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Abstract

We investigate the analytic properties of the exact magnon S matrix of string
theory on AdS3 × S3 × T4 with R-R flux. We show that the previously proposed
dressing factors have the exact double-pole/zero structure expected from Landau
box diagrams. This constitutes a strong consistency check of our dressing factors,
much as the Dorey-Hofman-Maldacena poles do for the all-loop dressing factor in
AdS5 × S5.
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1 Introduction

Determining the string theory spectrum in general spacetime backgrounds can be a
formidable challenge. In some cases, however, the worldsheet theory may have special
properties that can be used to solve the spectral problem. For example, the theory might
be a WZW conformal field theory [1] or , as in the case of plane-wave backgrounds, the
gauge-fixed worldsheet theory may be free [2]. More recently, certain AdSd+1 ×M9−d

backgrounds have been shown to be integrable non-relativistic 2d worldsheet theories.2

Such cases are physically interesting, since they are holographically dual to d-dimensional
gauge theories [4], giving an exact tool for strong coupling computations.

In these integrable holographic backgrounds, the exact worldsheet S matrix is strongly
constrained by symmetries, leaving only a small number of scalar dressing factors un-
fixed. These dressing factors in turn satisfy crossing equations [5]. Just as in relativistic
integrable field theories, given a particular solution of the crossing equation, new solu-
tions can be found by multiplying the S matrix by solutions of the homogeneous crossing
equation known as Castillejo-Dalitz-Dyson (CDD) factors [6]. Extra input, such as the
presence of poles in the S matrix is required to determine the physically-correct CDD
factor. In the case of AdS5×S5, the S matrix has simple poles associated to the presence

2See [3] and references therein.
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of bound states [7] and Dorey-Hofman-Maldacena (DHM) double poles due to the ex-
changes of pairs of such bound states [8]. It is believed that these fix the dressing factor
to precisely the Beisert-Hernández-López/Beisert-Eden-Staudacher (BES) one [9, 10].

Strings on AdS3×S3×T4 are also believed to be an integrable theory [11,12]. In this
case, symmetries fix the exact worldsheet S matrix up to four dressing factors [13–15].
When the background is supported by R-R flux only, solution of the corresponding
crossing equations were found in [16–18] and shown to have the expected simple poles
associated with AdS3 bound states. In this paper we analyse the structure of Landau
diagrams for the exchanges of pairs of bound states, generalising the work of [8] to
AdS3 and determine the expected location of DHM double poles. We then show that
the dressing factors found in [16–18] have precisely such double poles providing strong
evidence for the validity of these solutions.

In section 2 we discuss the set of simple and double poles we expect the S matrix
to have based on Landau diagrams. We begin in section 2.1 with a review of the AdS5

analysis of [8] which we extend to AdS3 in section 2.2. In section 3 we show that the S
matrix and dressing phases of [16–18] have exactly the expected set of simple and double
poles. Our conclusions are given in section 4. In appendix A we discuss a particularly
simple solution of the crossing equations which does not have DHM double poles. This
solution illustrates the importance of DHM poles in identifying the physically relevant
dressing factor. In appendix B, we present explicit bound state representations and, in
appendix C, we review the relation between bound states and poles of the S matrix.

2 Expected poles of the S matrix

Poles in the S matrix are intimately related to bound states in the spectrum.3 A simple
pole can be represented by a diagram where two excitations scatter through the exchange
of a single on-shell bound state. There are two basic topologies, referred to as the S and
T channels, as shown in figure 1. In order to obtain a double pole, we need a scattering
diagram where two exchanged bound states simultaneously go on shell. A typical such
diagram is shown in figure 2.

2.1 Bound states and S matrix poles in AdS5 × S5

In this sub-section we briefly review the bound states and Landau diagrams leading to
poles in the AdS5 × S5 S matrix following closely the discussion in [8]. World-sheet
excitations in AdS5 × S5 transform in short representations of the centrally extended
psu(2|2)2 algebra preserved by the light-cone gauge Hamiltonian. They are conveniently
parametrised by spectral parameters x± which are related to the energy and momentum
by

eip =
x+

x−
, E = −

ih

2

(
x+ −

1

x+
− x− +

1

x−

)
, (2.1)

3See appendix C for a discussion of the relation between singularities of the S matrix and bound
states.
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p1 p2

p2 p1

p
1

+
p

2

(a) S channel

p1 p2

p2 p1

p1
− p2

(b) T channel

Figure 1: S and T channel exchange of bound states. The external lines correspond to funda-
mental excitations and the double line to an exchanged on-shell bound state.

Figure 2: Typical box diagram giving rise to a double pole in the S matrix.
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x± y±

z±

(a)

y± x±

z±

(b)

Figure 3: Basic vertices

where h is the integrable coupling constant. The fact that the representation is short is
encoded in the additional constraint

x+ +
1

x+
− x− −

1

x−
=

2iM

h
, (2.2)

where M ∈ Z
+ is the bound state number. A fundamental representation has M = 1

while a bound state has M > 1. The corresponding psu(2|2) representation has a highest
weight state transforming as (M + 1, 1) under the bosonic su(2) × su(2) subalgebra.
A physical excitation in AdS5 × S5 has spectral parameters satisfying |x±| > 1. The
shortening condition (2.2) together with (2.1) lead to the familiar dispersion relation

E =

√
M2 + 4h2 sin2 p

2
. (2.3)

The on-shell diagrams discussed above can be decomposed into trivalent vertices
of the type shown in figure 3, where we have introduced the spectral parameters x±,
y± and z± corresponding to the psu(2|2) representations at each leg, with the three
excitations have bound state numbers Mx, My and Mz, respectively. Imposing energy
and momentum conservation at the vertex in figure 3a leads to the equations4

(
x+ −

1

x+
− x− +

1

x−

)
+

(
y+ −

1

y+
− y− +

1

y−

)
=

(
z+ −

1

z+
− z− +

1

z−

)
,

x+

x−

y+

y−
=
z+

z−
.

(2.4)

These equations have a number of simple solutions. If we assume that all three involved
excitations are in the physical region we find

x− = y+, z+ = x+, z− = y−, (2.5)

or
x+ = y−, z+ = y+, z− = x−. (2.6)

4The trivalent vertex shown in figure 3b is related to the one in figure 3a by time reversal and leads
to exactly the same set of equations.
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From either solution we find the relation
(
x+ +

1

x+
− x− −

1

x−

)
+

(
y+ +

1

y+
− y− −

1

y−

)
=

(
z+ +

1

z+
− z− −

1

z−

)
, (2.7)

or
Mz = Mx +My. (2.8)

Hence, in these cases the vertex has a simple interpretation in terms of two physical
excitations fusing into a larger physical bound state. When the two incoming excitations
are fundamental (Mx = My = 1), the solutions (2.5) and (2.6) correspond to the so
called su(2) and sl(2) bound states, respectively. As we will see below, only the su(2)
bound state appears in the physical spectrum.

