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Abstract

In view of the fact that minimum charge and premium budget constraints are nat-

ural economic considerations in any risk-transfer between the insurance buyer and

seller, this paper revisits the optimal insurance contract design problem in terms of

Pareto optimality with imposing these practical constraints. Pareto optimal insur-

ance contracts, with indemnity schedule and premium payment, are solved in the

cases when the risk preferences of the buyer and seller are given by Value-at-Risk or

Tail Value-at-Risk. The effect of our constraints and the relative bargaining powers

of the buyer and seller on the Pareto optimal insurance contracts are highlighted.

Numerical experiments are employed to further examine these effects for some given

risk preferences.

Keywords: Bargaining power; Minimum charge; Optimal insurance contract design;

Pareto optimality; Premium budget; Proportional Hazard Transformation; Tail Value-

at-Risk; Value-at-Risk.
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1 Introduction

The optimal (re)insurance contract design problem studies the rationale underneath any decision,

including indemnity schedule and premium payment, made by the parties involved during the
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insurance risk-transfer. This is one of the most trending research areas in actuarial science over

the past decade and was pioneered by Borch (1960; [8]) and Arrow (1963; [1]). They studied

unilateral optimal insurance problems via optimizing the buyer’s variance and expected utility

respectively. A vast literature has been readdressing their proposed unilateral optimal insurance

problems via various objective functions in [6, 11, 14, 16, 17, 20, 31, 32, 34], premium principles

in [12, 15], practical constraints in [13, 23, 27, 28, 35, 36, 37], and more recently, heterogeneous

beliefs in [7, 18, 24], as well as background risks in [19]; see also a recent work [22], and the

references therein.

An insurance contract design decision should be bilateral, which is evidently a more realistic

approach as it takes into account the objectives of all insurance players. Indeed, Raviv (1979; [30])

proposed to seek the optimal insurance contract in terms of Pareto optimality, and the problem

has been revisited ever since. To name a few, Ludkovski and Young (2009; [29]) studied a multiple

agent Pareto optimal risk sharing problem with concave distortion risk measures and constraints;

Asimit et al. (2017; [2]) constructed the robust and Pareto optimal insurance contracts (see

also Asimit et al. (2019) in [5]); together with premium constraints, Asimit et al. (2018; [4])

numerically found the Pareto optimality; Asimit and Boonen (2018; [3]) characterized the Pareto

optimal insurance contracts as the optimal solutions of aggregate risk minimization problems;

under general model settings, Cai et al. (2017; [10]) provided the Pareto optimal insurance

contracts characterization and sufficient conditions for their existences; by utilizing the Neyman–

Pearson perspective developed by Lo (2017; [27]), under a general setting with distortion risk

measures, the Pareto optimal insurance contracts were explicitly solved by Jiang et al. (2018;

[26]) and Lo and Tang (2019; [28]).

This paper revisits the optimal insurance contract design problem in terms of Pareto op-

timality. On one hand, we consider a premium budget constraint of the buyer; such a budget

constraint has indeed been studied in unilateral optimal insurance design problems, such as Zheng

and Cui (2014; [35]), Lo (2017; [27]), and Cheung et al. (2019; [13]). On the other hand, this

paper considers a minimum charge constraint for the seller; such a minimum charge constraint

is well-justified for covering indirect costs of the seller due to the risk-transfer; this minimum

charge is a fairly general lower bound of the premium payment that imposes a non-negative risk

loading condition on the premium payment. In practice, the buyer should be the one who bears

all indirect costs, which include overhead and administrative expenses, in the up front premium,

so that the expected profit of the seller, after receiving the up front premium, settling the claim,

if any, and paying out these indirect costs, is still non-negative; otherwise, in a long run, the seller

will bankrupt. See, for example, Section 4.8.1 in [21] for its theoretical justification via copula;

see also [29]. This motivates us to incorporate these indirect costs into optimal insurance models

in this paper; specifically, the up front premium paid by the buyer to the seller is bounded below

by these total indirect costs; hence, our model is in line with practice that the buyer bears all

indirect costs, which do not add to the loss of the seller. Notably, this minimum charge constraint

has not been studied in the optimal insurance contract design literature, neither the unilateral
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nor the bilateral setting, except of [4]. However, only numerical methods are employed by Asimit

et al. (2018; [4]).

This paper is indeed the first work within the optimal insurance contract design literature to

address both minimum charge and premium budget constraints. We should mention that we dis-

cuss the Pareto optimal insurance contracts under the general setting, but closed-form solutions

are only given for some risk preferences due to some challenging derivations that will be recon-

sidered in the coming future. That is, explicit Pareto optimal insurance contracts are provided

when the buyer and seller risk preferences are given by Value-at-Risk (VaR) or Tail Value-at-Risk

(TVaR). For VaR, all Pareto optimal insurance contracts are explicitly solved, with complete

solutions being displayed to Table A.1 in Appendix A. The TVaR Pareto optimal insurance

contracts are shown to be a single-layer counterpart, which reduces the corresponding family of

fully non-linear and infinite dimensional optimization problems to that with finite dimensional

optimization problems, which further requires numerical programming. The Pareto optimality

for the case of TVaR is solved via modification arguments; see, for example, [12, 17].

Throughout this paper, the effect of the minimum charge, premium budget constraints, and

relative bargaining powers of the buyer and seller on the Pareto optimal insurance contracts

are specifically highlighted. The VaR closed-form Pareto optimal solutions lead to reasonable

interpretations; moreover, the TVaR and Proportional Hazard Transformation (PHT) preferences

require numerical optimization.

We finally conclude the introduction by comparing our work with [29], since a version of

minimum premium constraint is mentioned and employed therein. On one hand, [29] considered

general objective functions in concave distortion risk measures, together with n-agents, where

n was allowed to be greater than two. On the other hand, there are four key dimensions that

differentiate this paper from [29], which are inclusion of VaR, premium as decision, direct con-

straints on premium, and feasibility analysis. First, since the distortions in [29] are concave, their

models and solutions do not include VaR as an example; but, we explicitly solve below all Pareto

optimal insurance contracts for the case of VaR in Proposition 4.2, Theorem 4.1, and Table A.1

in Appendix A. Second, the premium in [29] is given by the expected value premium principle

of the indemnity loss; but, our premium is a pure decision variable that it is part of the opti-

mal solutions, which consist of a pair of disentangled premium constant and indemnity function.

Most importantly, the version of minimum premium constraint in [29] is induced from rationality

constraints, instead of their risk constraints further assumed in later sections; but, we impose

both the rationality constraints, and thus the version of minimum premium constraint as in [29],

as well as the direct constraints on the pure decision variable premium, by both minimum charge

and premium budget, throughout this paper. Finally, the admissible sets in [29] are assumed to

be non-empty; but, we carefully study below the feasibility issue due to the minimum charge and

premium budget constraints in Section 3.1, Proposition 4.1, and Proposition 4.3.

This paper is organized as follows. Section 2 reviews our general Pareto optimal insurance

contract design problem together. Section 3 investigates the feasibility and characterization of the
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Pareto optimality with Pareto optimal premium payments, and Section 4 solves the cases in which

the risk preferences are either VaR or TVaR. Section 5 relies on numerical optimization to study

the effect of the constraints and bargaining powers on the optimal contracts for TVaR and PHT

risk preferences. The concluding remarks of the paper appear in Section 6, while Appendix A

lists the complete VaR Pareto optimal insurance contracts. Finally, all proofs are relegated into

Appendix B.

