

City, University of London Institutional Repository

Citation: Michalas, A., Komninos, N. & Prasad, N. R. (2011). Multiplayer game for DDoS

attacks resilience in ad hoc networks. Proceedings of the 2nd International Conference on
Wireless Communication, Vehicular Technology, Information Theory and Aerospace and
Electronic Systems Technology, Wireless VITAE 2011, pp. 1-5. doi:
10.1109/wirelessvitae.2011.5940931

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/2487/

Link to published version: https://doi.org/10.1109/wirelessvitae.2011.5940931

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Multiplayer Game for DDoS Attacks Resilience in
Ad hoc Networks

Antonis Michalas, Nikos Komninos and Neeli R. Prasad

Abstract—This paper proposes a multiplayer game to prevent
Distributed Denial of Service attack (DDoS) in ad hoc networks.
The multiplayer game is based on game theory and cryptographic
puzzles. We divide requests from nodes into separate groups
which decreases the ability of malicious nodes to cooperate with
one another in order to effectively make a DDoS attack. Finally,
through our experiments we have shown that the total overhead
of the multiplayer game as well as the the total time that each
node needs to be served is affordable for devices that have limited
resources and for environments like ad hoc networks where nodes
must exchange information really fast.

Index Terms—DDoS, DoS, Ad-hoc Networks, Security.

I. INTRODUCTION

One of the major threats in network nodes is the so called
Distributed Denial of Service (DDoS) attack. In the past years
we saw lot of popular sites such as Yahoo, eBay, Amazon,
CNN and many more to be under such attacks. DDoS attacks
present a significant security threat to corporations, and the
threat appears to be growing [11]. In the sixth of August (2009)
the Social Networks world was under attack, in other words,
we were in the middle of a planned attempt to take down
two of the world’s most popular social media sites: Facebook
and Twitter. Even though no user data was at risk, the sites
were down for several hours. DDoS, is a relatively simple, yet
very powerful technique to attack Internet resources. DDoS
attacks add the many-to-one dimension to the Denial of
Service (DoS) problem making the prevention and mitigation
of such attacks more difficult and the impact proportionally
severe. DDoS exploits the intrinsic weakness of the Internet
system architecture, its open resource access model, which
paradoxically, also happens to be its greatest advantage [8].

In this paper we propose a multiplayer game to prevent
DDoS attacks in ad hoc networks, where nodes do not neces-
sarily belong to a single authority and the network topology
is altered dynamically. Our approach combines cryptographic
puzzles and game theory to develop a multiplayer game, where
every node in the network that sends a request needs to solve
a puzzle, and becomes a member of a specific group. We
assume that all nodes in a group play the multiplayer game
and are able to communicate directly. Each multiplayer game
is conducted through a series of 2-player sub-games. Once all
possible 2-player combinations have been played in a group,
the highest scoring node is the one whose initial request is
authorized, while the rest of the nodes in the group have
to continue playing the game until all of their requests have
been authorized. Hence, each group will end up having one
last player, in which case a different type of sub-game will

be played, between the remaining node and the node that is
authorizing the requests. This method ensures that the bulk
of the computation overhead is taken up by the requesting
node, and not the authorizing node, which is only tasked
with checking winning results. With the exception of dealing
with the last remaining node in each group, the authorizing
node is not competing directly in the game process, and
not expending computational resources. In this method, a
possible malicious node will be responsible for making the
most expensive computations of the protocol in order to get
access to the resources of another node in the network.

Following this introduction the paper is organized as fol-
lows. In Section 2 we examine related works that have been
made in order to solve DoS and DDoS problems with the use
of client puzzles and game theory. In Section 3 we describe our
technique, combining game theory and puzzles. In Section 4
we analyze our approach and we present our experimental
results and we conclude in Section 5.

II. RELATED WORK

Aura, Nikander, and Leiwo applied client puzzles to authen-
tication protocols in general [13]. Dwork and Naor presented
client puzzles as a general solution to controlling resource
usage, and specifically for regulating junk email [14]. Waters,
Juels and Felten proposed a Puzzle Outsourcing for IP-Level
DoS resistance in [9].