Let us now consider the case where the spectral parameters of one of the incoming
excitations are outside the physical region. When |x±| , |z±| > 1, |y±| < 1 we find
solutions

x− =
1

y−
, z+ = x+, z− =

1

y+
, (2.9)

and

x+ =
1

y+
, z+ =

1

y−
, z− = x−. (2.10)

These spectral parameters satisfy

(
x+ +

1

x+
− x− −

1

x−

)
−

(
y+ +

1

y+
− y− −

1

y−

)
=

(
z+ +

1

z+
− z− −

1

z−

)
, (2.11)

or
Mz = Mx −My. (2.12)

Note that this process is possible only if Mx > My. In that case the vertex corresponds
to a process where a bound state fusing with an antiparticle to produce a new state with
a lower bound state number.

Starting with the solutions (2.5) or (2.6) we can obtain (2.9) or (2.10), respectively,
by the transformation

x± → z±, y± →
1

x±
, z± → y±, (2.13)

which can be interpreted as relabelling followed by crossing one of the legs by sending
y± → 1/y±.

If instead we have |x±| < 1, |y±| > 1, and |z±| > 1 we find the same set of solutions
as above, but with x± and y± swapped. Finally, there are solutions where two or more
of the spectral parameters are inside the unit circle. These solutions are again related to
the ones discussed above by simple transformations.

2.1.1 Simple poles

Let us now combine the above vertices to form physical scattering diagrams, starting
with the diagrams in figure 1, which lead to simple poles in the S matrix.
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x± y±

y± x±

z±

(a) S channel

x± y±

y± x±

z±

(b) T channel

Figure 4: S and T channel labelled with spectral parameters.

S channel pole. We first consider the S channel diagram shown in figure 1a, intro-
ducing spectral parameters as in figure 4a. We focus on the case where the external
excitations are fundamental, so that Mx = My = 1. We then only have a physical pole
of the form5

x+ = y−, z+ = y+, z− = x−, (2.14)

or
x− = y+, z+ = x+, z− = y−, (2.15)

and the exchanged bound state has Mz = Mx +My = 2. To find out which solution gives
rise to a pole in the S matrix corresponding to a physical bound state, we need to examine
the imaginary part of the momentum of the first particle, as discussed in appendix C.
For (2.14) we find Im(−i log x+/x−) > 0 and for (2.15) we find Im(−i log x+/x−) < 0,
which means that the physical pole is given by (2.14), while (2.15) corresponds to a zero
of the S matrix.6

T channel pole. Consider now the T channel diagram in figure 4b. If the external
excitations are both fundamental (Mx = My = 1), they can not also both be in the
physical region. Instead we find

x+ =
1

y−
, z+ =

1

y+
, z− = x−, (2.16)

or

x− =
1

y+
, z+ = x+, z− =

1

y−
. (2.17)

5When we discuss physical scattering processes we assume that the excitations are ordered along
the spatial direction so that the excitation with parameters x± is to the left of the excitation with
parameters y±. This means that the solutions in equation (2.14) and (2.15) are distinct even though
the algebraic expressions are related by exchanging x± and y±.

6The easiest way to check the imaginary part of the momentum is to solve equation (2.14) or (2.15)
together with the shortening conditions (2.22) for x± and y± using, e.g., Mathematica, making sure to
pick the branch where both |x±| > 1 and |y±| > 1, and then numerically evaluate x+/x− for real values
of the bound state momentum.

7



x±
1 x±

2

x±
2 x±

1

z±
1

y±
2

z±
2

y±
1

Figure 5: Box diagram with spectral parameters.

The exchanged bound state again has Mz = Mx +My = 2. As before we check the sign of
the imaginary part of the momentum of the x excitation to determine when the S matrix
should have a pole. For the solution (2.16) we find Im(−i log x+/x−) > 0 and for (2.17)
we find Im(−i log x+/x−) < 0, so that the location of the pole is given by (2.16).

2.1.2 Double poles

We now consider the box diagram in figure 5. The two on-shell bound states y±
1 and y±

2

give rise to a double pole in the S matrix. The four vertices making up the box diagram
are of the same type discussed above. Imposing that the double pole is located on the
physical branch we find the solution7

x+
1 =

1

y−
1

=
1

z−
2

, x−
1 = y−

2 =
1

z−
1

, x+
2 = y+

2 =
1

z+
2

, x−
2 =

1

y+
1

=
1

z+
1

, (2.18)

which leads to the relation
(
x+

1 +
1

x+
1

+ x−
1 +

1

x−
1

)
−

(
x+

2 +
1

x+
2

+ x−
2 +

1

x−
2

)
= −

2i

h
(Mz1

+Mz2
) (2.19)

Introducing

ui =
1

2

(
x+

i +
1

x+
i

+ x−
i +

1

x−
i

)
, (2.20)

we thus find double poles at the locations

u1 − u2 = −
2in

h
, (2.21)

where n = (Mz1
+Mz2

)/2 > 1 is an integer.

7For a more detailed derivation of these conditions see [8] and the corresponding derivation for
AdS3 × S3 × T4 in the section 2.2.
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x±
L

y±
L

z±
L

M
=

1
M

=
m

M
=

1
+

m

(a) LLL

x±
L

y±
R

z±
R

M
=

1

M
=

−
m

M
=

1
−

m

(b) LRR

Figure 6: LL and LR vertices

2.2 Bound states and S matrix poles in AdS3 × S3
× T4

In the case of string theory on AdS3 × S3 × T4 supported by RR flux, the fundamental
excitations fall into several short representations of the centrally extended psu(1|1)4

algebra preserved by the light-cone gauge-fixed Hamiltonian [13, 14, 19]. For now we
focus on the massive excitations, which fall into two representations denoted L and R.
These representations are distinguished by the u(1) charge M, under which they have
eigenvalue +1 and −1, respectively. In order to understand the pole structure of the
S matrix it is enough to consider a centrally extended psu(1|1)2 sub-algebra. As in
AdS5 × S5, short representations can be described by spectral parameters x± which
parametrise the energy and momentum as in equation (2.1) and satisfy the shortening
condition

x+ +
1

x+
− x− −

1

x−
=

2i|M |

h
, (2.22)

where M is the u(1) charge of the representation.8 Any short psu(1|1)2 representation
is two-dimensional. Hence, the only difference between a fundamental excitation and a
bound state in AdS3 is the u(1) charge, which plays the role of the mass as seen in the
dispersion relation (2.3).