2 Problem Formulation

Consider the current time t = 0. A risk holder has a random loss X, which is payable at a fixed

time T > 0 in the future and is defined on a probability space (Ω,F ,P). The loss X satisfies

the properties that X ≥ 0, P-a.s., and 0 < E [X] < ∞. The risk holder, or insurance buyer,

aims to share this loss X at time T with another party, or insurance seller. At time T , the seller

indemnifies the buyer a portion I (X) of the loss X, in which I is known as an indemnity function;

in return, at time 0, the buyer pays to the seller an up front premium P .

Any admissible indemnity function I lies in the set of comonotonic risk-transfers:

I := {I : [0, ess supX]→ [0, ess supX] : 0 ≤ I ≤ Id, I and R are both non-decreasing} ,

where Id is denoted as the identity function and R := Id − I is known as the retention function

corresponding to an indemnity function I ∈ I. The first condition in I is motivated by the fact

that any indemnity loss I (X) paid by the seller to the buyer at time T is at least non-negative

and is at most the loss X. The second condition removes ex post moral hazard from both the

buyer and the seller, as suggested by [25].

Any admissible up front premium P lies in the interval P :=
[
P , P

]
. The condition that P ≤ P

depicts the premium budget constraint of the buyer. The condition that P ≤ P represents the

minimum charge for the premium by the seller. As we discussed in the introduction, such a

minimum charge is justified for covering the seller’s indirect costs due to the risk-transfer, such

as administrative expenses, being paid by the buyer. Another justification is imposing the non-

negative risk loading property for the premium P when P = E [X]. To rule out trivial cases,

assume further that 0 < P ≤ P <∞; indeed, if P < P , there is obviously no feasible risk-transfer

between the buyer and the seller.

Let ΨB and ΨS be two risk measures for the buyer and the seller respectively to order their

risk preferences at time 0. For each admissible pair of indemnity function I ∈ I and premium

P ∈ P, the time-T post-transfer risk positions of the buyer and the seller are respectively given

by X − I (X) + P , which equals to R (X) + P , and I (X) − P . Therefore, the time-0 objective

functions of the buyer and the seller are respectively given by their time-0 post-transfer risk

positions: for any I ∈ I and P ∈ P,

B (I, P ) := ΨB (X − I (X) + P ) and S (I, P ) := ΨS (I(X)− P ) .
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Unless otherwise specified, the following assumption holds throughout this paper.

Assumption 2.1. The risk measures ΨB and ΨS are translational invariant, monotonic, posi-

tively homogeneous, comonotonic additive, and normalized to 0, with ΨB (X) <∞.

It is well-known that distortion risk measures satisfy the conditions in Assumption 2.1. The

distortion risk measures, which will be recalled in Section 5, include the VaR, TVaR, and PHT.

These three risk measures will be recalled and discussed in detail in Sections 4 and 5.

To ensure the risk-transfer being feasible, both the buyer and the seller expect that it does not

create any extra risk at time 0. In other words, the following individual rationality constraints

have to hold: for any I ∈ I\ {0} and P ∈ P,

B (I, P ) ≤ B (0, 0) = ΨB (X) and S (I, P ) ≤ S (0, 0) = ΨS (0) = 0.

Together with translation invariance and comonotonic additivity, these can be rewritten as addi-

tional premium constraints:

ΨS (I (X)) ≤ P ≤ ΨB (I (X)) . (2.1)

Moreover, to rule out the status quo with no-insurance and no-premium strategy of the buyer

and seller after any risk-transfer, i.e. (I, P ) = (0, 0), I = 0 cannot be an admissible strategy;

otherwise, the rationality constraints also enforce P = 0, and thus the no-insurance and no-

premium strategy. Therefore, the joint admissible set A of indemnity functions and premiums

contains any I ∈ I and P ∈ P such that (2.1) holds:

A := {(I, P ) ∈ I\ {0} × P : ΨS (I (X)) ≤ P ≤ ΨB (I (X))} .

At time 0, both the buyer and the seller agree on achieving an optimality, in terms of their time-

0 objective functions. They compromise the indemnity function and premium in the admissible set

A, such that they cannot find another admissible contract for the indemnity function and premium

that reduces the time-0 post-transfer risk position of either one of them, without increasing the

risk position of the counterparty. Such an optimality concept is coined Pareto optimal.

Definition 2.1. An indemnity function and premium pair (I∗, P ∗) ∈ I × P is called Pareto

optimal in A, if (I∗, P ∗) ∈ A, and there is no admissible pair (I, P ) ∈ A such that B (I, P ) ≤
B (I∗, P ∗) and S (I, P ) ≤ S (I∗, P ∗), with at least one of the inequalities being strict.

The aim of this paper is to solve Pareto optimal indemnity function and premium payment

pairs (I∗, P ∗) ∈ A. On one hand, by definition, the non-emptiness of the admissible set A is

crucial; on the other hand, the definition is not yet mathematically convenient for being studied.

Therefore, the next section delves into discussing the feasibility and deriving a useful characteri-

zation of Pareto optimality.
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3 Feasibility and Characterization

3.1 Feasibility

Due to the existence of minimum charge and budget constraints for premium, there could be no

feasible risk-transfer between the buyer and the seller. This subsection devotes to discussing the

feasibility of the Pareto optimality problem formulated in Section 2. Such a feasibility analysis

relates to whether the buyer and the seller would keep the status quo with no-insurance and

no-premium strategy, when A is an empty set. We first state the following equivalence, where

the proof follows by simple arguments, and hence is omitted.

Proposition 3.1. Define a subset of admissible indemnity functions

I0 := {I ∈ I\ {0} : ΨS (I (X)) ≤ ΨB (I (X))} .

Then A is an empty set if and only if, either one of the following conditions holds:

(i) I0 is an empty set;

(ii) I0 is a non-empty set but, for any I ∈ I0, either P < ΨS (I (X)) ≤ ΨB (I (X)), or

ΨS (I (X)) ≤ ΨB (I (X)) < P .

Indeed, if I0 is an empty set, then all non-status quo strategy do not satisfy the rationality

constraints. Even when there exists an admissible risk-transfer which satisfies the rationality

constraints, if the budget of the buyer is too low, or if the minimum charge to the seller is too

high, then all non-status quo strategy are not feasible. However, this equivalence result demands

to first identify the subset I0 of admissible non-trivial indemnity functions, which satisfy the

rationality constraints; this depends on the risk measures ΨB and ΨS , as well as the distribution

of ground up loss X.

Intuitively, if the minimum charge for premium is greater than the buyer’s time-0 risk position

of retaining the ground up loss X, with I ≡ 0, the rational buyer would rather retain the ground

up loss X herself at time T , than pay a tremendous amount of premium to the seller at time 0 with

being indemnified at time T . That is indeed a sufficient condition for the non-existence of feasible

risk-transfer between the buyer and the seller. Unlike Proposition 3.1, the following proposition

is valid regardless of the choices of risk measures ΨB and ΨS , as well as the distribution of ground

up loss X. The proof follows directly from Proposition 3.1.

