 0.150 0.144 0.253 0.107 0.111
1000 0.107 0.105 0.155 0.192 0.170 0.160 0.330 0.135 0.126
2500 0.097 0.093 0.204 0.245 0.109 0.295 0.553 0.208 0.089

Panel B: m = 1

K = 4 DC

T S̄F S̄Si S̄FSi S̄Σ S̄F S̄Si S̄FSi S̄Σ

250 0.156 0.134 0.154 0.155 0.303 0.284 0.303 0.303
500 0.176 0.163 0.176 0.175 0.336 0.317 0.337 0.335
1000 0.214 0.195 0.211 0.210 0.381 0.355 0.383 0.382
2500 0.266 0.257 0.267 0.259 0.458 0.435 0.461 0.452

Panel C: m = 5

K = 4 DC

T S̄F S̄Si S̄FSi S̄Σ S̄F S̄Si S̄FSi S̄Σ

250 0.169 0.158 0.169 0.166 0.315 0.307 0.313 0.337
500 0.221 0.204 0.221 0.221 0.387 0.366 0.388 0.426
1000 0.319 0.286 0.315 0.324 0.494 0.460 0.493 0.535
2500 0.521 0.477 0.520 0.529 0.709 0.666 0.708 0.739

Note: The table reports rejection frequencies of multilevel tests at the 5% nominal level for the vector of crit-

ical levels (1.25%, 2.5%, 3.75%, 5%) and for the double combination (DC) test (25). 5,000 time series of length

T ∈ {250, 500, 1000, 2500} have been generated according to a GARCH(1,1) model with Normal innovations and VaR is

estimated out-of-sample with a rolling window of length 2500 assuming a Normal distribution. The tests in the first four

columns of Panel A are for K = 4. The test statistics of Panels B and C are combinations of CaViaR tests based on (21).

UES and CES(m) are the unconditional and conditional test of Du and Escanciano (2017) for 5%-ES, respectively. Z1

and Z2 denote the tests of Acerbi and Székely (2014).
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Table 9: P-Values (×100) of combination and benchmark tests for the IVV ETF for the
periods 2009-2016 and 2010-2014 (daily data).

VaR: Hist 1Y

Existing Tests ES Test PS PS MC Pearson m = 1 Pearson m = 5
2009-2016 23.698 33.745 33.700 20.500 5.100
2010-2014 36.888 80.851 80.800 50.700 21.200

Multilevel Tests SF SSi SFSi SΣ S̄F S̄Si S̄FSi S̄Σ

2009-2016, m = 1 1.370 3.668 1.756 2.050 4.492 2.416 1.370 2.290
2009-2016, m = 5 0.002 0.008 0.002 0.002 0.008 0.002 0.002 0.002
2010-2014, m = 1 41.175 50.745 43.141 47.465 64.361 49.889 41.175 49.039
2010-2014, m = 5 0.010 0.132 0.020 0.020 0.140 0.026 0.010 0.018

VaR: MC

Existing Tests ES Test PS PS MC Pearson m = 1 Pearson m = 5
2009-2016 10.100 41.418 40.700 23.700 6.200
2010-2014 30.44 69.924 70.500 62.900 19.200

Multilevel Tests SF SSi SFSi SΣ S̄F S̄Si S̄FSi S̄Σ

2009-2016, m = 1 6.378 8.316 6.736 8.620 10.450 8.988 6.378 9.448
2009-2016, m = 5 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
2010-2014, m = 1 50.141 49.915 49.859 57.607 64.361 58.223 50.141 59.385
2010-2014, m = 5 0.010 0.078 0.012 0.012 0.084 0.016 0.006 0.010

VaR: Parametric

Existing Tests ES Test PS PS MC Pearson m = 1 Pearson m = 5
2009-2016 3.355 1.607 2.000 5.800 0.200
2010-2014 17.945 5.682 5.700 24.700 0.800

Multilevel Tests SF SSi SFSi SΣ S̄F S̄Si S̄FSi S̄Σ

2009-2016, m = 1 2.310 4.906 2.788 1.450 4.752 1.884 2.310 1.338
2009-2016, m = 5 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
2010-2014, m = 1 16.534 13.414 15.740 10.402 12.522 11.026 16.534 9.422
2010-2014, m = 5 0.002 0.012 0.002 0.002 0.012 0.002 0.002 0.002

Note: We backtest VaRs provided by Bloomberg and calculated using the Historical Simulation with a window of 1

year (Hist 1Y), the Monte Carlo method (MC) and the parametric method (Parametric). ‘m = 1’ and ‘m = 5’ denote

the combinations of CaViaR tests based on (21). Coverage probabilities are α1 = 5%, α2 = 3.75%, α3 = 2.5%, and

α4 = 1.25%.
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Table 10: P-Values (×100) of combination and benchmark tests for the BCYIF ETF for
the periods 2009-2016 and 2010-2014 (daily data).