As in AdS5 × S5, we can construct trivalent vertices from which we can build up
scattering diagrams that exhibit the poles of the S matrix. Imposing conservation of
energy, momentum and u(1) charge we obtain relations between the spectral parameters
of the excitations. Let us start with a fundamental L excitation with spectral parameters
x±

L
and charge +1 scattering with a state y±

L
with charge M = m ≥ 1. From charge

conservation we know that we can only produce a state with charge M = m+ 1, whose
spectral parameters we denote by z±

L
. This is illustrated in figure 6a. We find that the

spectral parameters satisfy either

x−
L

= y+
L
, z+

L
= x+

L
, z−

L
= y−

L
, (2.23)

or
x+

L
= y−

L
, z+

L
= y+

L
, z−

L
= x−

L
. (2.24)

8Note that the absolute value of M appears on the right-hand side of equation (2.22) since the u(1)
eigenvalue can be both positive and negative. In AdS5 the corresponding charge is non-negative since
it labels the su(2) charge of a highest weight state.
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Instead if we start with a fundamental L excitation (x±
L

, +1) and an R bound state
(y±

R
, −m < −1), we can produce an R excitation with z±

R
and charge −m + 1 < 0, as

illustrated in figure 6b with

x+
L

=
1

y+
R

, z+
R

=
1

x−
L

, z−
R

= y−
R
, (2.25)

or

x−
L

=
1

y−
R

, z+
R

= y+
R
, z−

R
=

1

x+
L

. (2.26)

Using these basic vertices we can construct box diagrams similar to those of AdS5 × S5.
From an algebraic point of view it would appear that we can consider solutions

given in equations (2.25), (2.25) also in the case m = 1. In this case the outgoing
state z±

R
would have mass 1 − m = 0. Such a hypothetical solution would correspond

to a massless bound state. String theory on AdS3 × S3 × T4 does contain a massless
multiplet. However, it is not possible to identify the hypothetical massless bound states
with the massless multiplet, for two reasons. Firstly, the massless modes arising from T4

form a doublet under an auxiliary su(2)◦ which commutes with the centrally extended
psu(1|1)2 algebra [13,14]. There is no such symmetry acting on the hypothetical massless
bound states. Secondly, the massless bound state has opposite statistics to the physical
massless excitations [13, 14]. In particular, if we consider the full centrally extended
psu(1|1)4 algebra, the highest weight state of the hypothetical massless bound state
multiplet would be bosonic.9 On the other hand the physical massless representation
has a fermionic highest weight state [13,14]. Because of this, we require the S matrix to
not have poles that would correspond to such massless bound states.

Similarly, the representation theory allows for an M = 1 “bound state” which would
appear in the tensor product between a T4 massless mode and an M = 1 massive
excitation. This process is closely related to the one discussed in the previous paragraph,
and again leads to a representation with statistics which is opposite of that of the normal
fundamental massive excitations [19]. We will therefore also require the S matrix between
a massive and a massless excitation to have no corresponding poles.

Finally, we note that the representation theory does not allow for a bound state in
the scattering between two massless excitations [17, 18].

With the above remarks taken into account, the set of vertices we find in AdS3×S3×T4

is closely related those of AdS5 × S5. In summary, we find10

• An S channel pole in the massive LL and RR sectors, located at x+
1 = x−

2 , as
illustrated in figure 7a.

• A T channel pole in the massive LR and RL sectors, located at x+
1 = 1/x−

2 , as
illustrated in figure 7b.

• Double poles in all sectors involving only massive excitations, i.e., LL, LR, RL and
RR, located at

u1 − u2 = −
2in

h
, n ∈ Z, n > 1. (2.27)

9As we show in appendix B.3, the highest weight states of LR bound states have the same statistics
for all values of bound state number M - they are in fact bosons in the full psu(1|1)4 algebra.

10 In appendix B we give explicit matrix realisations of the corresponding bound state representations.
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x±
L

y±
L

y±
L

x±
L

z±
L

M
=

+
1

M
=

+
1

M
=

+
2

M
=

+
1 M

=
+

1

x−
L

= y+
L

z+
L

= x+
L

z−
L

= y−
L

(a) S channel

x±
L

y±
R

y±
R

x±
L

z±
L

M
=

+
1

M
=

−
1

M
=

+
1

M
=

−
1

M
=

+
2

x−
L

= 1/y+
R

z+
L

= x+
L

z−
L

= 1/y−
R

(b) T channel

Figure 7: S and T channel diagrams for AdS3. The diagrams are showing the LL and LR
processes, respectively. The diagrams for RR and RL, take exactly the same form.

Let us see in more detail how the double poles appear. The relevant diagrams for LL
scattering are shown in figures 8b and 8a. The external legs are the same in the two
diagrams, while the bound states in the loop run in the opposite directions. For each
diagram there are two ways to assign the four vertices.11 For diagram 8a we find

x+
1L

=
1

z+
1R

= y+
2L
, x−

1L
=

1

z+
2R

=
1

y+
1R

, x+
2L

=
1

z−
1R

=
1

y−
1R

, x−
2L

=
1

z−
2R

= y−
2R
, (2.28)

or

x+
1L

=
1

z−
2R

=
1

y−
1R

, x−
1L

=
1

z−
1R

= y−
2L
, x+

2L
=

1

z+
2R

= y+
2L
, x−

2L
=

1

z+
1R

=
1

y+
1R

, (2.29)

which leads to

u1 − u2 = +
2in

h
, or u1 − u2 = −

2in

h
. (2.30)

Since we assume that there is no vertex involving two massive and one massless excita-
tion, we get the condition n > 1. As before, we obtain a physical pole by demanding
that the imaginary part of the momentum of the excitation x±

1L
is positive, which selects

the second solution as indicated in equation (2.27).12

Similarly, demanding that diagram 8b leads to a physical pole leads to

x+
1L

= z−
1L

=
1

y−
2R

, x−
1L

= z−
2L

= y−
1L
, x+

2L
= z+

1L
= y+

1L
, x−

2L
= z+

2L
=

1

y+
2R

, (2.31)

from which we again obtain the condition (2.27).

11 For each vertex we found two solution to the energy, momentum and charge conservation, so à
priori there are 16 possible combinations for the box diagrams in question. However, all but two lead
to lead to over constrained sets of equations.

12 To see this we note that ∂pu(p) < 0 for real momentum p. Writing u(p+ iq)−u(p− iq) ≈ 2iq∂pu(p)
we find that the solution with a negative imaginary part of u1 − u2 corresponds to the physical pole.
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+
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(a)

x±
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M
=

+
1 M

=
+

1

M
=
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+

1
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+
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(b)

x±
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x±
2R

x±
2R

x±
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z±
1L

y±
2R

z±
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y±
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M
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+
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−
1
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+

1
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+
n

M
=

−
n

M
=n−1

M
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(c)

x±
1L

x±
2R

x±
2R

x±
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z±
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y±
2L

z±
2R

y±
1R

M
=

+
1

M
=

−
1

M
=

−
1 M

=
+

1

M
=

−
n

M
=

+
n

M
=−n−1

M
=−n+1

(d)

Figure 8: Box diagrams for LL and LR scattering leading to double poles in the S matrix.
We indicate explicitly the masses M of the excitations, with each diagram corresponding to a
family of processes labeled by an integer n > 1.