Proposition 3.2. If ΨB (X) < P , then A is an empty set.

Hence, unless otherwise specified, assume that P ≤ ΨB (X) throughout this paper. Notice,

however, that such a condition is not sufficient for the existence of feasible risk-transfer between

the buyer and the seller. Indeed, even if P ≤ ΨB (X) holds, but when, for any I ∈ I\ {0},
ΨB (I (X)) < ΨS (I (X)), by Proposition 3.1, the buyer and seller will keep the status quo with

no-insurance and no-premium strategy, i.e. A is an empty set. This suggests that the feasibility
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indeed depends on the time-0 objectives of the buyer and seller. Thus, for the moment, assume

that the joint admissible set A is non-empty. In Section 4, the existence of feasible risk-transfer

between the buyer and the seller will be discussed in details when both objectives of the buyer

and the seller are modeled by the VaR and the TVaR.

3.2 Characterization of Pareto Optimality

This subsection devotes to deriving a handy characterization of being Pareto optimal for an

indemnity function and premium pair (I, P ) ∈ A. To this end, consider the following weighted

aggregate risk minimization problem for the buyer and the seller: for any λ ∈ (0, 1),

min
(I,P )∈A

λB (I, P ) + (1− λ)S (I, P ) . (3.1)

Furthermore, define S := ∪λ∈(0,1)Sλ, where Sλ := argmin(I,P )∈A λB (I, P ) + (1− λ)S (I, P ) is

the set of all minimizer(s) for Problem (3.1), for each λ ∈ (0, 1).

Theorem 3.1. (I∗, P ∗) ∈ A is Pareto optimal if and only if (I∗, P ∗) ∈ S.

By Theorem 3.1, together with the translation invariance and comonotonic additivity of ΨB

and ΨS , all Pareto optimal indemnity function and premium pairs inA are given by the optimizers

of the following family of weighted aggregate risk minimization problem for the buyer and seller:

for any λ ∈ (0, 1),

min
(I,P )∈A

λΨB (X)− λΨB (I (X)) + (1− λ) ΨS (I (X)) + (2λ− 1)P, (3.2)

where λ ∈ (0, 1) represents the bargaining power of the buyer relative to the seller, while (1− λ) ∈
(0, 1) represents the bargaining power of the seller relative to the buyer.

We compare our problem formulation and Pareto optimality characterization in Theorem 3.1

with those in the literature. In particular, [3] showed that the weight λ ∈ (0, 1) in the family of

aggregate risk minimization problems (3.2) must be given by 0.5, as long as the risk measures

ΨB and ΨS are translational invariant and monotonic. However, due to the potential existence of

premium budget and minimum charge constraints, the argument in [3] of modifying the premium

does not hold in our problem setting. On the other hand, our Pareto optimality characterization

in Theorem 3.1 is in line with [10, 26, 28]. Yet, the up front premium P in our problem setting

does not necessarily satisfy a certain premium principle as in [10, 26, 28]; instead, as in [3], the up

front premium P in our problem setting is purely a decision variable of both the buyer and the

seller, which is disentangled from the indemnity function via the premium principle, though they

are still tangled by the rationality constraints in the joint admissible set A. Moreover, [10, 26, 28]

do not impose any premium budget or minimum charge constraint on the up front premium P .

Finally, as we discussed in the introduction, our problem formulation is substantially different

from that in [29], that (i) our risk measures ΨB and ΨS are allowed to include VaR as an example,

(ii) our up front premium P is a pure decision variable disentangled from the indemnity function
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via the premium principle, and most importantly, (iii) our version of minimum charge constraint

acts directly on the pure decision variable premium.

3.3 Characterization of Pareto Optimal Premium Payment

Although the family of aggregate risk minimization problems (3.2), to characterize the Pareto

optimality problem formulated in Section 2, is fully non-linear and infinite dimensional in terms

of indemnity function I ∈ I, it is in fact linear and finite dimensional with respect to premium

P ∈ P, such that (I, P ) ∈ A. The proof follows by simple arguments, and hence is omitted.

Proposition 3.3. All Pareto optimal indemnity function and premium pairs (I∗, P ∗) ∈ A satisfy:

(i) if λ ∈ (0, 0.5), P ∗ = min
{

ΨB (I∗ (X)) , P
}

;

(ii) if λ = 0.5, P ∗ is arbitrarily taken in
[
max {ΨS (I∗ (X)) , P} ,min

{
ΨB (I∗ (X)) , P

}]
;

(iii) if λ ∈ (0.5, 1), P ∗ = max {ΨS (I∗ (X)) , P}.

This result entails that the Pareto optimal up front premium depends on the relative bar-

gaining powers of the buyer and the seller. Indeed, when the bargaining power of the seller is

higher, i.e. λ ∈ (0, 0.5), the Pareto optimal premium P ∗, is charged at the highest rate, which

leans towards the objective of the seller, and is capped at the premium budget P of the buyer;

when the bargaining power of the buyer is higher, i.e. λ ∈ (0.5, 1), the Pareto optimal pre-

mium P ∗, is charged at the lowest rate, which leans towards the objective of the buyer, and is

floored at the minimum charge P of the seller. However, when the buyer and seller have equal

bargaining powers, i.e. λ = 0.5, the Pareto optimal premium P ∗ is arbitrary as long as it is

feasible; in this case, the buyer and seller have to impose additional criteria to seek the best

premium arrangement among those non-unique Pareto optimal premiums P ∗ (see, for example,

[3]). Moreover, due to the feasibility, all Pareto optimal indemnity functions I∗ must satisfy that

max {ΨS (I∗ (X)) , P} ≤ min
{

ΨB (I∗ (X)) , P
}

, and hence, the Pareto optimal premium P ∗ re-

duces, when the bargaining power of the buyer is higher than that of the seller, comparing to the

case, when the bargaining power of the buyer is lower than that of the seller. Finally, in the case

of λ ∈ (0, 0.5) or λ ∈ (0.5, 1), although the Pareto optimal premium P ∗ depends on, either the

minimum charge P , or the premium budget P , but not both, the Pareto optimality problem still

depends on both constraints; indeed, by the feasibility, all Pareto optimal indemnity functions

I∗ have to satisfy, not only the constraint ΨS (I∗ (X)) ≤ ΨB (I∗ (X)) due to rationality, but also

the constraints P ≤ ΨB (I∗ (X)) and ΨS (I∗ (X)) ≤ P arising from the minimum charge and

premium budget. These two additional constraints pose technical difficulties to solve the family

of aggregate risk minimization problems (3.2) with general distortion risk measures ΨB and ΨS .
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4 Analytical Solutions

In this section, Pareto optimal indemnity function and premium pairs (I∗, P ∗) ∈ A are analyt-

ically derived via solving the family of minimization problems (3.2), in which the time-0 risk

preferences ΨB and ΨS of the buyer and the seller are both characterized by the VaR or the

TVaR. Let α ∈ [0, 1] and β ∈ [0, 1] be the respective confidence levels of the seller and the buyer.

For notational simplicity, denote a := VaRα (X) and b := VaRβ (X).