C. Meadows in [12] showed how some principles that
have already been used to make cryptographic protocols more
resistant to DoS. By trading of the cost to defender against the
cost of the attacker can be formalized based on a modification
of the Gong-Syverson fail-stop model of cryptographic proto-
cols, and indicates the ways in which existing cryptographic
protocol analysis tools could be modified to operate within
this formal framework.

Afrand Agah and Sajal K. Das in [2] formulated the preven-
tion of DoS attacks in wireless sensor networks as a repeated
game between an intrusion detector and nodes of a sensor
network, where some of these nodes act maliciously. They
proposed a protocol based on game theory which achieves the
design objectives of truthfulness by recognizing the presence
of nodes that agree to forward packets but fail to do so.

A game based analysis of the client puzzle approach in order
to defend against DoS attacks have been introduced in [10], in
which the optimal strategy is derived for the attacked server
in order to respond to such attacks effectively.

A DoS mitigation technique is proposed in [3] that uses
digital signatures to verify legitimate packets, and drop packets

that do not pass the verification. A network game is formulated
in which nodes along a network path, are encouraged to act
collectively to filter out bad packets in order to optimize their
own benefits.

Narasimhan et al. in [1] introduced the notion of hidden
puzzle difficulty, where the attacker cannot determine the
difficulty of the puzzle without expending a minimal amount
of computational resources. Game theory was used to develop
defense mechanisms.

III. MULTIPLAYER GAME

The communication initiators are involved in a multiplayer
game where they are responsible for executing all the ex-
pensive computations on their own, while the node that is
offering the service is only responsible for executing simple
computations, mainly to facilitate the final stage of every
multiplayer match. Furthermore, we do not make use of any
intrusion detection system, there are no penalties for suspicious
acting nodes and there is no database in which possible
malicious users can be stored. Our solution is based on the
fact that eventually every node that is requesting a service
will gain access to it, but only after taking part in at least
one game, and winning one (or more) games. The process
requires every node to give some of his resources in order to
gain access to the service he requested.

To be more precise we consider games with a finite number
of players who interact not in a single contest but in pairwise
games. The pairwise games are in fact part of one larger
multiplayer conflict, with all the added complications that such
a relationship implies. We divide our method into two main
steps: Group Formation and Multiplayer Game.

A. Groups Formation

The first thing that has to be done is to categorize requests
into groups. The idea behind group formation is that all nodes
in a group have to take part in a multiplayer game. After each
game only the winner will have the opportunity to have his
request processed, while the rest of the grouped nodes will
have to continue playing the game. The multiplayer game for
each group consists of multiple 2-player sub-games.

As we can see in figure 1, node1 is receiving requests from
multiple neighboring nodes in a DDoS scenario. First, node1
is responsible for creating a set of groups from the nodes
trying to communicate with it. In every group the nodes play
a multiplayer game which is divided into 2-player sub-games.
Each node has to play at least one 2-player game with all the
other nodes of the group to complete a game. The node that
wins a main game in a group will have his request processed
by node1. A new main game then restarts in that group, and
the process repeats itself until all possible 2-player games are
played. In figure 1, we see that node1 has divided nodes into
two groups (Group1, Group2). The first group has three nodes
- players (node2, node3 and node4) that will need to play each
other at least once. So in this case we would have a minimum
of three rounds of the 2-player game in order to have a main

Fig. 1: Divide Nodes into Groups

game winner (node2 vs node3, node2 vs node4 and node3 vs
node4).

At this point we make two assumptions. Let’s assume there
is a time interval t in which each group can accept new players.
When node1 receives the first request from node2 in time
t1, and a second request from node3 in time t2 then both
nodes will be members of the same group if t1 < t2 < t.
Furthermore, each group will have a maximum allowable
number of 20 nodes, otherwise the time required to process
the last player’s request will be large and inefficient for ad hoc
nodes. Thus, a group is considered closed and will not accept
any new nodes if the maximum number of players has been
reached, or if the time interval t <= 1sec has been exceeded.

The advantages of dividing nodes into groups and why this
technique is adding a security level to a network are discussed
in Section IV.