Diagrams 8c and 8d give rise to double poles in the LR S matrix. Physical poles are
obtained when

x+
1L

= z−
1L

=
1

y−
2R

, x−
1L

= z−
2L

= y−
1L
,

1

x+
2R

= z+
2L

=
1

y+
2R

,
1

x−
2R

= z+
1L

= y+
1L
, (2.32)

and

x+
1L

=
1

z−
2R

=
1

y−
1R

, x−
1L

=
1

z−
1R

= y−
2L
,

1

x+
2R

=
1

z+
1R

=
1

y+
1R

,
1

x−
2R

= z+
2L

=
1

y+
2L

, (2.33)

respectively. Again these two sets of equations give rise to the condition (2.27).
In the next section we will show that this set of simple and double poles is consistent

with the dressing phases proposed in [16–18].
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3 Comparison with the AdS3 dressing phase

The symmetries of the theory determined the world-sheet S matrix of AdS3×S3×T4 up to
four dressing factors: σ••, σ̃••, σ•◦, σ◦◦ all of which satisfy known crossing equations [13,
14, 19]. The former two dressing factors enter the scattering of massive LL and LR
excitations, respectively, while the latter two involve mixed-mass and massless scattering.
It is convenient to express the dressing factors as phases, for example

σ••(p1, p2) = eiθ••(p1,p2), (3.1)

with similar expressions for the other σs. From the structure of higher-conserved charges
in the system, it is known that phases θ•• can be decomposed as [20]

θ•• = χ(x+
1 , x

+
2 )− χ(x−

1 , x
+
2 )− χ(x+

1 , x
−
2 ) + χ(x−

1 , x
−
2 ). (3.2)

Analogous decompositions hold for the other θs. The χ satisfy crossing equations that
follow from the σ ones but are simpler. Solutions for χ•• and χ̃•• were found in [16] and
in the physical |x±

i | > 1 region they take the form

χ••(x1, x2) = χBES(x1, x2) + 1
2

(
−χHL(x1, x2) + χ−(x1, x2)

)
, (3.3)

χ̃••(x1, x2) = χBES(x1, x2) + 1
2

(
−χHL(x1, x2)− χ

−(x1, x2)
)
, (3.4)

where χBES is the Beisert-Eden-Staudacher (BES) phase [10], which can be expressed as
a double-contour integral [8]

χBES(x1, x2) = i
∮
dw1

2πi

∮
dw2

2πi

1

x1 − w1

1

x2 − w2
log

Γ[1 + ih
2

(w1 + 1/w1 − w2 − 1/w2)]

Γ[1− ih
2

(w1 + 1/w1 − w2 − 1/w2)]
,

(3.5)
and

χHL(x1, x2) =
( ∫
x −

∫

x

)
dw

4π

1

x1 − w
(log (x2 − w)− log (x2 − 1/w)) , (3.6)

χ−(x1, x2) =
( ∫
x −

∫

x

)
dw

8π

1

x1 − w
log

[
(x2 − w)

(
1−

1

x2w

)]
− (x1 ←→ x2) .

(3.7)

We see that χ•• and χ̃•• are different from the AdS5× S5 BES phase, but that the mod-
ification is relatively simple and involves only terms at the Hernández-López order [21].
Compared to the BES phase, these extra terms have a simple analytic structure, which
we will analyse later on in this section.

3.1 DHM double poles from the BES dressing factor

First, let us briefly recall how DHM double poles appear in the BES phase.13 At the level
of the χ, crossing from the physical |xi| > 1 region amounts to analytically continuing xi

13See [22] for a review of the dressing factor and its analytic structure based on the elegant deriva-
tion [23].
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inside the unit disc. In doing that, xi moves from one side of the contours that define the
χs above to the other. The Sochocki-Plemelj theorem then dictates that the analytically
continued χ pick up a term proportional to the residue of the integrand. For the BES
phase inside the singly-crossed region we find

χBES
cr (x1, x2) =χBES(x1, x2) + i

∮ dw2

2πi

1

x2 − w2
log

Γ
[
1 + ih

2
(x1 + 1

x1
− w2 −

1
w2

)
]

Γ
[
1− ih

2
(x1 + 1

x1
− w2 −

1
w2

)
] , (3.8)

where χBES
cr is the analytic continuation of the integral in equation (3.5) into the region

|x1| < 1. The first term on the right hand side above is given by the integral in equa-
tion (3.5) now evaluated for |x1| < 1. The second term is needed to ensure continuity
across the unit circle |x1| = 1 since the integral (3.5) is discontinuous there. This term
has important physical consequences: it introduces new cuts inside the unit disc, see for
example Figure 2 of [24]. To see this explicitly, we integrate it by parts to get

h
∮
dw2

2πi

(
1− 1

w2
2

)
log(x2 − w2)

[
ψ
(
1 + ih

2
(x1 + 1

x1
− w2 −

1
w2

)
)

+ ψ
(
1− ih

2
(x1 + 1

x1
− w2 −

1
w2

)
)]
,

(3.9)

where ψ(x) ≡ Γ′(x)/Γ(x) is the digamma function. Since ψ(x) has poles for x a negative
integer, the last term on the right hand side of equation (3.8) has cuts when

x1 + 1
x1
− w2 −

1
w2

= 2i
h
n, n ∈ Z , n 6= 0 (3.10)

The above equations are invariant under w2 →
1

w2
, hence each one gives rise to two poles

at antipodal points of the unit circle spanned by w2. Analytically continuing through
one of these cuts requires us to further modify the expression for χBES

cr . In particular, as
a consequence of the Sochocki-Plemelj theorem, the analytic continuation through the
n-th cut of the term in equation (3.9) modifies the integral expression for χBES

cr by an
extra term

− i sign(n) log
(
u(x2)− u(x1) + in

)
, (3.11)

as reviewed in equation (3.23) of [22]. This term leads to double poles and zeros in the
S matrix dressing factor σ2 = e2iθ whose location [8] agrees precisely with those found
in section 2.1.2.14

3.2 Analytic structure of χ
•• and χ̃

••

The dressing phases χ•• and χ̃•• are defined in the physical region |xi| > 1 in equa-
tion (3.4). Their continuation inside the unit circle was analysed in [16]. There it was

14In the analysis leading up to equation (3.11), we were already in the x1 crossed region, and as such
we should not cross the n = 1 cut in (3.10).
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shown that the HL-order terms after crossing in x1 take the form15