4.1 Value-at-Risk

We first recall the definition of VaR as follows. For any confidence level γ ∈ [0, 1] and random

variable Y defined on the probability space (Ω,F ,P),

VaRγ (Y ) := inf {y ∈ [ess inf Y, ess supY ] : FY (y) ≥ γ} ,

which is the left-continuous generalized inverse of the distribution function FY . Note that the

VaR satisfies all properties listed in Assumption 2.1. Also, recall the following important property

of VaR that, for any non-decreasing and left-continuous function f with appropriate domain and

range, VaRγ (f (Y )) = f (VaRγ (Y )).

In this subsection, we assume that the time-0 risk preferences ΨB and ΨS of the buyer and

the seller are both characterized by the VaR:

ΨB (·) = VaRβ (·) and ΨS (·) = VaRα (·) .

Since any arbitrary I ∈ I is non-decreasing and continuous, the joint admissible set A is given by

A = {(I, P ) ∈ I\ {0} × P : I (a) ≤ P ≤ I (b)} ;

moreover, the family of minimization problems (3.2) is given by: for any λ ∈ (0, 1),

min
(I,P )∈A

λb− λI (b) + (1− λ) I (a) + (2λ− 1)P. (4.1)

Prior to explicitly solving the family of minimization problems (4.1), we first discuss the

existence of feasible risk-transfer between the buyer and the seller. Recall that, by Proposition

3.2, if b < P , then A must be empty. It turns out that, when ΨB and ΨS are both given by the

VaR, the condition is also necessary.

Proposition 4.1. Suppose that ΨB (·) = VaRβ (·) and ΨS (·) = VaRα (·), for some α, β ∈ [0, 1].

Then, P ≤ b if and only if A is a non-empty set.

Due to Proposition 4.1, together with the assumption that P ≤ ΨB (X) (= b) throughout this

paper, the joint admissible set A is non-empty when both ΨB and ΨS are characterized by the

VaR.

The following proposition explicitly solves the family of minimization problems (4.1), to char-

acterize the Pareto optimal indemnity function and premium pairs (I∗, P ∗) ∈ A, when the VaR
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of the buyer is no larger than that of the seller for the ground up loss X. The proof follows by

simple arguments, and hence is omitted.

Proposition 4.2. Suppose that ΨB (·) = VaRβ (·) and ΨS (·) = VaRα (·), for some α, β ∈ [0, 1],

and b ≤ a. Then, the Pareto optimal indemnity function and premium pairs (I∗, P ∗) ∈ A are

given by any I∗ ∈ I\ {0} with I∗ (a) = P ∗ = I∗ (b) ∈
[
P ,min

{
P , b

}]
.

Proposition 4.2 implies three interesting results. Firstly, as long as the buyer and the seller

share risk in a rational way, i.e., satisfying their individual rationality constraints, all feasible

contracts are Pareto optimal, in which all Pareto optimal indemnity functions have gradient zero

on the interval [b, a]; moreover, the buyer’s and the seller’s time-0 risk positions stay the same

before and after the risk-transfer:

B (I∗, P ∗) = B (0, 0) = b and S (I∗, P ∗) = S (0, 0) = 0.

Secondly, all Pareto optimal contract pairs (I∗, P ∗) ∈ A are independent of the relative bargaining

powers of the buyer and the seller. Finally, the flexibility of negotiating different Pareto optimal

indemnity functions and premiums between the buyer and the seller depends on the sizes of

the premium budget and the minimum charge for the premium; indeed, on one hand, when

the difference
(
P − P

)
between the premium budget and the minimum charge for the premium

decreases, the size of the interval
[
P ,min

{
P , b

}]
for I∗ (a) = P ∗ = I∗ (b) reduces; on the other

hand, when both the premium budget and the minimum charge for the premium vanish, i.e.

P → 0 and P → ∞, all Pareto optimal indemnity function and premium pairs satisfy I∗ (a) =

P ∗ = I∗ (b) ∈ [0, b].

In practice, the seller usually has a lower confidence level than that of the buyer. The following

theorem explicitly solves the family of minimization problems (4.1), to characterize the Pareto

optimal indemnity function and premium pairs (I∗, P ∗) ∈ A, when the VaR of the seller is strictly

less than that of the buyer for the ground up loss X.

Theorem 4.1. Suppose that ΨB (·) = VaRβ (·) and ΨS (·) = VaRα (·), for some α, β ∈ [0, 1],

and a < b. Then, the Pareto optimal indemnity function and premium pairs (I∗, P ∗) ∈ A are

summarized in Table A.1 of Appendix A; in particular, all Pareto optimal indemnity functions

I∗ ∈ I\ {0} satisfy I∗ (b) − I∗ (a) = b − a, and thus Table A.1 of Appendix A only shows either

the values of I∗ (a) or I∗ (b).

Theorem 4.1 has several interesting implications. Firstly, all Pareto optimal indemnity func-

tions have gradient one on the interval [a, b]. This conclusion can also be derived by modification

arguments on the objective functions in the family of minimization problems (4.1); see, for ex-

ample, [12, 17] and the discussion in the TVaR case below. Although the gradient is independent

of the premium budget and the minimum charge, it should be noted that the optimal indemnity

values I∗(a) and I∗(b), as well as the optimal up front premium P ∗, depend on both P and P ;

see Table A.1 in Appendix A.1 for details.
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Secondly, unlike Proposition 4.2, the Pareto optimal contract pairs (I∗, P ∗) ∈ A, in Theorem

4.1, obviously depend on the relative bargaining powers of the buyer and the seller. However,

regardless of the dependence, their bargaining powers are not a priori chosen; instead, the buyer

and the seller first compromise on a Pareto optimal contract pair, and then the value of λ is

implied by their agreement. Moreover, regardless of the potential existences of the premium

budget and the minimum charge for the premium, if the implied λ < 0.5, then the seller shows

more bargaining power during the negotiation, with more premium, which echoes Proposition

3.3, but less indemnity coverage agreed; if the implied λ > 0.5, then the buyer shows more

bargaining power during the negotiation, with less premium, which echoes Proposition 3.3, but

more indemnity coverage agreed.

Finally, those sophisticated (sub-)case conditions in Theorem 4.1 are due to the potential

existences of the premium budget and the minimum charge for the premium; indeed, when both

the premium budget and the minimum charge for the premium vanish, i.e. P → 0 and P →∞,

the Pareto optimal contract pairs are completely characterized by the case and the sub-case, when

P ≤ a < b ≤ P and P < b − a, in Table A.1, with P → 0 and P → ∞. Moreover, regardless

of the relative bargaining powers of the buyer and the seller, when the budget P of the buyer

gradually decreases, the buyer and the seller agree that the (maximum) acceptable premium and

the indemnity coverage decrease; when the minimum charge P of the seller gradually increases, the

buyer and the seller agree that the (minimum) acceptable premium and the indemnity coverage

increase.

Before proceeding to the next subsection which models the objectives of the buyer and the

seller by the TVaR, we make a final remark that both Proposition 4.2 and Theorem 4.1 solve all

possible Pareto optimal contract pairs (I∗, P ∗) ∈ A. Indeed, both results are obtained by directly

solving the family of minimization problems (4.1), which exhaust all minimizers in S.