B. Multiplayer Game

The game is formed as follows: Each player starts with a
number of credits which is the same for all the nodes of the
group. Additionally, a cost has been assigned to each player.
The costs are not identical but follow the sequence of the
request submittals. For example, the node that first made a
request will have a smaller cost than the node after it, and
so on. During each sub-game, every node has three possible
results: win, loose or draw. When the first main game finishes,
and all nodes have played with each other, the winner is the
one that has the maximum credits overall. In case there are
two or more nodes with the same number of credits the node
with the smaller cost is served (first in first out).

Supposing that node1 has already created the groups, the
next step is to generate five random numbers. A prime number
q, the credits x which is a random positive integer, generator
g of Zq , the dividend d where d� x and the priority pi that
each node have in order to be served and is a positive integer
from which each node will calculate its costs. Then, node1 is
using the above numbers to generate y from equation (1):

y = f(x), where f(x) = gxmod q (1)

Node1 responds to the requests of nodes from Group1 by
sending them the parameters y, g, q, d and a value pi which is

Fig. 2: Sending Parameters to Players / Nodes in order to start
playing the game

different for each node and corresponds to the priority with
which each node is served (the first requestor will have the
highest priority among others and so on). Next, each node is
responsible for finding the credits x. After that, each node has
to calculate the cost of play c, where c > x, which is different
for each node in the group. As we can see in Figure 2, node1
accepts requests from three clients of Group1, each of whom
has a value pi to be served.

The cost for each node is given by equation (2):

ci = x+ pi, (2)

where pi < pi+1 < pi+2 < · · · .
The reason that pi < pi+1 < pi+2 < · · · must hold, is

because we want nodes to have the opportunity to be served
in the same sequence that they made their requests. This will
give an advantage to the players that requested a service first.

At this point, players have all the necessary information in
order to start playing. The payoff matrix is shown in Table I
where S represents a strategy, x the credits, c the cost that
each player receives for a subgame.

TABLE I: Payoff Matrix

S1Player1
S2Player1

S1Player2

x− cp1
d

, x− cp2
d

0, x

S2Player2
x, 0 x

d
, x
d

where
x− cpi

d
< 0 <

x

d
< x

The players can either have an offensive strategy (S1), or a
defensive strategy (S2). When both players play defensively,
they will equally share the winning credits, but when one
of them meets an offensive strategy, the other leaves all the
winning credits to the offensive player. In particular, in any
conflict situation, the defensive player will never win credits,
but it will never loose credits, even when confronting an

offensive strategy and therefore the interactions are neutral
with respect to the defensive strategy. Furthermore, in the case
were both players play an offensive strategy, they both loose
some credits but the looser of the game is the one with the
higher cost value.

An important issue in our multiplayer game is the number of
players, that each group should contain. If this number is large,
then the procedure could be time consuming, which makes it
inefficient for ad hoc networks. Therefore, it is important to
know the minimum number of games that have to be played
in a group, in order for each node to be served.

Lemma 1. For every n players in a group, the minimum
number of games that have to be played in order for every
node to be served is1: G(n) = n3 − n

6 .

In the case where a group contains three players, from
Lemma 1 we see that at least G(3) = 4 sub-games has to
be played. For four players the sub-games will be at least
G(4) = 10 and for five players G(5) = 20 sub-games.

Thus it is clear that the maximum number of players in each
group should be quiet small, otherwise the time that would be
needed for the last player to be served would be unaffordable
for the nodes of an ad hoc network. For example if a group
contains 50 players it will need at least 20,825 sub-games in
order for every node’s request to be processed.

Considering that each request creates different groups, we
achieve two things:

1) Possible malicious nodes are divided into different
groups, and thus they are unable to cooperate with each
other in order to harm the network.

2) Every node in the network has an amount of resources,
which can be translated into the quantity of requests that
can serve. By dividing nodes into groups and processing
requests from only one node at a time (from each
group) we extend nodes lifetime. This means that the
whole network can keep working properly much longer,
especially if we take into consideration that new nodes
are introduced into the network and can also process
new requests.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In order to measure the effectiveness of our solution, we
have used the Smart Dust simulator written in Java. Our
testbed consists of a laptop computer with Intel Core Duo CPU
P7450 at 2.13GHz, 6.00 GB of RAM running Windows 7 64-
bit. Our experiments where implemented in a medium scale
ad hoc network.