χ−
cr(x1, x2) = χ−(x1, x2)−

i

2
log
[
(x2 − x1)

(
1− 1

x1x2

)]
, (3.12)

χHL
cr (x1, x2) = χHL(x1, x2)−

i

2
log

x2 − x1

x2 − 1/x1
. (3.13)

The first terms on the right hand side of the above equations are given by the integrals
in (3.6) and (3.7), respectively, now evaluated with |x1| < 1. The final terms in the above
two equations modify the dressing factors e2iχ••

and e2iχ̃••

that enter the S matrix by a
rational function of xi. Dropping terms dependent on x2 only, which do not contribute
to the final expressions for θ, the dressing factors in the x1-crossed region are

e2iχ••
cr =

(
x2 −

1

x1

)
e2iχ••

, e2iχ̃••
cr =

1

x2 − x1
e2iχ̃••

. (3.14)

We see that the analytic structure inside the unit circle |x1| < 1 is determined by
χBES as discussed in the previous sub-section. The HL-order terms χ−

cr and χHL
cr given

in equations (3.12) and (3.13), do not introduce any new cuts and lead to analytic

modifications of the dressing factor σ2
BES. This shows that (σ••)2 and (σ̃••)2, the massive

dressing phases of the R-R AdS3× S3×T4 S matrix, have double poles and zeros whose
location (3.11) is the same as that of the DHM double poles and zeros in AdS5 × S5.

3.3 Analytic structure of χ
◦• and χ

◦◦

In [17, 18, 25], expressions for χ◦• and χ◦◦ were proposed

θ◦•(x1, x2) =
[
θAFS(x1, x2) + 1

2
θHL(x1, x2)

]

mx=0, my=1
, (3.15)

θ◦◦(x1, x2) =
[

1
2
θHL(x1, x2)

]

mx=my=0
. (3.16)

In the physical region, the HL-order terms are given by deforming the contour of inte-
gration in equation (3.6) to the interval [−1, 1] as described in detail in section 2.3.3
of [18], while θAFS is constructed from

χAFS(x1, x2) = 1
x1
− 1

x2
+
(
x2 + 1

x2
− x1 −

1
x1

)
log

(
1− 1

x1x2

)
. (3.17)

In massless kinematics the AFS-order term is trivial under crossing and so is a potential
CDD factor, whose presence was not excluded in [17,18]. In [25], however, it was shown
that such a term cannot be written in difference form in terms of the rapidity variable
γ ≡ log tan(p/4) introduced in [26]. As a result, we do not include the massless AFS
term.

Analytically continuing the HL-order term to the crossed region modifies the dress-
ing factors (σ◦•)2 and (σ◦◦)2 by rational terms, entirely analogously to equation (3.14).

15See equations (A.7) and (A.25) of [16].
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Explicitly, from equations (2.47) and (2.48) in [18], we find that the mixed-mass dressing
factor in the massless crossed region is given by

e2iθ◦•
cr (x1 , x±

2
) =

(x1x
+
2 − 1)(x1 − x

−
2 )

(x1 − x
+
2 )(x1x

−
2 − 1)

e2iθ◦•(x1 , x±

2
), (3.18)

where x1 ≡ x+
1 for the massless variable. Similarly, in the massive crossed region we find

e2iθ•◦
cr (x±

1
, x2) =

(x+
1 x2 − 1)(x−

1 − x2)

x2
2(x

+
1 − x2)(x

−
1 x2 − 1)

e2iθ•◦(x±

1
, x2), (3.19)

where now x2 ≡ x+
2 is the massless variable.16

From the above equations we see that the mixed-mass dressing factors have a much
simpler analytic structure than the massive dressing factors. As we discussed in sec-
tion 3.2, the analytic structure of χ•• and χ̃•• in the crossed region is substantially
modified by the second term on the right hand side of equation (3.8). It is this more
complicated analytic structure that leads to the DHM double poles in the massive dress-
ing phases. The mixed mass dressing factor on the other hand is modified only by
rational terms in the crossed region. As a result, it gives no new cuts or double poles, in
agreement with the dynamical arguments presented in section 2.

The massless dressing factor in the x1-crossed region takes the form

e2iθ◦◦
cr (x1 , x2) =

(
x1x2 − 1

x1 − x2

)2

e2iθ◦◦(x1 , x2). (3.20)

We again see that no new cuts are introduced.

4 Conclusions

In this paper we have investigated the analytic structure of the exact worldsheet S
matrix of strings on AdS3 × S3 × T4 with R-R flux. The bound states of the theory in
the semi-classical regime are given by dyonic giant magnon solutions on S3 much like in
AdS5×S5 [7]. However, the reduced dimensionality of the sphere in the AdS3 background
leads to two types of dyonic magnons, which we labelled L and R. These arise as bound
states of M = 1 and M = −1 fundamental excitations, respectively and transform in
short representations of the off-shell symmetry algebra of the gauge-fixed theory [16]. As
in AdS5, it is expected that no other bound states exist.

The presence of bound states in the physical spectrum of a theory leads to poles and
zeros in the S matrix. We showed that in the R-R AdS3×S3×T4 background the bound
states require simple and double poles, generalising the AdS5 × S5 analysis of [8]. Using
Landau diagrams, we determined the location of the simple poles in equation (2.16)
and (2.14) and the double poles in equation (2.27). We then showed that the exact
S matrix proposed for this theory in [13, 14] together with the dressing factors found

16To similify the notation we have always crossed in the first argument of the dressing factor and so
considered θ◦• and θ•◦, respectively for the two types of mixed-mass crossed regions.
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in [16–18] has precisely the expected simple and double poles. The location of the simple
poles had already been checked in [16], since this essentially constitutes a consistency
check on the solutions of the crossing equations.

The location of DHM double poles places a much more stringent restriction on the S
matrix. As we have shown in Appendix A one can find minimal solutions of the crossing
equations (see equation (A.4)) by judicious normalization choices of the rational part
of the S matrix (A.1). The resulting dressing factors are independent of the coupling
constant h, in other words come in at the Hernández-López order [21] and have the
correct simple poles and zeros. However, due to their relatively simple analytic structure
(essentially these are dilogarithms), they do not have any DHM double poles. One then
needs to add CDD-type homogeneous solutions of the crossing equations to obtain these
double poles as in equation (A.5). Given the intricate analytic structure of these homo-
geneous solutions, it would have been very challenging to find them a priori, providing
further motivation for normalising the rational part of the S matrix as in [14].

In addition to the M = ±1 excitations, the AdS3 worldsheet theory contains massless
modes [27], which do not form bound states [16]. As discussed, in section 2.2, the
kinematics of the short psu(1|1)4

c.e. multiplets does allow for massless bound states to
form from L and an R fundamental excitations in the T channel. In the physical theory
these would have to be interpreted as fundamental M = 0 excitations. As we showed,
such kinematically allowed massless bound states need to be excluded since they have
the wrong statistics and do not carry su(2)◦ charges expected of fundamental massless
excitations.