4.2 Tail Value-at-Risk

We first recall the definition of TVaR as follows. For any confidence level γ ∈ [0, 1] and random

variable Y defined on the probability space (Ω,F ,P),

TVaRγ (Y ) :=


1

1−γ
∫ 1

γ
VaRη (Y ) dη if γ ∈ [0, 1)

ess supY if γ = 1
.

Note that the TVaR satisfies all properties listed in Assumption 2.1. Also, recall the following

dual representation of TVaR that

TVaRγ (Y ) = inf
y∈[ess inf Y,ess supY ]

(
y +

1

1− γ
E
[
(Y − y)+

])
,

where the minimizer is given by the VaR: y∗ = VaRγ (Y ).

In this subsection, we assume that the time-0 risk preferences ΨB and ΨS of the buyer and
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the seller are both characterized by the TVaR:

ΨB (·) = TVaRβ (·) and ΨS (·) = TVaRα (·) ,

where α ∈ [0, 1] and β ∈ [0, 1] are recalled as the respective confidence levels of the seller and the

buyer. In turn, the joint admissible set A is given by

A = {(I, P ) ∈ I\ {0} × P : TVaRα (I (X)) ≤ P ≤ TVaRβ (I (X))} ,

while the family of minimization problems (3.2) is given by: for any λ ∈ (0, 1),

min
(I,P )∈A

λTVaRβ (X)− λTVaRβ (I (X)) + (1− λ) TVaRα (I (X)) + (2λ− 1)P. (4.2)

Again, prior to explicitly solving the family of minimization problems (4.2), we first discuss

the existence of feasible risk-transfer between the buyer and the seller. Unlike Proposition 4.1 in

the case of the VaR, the condition, P ≤ ΨB (X) (= TVaRβ (X)), alone is not sufficient for the

non-emptiness of the joint admissible set A. It turns out, when ΨB and ΨS are both given by

the TVaR, together with the condition that the seller has a lower confidence level than that of

the buyer, which is common in practice, the condition P ≤ TVaRβ (X) is then sufficient.

Proposition 4.3. Suppose that ΨB (·) = TVaRβ (·) and ΨS (·) = TVaRα (·), for some α, β ∈
[0, 1] with α ≤ β. Then, P ≤ TVaRβ (X) if and only if A is a non-empty set.

Due to Proposition 4.3, together with the assumption that P ≤ ΨB (X) (= TVaRβ (X)) through-

out this paper, assume further that α ≤ β in the remains of this subsection, so that the joint

admissible set A is non-empty when both ΨB and ΨS are characterized by the TVaR.

Unlike Theorem 4.1 in the case of the VaR, the family of minimization problems (4.2), to

characterize the Pareto optimal indemnity function and premium pairs (I∗, P ∗) ∈ A when both

ΨB and ΨS are characterized by the TVaR, cannot be solved explicitly by the linear programming

method as in the proof of Theorem 4.1. Instead, in this subsection, a modification argument

(see, for example, [12], [17], [15], and [9]) is applied to identify a sub-class of Pareto optimal

solutions, which has the least finite number of parameters to be determined, via exhausting some

minimizers in S. Due to the existence of a feasible risk-transfer between the buyer and the seller,

the modification argument is valid.

To this end, denote, for any λ ∈ (0, 1), the objective function in the minimization problem

(4.2) as Fλ. Define a subset of the admissible indemnity functions

Ĩ := {I ∈ I : there exist d1 ∈ [0, ess supX] and d2 ∈ [d1, ess supX]

such that I (x) = (x− d1)+ − (x− d2)+}.

Theorem 4.2. For any λ ∈ (0, 1) and (I, P ) ∈ A, there exists an Ĩ ∈ Ĩ such that (Ĩ , P ) ∈ A
and Fλ(Ĩ , P ) ≤ Fλ (I, P ).
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Theorem 4.2 states that any admissible indemnity function I ∈ I is inferior to a single-layer

indemnity function Ĩ ∈ Ĩ, with the same premium P . The family of infinite dimensional mini-

mization problems (4.2) can be reduced to a family of finite dimensional minimization problems,

to obtain Pareto optimal indemnity function and premium pairs with the least finite number of

parameters: for any λ ∈ (0, 1),

min
(I,P )∈Ã

λTVaRβ (X)− λTVaRβ (I (X)) + (1− λ) TVaRα (I (X)) + (2λ− 1)P,

where Ã = {(I, P ) ∈ A : I ∈ Ĩ}. In other words, there exists at least one Pareto optimal

indemnity function and premium pair (I∗, P ∗) ∈ A, when both ΨB and ΨS are characterized by

the TVaR, such that the optimal indemnity function I∗ ∈ I is given by a single-layer.

5 Numerical Solutions

We first recall the definition of distortion risk measures as follows. For any non-decreasing dis-

tortion function g : [0, 1] → [0, 1] such that g (0) = 0 and g (1) = 1, a distortion risk measure ρg

is defined by, for any non-negative random variable Y defined on the probability space (Ω,F ,P),

ρg (Y ) :=

∫ ∞
0

g (1− FY (y)) dy.

Note that distortion risk measures satisfy all properties listed in Assumption 2.1. The VaR, TVaR,

and PHT are distortion risk measures, with their respective distortion functions, 1[1−γ,1] (x),

min
{

x
1−γ , 1

}
, and xc, for some γ ∈ [0, 1] and c ∈ (0, 1].

In Section 4, all Pareto optimal indemnity function and premium pairs (I∗, P ∗) ∈ A are

explicitly solved, when both risk preferences ΨB and ΨS are characterized by the VaR; yet,

although the existence of Pareto optimal single layer indemnity function is established, no Pareto

optimal contract pair (I∗, P ∗) ∈ A is explicitly solved, when both risk preferences ΨB and ΨS

are characterized by the TVaR. This section devotes to adopting a well-established numerical

approach to solve Pareto optimal contract pairs (I∗, P ∗) ∈ A; see, for example, [4] and [33].

In particular, this section illustrates the approach on the TVaR and the PHT; however, we

emphasize that this numerical approach can be applied, in an equal manner, to the case when

both risk preferences are characterized by the TVaR.

To this end, the loss X is represented by its discretized samples x := (x1, x2, . . . , xn)tr, which

could be either empirically observed or simulated from a pre-specified parametric model for the

loss X. This section only illustrates the latter case, but the approach applies indifferently for

the former case. Without loss of generality, assume that the samples are sorted in the ascend-

ing order, with x1 ≤ x2 ≤ · · · ≤ xn. For any admissible indemnity function I ∈ I, define

y := (y1, y2, . . . , yn)tr, in which, for any i = 1, 2, . . . , n, yi = I (xi), and thus, the admissibility
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conditions in I are translated into 0 ≤ Ay ≤ Ax, where

A :=



1 0 0 0 · · · 0

−1 1 0 0 · · · 0

0 −1 1 0 · · · 0
...

. . .
. . .

. . .
. . .

...

0 · · · 0 −1 1 0

0 · · · 0 0 −1 1


.