VaR: Hist 1Y

Existing Tests ES Test PS PS MC Pearson m = 1 Pearson m = 5
2009-2016 0.002 13.987 13.800 0.300 0.100
2010-2014 0.006 9.349 11.100 1.400 0.600

Multilevel Tests SF SSi SFSi SΣ S̄F S̄Si S̄FSi S̄Σ

2009-2016, m = 1 0.022 0.022 0.024 0.032 0.022 0.030 0.022 0.034
2009-2016, m = 5 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
2010-2014, m = 1 0.036 0.068 0.034 0.046 0.072 0.042 0.036 0.050
2010-2014, m = 5 0.002 0.012 0.002 0.002 0.012 0.002 0.002 0.002

VaR: MC

Existing Tests ES Test PS PS MC Pearson m = 1 Pearson m = 5
2009-2016 6.085 86.214 86.100 5.500 0.700
2010-2014 7.426 62.078 61.600 8.900 5.400

Multilevel Tests SF SSi SFSi SΣ S̄F S̄Si S̄FSi S̄Σ

2009-2016, m = 1 0.042 0.098 0.042 0.098 0.102 0.088 0.042 0.134
2009-2016, m = 5 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
2010-2014, m = 1 0.024 0.020 0.024 0.036 0.020 0.028 0.024 0.036
2010-2014, m = 5 0.006 0.078 0.008 0.006 0.084 0.010 0.006 0.006

VaR: Parametric

Existing Tests ES Test PS PS MC Pearson m = 1 Pearson m = 5
2009-2016 0.291 3.961 4.100 2.100 0.600
2010-2014 0.052 15.488 16.800 8.100 6.900

Multilevel Tests SF SSi SFSi SΣ S̄F S̄Si S̄FSi S̄Σ

2009-2016, m = 1 0.048 0.190 0.062 0.070 0.202 0.082 0.048 0.078
2009-2016, m = 5 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
2010-2014, m = 1 0.028 0.030 0.026 0.036 0.030 0.032 0.028 0.038
2010-2014, m = 5 0.010 0.100 0.016 0.012 0.108 0.016 0.010 0.010

Note: We backtest VaRs provided by Bloomberg and calculated using the Historical Simulation with a window of 1

year (Hist 1Y), the Monte Carlo method (MC) and the parametric method (Parametric). ‘m = 1’ and ‘m = 5’ denote

the combinations of CaViaR tests based on (21). Coverage probabilities are α1 = 5%, α2 = 3.75%, α3 = 2.5%, and

α4 = 1.25%.
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Table 11: P-Values (×100) of combination and benchmark tests for the EWH ETF for the
periods 2009-2016 and 2010-2014 (daily data).

VaR: Hist 1Y

Existing Tests ES Test PS PS MC Pearson m = 1 Pearson m = 5
2009-2016 0.000 95.982 95.600 4.600 2.400
2010-2014 0.000 81.379 81.100 1.800 1.900

Multilevel Tests SF SSi SFSi SΣ S̄F S̄Si S̄FSi S̄Σ

2009-2016, m = 1 0.136 0.234 0.144 0.302 0.252 0.268 0.136 0.438
2009-2016, m = 5 0.004 0.006 0.002 0.006 0.006 0.006 0.004 0.008
2010-2014, m = 1 0.062 0.106 0.062 0.162 0.112 0.124 0.062 0.214
2010-2014, m = 5 0.014 0.034 0.012 0.020 0.034 0.016 0.012 0.018

VaR: MC

Existing Tests ES Test PS PS MC Pearson m = 1 Pearson m = 5
2009-2016 56.586 0.631 0.600 0.500 0.300
2010-2014 48.290 4.943 4.800 0.500 0.800

Multilevel Tests SF SSi SFSi SΣ S̄F S̄Si S̄FSi S̄Σ

2009-2016, m = 1 0.032 0.098 0.040 0.026 0.102 0.032 0.032 0.026
2009-2016, m = 5 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
2010-2014, m = 1 0.022 0.030 0.026 0.020 0.030 0.026 0.022 0.020
2010-2014, m = 5 0.006 0.028 0.008 0.006 0.028 0.006 0.006 0.004

VaR: Parametric

Existing Tests ES Test PS PS MC Pearson m = 1 Pearson m = 5
2009-2016 0.000 14.957 13.8 0.500 0.200
2010-2014 0.000 69.190 69.600 0.300 1.200

Multilevel Tests SF SSi SFSi SΣ S̄F S̄Si S̄FSi S̄Σ

2009-2016, m = 1 0.016 0.020 0.016 0.020 0.020 0.022 0.016 0.024
2009-2016, m = 5 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
2010-2014, m = 1 0.010 0.010 0.004 0.010 0.010 0.010 0.010 0.010
2010-2014, m = 5 0.002 0.012 0.002 0.002 0.012 0.002 0.002 0.002

Note: We backtest VaRs provided by Bloomberg and calculated using the Historical Simulation with a window of 1

year (Hist 1Y), the Monte Carlo method (MC) and the parametric method (Parametric). ‘m = 1’ and ‘m = 5’ denote

the combinations of CaViaR tests based on (21). Coverage probabilities are α1 = 5%, α2 = 3.75%, α3 = 2.5%, and

α4 = 1.25%.
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