The AdS3 × S3 × T4 S matrix has dressing factors associated to mixed mass and
massless scattering processes. Solutions of the corresponding crossing equations were
proposed in [17, 18] and an elegant form of the massless dressing factor, based on the γ
rapidity [26], was found in [25, 28].17 We showed that the analytic structure of massless
and mixed mass dressing factors is much simpler than of the massive ones. They closely
resemble the solutions discussed in Appendix A with dilogarithm-like cuts and no simple
poles or zeros in the physical strip, nor any DHM poles, in agreement with the Landau-
diagram expectations.

In summary, the analytic properties of the R-R AdS3 × S3 × T4 S matrix combine
features of two very different types of integrable theories. On the one hand, the massive
S matrix exhibits an intricate analytic structure typical of non-local spin-chains that
appear in higher-dimensional holographic models [10]. On the other hand, the mixed-
mass and massless S matrices resemble closely the more conventional analytic properties
of relativistic 1+1 dimensional integrable models [29]. It seems remarkable to us that it
is possible to combine these into one coupled integrable system.

Integrability of string theory investigated in the present paper is preserved under a
number of deformations. One can turn on moduli [30] or NS-NS flux [15,31] or consider
the family of AdS3 × S3 × S3 × S1 geometries [11, 32] all of which are exact integrable
string theory backgrounds. We therefore expect these theories to also exhibit the striking
interplay of non-local spin chain and integrable field theory analyticity that we found in

17Remarkably, the massless dressing factor [17, 18] turns out to be exactly the same as the famous
soliton-anti-soliton scattering in sine Gordon theory found by Zamolodchikovs [29] at β2 = 16π/3.
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this paper. We intend to examine this in the near future.
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A On minimal solutions of crossing

Imposing unitarity and LR symmetry, the minimal normalisation of the AdS3× S3 ×T4

S matrix is given by

SLL

0 (p1, p2) =

(
x+

1

x−
1

x−
2

x+
2

)1/2
x−

1 − x
+
2

x+
1 − x

−
2

ΣLL

p1p2
,

SLR

0 (p1, p2) =

(
x−

1

x+
1

x−
2

x+
2

)1/2 1− 1
x+

1
x+

2

1− 1
x−

1
x−

2

ΣLR

p1p2
,

SRL

0 (p1, p2) =

(
x+

1

x−
1

x+
2

x−
2

)1/2 1− 1
x−

1
x−

2

1− 1
x+

1
x+

2

ΣRL

p1p2
,

SRR

0 (p1, p2) =

(
x−

1

x+
1

x+
2

x−
2

)1/2
x+

1 − x
−
2

x−
1 − x

+
2

ΣRR

p1p2
.

(A.1)

The remaining phases ΣIJ
p1p2

satisfy the crossing equations18

ΣLL

p1p2
ΣRL

p̄1p2
=
x+

1 − x
+
2

x+
1 − x

−
2

x−
1 − x

−
2

x−
1 − x

+
2

, ΣLL

p̄1p2
ΣRL

p1p2
=

1− 1
x+

1
x−

2

1− 1
x+

1
x+

2

1− 1
x−

1
x+

2

1− 1
x−

1
x−

2

, (A.2)

which have solution of the form

ΣLL

p1p2
= e−2iθLL(x±

1
,x±

2
), ΣLR

p1p2
= e−2iθLR(x±

1
,x±

2
), (A.3)

18 These crossing equations are minimal in the sense that the right hand side is the square root of the
right hand side of the double crossing equations, which means that the solution is the simplest solution
that solves the double crossing equation.
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with

χLL(x, y) =
1

2

(
χHL(x, y) + χ−(x, y)

)
, χLR(x, y) =

1

2

(
χHL(x, y)− χ−(x, y)

)
. (A.4)

Following the analysis of [16], χLL(x, y) is regular both at x = y and x = 1/y, while
χLR(x, y) has a simple zero at x = 1/y. Taking this into account we see that SLL

0 (p1p2)
has the expected S channel pole at x+

1 = x−
2 and SLR

0 (p1, p2) has the expected T channel
pole at x+

1 = 1/x−
2 .

However, we do not have any of the expected DHM type double poles. Hence we are
led to search for a phase which provides those poles and which solves the homogeneous
crossing equation. In the pure RR case, such a solution is given by

Σhom
p1p2

=

(
x+

1

x−
1

x−
2

x+
2

)1/2 1− 1
x−

1
x+

2

1− 1
x+

1
x−

2

σ−2
even(p1, p2), (A.5)

where
σeven(p1, p2) = σBES(p1, p2)σ

−1
HL(p1, p2) (A.6)

is the part of the BES phase that is invariant under double crossing. Once this homoge-
neous phase is included we arrive at the normalisation of [14], which we use in the main
text.

B Matrix representations

For completeness, in this section we write down explicit two-particle representations
in the massive LL and LR sectors of AdS3, and show how short subrepresentations
corresponding to potential bound states appear. We follow the conventions of [14] and
work in the spin-chain frame.

B.1 Fundamental representations

The L representation acts on the basis
(
|φL

p〉 , |ψ
L

p〉
)
, and the supercharges take the form

QL = ηp

(
0 0
1 0

)
, QR =

ηp

x−
p

(
0 −1
0 0

)
,

Q̄L = ηp

(
0 1
0 0

)
, Q̄R =

ηp

x+
p

(
0 0
−1 0

)
,

(B.1)

where

ηp =

√
ih

2
(x−

p − x
+
p ). (B.2)

Similarly, the R representation acts on the basis
(
|ψR

p 〉 , |φ
R

p〉
)
, and the supercharges take

the form

QL =
ηp

x−
p

(
0 0
−1 0

)
, QR = ηp

(
0 1
0 0

)
,

Q̄L =
ηp

x+
p

(
0 −1
0 0

)
, Q̄R = ηp

(
0 0
1 0

)
.

(B.3)
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For real momentum p, both the L and R representations are unitary.
In the following subsections we will consider states created as tensor products of

fundamental representations. It will then be important to take into account the non-
trivial coproduct as discussed in [14, 19].