Following similar arguments as in [4], for any I ∈ I, the risk preference of the buyer

ΨB (I (X)) = φtrBy, where φB = (φB1, φB2, . . . , φBn)tr, with φBi = gB
(
n−i+1
n

)
− gB

(
n−i
n

)
, for

any i = 1, 2, . . . , n, and gB is the distortion function of the buyer. Similarly, for any I ∈ I, the

risk preference of the seller ΨS (I (X)) = φtrS y, with self-evident notations. Therefore, the family

of weighted aggregate risk minimization problem (3.2) for the buyer and seller, which is fully

non-linear and infinite dimensional, becomes a finite dimensional linear programming problem

with constraints: for any λ ∈ (0, 1),

min
(y,P )∈Rn×R

λφtrBx− λφtrBy + (1− λ)φtrS y + (2λ− 1)P

such that 0 ≤ Ay ≤ Ax

P ≤ P ≤ P

φtrS y ≤ P ≤ φtrBy.

(5.1)

Putting this numerical solution approach into concrete settings, assume, in the sequel and

unless otherwise specified, that n = 300, α = 0.75, β = 0.8, P = 10% × TVaR0.75 (X), and P =

30%×TVaR0.8 (X), where the loss X follows a Pareto distribution with FX (x) = 1−
(

10,000
10,000+x

)3
,

for any x ≥ 0.

Example 5.1. Assume that ΨB (·) = TVaR0.8 (·) and ΨS (·) = PHT (·; cS), where the seller’s

PHT parameter cS is calibrated such that PHT (X; cS) = TVaR0.75 (X). In other words, the

distortion functions gB and gS of the buyer and the seller in problem (5.1) are respectively given

by min
{

x
1−0.8 , 1

}
and xcS .

Figure 5.1 illustrates the Pareto optimal premium P ∗ against various relative bargaining power

of the buyer λ ∈ (0, 1), in black solid line; it also represents the buyer’s and seller’s optimal risk

preferences ΨB (I∗ (X)), in blue inverted triangles, and ΨS (I∗ (X)), in red upright triangles, with

the premium minimum charge P and the premium budget P indicated on the right-vertical axis.

The left-hand panel of Figure 5.1 demonstrates the status-quo assumption that the premium

budget P = 30% × TVaR0.8(X). In this case, the Pareto optimal premium P ∗ is independent of

the relative bargaining power of the buyer and the seller. This phenomenon can be explained by

Proposition 3.3; the Pareto optimal premium P ∗ is indeed given by min
{
P ,ΨB (I∗ (X))

}
, which

is a smaller value of P or blue inverted triangle, when λ ∈ (0, 0.5), and max {P ,ΨS (I∗ (X))},
which is a larger value of P or red upright triangle, when λ ∈ (0.5, 1). Most importantly,
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Figure 5.1: Pareto optimal premium P ∗ – left-hand panel with P = 30% × TVaR0.8 (X); right-

hand panel with P = 60%× TVaR0.8 (X).

since max {P ,ΨS (I∗ (X))} ≤ min
{
P ,ΨB (I∗ (X))

}
, when the relative bargaining power of the

buyer λ ∈ (0, 1) increases, or equivalently, when the relative bargaining power of the seller

(1− λ) ∈ (0, 1) decreases, the Pareto optimal premium P ∗ reduces, and vice versa (which also

echoes Proposition 3.3 and the theoretical findings in the case of VaR in Section 4). To better

illustrate this numerically, the right-hand panel of Figure 5.1 depicts the case when the premium

budget P = 60% × TVaR0.8 (X), in which the Pareto optimal premium P ∗ can be accounted by

similar arguments. Observe that, by comparing the left-hand and right-hand panels of Figure 5.1,

when the premium budget P is increased, not only the Pareto optimal premium P ∗, but also the

buyer’s and seller’s optimal risk preferences, ΨB (I∗ (X)) and ΨS (I∗ (X)), are varied.

The left-hand panel of Figure 5.2 illustrates the Pareto optimal indemnity function I∗, or

equivalently y∗, in blue circles, when the relative bargaining powers of the buyer and the seller

are equal. The right-hand panel of Figure 5.2 depicts the heat map, which illustrates the gradient

of the Pareto optimal indemnity function I∗, or equivalently the sample-wise increment y∗ over

the sample-wise increment x, against various relative bargaining power of the buyer λ ∈ (0, 1), in

which the x-axis contains indexes of the samples x.

The top panel of Figure 5.2 demonstrates the status-quo assumption that the premium budget

P = 30%×TVaR0.8(X). Observe that, for each relative bargaining power of the buyer λ ∈ (0, 1),

the gradient of the Pareto optimal indemnity function I∗, first changes from 0 to 1, and then

changes back to 0, which deduces the Pareto optimal single layer indemnity function I∗. Moreover,

when the relative bargaining power of the buyer λ ∈ (0, 1) increases, or equivalently, when the

relative bargaining power of the seller (1− λ) ∈ (0, 1) decreases, the Pareto optimal single layer

indemnity function I∗ fully indemnifies more and more moderate losses, and vice versa (which

again echoes the theoretical findings in the case of VaR in Section 4); yet, recall that, from the left-

hand panel of Figure 5.1, the Pareto optimal premium P ∗ remains unchanged. The bottom panel

of Figure 5.2 shows the case when the premium budget P = 60% × TVaR0.8 (X). Observe that,

by comparing the top and bottom panels of Figure 5.2, when the premium budget P is increased,
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Figure 5.2: Pareto optimal indemnity function I∗ – left-hand panel with λ = 0.5; top panel with

P = 30%× TVaR0.8(X); bottom panel with P = 60%× TVaR0.8(X).

both small and moderate losses are fully indemnified by the Pareto optimal indemnity function

I∗, when the buyer has a larger bargaining power than the seller; yet, in return, the buyer has

to pay a higher Pareto optimal premium P ∗, by comparing the left-hand and right-hand panels of

Figure 5.1.

It is also interesting to explore the effects on the optimal solutions if we lift the minimum charge

and budget constraints by setting P → 0 and P → ∞. Therefore, we solve the optimization

model (5.1) once again with the constraints P ≤ P ≤ P being replaced by P ≥ 0, and the

results are illustrated in Figures 5.3 and 5.4. It is worth reminding that although the constraints

P ≤ P ≤ P have been lifted, the optimal premium P ∗ is still bounded by the rationality constraints

φtrS y ≤ P ≤ φtrB . Therefore, as shown in Figure 5.3, the optimal premium P ∗ is charged at its

upper boundary when the bargaining power of the insurance buyer, λ, is small, while it is charged

at its lower boundary when λ becomes large, even though the constraints have been lifted.

We have seen in Figure 5.2 that when the minimum charge and budget constraints are in place,

small losses are usually fully retained by the insurance buyer, especially when their bargaining

power is relatively small. However, as shown in Figure 5.4, when the constraints are lifted, small

losses are always fully indemnified, regardless of the relative bargaining power of the buyer.

Example 5.2. In this example, assume, the other way around, that ΨB (·) = PHT (·; cB) and
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Figure 5.3: Pareto optimal premium P ∗ when minimum charge and budget constraints are lifted.
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Figure 5.4: Pareto optimal indemnity function I∗ when minimum charge and budget constraints

are lifted – left-hand panel with λ = 0.5.