Each node that makes a request, is responsible for finding
the solution of the DLP. To do so, we used Baby-Step-Giant-
Step algorithm (BSGS) to brute brute equation (1). BSGS is
a generic algorithm that falls into the class of square root
algorithms and its complexity is O(

√
n).

Figures 3 and 4 depicts the time that needed for the last node
of a group to be served. From these experiments we found that

1The proof is omitted due to space constrains.

(a) (b)

Fig. 3: Time for the last node of the network to be served.

(a) (b)

Fig. 4: Time for the last node of the network to be served.

the optimal number of nodes for each group should be from
2 to 22. Regarding to the strategies, we tested our game for
the following four cases:

• All nodes choosing their strategy randomly (figure 3a)
• In every sub game one node would play S1 and the other

S2 (figure 3b)
• All nodes playing defensively (figure 4a)
• All nodes playing offensively (figure 4b)
In order for all of our measures to be in the same level,

we did not generate randomly the parameters for equation (1),
instead we used the DLP with an average level of difficulty.
Table II shows some representative results from our experi-
ments. As we can see, in the case where a group contains 15
nodes, the average time for the last node to be served is 5.9sec
which is an affordable time for devices that are part of an ad
hoc environment. Especially if we take into consideration the
fact that before that time, 14 other nodes have been already
served.

Another very important issue is the order in which every
node is served. The ideal scenario is that each node would
be served based on the priority pi value. In figure 5 we can
see that when all nodes play the same strategy (S1 or S2),
they follow a first come first served approach. Here the first
node had its request served 3 seconds earlier than the last

TABLE II: Results from figures 3, 4

Nodes Random Equally
Split

Defensive Offensive

5 1.93 1.92 1.88 1.79

10 3.69 4.14 3.66 3.59

15 5.86 5.84 5.93 5.98

20 8.55 8.25 8.59 8.61

(a) (b)

Fig. 5: Time needed for each node to be served

node. In figure 6 the strategy that each node plays, is chosen
randomly. As we can see, nodes are not served according to
their priority since the first node is actually served 17th. For
that reason each node has the ability to play in its best interest
in order not to loose the priority.

As mentioned earlier, every node in a group must solve the
discrete logarithm problem in order to find the credits x of the
game. In the case where one or more nodes act maliciously
and guess x, node1 has the ability to verify whether the node
with a specific id has correctly calculated x. So node1 will
refuse to serve the winner of that group and will wait for the
next winner of this group.

The overhead of the network, as the number of nodes of a

Fig. 6: Time needed for each node to be served when they
randomly choose their strategy

Fig. 7: Network Overhead

group increasing, is shown in figure 7 and the formula form
which we can calculate the overhead as the number of nodes
in a group is increasing, is shown from Lemma 2.

Lemma 2. For n nodes in a group, the total network overhead
in bytes, is given by the following formula2: VTotal(n) =

4
3 ·

(2 · n3 + 6 · n2 + n)

Security requirements in ad hoc networks must take into
account the countermeasures against node misbehavior and
DDoS attacks. In our approach, the concept of payoffs and
optimum strategies is applied so that potential malicious nodes
will be responsible of executing expensive computations. Our
game theoretic approach is based on the concept that we want
to force a possible malicious node in an ad hoc network to
perform heavy computations before it can use the resources
of another node. It is vital to keep as many of the receiving
node’s resources free to ensure the long lasting operation of
the ad hoc network.

In DDoS attacks a single node can send multiple requests
to node1. For that reason we assume that node1 will only
accept up to two active requests from a single node, and for
the second request this particular node will become an element
of another group as well. With this method, an attacker will
be limited in the sense that he will be unable to make many
simultaneous attacks on a single node.

V. CONCLUSIONS

Unlike networks using dedicated nodes to support basic
functions like packet forwarding, routing, and network man-
agement, in ad hoc networks these functions are carried out
by all available nodes. Nodes communicate with each other
using wireless radios and operate by following a peer-to-peer
network model [5]. Since ad hoc networks can be deployed
rapidly, sensitive applications raise important security issues.
Security requirements in ad hoc networks are different from
those of fixed networks. While the security requirements
are the common ones, namely availability, confidentiality, in-
tegrity, authentication and non-repudiation, they are considered
differently for ad hoc networks due to system constraints in

2The proof is omitted due to space constrains.

mobile devices (i.e. low power microprocessor, small mem-
ory and bandwidth, short battery life) and frequent network
topology changes [5]. Ad hoc networks have no standard
infrastructure and their topology is changing dynamically and
all the network operation is based on cooperation of nodes
within the neighborhood. Ad hoc network misbehavior may
be imposed by malicious nodes, each of which intentionally
aims at harming the network operation.