B.2 LL bound states

Let us start working in the basis
(
|φL

p1
φL

p2
〉 , |φL

p1
ψL

p2
〉 , |ψL

p1
φL

p2
〉 , |ψL

p1
ψL

p2
〉
)
, and apply a

similarity transformation using the matrix

U =
1

√
η2

p1
+ η2

p2




√
η2

p1
+ η2

p2
0 0 0

0

√
x+

p1

x−
p1

ηp2
−ηp1

0 0

0 ηp1

√
x−

p1

x+
p1

ηp2
0

0 0 0
√
η2

p1
+ η2

p2




. (B.4)

In the new basis the L supercharges are

QL =
√
η2

p1
+ η2

p2




0 0 0 0
1 0 0 0
0 0 0 0
0 0 −1 0


 , Q̄L =

√
η2

p1
+ η2

p2




0 1 0 0
0 0 0 0
0 0 0 −1
0 0 0 0


 , (B.5)

and the R supercharges are

Q̄R =
ηp1
ηp2

x+
p1
x+

p2

√
η2

p1
+ η2

p2




0 0 0 0
−x+

p2

ηp1

ηp2

− x−
p1

ηp2

ηp1

0 0 0
√

x+
p1

x−
p1

(x−
p1
− x+

p2
) 0 0 0

0

√
x+

p1

x−
p1

(x−
p1
− x+

p2
) x+

p2

ηp1

ηp2

+ x−
p1

ηp2

ηp1

0




,

QR =
ηp1
ηp2

x−
p1
x−

p2

√
η2

p1
+ η2

p2




0 −x−
p2

ηp1

ηp2

− x+
p1

ηp2

ηp1

√
x−

p1

x+
p1

(x+
p1
− x−

p2
) 0

0 0 0

√
x−

p1

x+
p1

(x+
p1
− x−

p2
)

0 0 0 x−
p2

ηp1

ηp2

+ x+
p1

ηp2

ηp1

0 0 0 0




.

(B.6)
For real p1 and p2 we have (x+

p1
)∗ = x−

p1
and (x+

p2
)∗ = x−

p2
, so that U † = U is unitary and

Q†
L

= Q̄L and Q†
R

= Q̄R.

Symmetric BPS state. Let us now set

x+
p1

= X+
p , x−

p2
= X−

p , x−
p1

= x+
p2

= Xp. (B.7)
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The supercharges are then

QL = ηp




0 0 0 0
1 0 0 0
0 0 0 0
0 0 −1 0


 , Q̄L = ηp




0 1 0 0
0 0 0 0
0 0 0 −1
0 0 0 0


 , Q̄R =

ηp

X+
p




0 0 0 0
1 0 0 0
0 0 0 0
0 0 −1 0


 ,

(B.8)
and

QR = −
ηp

X−
p




0 1
√(

1
X+

p
− 1

Xp

)
(X−

p −Xp) 0

0 0 0
√(

1
X+

p
− 1

Xp

)
(X−

p −Xp)

0 0 0 −1
0 0 0 0




. (B.9)

Since (x+
p1

)∗ and (x+
p2

)∗ are no longer equal to x−
p1

and x−
p2

, we no longer have that Q†
R

equals Q̄R. However, if we consider the closed subalgebra generated by the upper left
2× 2 block of each matrix we have

QL → ηp

(
0 0
1 0

)
, QR →

ηp

X−
p

(
0 −1
0 0

)
,

Q̄L → ηp

(
0 1
0 0

)
, Q̄R →

ηp

X+
p

(
0 0
−1 0

)
.

(B.10)

This is just a short representation with momentum p.

Anti-symmetric BPS state. If we instead set

x+
p2

= X+
p , x−

p1
= X−

p , x+
p1

= x−
p2

= Xp (B.11)

we find

QL = ηp




0 0 0 0
1 0 0 0
0 0 0 0
0 0 −1 0


 , Q̄L = ηp




0 1 0 0
0 0 0 0
0 0 0 −1
0 0 0 0


 , QR =

ηp

X−
p




0 −1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


 ,

(B.12)
and

Q̄R =
ηp

X+
p




0 0 0 0
1 0 0 0√(

1
X−

p
− 1

Xp

)
(X+

p −Xp) 0 0 0

0
√(

1
X−

p
− 1

Xp

)
(X+

p −Xp) −1 0




. (B.13)

21



In this case the invariant submodule sits in the lower right corner where the charges are
give by

QL → ηp

(
0 0
−1 0

)
, QR →

ηp

X−
p

(
0 1
0 0

)
,

Q̄L → ηp

(
0 −1
0 0

)
, Q̄R →

ηp

X+
p

(
0 0
1 0

)
,

(B.14)

which, up to an irrelevant overall sign, is the same two-dimensional L representation we
saw above.

B.3 LR bound states

Let us now consider the LR tensor product. We start with the basis ( |φL

p1
φR

p2
〉, |φL

p1
ψR

p2
〉,

|ψL

p1
φR

p2
〉, |ψL

p1
ψR

p2
〉), and apply a similarity transformation using

U =
1

√
η2

p1
+

η2
p2

x+
p2

x−
p2




√
η2

p1
+

η2
p2

x+
p2

x−
p2

0 0 0

0 −
√

x−
p1

x+
p1

ηp2

x+
p2

−ηp1
0

0 ηp1
−
√

x−
p1

x+
p1

ηp2

x−
p2

0

0 0 0
√
η2

p1
+

η2
p2

x+
p2

x−
p2

.




(B.15)

Note that U is unitary for real p1 and p2. The supercharges in the new basis are

QL =

√√√√η2
p1

+
η2

p2

x+
p2
x−

p2




0 1 0 0
0 0 0 0
0 0 0 −1
0 0 0 0


 , Q̄L =

√√√√η2
p1

+
η2

p2

x+
p2
x−

p2




0 0 0 0
1 0 0 0
0 0 0 0
0 0 −1 0


 , (B.16)

and

Q̄R =
ηp1
ηp2√

η2
p1

+
η2

p2

x+
p2

x−
p2




0 1
x+

p1

ηp1

ηp2

+
x−

p1

x+
p1

1
x+

p2

ηp2

ηp1

√
x−

p1

x+
p1

(
1− 1

x−
p1

x−
p2

)
0

0 0 0

√
x−

p1

x+
p1

(
1− 1

x−
p1

x−
p2

)

0 0 0 − 1
x+

p1

ηp1

ηp2

−
x−

p1

x+
p1

1
x+

p2

ηp2

ηp1

0 0 0 0




,

QR =
ηp1
ηp2√

η2
p1

+
η2

p2

x+
p2

x−
p2




0 0 0 0
1

x−
p1

ηp1

ηp2

+
x+

p1

x−
p1

1
x−

p2

ηp2

ηp1

0 0 0
√

x+
p1

x−
p1

(
1− 1

x+
p1

x+
p2

)
0 0 0

0

√
x+

p1

x−
p1

(
1− 1

x+
p1

x+
p2

)
− 1

x−
p1

ηp1

ηp2

−
x+

p1

x−
p1

1
x−

p2

ηp2

ηp1

0




.