ΨS (·) = TVaR0.75 (·), where the buyer’s PHT parameter cB is calibrated such that PHT (X; cB) =

TVaR0.8 (X). The left-hand panel in Figure 5.5 and the top panel in Figure 5.6 depict the Pareto

optimal premium P ∗ and Pareto optimal indemnity function I∗ respectively, which can be ac-

counted in a similar manner as in Example 5.1. This example, however, highlights that even a

minor twist in the model setting could result in a dramatic change for the Pareto optimal contract;

in Example 5.1, moderate, or even small, but not large, losses are fully indemnified, while, in this

example, large, but not small nor moderate losses, are fully covered.

When the minimum charge and budget constraints are lifted, the optimal premium P ∗ is

charged at its upper boundary of the rationality constraints when the insurance buyer’s relative

bargaining power, λ, is small, while it is reduced to its lower boundary of the rationality constraints

when the λ becomes large. This is illustrated by the right-hand panel in Figure 5.5. On the other

hand, the optimal indemnity function I∗ does not change its shape much when the constraints are

lifted as illustrated by the bottom panel in Figure 5.6. For small λ, we do observe that the yellow

area in the heat map has enlarged a bit when P → 0 and P →∞. This indicates that, when the

buyer is able to afford insurance at any price and the seller does not charge any indirect cost, a
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larger amount of losses will be indemnified even when the buyer has a relatively lower bargaining

power.
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Figure 5.5: Pareto optimal premium P ∗ – left-hand panel with P = 30% × TVaR0.8 (X); right-

hand panel with P → 0 and P →∞.
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Figure 5.6: Pareto optimal indemnity function I∗ – left-hand panel with λ = 0.5; top panel with

P = 30%× TVaR0.8(X); bottom panel with P → 0 and P →∞.
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6 Concluding Remarks and Future Direction

This paper revisited the Pareto optimal insurance contract design problem with both minimum

charge and premium budget constraints. In addition to rationality constraints, technical dif-

ficulties arise from the two extra constraints on the indemnity schedule. This paper closely

investigated the effects on the feasibility, Pareto optimal indemnity schedule, and Pareto optimal

premium payment, by the premium constraints and bargaining powers of the buyer and seller.

All Pareto optimal solutions were explicitly solved for the case of Value-at-Risk, while Pareto

optimal single-layer indemnity schedule was identified for the case of Tail Value-at-Risk. A nu-

merical solution approach was implemented to further study the case of Tail Value-at-Risk, as

well as the Proportional Hazard Transformation; reasonable interpretations were obtained. As

the first work incorporating both practical constraints in the Pareto optimal insurance contract

design problem, we did not attempt to explicitly solve the Pareto optimal insurance contracts

with general distortion risk measures. However, this is indeed an important topic to explore

further, and shall be left as a future research direction.
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Appendix A Table in Theorem 4.1

Case Sub-case λ ∈ (0, 0.5) λ = 0.5 λ ∈ (0.5, 1)

P ≤ a
P < b− a

P ∗ ∈ [b− a, b] P ∗ ∈ [P , b] P ∗ ∈ [P , a]

< b ≤ P

I∗ (b) = P ∗
I∗ (b) ∈ [max {P ∗, b− a} ,

I∗ (a) = P ∗
min {P ∗, a}+ (b− a)]

b− a ≤ P
P ∗ ∈ [P , b] P ∗ ∈ [P , b] P ∗ ∈ [P , a]

I∗ (b) = P ∗
I∗ (b) ∈ [P ∗,

I∗ (a) = P ∗
min {P ∗, a}+ (b− a)]

P ≤ a

P < b− a < P

P ∗ ∈ [b− a, P ] P ∗ ∈ [P , P ] P ∗ ∈ [P , a]

≤ P < b

I∗ (b) = P ∗
I∗ (b) ∈ [max {P ∗, b− a} ,

I∗ (a) = P ∗
min {P ∗, a}+ (b− a)]

P ≤ b− a
P ∗ = P P ∗ ∈

[
P , P

]
P ∗ ∈ [P , a]

I∗ (b) = b− a
I∗ (b) ∈ [b− a,

I∗ (a) = P ∗
min {P ∗, a}+ (b− a)]

b− a ≤ P
P ∗ ∈

[
P , P

]
P ∗ ∈

[
P , P

]
P ∗ ∈ [P , a]

I∗ (b) = P ∗
I∗ (b) ∈ [P ∗,

I∗ (a) = P ∗
min {P ∗, a}+ (b− a)]

P ≤ P

P < b− a < P

P ∗ ∈ [b− a, P ] P ∗ ∈ [P , P ] P ∗ ∈ [P , P ]

< a < b

I∗ (b) = P ∗
I∗ (b) ∈ [max {P ∗, b− a} ,

I∗ (a) = P ∗
P ∗ + (b− a)]

P ≤ b− a
P ∗ = P P ∗ ∈

[
P , P

]
P ∗ ∈

[
P , P

]
I∗ (b) = b− a I∗ (b) ∈ [b− a, P ∗ + (b− a)] I∗ (a) = P ∗

b− a ≤ P
P ∗ ∈

[
P , P

]
P ∗ ∈

[
P , P

]
P ∗ ∈

[
P , P

]
I∗ (b) = P ∗ I∗ (b) ∈ [P ∗, P ∗ + (b− a)] I∗ (a) = P ∗

a < P
P < b− a

P ∗ ∈ [b− a, b] P ∗ ∈ [P , b] P ∗ = P

≤ b ≤ P
I∗ (b) = P ∗ I∗ (b) ∈ [max {P ∗, b− a} , b] I∗ (b) = b

b− a ≤ P
P ∗ ∈ [P , b] P ∗ ∈ [P , b] P ∗ = P

I∗ (b) = P ∗ I∗ (b) ∈ [P ∗, b] I∗ (b) = b

a < P

P < b− a < P
P ∗ ∈ [b− a, P ] P ∗ ∈ [P , P ] P ∗ = P

≤ P < b

I∗ (b) = P ∗ I∗ (b) ∈ [max {P ∗, b− a} , b] I∗ (b) = b

P ≤ b− a
P ∗ = P P ∗ ∈

[
P , P

]
P ∗ = P

I∗ (b) = b− a I∗ (b) ∈ [b− a, b] I∗ (b) = b

b− a ≤ P
P ∗ ∈

[
P , P

]
P ∗ ∈

[
P , P

]
P ∗ = P

I∗ (b) = P ∗ I∗ (b) ∈ [P ∗, b] I∗ (b) = b

Table A.1: Pareto optimal insurance contracts in Theorem 4.1
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Appendix B Proofs of Results

Proof of Theorem 3.1. Suppose that there exists an (I∗, P ∗) ∈ S such that (I∗, P ∗) is not Pareto

optimal in A. Since (I∗, P ∗) ∈ S, there exists an λ ∈ (0, 1) such that, for any (I, P ) ∈ A,

λB (I∗, P ∗) + (1− λ)S (I∗, P ∗) ≤ λB (I, P ) + (1− λ)S (I, P ) .

On the other hand, since (I∗, P ∗) is not Pareto optimal in A, there exists an (I ′, P ′) ∈ A such

that B (I ′, P ′) ≤ B (I∗, P ∗) and S (I ′, P ′) ≤ S (I∗, P ∗), with at least one of the inequalities being

strict, and in turn, since λ ∈ (0, 1),

λB (I ′, P ′) + (1− λ)S (I ′, P ′) < λB (I∗, P ∗) + (1− λ)S (I∗, P ∗)

which implies a contradiction. Therefore, any (I∗, P ∗) ∈ S is Pareto optimal in A.