In this paper we proposed a new technique that combines
game theory and client puzzles making ad-hoc networks
resilient to DDoS attacks. Our approach use client puzzles
in combination with game theory to force possible malicious
nodes to execute many computations before they get access to
the resources of another node. Additionally, dividing malicious
nodes into separate groups decreases their ability to cooperate
with one another, further weakening an attack. Finally, through
our experiments we have shown that the total overhead of the
proposed multiplayer game as well as the resources that each
node will have to spend are efficient for ad hoc networks.

[1] H. Narasimhan, and V. Varadarajan, and C. P. Rangan, Game Theoretic
Resistance to Denial of Service Attacks Using Hidden Difficulty Puzzles.
In IPSEC, pages 359-376, 2010.

[2] A. Agah and S. K. Das, Preventing DoS Attacks in Wireless Sensor
Networks: A Repeated Game Theory Approach. In I. J. Network Security,
pages 145-153, 2007.

[3] Wu, Xiaoxin, and Yau, and David K. Y., Mitigating denial-of-service
attacks in MANET by distributed packet filtering: a game-theoretic
approach. In ASIACCS ’07: Proceedings of the 2nd ACM symposium
on Information, computer and communications security, pages 365-367,
New York, USA, 2007. ACM.

[4] N. Komninos, A Transport Layer Security Protocol for Hybrid Networks.
Book Chapter in Wireless Communications Research Trends, pages 267-
285, January 2007, Nova Science Publishers Inc.

[5] N. Komninos, and D. Vergados, and C. Douligeris, Layered Security
Design for Mobile Ad-Hoc Networks. In Journal in Computers & Security,
Elsevier, Volume 25, Issue 2, pages 121-130, Elsevier.

[6] J. H. Cheon, and N. Hopper, and Y. Kim, and I. Osipkov, Timed-Release
and Key-Insulated Public Key Encryption. In Financial Cryptography and
Data Security, FC 2006, volume 4107 of LNCS, pages 191-205, 2006,
Springer.

[7] J. Cathalo, B. Libert and J.-J. Quisquater, Efficient and Non-interactive
Timed-Release Encryption. In ICICS 2005, LNCS 3783, pages 291-303,
Springer-Verlag, 2005.

[8] C. Douligeris and A. Mitrokotsa, DDoS attacks and defense mechanisms:
classification and state-of-the-art. In Computer Networks 44(5), pages
643-666, Texas, USA, 2004.

[9] B. R. Waters, A. Juels and E. W. Felten, New client puzzle outsourcing
techniques for dos resistance. In CCS ’04: Proceedings of the 11th ACM
conference on Computer and communications security, pages 246256,
New York, NY, USA, ACM, May 2004.

[10] B. Bencsath, I. Vajda and L. Buttyan, A Game Based Analysis of the
Client Puzzle Approach to Defend Against DoS Attacks. In Proceedings
of the 2003 International Conference on Software, Telecommunications
and Computer Networks, pages 763-767, 2003.

[11] J. Vijayan, Denial - of - Service Attacks Still a Threat. In Computer
World, April 8, 2002.

[12] C. Meadows, A cost-based framework for analysis of denial of service
in networks. In J. Comput. Secur., pages 143-164, Amsterdam, The
Netherlands, 2001, IOS Press.

[13] T. Aura, P. Nikander and J. Leiwo, Dos-resistant authentication with
client puzzles. In Revised Papers from the 8th International Workshop on
Security Protocols, pages 170-177, 2001, Springer-Verlag.

[14] C. Dwork and M. Naor, Pricing via processing or combatting junk mail.
In Ernest F. Brickell, editor, Proc. CRYPTO 92, pages 139-147, May
1992, Springer-Verlag.