(B.17)
Again this representation is unitary for real p1 and p2.
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Symmetric BPS state. Let us set

x+
p1

=
1

x+
p2

= Xp, x−
p1

= X−
p , x−

p2
=

1

X+
p

. (B.18)

We get

QL = ηp




0 1 0 0
0 0 0 0
0 0 0 −1
0 0 0 0


 , Q̄L = ηp




0 0 0 0
1 0 0 0
0 0 0 0
0 0 −1 0


 , QR =

ηp

X−
p




0 0 0 0
−1 0 0 0
0 0 0 0
0 0 1 0


 ,

(B.19)
and

Q̄R = ηp




0 − 1
X+

p

√(
1

X+
p
− 1

X

)(
1
X
− 1

X−
p

)
0

0 0 0

√(
1

X+
p
− 1

X

)(
1
X
− 1

X−
p

)

0 0 0 1
X+

p

0 0 0 0




. (B.20)

The upper left block reduces to a short fundamental L representation.
Instead of the condition (B.18) we can also set

x+
p1

=
1

x+
p2

=
1

Xp

, x−
p1

=
1

X+
p

, x−
p2

= X−
p , (B.21)

which results in a short R sub-representation. Formally, the conditions (B.18) and (B.21)
are related by a simple relabelling X±

p → 1/X∓
p , Xp → 1/Xp. However, the physical

interpretation is different. In particular, if we assume that the bound state lives in the
physical region |X±

p | > 1, then the L sub-representation has |x±
p1
| > 1 and |x±

p2
| < 1,

while the R sub-representation has |x±
p1
| < 1 and |x±

p2
| > 1.

Anti-symmetric BPS state. If we instead set

x−
p1

=
1

x−
p2

= Xp, x+
p1

= X+
p , x+

p2
=

1

X−
p

. (B.22)

We get

QL = ηp




0 1 0 0
0 0 0 0
0 0 0 −1
0 0 0 0


 , Q̄L = ηp




0 0 0 0
1 0 0 0
0 0 0 0
0 0 −1 0


 , Q̄R =

ηp

X+
p




0 −1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


 ,

and

QR = ηp




0 0 0 0
− 1

X−
p

0 0 0
√(

1
X+

p
− 1

X

)(
1
X
− 1

X−
p

)
0 0 0

0

√(
1

X+
p
− 1

X

)(
1
X
− 1

X−
p

)
1

X−
p

0




. (B.23)
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The lower right block reduces to a fundamental L sub-representation. As above, we find
an R representation instead if we send X±

p → 1/X∓
p and Xp → 1/Xp.

C Spin-chain bound states

As a toy model for bound states let us consider a one-dimensional infinite lattice, with
a nilpotent creation operator J†

n which creates an excitation on site n, and short-range
interactions. A wave function describing two excitations with momentum p1 and p2, with
p1 > p2 takes the form

Ψ(p1, p2) = A(p1, p2)
∑

n1<n2

(
ei(p1n1+p2n2) + S(p1, p2) e

i(p1n2+p2n1)
)

J†
n1

J†
n2
. (C.1)

In the above expression, the first term describes an incoming wave and the second term
an outgoing wave. A(p1, p2) is a normalisation factor and S(p1, p2) gives the scattering
phase. We now continue the momenta to complex values and introduce

p1 =
p

2
+ iq, p2 =

p

2
− iq, m =

n2 + n1

2
, r =

n2 − n1

2
. (C.2)

Since n1 < n2 we have that r > 0. The wave function can now be written as19

Ψ(p1, p2) = A(p1, p2)
∑

m,r

eipm
(
e2qr + S(p1, p2)e

−2qr
)

J†
n1

J†
n2
. (C.3)

If the real part of q is non-zero, either the first or second term in the above sum diverges
for large r.

• If Re q > 0, the incoming wave is divergent. In order to have a normalisable wave
function we need to set A(p1, p2) = 0. However, this leads to a vanishing wave
function unless S(p1, p2) has a pole at this location.

• If Re q < 0, the outgoing wave is divergent, and the wave function can only be
normalisable if S(p1, p2) = 0.

In either case, the resulting bound state wave function takes exactly the same form,20

and describes a localised wave packet moving with momentum p.
From the above discussion we conclude that a simple pole of the scattering phase can

correspond to a physical bound state only if the imaginary part of the momentum of the
first particle is positive.

Note that the picture of a localised wave packet consisting of two excitations travelling
with the same momentum is simplest when p and q are both real. Let us consider the

19To be fully correct one needs to be careful about the summation ranges in the following expression.
However these subtleties play no role in the simple discussion here.

20Switching the sign of q exchanges p1 and p2 and hence the incoming and outgoing part of the wave
function. In this simple example we consider two identical excitations, which means that the two bound
states are identical. This would not necessarily be the case if we considered a model with excitations
carrying additional quantum numbers.
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two-particle bound state in the LL sector of AdS3 discussed in the main text. The two
excitations are described by x± and y±, satisfying

x+ +
1

x+
− x− −

1

x−
=

2i

h
= y+ +

1

y+
− y− −

1

y−
(C.4)

and
x+ = y−, z+ = y+, z− = x−, (C.5)

where we introduced the parameters z± to describe the bound state. For real bound
state momentum p we can parametrise the bound state by

z± =
2 +

√
4 + 4h2 sin2 p

2

2h sin p
2

e±
ip

2 . (C.6)

Writing the momenta of the two fundamental excitations as

p1 = −i log
x+

x−
=
p

2
+ iq, p2 = −i log

y+

y−
=
p

2
− iq, (C.7)

we find that q is real for

h <
cos p

2

sin2 p
2

. (C.8)

As long as the coupling is small enough, q is purely real and all parameters x+ (and thus
y−) sits on the real line outside the unit circle. However, if we keep the momentum p
fixed and increase the coupling constant, x+ at some point hits the unit circle and move
off the real line, which means that q acquires an imaginary part.21 When this happens
the bound state momentum is no longer evenly divided between the two fundamental
excitations. However, the bound state condition discussed above still holds.
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AdS3 × S3 × T4 strings with Ramond-Ramond flux”, J. Phys. A49, 41LT03 (2016),
arxiv:1605.00518.

[18] R. Borsato, O. Ohlsson Sax, A. Sfondrini, B. Stefański, jr. and A. Torrielli, “On the
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[27] O. Ohlsson Sax, B. Stefański, jr. and A. Torrielli, “On the massless modes of the
AdS3/CFT2 integrable systems”, JHEP 1303, 109 (2013), arxiv:1211.1952.

[28] D. Bombardelli, B. Stefański and A. Torrielli, “The low-energy limit of AdS3/CFT2 and
its TBA”, arxiv:1807.07775.

[29] A. B. Zamolodchikov and A. B. Zamolodchikov, “Factorized S-matrices in two
dimensions as the exact solutions of certain relativistic quantum field models”,
Annals Phys. 120, 253 (1979).
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