For the other implication, it is sufficient to show that the set

C := {(B (I, P ) , S (I, P )) : (I, P ) ∈ A}

is convex, since the remaining arguments are provided by a standard application of the Hahn-

Banach separation theorem. Let (I1, P1) , (I2, P2) ∈ A and θ ∈ [0, 1]. By the positive homogeneity,

comonotonic additivity, and translation invariance of ΨB and ΨS ,

θB (I1, P1) + (1− θ)B (I2, P2) = B (θI1 + (1− θ) I2, θP1 + (1− θ)P2) ,

and

θS (I1, P1) + (1− θ)S (I2, P2) = S (θI1 + (1− θ) I2, θP1 + (1− θ)P2) .

Obviously, (θI1 + (1− θ) I2, θP1 + (1− θ)P2) ∈ I\ {0}×P; furthermore, (θI1 + (1− θ) I2, θP1 +

(1− θ)P2) ∈ A; indeed,

B (θI1 + (1− θ) I2, θP1 + (1− θ)P2) ≤ θB (0, 0) + (1− θ)B (0, 0) = B (0, 0) ,

with similar arguments for S (θI1 + (1− θ) I2, θP1 + (1− θ)P2) ≤ S (0, 0). These justify that the

set C is indeed a convex set.

Proof of Proposition 4.1. One of the implication is Proposition 3.2. For the other implication,

assume that P ≤ b, and let I (x) := x ∧ P , for any x ∈ [0, ess supX]. Then (I, P ) ∈ A; indeed,

I ∈ I\ {0} and P ∈
[
P , P

]
are obvious, and consider the following cases.

Case 1: Suppose that P ≤ b ≤ a or P ≤ a < b. Then I (a) = P = I (b).

Case 2: Suppose that a < P ≤ b. Then I (a) = a < P = I (b).

Proof of Theorem 4.1. We only prove the case when P ≤ a ≤ P < b, and when λ ∈ (0.5, 1), since

other cases can be shown by similar arguments.
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Firstly, notice that, for each fixed P ∈
[
P , P

]
, the minimization problem (4.1) becomes a

linear programming problem with constraints:

min
I(a),I(b)∈R

λb− λI (b) + (1− λ) I (a) + (2λ− 1)P

such that 0 ≤ I (a) ≤ a

0 ≤ I (b) ≤ b

I (b)− I (a) ≤ b− a

I (a) ≤ P ≤ I (b) .

This linear programming problem with constraints can be solved explicitly. If P ≤ P ≤ a ≤ P < b

and P ≤ b− a, then I∗ (a) = P and I∗ (b) = P + (b− a); if P ≤ P ≤ a ≤ P < b and b− a ≤ P ,

then I∗ (a) = P and I∗ (b) = P + (b− a); if P ≤ a < P ≤ P < b and P ≤ b− a, then I∗ (a) = a

and I∗ (b) = b; if P ≤ a < P ≤ P < b and b− a ≤ P , then I∗ (a) = a and I∗ (b) = b.

Therefore, if b− a ≤ P , then the value function is given by, for any P ∈
[
P , P

]
,

(1− λ) I∗ (a)− λI∗ (b) + (2λ− 1)P =

λ (a− b) if P ∈ [P , a]

(1− λ) a− λb+ (2λ− 1)P if P ∈
[
a, P

] .
This implies that P ∗ ∈ [P , a], I∗ (a) = P ∗, and I∗ (b) = P ∗ + (b− a). Other sub-cases can be

analyzed in a similar manner.

Proof of Proposition 4.3. Notice that, since α ≤ β, for any I ∈ I\ {0}, TVaRα (I (X)) ≤
TVaRβ (I (X)). One of the implication is Proposition 3.2. For the other implication, assume

that P ≤ TVaRβ (X) and consider the following two cases.

Case 1: Suppose that TVaRα (X) ≤ P ≤ TVaRβ (X). Then, obviously (X,P ) ∈ A.

Case 2: Suppose that P < TVaRα (X) ≤ TVaRβ (X). The function g : [0, ess supX] →
[0,TVaRα (X)], defined by g (d) := TVaRα

(
(X − d)+

)
, can be easily shown to be continuous

and non-increasing. Therefore, by Intermediate Value Theorem, there exists an d̃ ∈ (0, ess supX]

such that TVaRα((X− d̃)+) = P . Since Ĩ ∈ I, where Ĩ (x) := (x− d̃)+, for any x ∈ [0, ess supX],

TVaRα((X − d̃)+) = P ≤ TVaRβ((X − d̃)+). Therefore, (Ĩ , P ) ∈ A.

Proof of Theorem 4.2. Let λ ∈ (0, 1) and (I, P ) ∈ A. Define R̃ (x) := x−(x−R (b))++(x−d̃2)+,

and hence Ĩ (x) = (x−R (b))+ − (x − d̃2)+, for any x ∈ [0, ess supX], where d̃2 ∈ [b, ess supX]

such that E[(R̃ (X)−R (b))+] = E[(R (X)−R (b))+]. Necessarily, E[(Ĩ (X)−I (b))+] = E[(I (X)−
I (b))+], and, for any x ∈ [0, b], Ĩ (x) ≤ I (x); moreover, by the assumption that α ≤ β, a ≤ b;

therefore, E[(Ĩ (X)− I (a))+] ≤ E
[
(I (X)− I (a))+

]
.
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By the dual representation of TVaR,

TVaRβ(R̃ (X)) ≤ VaRβ(R (X)) +
1

1− β
E
[(
R̃ (X)−VaRβ(R (X))

)
+

]
= R (b) +

1

1− β
E
[(
R̃ (X)−R (b)

)
+

]
= R (b) +

1

1− β
E
[
(R (X)−R (b))+

]
= TVaRβ(R (X)),

and thus, by the comonotonic additivity, TVaRβ(X) − TVaRβ(Ĩ (X)) ≤ TVaRβ(X) −
TVaRβ(I (X)), which implies that TVaRβ(Ĩ (X)) ≥ TVaRβ(I (X)). Similarly, by the dual rep-

resentation of TVaR,

TVaRα(Ĩ (X)) ≤ VaRα(I (X)) +
1

1− α
E
[(
Ĩ (X)−VaRα(I (X))

)
+

]
= I (a) +

1

1− α
E
[(
Ĩ (X)− I (a)

)
+

]
≤ I (a) +

1

1− α
E
[
(I (X)− I (a))+

]
= TVaRα(I (X)).

Since (I, P ) ∈ A, TVaRα(Ĩ (X)) ≤ TVaRα(I (X)) ≤ P ≤ TVaRβ(I (X)) ≤ TVaRβ(Ĩ (X)), which

implies (Ĩ , P ) ∈ A. Moreover,

Fλ (I, P ) = λTVaRβ (X)− λTVaRβ (I (X)) + (1− λ) TVaRα (I (X)) + (2λ− 1)P

≥ λTVaRβ (X)− λTVaRβ(Ĩ (X)) + (1− λ) TVaRα(Ĩ (X)) + (2λ− 1)P

= Fλ(Ĩ , P ).
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